WorldWideScience

Sample records for area savannah river

  1. M-area basin closure-Savannah River Site

    International Nuclear Information System (INIS)

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway

  2. Socioeconomic baseline characterization for the Savannah River Plant area

    International Nuclear Information System (INIS)

    This report presents the social and economic characteristics of the environs of the Savannah River Plant (SRP). The characterization is keyed to those areas of the social and economic environment that could be impacted by the construction and operation of major facilities at SRP. The data consists of past trends and existing characteristics of the area's land use; its demographic, social, and economic profile; regional government; community services; housing, transportation; and historical, scenic, and archeological resources. Published documents, reports, and brochures were the primary sources of all the data presented in this document. When current published data was unavailable, representatives of federal, state, and local agencies were contacted by telephone. Conversations were followed by letters of verification, which were reviewed and verified by the agency representative

  3. Hydrologic Properties of Aquifers in the Central Savannah River Area

    Energy Technology Data Exchange (ETDEWEB)

    Snipes, D.S.; Benson, S.M.; Price Jr., Van; Temples, T.J.

    1996-01-02

    The hydrologic properties of selected aquifer systems underlying the Milhaven and Girard sites in Georgia were determined through a series of aquifer performance tests performed from October, 1994 to January, 1995. At the Milhaven site, the systems under investigation consisted of the upper, middle and lower components of the Upper Floridan, the lower Dublin, and the lower Midville aquifers. At the Dublin site, only the lower Dublin and lower Midville aquifers were tested. In addition, the hydrologic properties of the lower Midville aquifer underlying the P, B and D Areas at the Savannah River Site were determined by a series of aquifer tests conducted in 1993 and 1994. The tests generally consisted of collecting water level and atmospheric data for 24 hours followed by a 72 hour pump test and a subsequent 72 hour recovery period. These tests were designed to determine the aquifer properties over a large area, to determine whether any hydrologic boundaries existed in the area, and to find out if leakance could be induced through the confining units which separated the aquifer units.

  4. Safety analysis, 200 Area, Savannah River Plant: Separations area operations

    International Nuclear Information System (INIS)

    The nev HB-Line, located on the fifth and sixth levels of Building 221-H, is designed to replace the aging existing HB-Line production facility. The nev HB-Line consists of three separate facilities: the Scrap Recovery Facility, the Neptunium Oxide Facility, and the Plutonium Oxide Facility. There are three separate safety analyses for the nev HB-Line, one for each of the three facilities. These are issued as supplements to the 200-Area Safety Analysis (DPSTSA-200-10). These supplements are numbered as Sup 2A, Scrap Recovery Facility, Sup 2B, Neptunium Oxide Facility, Sup 2C, Plutonium Oxide Facility. The subject of this safety analysis, the, Plutonium Oxide Facility, will convert nitrate solutions of 238Pu to plutonium oxide (PuO2) powder. All these new facilities incorporate improvements in: (1) engineered barriers to contain contamination, (2) barriers to minimize personnel exposure to airborne contamination, (3) shielding and remote operations to decrease radiation exposure, and (4) equipment and ventilation design to provide flexibility and improved process performance

  5. Savannah River Plant, Project 8980: Engineering and design history of No. 400 Area. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    The description and development, selection and descriptions of processes, design, and specialized design problems are presented for the 400-D Area at the Savannah River Plant. These facilities were used for the production of high purity heavy water for use as a moderator and coolant in the 100 Areas. Also, deuterium gas and hydrogen sulfide were produced here.

  6. An aerial radiological survey of the southwest drainage basin area of the Savannah River Site

    International Nuclear Information System (INIS)

    An aerial radiological survey was conducted over a 106-square-mile area of the Savannah River Site (SRS), formerly the Savannah River Plant. The survey was conducted from August 24 through September 8, 1988, to collect baseline radiological data over the area. Both natural and man-made gamma emitting radionuclides were detected in the area. The detected man-made sources were confined to creeks, branches, and SRS