WorldWideScience

Sample records for area tonopah test

  1. Tonopah Test Range - Index

    Science.gov (United States)

    Capabilities Test Operations Center Test Director Range Control Track Control Communications Tracking Radars Photos Header Facebook Twitter YouTube Flickr RSS Tonopah Test Range Top TTR_TOC Tonopah is the testing range of choice for all national security missions. Tonopah Test Range (TTR) provides research and

  2. Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range

    International Nuclear Information System (INIS)

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities

  3. Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-04-01

    Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

  4. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Bechel Nevada

    2004-01-01

    This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

  5. Tonopah test range - outpost of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.

    1996-03-01

    Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

  6. Closure Report for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2003-03-01

    Corrective Action Unit (CAU) 425 is located on the Tonopah Test Range, approximately 386 kilometers (240 miles) northwest of Las Vegas, Nevada. CAU 425 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and is comprised of one Corrective Action Site (CAS). CAS 09-08-001-TA09 consisted of a large pile of concrete rubble from the original Hard Target and construction debris associated with the Tornado Rocket Sled Tests. CAU 425 was closed in accordance with the FFACO and the Nevada Division of Environmental Protection-approved Streamlined Approach for Environmental Restoration Plan for CAU 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada (U.S. Department of Energy, Nevada Operations Office, 2002). CAU 425 was closed by implementing the following corrective actions: The approved corrective action for this unit was clean closure. Closure activities included: (1) Removal of all the debris from the site. (2) Weighing each load of debris leaving the job site. (3) Transporting the debris to the U.S. Air Force Construction Landfill for disposal. (4) Placing the radioactive material in a U.S. Department of Transportation approved container for proper transport and disposal. (5) Transporting the radioactive material to the Nevada Test Site for disposal. (6) Regrading the job site to its approximate original contours/elevation.

  7. Tonopah Test Range Post-Closure Inspection Annual Report, Tonopah Test Range, Nevada, Calendar Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2004-04-01

    This post-closure inspection report provides documentation of the semiannual inspection activities, maintenance and repair activities, and conclusions and recommendations for calendar year 2003 for eight corrective action units located on the Tonopah Test Range, Nevada.

  8. Corrective action investigation plan for Corrective Action Unit Number 427: Area 3 septic waste system numbers 2 and 6, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Compound, specifically Corrective Action Unit (CAU) Number 427, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Corrective Action Unit Work Plan, Tonopah Test Range, Nevada divides investigative activities at TTR into Source Groups. The Septic Tanks and Lagoons Group consists of seven CAUs. Corrective Action Unit Number 427 is one of three septic waste system CAUs in TTR Area 3. Corrective Action Unit Numbers 405 and 428 will be investigated at a future data. Corrective Action Unit Number 427 is comprised of Septic Waste Systems Number 2 and 6 with respective CAS Numbers 03-05-002-SW02 and 03-05-002-SW06

  9. 1991 Environmental Monitoring Report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Howard, D.; Culp, T.

    1992-11-01

    This report summarizes the environmental surveillance activities conducted by the US Environmental Protection Agency (EPA) and Reynolds Electrical and Engineering Company (REECO) for the Tonopah Test Range (TTR) operated by Sandia National Laboratories (SNL). Other environmental compliance programs such as the National Environmental Policy Act of 1969 (NEPA), environmental permits, environmental restoration, and waste management programs are also included. The 1991 SNL, TTR, operations had no discernible impact on the general public or the environment. This report 3-s prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400.1

  10. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    Ronald B. Jackson

    2007-01-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Clean Closure/No Further Action, Closure in Place, or Closure in Progress

  11. 1985 environmental report: Sandia National Laboratories, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Millard, G.C.

    1986-04-01

    The Tonopah Test Range is located about 160 air miles northwest of Las Vegas, Nevada, and covers 525 square miles within the Nellis Air Force Base Bombing and Gunnery Range. The range is used for various DOE tests involving high and low altitude projectiles. Operations that affect the environment are mainly road construction, preparation of instrumentation sites, and disturbance of the terrain from projectile impacts. Monitoring of the test range is done annually by the US Environmental Protection Agency to supplement Sandia's monitoring effort associated with Sandia test activities. Monitoring results for 1984 indicate that test range operations do not adversely affect the offsite environment or the public

  12. 1990 Environmental monitoring report, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Hwang, A.; Phelan, J.; Wolff, T.; Yeager, G.; Dionne, D.; West, G.; Girard, C.

    1991-05-01

    There is no routine radioactive emission from Sandia National Laboratories, Tonopah Test Range (SNL, TTR). However, based on the types of test activities such as air drops, gun firings, ground- launched rockets, air-launched rockets, and other explosive tests, possibilities exist that small amounts of depleted uranium (DU) (as part of weapon components) may be released to the air or to the ground because of unusual circumstances (failures) during testing. Four major monitoring programs were used in 1990 to assess radiological impact on the public. The EPA Air Surveillance Network (ASN) found that the only gamma (γ) emitting radionuclide on the prefilters was beryllium-7 ( 7 Be), a naturally-occurring spallation product formed by the interaction of cosmic radiation with atmospheric oxygen and nitrogen. The weighted average results were consistent with the area background concentrations. The EPA Thermoluminescent Dosimetry (TLD) Network and Pressurized Ion Chamber (PIC) reported normal results. In the EPA Long-Term Hydrological Monitoring Program (LTHMP), analytical results for tritium ( 3 H) in well water were reported and were well below DOE-derived concentration guides (DCGs). In the Reynolds Electrical and Engineering Company (REECo) Drinking Water Sampling Program, analytical results for 3 H, gross alpha (α), beta (β), and γ scan, strontium-90 ( 90 Sr) and plutonium-239 ( 239 Pu) were within the EPA's primary drinking water standards. 29 refs., 5 figs., 15 tabs

  13. 1994 site environmental report, Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Forston, W.

    1995-09-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1

  14. 1993 site environmental report Tonopah Test Range, Tonopah, Nevada

    International Nuclear Information System (INIS)

    Culp, T.; Howard, D.; McClellan, Y.

    1994-10-01

    This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Reynolds Electrical and Engineering Company for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories' responsibility for environmental monitoring results extend to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental monitoring activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy in compliance with DOE Order 5400.1

  15. Tonopah Test Range Environmental Restoration Corrective Action Sites

    International Nuclear Information System (INIS)

    2010-01-01

    This report describes the status (closed, closed in place, or closure in progress) of the Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized

  16. Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    1997-04-01

    This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS

  17. Initial land reclamation procedures related to possible Pu-cleanup activities at the Tonopah Test Range

    International Nuclear Information System (INIS)

    Wallace, A.; Romney, E.M.

    1976-02-01

    If areas of the Tonopah Test Range (TTR) are to be used for experimental tests of procedures for clean-up of 239 Pu contamination, there are experiences in the Great Basin Desert portions of the Nevada Test Site (NTS) which can serve as guides to reclamation and revegetation of such arid lands. Procedures which will encourage development of the grasses Hilaria jamesii and Oryzopsis hymenoides, as well as the perennial shrubs Eurotia lanata and Atriplex canescens would greatly improve the area as range land

  18. Closure Report for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2010-09-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 408: Bomblet Target Area (TTR), Tonopah Test Range, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 408 is located at the Tonopah Test Range, Nevada, and consists of Corrective Action Site (CAS) TA-55-002-TAB2, Bomblet Target Areas. This CAS includes the following seven target areas: • Mid Target • Flightline Bomblet Location • Strategic Air Command (SAC) Target Location 1 • SAC Target Location 2 • South Antelope Lake • Tomahawk Location 1 • Tomahawk Location 2 The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for the CAS within CAU 408 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 408 issued by the Nevada Division of Environmental Protection. From July 2009 through August 2010, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 408: Bomblet Target Area, Tonopah Test Range (TTR), Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Identify and remove munitions of explosive concern (MEC) associated with DOE activities. • Investigate potential disposal pit locations. • Remove depleted uranium-contaminated fragments and soil. • Determine whether contaminants of concern (COCs) are

  19. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2013-01-28

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2012 and includes inspection and repair activities completed at the following CAUs: · CAU 400: Bomblet Pit and Five Points Landfill (TTR) · CAU 407: Roller Coaster RadSafe Area (TTR) · CAU 424: Area 3 Landfill Complexes (TTR) · CAU 453: Area 9 UXO Landfill (TTR) · CAU 487: Thunderwell Site (TTR)

  20. Closure Report for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Fitzmaurice, T. M.

    2001-01-01

    This closure report (CR) provides documentation for the closure of the Roller Coaster RADSAFE Area (RCRSA) Corrective Action Unit (CAU) 407 identified in the Federal Facility Agreement and Consent Order (FFACO) (Nevada Division of Environmental Protection [NDEP] et al., 1996). CAU 407 is located at the Tonopah Test Range (TTR), Nevada. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The RCRSA is located on the northeast comer of the intersection of Main Road and Browne's Lake Road, which is approximately 8 km (5 mi) south of Area 3 (Figure 1). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Double Tracks and Clean Slate tests. Investigation of the RCRSA was conducted from June through November of 1998. A Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOEN], 1999) was approved in October of 1999. The purpose of this CR is to: Document the closure activities as proposed in the Corrective Action Plan (CAP) (DOEM, 2000). Obtain a Notice of Completion from the NDEP. Recommend the movement of CAU 407 from Appendix III to Appendix IV of the FFACO. The following is the scope of the closure actions implemented for CAU 407: Removal and disposal of surface soils which were over three times background for the area. Soils identified for removal were disposed of at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS). Excavated areas were backfilled with clean borrow soil located near the site. A soil cover was constructed over the waste disposal pit area, where subsurface constituents of concern remain. The site was fenced and posted as an ''Underground Radioactive Material'' area

  1. An aerial radiological survey of the Tonopah Test Range including Clean Slate 1,2,3, Roller Coaster, decontamination area, Cactus Springs Ranch target areas. Central Nevada

    International Nuclear Information System (INIS)

    Proctor, A.E.; Hendricks, T.J.

    1995-08-01

    An aerial radiological survey was conducted of major sections of the Tonopah Test Range (TTR) in central Nevada from August through October 1993. The survey consisted of aerial measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. The initial purpose of the survey was to locate depleted uranium (detecting 238 U) from projectiles which had impacted on the TTR. The examination of areas near Cactus Springs Ranch (located near the western boundary of the TTR) and an animal burial area near the Double Track site were secondary objectives. When more widespread than expected 241 Am contamination was found around the Clean Slates sites, the survey was expanded to cover the area surrounding the Clean Slates and also the Double Track site. Results are reported as radiation isopleths superimposed on aerial photographs of the area

  2. Tonopah Test Range 2030 Meeting Summary Report

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Sites (CASs) and Corrective Action Units (CAUs) at the Tonopah Test Range (TTR) may be placed into three categories: Closed, Closed in Place, or Closure in Progress. CASs and CAUs where contaminants were either not detected or were cleaned up to within regulatory action levels are summarized. CASs and CAUs where contaminants and/or waste have been closed in place are summarized. There is also a table that summarizes the contaminant that has been closed at each site, if land-use restrictions are present, and if post-closure inspections are required

  3. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2010 and includes inspection and repair activities completed at the following seven CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 426: Cactus Spring Waste Trenches (TTR); (5) CAU 453: Area 9 UXO Landfill (TTR); (6) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR); and (7) CAU 487: Thunderwell Site (TTR).

  4. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2008

    International Nuclear Information System (INIS)

    2009-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2008 and includes inspection and repair activities completed at the following ten CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR) CAU 404: Roller Coaster Lagoons and Trench (TTR) CAU 407: Roller Coaster RadSafe Area (TTR) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) CAU 424: Area 3 Landfill Complexes (TTR) CAU 426: Cactus Spring Waste Trenches (TTR) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR) CAU 453: Area 9 UXO Landfill (TTR) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) CAU 487: Thunderwell Site (TTR)

  5. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2008

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-03-19

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2008 and includes inspection and repair activities completed at the following ten CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR) CAU 404: Roller Coaster Lagoons and Trench (TTR) CAU 407: Roller Coaster RadSafe Area (TTR) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) CAU 424: Area 3 Landfill Complexes (TTR) CAU 426: Cactus Spring Waste Trenches (TTR) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR) CAU 453: Area 9 UXO Landfill (TTR) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) CAU 487: Thunderwell Site (TTR)

  6. Sandia National Laboratories, Tonopah Test Range Askania Tower (Building 02-00): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    The Askania Tower (Building 02-00) was built in 1956 as part of the first wave of construction at the newly established Tonopah Test Range (TTR). Located at Station 2, near the primary target area at the range, the tower was one of the first four built to house Askania phototheodolites used in tracking test units dropped from aircraft. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  7. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m(sup 3)) (30 cubic yards[yd(sup 3)]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet[ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m(sup 3) (3000 yd(sup 3)) of construction-related debris

  8. POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA FOR CALENDAR YEAR 2005

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-01

    This post-closure inspection report includes the results of inspections, maintenance and repair activities, and conclusions and recommendations for Calendar Year 2005 for nine Corrective Action Units located on the Tonopah Test Range , Nevada.

  9. Post-Closure Inspection Report for Corrective Action Unit 424: Area 3 Landfill Complexes Tonopah Test Range, Nevada Calendar Year 2001; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2002-01-01

    Corrective Action Unit (CAU) 424, the Area 3 Landfill Complexes at Tonopah Test Range, consists of eight Corrective Action Sites (CASs), seven of which are landfill cells that were closed previously by capping. (The eighth CAS, A3-7, was not used as a landfill site and was closed without taking any corrective action.) Figure 1 shows the general location of the landfill cells. Figure 2 shows in more detail the location of the eight landfill cells. CAU 424 closure activities included removing small volumes of soil containing petroleum hydrocarbons, repairing cell covers that were cracked or had subsided, and installing above-grade and at-grade monuments marking the comers of the landfill cells. Post-closure monitoring requirements for CAU 424 are detailed in Section 5.0, Post-Closure Inspection Plan, contained in the Closure Report for Corrective Action Unit 424: Area 3 Landfill Complexes, Tonopah Test Range, Nevada, report number DOE/NV-283, July 1999. The Closure Report (CR) was approved by the Nevada Division of Environmental Protection (NDEP) in July 1999. The CR includes compaction and permeability results of soils that cap the seven landfill cells. As stated in Section 5.0 of the NDEP-approved CR, post-closure monitoring at CAU 424 consists of the following: (1) Site inspections conducted twice a year to evaluate the condition of the unit. (2) Verification that landfill markers and warning signs are in-place, intact, and readable. (3) Notice of any subsidence, erosion, unauthorized use, or deficiencies that may compromise the integrity of the landfill covers. (4) Remedy of any deficiencies within 90 days of discovery. (5) Preparation and submittal of an annual report. Site inspections were conducted on May 16, 2001, and November 6, 2001. The inspections were preformed after the NDEP approval of the CR. This report includes copies of the inspection checklist, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in

  10. Sandia National Laboratories, Tonopah Test Range Fire Control Bunker (Building 09-51): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    The Fire Control Bunker (Building 09-51) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons design. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  11. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    International Nuclear Information System (INIS)

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  12. Sandia National Laboratories, Tonopah Test Range Assembly Building 9B (Building 09-54): Photographs and Written Historical and Descriptive Data

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Corporate Archives and History Program

    2017-08-01

    Assembly Building 9B (Building 09-54) is a contributing element to the Sandia National Laboratories (SNL) Tonopah Test Range (TTR) Historic District. The SNL TTR Historic District played a significant role in U.S. Cold War history in the areas of stockpile surveillance and non-nuclear field testing of nuclear weapons designs. The district covers approximately 179,200 acres and illustrates Cold War development testing of nuclear weapons components and systems. This report includes historical information, architectural information, sources of information, project information, maps, blueprints, and photographs.

  13. Tonopah Test Range Air Monitoring: CY2016 Meteorological, Radiological, and Wind Transported Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  14. A multispectral scanner survey of the Tonopah Test Range, Nevada. Date of survey: August 1993

    International Nuclear Information System (INIS)

    Brewster, S.B. Jr.; Howard, M.E.; Shines, J.E.

    1994-08-01

    The Multispectral Remote Sensing Department of the Remote Sensing Laboratory conducted an airborne multispectral scanner survey of a portion of the Tonopah Test Range, Nevada. The survey was conducted on August 21 and 22, 1993, using a Daedalus AADS1268 scanner and coincident aerial color photography. Flight altitudes were 5,000 feet (1,524 meters) above ground level for systematic coverage and 1,000 feet (304 meters) for selected areas of special interest. The multispectral scanner survey was initiated as part of an interim and limited investigation conducted to gather preliminary information regarding historical hazardous material release sites which could have environmental impacts. The overall investigation also includes an inventory of environmental restoration sites, a ground-based geophysical survey, and an aerial radiological survey. The multispectral scanner imagery and coincident aerial photography were analyzed for the detection, identification, and mapping of man-made soil disturbances. Several standard image enhancement techniques were applied to the data to assist image interpretation. A geologic ratio enhancement and a color composite consisting of AADS1268 channels 10, 7, and 9 (mid-infrared, red, and near-infrared spectral bands) proved most useful for detecting soil disturbances. A total of 358 disturbance sites were identified on the imagery and mapped using a geographic information system. Of these sites, 326 were located within the Tonopah Test Range while the remaining sites were present on the imagery but outside the site boundary. The mapped site locations are being used to support ongoing field investigations

  15. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2006-01-01

    This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: (lg b ullet) CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations

  16. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Mark Krauss

    2010-03-01

    This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: • Clearing bomblet target areas within the study area. • Identifying and remediating disposal pits. • Collecting verification samples. • Performing radiological screening of soil. • Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

  17. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1

    International Nuclear Information System (INIS)

    Krauss, Mark

    2010-01-01

    This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: (1) Clearing bomblet target areas within the study area. (2) Identifying and remediating disposal pits. (3) Collecting verification samples. (4) Performing radiological screening of soil. (5) Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

  18. National Uranium Resource Evaluation, Tonopah quadrangle, Nevada

    International Nuclear Information System (INIS)

    Hurley, B.W.; Parker, D.P.

    1982-04-01

    The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas

  19. Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Smith

    1998-08-01

    This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

  20. Plutonium in the desert environment of the Nevada Test Site and the Tonopah Test Range

    International Nuclear Information System (INIS)

    Romney, E.M.; Essington, E.H.; Fowler, E.B.; Tamura, T.; Gilbert, R.O.

    1987-01-01

    Several safety shot tests were conducted in the desert environment of the Nevada Test Site and the Tonopah Test Range during the period 1955 to 1963. Follow-up studies were conducted in fallout areas resulting from these tests to investigate the distribution in soils and the availability to animals and plants of plutonium (and americium) after residence times of 10 to 20 years. Soil profile studies disclosed that more than 95% of the plutonium (and americium) dispersed as fallout to the environment had remained in the top 5 cm of soil in undisturbed areas. Significant amounts had been redistributed into blow-sand mounds formed underneath clumps of vegetation. That redistribution should be expected because the contaminant was associated primarily with the coarse silt and fine sand particle size fractions. Resuspension factors were calculated that varied from 9.1 x 10 -11 m -1 to 5.4 x 10 -9 m -1 with geometric mean and arithmetic averages of 2.9 x 10 -10 m -1 and 6.8 x 10 -10 m -1 , respectively; however, the plutonium essentially remained in place when the soil surface was left undisturbed. Vegetation in the fallout areas was contaminated primarily by resuspendable material deposited on the surface of plant foliage; plutonium concentration ratios ranged from 10 -3 to 10 0 . Carcass samples of small vertebrate animals collected from fallout areas contained only trace amounts of plutonium compared to the environmental exposure levels. Furthermore, only trace amounts of plutonium (and americium) were found in muscle and organ tissues of grazing cattle during a 3-year on-site residence experiment. 36 references, 4 figures

  1. NESHAP Annual Report for CY 2015 Sandia National Laboratories Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This National Emission Standards for Hazardous Air Pollutants (NESHAP) Annual Report has been prepared in a format to comply with the reporting requirements of 40 CFR 61.94 and the April 5, 1995 Memorandum of Agreement (MOA) between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). According to the EPA approved NESHAP Monitoring Plan for the Tonopah Test Range (TTR), 40 CFR 61, subpart H, and the MOA, no additional monitoring or measurements are required at TTR in order to demonstrate compliance with the NESHAP regulation.

  2. Closure Report for Corrective Action Unit 426: Cactus Spring Waste Trenches, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dave Madsen

    1998-08-01

    This Closure Report provides the documentation for closure of the Cactus Spring Waste Trenches Corrective Action Unit (CAU) 426. The site is located on the Tonopah Test Range, approximately 225 kilometers northwest of Las Vegas, NV. CAU 426 consists of one corrective action site (CAS) which is comprised of four waste trenches. The trenches were excavated to receive solid waste generated in support of Operation Roller Coaster, primary the Double Tracks Test in 1963, and were subsequently backfilled. The Double Tracks Test involved use of live animals to assess the biological hazards associated with the nonnuclear detonation of plutonium-bearing devices. The Nevada Division of Environmental Protection approved Corrective Action Plan (CAP)which proposed ''capping'' methodology. The closure activities were completed in accordance with the approved CAP and consisted of constructing an engineered cover in the area of the trenches, constructing/planting a vegetative cover, installing a perimeter fence and signs, implementing restrictions on future use, and preparing a Post-Closure Monitoring Plan.

  3. Corrective Action Investigation Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    ITLV

    1999-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 428, Area 3 Septic Waste Systems 1 and 5, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U. S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 428 consists of Corrective Action Sites 03- 05- 002- SW01 and 03- 05- 002- SW05, respectively known as Area 3 Septic Waste System 1 and Septic Waste System 5. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada , Rev. 1 (DOE/ NV, 1998c). The Leachfield Work Plan was developed to streamline investigations at leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 428. A system of leachfields and associated collection systems was used for wastewater disposal at Area 3 of the Tonopah Test Range until a consolidated sewer system was installed in 1990 to replace the discrete septic waste systems. Operations within various buildings at Area 3 generated sanitary and industrial wastewaters potentially contaminated with contaminants of potential concern and disposed of in septic tanks and leachfields. Corrective Action Unit 428 is composed of two leachfield systems in the northern portion of Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include oil/ diesel range total petroleum hydrocarbons, and Resource Conservation

  4. Post-Closure Inspection Report for Corrective Action Unit 453: Area 9 UXO Landfill Tonopah Test Range, Nevada, Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure monitoring requirements for the Area 9 Unexploded Ordnance Landfill (Corrective Action Unit[CAU] 453) (Figure 1) are described in Closure Report for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada, report number DOE/NV-284. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 5,1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on September 10,1999. Post-closure monitoring at CAU 453 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 20, 2000 and November 21, 2000. Both site inspections were conducted after NDEP approval of the CR, and in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of the inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and inspection photographs are found in Attachment C

  5. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, A. J. [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site; Lantow, Tiffany A. [National Security Technologies, LLC, Las Vegas, NV (United States). Nevada Test Site

    2015-03-25

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2014 and includes inspection and repair activities completed at the following CAUs; CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Photographs taken during inspections are included in Appendix D. The annual post-closure inspections were conducted on May 28, 2014. Maintenance was required at CAU 407. Animal burrows were backfilled and erosion repairs were performed. Vegetation monitoring was performed at CAU 407 in June 2014. The vegetation monitoring report is included in Appendix E.

  6. An in situ survey of Clean Slate 1, 2, and 3, Tonopah Test Range, Central Nevada. Date of survey: September--November 1993

    International Nuclear Information System (INIS)

    1995-08-01

    A ground-based in situ radiological survey was conducted downwind of the Clean Slate 1, 2, and 3 nuclear safety test sites at the Tonopah Test Range in central Nevada from September through November 1993. The purpose of the study was to corroborate the americium-241 ( 241 Am) soil concentrations that were derived from the aerial radiological survey of the Clean Slate areas, which was conducted from August through October 1993. The presence of 241 Am was detected at 140 of the 190 locations, with unrecoverable or lost data accounting for fifteen (15) of the sampling points. Good agreement was obtained between the aerial and in situ results

  7. Corrective action investigation plan for the Roller Coaster RADSAFE Area, Corrective Action Unit 407, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    1998-04-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. CAUs consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 407, the Roller Coaster RADSAFE Area (RCRSA) which is located on the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range Complex, is approximately 255 km (140 mi) northwest of Las Vegas, Nevada. CAU No. 407 is comprised of only one CAS (TA-23-001-TARC). The RCRSA was used during May and June 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The surface and subsurface soils are likely to have been impacted by plutonium and other contaminants of potential concern (COPCs) associated with decontamination activities at this site. The purpose of the corrective action investigation described in this CAIP is to: identify the presence and nature of COPCs; determine the vertical and lateral extent of COPCs; and provide sufficient information and data to develop and evaluate appropriate corrective actions for the CAS

  8. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    International Nuclear Information System (INIS)

    Nikolich, George; Shadel, Craig; Chapman, Jenny; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.; Mizell, Steve

    2016-01-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  9. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  10. Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2000-08-01

    Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the

  11. Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)

    International Nuclear Information System (INIS)

    1997-11-01

    This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy's (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, open-quotes Corrective Action Strategyclose quotes (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles

  12. Corrective Action Decision Document for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    2000-02-08

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 428, Septic Waste Systems 1 and 5, under the Federal Facility Agreement and Consent Order. Located in Area 3 at the Tonopah Test Range (TTR) in Nevada, CAU 428 is comprised of two Corrective Action Sites (CASs): (1) CAS 03-05-002-SW01, Septic Waste System 1 and (2) CAS 03-05-002- SW05, Septic Waste System 5. A corrective action investigation performed in 1999 detected analyte concentrations that exceeded preliminary action levels; specifically, contaminants of concern (COCs) included benzo(a) pyrene in a septic tank integrity sample associated with Septic Tank 33-1A of Septic Waste System 1, and arsenic in a soil sample associated with Septic Waste System 5. During this investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to contents of the septic tanks and distribution box, to subsurface soil containing COCs, and the spread of COCs beyond the CAU. Based on these CAOs, a review of existing data, future use, and current operations in Area 3 of the TTR, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Closure in Place with Administrative Controls; and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of the evaluation, the preferred CAA was Alternative 3. This alternative meets all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated soils at the Area 3 Septic Waste Systems 1 and 5.

  13. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  14. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Tonopah Airport, Nye County, Nevada

    International Nuclear Information System (INIS)

    Engelbrecht, J.; Kavouras, I.; Campbell, D.; Campbell, S.; Kohl, S.; Shafer, D.

    2009-01-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Tonopah Airport, Beatty, Rachel, Caliente, Pahranagat NWR, Crater Flat, and the Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program

  15. Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. S. Tobiason

    2000-01-01

    Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1[SWS 1]), and 03-05-002-SW05 (Septic Waste System 5[SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office[DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ((micro)g/kg). The benzo(a)pyrene was found in the soil under the discharge

  16. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  17. Post-Closure Inspection Report for the Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal

  18. Post-Closure Inspection Report for the Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2007-06-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2006 and includes inspection and repair activities completed at the following nine CAUs: CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 404: Roller Coaster Lagoons and Trench (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 426: Cactus Spring Waste Trenches (TTR); CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR). Post-closure inspections were conducted on May 9, 2006, May 31, 2006, and November 15, 2006. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2006, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 400, CAU 407, CAU 426, CAU 453, and CAU 487 in 2006. During the May inspection of CAU 400, it was identified that the east and west sections of chickenwire fencing beyond the standard fencing were damaged; they were repaired in June 2006. Also in June 2006, the southeast corner fence post and one warning sign at CAU 407 were reinforced and reattached, the perimeter fencing adjacent to the gate at CAU 426 was tightened, and large animal

  19. Closure Report for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 0

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    This Closure Report (CR) presents information supporting the clean closure of Corrective Action Unit (CAU) 412: Clean Slate I Plutonium Dispersion (TTR), located on the Tonopah Test Range, Nevada. CAU 412 consists of a release of radionuclides to the surrounding soil from a storage-transportation test conducted on May 25, 1963. Corrective action investigation (CAI) activities were performed in April and May 2015, as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR), Tonopah Test Range, Nevada; and in accordance with the Soils Activity Quality Assurance Plan. The purpose of the CAI was to fulfill data needs as defined during the data quality objectives process. The CAU 412 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the data needs identified by the data quality objectives process. This CR provides documentation and justification for the clean closure of CAU 412 under the FFACO without further corrective action. This justification is based on historical knowledge of the site, previous site investigations, implementation of the 1997 interim corrective action, and the results of the CAI. The corrective action of clean closure was confirmed as appropriate for closure of CAU 412 based on achievement of the following closure objectives: Radiological contamination at the site is less than the final action level using the ground troops exposure scenario (i.e., the radiological dose is less than the final action level): Removable alpha contamination is less than the high contamination area criterion: No potential source material is present at the site, and any impacted soil associated with potential source material has been removed so that remaining soil contains contaminants at concentrations less than the final action levels: and There is

  20. Closure Report for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-08-22

    This Closure Report (CR) presents information supporting the clean closure of Corrective Action Unit (CAU) 412: Clean Slate I Plutonium Dispersion (TTR), located on the Tonopah Test Range, Nevada. CAU 412 consists of a release of radionuclides to the surrounding soil from a storage–transportation test conducted on May 25, 1963. Corrective action investigation (CAI) activities were performed in April and May 2015, as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 412: Clean Slate I Plutonium Dispersion (TTR), Tonopah Test Range, Nevada; and in accordance with the Soils Activity Quality Assurance Plan. The purpose of the CAI was to fulfill data needs as defined during the data quality objectives process. The CAU 412 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the data needs identified by the data quality objectives process. This CR provides documentation and justification for the clean closure of CAU 412 under the FFACO without further corrective action. This justification is based on historical knowledge of the site, previous site investigations, implementation of the 1997 interim corrective action, and the results of the CAI. The corrective action of clean closure was confirmed as appropriate for closure of CAU 412 based on achievement of the following closure objectives: Radiological contamination at the site is less than the final action level using the ground troops exposure scenario (i.e., the radiological dose is less than the final action level): Removable alpha contamination is less than the high contamination area criterion: No potential source material is present at the site, and any impacted soil associated with potential source material has been removed so that remaining soil contains contaminants at concentrations less than the final action levels: and There is

  1. U.S. Department of Energy NESHAP Annual Report for CY 2014 Sandia National Laboratories Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-05-01

    This National Emission Standards for Hazardous Air Pollutants (NESHAP) Annual Report has been prepared in a format to comply with the reporting requirements of 40 CFR 61.94 and the April 5, 1995 Memorandum of Agreement (MOA) between the Department of Energy (DOE) and the Environmental Protection Agency (EPA). According to the EPA approved NESHAP Monitoring Plan for the Tonopah Test Range (TTR), 40 CFR 61, subpart H, and the MOA, no additional monitoring or measurements are required at TTR in order to demonstrate compliance with the NESHAP regulation.

  2. Corrective Action Investigation Plan for Corrective Action Unit 414: Clean Slate III Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    International Nuclear Information System (INIS)

    Matthews, Patrick

    2016-01-01

    Corrective Action Unit (CAU) 414 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 414 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate III (CSIII) storage transportation test conducted on June 9, 1963. CAU 414 includes one corrective action site (CAS), TA-23-03CS (Pu Contaminated Soil). The known releases at CAU 414 are the result of the atmospheric dispersal of contamination from the 1963 CSIII test. The CSIII test was a nonnuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 8 feet of soil. This test dispersed radionuclides, primarily uranium and plutonium, on the ground surface. The presence and nature of contamination at CAU 414 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 7, 2016, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective action alternatives for CAU 414.

  3. Corrective Action Investigation Plan for Corrective Action Unit 414: Clean Slate III Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2016-09-01

    Corrective Action Unit (CAU) 414 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 414 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate III (CSIII) storage–transportation test conducted on June 9, 1963. CAU 414 includes one corrective action site (CAS), TA-23-03CS (Pu Contaminated Soil). The known releases at CAU 414 are the result of the atmospheric dispersal of contamination from the 1963 CSIII test. The CSIII test was a nonnuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 8 feet of soil. This test dispersed radionuclides, primarily uranium and plutonium, on the ground surface. The presence and nature of contamination at CAU 414 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 7, 2016, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective action alternatives for CAU 414.

  4. Supporting documents for LLL area 27 (410 area) safety analysis reports, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Odell, B. N. [comp.

    1977-02-01

    The following appendices are common to the LLL Safety Analysis Reports Nevada Test Site and are included here as supporting documents to those reports: Environmental Monitoring Report for the Nevada Test Site and Other Test Areas Used for Underground Nuclear Detonations, U. S. Environmental Protection Agency, Las Vegas, Rept. EMSL-LV-539-4 (1976); Selected Census Information Around the Nevada Test Site, U. S. Environmental Protection Agency, Las Vegas, Rept. NERC-LV-539-8 (1973); W. J. Hannon and H. L. McKague, An Examination of the Geology and Seismology Associated with Area 410 at the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-51830 (1975); K. R. Peterson, Diffusion Climatology for Hypothetical Accidents in Area 410 of the Nevada Test Site, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-52074 (1976); J. R. McDonald, J. E. Minor, and K. C. Mehta, Development of a Design Basis Tornado and Structural Design Criteria for the Nevada Test Site, Nevada, Lawrence Livermore Laboratory, Livermore, Rept. UCRL-13668 (1975); A. E. Stevenson, Impact Tests of Wind-Borne Wooden Missiles, Sandia Laboratories, Tonopah, Rept. SAND 76-0407 (1976); and Hydrology of the 410 Area (Area 27) at the Nevada Test Site.

  5. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Silvas, A. J.

    2014-03-03

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2013 and includes inspection and repair activities completed at the following CAUs: • CAU 400: Bomblet Pit and Five Points Landfill (TTR) • CAU 407: Roller Coaster RadSafe Area (TTR) • CAU 424: Area 3 Landfill Complexes (TTR) • CAU 453: Area 9 UXO Landfill (TTR) • CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Field notes are included in Appendix D. Photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted on May 14, 2013. Maintenance was performed at CAU 400, CAU 424, and CAU 453. At CAU 400, animal burrows were backfilled. At CAU 424, erosion repairs were completed at Landfill Cell A3-3, subsidence was repaired at Landfill Cell A3-4, and additional lava rock was placed in high-traffic areas to mark the locations of the surface grade monuments at Landfill Cell A3-3 and Landfill Cell A3-8. At CAU 453, two areas of subsidence were repaired and animal burrows were backfilled. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2013. The vegetation monitoring report is included in Appendix F.

  6. Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS.

  7. Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range

    International Nuclear Information System (INIS)

    1997-07-01

    This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS

  8. Post-Closure Inspection Report for the Tonopah Test Range, Nevada: For Calendar Year 2017, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, Juan; Matthews, Patrick

    2018-05-01

    This report provides the results of the annual post-closure inspections conducted at the closed corrective action units (CAUs) located on the Tonopah Test Range (TTR) and the Nevada Test and Training Range (NTTR). This report covers calendar year 2017 and includes visual inspection and repair activities completed at the following CAUs: • CAU 400: Bomblet Pit and Five Points Landfill (TTR) • CAU 407: Roller Coaster RadSafe Area (TTR) • CAU 424: Area 3 Landfill Complexes (TTR) • CAU 453: Area 9 UXO Landfill (TTR) • CAU 487: Thunderwell Site (TTR) Visual inspections were conducted according to the post-closure plans in the approved closure reports and subsequent correspondence with the Nevada Division of Environmental Protection. The annual post-closure inspections were conducted on May 23, 2017. No maintenance or repair issues were noted at CAU 400 and CAU 487. Maintenance items and subsequent repairs include the following: • CAU 407: A large animal burrow was observed in the southeast corner of the cover during the inspection. Two additional animal burrows were discovered during repair actions. All cover defects were repaired on January 9, 2018. • CAU 424: CAS 03-08-002-A304 (Landfill Cell A3-4): A new monument was installed and the subsidence area was repaired on January 9, 2018. • CAU 424: CAS 03-08-002-A308 (Landfill Cell A3-8): Lava rock, used to mark the two eastern monument locations, was noted as missing during the inspection. The lava rock was replaced on January 9, 2018. • CAU 453: Five large animal burrows, located near the east–central portion of cover, was noted during the inspection. Eight additional animal burrows were discovered during repair actions. All cover defects were repaired on January 9, 2018.

  9. Plutonium, americium, and uranium in blow-sand mounds of safety-shot sites at the Nevada Test Site and the Tonopah Test Range

    International Nuclear Information System (INIS)

    Essington, E.H.; Gilbert, R.O.; Wireman, D.L.; Brady, D.N.; Fowler, E.B.

    1977-01-01

    Blow-sand mounds or miniature sand dunes and mounds created by burrowing activities of animals were investigated by the Nevada Applied Ecology Group (NAEG) to determine the influence of mounds on plutonium, americium, and uranium distributions and inventories in areas of the Nevada Test Site and Tonopah Test Range. Those radioactive elements were added to the environment as a result of safety experiments of nuclear devices. Two studies were conducted. The first was to estimate the vertical distribution of americium in the blow-sand mounds and in the desert pavement surrounding the mounds. The second was to estimate the amount or concentration of the radioactive materials accumulated in the mound relative to the desert pavement. Five mound types were identified in which plutonium, americium, and uranium concentrations were measured: grass, shrub, complex, animal, and diffuse. The mount top (that portion above the surrounding land surface datum), the mound bottom (that portion below the mound to a depth of 5 cm below the surrounding land surface datum), and soil from the immediate area surrounding the mound were compared separately to determine if the radioactive elements had concentrated in the mounds. Results of the studies indicate that the mounds exhibit higher concentrations of plutonium, americium, and uranium than the immediate surrounding soil. The type of mound does not appear to have influenced the amount of the radioactive material found in the mound except for the animal mounds where the burrowing activities appear to have obliterated distribution patterns

  10. Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP

  11. Corrective action investigation plan for Corrective Action Unit Number 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-27

    This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and the criteria for conducting site investigation activities at Corrective Action Unit (CAU) Number 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada. CAU Number 423 is comprised of only one Corrective Action Site (CAS) which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (240 feet) northwest. The UDP was used between approximately 1965 and 1990 to dispose of waste fluids from the Building 03-60 automotive maintenance shop. It is likely that soils surrounding the UDP have been impacted by oil, grease, cleaning supplies and solvents as well as waste motor oil and other automotive fluids released from the UDP.

  12. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011

    International Nuclear Information System (INIS)

    2012-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

  13. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2012-02-21

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2011 and includes inspection and repair activities completed at the following CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 453: Area 9 UXO Landfill (TTR); and (5) CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Appendix B. The inspection checklists are included in Appendix C, field notes are included in Appendix D, and photographs taken during inspections are included in Appendix E. The annual post-closure inspections were conducted May 3 and 4, 2011. Maintenance was performed at CAU 424, CAU 453, and CAU 487. At CAU 424, two surface grade monuments at Landfill Cell A3-3 could not be located during the inspection. The two monuments were located and marked with lava rock on July 13, 2011. At CAU 453, there was evidence of animal burrowing. Animal burrows were backfilled on July 13, 2011. At CAU 487, one use restriction warning sign was missing, and wording was faded on the remaining signs. A large animal burrow was also present. The signs were replaced, and the animal burrow was backfilled on July 12, 2011. As a best management practice, the use restriction warning signs at CAU 407 were replaced with standard Federal Facility Agreement and Consent Order signs on July 13, 2011. Vegetation monitoring was performed at the CAU 400 Five Points Landfill and CAU 407 in June 2011, and the vegetation monitoring report is included in Appendix F.

  14. Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Under ground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    1999-05-20

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Underground Discharge Points (UDPs) included in both CAU 406 and CAU 429. The CAUs are located in Area 3 and Area 9 of the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada.

  15. Status of endangered and threatened plant species on Tonopah Test Range: a survey

    International Nuclear Information System (INIS)

    Rhoads, W.A.; Cochrane, S.A.; Williams, M.P.

    1979-10-01

    Six species under consideration by the US Fish and Wildlife Service (FWS) for endangered or threatened status were found on or near the Tonopah Test Range (TTR) in southern central Nevada. Based on recognized threats to these species, their overall distribution, rarity, and other factors, status recommendations were prepared for Sandia Corporation. In addition, ten species that occur in the vicinity of TTR, and which may yet be found on TTR, are discussed in brief. Each species is discussed in relation to distribution, rarity, taxonomy, habitat requirements, endangerment, assessment of status, and proposed protection and monitoring needs. Construction activities and off-road vehicle travel are the most prominent man-caused threats to species on TTR; habitat destruction by trampling and over-grazing by feral horses and non-permit cattle significantly modifies habitats of certain species. We recommend two kinds of protective measures. First is the planning of activities so that habitats, particularly the suggested protected habitats, are not disturbed. Second, and directed to the same end, off-road traffic should be curtailed in the regions of the proposed protected habitats

  16. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2009 and includes inspection and repair activities completed at the following seven CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 407: Roller Coaster RadSafe Area (TTR); (3) CAU 424: Area 3 Landfill Complexes (TTR); (4) CAU 426: Cactus Spring Waste Trenches (TTR); (5) CAU 453: Area 9 UXO Landfill (TTR); (6) CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR); and (7) CAU 487: Thunderwell Site (TTR). The annual post-closure inspections were conducted May 5-6, 2009. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2009, and the vegetation monitoring report is included in Attachment F. Maintenance was performed at CAU 453. Animal burrows observed during the annual inspection were backfilled, and a depression was restored to grade on June 25, 2009. Post-closure site inspections should continue as scheduled. Vegetation survey inspections have been conducted annually at CAUs 400, 404, 407, and 426. Discontinuation of vegetation surveys is recommended at the CAU 400 Bomblet Pit and CAU 426, which have been successfully revegetated. Discontinuation of vegetation surveys is also recommended at CAU 404, which has been changed to an administrative closure with no inspections

  17. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, for Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2010-05-28

    This report provides the results of the annual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2009 and includes inspection and repair activities completed at the following seven CAUs: · CAU 400: Bomblet Pit and Five Points Landfill (TTR) · CAU 407: Roller Coaster RadSafe Area (TTR) · CAU 424: Area 3 Landfill Complexes (TTR) · CAU 426: Cactus Spring Waste Trenches (TTR) · CAU 453: Area 9 UXO Landfill (TTR) · CAU 484: Surface Debris, Waste Sites, and Burn Area (TTR) · CAU 487: Thunderwell Site (TTR) The annual post-closure inspections were conducted May 5–6, 2009. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2009, and the vegetation monitoring report is included in Attachment F. Maintenance was performed at CAU 453. Animal burrows observed during the annual inspection were backfilled, and a depression was restored to grade on June 25, 2009. Post-closure site inspections should continue as scheduled. Vegetation survey inspections have been conducted annually at CAUs 400, 404, 407, and 426. Discontinuation of vegetation surveys is recommended at the CAU 400 Bomblet Pit and CAU 426, which have been successfully revegetated. Discontinuation of vegetation surveys is also recommended at CAU 404, which has been changed to an administrative closure with no inspections required. Vegetation

  18. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2008-01-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as

  19. Post-Closure Inspection Report for the Tonopah Test Range, Nevada, For Calendar Year 2007

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2008-06-01

    This report provides the results of the semiannual post-closure inspections conducted at the closed Corrective Action Unit (CAU) sites located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2007 and includes inspection and repair activities completed at the following nine CAUs: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR); (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2, 6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). In a letter from the Nevada Division of Environmental Protection (NDEP) dated December 5, 2006, NDEP concurred with the request to reduce the frequency of post-closure inspections of CAUs at TTR to an annual frequency. This letter is included in Attachment B. Post-closure inspections were conducted on May 15-16, 2007. All inspections were conducted according to the post-closure plans in the approved Closure Reports. The post-closure inspection plan for each CAU is included in Attachment B, with the exception of CAU 400. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. The inspection checklists for each site inspection are included in Attachment C, the field notes are included in Attachment D, and the site photographs are included in Attachment E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in May 2007, and the vegetation monitoring report is included in Attachment F. Maintenance and/or repairs were performed at CAU 453. Animal burrows observed during the annual inspection at CAU 453 were backfilled on August 1, 2007. At this time, the TTR post-closure site inspections should continue as

  20. Corrective Action Investigation Plan for Corrective Action Unit 413: Clean Slate II Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick; Burmeister, Mark; Gallo, Patricia

    2016-04-21

    Corrective Action Unit (CAU) 413 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 413 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. CAU 413 includes one corrective action site (CAS), TA-23-02CS (Pu Contaminated Soil). The known releases at CAU 413 are the result of the atmospheric deposition of contamination from the 1963 CSII test. The CSII test was a non-nuclear detonation of a nuclear device located inside a reinforced concrete bunker covered with 2 feet of soil. This test dispersed radionuclides, primarily plutonium, on the ground surface. The presence and nature of contamination at CAU 413 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 17, 2015, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 413. The CAI will include radiological surveys, geophysical surveys, collection and analyses of soil samples, and assessment of investigation results. The collection of soil samples will be accomplished using both probabilistic and judgmental sampling approaches. To facilitate site investigation and the evaluation of DQO decisions, the releases at CAU 413 have been divided into seven study groups.

  1. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

  2. 75 FR 72836 - Notice of Availability of Final Environmental Impact Statement for the Tonopah Solar Energy...

    Science.gov (United States)

    2010-11-26

    ... Statement for the Tonopah Solar Energy Crescent Dunes Solar Energy Project, Nye County, NV AGENCY: Bureau of... Statement (EIS) for the Crescent Dunes Solar Energy Project, Nye County, Nevada, and by this notice is... . SUPPLEMENTARY INFORMATION: Tonopah Solar Energy, LLC applied to the BLM for a 7,680-acre right-of-way (ROW) on...

  3. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the

  4. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve

  5. Post-Closure Inspection Report for the Tonopah Test Range, Nevada. For Calendar Year 2015, Revision 0

    International Nuclear Information System (INIS)

    Matthews, Patrick; Petrello, Jaclyn

    2016-01-01

    This report provides the results of the annual post-closure inspections conducted at the closed corrective action units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2015 and includes inspection and repair activities completed at the following CAUs; CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved closure reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Field notes are included in Appendix D. The annual post-closure inspections were conducted on May 12, 2015. Maintenance was required at CAU 453. Cracking along the north trench was repaired. One monument is missing at CAU 424; it will be replaced in 2016. Postings at CAUs 407, 424, 453, and 487 contain contact information for TTR Security. It was noted that protocols may not be in place to ensure that the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) is notified if access is needed at these sites. NNSA/NFO is working with the U.S. Air Force and Sandia to determine whether more appropriate contact information or new protocols are warranted for each CAU. Based on these inspections, there has not been a significant change in vegetation, and vegetation monitoring was not recommended at CAU 400 or CAU 407 in 2015.

  6. Post-Closure Inspection Report for the Tonopah Test Range, Nevada. For Calendar Year 2015, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States); Petrello, Jaclyn [Navarro, Las Vegas, NV (United States)

    2016-03-01

    This report provides the results of the annual post-closure inspections conducted at the closed corrective action units (CAUs) located on the Tonopah Test Range (TTR), Nevada. This report covers calendar year 2015 and includes inspection and repair activities completed at the following CAUs; CAU 400: Bomblet Pit and Five Points Landfill (TTR); CAU 407: Roller Coaster RadSafe Area (TTR); CAU 424: Area 3 Landfill Complexes (TTR); CAU 453: Area 9 UXO Landfill (TTR); and CAU 487: Thunderwell Site (TTR) Inspections were conducted according to the post-closure plans in the approved closure reports and subsequent correspondence with the Nevada Division of Environmental Protection. The post-closure inspection plans and subsequent correspondence modifying the requirements for each CAU are included in Appendix B. The inspection checklists are included in Appendix C. Field notes are included in Appendix D. The annual post-closure inspections were conducted on May 12, 2015. Maintenance was required at CAU 453. Cracking along the north trench was repaired. One monument is missing at CAU 424; it will be replaced in 2016. Postings at CAUs 407, 424, 453, and 487 contain contact information for TTR Security. It was noted that protocols may not be in place to ensure that the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) is notified if access is needed at these sites. NNSA/NFO is working with the U.S. Air Force and Sandia to determine whether more appropriate contact information or new protocols are warranted for each CAU. Based on these inspections, there has not been a significant change in vegetation, and vegetation monitoring was not recommended at CAU 400 or CAU 407 in 2015.

  7. Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii

    International Nuclear Information System (INIS)

    Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

    2005-01-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b)

  8. 2013 Annual Site Environmental Report for Sandia National Laboratories Tonopah Test Range Nevada & Kauai Test Facility Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy Rene [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Li, Jun [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); White, Nancy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Minitrez, Alexandra [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Avery, Penny [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Catechis, Christopher [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); duMond, Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Forston, William [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Herring, III, Allen [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Lantow, Tiffany [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Martinez, Reuben [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Amy [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Payne, Jennifer [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Peek, Dennis [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ricketson, Sherry [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities managed and operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Field Office (SFO), in Albuquerque, New Mexico, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Navarro Research and Engineering subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report summarizes data and the compliance status of the sustainability, environmental protection, and monitoring program at TTR and KTF through Calendar Year 2013. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, Environmental Restoration (ER) cleanup activities, and the National Environmental Policy Act. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Field Office retains responsibility for the cleanup and management of TTR ER sites. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  9. 76 FR 60475 - Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy...

    Science.gov (United States)

    2011-09-29

    ... DEPARTMENT OF ENERGY Issuance of a Loan Guarantee to Tonopah Solar Energy, LLC, for the Crescent Dunes Solar Energy Project AGENCY: U.S. Department of Energy. ACTION: Record of decision. SUMMARY: The U... and Reinvestment Act of 2009 (Recovery Act), to Tonopah Solar Energy, LLC (TSE), for construction and...

  10. Calendar year 2007 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii,

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [Department of Energy, Albuquerque, NM (United States). National Nuclear Security Administration (NNSA); Sanchez, Rebecca [Sandia Corp., Albuquerque, NM (United States)

    2008-09-30

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE)/National Nuclear Security Administration (NNSA), through the Sandia Site Offi ce (SSO), in Albuquerque, NM, administers the contract and oversees contractor operations at TTR and KTF. Sandia manages and conducts operations at TTR in support of the DOE/NNSA’s Weapons Ordnance Program and has operated the site since 1957. Washington Group International subcontracts to Sandia in administering most of the environmental programs at TTR. Sandia operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2007. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia is responsible only for those environmental program activities related to its operations. The DOE/NNSA/Nevada Site Offi ce (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting Manual (DOE 2007).

  11. Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

    2003-09-01

    Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

  12. Streamlined approach for environmental restoration plan for corrective action unit 430, buried depleted uranium artillery round No. 1, Tonopah test range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) and the Resource Conservation and Recovery Act (RCRA) Industrial Sites Quality Assurance Project Plan.

  13. Streamlined approach for environmental restoration plan for corrective action unit 430, buried depleted uranium artillery round No. 1, Tonopah test range

    International Nuclear Information System (INIS)

    1996-09-01

    This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) and the Resource Conservation and Recovery Act (RCRA) Industrial Sites Quality Assurance Project Plan

  14. Map showing the distribution and characteristics of plutonic rocks in the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    John, D.A.

    1987-01-01

    Plutonic rocks, mostly granite and granodiorite, are widely distributed in the west two-thirds of the Tonopah 1 degree by 2 degree quadrangle, Nevada. These rocks were systematically studied as part of the Tonopah CUSMAP project. Studies included field mapping, petrographic and modal analyses, geochemical studies of both fresh and altered plutonic rocks and altered wallrocks, and K-Ar and Rb-Sr radiometric dating. Data collected during this study were combined with previously published data to produce a 1:250,000-scale map of the Tonopah quadrangle showing the distribution of individual plutons and an accompanying table summarizing composition, texture, age, and any noted hydrothermal alteration and mineralization effects for each pluton.

  15. Bouguer gravity anomaly and isostatic residual gravity maps of the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    Plouff, Donald

    1992-01-01

    These gravity maps are part of a folio of maps of the Tonopah 1 degree by 2 degrees quadrangle, Nevada, prepared under the Conterminous United States Mineral Assessment Program. Each product of the folio is designated by a different letter symbol, starting with A, in the MF-1877 folio. The quadrangle encompasses an area of about 19,500 km2  in the west central part of Nevada.

  16. Post-Closure Inspection Report for Corrective Action Unit 427: Septic Waste Systems 2 and 6 Tonopah Test Range, Nevada Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure inspection requirements for the Area 3 Septic Waste Systems 2 and 6 (Corrective Action Unit[CAU] 427) (Figure 1) are described in Closure Report for Corrective Action Unit 427. Area 3 Septic Waste Systems 2 and 6. Tonopah Test Range, Nevada, report number DOE/NV-561. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on August 16, 1999. The CR (containing the Post-Closure Inspection Plan) was approved by the NDEP on August 27, 1999. The annual post-closure inspection at CAU 427 consists of the following: Verification of the presence of all leachfield and septic tank below-grade markers; Verification that the warning signs are in-place, intact, and readable; and Visual observation of the soil and asphalt cover for indications of subsidence, erosion, and unauthorized use. The site inspections were conducted on June 20, 2000, and November 21, 2000. All inspections were made after NDEP approval of the CR and were conducted in accordance with the Post-Closure Inspection Plan in the NDEP-approved CR. No maintenance or repairs were conducted at the site. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. Copies of the Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and a copy of the inspection photographs is found in Attachments C

  17. Corrective Action Investigation Plan for Corrective Action Unit 487: Thunderwell Site, Tonopah Test Range, Nevada (Rev. No.: 0, January 2001)

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    2001-01-02

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 487, Thunderwell Site, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 487 consists of a single Corrective Action Site (CAS), RG 26-001-RGRV, Thunderwell Site. The site is located in the northwest portion of the TTR, Nevada, approximately five miles northwest of the Area 3 Control Point and closest to the Cactus Flats broad basin. Historically, Sandia National Laboratories in New Mexico used CAU 487 in the early to mid-1960s for a series of high explosive tests detonated at the bottom of large cylindrical steel tubes. Historical photographs indicate that debris from these tests and subsequent operations may have been scattered and buried throughout the site. A March 2000 walk-over survey and a July 2000 geophysical survey indicated evidence of buried and surface debris in dirt mounds and areas throughout the site; however, a radiological drive-over survey also performed in July 2000 indicated that no radiological hazards were identified at this site. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that detonation activities at this CAU site may have resulted in the release of contaminants of concern into the surface/subsurface soil including total volatile and total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, radionuclides, total petroleum hydrocarbons, and high explosives. Therefore, the scope of corrective action field investigation will involve excavation, drilling, and extensive soil sampling and analysis activities to determine the extent (if any) of both the lateral and vertical contamination

  18. 2016 Annual Site Environmental report Sandia National Laboratories Tonopah Test Range Nevada & Kaua'i Test Facility Hawai'i.

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Angela Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Stacy R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    Sandia National Laboratories (SNL) is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s (DOE’s), National Nuclear Security Administration (NNSA) under contract DE-NA0003525. The DOE/NNSA Sandia Field Office administers the contract and oversees contractor operations at the SNL, Tonopah Test Range (SNL/TTR) in Nevada and the SNL, Kaua‘i Test Facility (SNL/KTF) in Hawai‘i. SNL personnel manage and conduct operations at SNL/TTR in support of the DOE/NNSA’s Weapons Ordnance Program and have operated the site since 1957. Navarro Research and Engineering personnel perform most of the environmental programs activities at SNL/TTR. The DOE/NNSA/Nevada Field Office retains responsibility for cleanup and management of SNL/TTR Environmental Restoration sites. SNL personnel operate SNL/KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of sustainability, environmental protection, and monitoring programs at SNL/TTR and SNL/KTF during calendar year 2016. Major environmental programs include air quality, water quality, groundwater protection, terrestrial and biological surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. This ASER is prepared in accordance with and as required by DOE O 231.1B, Admin Change 1, Environment, Safety, and Health Reporting.

  19. POST-CLOSURE INSPECTION REPORT FOR THE TONOPAH TEST RANGE, NEVADA, FOR CALENDAR YEAR 2004

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-04-01

    This Post-Closure Inspection Report provides an analysis and summary of the semi-annual inspections conducted at the Tonopah Test Range (TTR) during Calendar Year 2004. The report includes the inspection and/or repair activities completed at the following nine Corrective Action Units (CAUs) located at TTR, Nevada: (1) CAU 400: Bomblet Pit and Five Points Landfill (TTR); (2) CAU 404: Roller Coaster Lagoons and Trench (TTR); (3) CAU 407: Roller Coaster RadSafe Area (TTR); (4) CAU 423: Area 3 Underground Discharge Point, Building 0360 (TTR) (5) CAU 424: Area 3 Landfill Complexes (TTR); (6) CAU 426: Cactus Spring Waste Trenches (TTR); (7) CAU 427: Area 3 Septic Waste Systems 2,6 (TTR); (8) CAU 453: Area 9 UXO Landfill (TTR); and (9) CAU 487: Thunderwell Site (TTR). Site inspections were conducted on July 7,2004, and November 9-10,2004. All inspections were conducted according to the post-closure plans in the approved Closure Reports (CRs). The post-closure inspection plan for each CAU is included in Appendix B, with the exception of CAU 400 and CAU 423. CAU 400 does not require post-closure inspections, but inspections of the vegetation and fencing are conducted as a best management practice. In addition, post-closure inspections are not currently required at CAU 423; however, the CR is being revised to include inspection requirements. The inspection checklists for each site inspection are included in Appendix C, the field notes are included in Appendix D, and the site photographs are included in Appendix E. Vegetation monitoring of CAU 400, CAU 404, CAU 407, and CAU 426 was performed in June 2004, and the vegetation monitoring report is included in Appendix F. In addition, topographic survey results of two repaired landfill cells in CAU 424 are included in Appendix G. Maintenance and/or repairs were performed at the CAU 400 Five Points Landfill, CAU 407, CAU 424, CAU 427, and CAU 487. CAU 400 repairs included mending the fence, reseeding of a flood damaged area, and

  20. Validation Analysis of the Groundwater Flow and Transport Model of the Central Nevada Test Area

    Energy Technology Data Exchange (ETDEWEB)

    A. Hassan; J. Chapman; H. Bekhit; B. Lyles; K. Pohlmann

    2006-09-30

    The Central Nevada Test Area (CNTA) is a U.S. Department of Energy (DOE) site undergoing environmental restoration. The CNTA is located about 95 km northeast of Tonopah, Nevada, and 175 km southwest of Ely, Nevada (Figure 1.1). It was the site of the Faultless underground nuclear test conducted by the U.S. Atomic Energy Commission (DOE's predecessor agency) in January 1968. The purposes of this test were to gauge the seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley (outside the Nevada Test Site [NTS]) and to determine the suitability of the site for future large detonations. The yield of the Faultless underground nuclear test was between 200 kilotons and 1 megaton (DOE, 2000). A three-dimensional flow and transport model was created for the CNTA site (Pohlmann et al., 1999) and determined acceptable by DOE and the Nevada Division of Environmental Protection (NDEP) for predicting contaminant boundaries for the site.

  1. Estimated inventory of plutonium and uranium radionuclides for vegetation in aged fallout areas

    International Nuclear Information System (INIS)

    Romney, E.M.; Wallace, A.; Kinnear, J.; Gilbert, R.O.

    1977-01-01

    Data are presented pertinent to the contamination of vegetation by plutonium and other radionuclides in aged fallout areas on the Nevada Test Site (NTS) and the Tonopah Test Range (TTR). The standing biomass of vegetation estimated by nondestructive dimensional methods varied from about 200 to 600 g/m 2 for the different fallout areas. Estimated inventories of 238 Pu, 239 Pu, 240 Pu, and 235 U in plants and their biological effects are discussed

  2. Corrective Action Investigation Plan for Corrective Action Unit 487: Thunderwell Site, Tonopah Test Range, Nevada (Rev. No.: 0, January 2001); TOPICAL

    International Nuclear Information System (INIS)

    2001-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate corrective action alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 487, Thunderwell Site, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 487 consists of a single Corrective Action Site (CAS), RG 26-001-RGRV, Thunderwell Site. The site is located in the northwest portion of the TTR, Nevada, approximately five miles northwest of the Area 3 Control Point and closest to the Cactus Flats broad basin. Historically, Sandia National Laboratories in New Mexico used CAU 487 in the early to mid-1960s for a series of high explosive tests detonated at the bottom of large cylindrical steel tubes. Historical photographs indicate that debris from these tests and subsequent operations may have been scattered and buried throughout the site. A March 2000 walk-over survey and a July 2000 geophysical survey indicated evidence of buried and surface debris in dirt mounds and areas throughout the site; however, a radiological drive-over survey also performed in July 2000 indicated that no radiological hazards were identified at this site. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that detonation activities at this CAU site may have resulted in the release of contaminants of concern into the surface/subsurface soil including total volatile and total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, radionuclides, total petroleum hydrocarbons, and high explosives. Therefore, the scope of corrective action field investigation will involve excavation, drilling, and extensive soil sampling and analysis activities to determine the extent (if any) of both the lateral and vertical contamination and whether

  3. Corrective Action Investigation Plan for Corrective Action Unit 409: Other Waste Sites, Tonopah Test Range, Nevada (Rev. 0)

    International Nuclear Information System (INIS)

    2000-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 409 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 409 consists of three Corrective Action Sites (CASs): TA-53-001-TAB2, Septic Sludge Disposal Pit No.1; TA-53-002-TAB2, Septic Sludge Disposal Pit No.2; and RG-24-001-RGCR, Battery Dump Site. The Septic Sludge Disposal Pits are located near Bunker Two, close to Area 3, on the Tonopah Test Range. The Battery Dump Site is located at the abandoned Cactus Repeater Station on Cactus Peak. The Cactus Repeater Station was a remote, battery-powered, signal repeater station. The two Septic Sludge Disposal Pits were suspected to be used through the late 1980s as disposal sites for sludge from septic tanks located in Area 3. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern are the same for the disposal pits and include: volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPHs) as gasoline- and diesel-range organics, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and radionuclides (including plutonium and depleted uranium). The Battery Dump Site consists of discarded lead-acid batteries and associated construction debris, placing the site in a Housekeeping Category and, consequently, no contaminants are expected to be encountered during the cleanup process. The corrective action the at this CAU will include collection of discarded batteries and construction debris at the Battery Dump Site for proper disposal and recycling, along with photographic documentation as the process progresses. The corrective action for the remaining CASs involves the collection of background radiological data through borings drilled at

  4. Corrective Action Investigation Plan for Corrective Action Unit No. 423: Building 03-60 Underground Discharge Point, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    1997-10-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV), the State of Nevada Division of Environmental Protection (NDEP), and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUS) or Corrective Action Sites (CASs) (FFACO, 1996). As per the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU No. 423, the Building 03-60 Underground Discharge Point (UDP), which is located in Area 3 at the Tonopah Test Range (TTR). The TTR, part of the Nellis Air Force Range, is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada (Figures 1-1 and 1-2). Corrective Action Unit No. 423 is comprised of only one CAS (No. 03-02-002-0308), which includes the Building 03-60 UDP and an associated discharge line extending from Building 03-60 to a point approximately 73 meters (m) (240 feet [ft]) northwest as shown on Figure 1-3.

  5. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 413: Clean Slate II Plutonium Dispersion (TTR) Tonopah Test Range, Nevada. Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick [Navarro, Las Vegas, NV (United States)

    2017-05-01

    This Corrective Action Decision Document/Corrective Action Plan provides the rationale and supporting information for the selection and implementation of corrective actions at Corrective Action Unit (CAU) 413, Clean Slate II Plutonium Dispersion (TTR). CAU 413 is located on the Tonopah Test Range and includes one corrective action site, TA-23-02CS. CAU 413 consists of the release of radionuclides to the surface and shallow subsurface from the Clean Slate II (CSII) storage–transportation test conducted on May 31, 1963. The CSII test was a non-nuclear detonation of a nuclear device located inside a concrete bunker covered with 2 feet of soil. To facilitate site investigation and the evaluation of data quality objectives decisions, the releases at CAU 413 were divided into seven study groups: 1 Undisturbed Areas 2 Disturbed Areas 3 Sedimentation Areas 4 Former Staging Area 5 Buried Debris 6 Potential Source Material 7 Soil Mounds Corrective action investigation (CAI) activities, as set forth in the CAU 413 Corrective Action Investigation Plan, were performed from June 2015 through May 2016. Radionuclides detected in samples collected during the CAI were used to estimate total effective dose using the Construction Worker exposure scenario. Corrective action was required for areas where total effective dose exceeded, or was assumed to exceed, the radiological final action level (FAL) of 25 millirem per year. The results of the CAI and the assumptions made in the data quality objectives resulted in the following conclusions: The FAL is exceeded in surface soil in SG1, Undisturbed Areas; The FAL is assumed to be exceeded in SG5, Buried Debris, where contaminated debris and soil were buried after the CSII test; The FAL is not exceeded at SG2, SG3, SG4, SG6, or SG7. Because the FAL is exceeded at CAU 413, corrective action is required and corrective action alternatives (CAAs) must be evaluated. For CAU 413, three CAAs were evaluated: no further action, clean closure, and

  6. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  7. 75 FR 54177 - Notice of Availability of Draft Environmental Impact Statement for the Tonopah Solar Energy...

    Science.gov (United States)

    2010-09-03

    ... Statement for the Tonopah Solar Energy Crescent Dunes Solar Energy Project, Nye County, NV AGENCY: Bureau of... Environmental Impact Statement (EIS) for the Crescent Dunes Solar Energy Project, Nye County, Nevada, and by... considered, the BLM must receive written comments on the Crescent Dunes Solar Energy Project Draft EIS within...

  8. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision No.:0

    International Nuclear Information System (INIS)

    2002-01-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted uranium

  9. Estimated inventory of plutonium and uranium radionuclides for vegetation in aged fallout areas

    International Nuclear Information System (INIS)

    Romney, E.M.; Gilbert, R.O.; Wallace, A.; Kinnear, J.

    1976-02-01

    Data are presented on the contamination of vegetation by 239 Pu, 240 Pu, and other radionuclides in aged fallout areas on the Nevada Test Site (NTS) and the Tonopah Test Range (TTR). Comparisons of soil and vegetation inventory estimates indicate that the standing vegetation contributes an insignificant portion of the total amount of 239-240 Pu present in these aged fallout areas. The amounts of Pu available for vegetation-transport to animals grazing on-site would appear to be relatively small in comparison to the total amounts deposited upon soil. Findings indicate that most of the contaminant found on vegetation probably is attributable to resuspendable materials

  10. Corrective Action Plan for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-05-01

    This Corrective Action Plan (CAP) has been prepared for the Roller Coaster RADSAFE Area Corrective Action Unit 407 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved Corrective Action Alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The Constituents of Concern (COCs) identified during the site characterization include plutonium, uranium, and americium. No other COCS were identified. The following closure actions will be implemented under this plan: (1) Remove and dispose of surface soils which are over three times background for the area. Soils identified for removal will be disposed of at an approved disposal facility. Excavated areas will be backfilled with clean borrow soil fi-om a nearby location. (2) An engineered cover will be constructed over the waste disposal pit area where subsurface COCS will remain. (3) Upon completion of the closure and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site. Barbed wire fencing will be installed along the perimeter of this unit. Post closure monitoring will consist of site inspections to determine the condition of the engineered cover. Any identified maintenance and repair requirements will be remedied within 90 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP.

  11. The Conterminous United States Mineral Appraisal Program; background information to accompany folio of geologic, geochemical, geophysical, and mineral resources maps of the Tonopah 1 by 2 degree Quadrangle, Nevada

    Science.gov (United States)

    John, David A.; Nash, J.T.; Plouff, Donald; Whitebread, D.H.

    1991-01-01

    The Tonopah 1 ? by 2 ? quadrangle in south-central Nevada was studied by an interdisciplinary research team to appraise its mineral resources. The appraisal is based on geological, geochemical, and geophysical field and laboratory investigations, the results of which are published as a folio of maps, figures, and tables, with accompanying discussions. This circular provides background information on the investigations and integrates the information presented in the folio. The selected bibliography lists references to the geology, geochemistry, geophysics, and mineral deposits of the Tonopah 1 ? by 2 ? quadrangle.

  12. Closure Report for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    Campbell, K.B.

    2001-11-01

    This Closure Report provides the documentation for closure of the Central Nevada Test Area (CNTA) surface Corrective Action Unit (CAU) 417. The CNTA is located in Hot Creek Valley in Nye County, Nevada, approximately 22.5 kilometers (14 miles) west of U.S. State Highway 6 near the Moores Station historical site, and approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. A nuclear device for Project Faultless was detonated approximately 975 meters (3,200 feet) below ground surface on January 19, 1968, in emplacement boring UC-1 (Department of Energy, Nevada Operation Office [DOE/NV], 1997). CAU 417 consists of 34 Corrective Action Sites (CASs). Site closure was completed using a Nevada Department of Environmental Protection (NDEP) approved Corrective Action Plan (CAP) (DOE/NV, 2000) which was based on the recommendations presented in the NDEP-approved Corrective Action Decision Document (DOE/NV, 1999). Closure of CAU 417 was completed in two phases. Phase I field activities were completed with NDEP concurrence during 1999 as outlined in the Phase I Work Plan, Appendix A of the CAP (DOE/NV, 2000), and as summarized in Section 2.1.2 of this document

  13. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    Science.gov (United States)

    Nash, J.T.; Siems, D.F.

    1988-01-01

    This report is part of a series of geologic, geochemical, and geophysical maps of the Tonopah 1° x 2° quadrangle, Nevada, prepared during studies of the area for the Conterminous United States Mineral Assessment Program (CUSMAP). Included here are 21 maps showing the distributions of selected elements or combinations of elements. These regional geochemical maps are based on chemical analyses of the minus-60 mesh (0.25 mm) fraction of stream-sediment samples and the nonmagnetic heavy-mineral concentrate derived from stream sediment. Stream sediments were collected at 1,217 sites. Our geochemical studies of mineralized rock samples provide a framework for evaluating the results from stream sediments.

  14. 239Pu and 241Am contamination of small vertebrates in NAEG study areas of NTS and TTR

    International Nuclear Information System (INIS)

    Moor, K.S.; Naele, S.R.; Bradley, W.G.

    1977-01-01

    Ecological studies of small vertebrates in three plutonium (Pu) contaminated study areas of Nevada Test Site began in Spring, 1972, and were expanded to include four areas of Tonopah Test Range in Fall, 1973. This report consists primarily of presentation and analysis of radioanalytical data on rodents and lizards from Area 11-C, Nevada Test Site. In addition, methodology and preliminary results of initial hematologic studies are presented. Dipodomys microps is a dominant rodent species in all study areas. Concentrations of 239 Pu and 241 Am in pelt, GI tract, and carcass of 74 resident D. microps from five study areas were determined. The only consistent trend evident was that carcass burdens were lower than pelt or GI tract burdens by a factor of 10 2 . Mean ratios of Pu/Am in tissue aliquots were variable, and many were significantly different than ratios in soil or vegetation samples

  15. Housekeeping Closure Report for Corrective Action Unit 463: Areas 2, 3, 9, and 25 Housekeeping Waste Sites, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts of the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purposes of determining corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 13 CASs within CAU 463 on the NTS. The Housekeeping Closure Verification Form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Housekeeping activities at these sites included removal of debris (e.g., wooden pallets, metal, glass, and trash) and other material. In addition, these forms confirm prior removal of other contaminated materials such as metal drums or buckets, transformers, lead bricks, batteries, and gas cylinders. Based on these activities, no further action is required at these CASs

  16. Radiological and Environmental Monitoring at the Clean Slate I and III Sites, Tonopah Test Range, Nevada, With Emphasis on the Implications for Off-site Transport

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vic [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2014-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]) implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range [NAFR]). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in the dispersal of plutonium over the ground surface downwind of the test ground zero (GZ). Three tests—Clean Slate I, II, and III—were conducted on the TTR in Cactus Flat. The fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. The Desert Research Institute (DRI) installed two monitoring stations in 2008, Station 400 at the Sandia National Laboratories (SNL) Range Operations Center (ROC) and Station 401 at Clean Slate III. Station 402 was installed at Clean Slate I in 2011 to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination in the soil at the Clean Slate sites was being transported beyond the contamination area boundaries. Some of the data collected also permits comparison of radiological exposure at the TTR monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Annual average gross alpha values from the TTR monitoring stations are higher than values from the surrounding CEMP stations. Annual average gross beta values from the TTR monitoring stations are generally lower than values observed for the surrounding CEMP stations. This may be due to use of sample filters with larger pore space because when glass-fiber filters began to be used at TTR Station 400, gross beta values increased. Gamma spectroscopy typically identified only naturally

  17. Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range

    International Nuclear Information System (INIS)

    1997-06-01

    A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products

  18. Radiological dose assessment for residual radioactive material in soil at the clean slate sites 1, 2, and 3, Tonopah Test Range

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    A radiological dose assessment has been performed for Clean Slate Sites 1, 2, and 3 at the Tonopah Test Range, approximately 390 kilometers (240 miles) northwest of Las Vegas, Nevada. The assessment demonstrated that the calculated dose to hypothetical individuals who may reside or work on the Clean Slate sites, subsequent to remediation, does not exceed the limits established by the US Department of Energy for protection of members of the public and the environment. The sites became contaminated as a result of Project Roller Coaster experiments conducted in 1963 in support of the US Atomic Energy Commission (Shreve, 1964). Remediation of Clean Slate Sites 1, 2, and 3 is being performed to ensure that the 50-year committed effective dose equivalent to a hypothetical individual who lives or works on a Clean Slate site should not exceed 100 millirems per year. The DOE residual radioactive material guideline (RESRAD) computer code was used to assess the dose. RESRAD implements the methodology described in the DOE manual for establishing residual radioactive material guidelines (Yu et al., 1993a). In May and June of 1963, experiments were conducted at Clean Slate Sites 1, 2, and 3 to study the effectiveness of earth-covered structures for reducing the dispersion of nuclear weapons material as a result of nonnuclear explosions. The experiments required the detonation of various simulated weapons using conventional chemical explosives (Shreve, 1964). The residual radioactive contamination in the surface soil consists of weapons grade plutonium, depleted uranium, and their radioactive decay products.

  19. Corrective Action Investigation Plan for Corrective Action Unit 410: Waste Disposal Trenches, Tonopah Test Range, Nevada, Revision 0 (includes ROTCs 1, 2, and 3)

    Energy Technology Data Exchange (ETDEWEB)

    NNSA/NV

    2002-07-16

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 410 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 410 is located on the Tonopah Test Range (TTR), which is included in the Nevada Test and Training Range (formerly the Nellis Air Force Range) approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of five Corrective Action Sites (CASs): TA-19-002-TAB2, Debris Mound; TA-21-003-TANL, Disposal Trench; TA-21-002-TAAL, Disposal Trench; 09-21-001-TA09, Disposal Trenches; 03-19-001, Waste Disposal Site. This CAU is being investigated because contaminants may be present in concentrations that could potentially pose a threat to human health and/or the environment, and waste may have been disposed of with out appropriate controls. Four out of five of these CASs are the result of weapons testing and disposal activities at the TTR, and they are grouped together for site closure based on the similarity of the sites (waste disposal sites and trenches). The fifth CAS, CAS 03-19-001, is a hydrocarbon spill related to activities in the area. This site is grouped with this CAU because of the location (TTR). Based on historical documentation and process know-ledge, vertical and lateral migration routes are possible for all CASs. Migration of contaminants may have occurred through transport by infiltration of precipitation through surface soil which serves as a driving force for downward migration of contaminants. Land-use scenarios limit future use of these CASs to industrial activities. The suspected contaminants of potential concern which have been identified are volatile organic compounds; semivolatile organic compounds; high explosives; radiological constituents including depleted

  20. Post-Closure Strategy for Use-Restricted Sites on the Nevada National Security Site, Nevada Test and Training Range, and Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Silvas, A. J.

    2014-01-01

    The purpose of this Post-Closure Strategy is to provide a consistent methodology for continual evaluation of post-closure requirements for use-restricted areas on the Nevada National Security Site (NNSS), Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR) to consolidate, modify, or streamline the program. In addition, this document stipulates the creation of a single consolidated Post-Closure Plan that will detail the current post-closure requirements for all active use restrictions (URs) and outlines its implementation and subsequent revision. This strategy will ensure effective management and control of the post-closure sites. There are currently over 200 URs located on the NNSS, NTTR, and TTR. Post-closure requirements were initially established in the Closure Report for each site. In some cases, changes to the post-closure requirements have been implemented through addenda, errata sheets, records of technical change, or letters. Post-closure requirements have been collected from these multiple sources and consolidated into several formats, such as summaries and databases. This structure increases the possibility of inconsistencies and uncertainty. As more URs are established and the post-closure program is expanded, the need for a comprehensive approach for managing the program will increase. Not only should the current requirements be obtainable from a single source that supersedes all previous requirements, but the strategy for modifying the requirements should be standardized. This will enable more effective management of the program into the future. This strategy document and the subsequent comprehensive plan are to be implemented under the assumption that the NNSS and outlying sites will be under the purview of the U.S. Department of Energy, National Nuclear Security Administration for the foreseeable future. This strategy was also developed assuming that regulatory control of the sites remains static. The comprehensive plan is not

  1. Streamlined approach for environmental restoration (SAFER) plan for corrective action unit 412: clean slate I plutonium dispersion (TTR) tonopah test range, Nevada, revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick K.

    2015-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 412. CAU 412 is located on the Tonopah Test Range and consists of a single corrective action site (CAS), TA-23-01CS, Pu Contaminated Soil. There is sufficient information and historical documentation from previous investigations and the 1997 interim corrective action to recommend closure of CAU 412 using the SAFER process. Based on existing data, the presumed corrective action for CAU 412 is clean closure. However, additional data will be obtained during a field investigation to document and verify the adequacy of existing information and determine whether the CAU 412 closure objectives have been achieved. This SAFER Plan provides the methodology to gather the necessary information for closing the CAU.The following summarizes the SAFER activities that will support the closure of CAU 412:• Collect environmental samples from designated target populations to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information.• If no COCs are present, establish clean closure as the corrective action. • If COCs are present, the extent of contamination will be defined and further corrective actions will be evaluated with the stakeholders (NDEP, USAF).• Confirm the preferred closure option is sufficient to protect human health and the environment.

  2. Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada with ROTC 1, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    1998-09-01

    This Closure Report provides the documentation for closure of the Roller Coaster Sewage Lagoons and North Disposal Trench Comective Action Unit (CAU) 404. CAU 404 consists of the Roller Coaster Sewage Lagoons (Corrective Action Site [CAS] TA-03-O01-TA-RC) and the North Disposal Trench (CAS TA-21-001-TA-RC). The site is located on the Tonopah Test Range, approximately 225 kilometers (km) (140 miles [mi]) northwest ofLas Vegas, Nevada. . The sewage lagoons received ~quid sanitary waste horn the Operation Roller Coaster Man Camp in 1963 and debris from subsequent range and construction cleanup activities. The debris and ordnance was subsequently removed and properly dispos~, however, pesticides were detected in soil samples born the bottom of the lagoons above the U,S. Environmental Protection Agency Region IX Prelimimuy Remediation Goals (EPA 1996). . The North Disposal Trench was excavated in 1963. Debris from the man camp and subsequent range and construction cleanup activities was placed in the trench. Investigation results indicated that no constituents of concern were detected in soil samples collected from the trench. Remedial alternative proposed in the Comctive Action Decision Document (CADD) fm the site was “Covering” (DOE, 1997a). The Nevada Division of”Enviromnental Protection (NDEP)-approved Correction Action Plan (CAP) proposed the “Covering” niethodology (1997b). The closure activities were completed in accorhce with the approwil CAP and consisted of baclctllling the sewage lagoons and disposal trench, constructing/planting an engineered/vegetative cover in the area of the sewage lagoons and dikposal trencQ installing a perimeter fence and signs, implementing restrictions on fi~e use, and preparing a Post-Closure Monitoring Plan. “ Since closure activities. for CAU 404 have been completed in accordance with the Nevada Division of Environmental Protection-approved CAP (DOE, 1997b) as documented in this Closure Report, the U.S. Department of

  3. Feasibility and alternate procedures for decontamination and post-treatment management of Pu-contaminated areas in Nevada

    International Nuclear Information System (INIS)

    Wallace, A.; Romney, E.M.

    1975-01-01

    The feasibility and environmental impact of cleaning up Pu-contaminated areas in Nevada are discussed. Findings from pertinent land area decontamination and postmanagement experiences which can be applied to solving Pu problems at the Nevada Test Site and the Tonopah Test Range are reviewed. Previous experiences from accidental and planned releases of Pu in the environment are discussed along with those gained from nuclear fallout decontamination studies. Problems concerning revegetation of arid lands are discussed. It is pointed out that the fragile nature of the desert is such that any drastic alteration will result in a seriously damaged ecosystem. Revegetation by natural means is difficult, if not impossible, from a practical point of view. Post-treatment management of disturbed areas is almost always necessary to ensure recovery. Correction of the damage may require greater efforts than the decontamination, and may have more far-reaching consequences than those concerned with the present status of the land. (CH)

  4. Environmental assessment for double tracks test site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1996-04-01

    The U.S. Department of Energy, Nevada Operations Office (DOE/NV), with appropriate approvals from the U.S. Air Force (USAF), proposes to conduct environmental restoration operations at the Double Tracks test site located on the Nellis Air Force Range (NAFR) in Nye County, Nevada. This environmental assessment (EA) evaluates the potential environmental consequences of four alternative actions for conducting the restoration operation and of the no action alternative. The EA also identifies mitigation measures, where appropriate, designed to protect natural and cultural resources and reduce impacts to human health and safety. The environmental restoration operation at the Double Tracks test site would serve two primary objectives. First, the proposed work would evaluate the effectiveness of future restoration operations involving contamination over larger areas. The project would implement remediation technology options and evaluate how these technologies could be applied to the larger areas of contaminated soils on the Nevada Test Site (NTS), the Tonopah Test Range (TTR), and the NAFR. Second, the remediation would provide for the removal of plutonium contamination down to or below a predetermined level which would require cleanup of 1 hectare (ha) (2.5 acres), for the most likely case, or up to 3.0 ha (7.4 acres) of contaminated soil, for the upper bounding case

  5. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2001-06-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit [CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV--187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C.

  6. Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    2008-02-01

    This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

  7. Post-Closure Inspection Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench Tonopah Test Range, Nevada, Calendar Year 2000; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    Post-closure monitoring requirements for the Roller Coaster Sewage Lagoons and North Disposal Trench (Corrective Action Unit[CAW 404]) (Figure 1) are described in Closure Report for Corrective Action Unit 404, Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, report number DOE/NV-187. The Closure Report (CR) was submitted to the Nevada Division of Environmental Protection (NDEP) on September 11, 1998. Permeability results of soils adjacent to the engineered cover and a request for closure of CAU 404 were transmitted to the NDEP on April 29, 1999. The CR (containing the Post-Closure Monitoring Plan) was approved by the NDEP on May 18, 1999. Post-closure monitoring at CAU 404 consists of the following: (1) Site inspections done twice a year to evaluate the condition of the unit; (2) Verification that the site is secure; (3) Notice of any subsidence or deficiencies that may compromise the integrity of the unit; (4) Remedy of any deficiencies within 90 days of discovery; and (5) Preparation and submittal of an annual report. Site inspections were conducted on June 19, 2000, and November 21, 2000. The site inspections were conducted after completion of the revegetation activities (October 30, 1997) and NDEP approval of the CR (May 18, 1999). All site inspections were conducted in accordance with the Post-Closure Monitoring Plan in the NDEP-approved CR. This report includes copies of inspection checklists, photographs, recommendations, and conclusions. The Post-Closure Inspection Checklists are found in Attachment A, a copy of the field notes is found in Attachment B, and copies of the inspection photographs are found in Attachment C

  8. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  9. REECo activities and sample logistics in support of the Nevada Applied Ecology Group

    International Nuclear Information System (INIS)

    Wireman, D.L.; Rosenberry, C.E. Jr.

    1975-01-01

    Activities and sample logistics of Reynolds Electrical and Engineering Co., Inc. (REECo), in support of the Nevada Applied Ecology Group (NAEG), are discussed in this summary report. Activities include the collection, preparation, and shipment of samples of soils, vegetation, and small animals collected at Pu-contaminated areas of the Nevada Test Site and Tonopah Test Range. (CH)

  10. Large area damage testing of optics

    International Nuclear Information System (INIS)

    Sheehan, L.; Kozlowski, M.; Stolz, C.

    1996-01-01

    The damage threshold specifications for the National Ignition Facility will include a mixture of standard small-area tests and new large-area tests. During our studies of laser damage and conditioning processes of various materials we have found that some damage morphologies are fairly small and this damage does not grow with further illumination. This type of damage might not be detrimental to the laser performance. We should therefore assume that some damage can be allowed on the optics, but decide on a maximum damage allowance of damage. A new specification of damage threshold termed open-quotes functional damage thresholdclose quotes was derived. Further correlation of damage size and type to system performance must be determined in order to use this measurement, but it is clear that it will be a large factor in the optics performance specifications. Large-area tests have verified that small-area testing is not always sufficient when the optic in question has defect-initiated damage. This was evident for example on sputtered polarizer and mirror coatings where the defect density was low enough that the features could be missed by standard small- area testing. For some materials, the scale-length at which damage non-uniformities occur will effect the comparison of small-area and large-area tests. An example of this was the sub-aperture tests on KD*P crystals on the Beamlet test station. The tests verified the large-area damage threshold to be similar to that found when testing a small-area. Implying that for this KD*P material, the dominate damage mechanism is of sufficiently small scale-length that small-area testing is capable of determining the threshold. The Beamlet test station experiments also demonstrated the use of on-line laser conditioning to increase the crystals damage threshold

  11. Housekeeping Closure Report for Corrective Action Unit 119: Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2000-01-01

    The Federal Facility Agreement and Consent Order was entered into by the State of Nevada, US Department of Energy, and US Department of Defense to identify sites of potential historical contamination and implement corrective actions based on public health and environmental considerations. The facilities subject to this agreement include the Nevada Test Site (NTS), parts of the Tonopah Test Range, parts to the Nellis Air Force Range, the Central Nevada Test Area, and the Project Shoal Area. Corrective Action Sites (CASs) are areas potentially requiring corrective actions and may include solid waste management units, individual disposal, or release sites. Based on geography, technical similarity, agency responsibility, or other appropriate reasons, CASs are grouped together into Corrective Action Units (CAUs) for the purpose of determining appropriate corrective actions. This report contains the Closure Verification Forms for cleanup activities that were performed at 19 CASs with in CAU 119 on the NTS. The form for each CAS provides the location, directions to the site, general description, and photographs of the site before and after cleanup activities. Activities included verification of the prior removal of both aboveground and underground gas/oil storage tanks, gas sampling tanks, pressure fuel tanks, tank stands, trailers, debris, and other material. Based on these former activities, no further action is required at these CASs

  12. Oblique penetration modeling and correlation with field tests into a soil target

    Energy Technology Data Exchange (ETDEWEB)

    Longcope, D.B. Jr. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics Dept.

    1996-09-01

    An oblique penetration modeling procedure is evaluated by correlation with onboard acceleration data from a series of six penetration tests into Antelope Dry Lake soil at Tonopah Test Range, Nevada. The modeling represents both the loading which is coupled to the penetrator bending and the penetrator structure including connections between the major subsections. Model results show reasonable agreement with the data which validates the modeling procedure within a modest uncertainty related to accelerometer clipping and rattling of the telemetry package. The experimental and analytical results provide design guidance for the location and lateral restraint of components to reduce their shock environment.

  13. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  14. Addendum to the Closure Report for Corrective Action Unit 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range, Nevada, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Lynn Kidman

    2009-02-01

    This document constitutes an addendum to the September 1998, Closure Report for Corrective Action Unit 404: Roller Coaster Lagoons and Trench, Tonopah Test Range, Nevada as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the modification of the UR for CAS TA-03-001-TARC Roller Coaster Lagoons. This UR was established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and was based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This reevaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to modify the UR for CAS TA-03

  15. Proposed Relocation of the 37th Tactical Fighter Wing and Other Tactical Force Structure Actions

    Science.gov (United States)

    1991-05-09

    Joseph M. Tonopah NV Merlino, Bernie Tonopah NV 3 Murphy, N. V. Tonopah NV Michols, Judith E. Tonopah NV Nye, Al Tonopah NV 3 Payne, Unda Tonopah NV...the iNavy’s weTher tFctca operate-bospeds Aof mor reqir e ient. The e iiatssinldtohe tosha ve 00m lsn per g h ou r ea an aflon tio w idr-treed, lo-rs...John B. Walker, Nevada State ClearinghoUSe Document R Kevin Von Finger, TX Document S Jim Fish, Public Lands Action Network, NM Document T Judith S

  16. Ecological studies of small vertebrates in Pu-contaminated study areas of NTS and TTR

    International Nuclear Information System (INIS)

    Bradley, W.G.; Moor, K.S.

    1975-01-01

    Ecological studies of vertebrates in plutonium-contaminated areas of the Nevada Test Site (NTS) were initiated in March 1972, and have continued to date. In September 1973, standard census methods were also employed to derive a qualitative and quantitative inventory of vertebrate biota of four Nevada Applied Ecology Group (NAEG) study areas of the Tonopah Test Range (TTR). A checklist of vertebrates of NAEG study areas of NTS and TTR is presented. Data are presented on vertebrate composition, relative abundance, and seasonal status in the study areas. Concentrations of 239 Pu and 241 Am were determined in pelt or skin, GI tract, and carcass of 13 lizards and 16 mammals resident on Clean Slate 2, TTR, and Area 11, NTS. A total of 71 animals were collected for radioanalysis. However, the data were not available at the time this report was written. Pu tissue burdens were highest in lizards from Area 11 GZ. Maximum values obtained in nCi/g ash were 30.9, 42.2, and 0.43 for the pelt, GI tract, and carcass, respectively. Maximum 239 Pu values in tissues of small rodents from Area 11 (not from GZ) were 11.4, 6.49, and 0.20 nCi/g ash for pelt, GI tract, and carcass, respectively. Pu/Am ratios were relatively consistent in tissue samples of lizards and small mammals from Area 11 (approximately 6:1, Pu/Am). Pu/Am ratios were not consistent in vertebrates of Clean Slate 2, TTR, and appeared to be lower in carcass (28:1, Pu/Am in mammals) than GI tract (9:1, Pu/Am in mammals). Although this trend was more conspicuous in mammals, it was also evident in reptiles. (auth)

  17. Annotated bibliography of literature relating to wind transport of plutonium-contaminated soils at the Nevada Test Site

    International Nuclear Information System (INIS)

    Lancaster, N.; Bamford, R.

    1993-12-01

    During the period from 1954 through 1963, a number of tests were conducted on the Nevada Test Site (NTS) and Tonopah Test Range (TTR) to determine the safety of nuclear devices with respect to storage, handling, transport, and accidents. These tests were referred to as ''safety shots.'' ''Safety'' in this context meant ''safety against fission reaction.'' The safety tests were comprised of chemical high explosive detonations with components of nuclear devices. The conduct of these tests resulted in the dispersion of plutonium, and some americium over areas ranging from several tens to several hundreds of hectares. Of the various locations used for safety tests, the site referred to as ''Plutonium Valley'' was subject to a significant amount of plutonium contamination. Plutonium Valley is located in Area 11 on the eastern boundary of the NTS at an elevation of about 1036 m (3400 ft). Plutonium Valley was the location of four safety tests (A,B,C, and D) conducted during 1956. A major environmental, health, and safety concern is the potential for inhalation of Pu 239,240 by humans as a result of airborne dust containing Pu particles. Thus, the wind transport of Pu 239,240 particles has been the subject of considerable research. This annotated bibliography was created as a reference guide to assist in the better understanding of the environmental characteristics of Plutonium Valley, the safety tests performed there, the processes and variables involved with the wind transport of dust, and as an overview of proposed clean-up procedures

  18. Housekeeping category corrective action unit work plan

    International Nuclear Information System (INIS)

    1996-08-01

    The purpose of this Corrective Action Unit (CAU) Work Plan is to provide a strategy to be used by the US Department of Energy Nevada Operations Office (DOE/NV), the US Department of Defense (DoD) Defense Special Weapons Agency (DSWA) (formerly the Defense Nuclear Agency), and contractor personnel for conducting corrective actions at the Nevada Test Site (NTS) and Nevada off-site locations including the Tonopah Test Range (TTR), the Project Shoal Area, and the Central Nevada Test Area. This Work Plan applies to housekeeping category CAUs already listed in the Federal Facility Agreement and Consent Order (FFACO) Appendices (FFACO, 1996) as well as newly identified Corrective Action Sites (CASs) that will follow the housekeeping process

  19. Small Engine & Accessory Test Area

    Data.gov (United States)

    Federal Laboratory Consortium — The Small Engine and Accessories Test Area (SEATA) facilitates testaircraft starting and auxiliary power systems, small engines and accessories. The SEATA consists...

  20. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  1. Final environmental impact statement for the Nevada Test Site and off-site locations in the state of Nevada: Mitigation action plan

    International Nuclear Information System (INIS)

    1997-02-01

    The DOE Notice of Availability for this environmental impact statement was published in the Federal Register on Friday, October 18, 1996 (61 FR 54437). The final environmental impact statement identifies potential adverse effects resulting from the four use alternatives evaluated and discusses measures that DOE considered for the mitigation of these potential adverse effects. The Secretary of Energy signed the Record of Decision on the management and operation of the Nevada Test Site and other DOE sites in the state of Nevada on December 9, 1996. These decisions will result in the continuation of the multipurpose, multi-program use of the Nevada Test Site, under which DOE will pursue a further diversification of interagency, private industry, and public-education uses while meeting its Defense Program, Waste Management, and Environmental Restoration mission requirements at the Nevada Test Site and other Nevada sites, including the Tonopah Test Range, the Project Shoal Site, the Central Nevada Test Area, and on the Nellis Air Force Range Complex. The Record of Decision also identifies specific mitigation actions beyond the routine day-to-day physical and administrative controls needed for implementation of the decisions. These specific mitigation actions are focused on the transportation of waste and on groundwater availability. This Mitigation Action Plan elaborates on these mitigation commitments

  2. Evaluation of soil radioactivity data from the Nevada Test Site

    International Nuclear Information System (INIS)

    1995-03-01

    Since 1951, 933 nuclear tests have been conducted at the Nevada Test Site (NTS) and test areas on the adjacent Tonopah Test Range (TTR) and Nellis Air Force Range (NAFR). Until the early 1960s. the majority of tests were atmospheric, involving detonation of nuclear explosive devices on the ground or on a tower, suspended from a balloon or dropped from an airplane. Since the signing of the Limited Test Ban Treaty in 1963, most tests have been conducted underground, although several shallow subsurface tests took place between 1962 and 1968. As a result of the aboveground and near-surface nuclear explosions, as well as ventings of underground tests, destruction of nuclear devices with conventional explosives, and nuclear-rocket engine tests, the surface soil on portions of the NTS has been contaminated with radionuclides. Relatively little consideration was given to the environmental effects of nuclear testing during the first two decades of operations at the NTS. Since the early 1970s, however, increasingly strict environmental regulations have forced greater attention to be given to contamination problems at the site and how to remediate them. One key element in the current environmental restoration program at the NTS is determining the amount and extent of radioactivity in the surface soil. The general distribution of soil radioactivity on the NTS is already well known as a result of several programs carried out in the 1970s and 1980s. However, questions have been raised as to whether the data from those earlier studies are suitable for use in the current environmental assessments and risk analyses. The primary purpose of this preliminary data review is to determine to what extent the historical data collected at the NTS can be used in the characterization/remediation process

  3. Continuous Improvement in Battery Testing at the NASA/JSC Energy System Test Area

    Science.gov (United States)

    Boyd, William; Cook, Joseph

    2003-01-01

    The Energy Systems Test Area (ESTA) at the Lyndon B. Johnson Space Center in Houston, Texas conducts development and qualification tests to fulfill Energy System Division responsibilities relevant to ASA programs and projects. EST A has historically called upon a variety of fluid, mechanical, electrical, environmental, and data system capabilities spread amongst five full-service facilities to test human and human supported spacecraft in the areas of propulsion systems, fluid systems, pyrotechnics, power generation, and power distribution and control systems. Improvements at ESTA are being made in full earnest of offering NASA project offices an option to choose a thorough test regime that is balanced with cost and schedule constraints. In order to continue testing of enabling power-related technologies utilized by the Energy System Division, an especially proactive effort has been made to increase the cost effectiveness and schedule responsiveness for battery testing. This paper describes the continuous improvement in battery testing at the Energy Systems Test Area being made through consolidation, streamlining, and standardization.

  4. 200 Area treated effluent disposal facility operational test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These completed operational testing activities demonstrated the functional, operational and design requirements of the 200 Area TEDF have been met

  5. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  6. Central Nevada Test Area Monitoring Report

    International Nuclear Information System (INIS)

    Brad Lyles; Jenny Chapman; John Healey; David Gillespie

    2006-01-01

    Water level measurements were performed and water samples collected from the Central Nevada Test Area model validation wells in September 2006. Hydraulic head measurements were compared to previous observations; the MV wells showed slight recovery from the drilling and testing operation in 2005. No radioisotopes exceeded limits set in the Corrective Action Decision Document/Corrective Action Plan, and no significant trends were observed when compared to previous analyses

  7. 100 Area excavation treatability test plan

    International Nuclear Information System (INIS)

    1993-08-01

    This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992f). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications. The most recent applications are excavation of the 618-9 burial ground and partial remediation of the 316-5 process trenches (DOE-RL 1992a, 1992b). Both projects included excavation of soil and dust control (using water sprays). Excavation is a well-developed technology and equipment is readily available; however, certain aspects of the excavation process require testing before use in full-scale operations. These include the following: Measurement and control of excavation-generated dust and airborne contamination; verification of field analytical system capabilities; demonstration of soil removal techniques specific to the 100 Area waste site types and configurations. The execution of this treatability test may produce up to 500 yd 3 of contaminated soil, which will be used for future treatability tests. These tests may include soil washing with vitrification of the soil washing residuals. Other tests will be conducted if soil washing is not a viable alternative

  8. 200 Area Treated Effluent Disposal Facility operational test specification. Revision 2

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document identifies the test specification and test requirements for the 200 Area Treated Effluent Disposal Facility (200 Area TEDF) operational testing activities. These operational testing activities, when completed, demonstrate the functional, operational and design requirements of the 200 Area TEDF have been met. The technical requirements for operational testing of the 200 Area TEDF are defined by the test requirements presented in Appendix A. These test requirements demonstrate the following: pump station No.1 and associated support equipment operate both automatically and manually; pump station No. 2 and associated support equipment operate both automatically and manually; water is transported through the collection and transfer lines to the disposal ponds with no detectable leakage; the disposal ponds accept flow from the transfer lines with all support equipment operating as designed; and the control systems operate and status the 200 Area TEDF including monitoring of appropriate generator discharge parameters

  9. Small UAS Test Area at NASA's Dryden Flight Research Center

    Science.gov (United States)

    Bauer, Jeffrey T.

    2008-01-01

    This viewgraph presentation reviews the areas that Dryden Flight Research Center has set up for testing small Unmanned Aerial Systems (UAS). It also reviews the requirements and process to use an area for UAS test.

  10. An Aerial Radiological Survey of Selected Areas of Area 18 - Nevada Test Site

    International Nuclear Information System (INIS)

    Lyons, Craig

    2009-01-01

    As part of the proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory-Nellis (RSL-Nellis) conducted an aerial radiological survey of selected areas of Area 18 of the Nevada Test Site (NTS) for the purpose of mapping man-made radiation deposited as a result of the Johnnie Boy and Little Feller I tests. The survey area centered over the Johnnie Boy ground zero but also included the ground zero and deposition area of the Little Feller I test, approximately 7,000 feet (2133 meters) southeast of the Johnnie Boy site. The survey was conducted in one flight. The completed survey covered a total of 4.0 square miles. The flight lines (with the turns) over the surveyed areas are presented in Figure 1. One 2.5-hour-long flight was performed at an altitude of 100 ft above ground level (AGL) with 200 foot flight-line spacing. A test-line flight was conducted near the Desert Rock Airstrip to ensure quality control of the data. The test line is not shown in Figure 1. However, Figure 1 does include the flight lines for a ''perimeter'' flight. The path traced by the helicopter flying over distinct roads within the survey area can be used to overlay the survey data on a base map or image. The flight survey lines were flown in an east-west orientation perpendicular to the deposition patterns for both sites. This technique provides better spatial resolution when contouring the data. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2-inch x 4-inch x 16-inch sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Data, in the form of gamma energy spectra, were collected every second over the course of the survey and were geo-referenced using a differential Global Positioning System. Spectral data allows the system to distinguish between ordinary fluctuations in natural background radiation levels and the signature produced by man

  11. Closure plan for the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units

    International Nuclear Information System (INIS)

    Smith, P.J.; Van Brunt, K.M.

    1992-11-01

    This document describes the proposed plan for closure of the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act interim status closure requirements. The location, size, capacity, and history of the units are described, and their current status is discussed. The units will be closed by treating remaining waste in storage, followed by thorough decontamination of the systems. Sufficient sampling and analysis, and documentation of all activities will be performed to demonstrate clean closure

  12. 100 area excavation treatability test plan

    International Nuclear Information System (INIS)

    1993-05-01

    This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Development and screening of remedial alternatives for the 100 Area, using existing data, have been completed and are documented in the 100 Area Feasibility Study, Phases 1 and 2 (DOE-RL 1992a). Based on the results of the FS, the Treatability Study Program Plan (DOE-RL 1992b) identifies and prioritizes treatability studies for the 100 Area. The data from the treatability study program support future focused FS, interim remedial measures (IRM) selection, operable unit final remedy selection, remedial design, and remedial actions. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992b). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications

  13. Determination of area reduction rate by continuous ball indentation test

    International Nuclear Information System (INIS)

    Zou, Bin; Guan, Kai Shu; Wu, Sheng Bao

    2016-01-01

    Rate of area reduction is an important mechanical property to appraise the plasticity of metals, which is always obtained from the uniaxial tensile test. A methodology is proposed to determine the area reduction rate by continuous ball indentation test technique. The continuum damage accumulation theory has been adopted in this work to identify the failure point in the indentation. The corresponding indentation depth of this point can be obtained and used to estimate the area reduction rate. The local strain limit criterion proposed in the ASME VIII-2 2007 alternative rules is also adopted in this research to convert the multiaxial strain of indentation test to uniaxial strain of tensile test. The pile-up and sink-in phenomenon which can affect the result significantly is also discussed in this paper. This method can be useful in engineering practice to evaluate the material degradation under severe working condition due to the non-destructive nature of ball indentation test. In order to validate the method, continuous ball indentation test is performed on ferritic steel 16MnR and ASTM (A193B16), then the results are compared with that got from the traditional uniaxial tensile test.

  14. Plutonium, americium, and uranium concentrations in Nevada Test Site soil profiles

    International Nuclear Information System (INIS)

    Essington, E.H.; Gilbert, R.O.; Eberhardt, L.L.; Fowler, E.B.

    1975-01-01

    Many soil profile samples were collected by the Nevada Applied Ecology Group from five nuclear safety test sites on the Nevada Test Site and Tonopah Test Range in Nevada, U.S.A. The profile samples were analyzed for 239 Pu, 240 Pu, 241 Am, and in some cases 235 U and 238 U, in order to estimate the depth of radionuclide penetration and level of contamination at specific sampling depths after an extended period of time since deposition on the surface. Nearly 70 individual profiles were examined. About one-half of the profiles exhibited a smooth leaching pattern with more than 95 percent of the plutonium in the top 5 cm. Other profile patterns are discussed relative to mechanical disturbance of the profile after the initial deposition, accumulation of plutonium in specific zones within the soil profile, and occurrence of large amounts of plutonium in the deepest parts of the soil profile. The implications of these observations are discussed with respect to redistribution of radioactivity by wind, water, and burrowing animals, ingestion by burrowing and grazing animals, uptake by vegetation, and cleanup operations. (auth)

  15. Percolation testing at the F- and H-Area Seepage Basins

    International Nuclear Information System (INIS)

    McHood, M.D.

    1993-01-01

    The design of the F- and H-Area Seepage Basin contaminated groundwater remediation system requires information from multiple well pump tests (Reference 1). Soil percolation rates are needed in order to support the multiple well pump test planning. The objective of this task was to determine characteristic percolation rates for soils in four select areas where infiltration galleries are proposed. These infiltration galleries will be temporary installations built on the ground surface and used to disposes of water from the multiple well pump tests. A procedure defining the specific work process for collecting percolation rate data is contained in Appendix 3. Results from these percolation tests will be used in the design of infiltration galleries for the disposal of well water extracted during the multiple well pump tests

  16. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  17. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    International Nuclear Information System (INIS)

    1996-07-01

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ''Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility'' issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan

  18. East Area Irradiation Test Facility: Preliminary FLUKA calculations

    CERN Document Server

    Lebbos, E; Calviani, M; Gatignon, L; Glaser, M; Moll, M; CERN. Geneva. ATS Department

    2011-01-01

    In the framework of the Radiation to Electronics (R2E) mitigation project, the testing of electronic equipment in a radiation field similar to the one occurring in the LHC tunnel and shielded areas to study its sensitivity to single even upsets (SEU) is one of the main topics. Adequate irradiation test facilities are therefore required, and one installation is under consideration in the framework of the PS East area renovation activity. FLUKA Monte Carlo calculations were performed in order to estimate the radiation field which could be obtained in a mixed field facility using the slowly extracted 24 GeV/c proton beam from the PS. The prompt ambient dose equivalent as well as the equivalent residual dose rate after operation was also studied and results of simulations are presented in this report.

  19. 100 Area soil washing bench-scale test procedures

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

    1993-03-01

    This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing

  20. Clean Slate 1 revegetation and monitoring plan

    International Nuclear Information System (INIS)

    1996-09-01

    This document is a reclamation plan for short-term and long-term stabilization of land disturbed by activities associated with interim cleanup of radionuclide-contaminated surface soil at the Clean Slate 1 site (located on the Tonopah Test Range). This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. Reclamation demonstration plots were established near the Double Tracks cleanup site in the fall of 1994 to evaluate the performance of several native plant species and to evaluate different irrigation strategies. Results of that study, and the results from numerous other studies conducted at other sites (Area 11 and Area 19 of the Nevada Test Site), have been summarized and incorporated into this final reclamation plan for the cleanup of the Clean Slate 1 site. The plan also contains procedures for monitoring both short-term and long-term reclamation

  1. Radioactive contamination of former Semipalatinsk test site area

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Akhmetov, M.A.; Ptitskaya, L.D.

    2001-01-01

    The nuclear weapon infrastructure elimination activities and related surveys of radioactive contamination are virtually accomplished at the Semipalatinsk test site (STS). The radioecological surveys accompanied closure of tunnels which were used for underground nuclear testing at Degelen technical field and elimination of intercontinental ballistic missile silo launchers at Balapan technical field. At the same time a ground-based route survey was carried out at the Experimental Field where aboveground tests were conducted and a ground-based area survey was performed in the south of the test site where there are permanent and temporary inhabited settlements. People dwelling these settlements are mainly farmers. The paper presents basic results of radiological work conducted in the course of elimination activities. (author)

  2. Data qualification summary for 1985 L-Area AC Flow Tests

    International Nuclear Information System (INIS)

    Edwards, T.B.; Eghbali, D.A.; Liebmann, M.L.; Shine, E.P.

    1992-03-01

    The 1985 L-Area AC Flow Tests were conducted to provide an extended data base for upgrading the reactor system models employed in predicting normal process water flows. This report summarizes the results of the recently completed, formal, technical review of the data from the 1985 L-Area AC Flow Tests as detailed in document SCS-CMAS-910045. The purpose of that review was to provide corroborating technical information as to the quality (fitness for use) of these experimental data. Reference [1] required three volumes to fully document the results of that Data Qualification process. This report has been prepared to provide the important conclusions from that process in a manageable and understandable format. Consult reference [1] if any additional information or detail is needed. This report provides highlights from that study: an overview of the tests and data, a description of the instrumentation used, an explanation of the data qualification methods employed to review the data, and the important conclusions reached from the study. Reference 1: Edwards, T.B., D.A. Eghbali, M.L. Liebmann, and E.P. Shine, open-quotes Data Qualification for 1985 L-Area AC Flow Tests,close quotes SCS-CMAS-910045, December 31, 1991

  3. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Appendices A-F

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  4. Final environmental impact statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Chapters 1-9

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  5. Corrective action investigation plan for Central Nevada Test Area, CAU No. 417

    International Nuclear Information System (INIS)

    1997-04-01

    This Corrective Action Investigation Plan (CAIP) is part of a US Department of Energy (DOE)-funded environmental investigation of the Central Nevada Test Area (CNTA). This CAIP addresses the surface investigation and characterization of 15 identified Corrective Action Sites (CASs). In addition, several other areas of the CNTA project area have surface expressions that may warrant investigation. These suspect areas will be characterized, if necessary, in subsequent CAIPs or addendums to this CAIP prepared to address these sites. This CAIP addresses only the 15 identified CASs as shown in Table 2-1 that are associated with the drilling and construction of a number of testing wells designed as part of an underground nuclear testing program. The purpose of the wells at the time of construction was to provide subsurface access for the emplacement, testing, and post detonation evaluations of underground nuclear devices. If contamination is found at any of the 15-surface CASs, the extent of contamination will be determined in order to develop an appropriate corrective action

  6. Retaining of botanical diversity of steppe ecosystems at the Semipalatinsk test site area

    International Nuclear Information System (INIS)

    Sultanova, B.M.

    2005-01-01

    The nuclear tests conducted on the STS area have an effect on steppe biome. Regime of military secrecy allowed retaining extensive diversity of steppe vegetation at the area of the former Semipalatinsk test site, although the vegetation was liquidated in the most part of Kazakhstan. Unique biologic diversity of the steppe vegetation requires status of particularly secured vegetation of the STS area. (author)

  7. Corrrective action decision document for the Cactus Spring Waste Trenches (Corrective Action Unit No. 426). Revision No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Corrective Action Decision Document (CADD) for the Cactus Spring Waste Trenches (Corrective Action Unit [CAU] No. 426) has been prepared for the US Department of Energy`s (DOE) Nevada Environmental Restoration Project. This CADD has been developed to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996, stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Cactus Spring Waste Trenches Corrective Action Site (CAS) No. RG-08-001-RG-CS is included in CAU No. 426 (also referred to as the {open_quotes}trenches{close_quotes}); it has been identified as one of three potential locations for buried, radioactively contaminated materials from the Double Tracks Test. The trenches are located on the east flank of the Cactus Range in the eastern portion of the Cactus Spring Ranch at the Tonopah Test Range (TTR) in Nye County, Nevada, on the northern portion of Nellis Air Force Range. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The trenches were dug for the purpose of receiving waste generated during Operation Roller Coaster, primarily the Double Tracks Test. This test, conducted in 1963, involved the use of live animals to assess the biological hazards associated with non-nuclear detonation of plutonium-bearing devices (i.e., inhalation uptake of plutonium aerosol). The CAS consists of four trenches that received solid waste and had an overall impacted area of approximately 36 meters (m) (120 feet [ft]) long x 24 m (80 ft) wide x 3 to 4.5 m (10 to 15 ft) deep. The average depressions at the trenches are approximately 0.3 m (1 ft) below land surface.

  8. Nevada Test Site Environmental Report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Cathy Wills, ed.

    2010-09-13

    The Nevada Test Site Environmental Report 2009 was prepared to meet the information needs of the public and the requirements and guidelines of the U.S. Department of Energy (DOE) for annual site environmental reports. It was prepared by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This and previous years’ Nevada Test Site Environmental Reports (NTSERs) are posted on the NNSA/NSO website at http://www.nv.doe.gov/library/publications/aser.aspx. This NTSER was prepared to satisfy DOE Order DOE O 231.1A, “Environment, Safety and Health Reporting.” Its purpose is to (1) report compliance status with environmental standards and requirements, (2) present results of environmental monitoring of radiological and nonradiological effluents, (3) report estimated radiological doses to the public from releases of radioactive material, (4) summarize environmental incidents of noncompliance and actions taken in response to them, (5) describe the NNSA/NSO Environmental Management System and characterize its performance, and (6) highlight significant environmental programs and efforts. This NTSER summarizes data and compliance status for calendar year 2009 at the Nevada Test Site (NTS) and its two support facilities, the North Las Vegas Facility (NLVF) and the Remote Sensing Laboratory (RSL)-Nellis. It also addresses environmental restoration (ER) projects conducted at the Tonopah Test Range (TTR). Through a Memorandum of Agreement, NNSA/NSO is responsible for the oversight of TTR ER projects, and the Sandia Site Office of NNSA (NNSA/SSO) has oversight of all other TTR activities. NNSA/SSO produces the TTR annual environmental report available at http://www.sandia.gov/news/publications/environmental/index.html.

  9. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-05-12

    A key parameter governing the performance and life-time of a Hot Fractured Rock (HFR) reservoir is the effective heat transfer area between the fracture network and the matrix rock. We report on numerical modeling studies into the feasibility of using tracer tests for estimating heat transfer area. More specifically, we discuss simulation results of a new HFR characterization method which uses surface-sorbing tracers for which the adsorbed tracer mass is proportional to the fracture surface area per unit volume. Sorption in the rock matrix is treated with the conventional formulation in which tracer adsorption is volume-based. A slug of solute tracer migrating along a fracture is subject to diffusion across the fracture walls into the adjacent rock matrix. Such diffusion removes some of the tracer from the fluid in the fractures, reducing and retarding the peak in the breakthrough curve (BTC) of the tracer. After the slug has passed the concentration gradient reverses, causing back-diffusion from the rock matrix into the fracture, and giving rise to a long tail in the BTC of the solute. These effects become stronger for larger fracture-matrix interface area, potentially providing a means for estimating this area. Previous field tests and modeling studies have demonstrated characteristic tailing in BTCs for volatile tracers in vapor-dominated reservoirs. Simulated BTCs for solute tracers in single-phase liquid systems show much weaker tails, as would be expected because diffusivities are much smaller in the aqueous than in the gas phase, by a factor of order 1000. A much stronger signal of fracture-matrix interaction can be obtained when sorbing tracers are used. We have performed simulation studies of surface-sorbing tracers by implementing a model in which the adsorbed tracer mass is assumed proportional to the fracture-matrix surface area per unit volume. The results show that sorbing tracers generate stronger tails in BTCs, corresponding to an effective

  10. STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITY NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada

  11. Beam test of a large area silicon drift detector

    International Nuclear Information System (INIS)

    Castoldi, A.; Chinnici, S.; Gatti, E.; Longoni, A.; Palma, F.; Sampietro, M.; Rehak, P.; Ballocchi, G.; Kemmer, J.; Holl, P.; Cox, P.T.; Giacomelli, P.; Vacchi, A.

    1992-01-01

    The results from the tests of the first large area (4 x 4 cm 2 ) planar silicon drift detector prototype in a pion beam are reported. The measured position resolution in the drift direction is (σ=40 ± 10)μm

  12. Hanford 100-D Area Biostimulation Treatability Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Elmore, Rebecca P.; Mitroshkov, Alexandre V.; Sklarew, Deborah S.; Johnson, Christian D.; Oostrom, Martinus; Newcomer, Darrell R.; Brockman, Fred J.; Bilskis, Christina L.; Hubbard, Susan S.; Peterson, John E.; Williams, Kenneth H.; Gasperikova, E.; Ajo-Franklin, J.

    2009-09-30

    Pacific Northwest National Laboratory conducted a treatability test designed to demonstrate that in situ biostimulation can be applied to help meet cleanup goals in the Hanford Site 100-D Area. In situ biostimulation has been extensively researched and applied for aquifer remediation over the last 20 years for various contaminants. In situ biostimulation, in the context of this project, is the process of amending an aquifer with a substrate that induces growth and/or activity of indigenous bacteria for the purpose of inducing a desired reaction. For application at the 100-D Area, the purpose of biostimulation is to induce reduction of chromate, nitrate, and oxygen to remove these compounds from the groundwater. The in situ biostimulation technology is intended to provide supplemental treatment upgradient of the In Situ Redox Manipulation (ISRM) barrier previously installed in the Hanford 100-D Area and thereby increase the longevity of the ISRM barrier. Substrates for the treatability test were selected to provide information about two general approaches for establishing and maintaining an in situ permeable reactive barrier based on biological reactions, i.e., a biobarrier. These approaches included 1) use of a soluble (miscible) substrate that is relatively easy to distribute over a large areal extent, is inexpensive, and is expected to have moderate longevity; and 2) use of an immiscible substrate that can be distributed over a reasonable areal extent at a moderate cost and is expected to have increased longevity.

  13. Draft Environmental Impact Statement for the Nevada Test Site and off-site locations in the State of Nevada. Volume 1, Part B

    International Nuclear Information System (INIS)

    1996-01-01

    This EIS identifies the impacts of past, current, and potential programs of the DOE/NV. Potential programs are included in one or more of the four alternatives and fall into three basic levels: (1) current activities, (2) planned projects, and (3) proposed projects. Current activities are those that are presently part of the normal operations of the NTS, the Tonopah test Range, portions of the NAFR Complex, and other areas considered in this EIS, such as the Area 5 Radioactive Waste management Site. Planned projects are those that are within the 5-year planning cycle and are likely to be implemented, such as the Solar Enterprise Zone. Proposed projects are outside the 5-year planning window, but have undergone sufficient conceptual development to allow a reasonable assessment. The most reliable data are clearly derived from ongoing activities. Planned projects would present somewhat less reliable data. Data for proposed projects would be the least reliable, but were determined to be essential to a full and open evaluation and disclosure of the potential effects of the alternatives. To provide an adequate analysis, conservative assumptions and parameter values were used to evaluate potential impacts of the less-defined activities. Implementation of any of the alternatives could result in a permanent commitment of resources such as groundwater, soil, biota, minerals, surface area, and subsurface geology and would represent an irreversible and irretrievable commitment of such resources. In addition to the National Environmental Policy Act requirement to identify the irreversible and irretrievable commitments of resources, it is also the intent of the DOE to identify these same resources within the meaning of the Comprehensive Environmental Response, Compensation, and Liability Act

  14. Selection of areas for testing in the Eleana formation: Paleozoic geology of western Yucca Flat

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, J J

    1984-07-01

    The Paleozoic geology of NTS is reviewed to select an area for underground nuclear testing in shale. Constraints on possible areas, dictated by test program requirements and economics, are areas with topographic slope less than 5/sup 0/, depths to working point less than 3000 ft., and working points above the water table. The rock formation selected is Unit J (argillite) of the Mississippian age Eleana Formation. Within NTS, Western Yucca Flat is selected as the best area to meet the requirements. Details of the Paleozoic structure of western Yucca Flat are presented. The interpretation is based on published maps, cross-sections, and reports as well as borehole, refraction seismic, and gravity data. In terms of subsurface structure and areas where Eleana Formation Unit J occurs at depths between 500 ft to 3000 ft, four possible testing areas are identified. The areas are designated here as A, B, C and the Gravity High. Available data on the water table (static water level) is reviewed for western Yucca Flat area. Depth to the water table increases from 500 to 600 ft in Area A to 1500 ft or more in the Gravity High area. Review of the water table data rules out area A and B for testing in argillite above the water table. Area C is relatively unexplored and water conditions are unknown there. Thus, the Gravity High is selected as the most promising area for selecting testing sites. There is a dolomite thrust sheet of unknown thickness overlying the argillite in the Gravity High area. An exploration program is proposed to better characterize this structure. Finally, recommendations are made for procedures to follow for eventual site characterization of a testing site in argillite. 22 references, 12 figures, 1 table.

  15. An investigation on impacts of scheduling configurations on Mississippi biology subject area testing

    Science.gov (United States)

    Marchette, Frances Lenora

    The purpose of this mixed modal study was to compare the results of Biology Subject Area mean scores of students on a 4 x 4 block schedule, A/B block schedule, and traditional year-long schedule for 1A to 5A size schools. This study also reviewed the data to determine if minority or gender issues might influence the test results. Interviews with administrators and teachers were conducted about the type of schedule configuration they use and the influence that the schedule has on student academic performance on the Biology Subject Area Test. Additionally, this research further explored whether schedule configurations allow sufficient time for students to construct knowledge. This study is important to schools, teachers, and administrators because it can assist them in considering the impacts that different types of class schedules have on student performance and if ethnic or gender issues are influencing testing results. This study used the causal-comparative method for the quantitative portion of the study and constant comparative method for the qualitative portion to explore the relationship of school schedules on student academic achievement on the Mississippi Biology Subject Area Test. The aggregate means of selected student scores indicate that the Mississippi Biology Subject Area Test as a measure of student performance reveals no significant difference on student achievement for the three school schedule configurations. The data were adjusted for initial differences of gender, minority, and school size on the three schedule configurations. The results suggest that schools may employ various schedule configurations and expect student performance on the Mississippi Biology Subject Area Test to be unaffected. However, many areas of concern were identified in the interviews that might impact on school learning environments. These concerns relate to effective classroom management, the active involvement of students in learning, the adequacy of teacher education

  16. Lyme disease testing in children in an endemic area.

    Science.gov (United States)

    Al-Sharif, Bashar; Hall, Matthew C

    2011-10-01

    The purpose of this study was to determine clinician adherence to recommendations regarding diagnostic testing for Lyme disease (LD). The specific aims were to determine the rate of inappropriate test ordering for a diagnosis of erythema migrans and tack of confirmatory test ordering for positive LD screening tests. Using the data warehouse of Marshfield Clinic Research Foundation's Bioinformatics Research Center, cases were identified from 2002 through 2007. A retrospective chart abstraction was performed using Marshfield Clinic's electronic medical record. The study involved children (testing occurred after a clinical diagnosis of erythema migrans was made. Patients with any symptom in addition to erythema migrans were more likely to have testing (odds ratio (OR) = 3.52, 1.75-7.08). A positive LD screening test was not confirmed 24% of the time. Lack of ordering confirmatory testing was not associated with any clinical factors or site of the evaluation. This study found that some clinicians in an LD-endemic area do not follow guidelines for diagnosing children suspected to have Lyme disease.

  17. The Department of Energy Nevada Test Site Remote Area Monitoring System

    International Nuclear Information System (INIS)

    Sanders, L.D.; Hart, O.F.

    1993-01-01

    The Remote Area Monitoring System was developed by Los Alamos National Laboratory (LANL) for DOE test directors at the Nevada Test Site (NTS) to verify radiological conditions are safe after a nuclear test. In the unlikely event of a venting as a result of a nuclear test, this system provides radiological and meteorological data to Weather Service Nuclear Support Office (WSNSO) computers where mesoscale models are used to predict downwind exposure rates. The system uses a combination of hardwired radiation sensors and satellite based data acquisition units with their own radiation sensors to measure exposure rates in remote areas of the NTS. The satellite based data acquisition units are available as small, Portable Remote Area Monitors (RAMs) for rapid deployment, and larger, Semipermanent RAMs that can have meteorological towers. The satellite based stations measure exposure rates and transmit measurements to the GOES (Geostationary Operational Environmental Satellite) where they are relayed to Direct Readout Ground Stations (DRGS) at the NTS and Los Alamos. Computers process the data and display results in the NTS Operations Coordination Center. Los Alamos computers and NTS computers are linked together through a wide area network, providing remote redundant system capability. Recently, LANL, expanded the system to take radiological and meteorological measurements in communities in the western United States. The system was also expanded to acquire data from Remote Automatic Weather Stations (RAWS) that transmit through GOES. The addition of Portable and Semipermanent RAMs to the system has vastly expanded monitoring capabilities at NTS and can be used to take measurements anywhere in this hemisphere

  18. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2009-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities

  19. Clean Slate transportation and human health risk assessment

    International Nuclear Information System (INIS)

    1997-02-01

    Public concern regarding activities involving radioactive material generally focuses on the human health risk associated with exposure to ionizing radiation. This report describes the results of a risk analysis conducted to evaluate risk for excavation, handling, and transport of soil contaminated with transuranics at the Clean Slate sites. Transportation risks were estimated for public transport routes from the Tonopah Test Range (TTR) to the Envirocore disposal facility or to the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for both radiological risk and risk due to traffic accidents. Human health risks were evaluated for occupational and radiation-related health effects to workers. This report was generated to respond to this public concern, to provide an evaluation of the risk, and to assess feasibility of transport of the contaminated soil for disposal

  20. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Public comment and response document, Volume 3, Part B responses

    International Nuclear Information System (INIS)

    1996-08-01

    This sitewide EIS evaluates the potential environmental impacts of four possible land-use alternatives being considered for the Nevada Test Site (NTS), the Tonopah Test Range, and the formerly operated DOE sites in the state of Nevada: the Project Shoal Area, the Central Nevada Test Area, and portions of the Nellis Air Force Range Complex. Three additional sites in Nevada-Eldorado Valley, Dry Lake Valley, and Coyote Spring Valley-are evaluated for collocation of solar energy production facilities. The four alternatives include Continue Current Operations (No Action, continue to operate at the level maintained for the past 3 to 5 years); Discontinue Operations 1 (discontinue operations and interagency programs); Expanded Use (increased use of NTS and its resources to support defense and nondefense programs); and Alternate Use of Withdrawn Lands (discontinue all defense-related activities at NTS; continue waste management operations in support of NTS environmental restoration efforts; expand nondefense research). Environmental impacts were assessed for each alternative by analyzing, to the extent possible, the discrete and cumulative environmental impacts associated with Defense Waste Management, Environmental Restoration, Nondefense Research and Development, and Work for Others Programs. A framework for a Resource Management Plan is included as Volume 2 of this EIS and represents the development of an ecosystem based planning process closely integrated with the National Environmental Policy Act process. This EIS, among other things, analyzed the impacts of transportation of low level waste, and site characterization activities related to the Yucca Mountain Project but did not analyze the suitability of the site as a repository. This EIS does not analyze the suitability of the Yucca Mountain site as a repository as this is an action beyond the scope of the EIS. Volume 3 of this EIS contains the public comments and the responses to the comments

  1. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field- investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans

  2. Interim report on flash floods, Area 5 - Nevada Test Site

    International Nuclear Information System (INIS)

    French, R.H.

    1980-09-01

    Examination of the presently available data indicates that consideration must be given to the possibility of flash floods when siting waste management facilities in Area 5 of the Nevada Test Site. 6 figures, 7 tables

  3. 100 Area soil washing treatability test plan

    International Nuclear Information System (INIS)

    1993-03-01

    This test plan describes specifications, responsibilities, and general methodology for conducting a soil washing treatability study as applied to source unit contamination in the 100 Area. The objective ofthis treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. The purpose of separating these fractions is to minimize the volume of soil requiring permanent disposal. It is anticipated that this treatability study will be performed in two phases of testing, a remedy screening phase and a remedy selection phase. The remedy screening phase consists of laboratory- and bench-scale studies performed by Battelle Pacific Northwest laboratories (PNL) under a work order issued by Westinghouse Hanford Company (Westinghouse Hanford). This phase will be used to provide qualitative evaluation of the potential effectiveness of the soil washing technology. The remedy selection phase, consists of pilot-scale testing performed under a separate service contract to be competitively bid under Westinghouse Hanford direction. The remedy selection phase will provide data to support evaluation of the soil washing technology in future feasibility studies for Interim Remedial Measures (IRMs) or final operable unit (OU) remedies. Performance data from these tests will indicate whether applicable or relevant and appropriate requirements (ARARs) or cleanup goals can be met at the site(s) by application of soil washing. The remedy selection tests wig also allow estimation of costs associated with implementation to the accuracy required for the Feasibility Study

  4. Development of a portable system to test area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de Rezende

    2011-02-01

    The objective is to develop a portable system to test the reliability in terms of calibration of area monitors for neutrons. For the production of this system, thickness and location of the source within the system were simulated using the code of radiation transport MCNP5. The thicknesses were set for a 241 Am-Be source with an activity of 395 mCi, which will be in a polyethylene cylinder which will provide a ambient dose equivalent rate chosen through the points of calibration settings' used by the Laboratory of Neutrons (IRD / CNEN). The results obtained in this study show the feasibility of mounting the portable system as a tool to test the area monitors for neutrons, which will provide the user of neutron area monitors to check the instrument's response in the same field of operation, thus avoiding the use of an inadequate equipment. (author)

  5. Closure Report for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. H. Cox

    2001-01-01

    The following site closure activities were performed at the CAU 428 site located at the TTR and are documented in this report: Preplanning and site preparation; Excavating and removing impacted soil; Removing septic tank contents; Closing septic tanks by filling them with clean soil; Collecting verification samples to verify that COCs have been removed to approved levels; Backfilling the excavations to surface grade with clean soil; Disposal of excavated materials following applicable federal, state, and DOE/NV regulations in accordance with Section 2.3 of the CAP (DOE/NV, 2000); and Decontamination of equipment as necessary. Closure was accomplished following the approved CAP (DOE/NV, 2000). Verification sample data demonstrate that all COCs were removed to the remediation standards. Therefore, the site is clean-closed

  6. Testing the ability of a semidistributed hydrological model to simulate contributing area

    Science.gov (United States)

    Mengistu, S. G.; Spence, C.

    2016-06-01

    A dry climate, the prevalence of small depressions, and the lack of a well-developed drainage network are characteristics of environments with extremely variable contributing areas to runoff. These types of regions arguably present the greatest challenge to properly understanding catchment streamflow generation processes. Previous studies have shown that contributing area dynamics are important for streamflow response, but the nature of the relationship between the two is not typically understood. Furthermore, it is not often tested how well hydrological models simulate contributing area. In this study, the ability of a semidistributed hydrological model, the PDMROF configuration of Environment Canada's MESH model, was tested to determine if it could simulate contributing area. The study focused on the St. Denis Creek watershed in central Saskatchewan, Canada, which with its considerable topographic depressions, exhibits wide variation in contributing area, making it ideal for this type of investigation. MESH-PDMROF was able to replicate contributing area derived independently from satellite imagery. Daily model simulations revealed a hysteretic relationship between contributing area and streamflow not apparent from the less frequent remote sensing observations. This exercise revealed that contributing area extent can be simulated by a semi-distributed hydrological model with a scheme that assumes storage capacity distribution can be represented with a probability function. However, further investigation is needed to determine if it can adequately represent the complex relationship between streamflow and contributing area that is such a key signature of catchment behavior.

  7. Closure report for CAU 339: Area 12 Fleet Operations steam-cleaning discharge area, Nevada Test Site

    International Nuclear Information System (INIS)

    1997-12-01

    This Closure Report (CR) provides documentation of the completed corrective action at the Area 12 Fleet Operations site located in the southeast portion of the Area 12 Camp at the Nevada Test Site (NTS). Field work was performed in July 1997 as outlined in the Corrective Action Plan (CAP). The CAP was approved by the Nevada Division of Environmental Protection (NDEP) in June 1997. This site is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Site (CAS) Number 12-19-01 and is the only CAS in Corrective Action Unit (CAU) 339. The former Area 12 Fleet Operations Building 12-16 functioned as a maintenance facility for light- and heavy-duty vehicles from approximately 1965 to January 1993. Services performed at the site included steam-cleaning, tire service, and preventative maintenance on vehicles and equipment. Past activities impacted the former steam-cleaning discharge area with volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH) as oil

  8. Underground test area subproject waste management plan. Revision No. 1

    International Nuclear Information System (INIS)

    1996-08-01

    The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS

  9. Nevada Test Site Area 25. Radiological survey and cleanup project, 1974-1983. Final report

    International Nuclear Information System (INIS)

    McKnight, R.K.; Rosenberry, C.E.; Orcutt, J.A.

    1984-01-01

    This report describes radiological survey, decontamination and decommissioning of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The cleanup was part of the Surplus Facilities Management Program funded by the Department of Energy's Richland Operations Office. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for alpha and beta plus gamma radiation contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 12 figures

  10. Hydrologic resources management program and underground test area operable unit fy 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  11. Beliefs about chlamydia testing amongst young people living in relatively deprived areas.

    Science.gov (United States)

    Booth, A R; Harris, P R; Goyder, E; Norman, P

    2013-06-01

    This study uses the theory of planned behaviour (TPB) as a framework to investigate salient beliefs about chlamydia testing, amongst young people living in relatively deprived areas. These beliefs may form targets for intervention to increase testing in this high-risk population. Participants recruited from colleges in deprived areas of a UK city, completed open-ended questions designed to elicit salient beliefs. Responses were content analysed and categorized as describing behavioural, normative or control beliefs. Beliefs were elicited from 128 respondents (51% male; median age = 17). The commonest behavioural belief, which could have a positive or negative impact on screening intentions, was that testing provides information about health status. Partners were referred to most commonly amongst the normative beliefs. Practical aspects and concerns about social implications of testing were common control beliefs. References to several negative emotions emerged throughout. This study indicates that raising awareness of chlamydia as a serious sexual health problem may not be the best way to increase the uptake of testing in a high-risk population. Promoting chlamydia testing as potentially providing reassurance may be an alternative. It may also be important to reduce perceptions of social disapproval as well as negative emotion regarding chlamydia testing.

  12. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  13. Vibrodynamical tests of RP equipment with application of imitation area of WWER-1000 reactor

    International Nuclear Information System (INIS)

    Khajretdinov, V.U.; Tarkhanov, V.V.; Rodionova, I.N.

    2015-01-01

    Performance of preoperational tests and measurements with application of imitation area of the reactor is a distinctive characteristic of putting into operation of NPP Units with WWER-1000/1200. The imitation area consists of 163 full-scale FA models, where fuel matrixes made of nuclear-fissionable material, are replaced by leaden simulators. Vibrodynamic tests involve inspection of hydrodynamic disturbances in the primary circuit (dynamic impact on the inspected elements), characteristics of vibration response of the main equipment stress-deformed state of bearing structure, and also parameters of moving and geometry of the inspected objects (boundary conditions at process simulation). Preoperational tests and measurements on the simulated area of WWER-1000/1200 are obligatory and performed at every unit of NPP of this type [ru

  14. An implementation and test platform for wide area stability assessment methods

    DEFF Research Database (Denmark)

    Wittrock, Martin Lindholm; Jóhannsson, Hjörtur

    2013-01-01

    Units (PMU) can be very time consuming, especially if the testing procedure is not carried out in a systematic and automatic manner. The test platform overcomes this problem by automatically importing system model parameters, topology and simulation output from a time domain simulation of an instability...... scenario and automatically generating synthetic PMU snapshots of the system conditions. To demonstrate the platform’s potential for supporting research and development of wide area algorithms, a method to detect voltage instability is implemented and tested, giving results consistent with results from...

  15. Initial SVE Well Testing for the A-Area Miscellaneous Rubble Pile (ARP) Trenches Area

    International Nuclear Information System (INIS)

    RIHA, BRIAN

    2004-01-01

    The A-Area Miscellaneous Rubble Pile (ARP) is a 5.9 acre unit located at the southern end of A/M Area at the Savannah River Site (SRS). Disposal activities at ARP began in the early 1950s. The exact dates of operation and material disposed in the unit remain unknown. Within the ARP exists a smaller, approximately 2 acre, sub unit identified as the Trenches Area. The Trenches Area is dominated by a T-shaped trench (approximately 50 feet wide) containing 8 to 12 feet of ash material. This T-shaped trench will be referred to as the ARP Trench. Vegetation has been removed from the Trenches Area and a lower permeability earthen cover now covers the ARP Trench. The ARP active soil vapor extraction (ASVE) remediation system consists of seven extraction wells and twelve monitoring wells that were pushed into the vadose zone of the ARP Trench. The remediation system was designed based on the pre-design study conducted in 2002. The purpose of the initial soil vapor extraction (SVE) well testing was to verify the integrity and functionality of the nineteen wells installed in the ARP Trench. The well integrity was evaluated based on the flow rate, vacuum, and indication that soil gas and not surface air was pulled from the well. Soil gas was defined as gas with levels of carbon dioxide (CO2) above ambient concentrations (400-700 ppmv). Volatile organic compound (VOC) concentrations were measured at each well to determine the initial distribution of the contamination. In addition, the subsurface vacuum distribution was measured around each extraction well as a relative measure of the influence of each well

  16. James Webb Space Telescope Core 2 Test - Cryogenic Thermal Balance Test of the Observatorys Core Area Thermal Control Hardware

    Science.gov (United States)

    Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian

    2016-01-01

    The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.

  17. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Pahranagat National Wildlife Refuge, Lincoln County, Nevada

    International Nuclear Information System (INIS)

    Engelbrecht, J.; Kavouras, I.; Campbell, D.; Campbell, S.; Kohl, S.; Shafer, D.

    2009-01-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Pahranagat NWR, Beatty, Rachel, Caliente, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data on completion of the site's sampling program

  18. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas

    International Nuclear Information System (INIS)

    1990-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1990 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory -- Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release

  19. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    International Nuclear Information System (INIS)

    Vermeul, Vince R.; Williams, M. D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-01-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 (micro)g/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area

  20. Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection

    Energy Technology Data Exchange (ETDEWEB)

    Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

    2007-06-01

    The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

  1. June 2012 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    International Nuclear Information System (INIS)

    2013-01-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 26-27, 2012, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the 'Corrective Action Decision Document/Corrective Action Plan' completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  2. May 2011 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on May 10-11, 2011, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the 'Corrective Action Decision Document/Corrective Action Plan' completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated)

  3. Nevada Test 1999 Waste Management Monitoring Report, Area 3 and Area 5 radioactive waste management sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2000-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the alluvial aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 1999 was a dry year: rainfall totaled 3.9 inches at the Area 3 RWMS (61 percent of average) and 3.8 inches at the Area 5 RWMS (75 percent of average). Vadose zone monitoring data indicate that 1999 rainfall infiltrated less than one foot before being returned to the atmosphere by evaporation. Soil-gas tritium data indicate very slow migration, and tritium concentrations in biota were insignificant. All 1999 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing as expected at isolating buried waste

  4. Corrective action decision document for the Roller Coaster Lagoons and North Disposal Trench (Corrective Action Unit Number 404)

    International Nuclear Information System (INIS)

    1997-01-01

    The North Disposal Trench, located north of the eastern most lagoon, was installed in 1963 to receive solid waste and construction debris from the Operation Roller Coaster man camp. Subsequent to Operation Roller Coaster, the trench continued to receive construction debris and range cleanup debris (including ordnance) from Sandia National Laboratories and other operators. A small hydrocarbon spill occurred during Voluntary Corrective Action (VCA) activities (VCA Spill Area) at an area associated with the North Disposal Trench Corrective Action Site (CAS). Remediation activities at this site were conducted in 1995. A corrective action investigation was conducted in September of 1996 following the Corrective Action Investigation Plan (CAIP); the detailed results of that investigation are presented in Appendix A. The Roller Coaster Lagoons and North Disposal Trench are located at the Tonopah Test Range (TTR), a part of the Nellis Air Force Range, which is approximately 225 kilometers (140 miles) northwest of Las Vegas, Nevada, by air

  5. Aquifer pumping test report for the burn site groundwater area of concern

    Energy Technology Data Exchange (ETDEWEB)

    Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ferry, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The Aquifer Pumping Test Report for the Burn Site Groundwater (BSG) Area of Concern is being submitted by National Technology and Engineering Solutions of Sandia, LLC and the U.S. Department of Energy (DOE)/National Nuclear Security Administration to describe the results of the aquifer pumping test program and related field activities that were completed at the BSG Area of Concern. This report summarizes the results of the field work and data analyses, and is being submitted to the New Mexico Environment Department (NMED) Hazardous Waste Bureau, as required by the April 14, 2016 letter, Summary of Agreements and Proposed Milestones Pursuant to the Meeting of July 20, 2015, (NMED April 2016).

  6. BWR recirculation loop discharge line break LOCA tests with break areas of 50 and 100% assuming HPCS failure at ROSA-III test facility

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Tasaka, Kanji; Yonomoto, Taisuke; Anoda, Yoshinari; Kumamaru, Hiroshige; Nakamura, Hideo; Murata, Hideo; Shiba, Masayoshi; Iriko, Masanori.

    1985-03-01

    This report presents the experimental results of RUN 962 and RUN 963 in ROSA-III program, which are 50 and 100 % break LOCA tests at the BWR recirculation pump discharge line, respectively. The ROSA-III test facility simulates a volumetrically scaled (1/424) BWR system and has four half-length electrically heated fuel bundles, two active recirculation loops, three types of ECCSs and steam and feedwater systems. The experimental data of RUN 962 and RUN 963 were compared with those of RUN 961, a 200 % discharge line break test to study the break area effects on the transient thermal hydraulic phenomena. The least flow areas at the jet pump drive nozzles and recirculation pump discharge nozzle in the broken recirculation loop limitted the discharge flows from the pressure vessel and the depressurization rate in the 100 and 200 % break tests, whereas the least flow area at break nozzle limitted the depressurization rate in the 50 % break test. The highest PCT was observed in the 50 % break test among the three tests. (author)

  7. Pilot-scale ultrafiltration testing for the F and H area effluent treatment facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    An F and H Area Effluent Treatment Facility (F/H ETF) is being designed to treat low activity aqueous effluents which are produced from F and H Area daily operations. The treatment scheme for the F/H ETF will include pretreatment (pH adjustment and filtration) followed by Reverse Osmosis and/or Ion Exchange to remove dissolved species. Several alternative treatment processes are being considered for the F/H ETF. One of the alternatives in the pretreatment step is tubular Ultrafiltration (UF), using a dynamically formed zirconium oxide membrane supported on a porous stainless steel backing. Pilot-scale testing with a single membrane module (13 ft 2 area) and 200-Area effluent simulant has demonstrated that UF is a viable filtration option for the F/H ETF. UF testing at TNX has defined the operating conditions necessary for extended operation and also demonstrated excellent filtration performance (filtrate SDI 2 /day) flux and will provide excellent pretreatment for both reverse osmosis and ion exchange. 2 refs

  8. K Basin Sludge Conditioning Testing. Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing

    International Nuclear Information System (INIS)

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

    1998-01-01

    This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with approximately2.5 g of sludge (dry basis). The high solids loading test was conducted with approximately7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale

  9. Radiation monitoring around United States nuclear test areas, calendar year 1989

    International Nuclear Information System (INIS)

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs

  10. Radiation monitoring around United States nuclear test areas, calendar year 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-05-01

    This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

  11. Weibull statistics effective area and volume in the ball-on-ring testing method

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund

    2014-01-01

    The ball-on-ring method is together with other biaxial bending methods often used for measuring the strength of plates of brittle materials, because machining defects are remote from the high stresses causing the failure of the specimens. In order to scale the measured Weibull strength...... to geometries relevant for the application of the material, the effective area or volume for the test specimen must be evaluated. In this work analytical expressions for the effective area and volume of the ball-on-ring test specimen is derived. In the derivation the multiaxial stress field has been accounted...

  12. The Effect of Pile-Up and Contact Area on Hardness Test by Nanoindentation

    Science.gov (United States)

    Miyake, Koji; Fujisawa, Satoru; Korenaga, Atsushi; Ishida, Takao; Sasaki, Shinya

    2004-07-01

    We used atomic force microscopy (AFM) for the indentation test evaluating the indentation hardness of materials in the nanometer range. BK7, fused silica, and single-crystal silicon were used as test sample materials. The data analysis processes used to determine the contact area were important in evaluating the indentation hardness of the materials. The direct measurement of the size of the residual hardness impression was useful in evaluating the contact area even in the nanometer region. The results led us to conclude that AFM indentation using a sharp indenter is a powerful method for estimating the indentation hardness in the nanometer range.

  13. Nevada Test Site Radiological Control Manual, Revision 1

    International Nuclear Information System (INIS)

    2010-01-01

    This document supersedes DOE/NV/25946--801, 'Nevada Test Site Radiological Control Manual,' Revision 0 issued in October 2009. Brief Description of Revision: A minor revision to correct oversights made during revision to incorporate the 10 CFR 835 Update; and for use as a reference document for Tenant Organization Radiological Protection Programs. This manual contains the radiological control requirements to be used for all radiological activities conducted by programs under the purview of the U.S. Department of Energy (DOE) and the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Compliance with these requirements will ensure compliance with Title 10 Code of Federal Regulations (CFR) Part 835, 'Occupational Radiation Protection.' Programs covered by this manual are located at the Nevada Test Site (NTS); Nellis Air Force Base and North Las Vegas, Nevada; Santa Barbara and Livermore, California; and Andrews Air Force Base, Maryland. In addition, fieldwork by NNSA/NSO at other locations is covered by this manual. The NTS is located in Nye County, Nevada. The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas. It is a remote facility that covers approximately 3,500 square kilometers (1,375 square miles) of land. The dimensions of the NTS vary from 46 to 56 kilometers (28 to 35 miles) in width (eastern to western border) and from 64 to 88 kilometers (40 to 55 miles) in length (northern to southern border). The NTS is surrounded to the west, north, and east by additional thousands of acres of land withdrawn from the public domain for use as a protected wildlife range and as a military gunnery range. These public exclusion areas comprise the Nellis Air Force Range complex, previously designated as the Nellis Air Force Base Bombing and Gunnery Range, and the Tonopah Test Range. These two areas provide a buffer zone between the test areas and public lands administered by the Federal Bureau of Land

  14. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  15. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    International Nuclear Information System (INIS)

    Halgren, D.L.

    2010-01-01

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft 2 ) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  16. Environmental Assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-08-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  17. Material control system design: Test Bed Nitrate Storage Area (TBNSA)

    International Nuclear Information System (INIS)

    Clark, G.A.; Da Roza, R.A.; Dunn, D.R.; Sacks, I.J.; Harrison, W.; Huebel, J.G.; Ross, W.N.; Salisbury, J.D.; Sanborn, R.H.; Weissenberger, S.

    1978-05-01

    This report provides an example of a hypothetical Special Nuclear Material (SNM) Safeguard Material Control and Accounting (MC and A) System which will be used as a subject for the demonstration of the Lawrence Livermore Laboratory MC and A System Evaluation Methodology in January 1978. This methodology is to become a tool in the NRC evaluation of license applicant submittals for Nuclear Fuel Cycle facilities. The starting point for this test bed design was the Allied-General Nuclear Services--Barnwell Nuclear Fuel Plant Reprocessing plant as described in the Final Safety Analysis Report (FSAR), of August 1975. The test bed design effort was limited to providing an SNM safeguard system for the plutonium nitrate storage area of this facility

  18. Test strip at the Musters lake area, Chubut province (Argentina)

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1998-01-01

    A local test strip to determine both the system sensitivities and height attenuation coefficients was defined at the Musters Lake area, for its use in airborne spectrometric surveys in the South Patagonia region. The selected calibration range presents both low and uniform radioelement concentration. The mean spectrometer values obtained at ground level were 1.8 % K, 1.6 ppm eU and 7.3 ppm eTh while the variation coefficients were 7.5 %, 27.0 %, and 10.2 %, respectively. These values as well as range dimensions, moisture condition, easy access, easy navigation for aircraft, proximity to a fresh water body and with no flight restrictions are consistent with the international recommendations for setting up a test range. (author)

  19. Test strip at the Musters Lake area, Chubut province (Argentina)

    International Nuclear Information System (INIS)

    Lopez, Luis E.

    1998-01-01

    A local test strip to determine both the system sensitivities and height attenuation coefficients was defined at the Musters Lake area, for its use in airborne spectrometric surveys in the South Patagonia region. The selected calibration range presents both low and uniform radioelement concentrations. The mean spectrometer values obtained at ground level were 1.8 % K, 1.6 ppm eU and 7.3 ppm eTh while the variation coefficients were 7.5 %, 27.0 %, and 10.2 %, respectively. These values as well as range dimensions, moisture condition, easy access, easy navigation for aircraft, proximity to a fresh water body and with no flight restrictions are consistent with the international recommendations for setting up a test range. (author)

  20. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    Energy Technology Data Exchange (ETDEWEB)

    Susan Stacy; Hollie K. Gilbert

    2005-02-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

  1. HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E

    International Nuclear Information System (INIS)

    Susan Stacy; Hollie K. Gilbert

    2005-01-01

    Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly and Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway

  2. Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    International Nuclear Information System (INIS)

    Engelbrecht, J.; Kavouras, I.; Campbell, D.; Campbell, S.; Kohl, S.; Shafer, D.

    2009-01-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program

  3. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    David B. Hudson

    2007-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of

  4. A facility for the test of large area muon chambers at high rates

    CERN Document Server

    Agosteo, S; Belli, G; Bonifas, A; Carabelli, V; Gatignon, L; Hessey, N P; Maggi, M; Peigneux, J P; Reithler, H; Silari, Marco; Vitulo, P; Wegner, M

    2000-01-01

    Operation of large area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz/\\scm. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate.

  5. A facility for the test of large-area muon chambers at high rates

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S.; Altieri, S.; Belli, G.; Bonifas, A.; Carabelli, V.; Gatignon, L.; Hessey, N.; Maggi, M.; Peigneux, J.-P.; Reithler, H. E-mail: hans.reithler@cern.ch; Silari, M.; Vitulo, P.; Wegner, M

    2000-09-21

    Operation of large-area muon detectors at the future Large Hadron Collider (LHC) will be characterized by large sustained hit rates over the whole area, reaching the range of kHz cm{sup -2}. We describe a dedicated test zone built at CERN to test the performance and the aging of the muon chambers currently under development. A radioactive source delivers photons causing the sustained rate of random hits, while a narrow beam of high-energy muons is used to directly calibrate the detector performance. A system of remotely controlled lead filters serves to vary the rate of photons over four orders of magnitude, to allow the study of performance as a function of rate. (authors)

  6. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments

  7. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area

  8. Characterization Report for the 92-Acre Area of the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2006-06-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office manages two low-level Radioactive Waste Management Sites at the Nevada Test Site. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. This report summarizes characterization and monitoring work pertinent to the 92-Acre Area in the southeast part of the Area 5 Radioactive Waste Management Sites. The decades of characterization and assessment work at the Area 5 RWMS indicate that the access controls, waste operation practices, site design, final cover design, site setting, and arid natural environment contribute to a containment system that meets regulatory requirements and performance objectives for the short- and long-term protection of the environment and public. The available characterization and Performance Assessment information is adequate to support design of the final cover and development of closure plans. No further characterization is warranted to demonstrate regulatory compliance. U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is proceeding with the development of closure plans for the six closure units of the 92-Acre Area.

  9. Corrective action investigation plan for Central Nevada Test Area CAU No. 417

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    This Corrective Action Investigation Plan (CAIP) is part of a US Department of Energy (DOE)-funded environmental investigation of the Central Nevada Test Area (CNTA). The CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to US Highway 6, about 15 kilometers (10 miles) northeast of Warm Springs. The CNTA was the site of Project Faultless, a nuclear device detonated in the subsurface by the US Atomic Energy Commission (AEC) in January 1968. The purpose of this test was to gauge the seismic effects of relatively large, high-yield detonations completed outside of the Nevada Test Site (NTS). The test was also used to determine the suitability of the site for future large detonations. The yield of the Faultless test was between 200 kilotons and 1 megaton (DOE, 1994c).

  10. Nevada Test Site fallout in the area of Enterprise, Utah

    International Nuclear Information System (INIS)

    Krey, P.W.; Hardy, E.P.; Heit, M.

    1980-04-01

    The analysis of a sediment core from the Enterprise reservoir in southwestern Utah has provided a record of fallout in the area dating to 1945. Assming that all the 137 Cs fallout that occurred at Enterprise reservoir between 1951 and 1957 came exclusively from the Nevada tests, an upper limit of the integrated deposit from this source is 18 mCi/km 2 of 137 Cs decay corrected to 1979 out of a total of 101 measured in 1979. The maximum infinity dose from the external radiation caused by this Nevada Test Site fallout is estimated to be 1700 mrad. This maximum dose is only a factor of two higher than the cumulative estimated dose in Enterprise derived from the radiological surveys conducted after each test. This indicates that the region around Enterprise reservoir did not experience an intrusion of fallout from NTS greatly in excess of what had been deduced from the post-shot external radiation surveys

  11. Cryogenics for the MuCool Test Area (MTA)

    International Nuclear Information System (INIS)

    Darve, Christine; Norris, Barry; Pei, Liujin

    2006-01-01

    MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner

  12. An investigation into the knowledge and attitudes towards radon testing among residents in a high radon area

    International Nuclear Information System (INIS)

    Clifford, Susan; Menezes, Gerard; Hevey, David

    2012-01-01

    The aim of this study was to investigate the knowledge and attitudes of residents in the Castleisland area to radon. Castleisland in Co. Kerry was described as a high radon area following the discovery of a house in the area with radon levels 245 times that of the national reference level. Residents in this area were then asked to measure their homes for radon in the Castleisland radon survey. The uptake of this measurement was 17%. In order to investigate this response rate further, a questionnaire was designed and distributed to residents in the Castleisland area. This questionnaire measured the testing history of the participants, the reasons for testing/not testing, the factors important to them when considering having their home tested, radon knowledge and finally intentions to measure their home for radon. It was found that the main reason people do not test their home for radon is that they believe their home does not have a problem. Optimistic bias was thought to play a role here. The subjective norm component of the theory of planned behaviour was found to have a significant independent contribution in the variation in intentions to measure one’s home for radon and this in turn could be targeted to increase uptake of radon measurement in the future. (note)

  13. Microbiological analyses of samples from the H-Area injection well test site

    International Nuclear Information System (INIS)

    Wilde, E.W.; Franck, M.M.

    1997-01-01

    Microbial populations in well water from monitoring wells at the test site were one to three orders of magnitude higher than well water from the Cretaceous aquifer (used as dilution water for the tests) or from a control well adjacent to the test site facility. Coupons samples placed in monitoring and control wells demonstrated progressive adhesion by microbes to materials used in well construction. Samples of material scraped from test well components during abandonment of the test site project revealed the presence of a variety of attached microbes including iron bacteria. Although the injection wells at the actual remediation facility for the F- and H-Area seepage basins remediation project are expected to be subjected to somewhat different conditions (e.g. considerably lower iron concentrations) than was the case at the test site, the potential for microbiologically mediated clogging and fouling within the process should be considered. A sampling program that includes microbiological testing is highly recommended

  14. Nevada Test Site 2000 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    Yvonne Townsend

    2001-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels, whereas radon concentrations are not above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2000 was an average rainfall year: rainfall totaled 167 mm (6.6 in) at the Area 3 RWMS (annual average is 156 mm [6.5 in]) and 123 mm (4.8 in) at the Area 5 RWMS (annual average is 127 mm [5.0 in]). Vadose zone monitoring data indicate that 2000 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2000 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing well at isolating buried waste

  15. 33 CFR 334.1440 - Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Pacific Ocean at Kwajalein Atoll, Marshall Islands; missile testing area. 334.1440 Section 334.1440 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1440 Pacific Ocean at Kwajalein...

  16. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    Energy Technology Data Exchange (ETDEWEB)

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  17. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area

  18. Hydrologic Resources Management Program and Underground Test Area Project FY2005 Progress Report

    International Nuclear Information System (INIS)

    Eaton, G F; Genetti, V; Hu, Q; Hudson, G B; Kersting, A B; Lindvall, R E; Moran, J E; Nimz, G J; Ramon, E C; Rose, T P; Shuller, L; Williams, R W; Zavarin, M; Zhao, P

    2007-01-01

    This report describes FY 2005 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains five chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E and E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and Bechtel Nevada (BN)

  19. Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-03-01

    This paper presents an overview of the strategy for closure of part of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS), which is about 65 miles northwest of Las Vegas, Nevada (Figure 1). The Area 5 RWMS is in the northern part of Frenchman Flat, approximately 14 miles north of Mercury. The Area 5 RWMS encompasses 732 acres subdivided into quadrants, and is bounded by a 1,000-foot (ft)-wide buffer zone. The northwest and southwest quadrants have not been developed. The northeast and southeast quadrants have been used for disposal of unclassified low-level radioactive waste (LLW) and indefinite storage of classified materials. This paper focuses on closure of the 38 waste disposal and classified material storage units within the southeast quadrant of the Area 5 RWMS, called the ''92-Acre Area''. The U.S Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is currently planning to close the 92-Acre Area by 2011. Closure planning for this site must take into account the regulatory requirements for a diversity of waste streams, disposal and storage configurations, disposal history, and site conditions. For ease of discussion, the 92-Acre Area has been subdivided into six closure units defined by waste type, location, and similarity in regulatory requirements. Each of the closure units contains one or more waste disposal units; waste disposal units are also called waste disposal cells. The paper provides a brief background of the Area 5 RWMS, identifies key closure issues for the 92-Acre Area, recommends actions to address the issues, and provides the National Security Technologies, LLC (NSTec), schedule for closure.

  20. The investigation on hereditary disease and congenital malformation in the surrounding area of the nuclear test site in Xinjiang

    International Nuclear Information System (INIS)

    Zou Wenliang; Zhang Jujing

    1989-01-01

    The investigation on hereditary disease and congenital malformation, on the children below eleven years old and living in the surrounding area of the nuclear test site and control area is reported. The total prevalence rate of the ninteen kinds of hereditary disease and congenital malformation in both areas are 7.12%0 and 7.28%0, respectively. The prevalence rate of congenital foolishness in investigation area is 0.64%0; while in control area, it is 0.54%0. There is no significant difference between the two areas. However, it is found that the prevalence rate of harelip in investigation area is higher than in control area, whereas the prevalence rate of congenital heart disease in control area is higher than in investigation area. As for the rests there is no significant difference. There is no significant difference between the two areas. It is concluded that nuclear tests in China did not cause hereditary disease and congenital malformation for the children who live in surrounding area, of the nuclear test site

  1. Energy Systems Test Area (ESTA) Battery Test Operations User Test Planning Guide

    Science.gov (United States)

    Salinas, Michael

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Battery Test Operations. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  2. Testing and evaluation of large-area heliostats for solar thermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, J.W.; Houser, R.M.

    1993-02-01

    Two heliostats representing the state-of-the-art in glass-metal designs for central receiver (and photovoltaic tracking) applications were tested and evaluated at the National Solar Thermal Test Facility in Albuquerque, New Mexico from 1986 to 1992. These heliostats have collection areas of 148 and 200 m{sup 2} and represent low-cost designs for heliostats that employ glass-metal mirrors. The evaluation encompassed the performance and operational characteristics of the heliostats, and examined heliostat beam quality, the effect of elevated winds on beam quality, heliostat drives and controls, mirror module reflectance and durability, and the overall operational and maintenance characteristics of the two heliostats. A comprehensive presentation of the results of these and other tests is presented. The results are prefaced by a review of the development (in the United States) of heliostat technology.

  3. Lithology and Stratigraphy of Holes Drilled in LANL-Use Areas of the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance B. Prothro; Sigmund L. Drellack, Jr.; Brian M. Allen

    1999-07-01

    Geologic data for ten holes drilled in areas used by Los Alamos National Laboratory at the Nevada Test Site are presented in this report. The holes include emplacement holes, instrumentation holes, and Underground Test Area wells drilled during calendar years 1991 through 1995. For each hole a stratigraphic log, a detailed lithologic log, and one or two geologic cross sections are presented, along with a supplemental data sheet containing information about the drilling operations, geology, or references. For three of the holes, graphic data summary sheets with geologic and geophysical data are provided as plates.

  4. Site characterization and monitoring data from Area 5 Pilot Wells, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1994-02-01

    The Special Projects Section (SPS) of Reynolds Electrical ampersand Engineering Co., Inc. (REECO) is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Environmental Restoration and Waste Management Division, Waste Operations Branch. The three Pilot Wells that comprise the Pilot Well Project are an important part of the Area 5 Site Characterization Program designed to determine the suitability of the Area 5 RWMS for disposal of low-level waste (LLW), mixed waste (MW), and transuranic waste (TRU). The primary purpose of the Pilot Well Project is two-fold: first, to characterize important water quality and hydrologic properties of the uppermost aquifer; and second, to characterize the lithologic, stratigraphic, and hydrologic conditions which influence infiltration, redistribution, and percolation, and chemical transport through the thick vadose zone in the vicinity of the Area 5 RWMS. This report describes Pilot Well drilling and coring, geophysical logging, instrumentation and stemming, laboratory testing, and in situ testing and monitoring activities

  5. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites; TOPICAL

    International Nuclear Information System (INIS)

    Y. E. Townsend

    2002-01-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report[ASER], the National Emissions Standard for Hazardous Air Pollutants[NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments

  6. Compilation of modal analyses of volcanic rocks from the Nevada Test Site area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Page, W.R.

    1990-01-01

    Volcanic rock samples collected from the Nevada Test Site, Nye County, Nevada, between 1960 and 1985 were analyzed by thin section to obtain petrographic mode data. In order to provide rapid accessibility to the entire database, all data from the cards were entered into a computerized database. This computer format will enable workers involved in stratigraphic studies in the Nevada Test Site area and other locations in southern Nevada to perform independent analyses of the data. The data were compiled from the mode cards into two separate computer files. The first file consists of data collected from core samples taken from drill holes in the Yucca Mountain area. The second group of samples were collected from measured sections and surface mapping traverses in the Nevada Test Site area. Each data file is composed of computer printouts of tables with mode data from thin section point counts, comments on additional data, and location data. Tremendous care was taken in transferring the data from the cards to computer, in order to preserve the original information and interpretations provided by the analyzer. In addition to the data files above, a file is included that consists of Nevada Test Site petrographic data published in other US Geological Survey and Los Alamos National Laboratory reports. These data are presented to supply the user with an essentially complete modal database of samples from the volcanic stratigraphic section in the Nevada Test Site area. 18 refs., 4 figs

  7. Airborne gravity tests in the Italian area to improve the geoid model of Italy

    DEFF Research Database (Denmark)

    Barzaghi, R; Borghi, A; Keller, K

    2009-01-01

    Airborne gravimetry is an important method for measuring gravity over large unsurveyed areas. This technology has been widely applied in Canada, Antarctica and Greenland to map the gravity fields of these regions and in recent years, in the oil industry. In 2005, two tests in the Italian area were...... performed by ENI in cooperation with the Politecnico di Milano and the Danish National Space Center. To the knowledge of the authors, these were the first experiments of this kind in Italy and were performed over the Ionian coasts of Calabria and the Maiella Mountains. The Calabria test field......, the collocation method applied to compare and merge ground-based and airborne data proved to be efficient and reliable. The standard deviation of the discrepancies between airborne data and collocation upward continued gravity is, in both cases, less than 8 mgal. In the Maiella test, the gravity field obtained...

  8. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    David B. Hudson, Cathy A. Wills

    2006-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  9. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    2010-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches (in.)) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation

  10. Nevada Test Site Area 25, Radiological Survey and Cleanup Project, 1974-1983 (a revised final report). Revision 1

    International Nuclear Information System (INIS)

    Miller, M.G.

    1984-12-01

    This report describes the radiological survey, decontamination and decommissioning (D and D) of the Nevada Test Site (NTS) Area 25 facilities and land areas incorporated in the Nuclear Rocket Development Station (NRDS). Buildings, facilities and support systems used after 1959 for nuclear reactor and engine testing were surveyed for the presence of radioactive contamination. The radiological survey portion of the project encompassed portable instrument surveys and removable contamination surveys (swipe) for beta plus gamma and alpha radioactive contamination of facilities, equipment and land areas. Soil sampling was also accomplished. The majority of Area 25 facilities and land areas have been returned to unrestricted use. Remaining radiologically contaminated areas are posted with warning signs and barricades. 9 references, 23 figures

  11. The indication area of a diagnostic test. Part I--discounting gain and loss in diagnostic certainty

    NARCIS (Netherlands)

    Stalpers, Lukas J. A.; Nelemans, Patty J.; Geurts, Sandra M. E.; Jansen, Erik; de Boer, Peter; Verbeek, André L. M.

    2015-01-01

    Test performance is conventionally expressed by gain in diagnostic certainty. We propose net diagnostic gain and indication area as more appropriate measures of test performance; then, the loss in certainty due to misclassification and the information of "no test" would be performed are taken into

  12. Estimating total 239240Pu in blow-sand mounds of two safety-shot sites

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Essington, E.H.

    1977-01-01

    A study for estimating the total amount (inventory) of 239 240 Pu in blow-sand mounds at two safety-shot sites (Area 13-Project 57 on the Nellis Air Force Base and Clean Slate 3 on the Tonopah Test Range in Nevada) is described. The total amount in blow-sand mounds at these two sites is estimated to be 5.8 +- 1.3 (total +- standard error) and 10.6 +- 2.5 curies, respectively. The total 239 240 Pu in mounds plus desert pavement areas, both to a depth of 5 cm below desert pavement level, is estimated to be 39 +- 5.7 curies at the Project 57 site and 36 +- 4.8 curies at Clean Slate 3. These estimates are compared with the somewhat higher estimates of 46 +- 9 and 37 +- 5.4 curies reported that pertain to only the top 5 cm of mounds and desert pavement. The possibility is discussed that these differences are due to sampling variability arising from the skewed nature of plutonium concentrations, particularly near ground zero

  13. Clean Slate 1 revegetation and monitoring plan

    International Nuclear Information System (INIS)

    Anderson, D.C.; Hall, D.B.

    1997-07-01

    This document constitutes a reclamation plan for the short-term and long-term stabilization of land disturbed by activities associated with the cleanup of radionuclide contaminated surface soil at the Clean Slate 1 site. This document has been prepared to provide general reclamation practices and procedures that will be followed during restoration of the cleanup site. The results of reclamation trials at Area 11, Area 19 and more recently the reclamation demonstration plots at the Double Tracks cleanup site, have been summarized and incorporated into this reclamation and monitoring plan. The plan also contains procedures for monitoring both the effectiveness and success of short-term and long-term soil stabilization. The Clean Slate 1 site is located on the Tonopah Test Range. The surface soils were contaminated as a result of the detonation of a device containing plutonium and depleted uranium using chemical explosives. Short-term stabilization consists of the application of a chemical soil stabilizer that is applied immediately following excavation of the contaminated soils to minimize Pu resuspension. Long-term stabilization is accomplished by the establishment of a permanent vegetation

  14. Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities

    International Nuclear Information System (INIS)

    1994-10-01

    The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition

  15. F and H Area Effluent Treatment Facility (F/H ETF): ultrafiltration and hyperfiltration systems testing at Carre, Inc. with simulated F and H area effluents

    International Nuclear Information System (INIS)

    Ryan, J.P.

    1984-01-01

    The F and H Area Effluent Treatment Facility is essentially a four-stage process that will decontaminate the waste water that is currently being discharged to seepage basins in the Separations Areas. The stages include pretreatment, reverse osmosis, ion exchange, and evaporation. A series of tests were performed at Carre, Inc. (Seneca, SC) from March 5 through March 13, to determine the usefulness of ultrafiltration (UF) in the pretreatment stage of the ETF. The results of that testing program indicate that UF would be an excellent means of removing entrained activity from the 200 Area process effluents. Hyperfiltration (HF) was also tested as a means of providing an improved concentration factor from the reverse osmosis stage. The results show that the membranes that were tested would not reject salt well enough at high salt concentrations to be useful in the final reverse osmosis stage. However, there are several membranes which are commercially available that would provide the needed rejection if they could be applied (dynamically) on the Carre support structure. This avenue is still being explored, as theoretically, it could eliminate the need for the F/H ETF evaporator

  16. Nevada Test Site 2007 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2007 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (National Security Technologies, LLC, 2007a; 2008; Warren and Grossman, 2008). Direct radiation monitoring data indicate exposure levels at the RWMSs are at background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. A single gamma spectroscopy measurement for cesium was slightly above the minimum detectable concentration, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. The measured levels of radionuclides in air particulates are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 136.8 millimeters (mm) (5.39 inches [in.]) of precipitation at the Area 3 RWMS during 2007 is 13 percent below the average of 158.1 mm (6.22 in.), and the 123.8 mm (4.87 in.) of precipitation at the Area 5 RWMS during 2007 is 6 percent below the average of 130.7 mm (5.15 in.). Soil-gas tritium monitoring at borehole GCD-05U continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward movement percolation of precipitation more effectively

  17. Underground Test Area Subproject Phase I Data Analysis Task. Volume VIII - Risk Assessment Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-01

    Volume VIII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the risk assessment documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  18. Fabrication and radio frequency test of large-area MgB2 films on niobium substrates

    Science.gov (United States)

    Ni, Zhimao; Guo, Xin; Welander, Paul B.; Yang, Can; Franzi, Matthew; Tantawi, Sami; Feng, Qingrong; Liu, Kexin

    2017-04-01

    Magnesium diboride (MgB2) is a promising candidate material for superconducting radio frequency (RF) cavities because of its higher transition temperature and critical field compared with niobium. To meet the demand of RF test devices, the fabrication of large-area MgB2 films on metal substrates is needed. In this work, high quality MgB2 films with 50 mm diameter were fabricated on niobium by using an improved HPCVD system at Peking University, and RF tests were carried out at SLAC National Accelerator Laboratory. The transition temperature is approximately 39.6 K and the RF surface resistance is about 120 μΩ at 4 K and 11.4 GHz. The fabrication processes, surface morphology, DC superconducting properties and RF tests of these large-area MgB2 films are presented.

  19. In Situ Redox Manipulation Field Injection Test Report - Hanford 100-H Area

    International Nuclear Information System (INIS)

    Fruchter, J.S.; Amonette, J.E.; Cole, C.R.

    1996-11-01

    This report presents results of an In Situ Redox Manipulation (ISRM) Field Injection Withdrawal Test performed at the 100-H Area of the US. Department of Energy's (DOE's) Hanford Site in Washington State in Fiscal Year 1996 by researchers at Pacific Northwest National Laboratory (PNNL). The test is part of the overall ISRM project, the purpose of which is to determine the potential for remediating contaminated groundwater with a technology based on in situ manipulation of subsurface reduction-oxidation (redox) conditions. The ISRM technology would be used to treat subsurface contaminants in groundwater zones at DOE sites

  20. Plutonium-aerosol emission rates and potential inhalation exposure during cleanup and treatment test at Area 11, Nevada Test Site

    International Nuclear Information System (INIS)

    Shinn, J.H.; Homan, D.N.

    1985-01-01

    A Cleanup and Treatment (CAT) test was conducted in 1981 at Area 11, Nevada Test Site. Its purpose was to evaluate the effectiveness of using a large truck-mounted vacuum cleaner similar to those used to clean paved streets for cleaning radiological contamination from the surface of desert soils. We found that four passes with the vehicle removed 97% of the alpha contamination and reduced resuspension by 99.3 to 99.7%. Potential exposure to cleanup workers was slight when compared to natural background exposure. 7 refs., 1 fig., 2 tabs

  1. Clean Slate 1 corrective action decision document, Corrective Action Unit No. 412. Revision 1

    International Nuclear Information System (INIS)

    1997-04-01

    A Corrective Action Investigation has been completed at the Clean Slate 1 (CS-1) Site, located in the central portion of the Tonopah Test Range. The purpose of this CADD is to identify and evaluate potential correct action alternatives at the CS-1 Site and to evaluate these alternatives with respect to their technical, human health, and environmental benefits and to their cost. Base on this evaluation a corrective action will be recommended for implementation at the CS-1 Site

  2. Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-04-01

    This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 443 are specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada and includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the CNTA The CNTA is located north of U.S. Highway 6, approximately 30 miles north of Warm Springs in Nye County, Nevada (Figure 1). Three emplacement boreholes, UC-1, UC-3, and UC-4, were drilled at the CNTA for underground nuclear weapons testing. The initial underground nuclear test, Project Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet (ft) (975 meters) below ground surface on January 19, 1968. The yield of the Project Faultless test was estimated to be 0.2 to 1 megaton (DOE 2004). The test resulted in a down-dropped fault block visible at land surface (Figure 2). No further testing was conducted at the CNTA, and the site was decommissioned as a testing facility in 1973.

  3. Regional groundwater flow and tritium transport modeling and risk assessment of the underground test area, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-10-01

    The groundwater flow system of the Nevada Test Site and surrounding region was evaluated to estimate the highest potential current and near-term risk to the public and the environment from groundwater contamination downgradient of the underground nuclear testing areas. The highest, or greatest, potential risk is estimated by assuming that several unusually rapid transport pathways as well as public and environmental exposures all occur simultaneously. These conservative assumptions may cause risks to be significantly overestimated. However, such a deliberate, conservative approach ensures that public health and environmental risks are not underestimated and allows prioritization of future work to minimize potential risks. Historical underground nuclear testing activities, particularly detonations near or below the water table, have contaminated groundwater near testing locations with radioactive and nonradioactive constituents. Tritium was selected as the contaminant of primary concern for this phase of the project because it is abundant, highly mobile, and represents the most significant contributor to the potential radiation dose to humans for the short term. It was also assumed that the predicted risk to human health and the environment from tritium exposure would reasonably represent the risk from other, less mobile radionuclides within the same time frame. Other contaminants will be investigated at a later date. Existing and newly collected hydrogeologic data were compiled for a large area of southern Nevada and California, encompassing the Nevada Test Site regional groundwater flow system. These data were used to develop numerical groundwater flow and tritium transport models for use in the prediction of tritium concentrations at hypothetical human and ecological receptor locations for a 200-year time frame. A numerical, steady-state regional groundwater flow model was developed to serve as the basis for the prediction of the movement of tritium from the

  4. Final technology report for D-Area oil seepage basin bioventing optimization test, environmental restoration support

    International Nuclear Information System (INIS)

    Radway, J.C.; Lombard, K.H.; Hazen, T.C.

    1997-01-01

    One method proposed for the cleanup of the D-Area Oil Seepage Basin was in situ bioremediation (bioventing), involving the introduction of air and gaseous nutrients to stimulate contaminant degradation by naturally occurring microorganisms. To test the feasibility of this approach, a bioventing system was installed at the site for use in optimization testing by the Environmental Biotechnology Section of the Savannah River Technology Center. During the interim action, two horizontal wells for a bioventing remediation system were installed eight feet below average basin grade. Nine piezometers were also installed. In September of 1996, a generator, regenerative blower, gas cylinder station, and associated piping and nutrient injection equipment were installed at the site and testing was begun. After baseline characterization of microbial activity and contaminant degradation at the site was completed, four injection campaigns were carried out. These consisted of (1) air alone, (2) air plus triethylphosphate (TEP), (3) air plus nitrous oxide, and (4) air plus methane. This report describes results of these tests, together with conclusions and recommendations for further remediation of the site. Natural biodegradation rates are high. Oxygen, carbon dioxide, and methane levels in soil gas indicate substantial levels of baseline microbial activity. Oxygen is used by indigenous microbes for biodegradation of organics via respiration and hence is depleted in the soil gas and water from areas with high contamination. Carbon dioxide is elevated in contaminated areas. High concentrations of methane, which is produced by microbes via fermentation once the oxygen has been depleted, are found at the most contaminated areas of this site. Groundwater measurements also indicated that substantial levels of natural contaminant biodegradation occurred prior to air injection

  5. Facility Closure Report for T-Tunnel (U12T), Area 12, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2008-01-01

    This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD

  6. The reference peak areas of the 1995 IAEA test spectra for gamma-ray spectrum analysis programs are absolute and traceable

    CERN Document Server

    Blaauw, M

    1999-01-01

    A previously validated algorithm for absolute peak area determination was used to verify the reference peak areas supplied with the 1995 IAEA test spectra for gamma-ray spectrometry. These reference peak areas turn out to be absolute and traceable to a precision of 0.9%: The reference peak areas are possibly too low by a factor 0.992+-0.009. It is proposed to employ the test spectra and reference areas to validate the peak areas obtained with any algorithm in gamma-ray spectrometry. (author)

  7. Draft environmental assessment -- Test Area North pool stabilization project update

    International Nuclear Information System (INIS)

    1997-06-01

    The purpose of this Environmental Assessment (EA) is to update the ''Test Area North Pool Stabilization Project'' EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN

  8. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    BECHTEL NEVADA

    2005-01-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls

  9. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA

    2005-12-01

    This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

  10. Hydrogeological testing in the Sellafield area

    International Nuclear Information System (INIS)

    Sutton, J.S.

    1996-01-01

    A summary of the hydrogeological test methodologies employed in the Sellafield geological investigations is provided in order that an objective appraisal of the quality of the data can be formed. A brief presentation of some of these data illustrates the corroborative nature of different test and measurement methodologies and provides a preliminary view of the results obtained. The programme of hydrogeological testing is an evolving one and methodologies are developing as work proceeds and targets become more clearly defined. As the testing is focused on relatively low permeability rocks at depth, the approach to testing differs slightly from conventional hydrogeological well testing and makes extensive use of oilfield technology. (author)

  11. Underground Test Area Activity Communication/Interface Plan, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro, Las Vegas, NV (United States); Rehfeldt, Kenneth [Navarro, Las Vegas, NV (United States)

    2016-10-01

    The purpose of this plan is to provide guidelines for effective communication and interfacing between Underground Test Area (UGTA) Activity participants, including the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and its contractors. This plan specifically establishes the following: • UGTA mission, vision, and core values • Roles and responsibilities for key personnel • Communication with stakeholders • Guidance in key interface areas • Communication matrix

  12. Plant Mounds as Concentration and Stabilization Agents for Actinide Soil Contaminants in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D.S. Shafer; J. Gommes

    2009-02-03

    Plant mounds or blow-sand mounds are accumulations of soil particles and plant debris around the base of shrubs and are common features in deserts in the southwestern United States. An important factor in their formation is that shrubs create surface roughness that causes wind-suspended particles to be deposited and resist further suspension. Shrub mounds occur in some plant communities on the Nevada Test Site, the Nevada Test and Training Range (NTTR), and Tonopah Test Range (TTR), including areas of surface soil contamination from past nuclear testing. In the 1970s as part of early studies to understand properties of actinides in the environment, the Nevada Applied Ecology Group (NAEG) examined the accumulation of isotopes of Pu, 241Am, and U in plant mounds at safety experiment and storage-transportation test sites of nuclear devices. Although aerial concentrations of these contaminants were highest in the intershrub or desert pavement areas, the concentration in mounds were higher than in equal volumes of intershrub or desert pavement soil. The NAEG studies found the ratio of contaminant concentration of actinides in soil to be greater (1.6 to 2.0) in shrub mounds than in the surrounding areas of desert pavement. At Project 57 on the NTTR, 17 percent of the area was covered in mounds while at Clean Slate III on the TTR, 32 percent of the area was covered in mounds. If equivalent volumes of contaminated soil were compared between mounds and desert pavement areas at these sites, then the former might contain as much as 34 and 62 percent of the contaminant inventory, respectively. Not accounting for radionuclides associated with shrub mounds would cause the inventory of contaminants and potential exposure to be underestimated. In addition, preservation of shrub mounds could be important part of long-term stewardship if these sites are closed by fencing and posting with administrative controls.

  13. Closure Report for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Tobiason, D. S.

    2002-01-01

    This Closure Report (CR) has been prepared for the Area 25 Contaminated Waste Dumps (CWD), Corrective Action Unit (CAU) 143 in accordance with the Federal Facility Agreement and Consent Order [FFACO] (FFACO, 1996) and the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 143: Area 25, Contaminated Waste Dumps, Nevada Test Site, Nevada. CAU 143 consists of two Corrective Action Sites (CASs): 25-23-09 CWD No.1, and 25-23-03 CWD No.2. The Area 25 CWDs are historic disposal units within the Area 25 Reactor Maintenance, Assembly, and Disassembly (R-MAD), and Engine Maintenance, Assembly, and Disassembly (E-MAD) compounds located on the Nevada Test Site (NTS). The R-MAD and E-MAD facilities originally supported a portion of the Nuclear Rocket Development Station in Area 25 of the NTS. CWD No.1 CAS 25-23-09 received solid radioactive waste from the R-MAD Compound (East Trestle and West Trench Berms) and 25-23-03 CWD No.2 received solid radioactive waste from the E-MAD Compound (E-MAD Trench)

  14. Test Area North Pool Stabilization Project: Environmental assessment

    International Nuclear Information System (INIS)

    1996-05-01

    The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as open-quotes commercial fuelsclose quotes except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative

  15. Online fault diagnostics and testing of area gamma radiation monitor using wireless network

    Science.gov (United States)

    Reddy, Padi Srinivas; Kumar, R. Amudhu Ramesh; Mathews, M. Geo; Amarendra, G.

    2017-07-01

    Periodical surveillance, checking, testing, and calibration of the installed Area Gamma Radiation Monitors (AGRM) in the nuclear plants are mandatory. The functionality of AGRM counting electronics and Geiger-Muller (GM) tube is to be monitored periodically. The present paper describes the development of online electronic calibration and testing of the GM tube from the control room. Two electronic circuits were developed, one for AGRM electronic test and another for AGRM detector test. A dedicated radiation data acquisition system was developed using an open platform communication server and data acquisition software. The Modbus RTU protocol on ZigBee based wireless communication was used for online monitoring and testing. The AGRM electronic test helps to carry out the three-point electronic calibration and verification of accuracy. The AGRM detector test is used to verify the GM threshold voltage and the plateau slope of the GM tube in-situ. The real-time trend graphs generated during these tests clearly identified the state of health of AGRM electronics and GM tube on go/no-go basis. This method reduces the radiation exposures received by the maintenance crew and facilitates quick testing with minimum downtime of the instrument.

  16. Addendum to the Closure Report for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada (Revision 0)

    International Nuclear Information System (INIS)

    Burmeister, Mark

    2011-01-01

    Corrective Action Unit (CAU) 484 Streamlined Approach for Environmental Restoration (SAFER) activities called for the identification and remediation of surface hot spot depleted uranium (DU) with some excavation to determine the vertical extent of contamination (NNSA/NSO, 2004). During the CAU 484 SAFER investigation (conducted November 2003 through August 2007), approximately 50 locations containing DU were identified on Antelope Lake. All but four locations (CA-1, SA-5-9, SA-12-15, and SA-4) were remediated. Figure 1-1 shows locations of the four use restriction (UR) sites. The four locations were determined to have failed the SAFER conceptual site model assumption of a small volume hot spot. Two of the locations (CA-1 and SA-5-9) were excavated to depths of 3.5 to 7 feet (ft) below ground surface (bgs), and a third location (SA-12-15) with a footprint of 30 by 60 ft was excavated to a depth of 0.5 ft. At the fourth site (SA-4), the discovery of unexploded ordnance (UXO) halted the excavation due to potential safety concerns. Remediation activities on Antelope Lake resulted in the removal of approximately 246 cubic yards (yd3) of DU-impacted soil from the four UR sites; however, Kiwi surveys confirmed that residual DU contamination remained at each of the four sites. (The Kiwi was a Remote Sensing Laboratory [RSL] vehicle equipped with a data-acquisition system and four sodium iodide gamma detectors. Surveys were conducted with the vehicle moving at a rate of approximately 10 miles per hour with the gamma detectors positioned 14 to 28 inches [in.] above the ground surface [NNSA/NSO, 2004]).

  17. Policy-based Network Management in Home Area Networks: Interim Test Results

    OpenAIRE

    Ibrahim Rana, Annie; Ó Foghlú, Mícheál

    2009-01-01

    This paper argues that Home Area Networks (HANs) are a good candidate for advanced network management automation techniques, such as Policy-Based Network Management (PBNM). What is proposed is a simple use of policy based network management to introduce some level of Quality of Service (QoS) and Security management in the HAN, whilst hiding this complexity from the home user. In this paper we have presented the interim test results of our research experiments (based on a scenario) using the H...

  18. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2006-07-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  19. Geology Report: Area 3 Radioactive Waste Management Site DOE/Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2006-01-01

    Surficial geologic studies near the Area 3 Radioactive Waste Management Site (RWMS) were conducted as part of a site characterization program. Studies included evaluation of the potential for future volcanism and Area 3 fault activity that could impact waste disposal operations at the Area 3 RWMS. Future volcanic activity could lead to disruption of the Area 3 RWMS. Local and regional studies of volcanic risk indicate that major changes in regional volcanic activity within the next 1,000 years are not likely. Mapped basalts of Paiute Ridge, Nye Canyon, and nearby Scarp Canyon are Miocene in age. There is a lack of evidence for post-Miocene volcanism in the subsurface of Yucca Flat, and the hazard of basaltic volcanism at the Area 3 RWMS, within the 1,000-year regulatory period, is very low and not a forseeable future event. Studies included a literature review and data analysis to evaluate unclassified published and unpublished information regarding the Area 3 and East Branch Area 3 faults mapped in Area 3 and southern Area 7. Two trenches were excavated along the Area 3 fault to search for evidence of near-surface movement prior to nuclear testing. Allostratigraphic units and fractures were mapped in Trenches ST02 and ST03. The Area 3 fault is a plane of weakness that has undergone strain resulting from stress imposed by natural events and underground nuclear testing. No major vertical displacement on the Area 3 fault since the Early Holocene, and probably since the Middle Pleistocene, can be demonstrated. The lack of major displacement within this time frame and minimal vertical extent of minor fractures suggest that waste disposal operations at the Area 3 RWMS will not be impacted substantially by the Area 3 fault, within the regulatory compliance period. A geomorphic surface map of Yucca Flat utilizes the recent geomorphology and soil characterization work done in adjacent northern Frenchman Flat. The approach taken was to adopt the map unit boundaries (line

  20. Maintenance Plan for the Performance Assessments and Composite Analyses of the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Vefa Yucel

    2007-01-01

    U.S. Department of Energy (DOE) Manual M 435.1-1 requires that performance assessments (PAs) and composite analyses (CAs) for low-level waste (LLW) disposal facilities be maintained by the field offices. This plan describes the activities performed to maintain the PA and the CA for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). This plan supersedes the Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (DOE/NV/11718--491-REV 1, dated September 2002). The plan is based on U.S. Department of Energy (DOE) Order 435.1 (DOE, 1999a), DOE Manual M 435.1-1 (DOE, 1999b), the DOE M 435.1-1 Implementation Guide DOE G 435.1-1 (DOE, 1999c), and the Maintenance Guide for PAs and CAs (DOE, 1999d). The plan includes a current update on PA/CA documentation, a revised schedule, and a section on Quality Assurance

  1. 100-D Area In Situ Redox Treatability Test for Chromate-Contaminated Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Vermeul, Vincent R.; Szecsody, James E.; Fruchter, Jonathan S.

    2000-10-12

    A treatability test was conducted for the In Situ Redox Manipulation (ISRM) technology at the 100 D Area of the U. S. Department of Energy's Hanford Site. The target contaminant was dissolved chromate in groundwater. The ISRM technology creates a permeable subsurface treatment zone to reduce mobile chromate in groundwater to an insoluble form. The ISRM permeable treatment zone is created by reducing ferric iron to ferrous iron within the aquifer sediments, which is accomplished by injecting aqueous sodium dithionite into the aquifer and then withdrawing the reaction products. The goal of the treatability test was to create a linear ISRM barrier by injecting sodium dithionite into five wells. Well installation and site characterization activities began in spring 1997; the first dithionite injection took place in September 1997. The results of this first injection were monitored through the spring of 1998. The remaining four dithionite injections were carried out in May through July of 1998.These five injections created a reduced zone in the Hanford unconfined aquifer approximately 150 feet in length (perpendicular to groundwater flow) and 50 feet wide. The reduced zone extended over the thickness of the unconfined zone. Analysis of post-emplacement groundwater samples showed concentrations of chromate, in the reduced zone decreased from approximately 1.0 mg/L before the tests to below analytical detection limits (<0.007 mg/L). Chromate concentrations also declined in downgradient monitoring wells to as low as 0.020 mg/L. These data, in addition to results from pre-test reducible iron characterization, indicate the barrier should be effective for 20 to 25 years. The 100-D Area ISRM barrier is being expanded to a length of up to 2,300 ft to capture a larger portion of the chromate plume.

  2. Hanford Immobilized LAW Product Acceptance: Tanks Focus Area Testing Data Package II

    International Nuclear Information System (INIS)

    Schulz, Rebecca L.; Lorier, Troy H.; Peeler, David K.; Brown, Kevin G.; Reamer, Irene A.; Vienna, John D.; Jiricka, Antonin; Jorgensen, Benaiah M.; Smith, Donald E.

    2001-01-01

    This report is a continuation of the Hanford Immobilized Low Activity Waste (LAW) Product Acceptance (HLP): Initial Tanks Focus Area Testing Data Package (Vienna (and others) 2000). In addition to new 5000-h product consistency test (PCT), vapor hydration test (VHT), and alteration products data, some previously reported data together with relevant background information are included for an easily accessible source of reference when comparing the response of the various glasses to different test conditions. A matrix of 55 glasses was developed and tested to identify the impact of glass composition on long-term corrosion behavior and to develop an acceptable composition region for Hanford LAW glasses. Of the 55 glasses, 45 were designed to systematically vary the glass composition, and 10 were selected because large and growing databases on their corrosion characteristics had accumulated. The targeted and measured compositions of these glasses are found in the Appendix A. All glasses were fabricated according to standard procedures and heat treated to simulate the slow cooling that will occur in a portion of the waste glass after vitrification in the planned treatment facility at Hanford

  3. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  4. Prediction of 137Cs and 90Sr accumulation in milk of horses and sheep grazing the area adjacent to the 'Experimental Field' technical area of the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Gontarenko, I.A.; Spiridonov, S.I.; Mukusheva, M.K.

    2005-01-01

    The paper describes mathematical models for 137 Cs and 90 Sr behavior in body of horses and sheep grazing the area adjacent to the 'Experimental Field' Technical Area of the Semipalatinsk test site. The models were parametrized on the basis of experimental data for those breeds of animals that are currently encountered within the Semipalatinsk test area. The predictive conclusions using devised models have shown that 137 Cs and 90 Sr concentration in milk of horses and sheep grazing the Experimental field are can exceed the adopted standards during a long period of time. (author)

  5. Testing EGM2008 on Leveling Data from Scandinavia, Adjacent Baltic Areas, and Greenland

    DEFF Research Database (Denmark)

    Strykowski, Gabriel; Forsberg, René

    2010-01-01

    We tested EGM2008 on GPS/leveling data from Scandinavia and adjacent areas. EGM2008 performs at the same level as the best regional geoid model, NKG2004. However, the direct evaluation of EGM2008 is difficult in Greenland because no leveling data are available. Nevertheless, we show on 78 GPS-MSS...

  6. Closure Letter Report for Corrective Action Unit 496: Buried Rocket Site - Antelope Lake (TTR)

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    A Streamlined Approach for Environmental Restoration (SAFER) Plan for investigation and closure of CAU 496, Corrective Action Site (CAS) TA-55-008-TAAL (Buried Rocket), at the Tonopah Test Range (TTR), was approved by the Nevada Department of Environmental Protection (NDEP) on July 21,2004. Approval to transfer CAS TA-55-008-TAAL from CAU 496 to CAU 4000 (No Further Action Sites) was approved by NDEP on December 21, 2005, based on the assumption that the rocket did not present any environmental concern. The approval letter included the following condition: ''NDEP understands, from the NNSA/NSO letter dated November 30,2005, that a search will be conducted for the rocket during the planned characterization of other sites at the Tonopah Test Range and, if found, the rocket will be removed as a housekeeping measure''. NDEP and U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office personnel located the rocket on Mid Lake during a site visit to TTR, and a request to transfer CAS TA-55-008-TAAL from CAU 4000 back to CAU 496 was approved by NDEP on September 11,2006. CAS TA-55-008-TAAL was added to the ''Federal Facility Agreement and Consent Order'' of 1996, based on an interview with a retired TTR worker in 1993. The original interview documented that a rocket was launched from Area 9 to Antelope Lake and was never recovered due to the high frequency of rocket tests being conducted during this timeframe. The interviewee recalled the rocket being an M-55 or N-55 (the M-50 ''Honest John'' rocket was used extensively at TTR from the 1960s to early 1980s). A review of previously conducted interviews with former TTR personnel indicated that the interviewees confused information from several sites. The location of the CAU 496 rocket on Mid Lake is directly south of the TTR rocket launch facility in Area 9 and is consistent with information gathered on the lost rocket during recent interviews. Most pertinently, an interview in 2005 with a

  7. Mortality in Zarinsk area of Altai Krai as a territory exposed to radiation as a result of nuclear tests at the Semipalatinsk test site

    OpenAIRE

    Kolyado I.; Plugin S.

    2017-01-01

    In Altai krai, there exists a regional segment of the National Radiation Epidemiological Register. The most numerous contingent are victims of nuclear tests at the Semipalatinsk testing site. The new method of calculation of cumulative total effective whole-body radiation dose in patients exposed to radiation as a result of nuclear testing at the Semipalatinsk test site allowed expanding this contingent, to a large extent - due to the inhabitants of Zarinsk area of Altai Krai. The given artic...

  8. Some statistical design and analysis aspects for NAEG studies

    International Nuclear Information System (INIS)

    Gilbert, R.O.; Eberhardt, L.L.

    1975-01-01

    Some of the design and analysis aspects of the NAEG studies at safety-shot sites are reviewed in conjunction with discussions of possible new approaches. The use of double sampling to estimate inventories is suggested as a means of obtaining data for estimating the geographical distribution of plutonium using computer contouring programs. The lack of estimates of error for plutonium contours is noted and a regression approach discussed for obtaining such estimates. The kinds of new data that are now available for analysis from A site of Area 11 and the four Tonopah Test Range (TTR) sites are outlined, and the need for a closer look at methods for analyzing ratio-type data is pointed out. The necessity for thorough planning of environmental sampling programs is emphasized in order to obtain the maximum amount of information for fixed cost. Some general planning aspects of new studies at nuclear sites and experimental clean-up plots are discussed, as is the planning of interlaboratory comparisons. (U.S.)

  9. Pilot-scale reverse osmosis testing for the F and H Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    Pilot-scale reverse osmosis (RO) tests were completed with a 10 gpm unit to demonstrate the performance of RO in the F and H Area Effluent Treatment Facility (F/H ETF). RO will be used in the WMETF to remove soluble salts and soluble radioactivity. The advantage of using RO (over ion exchange) is that it is nondescriminanting and removes virtually all dissolved solids species, regardless of ionic charge. RO also generates less than half the waste volume produced by ion exchange. Test results using a 200-Area nonradioactive effluent simulant demonstrated salt rejections of 98% and water recoveries of 94% by using recycle on a single stage pilot unit. For a full-scale, multi-staged unit overall salt rejections will be 95% (DF = 20) while obtaining a 94% water recovery (94% discharge, 6% concentrated waste stream). Identical performance is expected on actual radioactive streams, based on shielded cells testing performed by Motyka and Stimson. Similarly, if the WMETF RO system is configured in the same manner as the SRL ECWPF, a DF of 20 and a water recvery of 94% should be obtained

  10. Stack and area tritium monitoring systems for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Pearson, G.G.; Meixler, L.D.; Sirsingh, R.A.P.

    1992-01-01

    This paper reports on the TFTR Tritium Stack and Area Monitoring Systems which have been developed to provide the required level of reliability in a cost effective manner consistent with the mission of the Tritium Handling System on TFTR. Personnel protection, environmental responsibility, and tritium containing system integrity have been the considerations in system design. During the Deuterium-Tritium (D-T) experiments on TFTR, tritium will be used for the first time as one of the fuels. Area monitors provide surveillance of the air in various rooms at TFTR. Stack monitors monitor the air at the TFTR test site that is exhausted through the HVAC systems, from the room exhaust stacks and the tritium systems process vents. The philosophies for the implementation of the Stack and Area Tritium Monitoring Systems at TFTR are to use hardwired controls wherever personnel protection is involved, and to take advantage of modern intelligent controllers to provide a distributed system to support the functions of tracking, displaying, and archiving concentration levels of tritium for all of the monitored areas and stacks

  11. Laboratory and test beam results from a large-area silicon drift detector

    CERN Document Server

    Bonvicini, V; Giubellino, P; Gregorio, A; Idzik, M; Kolojvari, A A; Montaño-Zetina, L M; Nouais, D; Petta, C; Rashevsky, A; Randazzo, N; Reito, S; Tosello, F; Vacchi, A; Vinogradov, L I; Zampa, N

    2000-01-01

    A very large-area (6.75*8 cm/sup 2/) silicon drift detector with integrated high-voltage divider has been designed, produced and fully characterised in the laboratory by means of ad hoc designed MOS injection electrodes. The detector is of the "butterfly" type, the sensitive area being subdivided into two regions with a maximum drift length of 3.3 cm. The device was also tested in a pion beam (at the CERN PS) tagged by means of a microstrip detector telescope. Bipolar VLSI front-end cells featuring a noise of 250 e/sup -/ RMS at 0 pF with a slope of 40 e/sup -//pF have been used to read out the signals. The detector showed an excellent stability and featured the expected characteristics. Some preliminary results will be presented. (12 refs).

  12. Transuranic elements in terrestrial animals and the environment: an introduction

    International Nuclear Information System (INIS)

    Potter, G.D.

    1977-01-01

    This discussion provides background information to the session on the ''Transuranic Elements in Terrestrial Animals.'' Briefly outlined are some of the historical events leading to the introduction and dispersion of the transuranic elements into the biosphere, to the establishment of the Nevada Applied Ecology Group (NAEG), and to the studies conducted by the Environmental Monitoring and Support Laboratory (EMSL-LV) and the University of Nevada-Las Vegas involving the transuranics distributed by the ''safety shots'' and the nuclear weapons testing program at the Nevada Test Site and the Tonopah Test Range. These studies are described in relation to the overall objectives of the NAEG program. Other potential sources of the transuranic radionuclides are also discussed

  13. Remediating the past and preparing for the future at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Sanders, T.L.

    1996-01-01

    Sandia National Laboratories is one of the nation's largest multiprogram research, development, test, and evaluation (RDT ampersand E) facilities, with headquarters in Albuquerque, New Mexico, a laboratory in Livermore, California, and a test range near Tonopah, Nevada. Smaller testing facilities are also operated at other locations. Established in 1945, Sandia is currently operated for the U.S. Department of Energy by Lockheed-Martin's energy and environment sector. Sandia's responsibility is research and development for national security programs in defense, energy, and environment, with primary emphasis on nuclear weapons research and development. This article describes Sandia's program of remedial action which aims to use technology to reduce costs of decommissioning and decontamination, positioning itself for future opportunities

  14. Energy Systems Test Area (ESTA) Electrical Power Systems Test Operations: User Test Planning Guide

    Science.gov (United States)

    Salinas, Michael J.

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ESTA Electrical Power Systems Test Laboratory. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  15. Design of Fire/Gas Penetration Seals and fire exposure tests for Tokamak Fusion Test Reactor experimental areas

    International Nuclear Information System (INIS)

    Cavalluzzo, S.

    1983-01-01

    A Fire/Gas Penetration Seal is required in every penetration through the walls and ceilings into the Test Cell housing the Tokamak Fusion Test Reactor (TFTR), as well as other adjacent areas to protect the TFTR from fire damage. The penetrations are used for field coil lead stems, diagnostics systems, utilities, cables, trays, mechanical devices, electrical conduits, vacuum liner, air conditioning ducts, water pipes, and gas pipes. The function of the Fire/Gas Penetration Seals is to prevent the passage of fire and products of combustion through penetrations for a period of time up to three hours and remain structurally intact during fire exposure. The Penetration Seal must withstand, without rupture, a fire hose water stream directed at the hot surface. There are over 3000 penetrations ranging in size from several square inches to 100 square feet, and classified into 90 different types. The material used to construct the Fire/Gas Penetration Seals consist of a single and a two-component room temperature vulcanizing (RTV) silicone rubber compound. Miscellaneous materials such as alumina silica refractory fibers in board, blanket and fiber forms are also used in the construction and assembly of the Seals. This paper describes some of the penetration seals and the test procedures used to perform the three-hour fire exposure tests to demonstrate the adequacy of the seals

  16. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    International Nuclear Information System (INIS)

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms

  17. Closure report for housekeeping category, Corrective Action Unit 349, Area 12, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Closure Report summarizes the corrective actions which were completed at the Corrective Action Sites within Corrective Action Unit 349 Area 12 at the Nevada Test Site. Current site descriptions, observations and identification of wastes removed are included on FFACO Corrective Action Site housekeeping closure verification forms.

  18. Addendum to: Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for Corrective Action Unit (CAU) 443: Central Nevada Test Area (CNTA)-Subsurface Central Nevada Test Area, DOE/NV-977

    International Nuclear Information System (INIS)

    2008-01-01

    The environmental remediation closure process for the nuclear test at the Central Nevada Test Area (CNTA) has progressed from the approved Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) to this addendum. The closure process required the installation of three monitoring/validation (MV) wells and validation analysis of the flow and transport model. The model validation analysis led to the conclusion that the hydraulic heads simulated by the flow model did not adequately predict observed heads at the MV-1, MV-2, and MV-3 validation points (wells and piezometers). The observed heads from screened intervals near the test horizon were higher than the model predicted and are believed to be the result of detonation-related effects that have persisted since the nuclear test. These effects, which include elevated heads out from the detonation zone and lower heads in the immediate vicinity of the detonation, are seen at other nuclear tests and typically dissipate within a few years. These effects were not included in the initial head distribution of the model. The head variations at CNTA are believed to have persisted due to the very low permeability of the material at the detonation level.

  19. 33 CFR 334.720 - Gulf of Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Gulf of Mexico, south from..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.720 Gulf of Mexico, south from Choctawhatchee Bay; guided missiles test operations area, Headquarters Air Proving...

  20. Diagnostic work up for language testing in patients undergoing awake craniotomy for brain lesions in language areas.

    Science.gov (United States)

    Bilotta, Federico; Stazi, Elisabetta; Titi, Luca; Lalli, Diana; Delfini, Roberto; Santoro, Antonio; Rosa, Giovanni

    2014-06-01

    Awake craniotomy is the technique of choice in patients with brain tumours adjacent to primary and accessory language areas (Broca's and Wernicke's areas). Language testing should be aimed to detect preoperative deficits, to promptly identify the occurrence of new intraoperative impairments and to establish the course of postoperative language status. Aim of this case series is to describe our experience with a dedicated language testing work up to evaluate patients with or at risk for language disturbances undergoing awake craniotomy for brain tumour resection. Pre- and intra operative testing was accomplished with 8 tests. Intraoperative evaluation was accomplished when patients were fully cooperative (Ramsey awake craniotomy for brain tumour resection with preoperative language disturbances or at risk for postoperative language deficits. This approach allows a systematic evaluation and recording of language function status and can be accomplished even when a neuropsychologist or speech therapist are not involved in the operation crew.

  1. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  2. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 2

    International Nuclear Information System (INIS)

    1997-11-01

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This report contains Appendix B which provides all of the laboratory summary data sheets for the Area 6 SCEPs closure activities

  3. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This report contains Appendix B which provides all of the laboratory summary data sheets for the Area 6 SCEPs closure activities.

  4. Offsite environmental monitoring report; radiation monitoring around United States nuclear test areas, Calendar Year 1996

    International Nuclear Information System (INIS)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Huff, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1997-08-01

    This report describes the Offsite Radiation Safety Program. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs). No nuclear weapons testing was conducted in 1996 due to the continuing nuclear test moratorium. During this period, R and IE personnel maintained readiness capability to provide direct monitoring support if testing were to be resumed and ascertained compliance with applicable EPA, DOE, state, and federal regulations and guidelines. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no airborne radioactivity from diffusion or resuspension detected by the various EPA monitoring networks surrounding the NTS. There was no indication of potential migration of radioactivity to the offsite area through groundwater and no radiation exposure above natural background was received by the offsite population. All evaluated data were consistent with previous data history

  5. Specific diversity and morphological indices of muriform rodents in some areas of Semipalatinsk test range zone

    International Nuclear Information System (INIS)

    Magda, I.N.; Chernykh, A.B.; Morozov, A.E.; Bushneva, I.A.; Ponyavkina, A.G.

    2002-01-01

    There were presented the results of the preliminary estimation of comparative specific diversity and morphological indices of muriform rodents inhabiting separate areas of the Semipalatinsk test site. (author)

  6. Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, W.B.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giannitrapani, R.; Giglietto, N.; /UC, Santa Cruz /INFN, Pisa /Pisa U. /INFN, Trieste /INFN,

    2007-04-16

    The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.

  7. Solubility testing of actinides on breathing-zone and area air samples

    International Nuclear Information System (INIS)

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS reg-sign) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U 3 O 8 . Profiles developed for U 3 O 8 samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills

  8. Visual effects of test drilling for natural gas in the Waddenzee and the North Sea coastal area

    International Nuclear Information System (INIS)

    Dijkstra, H.

    1996-01-01

    The potential hindrance of the view, caused by offshore platforms, has been investigated as part of the environmental impact reports for test drilling for natural gas in the North Sea area, on the island Ameland and in the Wadden Sea. The hindrance is determined by calculating the weighed numbers of inhabitants and vacationers within 10 km of 26 drilling sites, divided over 12 drilling areas. For each drilling area the preferred location was determined. The hindrance of the view is the lowest when drilling tests are carried out in the winter. Also digital photo paste-ups were made by which it can be shown how drilling installations look like in a landscape. Finally, measures are given by which the visual effects of drilling installations and burn off can be reduced. 34 figs., 33 tabs., 2 appendices, 35 refs

  9. 2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J, Shott, Vefa Yucel

    2007-03-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R&D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for determination of the adequacy of the CAs.

  10. 2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Gregory J; Shott, Vefa Yucel

    2007-01-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R and D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed for determination of the adequacy of the CAs

  11. Monitoring of high temperature area by resistivity tomography during in-situ heating test in sedimentary soft rocks

    International Nuclear Information System (INIS)

    Kubota, Kenji; Suzuki, Koichi; Ikenoya, Takafumi; Takakura, Nozomu; Tani, Kazuo

    2009-01-01

    One of the major issues in disposal of nuclear waste is that the long term behaviors of sedimentary soft rocks can be affected by various environmental factors such as temperature, mechanical conditions or hydraulic conditions. Therefore, it is necessary to develop a method for evaluating the long term stability of caverns in sedimentary soft rocks as subjected to changes of environment. We have conducted in-situ heating test to evaluate the influence of high temperature to the surrounding rock mass at a depth of 50 m. The well with a diameter of 30 cm and 60 cm of height, was drilled and filled with groundwater. The heater was installed in the well for heating the surrounding rock mass. During the heating, temperature and deformation around the well were measured. To evaluate the influence of heating on sedimentary soft rocks, it is important to monitor the extent of heated area. Resistivity monitoring is thought to be effective to map the extent of the high temperature area. So we have conducted resistivity tomography during the heating test. The results demonstrated that the resistivity of the rock mass around the heating well decreased and this area was gradually expanded from the heated area during the heating. The decreasing rate of resistivity on temperature is correlated to that of laboratory experimental result and existing empirical formula between aqueous solution resistivity and temperature. Resistivity is changed by many other factors, but it is expected that resistivity change by other factors is very few in this test. This suggests that high temperature area is detected and spatial distribution of temperature can be mapped by resistivity tomography. So resistivity tomography is expected to be one of the promising methods to monitor the area heated by nuclear waste. (author)

  12. The process and risk of the CPR1000 cold function test in the cold area

    International Nuclear Information System (INIS)

    Liu Tinghao; Zhang Jian; Ji Dapeng; Shi Quanjian; Tian Kuo

    2014-01-01

    Hong yanhe nuclear power station is the first CPR1000 reactor which is under construction in the cold area of north China. It is also the first time to carry out the cold functional test (CFT) in the winter of north China. The preparation and process of CFT are described in the paper. According to the experience feedback of CFT of Unit 1, the risk and solution which are significance for the CFT of the other NPS in the cold area are analysed. (authors)

  13. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada Appendix D - Corrective Action Investigation Report, Central Nevada Test Area, CAU 417

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  14. Laser heat stimulation of tiny skin areas adds valuable information to quantitative sensory testing in postherpetic neuralgia.

    Science.gov (United States)

    Franz, Marcel; Spohn, Dorothee; Ritter, Alexander; Rolke, Roman; Miltner, Wolfgang H R; Weiss, Thomas

    2012-08-01

    Patients suffering from postherpetic neuralgia often complain about hypo- or hypersensation in the affected dermatome. The loss of thermal sensitivity has been demonstrated by quantitative sensory testing as being associated with small-fiber (Aδ- and C-fiber) deafferentation. We aimed to compare laser stimulation (radiant heat) to thermode stimulation (contact heat) with regard to their sensitivity and specificity to detect thermal sensory deficits related to small-fiber dysfunction in postherpetic neuralgia. We contrasted detection rate of laser stimuli with 5 thermal parameters (thresholds of cold/warm detection, cold/heat pain, and sensory limen) of quantitative sensory testing. Sixteen patients diagnosed with unilateral postherpetic neuralgia and 16 age- and gender-matched healthy control subjects were tested. Quantitative sensory testing and laser stimulation of tiny skin areas were performed in the neuralgia-affected skin and in the contralateral homologue of the neuralgia-free body side. Across the 5 thermal parameters of thermode stimulation, only one parameter (warm detection threshold) revealed sensory abnormalities (thermal hypoesthesia to warm stimuli) in the neuralgia-affected skin area of patients but not in the contralateral area, as compared to the control group. In contrast, patients perceived significantly less laser stimuli both in the affected skin and in the contralateral skin compared to controls. Overall, laser stimulation proved more sensitive and specific in detecting thermal sensory abnormalities in the neuralgia-affected skin, as well as in the control skin, than any single thermal parameter of thermode stimulation. Thus, laser stimulation of tiny skin areas might be a useful diagnostic tool for small-fiber dysfunction. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  15. Characterization Report Operational Closure Covers for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada Geotechnical Sciences

    2005-01-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Area 3 RWMS is located in south-central Yucca Flat and the Area 5 RWMS is located about 15 miles south, in north-central Frenchman Flat. Though located in two separate topographically closed basins, they are similar in climate and hydrogeologic setting. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste, while the Area 3 RWMS uses subsidence craters formed from underground testing of nuclear weapons for the disposal of packaged and unpackaged bulk waste. Over the next several decades, most waste disposal units at both the Area 3 and Area 5 RWMSs are anticipated to be closed. Closure of the Area 3 and Area 5 RWMSs will proceed through three phases: operational closure, final closure, and institutional control. Many waste disposal units at the Area 5RWMS are operationally closed and final closure has been placed on one unit at the Area 3 RWMS (U-3ax/bl). Because of the similarities between the two sites (e.g., type of wastes, environmental factors, operational closure cover designs, etc.), many characterization studies and data collected at the Area 3 RWMS are relevant and applicable to the Area 5 RWMS. For this reason, data and closure strategies from the Area 3 RWMS are referred to as applicable. This document is an interim Characterization Report - Operational Closure Covers, for the Area 5 RWMS. The report briefly describes the Area 5 RWMS and the physical environment where it is located, identifies the regulatory requirements, reviews the approach and schedule for closing, summarizes the monitoring programs, summarizes characterization studies and results, and then presents conclusions and recommendations

  16. Syphilis screening among 27,150 pregnant women in South Chinese rural areas using point-of-care tests.

    Directory of Open Access Journals (Sweden)

    Li-Gang Yang

    Full Text Available To determine the prevalence and correlates of syphilis among pregnant women in rural areas of South China.Point-of-care syphilis testing was provided at 71 health facilities in less developed, rural areas of Guangdong Province. Positive samples were confirmed at a local referral center by toluidine red unheated serum tests (TRUST and Treponema pallidum particle agglutination (TPPA tests.Altogether 27,150 pregnant women in rural Guangdong were screened for syphilis. 106 (0.39% syphilis cases were diagnosed, of which 78 (73.6% received treatment for syphilis. Multivariate analysis revealed that older pregnant women (31-35 years old, aOR 2.7, 95% CI 0.99-7.32; older than 35 years old, aOR 5.9, 95% CI 2.13-16.34 and those with a history of adverse pregnant outcomes (aOR 3.64, 95% CI 2.30-5.76 were more likely to be infected with syphilis.A high prevalence of syphilis exists among pregnant women living in rural areas of South China. Enhanced integration of syphilis screening with other routine women's health services (OB GYN, family planning may be useful for controlling China's syphilis epidemic.

  17. Corrective Action Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Restoration

    2007-01-01

    Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 151 consists of eight Corrective Action Sites (CASs) located in Areas 2, 12, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada

  18. Evaporation Basin Test Reactor Area, Idaho National Engineering Laboratory: Environmental assessment

    International Nuclear Information System (INIS)

    1991-12-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0501, on the construction and operation of the proposed Evaporation Basin at the Test Reactor Area (TRA) at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact

  19. Off-site environmental monitoring report: Radiation monitoring around United States Nuclear Test areas, Calendar year 1986

    International Nuclear Information System (INIS)

    Patzer, R.G.; Fontana, C.A.; Grossman, R.F.; Black, S.C.; Dye, R.E.; Smith, D.D.; Thome', D.J.; Mullen, A.A.

    1987-05-01

    The principal activity at the NTS is testing of nuclear devices, though other related projects are also conducted. The principal activities of the Off-Site Radiological Safety Program are routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests; and protective actions in support of the nuclear testing program. These are conducted to document compliance with standards, to identify trends, and to provide information to the public. 28 refs., 37 figs., 30 tabs

  20. High incidence of micronuclei in lymphocytes from residents of the area near the Semipalatinsk nuclear explosion test site

    International Nuclear Information System (INIS)

    Tanaka, Kimio; Hoshi, Masaharu; Kamada, Nanao; Tchaijunusova, N.J.; Takatsuji, Toshihiro; Gusev, B.I.; Sakerbaev, A.K.H.

    2000-01-01

    The Semipalatinsk area is highly contaminated with radioactive fallout from 40 years of continuous nuclear testing. The biological effects on human health in this area have not been studied. Significant remaining radioactivities include long-lived radioisotopes of 238, 239, 400 Pu, 137 Cs and 90 Sr. To evaluate the long-term biological effects of the radioactive fallout, the incidence of micronuclei in lymphocytes from residents of the area was observed. Blood was obtained from 10 residents (5 females and 5 males, aged 47 to 55 years old) from each of the 3 areas of Znamenka, Dolon and Semipalatinsk, which are about 50-150 km from the nuclear explosion test site. For micronucleus assay. PHA-stimulated lymphocytes were cultured for 72 h and cytochalasin B was added at 44 h for detecting binuclear lymphocytes. Five thousand binuclear lymphocytes in each resident were scored. The means of micronucleus counts in 1,000 lymphocytes in residents of Semipalatinsk, Dolon and Znamenka were 16.3, 12.6, and 7.80, respectively, which were higher than those of the normal Japanese persons (4.66). These values were equivalent to the results obtained from 0.187-0.47 Gy of chronic exposure to γ-rays at a dose rate of 0.02 cGy/min. The high incidence of micronuclei in residents of the Semipalatinsk nuclear test site area was mainly caused by internal exposure rather than external exposure received for the past 40 years. (author)

  1. 2004 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Vefa Yucel

    2005-01-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (Bechtel Nevada, 2000) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, and reports the results in an annual summary report to the U.S. Department of Energy Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (U.S. Department of Energy [DOE]). The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2004 by evaluating operational factors and research results that impact the continuing validity of the PA and CA results. This annual summary report presents data and conclusions from the FY 2004 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, closure plans, as well as monitoring results and research and development (R and D) activities were reviewed in FY 2004 for the determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed for the determination of the adequacy of the CAs

  2. Design Study and Optimization of Irradiation Facilities for Detector and Accelerator Equipment Testing in the SPS North Area at CERN

    CERN Document Server

    AUTHOR|(CDS)2079748; Stekl, Ivan

    Due to increasing performance of LHC during the last years, the strong need of new detector and electronic equipment test areas at CERN appeared from user communities. This thesis reports on two test facilities: GIF++ and H4IRRAD. GIF++, an upgrade of GIF facility, is a combined high-intensity gamma and particle beam irradiation facility for testing detectors for LHC. It combines a high-rate 137Cs source, providing photons with energy of 662 keV, together with the high-energy secondary particle beam from SPS. H4IRRAD is a new mixed-field irradiation area, designed for testing LHC electronic equipment for radiation damage effects. In particular, large volume assemblies such as full electronic racks of high current power converters can be tested. The area uses alternatively an attenuated primary 400 GeV/c proton beam from SPS, or a secondary, mainly proton, beam of 280 GeV/c directed towards a copper target. Different shielding layers are used to reproduce a radiation field similar to the LHC “tunnel” and �...

  3. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    International Nuclear Information System (INIS)

    Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.

    2014-01-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures

  4. The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it [INFN Sezione di Ferrara and University of Ferrara (Italy); Baltzell, N. [Argonne National Laboratory, IL (United States); Benmokhtar, F. [Christopher Newport University, VA (United States); Duquesne University, PA (United States); Barion, L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Cisbani, E. [INFN Sezione di Roma – Gruppo Collega to Sanità (Italy); Italian National Institute of Health (Italy); El Alaoui, A. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Argonne National Laboratory, IL (United States); Hafidi, K. [Argonne National Laboratory, IL (United States); Hoek, M. [Glasgow University (United Kingdom); J. Gutenberg Universität, Mainz (Germany); Kubarovsky, V. [Thomas Jefferson National Laboratory, VA (United States); Lagamba, L. [INFN Sezione di Bari, University of Bari (Italy); Lucherini, V. [INFN Laboratori Nazionali di Frascati (Italy); Malaguti, R. [INFN Sezione di Ferrara and University of Ferrara (Italy); Mirazita, M. [INFN Laboratori Nazionali di Frascati (Italy); Montgomery, R. [Glasgow University (United Kingdom); INFN Laboratori Nazionali di Frascati (Italy); Movsisyan, A. [INFN Sezione di Ferrara and University of Ferrara (Italy); Musico, P. [INFN Sezione di Genova (Italy); Orecchini, D.; Orlandi, A. [INFN Laboratori Nazionali di Frascati (Italy); Pappalardo, L.L. [INFN Sezione di Ferrara and University of Ferrara (Italy); Pereira, S. [INFN Laboratori Nazionali di Frascati (Italy); and others

    2014-12-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here. - Highlights: • A novel hybrid-optics configuration was proven to work with a large RICH prototype. • Innovative RICH components were studied both in laboratory tests and test-beams. • Aerogel of large Rayleigh scattering length at n=1.05 was characterized. • Novel vs commercially available multi-anode photomultipliers were compared. • The response of SiPM matrices to Cherenkov light was tested at various temperatures.

  5. Transferability of Data Related to the Underground Test Area Project, Nevada Test Site, Nye County, Nevada: Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Stoller-Navarro Joint Venture

    2004-06-24

    This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area (UGTA) Technical Working Group (TWG). The UGTA Project relies on data from a variety of sources; therefore, a process is needed to identify relevant factors for determining whether material-property data collected from other areas can be used to support groundwater flow, radionuclide transport, and other models within a Corrective Action Unit (CAU), and for documenting the data transfer decision and process. This document describes the overall data transfer process. Separate Parameter Descriptions will be prepared that provide information for selected specific parameters as determined by the U.S. Department of Energy (DOE) UGTA Project Manager. This document and its accompanying appendices do not provide the specific criteria to be used for transfer of data for specific uses. Rather, the criteria will be established by separate parameter-specific and model-specific Data Transfer Protocols. The CAU Data Documentation Packages and data analysis reports will apply the protocols and provide or reference a document with the data transfer evaluations and decisions.

  6. Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    1999-08-20

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e

  7. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    International Nuclear Information System (INIS)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program

  8. Corrective Action Decision Document (CADD), Area 12 fleet operations steam cleaning discharge area, Nevada Test Site Corrective Action Unit 339

    International Nuclear Information System (INIS)

    Bonn, J.F.

    1996-12-01

    This Corrective Action Decision Document (CADD) incorporates the methodology used for evaluating the remedial alternatives completed for a former steam cleaning discharge area at the Nevada Test Site (NTS). The former steam cleaning site is located in Area 12, east of the Fleet Operations Building 12-16. The discharge area has been impacted by Resource Conservation and Recovery Act (RCRA) F Listed volatile organic compounds (VOCs) and petroleum hydrocarbons waste. Based upon these findings, resulting from Phase 1 and Phase 2 site investigations, corrective action is required at the site. To determine the appropriate corrective action to be proposed, an evaluation of remedial alternatives was completed. The evaluation was completed using a Corrective Measures Study (CMS). Based on the results of the CMS, the favored closure alternative for the site is plugging the effluent discharge line, removing the sandbagged barrier, completing excavation of VOC impacted soils, and fencing the soil area impacted by total petroleum hydrocarbons (TPH), east of the discharge line and west of the soil berm. Management of the F Listed VOCs are dictated by RCRA. Due to the small volume of impacted soil, excavation and transportation to a Treatment Storage and Disposal Facility (TSDF) is the most practical method of management. It is anticipated that the TPH (as oil) impacted soils will remain in place based upon; the A through K Analysis, concentrations detected (maximum 8,600 milligrams per kilogram), expected natural degradation of the hydrocarbons over time, and the findings of the Phase 2 Investigation that vertical migration has been minimal

  9. Corrective Action Decision Document (CADD), Area 12 fleet operations steam cleaning discharge area, Nevada Test Site Corrective Action Unit 339

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, J.F.

    1996-12-01

    This Corrective Action Decision Document (CADD) incorporates the methodology used for evaluating the remedial alternatives completed for a former steam cleaning discharge area at the Nevada Test Site (NTS). The former steam cleaning site is located in Area 12, east of the Fleet Operations Building 12-16. The discharge area has been impacted by Resource Conservation and Recovery Act (RCRA) F Listed volatile organic compounds (VOCs) and petroleum hydrocarbons waste. Based upon these findings, resulting from Phase 1 and Phase 2 site investigations, corrective action is required at the site. To determine the appropriate corrective action to be proposed, an evaluation of remedial alternatives was completed. The evaluation was completed using a Corrective Measures Study (CMS). Based on the results of the CMS, the favored closure alternative for the site is plugging the effluent discharge line, removing the sandbagged barrier, completing excavation of VOC impacted soils, and fencing the soil area impacted by total petroleum hydrocarbons (TPH), east of the discharge line and west of the soil berm. Management of the F Listed VOCs are dictated by RCRA. Due to the small volume of impacted soil, excavation and transportation to a Treatment Storage and Disposal Facility (TSDF) is the most practical method of management. It is anticipated that the TPH (as oil) impacted soils will remain in place based upon; the A through K Analysis, concentrations detected (maximum 8,600 milligrams per kilogram), expected natural degradation of the hydrocarbons over time, and the findings of the Phase 2 Investigation that vertical migration has been minimal.

  10. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests.

    Science.gov (United States)

    Nakagawa, Hiroaki; Nagatani, Yukihiro; Takahashi, Masashi; Ogawa, Emiko; Tho, Nguyen Van; Ryujin, Yasushi; Nagao, Taishi; Nakano, Yasutaka

    2016-01-01

    The 2011 official statement of idiopathic pulmonary fibrosis (IPF) mentions that the extent of honeycombing and the worsening of fibrosis on high-resolution computed tomography (HRCT) in IPF are associated with the increased risk of mortality. However, there are few reports about the quantitative computed tomography (CT) analysis of honeycombing area. In this study, we first proposed a computer-aided method for quantitative CT analysis of honeycombing area in patients with IPF. We then evaluated the correlations between honeycombing area measured by the proposed method with that estimated by radiologists or with parameters of PFTs. Chest HRCTs and pulmonary function tests (PFTs) of 36 IPF patients, who were diagnosed using HRCT alone, were retrospectively evaluated. Two thoracic radiologists independently estimated the honeycombing area as Identified Area (IA) and the percentage of honeycombing area to total lung area as Percent Area (PA) on 3 axial CT slices for each patient. We also developed a computer-aided method to measure the honeycombing area on CT images of those patients. The total honeycombing area as CT honeycombing area (HA) and the percentage of honeycombing area to total lung area as CT %honeycombing area (%HA) were derived from the computer-aided method for each patient. HA derived from three CT slices was significantly correlated with IA (ρ=0.65 for Radiologist 1 and ρ=0.68 for Radiologist 2). %HA derived from three CT slices was also significantly correlated with PA (ρ=0.68 for Radiologist 1 and ρ=0.70 for Radiologist 2). HA and %HA derived from all CT slices were significantly correlated with FVC (%pred.), DLCO (%pred.), and the composite physiologic index (CPI) (HA: ρ=-0.43, ρ=-0.56, ρ=0.63 and %HA: ρ=-0.60, ρ=-0.49, ρ=0.69, respectively). The honeycombing area measured by the proposed computer-aided method was correlated with that estimated by expert radiologists and with parameters of PFTs. This quantitative CT analysis of

  11. Toxicity test of the F-Area seep soils by laboratory lettuce seed germination and seedling growth

    International Nuclear Information System (INIS)

    Eaton, D.; Murphy, C.E.

    1993-09-01

    This study is a follow-up of a similar study done by Loehle (1990). The objectives of the original study were to: (1) measure the toxicity of groundwater contaminated by the F-Area seepage basins where this water surfaces in a seepline along Fourmile Branch and (2) to evaluate the effectiveness of rainwater for washing contaminants from the soil. Results of seed germination tests show no significant difference between water extracted from one extraction of F-Area seepline soil, soil from a control area, the sixth consecutive extraction from F-Area soil, and a deionized water control. A root-growth assay on the same seeds shows a significant effect with the order of growth, first extraction of F-Area soil< control site< deionized waterArea extraction. When compared to the results of the 1990 study, this suggests that there may be some improvement in the soil at the F-Area seepline, but there is still some evidence of phytotoxicity in this soil. As shown previously, the cause of the toxicity is removed by soil washing, suggesting that continued improvement should be expected

  12. Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Bayliss, S.C.; Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-04-01

    This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project's Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration

  13. Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)

    International Nuclear Information System (INIS)

    IT Corporation, Las Vegas

    2002-01-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations

  14. Final environmental impact statement for the Nevada test site and off-site locations in the State of Nevada. Public comment and response document, Volume 3, Part A comments

    International Nuclear Information System (INIS)

    1996-08-01

    On February 2, 1996, the U.S. Department of Energy (DOE) issued the Draft Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada (NTS EIS) for review by the state of Nevada, Indian tribes, local governments, other federal agencies, groups and organizations, and the general public. The formal comment period lasted 90 days, ending May 3, 1996. As part of the comment process, the DOE held public hearings in St. George, Utah, and in Pahrump, Reno, and Las Vegas, Nevada. Community Workshops were held in Caliente, Tonopah, Boulder City, and North Las Vegas, Nevada, in conjunction with the University of Nevada Las Vegas to discuss the Draft NTS EIS. Volume 3 of the Final NTS EIS contains 3 chapters. Chapter 1 summarizes the major issues raised by the public. Chapter 2 contains the full text of the public comments on the Draft NTS EIS received by the DOE; it includes public hearing transcripts, written comments, and comments received via a toll-free comment open-quotes hot line.close quotes Chapter 3 contains the DOE's responses to the public comments and describes how the comments were considered in the Final NTS EIS

  15. Radiological survey and evaluation of the fallout area from the Trinity test: Chupadera Mesa and White Sands Missile Range, New Mexico

    International Nuclear Information System (INIS)

    Hansen, W.R.; Rodgers, J.C.

    1985-06-01

    Current radiological conditions were evaluated for the site of the first nuclear weapons test, the Trinity test, and the associated fallout zone. The test, located on White Sands Missile Range, was conducted as part of the research with nuclear materials for the World War II Manhattan Engineer District atomic bomb project. Some residual radioactivity attributable to the test was found in the soils of Ground Zero on White Sands Missile Range and the areas that received fallout from the test. The study considered relevant information including historical records, environmental data extending back to the 1940s, and new data acquired by field sampling and measurements. Potential exposures to radiation were evaluated for current land uses. Maximum estimated doses on Chupadera Mesa and other uncontrolled areas are less than 3% of the DOE Radiation Protection Standards (RPSs). Radiation exposures during visits to the US Army-controlled Ground Zero area are less than 1 mrem per annual visit or less than 0.2% of the RPS for a member of the public. Detailed data and interpretations are provided in appendixes. 14 figs., 45 tabs

  16. Radiological survey and evaluation of the fallout area from the Trinity test: Chupadera Mesa and White Sands Missile Range, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, W.R.; Rodgers, J.C.

    1985-06-01

    Current radiological conditions were evaluated for the site of the first nuclear weapons test, the Trinity test, and the associated fallout zone. The test, located on White Sands Missile Range, was conducted as part of the research with nuclear materials for the World War II Manhattan Engineer District atomic bomb project. Some residual radioactivity attributable to the test was found in the soils of Ground Zero on White Sands Missile Range and the areas that received fallout from the test. The study considered relevant information including historical records, environmental data extending back to the 1940s, and new data acquired by field sampling and measurements. Potential exposures to radiation were evaluated for current land uses. Maximum estimated doses on Chupadera Mesa and other uncontrolled areas are less than 3% of the DOE Radiation Protection Standards (RPSs). Radiation exposures during visits to the US Army-controlled Ground Zero area are less than 1 mrem per annual visit or less than 0.2% of the RPS for a member of the public. Detailed data and interpretations are provided in appendixes. 14 figs., 45 tabs.

  17. Terrestrial Eco-Toxicological Tests as Screening Tool to Assess Soil Contamination in Krompachy Area

    Science.gov (United States)

    Ol'ga, Šestinová; Findoráková, Lenka; Hančuľák, Jozef; Fedorová, Erika; Tomislav, Špaldon

    2016-10-01

    In this study, we present screening tool of heavy metal inputs to agricultural and permanent grass vegetation of the soils in Krompachy. This study is devoted to Ecotoxicity tests, Terrestrial Plant Test (modification of OECD 208, Phytotoxkit microbiotest on Sinapis Alba) and chronic tests of Earthworm (Dendrobaena veneta, modification of OECD Guidelines for the testing of chemicals 317, Bioaccumulation in Terrestrial Oligochaetes) as practical and sensitive screening method for assessing the effects of heavy metals in Krompachy soils. The total Cu, Zn, As, Pb and Hg concentrations and eco-toxicological tests of soils from the Krompachy area were determined of 4 sampling sites in 2015. An influence of the sampling sites distance from the copper smeltery on the absolutely concentrations of metals were recorded for copper, lead, zinc, arsenic and mercury. The highest concentrations of these metals were detected on the sampling sites up to 3 km from the copper smeltery. The samples of soil were used to assess of phytotoxic effect. Total mortality was established at earthworms using chronic toxicity test after 7 exposure days. The results of our study confirmed that no mortality was observed in any of the study soils. Based on the phytotoxicity testing, phytotoxic effects of the metals contaminated soils from the samples 3KR (7-9) S.alba seeds was observed.

  18. Study of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method

    Science.gov (United States)

    Qin, Le; Xie, HuiMin; Zhu, RongHua; Wu, Dan; Che, ZhiGang; Zou, ShiKun

    2014-04-01

    This paper investigates the effect of the location of testing area in residual stress measurement by Moiré interferometry combined with hole-drilling method. The selection of the location of the testing area is analyzed from theory and experiment. In the theoretical study, the factors which affect the surface released radial strain ɛ r were analyzed on the basis of the formulae of the hole-drilling method, and the relations between those factors and ɛ r were established. By combining Moiré interferometry with the hole-drilling method, the residual stress of interference-fit specimen was measured to verify the theoretical analysis. According to the analysis results, the testing area for minimizing the error of strain measurement is determined. Moreover, if the orientation of the maximum principal stress is known, the value of strain will be measured with higher precision by the Moiré interferometry method.

  19. Borehole and geohydrologic data for test hole USW UZ-6, Yucca Mountain area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Whitfield, M.S. Jr.; Loskot, C.L.; Cope, C.M.

    1993-01-01

    Test hole USW UZ-6, located 1.8 kilometers west of the Nevada Test Site on a major north-trending ridge at Yucca Mountain, was dry drilled in Tertiary tuff to a depth of 575 meters. The area near this site is being considered by the US Department of Energy for potential construction of a high-level, radioactive-waste repository. Test hole USW UZ-6 is one of seven test holes completed in the unsaturated zone as part of the US Geological Survey's Yucca Mountain Project to characterize the potential repository site. Data pertaining to borehole drilling and construction, lithology of geologic units penetrated, and laboratory analyses for hydrologic characteristics of samples of drill-bit cuttings are included in this report

  20. Relationship between surface area for adhesion and tensile bond strength--evaluation of a micro-tensile bond test.

    Science.gov (United States)

    Sano, H; Shono, T; Sonoda, H; Takatsu, T; Ciucchi, B; Carvalho, R; Pashley, D H

    1994-07-01

    The purpose of this study was to test the null hypothesis that there is no relationship between the bonded surface area of dentin and the tensile strength of adhesive materials. The enamel was removed from the occlusal surface of extracted human third molars, and the entire flat surface was covered with resin composite bonded to the dentin to form a flat resin composite crown. Twenty-four hours later, the bonded specimens were sectioned parallel to the long axis of the tooth into 10-20 thin sections whose upper part was composed of resin composite with the lower half being dentin. These small sections were trimmed using a high speed diamond bur into an hourglass shape with the narrowest portion at the bonded interface. Surface area was varied by altering the specimen thickness and width. Tensile bond strength was measured using custom-made grips in a universal testing machine. Tensile bond strength was inversely related to bonded surface area. At surface areas below 0.4 mm2, the tensile bond strengths were about 55 MPa for Clearfil Liner Bond 2 (Kuraray Co., Ltd.), 38 MPa for Scotchbond MP (3M Dental Products), and 20 MPa for Vitremer (3M Dental Products). At these small surface areas all of the bond failures were adhesive in nature. This new method permits measurement of high bond strengths without cohesive failure of dentin. It also permits multiple measurements to be made within a single tooth.

  1. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

    1992-01-01

    This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

  2. Using the theory of planned behaviour and self-identity to explain chlamydia testing intentions in young people living in deprived areas.

    Science.gov (United States)

    Booth, Amy R; Norman, Paul; Harris, Peter R; Goyder, Elizabeth

    2014-02-01

    The study sought to (1) explain intentions to get tested for chlamydia regularly in a group of young people living in deprived areas using the theory of planned behaviour (TPB); and (2) test whether self-identity explained additional variance in testing intentions. A cross-sectional design was used for this study. Participants (N = 278, 53% male; M = 17.05 years) living in deprived areas of a UK city were recruited from a vocational education setting. Participants completed a self-administered questionnaire, including measures of attitude, injunctive subjective norm, descriptive norm, perceived behavioural control, self-identity, intention and past behaviour in relation to getting tested for chlamydia regularly. The TPB explained 43% of the variance in chlamydia testing intentions with all variables emerging as significant predictors. However, self-identity explained additional variance in intentions (ΔR(2)  = .22) and emerged as the strongest predictor, even when controlling for past behaviour. The study identified the key determinants of intention to get tested for chlamydia regularly in a sample of young people living in areas of increased deprivation: a hard-to-reach, high-risk population. The findings indicate the key variables to target in interventions to promote motivation to get tested for chlamydia regularly in equivalent samples, amongst which self-identity is critical. What is already known on this subject? Young people living in deprived areas have been identified as an at-risk group for chlamydia. Qualitative research has identified several themes in relation to factors affecting the uptake of chlamydia testing, which fit well with the constructs of the Theory of Planned Behaviour (TPB). Identity concerns have also been identified as playing an important part in young people's chlamydia testing decisions. What does this study add? TPB explained 43% of the variance in chlamydia testing intentions and all variables were significant predictors

  3. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1982

    International Nuclear Information System (INIS)

    Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.

    1983-07-01

    A principal activity of the Offsite Radiological Safety Program is routine environmental monitoring for radioactive materials in various media and for radiation in areas which may be affected by nuclear tests. It is conducted to document compliance with standards, to identify trends, and to provide information to the public. This report summarizes these activities for CY 1982

  4. 2007 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-01-01

    This report summarizes the results of an annual review of conditions affecting the operation of the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) and a determination of the continuing adequacy of the performance assessments (PAs) and composite analyses (CAs). The Area 5 RWMS PA documentation consists of the original PA (Shott et al., 1998), referred to as the 1998 Area 5 RWMS PA and supporting addenda (Bechtel Nevada [BN], 2001b; 2006a). The Area 5 RWMS CA was issued as a single document (BN, 2001a) and has a single addendum (BN, 2001c). The Area 3 PA and CA were issued in a single document (Shott et al., 2000). The Maintenance Plan for the PAs and CAs (National Security Technologies, LLC [NSTec], 2006) and the Disposal Authorization Statements (DASs) for the Area 3 and 5 RWMSs (U.S. Department of Energy [DOE], 2000; 2002) require preparation of an annual summary and a determination of the continuing adequacy of the PAs and CAs. The annual summary report is submitted to DOE Headquarters. Following the annual report format in the DOE PA/CA Maintenance Guide (DOE, 1999), this report presents the annual summary for the PAs in Section 2.0 and the CAs in Section 3.0. The annual summary for the PAs includes the following: Section 2.1 summarizes changes in waste disposal operations; Section 2.1.5 provides an evaluation of the new estimates of the closure inventories derived from the actual disposals through fiscal year (FY) 2007; Section 2.2 summarizes the results of the monitoring conducted under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's (NNSA/NSO's) Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (BN, 2005), and the research and development (R&D) activities; Section 2.4 is a summary of changes in facility design, operation, or expected future conditions; monitoring and R&D activities; and the maintenance program; and

  5. 2007 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    This report summarizes the results of an annual review of conditions affecting the operation of the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) and a determination of the continuing adequacy of the performance assessments (PAs) and composite analyses (CAs). The Area 5 RWMS PA documentation consists of the original PA (Shott et al., 1998), referred to as the 1998 Area 5 RWMS PA and supporting addenda (Bechtel Nevada [BN], 2001b; 2006a). The Area 5 RWMS CA was issued as a single document (BN, 2001a) and has a single addendum (BN, 2001c). The Area 3 PA and CA were issued in a single document (Shott et al., 2000). The Maintenance Plan for the PAs and CAs (National Security Technologies, LLC [NSTec], 2006) and the Disposal Authorization Statements (DASs) for the Area 3 and 5 RWMSs (U.S. Department of Energy [DOE], 2000; 2002) require preparation of an annual summary and a determination of the continuing adequacy of the PAs and CAs. The annual summary report is submitted to DOE Headquarters. Following the annual report format in the DOE PA/CA Maintenance Guide (DOE, 1999), this report presents the annual summary for the PAs in Section 2.0 and the CAs in Section 3.0. The annual summary for the PAs includes the following: Section 2.1 summarizes changes in waste disposal operations; Section 2.1.5 provides an evaluation of the new estimates of the closure inventories derived from the actual disposals through fiscal year (FY) 2007; Section 2.2 summarizes the results of the monitoring conducted under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's (NNSA/NSO's) Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (BN, 2005), and the research and development (R and D) activities; Section 2.4 is a summary of changes in facility design, operation, or expected future conditions; monitoring and R and D activities; and the maintenance program; and

  6. Peculiarity of rock massif deformation under explosion impact (by the example of Zarechie area of the Semipalatinsk Test Site)

    International Nuclear Information System (INIS)

    Gorbunova, Eh.M.

    2003-01-01

    The paper systematize the results of study of man-caused situation formed outside the central zone of underground nuclear explosion (CZ UNE), at a testing area of the Semipalatinsk Test Site (STS) - Zarechie. The consequence effects of nuclear testing appeared in the rock massif and on the ground surface in the radius of 0.3-5 km from event epicenter are described. (author)

  7. Environmental Assessment for the sewage lagoon system: Area 5, Nevada Test Site

    International Nuclear Information System (INIS)

    1995-02-01

    The DOE Nevada Operations Office prepared an environmental assessment (EA), (DOE/EA-1026), to evaluate the potential impacts of constructing a sanitary waste sewage lagoon system in Area 5 at the Nevada Test Site (NTS). The proposed system would replace an existing septic system. Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 USC 4321 et seq.). Therefore, an environmental impact statement (EIS) is not required and DOE is issuing this FONSI

  8. Corrective action plan for corrective action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Nacht, S.

    1999-01-01

    The Mercury Fire Training Pit is a former fire training area located in Area 23 of the Nevada Test Site (NTS). The Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting personnel at the NTS, and encompasses an area approximately 107 meters (m) (350 feet [ft]) by 137 m (450 ft). The Mercury Fire Training Pit formerly included a bermed burn pit with four small burn tanks, four large above ground storage tanks an overturned bus, a telephone pole storage area, and areas for burning sheds, pallets, and cables. Closure activities will include excavation of the impacted soil in the aboveground storage tank and burn pit areas to a depth of 1.5 m (5 ft), and excavation of the impacted surface soil downgradient of the former ASTs and burnpit areas to a depth of 0.3 m (1 ft). Excavated soil will be disposed in the Area 6 Hydrocarbon Landfill at the NTS

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 529: Area 25 Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 1

    Energy Technology Data Exchange (ETDEWEB)

    Robert F. Boehlecke

    2004-11-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 529, Area 25 Contaminated Materials, Nevada Test Site (NTS), Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Site (CAS) 25-23-17, Contaminated Wash, is the only CAS in CAU 529 and is located in Area 25 of the NTS, in Nye County, Nevada (Figure 1-2). Corrective Action Site 25-23-17, Contaminated Wash, was divided into nine parcels because of the large area impacted by past operations and the complexity of the source areas. The CAS was subdivided into separate parcels based on separate and distinct releases as determined and approved in the Data Quality Objectives (DQO) process and Corrective Action Investigation Plan (CAIP). Table 1-1 summarizes the suspected sources for the nine parcels. Corrective Action Site 25-23-17 is comprised of the following nine parcels: (1) Parcel A, Kiwi Transient Nuclear Test (TNT) 16,000-foot (ft) Arc Area (Kiwi TNT); (2) Parcel B, Phoebus 1A Test 8,000-ft Arc Area (Phoebus); (3) Parcel C, Topopah Wash at Test Cell C (TCC); (4) Parcel D, Buried Contaminated Soil Area (BCSA) l; (5) Parcel E, BCSA 2; (6) Parcel F, Borrow Pit Burial Site (BPBS); (7) Parcel G, Drain/Outfall Discharges; (8) Parcel H, Contaminated Soil Storage Area (CSSA); and (9) Parcel J, Main Stream/Drainage Channels.

  10. A comparison of sediment toxicity test methods at three Great Lake Areas of Concern

    Science.gov (United States)

    Burton, G. Allen; Ingersoll, Christopher G.; Burnett, LouAnn C.; Henry, Mary; Hinman, Mark L.; Klaine, Stephen J.; Landrum, Peter F.; Ross, Phillipe; Tuchman, Marc

    1996-01-01

    The significance of sediment contamination is often evaluated using sediment toxicity (bioassay) testing. There are relatively few “standardized” test methods for evaluating sediments. Popular sediment toxicity methods examine the extractable water (elutriate), interstitial water, or whole (bulk) sediment phases using test species spanning the aquatic food chain from bacteria to fish. The current study was designed to evaluate which toxicity tests were most useful in evaluations of sediment contamination at three Great Lake Areas of Concern. Responses of 24 different organisms including fish, mayflies, amphipods, midges, cladocerans, rotifers, macrophytes, algae, and bacteria were compared using whole sediment or elutriate toxicity assays. Sediments from several sites in the Buffalo River, Calumet River (Indiana Harbor), and Saginaw River were tested, as part of the U.S. Environmental Protection Agency's (USEPA) Assessment and Remediation of Contaminated Sediments (ARCS) Project. Results indicated several assays to be sensitive to sediment toxicity and able to discriminate between differing levels of toxicity. Many of the assay responses were significantly correlated to other toxicity responses and were similar based on factor analysis. For most applications, a test design consisting of two to three assays should adequately detect sediment toxicity, consisting of various groupings of the following species: Hyalella azteca, Ceriodaphnia dubia, Chironomus riparius, Chironomus tentans, Daphnia magna, Pimephales promelas, Hexagenia bilineata, Diporeia sp., Hydrilla verticillata, or Lemna minor.

  11. Influences on domestic well water testing behavior in a Central Maine area with frequent groundwater arsenic occurrence.

    Science.gov (United States)

    Flanagan, Sara V; Marvinney, Robert G; Zheng, Yan

    2015-02-01

    In 2001 the Environmental Protection Agency (EPA) adopted a new standard for arsenic (As) in drinking water of 10 μg/L, replacing the old standard of 50 μg/L. However, for the 12% of the U.S. population relying on unregulated domestic well water, including half of the population of Maine, it is solely the well owner's responsibility to test and treat the water. A mailed household survey was implemented in January 2013 in 13 towns of Central Maine with the goal of understanding the population's testing and treatment practices and the key behavior influencing factors in an area with high well-water dependency and frequent natural groundwater As. The response rate was 58.3%; 525 of 900 likely-delivered surveys to randomly selected addresses were completed. Although 78% of the households reported that their well has been tested, half of it was more than 5 years ago. Among the 58.7% who believe they have tested for As, most do not remember the results. Better educated, higher income homeowners who more recently purchased their homes are most likely to have included As when last testing. While households agree that water and As-related health risks can be severe, they feel low personal vulnerability and there are low testing norms overall. Significant predictors of including As when last testing include: having knowledge that years of exposure increases As-related health risks (risk knowledge), knowing who to contact to test well water (action knowledge), believing that regular testing does not take too much time (instrumental attitude), and having neighbors who regularly test their water (descriptive norm). Homeowners in As-affected communities have the tendency to underestimate their As risks compared to their neighbors. The reasons for this optimistic bias require further study, but low testing behaviors in this area may be due to the influence of a combination of norm, ability, and attitude factors and barriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Bulgarian fuel models developed for implementation in FARSITE simulations for test cases in Zlatograd area

    Science.gov (United States)

    Nina Dobrinkova; LaWen Hollingsworth; Faith Ann Heinsch; Greg Dillon; Georgi Dobrinkov

    2014-01-01

    As a key component of the cross-border project between Bulgaria and Greece known as OUTLAND, a team from the Bulgarian Academy of Sciences and Rocky Mountain Research Station started a collaborative project to identify and describe various fuel types for a test area in Bulgaria in order to model fire behavior for recent wildfires. Although there have been various...

  13. The sodium fire tests performed in the FAUNA facility on up to 12m2 fire areas

    International Nuclear Information System (INIS)

    Cherdron, W.; Jordan, S.

    1983-08-01

    The FAUNA test facility started operation in 1979. It serves to investigate large area sodium fires in closed containments and to study the generation, behaviour and removal of sodium fire aerosols. In this report, the experimental results of the 6 sodium pool fires are described which were performed with up to 500 kg of sodium in fire pans of 2 m 2 , 5 m 2 and 12 m 2 surface area, respectively. Both, the thermodynamic data and the data of the reaction kinetics of the fires were determined. In addition, the behaviour of the released aerosols during and after the fire was studied. On the basis of measurements of the temperature profiles at various levels above the fire areas it was shown that the convective flows above fire areas of different sizes in closed containments differ markedly and, obviously, exert an influence on the development of the fire and the release of particles. Whilst in rather small fires the gas above the pan rises as in a chimney and flows back on the walls, no chimney effect can be observed in a large pool fire. In rather large fires higher burning rates and aerosol release rates were observed. Some meters above the fire area temperatures around 300-400 0 C, temporarily even up to 700 0 C, were measured. The tests F5 and F6 were performed above all to observe the fire behaviour in terms of thermodynamics and reaction kinetics in a fully closed containment. (orig./RW) [de

  14. PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilches Bernal, Felipe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pierre, Brian Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Elliott, Ryan Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schoenwald, David A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrne, Raymond H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Neely, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trudnowski, Daniel J. [Montana Tech of the Univ. of Montana, Butte, MT (United States); Donnelly, Matthew K. [Montana Tech of the Univ. of Montana, Butte, MT (United States)

    2017-03-01

    To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations use the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.

  15. Corrosion testing of a degraded moderator: L-Area Tuff Tanks

    International Nuclear Information System (INIS)

    Mickalonis, J.I.

    2000-01-01

    Based on test results, storage of the degraded moderator in 55-gallon 304L drums (0.065 inches thick) would not cause failure by general corrosion for up to 5 plus years storage. Acidic degraded moderator was temporarily stored in Tuff Tanks located in L-area. The moderator characteristics included a D 2 O content of 5.02--5.33%, a pH of 1.25--1.31, a conductivity of 29,300--31,200 m mhos/cm, tritium activity of 114--141 m Ci/mL, and levels of approximately 6,000 ppm for chloride and 500 ppm for chromium. The compatibility of the degraded with AISI Type 304L stainless steel (304L) was investigated in this study. Following ASTM standard practice, coupon immersion tests were conducted in both treated and untreated moderator. Treatment included the addition of either a 40 wt % NaOH solution, distilled water to serially dilute the chloride, or concentrated nitric acid to increase the nitrate concentration. Type 304L stainless steel exposed to the Tuff Tank moderator was found from these tests to: have a general corrosion rate of less than 5 mils per year (mpy) for 304L plate, which bounds that of the 304L storage drum, passivate at chloride concentrations up to 5,000 ppm for 304L sheet, resist corrosion for nitrate/chloride ratios ranging from 0.1 to 1,000, and be susceptible to crevice corrosion. Based on these test results, storage of the degraded moderator in 55-gallon 304L drums (0.065 inch thick) would not cause failure by general corrosion for up to 5+ years storage. The chloride concentration, [Cl], in the degraded moderator has been measured up to 6000 ppm. The potential or risk for aggressive localized attack of 304L increases with [Cl] concentration. A qualitative range is as follows: [Cl minus ] minus ] minus ] < 600 ppm, reasonable resistance, medium risk. The degraded moderator should be treated to reduce the chloride concentration to reduce the potential for localized corrosion and the risk for a leakage failure of the drum. A good practice would be to

  16. Radiological Dose Calculations And Supplemental Dose Assessment Data For Neshap Compliance For SNL Nevada Facilities 1996.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    Operations of Sandia National Laboratories, Nevada (SNL/NV) at the Tonopah Test Range (TTR) resulted in no planned point radiological releases during 1996. Other releases from SNL/NV included diffuse transuranic sources consisting of the three Clean Slate sites. Air emissions from these sources result from wind resuspension of near-surface transuranic contaminated soil particulates. The total area of contamination has been estimated to exceed 20 million square meters. Soil contamination was documented in an aerial survey program in 1977 (EG&G 1979). Surface contamination levels were generally found to be below 400 pCi/g of combined plutonium-238, plutonium-239, plutonium-240, and americium-241 (i.e., transuranic) activity. Hot spot areas contain up to 43,000 pCi/g of transuranic activity. Recent measurements confirm the presence of significant levels of transuranic activity in the surface soil. An annual diffuse source term of 0.39 Ci of transuranic material was calculated for the cumulative release from all three Clean Slate sites. A maximally exposed individual dose of 1.1 mrem/yr at the TTR airport area was estimated based on the 1996 diffuse source release amounts and site-specific meteorological data. A population dose of 0.86 person-rem/yr was calculated for the local residents. Both dose values were attributable to inhalation of transuranic contaminated dust.

  17. Energy Systems Test Area (ESTA) Pyrotechnic Operations: User Test Planning Guide

    Science.gov (United States)

    Hacker, Scott

    2012-01-01

    The Johnson Space Center (JSC) has created and refined innovative analysis, design, development, and testing techniques that have been demonstrated in all phases of spaceflight. JSC is uniquely positioned to apply this expertise to components, systems, and vehicles that operate in remote or harsh environments. We offer a highly skilled workforce, unique facilities, flexible project management, and a proven management system. The purpose of this guide is to acquaint Test Requesters with the requirements for test, analysis, or simulation services at JSC. The guide includes facility services and capabilities, inputs required by the facility, major milestones, a roadmap of the facility s process, and roles and responsibilities of the facility and the requester. Samples of deliverables, facility interfaces, and inputs necessary to define the cost and schedule are included as appendices to the guide.

  18. Using the Theory of Planned Behavior to identify key beliefs underlying chlamydia testing intentions in a sample of young people living in deprived areas.

    Science.gov (United States)

    Booth, Amy R; Norman, Paul; Harris, Peter R; Goyder, Elizabeth

    2015-09-01

    The Theory of Planned Behavior was used to identify the key behavioural, normative and control beliefs underlying intentions to test regularly for chlamydia among young people living in socially and economically deprived areas - a high-risk group for infection. Participants (N = 278, 53% male; mean age 17 years) were recruited from a vocational college situated in an area in the most deprived national quintile (England). Participants completed measures of behavioural, normative and control beliefs, plus intention to test regularly for chlamydia. The behavioural, normative and control beliefs most strongly correlated with intentions to test regularly for chlamydia were beliefs about stopping the spread of infection, partners' behaviour and the availability of testing. These beliefs represent potential targets for interventions to increase chlamydia testing among young people living in deprived areas. © The Author(s) 2013.

  19. Testing the Asymmetry of Shocks with Euro Area

    Directory of Open Access Journals (Sweden)

    Marius-Corneliu MARINAŞ

    2012-01-01

    Full Text Available The objective of this study is to identify the demand and supply shocks affecting 13 EU member states and to estimate their degree of correlation with the Euro area shocks. This research ensures identifying the asymmetry of shocks degree with the monetary union, depending on which it’s judging the desirability of adopting a single currency. The analysis is also useful for the economies outside the Euro area, because they are strongly commercial and financial integrated especially with the core economies from union. Applying the Blanchard and Quah methodology to estimate the shocks in the period from 1998:1- 2010:3, I have found a weak and negative correlation between demand shocks and a medium to high correlation of the supply shocks. The results obtained suggest the presence of a structural convergence process with the Euro area, in the context of domestic macroeconomic policies rather different, both inside and outside the monetary union.

  20. PART I: Bioventing Pilot Test Work Plan for Fire Protection Training Area Site FY-03, Charleston AFB, South Carolina. PART II: Draft Interim Pilot Test Results Report for Fire Protection Training Area Site FT-03, Charleston AFB, South Carolina

    National Research Council Canada - National Science Library

    1993-01-01

    This site-specific work plan presents the scope of a bioventing pilot test for in situ treatment of fuel contaminated soils at the Fire Protection Training Area designated as Site FT-O3, Charleston Air Force Base (AFB), South Carolina...

  1. Report on expedited site characterization of the Central Nevada Test Area, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Yuhr, L. [Technos Inc., Miami, FL (United States); Wonder, J.D.; Bevolo, A.J. [Ames Lab., IA (United States)

    1997-09-01

    This report documents data collection, results, and interpretation of the expedited site characterization (ESC) pilot project conducted from September 1996 to June 1997 at the Central Nevada Test Area (CNTA), Nye County, Nevada. Characterization activities were limited to surface sites associated with deep well drilling and ancillary operations at or near three emplacement well areas. Environmental issues related to the underground nuclear detonation (Project Faultless) and hydrologic monitoring wells were not addressed as a part of this project. The CNTA was divided into four functional areas for the purpose of this investigation and report. These areas include the vicinity of three emplacement wells (UC-1, UC-3, and UC-4) and one mud waste drilling mud collection location (Central Mud Pit; CMP). Each of these areas contain multiple, potentially contaminated features, identified either from historic information, on-site inspections, or existing data. These individual features are referred to hereafter as ``sites.`` The project scope of work involved site reconnaissance, establishment of local grid systems, site mapping and surveying, geophysical measurements, and collection and chemical analysis of soil and drilling mud samples. Section 2.0 through Section 4.0 of this report provide essential background information about the site, project, and details of how the ESC method was applied at CNTA. Detailed discussion of the scope of work is provided in Section 5.0, including procedures used and locations and quantities of measurements obtained. Results and interpretations for each of the four functional areas are discussed separately in Sections 6.0, 7.0, 8.0, and 9.0. These sections provide a chronological presentation of data collected and results obtained, followed by interpretation on a site-by-site basis. Key data is presented in the individual sections. The comprehensive set of data is contained in appendices.

  2. A Cultural Resources Inventory and Historical Evaluation of the Smoky Atmospheric Nuclear Test, Areas 8, 9, and 10, Nevada National Security Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert C. [Desert Research Inst. (DRI), Reno, NV (United States); King, Maureen L. [Desert Research Inst. (DRI), Reno, NV (United States); Beck, Colleen M. [Desert Research Inst. (DRI), Reno, NV (United States); Falvey, Lauren W. [Desert Research Inst. (DRI), Reno, NV (United States); Menocal, Tatianna M. [Desert Research Inst. (DRI), Reno, NV (United States)

    2014-09-01

    This report presents the results of a National Historic Preservation Act Section 106 cultural resources inventory and historical evaluation of the 1957 Smoky atmospheric test location on the Nevada National Security Site (NNSS). The Desert Research Institute (DRI) was tasked to conduct a cultural resources study of the Smoky test area as a result of a proposed undertaking by the Department of Energy Environmental Management. This undertaking involves investigating Corrective Action Unit (CAU) 550 for potential contaminants of concern as delineated in a Corrective Action Investigation Plan. CAU 550 is an area that spatially overlaps portions of the Smoky test location. Smoky, T-2c, was a 44 kt atmospheric nuclear test detonated at 5:30 am on August 31, 1957, on top of a 213.4 m (700 ft) 200 ton tower (T-2c) in Area 8 of the NNSS. Smoky was a weapons related test of the Plumbbob series (number 19) and part of the Department of Defense Exercise Desert Rock VII and VIII. The cultural resources effort involved the development of a historic context based on archival documents and engineering records, the inventory of the cultural resources in the Smoky test area and an associated military trench location in Areas 9 and 10, and an evaluation of the National Register eligibility of the cultural resources. The inventory of the Smoky test area resulted in the identification of structures, features, and artifacts related to the physical development of the test location and the post-test remains. The Smoky test area was designated historic district D104 and coincides with a historic archaeological site recorded as 26NY14794 and the military trenches designed for troop observation, site 26NY14795. Sites 26NY14794 and 26NY14795 are spatially discrete with the trenches located 4.3 km (2.7 mi) southeast of the Smoky ground zero. As a result, historic district D104 is discontiguous and in total it covers 151.4 hectares (374 acres). The Smoky test location, recorded as historic

  3. Cleanup and treatment (CAT) test: a land-area decontamination project utilizing a vacuum method of soil removal

    International Nuclear Information System (INIS)

    Orcutt, J.A.

    1982-08-01

    Areas 11 and 13 of the Nevada Test Site (NTS) are contaminated with varying concentrations of Pu-239, 240 and Am-241. An investigation of a vacuum method of soil removal, the Cleanup and Treatment (CAT) test, was conducted over a 3-month period in the plutonium safety shot or Plutonium Valley portion of Area 11. Soil in Plutonium Valley is of the Aridisol Order. The surface 0 to 10 cm is a gravelly loam, and is strongly alkaline (pH 8.8). A large truck-mounted vacuum unit, rather than conventional earth-moving equipment, was used as the primary soil collection unit. Effectiveness of the vacuum method of soil removal was evaluated in relation to conventional earthmoving procedures, particularly in terms of volume reduction of removed soil achieved over conventional techniques. Radiological safety considerations associated with use of the vacuum unit were evaluated in relation to their impact on a full-scale land decontamination program. Environmental and operational impacts of devegetation with retention of root crowns or root systems were investigated. It is concluded that the CAT test was successful under difficult environmental conditions

  4. Studies of transuranic element ingestion by fistulated steers grazing Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Blincoe, C.; Bohman, V.R.; Smith, D.D.

    1985-01-01

    Area 13 is one of several areas of the Nevada Test Site (NTS) contaminated with transuranics. Cattle were grazed on the area to study the botanical and chemical composition of the forage, the digestibility of range plants as selected by range cattle, and the intake of plutonium and americium by grazing cattle. The digestibility of dry matter ranged from 34 to 44%. Cattle generally consumed over 2 kilograms per 100 kilograms body weight of dry matter daily, which resulted in a daily intake of 3600 to 11,100 pCi of plutonium-238, 85,000 to 400,000 pCi of plutonium-239, and 11,000 to 56,000 pCi of americium-241. The soil ingested by range cattle constituted the principal and possibly only source of ingested plutonium and americium. 21 references, 1 figure, 9 tables

  5. Hydrologic resources management program, FY 1998 progress report; FINAL

    International Nuclear Information System (INIS)

    Benedict, F.C.; Criss, R.E.; Davisson, M.L.; Eaton, G.F.; Hudson, G.B.; Kenneally, J.M.; Rose, T.P.; Smith, D.

    1999-01-01

    This report presents the results from FY 1998 technical studies conducted by Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) project. The HRMP is sponsored by Defense Programs (DP) of the U.S. Department of Energy, Nevada Operations Office (DOE/NV), and supports DP operations at the Nevada Test Site (NTS) through studies of radiochemistry and resource management related to the defense programs mission. Other participating organizations include the Los Alamos National Laboratory (LANL), the United States Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the United States Environmental Protection Agency (EPA), and Bechtel-Nevada (BN). The UGTA project is an Environmental Management (EM) activity of DOE/NV that supports a Federal Facilities Agreement and Consent Order between the Department of Energy, the Department of Defense, and the State of Nevada. UGTA's primary function is to address the legacy release of hazardous constituents at the Nevada Test Site, the Tonopah Test Range, and off-Nevada Test Site underground nuclear testing areas. Participating contractors include LLNL (Earth and Environmental Sciences Directorate, Analytical and Nuclear Chemistry Division), LANL, DRI, USGS, BN, HSI-GeoTrans, and IT Corporation. The FY 1998 HRMP and UGTA annual progress report follows the organization and contents of our FY 1997 report (Smith et al., 1998), and includes our results from CY 1997-1998 technical studies of radionuclide migration and isotope hydrology at the Nevada Test Site. During FY 1998, LLNL continued its efforts under the HRMP to pursue a technical agenda relevant to the science-based stockpile stewardship program at DOE/NV. Support to UGTA in FY 1998 included efforts to quantitatively define the radionuclide source term residual from underground nuclear weapons testing and the derivative solution, or hydrologic source

  6. [The dose estimation to the population as a result of radioactive contamination of the Semipalatinsk Test area].

    Science.gov (United States)

    Spiridonova, S I; Mukusheva, M K; Shubina, O A; Solomatin, V M; Epifanova, I E

    2008-01-01

    The results are presented from estimation of spatial distribution of 137Cs and 90Sr contamination densities in the areas of horses and sheep grazing within the Semipalatinsk Test Site. Dose burdens to various cohorts of the population living within the STS and consuming contaminated animal products are predicted. Doses of shepherds in the most contaminated pasture areas have been found to exceed the accepted limit (1 mSv/y). The conclusion is made about the need for further studies on the risk assessment of the STS population exposure above the accepted limits.

  7. Performance test and analysis to the prototype of fiber-based portable large area surface contamination monitor

    International Nuclear Information System (INIS)

    Qu Yantao; Liu Yang; Wang Wei; Wang Ying; Hou Jie

    2013-01-01

    The feasibility was studied of using large area plastic scintillation (sensitive area up to 1200 cm 2 ) and wavelength-shifting fiber (WLS) to measure β surface contamination that led to a tentative adoption of direct coupling method of wavelength-shifting fiber array and plastic scintillator. Based on above, a calculation program was established, by which the optical transmission was simulated enabling optimizations to the design of the system such as the size of the plastic scintillator, the quantity of the wavelength-shifting fiber and the configuration mode of the wavelength-shifting fiber. As a result, a special experimental prototype was developed and tested. Results prove that the sensitive detection area is up to 1200 cm 2 , the detection efficiency is about 15.4%, the inconsistency of the different sensitive area is about 9.7%, and the minimum detectable limit is about 0.05 Bq/cm 2 , all of which indicate that the experimental prototype could satisfy requirements of surface pollution monitoring for both normal and accident conditions. (authors)

  8. Academic performance in the high school mathematics standardized test at metropolitan and remote areas of Costa Rica schools in 2013

    Directory of Open Access Journals (Sweden)

    Mario Castillo-Sánchez

    2016-01-01

    Full Text Available This article describes the academic performance of students from urban and distant areas in the national mathematics test corresponding to the completion of secondary education, considering the specific test and according to the different types of schools: daytime (daytime scientific, daytime humanistic, nighttime, technical or integrated centers for education of young people and adults (CINDEA, in its Spanish acronym.  The main objective is to describe the students academic performance in the national mathematics test issued to complete high-school level, for the year 2013 and according to the country educational areas.  For the analysis of such information, the main source used was the High-School Education National Report, issued by the Ministry of Public Education for 2013 standardized tests.  One of the conclusions from this study is the need to carry out a historical analysis of the performance of educational institutions which have recently obtained the highest and lowest average grades in the high-school diploma tests, in order to be able to delve into the causes of those performances.

  9. Application specific Tester-On-a-Resident-Chip (TORCH{trademark}) - innovation in the area of semiconductor testing

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, M. [L& M Technologies, Albuquerque, NM (United States); Peterson, T. [New Mexico Highlands Univ., Las Vegas, NM (United States); Savignon, D.; Campbell, D. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-01

    Manufacturers widely recognize testing as a major factor in the cost, producability, and delivery of product in the $100 billion integrated circuit business: {open_quotes}The rapid development of VLSI using sub-micron CMOS technology has suddenly exposed traditional test techniques as a major cost factor that could restrict the development of VLSI devices exceeding 512 pins an operating frequencies above 200 MHz.{close_quotes} -- 1994 Semiconductor Industry Association Roadmap, Design and Test, Summary, pg. 43. This problem increases dramatically for stockpile electronics, where small production quantities make it difficult to amortize the cost of increasingly expensive testers. Application of multiple ICs in Multi-Chip Modules (MCM) greatly multiplies testing problems for commercial and defense users alike. By traditional test methods, each new design requires custom test hardware and software and often dedicated testing equipment costing millions of dollars. Also, physical properties of traditional test systems often dedicated testing equipment costing millions of dollars. Also, physical properties of traditional test systems limit capabilities in testing at-speed (>200 MHz), high-impedance, and high-accuracy analog signals. This project proposed a revolutionary approach to these problems: replace the multi-million dollar external test system with an inexpensive test system integrated onto the product wafer. Such a methodology enables testing functions otherwise unachievable by conventional means, particularly in the areas of high-frequency, at-speed testing, high impedance analog circuits, and known good die assessment. The techniques apply specifically to low volume applications, typical of Defense Programs, where testing costs represent an unusually high proportional of product costs, not easily amortized.

  10. Conformance contrast testing between rates of pulmonary tuberculosis in Ecuadorian border areas

    Directory of Open Access Journals (Sweden)

    Claudia Ortiz-Rico

    2015-11-01

    Full Text Available Objective. To estimate rates of cases of respiratory symptomatic subjects and the incidence rate of pulmonary tuberculosis in two border areas of Ecuador, and contrast them with official figures. Materials and methods. Cross-sectional survey in the southeastern (SEBA, and the Andean southern Ecuadorian border areas (ASBA, which were conducted, respectively, in 1 598 and 2 419 persons aged over 15 years recruited over periods of three weeks. In identified respiratory symptomatic cases, a sputum sample was taken for smear testing. The results (odds ratios and their respective 95% confidence intervals, were compared with local and national official figures using maximum likelihood contrasts. Results. The rates of respiratory symptomatic subjects (7.7% and 5.9% in the SEBA, and ASBA, respectively and of pulmonary tuberculosis (cumulative incidence rates of 125 and 140 per 100 000 inhabitants, in the same order were significantly greater than the official figures (of 0.98 and 0.99% for respiratory symptomatic subjects in the SEBA and ASBA, respectively; and of 38.23 per 100 000 inhabitants for pulmonary tuberculosis in Ecuador as a whole (p<0.001. Conclusion. It is necessary to reinforce both active case finding for respiratory symptomatic subject cases, and epidemiological surveillance of pulmonary tuberculosis in Ecuadorian border regions.

  11. Final Range Environmental Assessment for Test Areas C-87 and D-51 at Eglin Air Force Base, Florida

    Science.gov (United States)

    2015-05-01

    TA C-87 consists of one septic tank and associated leach field. There are nine septic tanks and associated leach fields on TA D-51. Under...storage tank , and septic systems, and connecting the test area to the Okaloosa County water and wastewater utility lines. The existing utility systems on T...8840E Water Treatment Plan 8840F Biological/Chemical Training Area 13 (acres) 8840ST Septic Tank at 8840 8840W Well at 8840 8841 Range Support

  12. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    International Nuclear Information System (INIS)

    Bechtel Nevada

    2005-01-01

    This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site. This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site (NTS). The Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) are managed and operated by Bechtel Nevada (BN) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The Integrated Closure and Monitoring Plan (ICMP) for these sites is based on guidance for developing closure plans issued by the DOE (DOE, 1999a). The plan does not closely follow the format suggested by the DOE guidance to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. Further, much of the information that would be included in the individual plans is the same, and integration provides efficient presentation. A cross-walk between the contents of the ICMP and the DOE guidance is given in Appendix A. Closure and monitoring were integrated because monitoring measures the degree to which the operational and closed disposal facilities are meeting performance objectives specified in the manual to DOE Order O 435.1. Department of Energy Order 435.1 governs management of radioactive waste, and associated with it are Manual DOE M 435.1-1 and Guidance DOE G 435.1-1. The performance objectives are intended to ensure protection of workers, the public, and the environment from radiological exposure associated with the RWMSs now and in the future

  13. Test Area C-64 Range Environmental Assessment, Revision 1

    Science.gov (United States)

    2010-10-01

    interstitial area to the southwest of TA C-64. However, that area is part of Management Unit 9B which is only accessible during weekends and holidays ...Columbia, Puerto Rico, and the Virgin Islands. Emission estimates for individual points or major sources (facilities), as well as county level estimates

  14. CRC Test Ever - Small Area Estimates

    Science.gov (United States)

    For the ever had colorectal cancer test, a person 50 years of age or older must have reported having at least one colorectal endoscopy (sigmoidoscopy or colonoscopy) in his/her life or at least one home-based FOBT within the past two years by the time of interview.

  15. Test of cure, retesting and extragenital testing practices for Chlamydia trachomatis and Neisseria gonorrhoeae among general practitioners in different socioeconomic status areas: A retrospective cohort study, 2011-2016

    Science.gov (United States)

    van Liere, Geneviève A. F. S.; Cals, Jochen W. L.; Dukers-Muijrers, Nicole H. T. M.

    2018-01-01

    Background For Chlamydia trachomatis (CT), a test of cure (TOC) within 3–5 weeks is not recommended. International guidelines differ in advising a Neisseria gonorrhoeae (NG) TOC. Retesting CT and NG positives within 3–12 months is recommended in international guidelines. We assessed TOC and retesting practices including extragenital testing in general practitioner (GP) practices located in different socioeconomic status (SES) areas to inform and optimize local test practices. Methods Laboratory data of 48 Dutch GP practices between January 2011 and July 2016 were used. Based on a patient’s first positive CT or NG test, the proportion of TOC (TOC and 24% had a retest at the GP practice. GP practices in low SES areas were more likely to perform a CT TOC (OR:1.8;95%CI:1.1–3.1). Younger patients (TOC (OR:1.6;95%CI:1.0–2.4). For CT (n = 622), 2.4% had a TOC and 6.1% had a retest at another STI care provider. For NG (n = 73), 25% had a TOC and 15% had a retest at the GP practice. For NG (n = 73), 2.7% had a TOC and 12.3% had a retest at another STI care provider. In only 0.3% of the consultations patients were tested on extragenital sites. Conclusion Almost 20% of the patients returned for a CT TOC, especially at GP practices in low SES areas. For NG, 1 out of 4 patients returned for a TOC. Retesting rates were low for both CT (24%) and NG (15%), (re)infections including extragenital infections may be missed. Efforts are required to focus TOC and increase retesting practices of GPs in order to improve CT/NG control. PMID:29538469

  16. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    CERN Document Server

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society.

  17. Corrective Action Investigation Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada, Rev. No.: 0

    Energy Technology Data Exchange (ETDEWEB)

    David A. Strand

    2004-06-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental corrective action alternatives. Corrective Action Unit 151 is located in Areas 2, 12, 18, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 151 is comprised of the nine Corrective Action Sites (CAS) listed below: (1) 02-05-01, UE-2ce Pond; (2) 12-03-01, Sewage Lagoons (6); (3) 12-04-01, Septic Tanks; (4) 12-04-02, Septic Tanks; (5) 12-04-03, Septic Tank; (6) 12-47-01, Wastewater Pond; (7) 18-03-01, Sewage Lagoon; (8) 18-99-09, Sewer Line (Exposed); and (9) 20-19-02, Photochemical Drain. The CASs within CAU 151 are discharge and collection systems. Corrective Action Site 02-05-01 is located in Area 2 and is a well-water collection pond used as a part of the Nash test. Corrective Action Sites 12-03-01, 12-04-01, 12-04-02, 12-04-03, and 12-47-01 are located in Area 12 and are comprised of sewage lagoons, septic tanks, associated piping, and two sumps. The features are a part of the Area 12 Camp housing and administrative septic systems. Corrective Action Sites 18-03-01 and 18-99-09 are located in the Area 17 Camp in Area 18. These sites are sewage lagoons and associated piping. The origin and terminus of CAS 18-99-09 are unknown; however, the type and configuration of the pipe indicates that it may be a part of the septic systems in Area 18. Corrective Action Site 20-19-02 is located in the Area 20 Camp. This site is comprised of a surface discharge of photoprocessing chemicals.

  18. Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhu; K. Pohlmann; J. Chapman; C. Russell; R.W.H. Carroll; D. Shafer

    2009-09-10

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation’s first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in

  19. Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area

    International Nuclear Information System (INIS)

    Zhu, J.; Pohlmann, K.; Chapman, J.; Russell, C.; Carroll, R.W.H.; Shafer, D.

    2009-01-01

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation's first permanent geologic repository for spent nuclear fuel and high-level radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effective porosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in

  20. Radiological results for samples collected on paired glass- and cellulose-fiber filters at the Sandia complex, Tonopah Test Range, Nevada

    International Nuclear Information System (INIS)

    Mizell, Steve A.; Shadel, Craig A.

    2016-01-01

    Airborne particulates are collected at U.S. Department of Energy sites that exhibit radiological contamination on the soil surface to help assess the potential for wind to transport radionuclides from the contamination sites. Collecting these samples was originally accomplished by drawing air through a cellulose-fiber filter. These filters were replaced with glass-fiber filters in March 2011. Airborne particulates were collected side by side on the two filter materials between May 2013 and May 2014. Comparisons of the sample mass and the radioactivity determinations for the side-by-side samples were undertaken to determine if the change in the filter medium produced significant results. The differences in the results obtained using the two filter types were assessed visually by evaluating the time series and correlation plots and statistically by conducting a nonparametric matched-pair sign test. Generally, the glass-fiber filters collect larger samples of particulates and produce higher radioactivity values for the gross alpha, gross beta, and gamma spectroscopy analyses. However, the correlation between the radioanalytical results for the glass-fiber filters and the cellulose-fiber filters was not strong enough to generate a linear regression function to estimate the glass-fiber filter sample results from the cellulose-fiber filter sample results.

  1. Closure Report Central Nevada Test Area Subsurface Corrective Action Unit 443 January 2016

    Energy Technology Data Exchange (ETDEWEB)

    Findlay, Rick [US Department of Energy, Washington, DC (United States). Office of Legacy Management

    2015-11-01

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Closure Report for the subsurface Corrective Action Unit (CAU) 443 at the Central Nevada Test Area (CNTA), Nevada, Site. CNTA was the site of a 0.2- to 1-megaton underground nuclear test in 1968. Responsibility for the site’s environmental restoration was transferred from the DOE, National Nuclear Security Administration, Nevada Field Office to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 1996, as amended 2011) and all applicable Nevada Division of Environmental Protection (NDEP) policies and regulations. This Closure Report provides justification for closure of CAU 443 and provides a summary of completed closure activities; describes the selected corrective action alternative; provides an implementation plan for long-term monitoring with well network maintenance and approaches/policies for institutional controls (ICs); and presents the contaminant, compliance, and use-restriction boundaries for the site.

  2. Well Installation Report for Corrective Action Unit 443, Central Nevada Test Area, Nye County, Nevada

    International Nuclear Information System (INIS)

    Tim Echelard

    2006-01-01

    A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites, Corrective Action Unit 443'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first phase involved the gathering and interpretation of geologic and hydrogeologic data, and inputting the data into a three-dimensional numerical model to depict groundwater flow. The output from the groundwater flow model was used in a transport model to simulate the migration of a radionuclide release (Pohlmann et al., 2000). The second phase of modeling (known as a Data Decision Analysis [DDA]) occurred after NDEP reviewed the first model. This phase was designed to respond to concerns regarding model uncertainty (Pohll and Mihevc, 2000). The third phase of modeling updated the original flow and transport model to incorporate the uncertainty identified in the DDA, and focused the model domain on the region of interest to the transport predictions. This third phase culminated in the calculation of contaminant boundaries for the site (Pohll et al., 2003). Corrective action alternatives were evaluated and an alternative was submitted in the ''Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface'' (NNSA/NSO, 2004). Based on the results of this evaluation, the preferred alternative for CAU 443 is Proof-of-Concept and Monitoring with Institutional Controls. This alternative was judged to meet all requirements for the technical components evaluated and will control inadvertent exposure to contaminated groundwater at CAU 443

  3. Closure Report for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2001-04-01

    The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action at the Test Cell A Leachfield System and to provide data confirming the corrective action. The Test Cell A Leachfield System is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 261. Remediation of CAU 261 is required under the FFACO (1996). CAU 261 is located in Area 25 of the Nevada Test Site (NTS) which is approximately 140 kilometers (87 miles) northwest of Las Vegas, Nevada (Figure 1). CAU 261 consists of two Corrective Action Sites (CASS): CAS 25-05-01, Leachfield; and CAS 25-05-07, Acid Waste Leach Pit (AWLP) (Figures 2 and 3). Test Cell A was operated during the 1960s and 1970s to support the Nuclear Rocket Development Station. Various operations within Building 3124 at Test Cell A resulted in liquid waste releases to the Leachfield and the AWLP. The following existing site conditions were reported in the Corrective Action Decision Document (CADD) (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999): Soil in the leachfield was found to exceed the Nevada Division of Environmental Protection (NDEP) Action Level for petroleum hydrocarbons, the U.S. Environmental Protection Agency (EPA) preliminary remediation goals for semi volatile organic compounds, and background concentrations for strontium-90; Soil below the sewer pipe and approximately 4.5 meters (m) (15 feet [ft]) downstream of the initial outfall was found to exceed background concentrations for cesium-137 and strontium-90; Sludge in the leachfield septic tank was found to exceed the NDEP Action Level for petroleum hydrocarbons and to contain americium-241, cesium-137, uranium-234, uranium-238, potassium-40, and strontium-90; No constituents of concern (COC) were identified at the AWLP. The NDEP-approved CADD (DOWNV, 1999) recommended Corrective Action Alternative 2, ''Closure of the Septic Tank and Distribution Box

  4. Testing the accelerating moment release (AMR) hypothesis in areas of high stress

    Science.gov (United States)

    Guilhem, Aurélie; Bürgmann, Roland; Freed, Andrew M.; Ali, Syed Tabrez

    2013-11-01

    Several retrospective analyses have proposed that significant increases in moment release occurred prior to many large earthquakes of recent times. However, the finding of accelerating moment release (AMR) strongly depends on the choice of three parameters: (1) magnitude range, (2) area being considered surrounding the events and (3) the time period prior to the large earthquakes. Consequently, the AMR analysis has been criticized as being a posteriori data-fitting exercise with no new predictive power. As AMR has been hypothesized to relate to changes in the state of stress around the eventual epicentre, we compare here AMR results to models of stress accumulation in California. Instead of assuming a complete stress drop on all surrounding fault segments implied by a back-slip stress lobe method, we consider that stress evolves dynamically, punctuated by the occurrence of earthquakes, and governed by the elastic and viscous properties of the lithosphere. We study the seismicity of southern California and extract events for AMR calculations following the systematic approach employed in previous studies. We present several sensitivity tests of the method, as well as grid-search analyses over the region between 1955 and 2005 using fixed magnitude range, radius of the search area and period of time. The results are compared to the occurrence of large events and to maps of Coulomb stress changes. The Coulomb stress maps are compiled using the coseismic stress from all M > 7.0 earthquakes since 1812, their subsequent post-seismic relaxation, and the interseismic strain accumulation. We find no convincing correlation of seismicity rate changes in recent decades with areas of high stress that would support the AMR hypothesis. Furthermore, this indicates limited utility for practical earthquake hazard analysis in southern California, and possibly other regions.

  5. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    International Nuclear Information System (INIS)

    Field, J.G.

    1994-01-01

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that 137 Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of 137 Cs in the gravel- and sand-size fractions

  6. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  7. Soil microbiota of Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Au, F.H.F.; Leavitt, V.D.

    1985-01-01

    The influence of two desert plants, Atriplex canescens and Eurotia lanata, on kind and abundance of soil microbiota was determined in soil samples collected from Area 13 of the Nevada Test Site. This study was part of a larger research program to elucidate the role of soil microorganisms on the biological availability and the mobility of soil-deposited plutonium. The fungi identified in the soil samples included Aspergillus, Penicillium, Rhizopus, Stachybotrys, stysanus, Circinella, Cheaetomium, and Fusarium. The numbers of bacteria and fungi were generally highest at the 2.5- to 5.0-cm soil depth at both the mound and the interspace sampling sites. The highest numbers of fungi were found around the mound. The relative abundance of Aspergillus increased with increasing distance from the plants, whereas that of Penicillium decreased. Dematiaceae and chaetomium, both cellulose decomposers, were highest in the 0- to 2.5-cm soil segment. The abundance and distribution of soil microorganisms capable of incorporating plutonium (and probably other radionuclides as well) around the plants investigated indicate that this may be a factor in the bioavailability and movement of plutonium in the edaphic system. 17 references, 1 figure, 27 tables

  8. Corrective Action Plan for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Fitzmaurice

    2000-08-01

    This Corrective Action Plan (CAP) has been prepared for the Corrective Action Unit (CAU)261 Area 25 Test Cell A Leachfield System in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). Investigation of CAU 261 was conducted from February through May of 1999. There were no Constituents of Concern (COCs) identified at Corrective Action Site (CAS) 25-05-07 Acid Waste Leach Pit (AWLP). COCs identified at CAS 25-05-01 included diesel-range organics and radionuclides. The following closure actions will be implemented under this plan: Because COCs were not found at CAS 25-05-07 AWLP, no action is required; Removal of septage from the septic tank (CAS 25-05-01), the distribution box and the septic tank will be filled with grout; Removal of impacted soils identified near the initial outfall area; and Upon completion of this closure activity and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site.

  9. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2008-01-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells

  10. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2008-09-01

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

  11. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    Science.gov (United States)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  12. A new laser reflectance system capable of measuring changing cross-sectional area of soft tissues during tensile testing.

    Science.gov (United States)

    Pokhai, Gabriel G; Oliver, Michele L; Gordon, Karen D

    2009-09-01

    Determination of the biomechanical properties of soft tissues such as tendons and ligaments is dependent on the accurate measurement of their cross-sectional area (CSA). Measurement methods, which involve contact with the specimen, are problematic because soft tissues are easily deformed. Noncontact measurement methods are preferable in this regard, but may experience difficulty in dealing with the complex cross-sectional shapes and glistening surfaces seen in soft tissues. Additionally, existing CSA measurement systems are separated from the materials testing machine, resulting in the inability to measure CSA during testing. Furthermore, CSA measurements are usually made in a different orientation, and with a different preload, prior to testing. To overcome these problems, a noncontact laser reflectance system (LRS) was developed. Designed to fit in an Instron 8872 servohydraulic test machine, the system measures CSA by orbiting a laser transducer in a circular path around a soft tissue specimen held by tissue clamps. CSA measurements can be conducted before and during tensile testing. The system was validated using machined metallic specimens of various shapes and sizes, as well as different sizes of bovine tendons. The metallic specimens could be measured to within 4% accuracy, and the tendons to within an average error of 4.3%. Statistical analyses showed no significant differences between the measurements of the LRS and those of the casting method, an established measurement technique. The LRS was successfully used to measure the changing CSA of bovine tendons during uniaxial tensile testing. The LRS developed in this work represents a simple, quick, and accurate way of reconstructing complex cross-sectional profiles and calculating cross-sectional areas. In addition, the LRS represents the first system capable of automatically measuring changing CSA of soft tissues during tensile testing, facilitating the calculation of more accurate biomechanical properties.

  13. Deformability Parameters of Varved Clays From the Iłów (Central Poland Area Based on the Selected Field Tests

    Directory of Open Access Journals (Sweden)

    Zawrzykraj Piotr Zbigniew

    2017-03-01

    Full Text Available This publication presents the results of research carried out for the ice-dammed clays of the Iłów region, formed during Vistula glaciation. Pressuremeter tests, dilatometer tests and static probes were made. The tests were performed on the study site in Piskorzec near Iłów. In this region, ice-dammed clays are present almost from the land surface reaching the thickness of about 11 m. This site is the westernmost experimental site of clays of the “Warsaw Ice-Dammed Lake” among those presented in the literature. Research and their analysis showed differences in deformability due to the test procedure in connection with the structure of varved clays. Pressuremeter test, even though it is the most time consuming and challenging among the tests performed, allows the most complete characteristics of deformability of varved clays to be obtained. Vertical profile of clays being studied appears to be fairly homogeneous in terms of mechanical properties. Nevertheless, some parts of the profile clearly differ from the average values. This indicates the rate of post sedimentary changes varied in different parts of research profile. The data obtained are consistent with the values for ice-dammed clays from Radzymin and Sochaczew areas. Comparison of the engineering properties of varved clays to other experimental sites points to their similar geological history. It confirms that the experimental sites belong to one ice-dammed lake covering the areas of the Warsaw Basin.

  14. Aerial radiological survey of Areas 18 and 20 Nevada Test Site. Date of survey: October-November 1980

    International Nuclear Information System (INIS)

    Feimster, E.L.

    1985-11-01

    Radiological surveys were conducted over Areas 18 and 20 at the Nevada Test Site (NTS) during the period 10 October through 13 November 1980. Separate surveys of the two areas were conducted simultaneously using arrays of NaI(Tl) scintillation crystals mounted on Messerschmitt-Bolkow-Blohm BO-105 and Hughes H-500 helicopters. Exposure rate contour maps due to total terrestrial gamma ray activity were produced for both areas. The most frequently occurring range of exposure rates was 17 to 25 μR/h for both Areas 18 and 20; the total range varied from 12 to 2000 μR/h. These values include an estimated cosmic contribution of 6 μR/h. An isocount rate contour map showing the distribution of count rates measured in the spectral window sensitive to cesium-137 was produced to show the extent of man-made contaminants in Area 18. In a similar manner, an isocount rate contour map showing the distribution of count rates measured in a spectral window sensitive to cobalt-60 was used to show the extent of man-made contaminants in Area 20. The extent of man-made contamination from the effluents of the various events in both areas shows patterns indicative of the prevailing winds during and after the events. Except for the presence of low levels of cesium-137 activity in the eastern half of Area 18, all contaminants can be correlated with the effluents of the various events. In Area 18, cesium-137 activity appears to be spread over about 30 to 40 percent of the eastern half; it does not appear to be directly associated with the events in this area. The distribution and level of background radiation in the two areas are consistent with those measured during previous surveys

  15. Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility

    International Nuclear Information System (INIS)

    Tanaka, M.; Uda, T.; Wang, J.; Fujiwara, O.

    2012-01-01

    For safety management at a magnetic confinement fusion-test facility, protection from not only ionising radiation, but also non-ionising radiation such as the leakage of static magnetic and electromagnetic fields is an important issue. Accordingly, the use of a commercially available personal RF monitor for multipoint area monitoring is proposed. In this study, the performance of both fast- and slow-type personal RF monitors was investigated by using a transverse electromagnetic cell system. The range of target frequencies was between 10 and 300 MHz, corresponding to the ion cyclotron range of frequency in a fusion device. The personal RF monitor was found to have good linearity, frequency dependence and isotropic response. However, the time constant for the electric field sensor of the slow-type monitor was much longer than that for the fast-type monitor. Considering the time-varying field at the facility, it is found that the fast-type monitor is suitable for multipoint monitoring at magnetic confinement fusion test facilities. (authors)

  16. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-09-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  17. Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    International Nuclear Information System (INIS)

    NSTec Environmental Management

    2007-01-01

    The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure

  18. Radiation area monitoring by wireless-communicating area monitor with surveillance camera

    International Nuclear Information System (INIS)

    Shimura, Mitsuo; Kobayashi, Hiromitsu; Kitahara, Hideki; Kobayashi, Hironobu; Okamoto, Shinji

    2004-01-01

    Aiming at a dose reduction and a work efficiency improvement for nuclear power plants that have high dose regions, we have developed our system of wireless-communicating Area Monitor with Surveillance Camera, and have performed an on-site test. Now we are implementing this Area Monitor with Surveillance Camera for a use as a TV camera in the controlled-area, which enables a personal computer to simultaneously display two or more dose values and site live images on the screen. For the radiation detector of this Area Monitor System, our wireless-communicating dosimeter is utilized. Image data are transmitted via a wireless Local Area Network (LAN). As a test result, image transmission of a maximum of 20 frames per second has been realized, which shows that this concept is a practical application. Remote-site monitoring also has been realized from an office desk located within the non-controlled area, adopting a Japan's wireless phone system, PHS (Personal Handy Phone) for the transmission interface. (author)

  19. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1997

    International Nuclear Information System (INIS)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency's (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods

  20. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.G.; Flotard, R.D.; Fontana, C.A.; Hennessey, P.A.; Maunu, H.K.; Mouck, T.L.; Mullen, A.A.; Sells, M.D.

    1999-01-01

    This report describes the Offsite Radiological Environmental Monitoring Program (OREMP) conducted during 1997 by the US Environmental Protection Agency`s (EPAs), Radiation and Indoor Environments National Laboratory, Las Vegas, Nevada. This laboratory operated an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling and analyzing milk, water, and air; by deploying and reading thermoluminescent dosimeters (TLDs); and using pressurized ionization chambers (PICs) to measure ambient gamma exposure rates with a sensitivity capable of detecting low level exposures not detected by other monitoring methods.

  1. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    International Nuclear Information System (INIS)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G.

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans

  2. Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

    1996-06-01

    This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

  3. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Energy Technology Data Exchange (ETDEWEB)

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  4. Development of a calibration methodology and tests of kerma area product meters; Desenvolvimento de uma metodologia de calibracao e testes de medidores de produto Kerma-Area

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Nathalia Almeida

    2013-07-01

    The quantity kerma area product (PKA) is important to establish reference levels in diagnostic radiology exams. This quantity can be obtained using a PKA meter. The use of such meters is essential to evaluate the radiation dose in radiological procedures and is a good indicator to make sure that the dose limit to the patient's skin doesn't exceed. Sometimes, these meters come fixed to X radiation equipment, which makes its calibration difficult. In this work, it was developed a methodology for calibration of PKA meters. The instrument used for this purpose was the Patient Dose Calibrator (PDC). It was developed to be used as a reference to check the calibration of PKA and air kerma meters that are used for dosimetry in patients and to verify the consistency and behavior of systems of automatic exposure control. Because it is a new equipment, which, in Brazil, is not yet used as reference equipment for calibration, it was also performed the quality control of this equipment with characterization tests, the calibration and an evaluation of the energy dependence. After the tests, it was proved that the PDC can be used as a reference instrument and that the calibration must be performed in situ, so that the characteristics of each X-ray equipment, where the PKA meters are used, are considered. The calibration was then performed with portable PKA meters and in an interventional radiology equipment that has a PKA meter fixed. The results were good and it was proved the need for calibration of these meters and the importance of in situ calibration with a reference meter. (author)

  5. Pre-Tiger Team Self-Assessment report

    International Nuclear Information System (INIS)

    1991-01-01

    The Sandia National Laboratories Pre-Tiger Team Self-Assessment Report contains an introduction that describes the three sites in Albuquerque, New Mexico, Kauai, Hawaii, and Tonopah, Nevada, and the activities associated therewith. The self-assessment was performed October 1990 through December 1990. The paper discusses key findings and root causes associated with problem areas; environmental protection assessment with respect to the Clean Air Act, Clean Water Act, Comprehensive Environmental Response, Compensation, and Liability Act and the Superfund amendments, Resource Conservation and Recovery Act; and other regulatory documents; safety and health assessment with respect to organization administration, quality assurance, maintenance, training, emergency preparedness, nuclear criticality safety, security/safety interface, transportation, radiation protection, occupational safety, and associated regulations; and management practices assessment. 5 figs

  6. 78 FR 65701 - Notice of Availability of the Nevada and Northeastern California Greater Sage-Grouse Draft Land...

    Science.gov (United States)

    2013-11-01

    ... easements; minimize herbicide use; close ACECs to oil, gas and geothermal leasing; allow locatable and... within PPMA and PGMAs; close to oil, gas, geothermal leasing within PPMA and within 4 miles of active...) Ely RMP (2008) Shoshone-Eureka RMP (1986) Tonopah RMP (1997) Wells RMP (1985) Winnemucca RMP (revision...

  7. Corrective Action Decision Document for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    US Department of Energy Nevada Operations Office

    1999-01-01

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Offices's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada. This corrective action investigation was conducted in accordance with the Corrective Action Investigation Plan for CAU 240 as developed under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 240 is comprised of three Corrective Action Sites (CASs): 25-07-01, Vehicle Washdown Area (Propellant Pad); 25-07-02, Vehicle Washdown Area (F and J Roads Pad); and 25-07-03, Vehicle Washdown Station (RADSAFE Pad). In March 1999, the corrective action investigation was performed to detect and evaluate analyte concentrations against preliminary action levels (PALs) to determine contaminants of concern (COCs). There were no COCs identified at CAS 25-07-01 or CAS 25-07-03; therefore, there was no need for corrective action at these two CASs. At CAS 25-07-02, diesel-range organics and radionuclide concentrations in soil samples from F and J Roads Pad exceeded PALs. Based on this result, potential CAAs were identified and evaluated to ensure worker, public, and environmental protection against potential exposure to COCs in accordance with Nevada Administrative Code 445A. Following a review of potential exposure pathways, existing data, and future and current operations in Area 25, two CAAs were identified for CAU 240 (CAS 25-07-02): Alternative 1 - No Further Action and Alternative 2 - Clean Closure by Excavation and Disposal. Alternative 2 was identified as the preferred alternative. This alternative was judged to meet all requirements for the technical components evaluated, compliance with all applicable state and federal regulations for closure of the site, as well as minimizing potential future exposure

  8. Study of cleft lip and palate deformities among the residents of the Semipalatinsk nuclear test site area in Kazakhstan

    International Nuclear Information System (INIS)

    Zhumadilova, A.; Sultanova, A.; Shabanbaeva, Zh.; Ergalieva, U.; Utulenova, G.; Abralina, Sh.; Okamoto, Tetsuji

    2010-01-01

    The aim was to investigate the association between long-term radiation exposure and the high prevalence of cleft lip and palate anomalies among the residents from exposed areas and to compare to non-exposed areas. A retrospective study of 716 case reports was carried out on cleft lip and palate deformities patients (1978-1998). The case reports were screened and studied for frequency of cleft lip and palate by gender and number of patients, including epidemiological studies of cleft lip and palate anomalies cases in 1000 newborns in the three zones of radiation risk where the hospitalized patients resided. The statistical analyses of the retrospective study of cleft lip and palate patients were estimated by X 2 -test and performed with the Stat View 5.0 statistical analysis program. 5,10 cases of cleft lip and palate patients per 1000 live births were calculated in the zone of maximum radiation risk, which is extremely high, and 2,30 cases of the anomalies per 1000 among the newborns in the zone of heightened radiation risk and both were significantly higher than those in the zone of minimum risk. The incidence varied in different years, from 5,66 per 1000 live births in 1978-1988 (at the time of nuclear testing) to 4,14 per 1000 live births in 1990-1998 (after the nuclear testing was stopped) in the area of maximum radiation risk and showed that the number of cleft lip and palate anomalies cases was significantly higher in both periods of time compare to the zones of heightened and minimum radiation risk. This study suggests that the high prevalence cleft lip and palate anomalies among the newborns from the exposed areas was due to the long-term radiation exposure.

  9. Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2004-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the 'Federal Facility Agreement and Consent Order' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions

  10. Strontium-90 and plutonium-239/240 accumulation and distribution in soil-vegetative cover of some Semipalatinsk test site areas

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Artem'ev, O.I.; Luk'yanova, Yu.A.; Sidorovich, T.V.; Silkina, G.P.; Kurmanbaeva, D.S.

    2001-01-01

    This paper presents results of field and laboratory studies of soil-vegetative cover contamination by 90 Sr and 239/240 Pu. Certain parameters of radionuclide migration in the environment of some former Semipalatinsk Test Site areas were determined. (author)

  11. Genetic effects of radiation and prediction of hereditary pathology of population of areas around the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Bigaliev, A.B.

    1998-01-01

    Epidemiological analysis of diseases and mortality of the population living in areas around Semipalatinsk test site is not only theoretically interesting in terms of the human being genetics, but is important for the health-care in practice, since it allows correct planning the score of medical social aid to the sick people and their families, including measures. Assessment of posterior consequences of low dose radiation effect on health of the population of the areas around the former Semipalatinsk nuclear test site is of special interest. Many underground, atmospheric and above-ground tests of nuclear weapon resulted in a significant increase of the oncologic and blood diseases rate among several generations of the effected people. Moreover, consequences of the above-ground and atmospheric tests of nuclear and hydrogen weapon will show up in the next century, taking into account the fact that the 'open' tests were ceased only at the middle of 60-th. The birth rate of children with the inherent intelligence defects was determined according to the accounting records of the new-born children within 1986-1992 years. Analysis of perinatal mortality was carried out based on the records on autopsy within 1985-1992 years. The two-fold increase of the onco diseases rate was revealed among children. The rate of spontaneous aborts in the Eginbulak district was 9.99% and exceeded the average rate in the region and indexes of other regions

  12. Ejecta from single-charge cratering explosions

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R H

    1970-05-15

    The objective was to obtain experimental data tracing the location of ejecta to its origin within the crater region. The experiment included ten high-explosive spherical charges weighing from 8 to 1000 pounds and detonated in a playa dry lake soil on the Tonopah Test Range. Each event included from 24 to 40 locations of distinctly different tracer material embedded in a plane in the expected crater region. Tracers consisted of glass, ceramic and bugle beads, chopped metal, and plastic wire. Results of this experiment yielded data on tracer dispersion as a function of charge weight, charge burial depth and tracer emplacement position. Tracer pattern parameters such as center-of-tracer mass, range to center-of-tracer mass, and angle to center-of-tracer mass were determined. There is a clear tendency for range (to center-of-tracer mass) and the size of the dispersion pattern to decrease as tracer emplacement depth increases. Increasing tracer emplacement depth and range tends to decrease the area over which tracers are dispersed on the ground surface. Tracers at the same scaled position relative to the charge were deposited closer to the crater (on a scaled basis) as charge weight was increased. (author)

  13. Soil Characterization Database for the Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Remortel, R. D. Van; Lee, Y. J.; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 3 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates, and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  14. Soil Characterization Database for the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Lee, Y. J.; Remortel, R. D. Van; Snyder, K. E.

    2005-01-01

    Soils were characterized in an investigation at the Area 5 Radioactive Waste Management Site at the U.S. Department of Energy Nevada Test Site in Nye County, Nevada. Data from the investigation are presented in four parameter groups: sample and site characteristics, U.S. Department of Agriculture (USDA) particle size fractions, chemical parameters, and American Society for Testing Materials-Unified Soil Classification System (ASTM-USCS) particle size fractions. Spread-sheet workbooks based on these parameter groups are presented to evaluate data quality, conduct database updates,and set data structures and formats for later extraction and analysis. This document does not include analysis or interpretation of presented data

  15. Corrective Action Plan for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    T. M. Fitzmaurice

    2000-01-01

    This Corrective Action Plan (CAP) has been prepared for the Corrective Action Unit (CAU)261 Area 25 Test Cell A Leachfield System in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection[NDEP] et al., 1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). Investigation of CAU 261 was conducted from February through May of 1999. There were no Constituents of Concern (COCs) identified at Corrective Action Site (CAS) 25-05-07 Acid Waste Leach Pit (AWLP). COCs identified at CAS 25-05-01 included diesel-range organics and radionuclides. The following closure actions will be implemented under this plan: Because COCs were not found at CAS 25-05-07 AWLP, no action is required; Removal of septage from the septic tank (CAS 25-05-01), the distribution box and the septic tank will be filled with grout; Removal of impacted soils identified near the initial outfall area; and Upon completion of this closure activity and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site

  16. Glass-surface area to solution-volume ratio and its implications to accelerated leach testing

    International Nuclear Information System (INIS)

    Pederson, L.R.; Buckwalter, C.Q.; McVay, G.L.; Riddle, B.L.

    1982-10-01

    The value of glass surface area to solution volume ratio (SA/V) can strongly influence the leaching rate of PNL 76-68 glass. The leaching rate is largely governed by silicon solubility constraints. Silicic acid in solution reduced the elemental release of all glass components. No components are leached to depths greater than that of silicon. The presence of the reaction layer had no measurable effect on the rate of leaching. Accelerated leach testing is possible since PNL 76-68 glass leaching is solubility-controlled (except at very low SA/V values). A series of glasses leached with SA/V x time = constant will yield identical elemental release

  17. Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. S. Tobiason

    2001-07-01

    This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 2000a).

  18. Measurement of Nuclear Interaction Rates in Crystal Using the CERN-SPS North Area Test Beams

    CERN Document Server

    Losito, R; Taratin, A

    2010-01-01

    A number of tests were performed in the North area of the SPS in view of investigating crystal-particles interactions for future application in hadron colliders. The rate of nuclear interactions was measured with 400 GeV proton beams directed into a silicon bent crystal. In this way the background induced by the crystal either in amorphous or in channeling orientation was revealed. The results provide fundamental information to put in perspective the use of silicon crystals to assist halo collimation in hadron colliders, whilst minimizing the induced loss.

  19. 76 FR 56968 - [Docket No. FAA-2011-0490; Airspace Docket No. 11-AWP-5

    Science.gov (United States)

    2011-09-15

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 71 [Docket No. FAA-2011... Administration (FAA), DOT. ACTION: Final rule. SUMMARY: This action modifies Class E airspace at Tonopah, NV, to... reference action under 1 CFR Part 51, subject to the annual revision of FAA Order 7400.9 and publication of...

  20. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    International Nuclear Information System (INIS)

    Andersson, Johan; Berglund, Johan; Follin, Sven; Hakami, Eva; Halvarson, Jan; Hermanson, Jan; Laaksoharju, Marcus; Rhen, Ingvar; Wahlgren, C.H.

    2002-08-01

    A special project has been conducted where the currently available data from the Laxemar area, which is part of the Simpevarp site, have been evaluated and interpreted into a Site Descriptive Model covering: geology, hydrogeology, hydrogeochemistry and rock mechanics. Description of the surface ecosystem has been omitted, since it was re-characterised in another, parallel, project. Furthermore, there has been no evaluation of transport properties. The project is primarily a methodology test. The lessons learnt will be implemented in the Site Descriptive Modelling during the coming site investigation. The intent of the project has been to explore whether available methodology for Site Descriptive Modelling based on surface and borehole data is adequate and to identify potential needs for development and improvement in the methodology. The project has developed, with limitations in scope, a Site Descriptive Model in local scale, corresponding to the situation after completion of the Initial Site Investigations for the Laxemar area (i.e. 'version 1.2' using the vocabulary of the general execution program for the site investigations). The Site Descriptive Model should be reasonable, but should not be regarded as a 'real' model. There are limitations both in input data and in the scope of the analysis. The measured (primary) data constitute a wide range of different measurement results including data from two deep core drilled boreholes. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modelling. Examples of such evaluations are estimation of surface geology, lineament interpretation, geological single hole interpretation, hydrogeological single hole interpretation and assessment of hydrogeochemical data. Furthermore, while cross discipline interpretation is encouraged there is also a need for transparency. This means that the evaluations first are made within each discipline and after this

  1. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  2. Closure Report for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Gustafason, D.L.

    2001-01-01

    The Area 25 Vehicle Washdown, Corrective Action Unit (CAU) 240, was clean-closed following the approved Corrective Action Decision Document closure alternative and in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU consists of thee Corrective Action Sites (CASs): 25-07-01 - Vehicle Washdown Area (Propellant Pad); 25-07-02 - Vehicle Washdown Area (F and J Roads Pad); and 25-07-03 - Vehicle Washdown Station (RADSAFE Pad). Characterization activities indicated that only CAS 25-07-02 (F and J Roads Pad) contained constituents of concern (COCs) above action levels and required remediation. The COCs detected were Total Petroleum Hydrocarbons (TPH) as diesel, cesium-137, and strontium-90. The F and J Roads Pad may have been used for the decontamination of vehicles and possibly disassembled engine and reactor parts from Test Cell C. Activities occurred there during the 1960s through early 1970s. The F and J Roads Pad consisted of a 9- by 5-meter (m) (30- by 15-foot [ft]) concrete pad and a 14- by 13-m (46-by 43-ft) gravel sump. The clean-closure corrective action consisted of excavation, disposal, verification sampling, backfilling, and regrading. Closure activities began on August 21, 2000, and ended on September 19, 2000. Waste disposal activities were completed on December 12, 2000. A total of 172 cubic meters (223 cubic yards) of impacted soil was excavated and disposed. The concrete pad was also removed and disposed. Verification samples were collected from the bottom and sidewalls of the excavation and analyzed for TPH diesel and 20-minute gamma spectroscopy. The sample results indicated that all impacted soil above remediation standards was removed. The closure was completed following the approved Corrective Action Plan. All impacted waste was disposed in the Area 6 Hydrocarbon Landfill. All non-impacted debris was disposed in the Area 9 Construction Landfill and the Area 23 Sanitary Landfill

  3. Closure Report for Corrective Action Unit 135: Areas 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2001-06-01

    Corrective Action Unit (CAU) 135, Area 25 Underground Storage Tanks, was closed in accordance with the approved Corrective Action Plan (DOE/NV, 2000). CAU 135 consists of three Corrective Action Sites (CAS). Two of these CAS's were identified in the Corrective Action Investigation Data Quality Objective meeting as being improperly identified as underground storage tanks. CAS 25-02-03 identified as the Deluge Valve Pit was actually an underground electrical vault and CAS 25-02-10 identified as an Underground Storage Tank was actually a former above ground storage tank filled with demineralized water. Both of these CAS's are recommended for a no further action closure. CAS 25-02-01 the Underground Storage Tanks commonly referred to as the Engine Maintenance Assembly and Disassembly Waste Holdup Tanks and Vault was closed by decontaminating the vault structure and conducting a radiological verification survey to document compliance with the Nevada Test Site unrestricted use release criteria. The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine Maintenance, Assembly, and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive and cell service area drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999, discussed in ''The Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada'' (DOE/NV, 199a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples exceeded the preliminary action levels for polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. The CAU 135 closure activities consisted of scabbling radiological ''hot spots

  4. Hydrogeologic data for existing excavations and the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    1993-12-01

    The Special Projects Section of Reynolds Electrical ampersand Engineering Co., Inc. is responsible for characterizing the subsurface geology and hydrology of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) for the US Department of Energy, Nevada Operations Office (DOE/NV), Office of Environmental Restoration and Waste Management Waste Management Division. Geologic description, in situ testing, and laboratory analyses of alluvium exposed in existing excavations are important subparts to the Area 5 Site Characterization Program designed to determine the suitability of the RWMS for disposal of low level waste mixed waste and transuranic waste. The primary purpose of the Existing Excavation Project is two-fold: first, to characterize important hydrologic properties of the near surface alluvium, thought to play an important role in the infiltration and redistribution of water and solutes through the upper unsaturated zone at the Area 5 RWMS; and second, to provide guidance for the design of future sampling and testing programs. The justification for this work comes from the state of Nevada review of the original DOE/NV Part B Permit application submitted in 1988 for disposal of mixed wastes at the RWMS. The state of Nevada determined that the permit was deficient in characterization data concerning the hydrogeology of the unsaturated zone. DOE/NV agreed with the state and proposed the study of alluvium exposed in existing excavations as one step toward satisfying these important site characterization data requirements. Other components of the site characterization process include the Science Trench Borehole and Pilot Well Projects

  5. Computer-Based Testing: Test Site Security.

    Science.gov (United States)

    Rosen, Gerald A.

    Computer-based testing places great burdens on all involved parties to ensure test security. A task analysis of test site security might identify the areas of protecting the test, protecting the data, and protecting the environment as essential issues in test security. Protecting the test involves transmission of the examinations, identifying the…

  6. Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Rawlinson

    2001-09-01

    Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

  7. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles[mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a)

  8. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV Operations Office

    1999-05-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and criteria for conducting site investigation activities at CAU 232, Area 25 Sewage Lagoons. Corrective Action Unit 232 consists of CAS 25-03-01, Sewage Lagoon, located in Area 25 of the Nevada Test Site (NTS). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Area 25 Sewage Lagoons (Figure 1-2) (IT, 1999b) are located approximately 0.3 mi south of the Test Cell 'C' (TCC) Facility and were used for the discharge of sanitary effluent from the TCC facility. For purposes of this discussion, this site will be referred to as either CAU 232 or the sewage lagoons.

  9. The Campi Flegrei Blind Test: Evaluating the Imaging Capability of Local Earthquake Tomography in a Volcanic Area

    Directory of Open Access Journals (Sweden)

    E. Priolo

    2012-01-01

    Full Text Available During the 1982–1984 bradyseismic crises in the Campi Flegrei area (Italy, the University of Wisconsin deployed a network of seismological stations to record local earthquakes. In order to analyse the potential of the recorded data in terms of tomographic imaging, a blind test was recently set up and carried out in the framework of a research project. A model representing a hypothetical 3D structure of the area containing the Campi Flegrei caldera was also set up, and a synthetic dataset of time arrivals was in turn computed. The synthetic dataset consists of several thousand P- and S-time arrivals, computed at about fourteen stations. The tomographic inversion was performed by four independent teams using different methods. The teams had no knowledge of either the input velocity model or the earthquake hypocenters used to create the synthetic dataset. The results obtained by the different groups were compared and analysed in light of the true model. This work provides a thorough analysis of the earthquake tomography potential of the dataset recording the seismic activity at Campi Flegrei in the 1982–1984 period. It shows that all the tested earthquake tomography methods provide reliable low-resolution images of the background velocity field of the Campi Flegrei area, but with some differences. However, none of them succeeds in detecting the hypothetical structure details (i.e. with a size smaller than about 1.5–2 km, such as a magmatic chamber 4 km deep and especially the smaller, isolated bodies, which represent possible magmatic chimneys and intrusions.

  10. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA.

  11. 2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443

    International Nuclear Information System (INIS)

    2009-01-01

    This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA

  12. 75 FR 70917 - Environmental Impacts Statements; Notice Of Availability

    Science.gov (United States)

    2010-11-19

    ... the Federal Register. EIS No. 20100444, Final EIS, BLM, NV, Tonopah Solar Energy Crescent Dunes Solar Energy Project, a 7,680-Acre Right-of-Way (ROW) on Public Lands to Construct a Concentrated Solar Thermal... Restart an Idled Production Line and Expand Contiguous Sections of the Open Pit Iron Ore Mine, located...

  13. Solubility of plutonium and americium-241 from rumen contents of cattle grazing on plutonium-contaminated desert vegetation in in vitro bovine gastrointestinal fluids - August 1975 to January 1977

    International Nuclear Information System (INIS)

    Barth, J.; Giles, K.R.; Brown, K.W.

    1985-01-01

    The alimentary solubility of plutonium and americium-241 ingested by cattle grazing at Area 13 of the Nevada Test Site and the Clean Slate II site on the Tonopah Test Range in Nevada was studied in a series of experiments. For each experiment, or trial, rumen contents collected from a fistulated steer or a normal animals at the time of sacrifice were incubated in simulated bovine gastrointestinal fluids, and the solubility of plutonium and americium was analyzed following the abomasal, duodenal, jejunal, and lower intestinal digestive states. For Area 13, the peak plutonium-238 solubilities ranged from 1.09 to 9.60 percent for animals grazing in the inner enclosure that surrounds ground zero (GZ); for animals grazing in the outer enclosure, the peaks ranged from 1.86 to 18.46%. The peak plutonium-239 solubilities ranged from 0.71 to 4.81% for animals from the inner enclosure and from 0.71 to 3.61% for animals from the outer enclosure. Plutonium-238 was generally more soluble than plutonium-239. Plutonium ingested by cattle grazing in the outer enclosure was usually more soluble than plutonium ingested by cattle grazing in the inner enclosure. The highest concentrations of plutonium in the rumen contents of cattle grazing in the inner enclosure were found in trials conducted during August and November 1975 and January 1976. These concentrations decreased during the February, May, and July 1976 trials. The decrease was followed by an increase in plutonium concentration during the November 1976 trial. The concentration of americium-241 followed the same trend. 13 references, 13 tables

  14. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    K. B. Campbell email = campbek@nv.doe.gov

    2002-01-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are

  15. Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    D. S. Tobiason

    2001-01-01

    This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office[DOE/NV], 2000a)

  16. 2008 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-03-30

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs) for each of the facilities, with the results submitted annually to U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) performed an annual review in fiscal year (FY) 2008 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs. This annual summary report presents data and conclusions from the FY 2008 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

  17. 2008 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses

    International Nuclear Information System (INIS)

    2009-01-01

    The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs) for each of the facilities, with the results submitted annually to U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) performed an annual review in fiscal year (FY) 2008 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs. This annual summary report presents data and conclusions from the FY 2008 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R and D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R and D activities were reviewed to determine the adequacy of the CAs.

  18. The MuCool Test Area and RF Program

    International Nuclear Information System (INIS)

    Torun, Y.; Huang, D.; Norem, J.; Palmer, Robert B.; Stratakis, Diktys; Bross, A.; Chung, M.; Jansson, A.; Moretti, A.; Yonehara, K.; Li, D.

    2010-01-01

    The MuCool RF Program focuses on the study of normal conducting RF structures operating in high magnetic field for applications in muon ionization cooling for Neutrino Factories and Muon Colliders. Here we give an overview of the program, which includes a description of the test facility and its capabilities, the current test program, and the status of a cavity that can be rotated in the magnetic field, which allows for a detailed study of the maximum stable operating gradient vs. magnetic field strength and angle.

  19. Closure Report for Corrective Action Unit 110: Areas 3 RWMS U-3ax/bl Disposal Unit, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Smith

    2001-08-01

    This Closure Report (CR) has been prepared for the Area 3 Radioactive Waste Management Site (RWMS) U-3ax/bl Disposal Unit Corrective Action Unit (CAU) 110 in accordance with the reissued (November 2000) Resource Conservation and Recovery Act (RCRA) Part B operational permit NEV HW009 (Nevada Division of Environmental Protection [NDEP], 2000) and the Federal Facility and Consent Order (FFACO) (NDEP et al., 1996). CAU 110 consists of one Corrective Action Site 03-23-04, described as the U-3ax/bl Subsidence Crater. Certifications of closure are located in Appendix A. The U-3ax/bl is a historic disposal unit within the Area 3 RWMS located on the Nevada Test Site (NTS). The unit, which was formed by excavating the area between two subsidence craters (U-3ax and U-3bl), was operationally closed in 1987. The U-3ax/bl disposal unit was closed under the RCRA, as a hazardous waste landfill. Existing records indicate that, from July 1968 to December 1987, U-3ax/bl received 2.3 x 10{sup 5} cubic meters (m{sup 3}) (8.12 x 10{sup 6} cubic feet [ft{sup 3}]) of waste. NTS atmospheric nuclear device testing generated approximately 95% of the total waste volume disposed of in U-3ax/bl; 80% of the total volume was generated from the Waste Consolidation Project. Area 3 is located in Yucca Flat, within the northeast quadrant of the NTS. The Yucca Flat watershed is a structurally closed basin encompassing an area of approximately 780 square kilometers (300 square miles). The structural geomorphology of Yucca Flat is typical of the Basin and Range Physiographic Province. Yucca Flat lies in one of the most arid regions of the country. Water balance calculations for Area 3 indicate that it is normally in a state of moisture deficit.

  20. Prospects for a Muon Spin Resonance Facility in the MuCool Test Area

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, John A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-04-12

    This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance facility, which would make it the only such facility in the US. This report reviews the basic muon production concepts studied and operationally implemented at TRIUMF, PSI, and RAL and their application to the MTA facility. Two scenarios were determined feasible. One represents an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that transports the primary beam to an existing high-intensity beam absorber located outside of the hall. Another, upgraded stage, involves an optimized production target pile and high-intensity absorber installed inside the experimental hall and potentially multiple secondary muon lines. In either scenario, with attention to target design, the MTA can host enabling and competitive Muon Spin Resonance experiments

  1. Standard Test Method for Gravimetric Determination of Nonvolatile Residue (NVR) in Environmentally Controlled Areas for Spacecraft

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the determination of nonvolatile residue (NVR) fallout in environmentally controlled areas used for the assembly, testing, and processing of spacecraft. 1.2 The NVR of interest is that which is deposited on sampling plate surfaces at room temperature: it is left to the user to infer the relationship between the NVR found on the sampling plate surface and that found on any other surfaces. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  2. Interpretation of time-domain electromagnetic soundings in the Calico Hills area, Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Kauahikaua, J.

    A controlled source, time domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The geoelectric structure was determined as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves are qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered earth Marquardt inversion computer program. The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm meters.

  3. Facilitating the exploitation of ERTS imagery using snow enhancement techniques. [geological mapping of New England test area

    Science.gov (United States)

    Wobber, F. J.; Martin, K. R. (Principal Investigator); Amato, R. V.; Leshendok, T.

    1974-01-01

    The author has identified the following significant results. The procedure for conducting a regional geological mapping program utilizing snow-enhanced ERTS-1 imagery has been summarized. While it is recognized that mapping procedures in geological programs will vary from area to area and from geologist to geologist, it is believed that the procedure tested in this project is applicable over a wide range of mapping programs. The procedure is designed to maximize the utility and value of ERTS-1 imagery and aerial photography within the initial phase of geological mapping programs. Sample products which represent interim steps in the mapping formula (e.g. the ERTS Fracture-Lineament Map) have been prepared. A full account of these procedures and products will be included within the Snow Enhancement Users Manual.

  4. Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    International Nuclear Information System (INIS)

    1999-01-01

    This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant

  5. Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, E. C.; Spalding, B. P.; Lee, S. Y.; Hyder, L. K.

    1989-01-01

    As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

  6. Photoreactions in Phycomyces. Responses to the stimulation of narrow test areas with ultraviolet light.

    Science.gov (United States)

    DELBRUECK, M; VARJU, D

    1961-07-01

    Equipment has been developed for ultraviolet illumination of sharply bounded test areas of the growing zone of sporangiophores of Phycomyces. The growing zone is opaque for this light and the tropic responses are negative. Periodic short narrow stimuli on alternating sides produce periodic tropic responses when applied at x > 0.5 mm, but none for x 0.1 mm. The lag between stimulus and response is 3.3 min. for any x > 0.5 mm. For smaller x the lag increases progressively. In all cases the tropic bend occurs at values of x > 0.5 mm. Sustained tropic stimuli, applied at constant height relative to ground, produce relatively sharp tropic bends. The center of the bend is at all times close to the simultaneous position of the stimulated area. The boundaries of a light-adapted zone move less than 0.1 mm in 10 min. relative to the sporangium. It is concluded that the receiving and adapting structures do not move relative to the sporangium, and that the responding system does not move relative to ground. The two systems move relative to each other with the speed of growth. The responding system does not extend above x = 0.5 mm.

  7. Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project.

    Science.gov (United States)

    Cutting, Elizabeth M; Overby, Casey L; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R; Beitelshees, Amber L

    Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease.

  8. Assessing Groundwater Model Uncertainty for the Central Nevada Test Area

    International Nuclear Information System (INIS)

    Pohll, Greg; Pohlmann, Karl; Hassan, Ahmed; Chapman, Jenny; Mihevc, Todd

    2002-01-01

    The purpose of this study is to quantify the flow and transport model uncertainty for the Central Nevada Test Area (CNTA). Six parameters were identified as uncertain, including the specified head boundary conditions used in the flow model, the spatial distribution of the underlying welded tuff unit, effective porosity, sorption coefficients, matrix diffusion coefficient, and the geochemical release function which describes nuclear glass dissolution. The parameter uncertainty was described by assigning prior statistical distributions for each of these parameters. Standard Monte Carlo techniques were used to sample from the parameter distributions to determine the full prediction uncertainty. Additional analysis is performed to determine the most cost-beneficial characterization activities. The maximum radius of the tritium and strontium-90 contaminant boundary was used as the output metric for evaluation of prediction uncertainty. The results indicate that combining all of the uncertainty in the parameters listed above propagates to a prediction uncertainty in the maximum radius of the contaminant boundary of 234 to 308 m and 234 to 302 m, for tritium and strontium-90, respectively. Although the uncertainty in the input parameters is large, the prediction uncertainty in the contaminant boundary is relatively small. The relatively small prediction uncertainty is primarily due to the small transport velocities such that large changes in the uncertain input parameters causes small changes in the contaminant boundary. This suggests that the model is suitable in terms of predictive capability for the contaminant boundary delineation

  9. Serological and molecular diagnostic tests for canine visceral leishmaniasis in Brazilian endemic area: one out of five seronegative dogs are infected.

    Science.gov (United States)

    Lopes, E G; Sevá, A P; Ferreira, F; Nunes, C M; Keid, L B; Hiramoto, R M; Ferreira, H L; Oliveira, T M F S; Bigotto, M F D; Galvis-Ovallos, F; Galati, E A B; Soares, R M

    2017-09-01

    Euthanasia of infected dogs is one of the measures adopted in Brazil to control visceral leishmaniasis (VL) in endemic areas. To detect infected dogs, animals are screened with the rapid test DPP® Visceral Canine Leishmaniasis for detection of antibodies against K26/K39 fusion antigens of amastigotes (DPP). DPP-positives are confirmed with an immunoenzymatic assay probing soluble antigens of promastigotes (ELISA), while DPP-negatives are considered free of infection. Here, 975 dogs from an endemic region were surveyed by using DPP, ELISA and real-time PCR (qPCR) for the diagnosis of VL. When DPP-negative dogs were tested by qPCR applied in blood and lymph node aspirates, 174/887 (19·6%) were positive in at least one sample. In a second sampling using 115 cases, the DPP-negative dogs were tested by qPCR in blood, lymph node and conjunctival swab samples, and 36/79 (45·6%) were positive in at least one sample. Low-to-moderate pairwise agreement was observed between all possible pair of tests. In conclusion, the official diagnosis of VL in dogs in Brazilian endemic areas failed to accuse an expressive number of infected animals and the impact of the low accuracy of serological tests in the success of euthanasia-based measure for VL control need to be assessed.

  10. Arcjet nozzle area ratio effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  11. Arcjet Nozzle Area Ratio Effects

    Science.gov (United States)

    Curran, Francis M.; Sarmiento, Charles J.; Birkner, Bjorn W.; Kwasny, James

    1990-01-01

    An experimental investigation was conducted to determine the effect of nozzle area ratio on the operating characteristics and performance of a low power dc arcjet thruster. Conical thoriated tungsten nozzle inserts were tested in a modular laboratory arcjet thruster run on hydrogen/nitrogen mixtures simulating the decomposition products of hydrazine. The converging and diverging sides of the inserts had half angles of 30 and 20 degrees, respectively, similar to a flight type unit currently under development. The length of the diverging side was varied to change the area ratio. The nozzle inserts were run over a wide range of specific power. Current, voltage, mass flow rate, and thrust were monitored to provide accurate comparisons between tests. While small differences in performance were observed between the two nozzle inserts, it was determined that for each nozzle insert, arcjet performance improved with increasing nozzle area ratio to the highest area ratio tested and that the losses become very pronounced for area ratios below 50. These trends are somewhat different than those obtained in previous experimental and analytical studies of low Re number nozzles. It appears that arcjet performance can be enhanced via area ratio optimization.

  12. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 1

    International Nuclear Information System (INIS)

    1997-12-01

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This closure report documents the strategy and analytical results that support the clean closure or closure in place of each of the components within CAU 93. In addition, the report documents all deviations from the approved closure plan and provides rationale for all deviations

  13. Testing and intercomparison of model predictions of radionuclide migration from a hypothetical area source

    International Nuclear Information System (INIS)

    O'Brien, R.S.; Yu, C.; Zeevaert, T.; Olyslaegers, G.; Amado, V.; Setlow, L.W.; Waggitt, P.W.

    2008-01-01

    This work was carried out as part of the International Atomic Energy Agency's EMRAS program. One aim of the work was to develop scenarios for testing computer models designed for simulating radionuclide migration in the environment, and to use these scenarios for testing the models and comparing predictions from different models. This paper presents the results of the development and testing of a hypothetical area source of NORM waste/residue using two complex computer models and one screening model. There are significant differences in the methods used to model groundwater flow between the complex models. The hypothetical source was used because of its relative simplicity and because of difficulties encountered in finding comprehensive, well-validated data sets for real sites. The source consisted of a simple repository of uniform thickness, with 1 Bq g -1 of uranium-238 ( 238 U) (in secular equilibrium with its decay products) distributed uniformly throughout the waste. These approximate real situations, such as engineered repositories, waste rock piles, tailings piles and landfills. Specification of the site also included the physical layout, vertical stratigraphic details, soil type for each layer of material, precipitation and runoff details, groundwater flow parameters, and meteorological data. Calculations were carried out with and without a cover layer of clean soil above the waste, for people working and living at different locations relative to the waste. The predictions of the two complex models showed several differences which need more detailed examination. The scenario is available for testing by other modelers. It can also be used as a planning tool for remediation work or for repository design, by changing the scenario parameters and running the models for a range of different inputs. Further development will include applying models to real scenarios and integrating environmental impact assessment methods with the safety assessment tools currently

  14. Strength and durability tests of pipeline supports for the areas of above-ground routing under the influence of operational loads

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-03-01

    Full Text Available The present article deals with integrated research works and tests of pipeline supports for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe” which is laid in the eternally frozen grounds. In order to ensure the above-ground routing method for the oil pipeline “Zapolyarye - Pur-pe” and in view of the lack of construction experience in case of above-ground routing of oil pipelines, the leading research institute of JSC “Transneft” - LLC “NII TNN” over the period of August, 2011 - September, 2012 performed a research and development work on the subject “Development and production of pipeline supports and pile foundation test specimens for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe”. In the course of the works, the test specimens of fixed support, linear-sliding and free-sliding pipeline supports DN1000 and DN800 were produced and examined. For ensuring the stable structural reliability of the supports constructions and operational integrity of the pipelines the complex research works and tests were performed: 1. Cyclic tests of structural elements of the fixed support on the test bed of JSC “Diascan” by means of internal pressure and bending moment with the application of specially prepared equipment for defining the pipeline supports strength and durability. 2. Tests of the fixed support under the influence of limit operating loads and by means of internal pressure for confirming the support’s integrity. On the test bed there were simulated all the maximum loads on the support (vertical, longitudinal, side loadings, bending moment including subsidence of the neighboring sliding support and, simultaneously, internal pressure of the carried medium. 3. Cyclic tests of endurance and stability of the displacements of sliding supports under the influence of limit operating loads for confirming their operation capacity. Relocation of the pipeline on the sliding

  15. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    V. Yucel

    2001-09-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

  16. Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    V. Yucel

    2001-01-01

    This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA)

  17. Risk factor assessment to anticipate performance in the National Developmental Screening Test in children from a disadvantaged area.

    Science.gov (United States)

    Montes, Alejandro; Pazos, Gustavo

    2016-02-01

    Identifying children at risk of failing the National Developmental Screening Test by combining prevalences of children suspected of having inapparent developmental disorders (IDDs) and associated risk factors (RFs) would allow to save resources. 1. To estimate the prevalence of children suspected of having IDDs. 2. To identify associated RFs. 3. To assess three methods developed based on observed RFs and propose a pre-screening procedure. The National Developmental Screening Test was administered to 60 randomly selected children aged between 2 and 4 years old from a socioeconomically disadvantaged area from Puerto Madryn. Twenty-four biological and socioenvironmental outcome measures were assessed in order to identify potential RFs using bivariate and multivariate analyses. The likelihood of failing the screening test was estimated as follows: 1. a multivariate logistic regression model was developed; 2. a relationship was established between the number of RFs present in each child and the percentage of children who failed the test; 3. these two methods were combined. The prevalence of children suspected of having IDDs was 55.0% (95% confidence interval: 42.4%-67.6%). Six RFs were initially identified using the bivariate approach. Three of them (maternal education, number of health checkups and Z scores for height-for-age, and maternal age) were included in the logistic regression model, which has a greater explanatory power. The third method included in the assessment showed greater sensitivity and specificity (85% and 79%, respectively). The estimated prevalence of children suspected of having IDDs was four times higher than the national standards. Seven RFs were identified. Combining the analysis of risk factor accumulation and a multivariate model provides a firm basis for developing a sensitive, specific and practical pre-screening procedure for socioeconomically disadvantaged areas. Sociedad Argentina de Pediatría.

  18. Area Safety Program for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Rappe, G.M.

    1984-10-01

    Overall the Area Safety Program has proved to be a very successful operation. There is no doubt that a safety program organized through line management is the best way to involve all personnel. Naturally, when the program was first started, there was some criticism and a certain resistance on the part of a few individuals to fully participate. However, once the program was underway and it could be seen that it was working to everyone's advantage, this reluctance disappeared and a spirit of full cooperation is now enjoyed. It is very important that for this success to continue there must be a two way flow of information, both from the Area Safety Coordinators up through line management, and from senior management, with decisions and answers, back down through the management chain with the utmost dispatch. As with all programs, there is still room for improvement. This program has started a review cycle with a view to streamlining certain areas and possibly increasing its scope in others

  19. Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area

    International Nuclear Information System (INIS)

    Purtymun, W.D.

    1995-01-01

    Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment

  20. Development of a calibration methodology and tests of kerma area product meters

    International Nuclear Information System (INIS)

    Costa, Nathalia Almeida

    2013-01-01

    The quantity kerma area product (PKA) is important to establish reference levels in diagnostic radiology exams. This quantity can be obtained using a PKA meter. The use of such meters is essential to evaluate the radiation dose in radiological procedures and is a good indicator to make sure that the dose limit to the patient's skin doesn't exceed. Sometimes, these meters come fixed to X radiation equipment, which makes its calibration difficult. In this work, it was developed a methodology for calibration of PKA meters. The instrument used for this purpose was the Patient Dose Calibrator (PDC). It was developed to be used as a reference to check the calibration of PKA and air kerma meters that are used for dosimetry in patients and to verify the consistency and behavior of systems of automatic exposure control. Because it is a new equipment, which, in Brazil, is not yet used as reference equipment for calibration, it was also performed the quality control of this equipment with characterization tests, the calibration and an evaluation of the energy dependence. After the tests, it was proved that the PDC can be used as a reference instrument and that the calibration must be performed in situ, so that the characteristics of each X-ray equipment, where the PKA meters are used, are considered. The calibration was then performed with portable PKA meters and in an interventional radiology equipment that has a PKA meter fixed. The results were good and it was proved the need for calibration of these meters and the importance of in situ calibration with a reference meter. (author)

  1. An aerial radiological survey of Areas 16 and 30, Nevada Test Site: Date of survey: June 1983

    International Nuclear Information System (INIS)

    Bluitt, C.M.

    1986-10-01

    An aerial radiological survey of the Nevada Test Site (NTS) was conducted for the US Department of Energy (DOE). The survey period was from 1 June to 16 June 1983, during which airborne measurements were obtained over Areas 16 and 30. The data were used to generate exposure rate, cobalt-60, and cesium-137 spatial distribution maps. The aerial survey results are expressed as exposure rate, cesium-137, and cobalt-60 isopleth contours, superimposed on NTS maps. 12 refs., 16 figs

  2. Association between education and domestic violence among women being offered an HIV test in urban and rural areas in Kenya.

    Science.gov (United States)

    Abuya, Benta A; Onsomu, Elijah O; Moore, DaKysha; Piper, Crystal N

    2012-07-01

    The objective of this study was to examine the association between education and domestic violence among women being offered an HIV test in urban and rural areas in Kenya. A sample selection of women who experienced physical (n = 4,308), sexual (n = 4,309), and emotional violence (n = 4,312) aged 15 to 49 allowed for the estimation of the association between education and domestic violence with further analysis stratified by urban and rural residence. The main outcome of interest was a three-factor (physical, sexual, and emotional) measure for violence with the main predictor being education. Nearly half of all domestic violence, physical (46%), sexual (45%), and emotional (45%) occurred among women aged 15 to 29. After adjusting for confounding variables, women who resided in urban areas and had a postprimary/vocational/secondary and college/university education were 26% (OR = 0.74, 95% CI: [0.64, 0.86]), p education respectively. This was 17% (OR = 0.83, 95% CI: [0.73, 0.94]), p women who resided in rural areas. A surprising finding was that women residing in rural areas with less than a primary education were 35% less likely to have experienced sexual violence (OR = 0.65, 95% CI: [0.43, 0.99]), p education. These findings suggest that physical, sexual, and emotional violence were prevalent in Kenya among married and formerly married women. This study indicates that more research is needed to understand factors for HIV/AIDS among Kenyan women who have specifically tested positive for HIV or identified as AIDS-positive and the implications for women's health.

  3. Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    1994-01-01

    The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction 2 O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils

  4. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    International Nuclear Information System (INIS)

    L. V. Street

    2007-01-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility

  5. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 390: AREAS 9, 10, AND 12 SPILL SITES, NEVADA TEST SITE, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-10-01

    Corrective Action Unit (CAU) 390 consists four Corrective Action Sites (CASs) located in Areas 9, 10, and 12 of the Nevada Test Site. The closure activities performed at the CASs include: (1) CAS 09-99-03, Wax, Paraffin: 2 cubic yards of drilling polymer was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (2) CAS 10-99-01, Epoxy Tar Spill: 2 cubic feet of asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (3) CAS 10-99-03, Tar Spills: 3 cubic yards of deteriorated asphalt waste was removed on June 20,2005, and transported to the Area 9 Landfill for disposal. (4) CAS 12-25-03, Oil Stains (2); Container: Approximately 16 ounces of used oil were removed from ventilation equipment on June 28,2005, and recycled. One CAS 10-22-19, Drums, Stains, was originally part of CAU 390 but was transferred out of CAU 390 and into CAU 550, Drums, Batteries, and Lead Materials. The transfer was approved by the Nevada Division of Environmental Protection on August 19,2005, and a copy of the approval letter is included in Appendix D of this report.

  6. Examination of the geology and seismology associated with area 410 at the Nevada test site

    International Nuclear Information System (INIS)

    Hannon, W.J.; McKague, H.L.

    1975-01-01

    This report summarizes regional and local geology at the Nevada Test Site and identifies major tectonic features and active faults. Sufficient information is given to perform seismic safety analyses of present and future critical construction at the Super Kukla Site and Sites A and B in Area 410. However, examination of local minor faults and joints and soil thickness studies should be undertaken at construction time. The Cane Spring Fault is identified as the most significant geologic feature from the viewpoint of the potential seismic risk. Predictions of the peak ground acceleration (0.9 g), the response spectra for the Safe Shutdown Earthquake, and the maximum displacement across the Cane Spring Fault are made. (U.S.)

  7. Interpretation of time-domain electromagnetic soundings in the Calico Hills area, Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Kauahikaua, J.

    1981-01-01

    A controlled source, time-domain electromagnetic (TDEM) sounding survey was conducted in the Calico Hills area of the Nevada Test Site (NTS). The goal of this survey was the determination of the geoelectric structure as an aid in the evaluation of the site for possible future storage of spent nuclear fuel or high-level nuclear waste. The data were initially interpreted with a simple scheme that produces an apparent resistivity versus depth curve from the vertical magnetic field data. These curves can be qualitatively interpreted much like standard Schlumberger resistivity sounding curves. Final interpretation made use of a layered-earth Marquardt inversion computer program (Kauahikaua, 1980). The results combined with those from a set of Schlumberger soundings in the area show that there is a moderately resistive basement at a depth no greater than 800 meters. The basement resistivity is greater than 100 ohm-meters

  8. Diagnostic test of predicted height model in Indonesian elderly: a study in an urban area

    Directory of Open Access Journals (Sweden)

    Fatmah Fatmah

    2010-08-01

    Full Text Available Aim In an anthropometric assessment, elderly are frequently unable to measure their height due to mobility and skeletal deformities. An alternative is to use a surrogate value of stature from arm span, knee height, and sitting height. The equations developed for predicting height in Indonesian elderly using these three predictors. The equations put in the nutritional assessment card (NSA of older people. Before the card which is the first new technology in Indonesia will be applied in the community, it should be tested. The study aimed was to conduct diagnostic test of predicted height model in the card compared to actual height.Methods Model validation towards 400 healthy elderly conducted in Jakarta City with cross-sectional design. The study was the second validation test of the model besides Depok City representing semi urban area which was undertaken as the first study.Result Male elderly had higher mean age, height, weight, arm span, knee height, and sitting height as compared to female elderly. The highest correlation between knee height and standing height was similar in women (r = 0.80; P < 0.001 and men (r = 0.78; P < 0.001, and followed by arm span and sitting height. Knee height had the lowest difference with standing height in men (3.13 cm and women (2.79 cm. Knee height had the biggest sensitivity (92.2%, and the highest specificity on sitting height (91.2%.Conclusion Stature prediction equation based on knee-height, arm span, and sitting height are applicable for nutritional status assessment in Indonesian elderly. (Med J Indones 2010;19:199-204Key words: diagnostic test, elderly, predicted height model

  9. Points in the set-up of tests for fMRI. Toward the delineation of language-competent areas in clinical practice

    International Nuclear Information System (INIS)

    Takashima, Hisaharu; Ejima, Mitsuhiro; Takeyama, Mamoru; Yamaguchi, Masami; Sato, Yoshino

    2001-01-01

    This hospital has performed fMRI of language-competent areas of the brain to identify the language-dominant hemisphere and obtain the configuration of the focus in the language-dominant side of the brain. Until now, signals have been detected in only two of fifteen patients who were diagnosed by language tests of a last-syllable word chain. In the present experiment, we tried to have subjects select the type of test. The result was that changes in signals were detected in eight of ten patients. Although the set-up of tests for fMRI is said to hold significant value, clear-cut studies to back this up have rarely been seen. Because clinical medicine treats patients who have difficulty in communication or suffer from aphasia, it is important to take into consideration individual variations and to set up a test suitable for, or achievable by, these individuals. The present method enabled us to avoid failure in examination caused by unsuccessful tests. (author)

  10. Points in the set-up of tests for fMRI. Toward the delineation of language-competent areas in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Hisaharu; Ejima, Mitsuhiro; Takeyama, Mamoru; Yamaguchi, Masami; Sato, Yoshino [Tokyo Women' s Medical Coll. (Japan). Hospital

    2001-06-01

    This hospital has performed fMRI of language-competent areas of the brain to identify the language-dominant hemisphere and obtain the configuration of the focus in the language-dominant side of the brain. Until now, signals have been detected in only two of fifteen patients who were diagnosed by language tests of a last-syllable word chain. In the present experiment, we tried to have subjects select the type of test. The result was that changes in signals were detected in eight of ten patients. Although the set-up of tests for fMRI is said to hold significant value, clear-cut studies to back this up have rarely been seen. Because clinical medicine treats patients who have difficulty in communication or suffer from aphasia, it is important to take into consideration individual variations and to set up a test suitable for, or achievable by, these individuals. The present method enabled us to avoid failure in examination caused by unsuccessful tests. (author)

  11. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  12. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 115: AREA 25 TEST CELL A FACILITY, NEVADA TEST SITE, NEVADA

    International Nuclear Information System (INIS)

    2006-01-01

    This Closure Report (CR) describes the activities performed to close CAU 115, Area 25 Test Cell A Facility, as presented in the NDEP-approved SAFER Plan (NNSA/NSO, 2004). The SAFER Plan includes a summary of the site history, process knowledge, and closure standards. This CR provides a summary of the completed closure activities, documentation of waste disposal, and analytical and radiological data to confirm that the remediation goals were met and to document final site conditions. The approved closure alternative as presented in the SAFER Plan for CAU 115 (NNSA/NSO, 2004) was clean closure; however, closure in place was implemented under a Record of Technical Change (ROTC) to the SAFER Plan when radiological surveys indicated that the concrete reactor pad was radiologically activated and could not be decontaminated to meet free release levels. The ROTC is included as Appendix G of this report. The objectives of closure were to remove any trapped residual liquids and gases, dispose regulated and hazardous waste, decontaminate removable radiological contamination, demolish and dispose aboveground structures, remove the dewar as a best management practice (BMP), and characterize and restrict access to all remaining radiological contamination. Radiological contaminants of concern (COCs) included cobalt-60, cesium-137, strontium-90, uranium-234/235/236/238, and plutonium-239/240. Additional COCs included Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and asbestos

  13. LYCORIS - A Large Area Strip Telescope

    CERN Document Server

    Krämer, U; Stanitzki, M; Wu, M

    2018-01-01

    The LYCORIS Large Area Silicon Strip Telescope for the DESY II Test Beam Facility is presented. The DESY II Test Beam Facility provides elec- tron and positron beams for beam tests of up to 6 GeV. A new telescope with a large 10 × 20 cm2 coverage area based on a 25 μm pitch strip sensor is to be installed within the PCMAG 1 T solenoid. The current state of the system is presented.

  14. Cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites including representative costs of cleanup and treatment of contaminated areas

    International Nuclear Information System (INIS)

    Talmage, S.S.; Chilton, B.D.

    1987-09-01

    This review summarizes available information on cleanup procedures at the Nevada Test Site and at other radioactively contaminated sites. Radionuclide distribution and inventory, size of the contaminated areas, equipment, and cleanup procedures and results are included. Information about the cost of cleanup and treatment for contaminated land is presented. Selected measures that could be useful in estimating the costs of cleaning up radioactively contaminated areas are described. 76 refs., 16 tabs

  15. Contact area measurements on structured surfaces

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Jensen, Sebastian Hoppe Nesgaard; De Chiffre, Leonardo

    In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means.......In connection with the use of brass specimens featuring structured surfaces in a tribology test, an algorithm was developed for automatic measurement of the contact area by optical means....

  16. Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    2007-04-01

    The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

  17. 2012 Groundwater Monitoring Report Central Nevada Test Area, Subsurface Corrective Action Unit 443

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-04-01

    The Central Nevada Test Area was the site of a 0.2- to 1-megaton underground nuclear test in 1968. The surface of the site has been closed, but the subsurface is still in the corrective action process. The corrective action alternative selected for the site was monitoring with institutional controls. Annual sampling and hydraulic head monitoring are conducted as part of the subsurface corrective action strategy. The site is currently in the fourth year of the 5-year proof-of-concept period that is intended to validate the compliance boundary. Analytical results from the 2012 monitoring are consistent with those of previous years. Tritium remains at levels below the laboratory minimum detectable concentration in all wells in the monitoring network. Samples collected from reentry well UC-1-P-2SR, which is not in the monitoring network but was sampled as part of supplemental activities conducted during the 2012 monitoring, indicate concentrations of tritium that are consistent with previous sampling results. This well was drilled into the chimney shortly after the detonation, and water levels continue to rise, demonstrating the very low permeability of the volcanic rocks. Water level data from new wells MV-4 and MV-5 and recompleted well HTH-1RC indicate that hydraulic heads are still recovering from installation and testing. Data from wells MV-4 and MV-5 also indicate that head levels have not yet recovered from the 2011 sampling event during which several thousand gallons of water were purged. It has been recommended that a low-flow sampling method be adopted for these wells to allow head levels to recover to steady-state conditions. Despite the lack of steady-state groundwater conditions, hydraulic head data collected from alluvial wells installed in 2009 continue to support the conceptual model that the southeast-bounding graben fault acts as a barrier to groundwater flow at the site.

  18. Closure Report for Corrective Action Unit 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    A. T. Urbon

    2003-07-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 330: Areas 6, 22, and 23 Tanks and Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO of 1996), and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 330: Areas 6, 22, and 23 Tanks and Spill Sites, Nevada Test Site (NTS), Nevada (U.S. Department of Energy, National Nuclear Security Administration Nevada Operation Office [NNSA/NV], 2001). CAU 330 consists of the following four Corrective Action Sites (CASs): 06-02-04, 22-99-06, 23-01-02, and 23-25-05 (Figure 1).

  19. Wide area change detection with satellite imagery for locating underground nuclear testing

    International Nuclear Information System (INIS)

    Canty, M.J.; Jasani, B.; Schlittenhardt, J.

    2001-01-01

    nicest aspects of the MAD method: It sorts different categories of change into different image components. Another very important characteristic of the MAD transformation is that it is invariant to linear transformations of the data. This means that if for example the sensors used for the two images have different gains, or if atmospheric haze attenuates the reflectance measurement in one of the images but not in the other, the results of the analysis will be unaffected. A Bayesian model of the probability distribution of the MAD components intensities is applied to determine automatically the decision thresholds for change and no change. The prerequisite image-to-image registration is carried out automatically with the help contour and comer matching to determine ground control points, followed by nearest-neighbor resampling. The inclusion of higher resolution panchromatic information into the procedure without loss of spectral discrimination is accomplished via wavelet fusion with the multispectral channels. A computer program CDSAT (Change Detection with SATellite imagery), which implements a user-friendly graphical environment for performing the various steps involved, is described briefly. The technique has been applied successfully to detect the exact position of an underground nuclear test in Rajasthan in 1998. In the present paper we discuss further results for tests carried out in Lop Nor, China in the 1990's and at the Nevada test site in the 1980's. Historical LANDSAT TM satellite images are used for change detection. Results are correlated with seismic and ground truth data and conclusions are drawn regarding the applicability of wide area change detection to complement seismic verification of the Comprehensive Test Ban Treaty

  20. Photo-patch and patch tests in patients with dermatitis over the photo-exposed areas: A study of 101 cases from a tertiary care centre in India.

    Science.gov (United States)

    Sharma, Vinod Kumar; Bhari, Neetu; Wadhwani, Ashok Roopchand; Bhatia, Riti

    2018-02-01

    Many patients with dermatitis over photo-exposed body areas are positive to many contact allergens and have a pre-existing allergic contact dermatitis. This study included patients who presented to a tertiary centre in India with dermatitis on photo-exposed body areas suspected of chronic actinic dermatitis. Their detailed histories were recorded and cutaneous and systemic examinations were performed. Patch testing was done in all the patients and photo-patch testing was carried out in 86 patients. Altogether 101 patients were included (69 males, 32 females). The most common presentation was lichenified hyperpigmented plaques on the photo-exposed sites. Photosensitivity was recorded in 64 (63%) patients and summer exacerbation in 52 (52%). Exposure to the Parthenium hysterophorus weed was recorded in 70 (69%) patients, 27 (26.7%) had a history of hair dye application and 20 (20%) had a history of atopy. Photo-patch test was positive in 11 (12.8%) patients and patch testing was positive in 71 (70%). Parthenium hysterophorus was the most common allergen implicated and was positive in three (4%) photo-patch and 52 (52%) patch tests. Other positive photo-patch test allergens were perfume mix, balsam of Peru, thiuram mix, Compositae mix and promethazine hydrochloride. Other common patch test allergens were parthenolide, colophony, fragrance mix and p-phenylenediamine (PPD) base. In the Indian population parthenium and perfume mix are the most common photoallergens in patients with dermatitis over photo-exposed areas, while parthenium, colophony, fragrance mix and PPD are the common positive allergens. © 2016 The Australasian College of Dermatologists.

  1. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Cox, D. H.

    2000-01-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved

  2. Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    D. H. Cox

    2000-07-01

    The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

  3. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    International Nuclear Information System (INIS)

    Farnham, Irene

    2016-01-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  4. Underground Test Area (UGTA) Closure Report for Corrective Action Unit 98: Frenchman Flat Nevada National Security Site, Nevada, Revision 1 ROTC-1

    Energy Technology Data Exchange (ETDEWEB)

    Farnham, Irene [Navarro-Intera, LLC (N-I), Las Vegas, NV (United States)

    2016-08-01

    This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impacted groundwater

  5. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Restoration

    2009-07-31

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative

  6. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the

  7. Corrective Action Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Obi, C.M.

    2000-01-01

    The Area 25 Reactor Maintenance, Assembly, and Disassembly Decontamination Facility is identified in the Federal Facility Agreement and Consent Order (FFACO) as Corrective Action Unit (CAU) 254. CAU 254 is located in Area 25 of the Nevada Test Site and consists of a single Corrective Action Site CAS 25-23-06. CAU 254 will be closed, in accordance with the FFACO of 1996. CAU 254 was used primarily to perform radiological decontamination and consists of Building 3126, two outdoor decontamination pads, and surrounding soil within an existing perimeter fence. The site was used to decontaminate nuclear rocket test-car hardware and tooling from the early 1960s through the early 1970s, and to decontaminate a military tank in the early 1980s. The site characterization results indicate that, in places, the surficial soil and building materials exceed clean-up criteria for organic compounds, metals, and radionuclides. Closure activities are expected to generate waste streams consisting of nonhazardous construction waste. petroleum hydrocarbon waste, hazardous waste, low-level radioactive waste, and mixed waste. Some of the wastes exceed land disposal restriction limits and will require off-site treatment before disposal. The recommended corrective action was revised to Alternative 3- ''Unrestricted Release Decontamination, Verification Survey, and Dismantle Building 3126,'' in an addendum to the Correction Action Decision Document

  8. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    K. B. Campbell

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill

  9. Testing the methodology for site descriptive modelling. Application for the Laxemar area

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Johan [JA Streamflow AB, Aelvsjoe (Sweden); Berglund, Johan [SwedPower AB, Stockholm (Sweden); Follin, Sven [SF Geologic AB, Stockholm (Sweden); Hakami, Eva [Itasca Geomekanik AB, Stockholm (Sweden); Halvarson, Jan [Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden); Hermanson, Jan [Golder Associates AB, Stockholm (Sweden); Laaksoharju, Marcus [Geopoint (Sweden); Rhen, Ingvar [Sweco VBB/VIAK, Stockholm (Sweden); Wahlgren, C.H. [Sveriges Geologiska Undersoekning, Uppsala (Sweden)

    2002-08-01

    A special project has been conducted where the currently available data from the Laxemar area, which is part of the Simpevarp site, have been evaluated and interpreted into a Site Descriptive Model covering: geology, hydrogeology, hydrogeochemistry and rock mechanics. Description of the surface ecosystem has been omitted, since it was re-characterised in another, parallel, project. Furthermore, there has been no evaluation of transport properties. The project is primarily a methodology test. The lessons learnt will be implemented in the Site Descriptive Modelling during the coming site investigation. The intent of the project has been to explore whether available methodology for Site Descriptive Modelling based on surface and borehole data is adequate and to identify potential needs for development and improvement in the methodology. The project has developed, with limitations in scope, a Site Descriptive Model in local scale, corresponding to the situation after completion of the Initial Site Investigations for the Laxemar area (i.e. 'version 1.2' using the vocabulary of the general execution program for the site investigations). The Site Descriptive Model should be reasonable, but should not be regarded as a 'real' model. There are limitations both in input data and in the scope of the analysis. The measured (primary) data constitute a wide range of different measurement results including data from two deep core drilled boreholes. These data both need to be checked for consistency and to be interpreted into a format more amenable for three-dimensional modelling. Examples of such evaluations are estimation of surface geology, lineament interpretation, geological single hole interpretation, hydrogeological single hole interpretation and assessment of hydrogeochemical data. Furthermore, while cross discipline interpretation is encouraged there is also a need for transparency. This means that the evaluations first are made within each discipline

  10. Systematic testing of flood adaptation options in urban areas through simulations

    Science.gov (United States)

    Löwe, Roland; Urich, Christian; Sto. Domingo, Nina; Mark, Ole; Deletic, Ana; Arnbjerg-Nielsen, Karsten

    2016-04-01

    While models can quantify flood risk in great detail, the results are subject to a number of deep uncertainties. Climate dependent drivers such as sea level and rainfall intensities, population growth and economic development all have a strong influence on future flood risk, but future developments can only be estimated coarsely. In such a situation, robust decision making frameworks call for the systematic evaluation of mitigation measures against ensembles of potential futures. We have coupled the urban development software DAnCE4Water and the 1D-2D hydraulic simulation package MIKE FLOOD to create a framework that allows for such systematic evaluations, considering mitigation measures under a variety of climate futures and urban development scenarios. A wide spectrum of mitigation measures can be considered in this setup, ranging from structural measures such as modifications of the sewer network over local retention of rainwater and the modification of surface flow paths to policy measures such as restrictions on urban development in flood prone areas or master plans that encourage compact development. The setup was tested in a 300 ha residential catchment in Melbourne, Australia. The results clearly demonstrate the importance of considering a range of potential futures in the planning process. For example, local rainwater retention measures strongly reduce flood risk a scenario with moderate increase of rain intensities and moderate urban growth, but their performance strongly varies, yielding very little improvement in situations with pronounced climate change. The systematic testing of adaptation measures further allows for the identification of so-called adaptation tipping points, i.e. levels for the drivers of flood risk where the desired level of flood risk is exceeded despite the implementation of (a combination of) mitigation measures. Assuming a range of development rates for the drivers of flood risk, such tipping points can be translated into

  11. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  12. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    International Nuclear Information System (INIS)

    1999-01-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document

  13. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    USDOE/NV

    1999-05-01

    The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document.

  14. Tests of innovative photon detectors and integrated electronics for the large-area CLAS12 ring-imaging Cherenkov detector

    Energy Technology Data Exchange (ETDEWEB)

    Contalbrigo, M., E-mail: contalbrigo@fe.infn.it

    2015-07-01

    A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab. Its aim is to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and a densely packed and highly segmented photon detector. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). Extensive tests have been performed on Hamamatsu H8500 and novel flat multi-anode photomultipliers under development and on various types of silicon photomultipliers. A large scale prototype based on 28 H8500 MA-PMTs has been realized and tested with few GeV/c hadron beams at the T9 test-beam facility of CERN. In addition a small prototype was used to study the response of customized SiPM matrices within a temperature interval ranging from 25 down to −25 °C. The preliminary results of the individual photon detector tests and of the prototype performance at the test-beams are here reported.

  15. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Allison Urban

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site.

  16. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Allison Urban

    1999-01-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site

  17. Dose per unit area - a study of elicitation of nickel allergy

    DEFF Research Database (Denmark)

    Fischer, Louise Arup; Menné, Torkil; Johansen, Jeanne Duus

    2007-01-01

    BACKGROUND: Experimental sensitization depends upon the amount of allergen per unit skin area and is largely independent of the area size. OBJECTIVES: This study aimed at testing if this also applies for elicitation of nickel allergy. PATIENTS/METHODS: 20 nickel allergic individuals were tested...... with a patch test and a repeated open application test (ROAT). Nickel was applied on small and large areas. The varying parameters were area, total dose and dose per unit area. RESULTS: In the patch test, at a low concentration [15 microg nickel (microg Ni)/cm(2)], there were significantly higher scores...... on the large area with the same dose per area as the small area. At higher concentrations of nickel, no significant differences were found. In the ROAT at low concentration (6.64 microg Ni/cm(2)), it was found that the latency period until a reaction appeared was significantly shorter on the large area...

  18. Gamma emitting radionuclides of the Test Reactor Area leaching ponds

    International Nuclear Information System (INIS)

    Millard, J.B.; Whicker, F.W.; Markham, O.D.

    1978-01-01

    Radioactive leaching ponds adjacent to the Test Reactor Area (TRA) located on the Idaho National Engineering Laboratory (INEL) Site were investigated to determine the seasonal distribution and ecological behavior of gamma emitting radionuclides. The potential hazards to man and the environment were considered through the biological export of radioactive materials from the ponds. Both biotic and abiotic pond compartments were sampled. Fall and winter biomass estimates showed that benthic periphyton comprised 52%, macrophytes and littoral vegetation 35%, and seston 10% of the total for all biotic compartments. Concentrations and concentration factors (CFs) for fall and winter are presented for Cr-51, Co-60, Zr-95, I-131, Cs-137, Ba-140, and Ce-141. Concentrations and CFs ranged over seven orders of magnitude for the various nuclides and compartments. Seston and zooplankton had the highest concentrations followed by periphyton, sediment, macrophytes, littoral plants, willow, and filtered water. Arthropods had variable concentrations and CFs. Significant seasonal differences were observed for concentrations and CFs in seston, macrophytes, and littoral vegetation. A compartmental inventory of total gamma emitting activity accounted for 254 Ci (9.25 TBq) of the 731 Ci (24.8 TBq) estimated to remain in the ponds at the time of sampling. Filtered water and surface sediments contained 99% of the total radioactivity, while periphyton and seston had most of the remaining 1%. An estimate of the avian export rate of radioactivity from the TRA ponds showed that potentially harvestable mourning doves had the lowest rate with 0.02 μCi/y. External tissues of migratory waterfowl were found to contribute 90% of the total exported activity for all birds. The total avian export rate was estimated to be 1350 μCi/y during 1975

  19. Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

    Directory of Open Access Journals (Sweden)

    Sargsyan Samvel Volodyaevich

    2014-09-01

    Full Text Available Fire-resistance testing laboratory for building products and constructions is a production room with a substantial excess heat (over 23 W/m . Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces. The laboratory room is considered as an object consisting of two control volumes (CV, in each of which there may be air intake and air removal, pollutant absorption or emission. In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room. General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory. Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area. In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work area. Exhaust air containing pollutants (combustion products, is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research process in a ventilated room more accurately and finding the air exchange in the lab room during the tests on a more reasonable basis, allowing to provide safe working conditions for the staff without

  20. Association between Education and Domestic Violence among Women Being Offered an HIV Test in Urban and Rural Areas in Kenya

    Science.gov (United States)

    Abuya, Benta A.; Onsomu, Elijah O.; Moore, DaKysha; Piper, Crystal N.

    2012-01-01

    The objective of this study was to examine the association between education and domestic violence among women being offered an HIV test in urban and rural areas in Kenya. A sample selection of women who experienced physical (n = 4,308), sexual (n = 4,309), and emotional violence (n = 4,312) aged 15 to 49 allowed for the estimation of the…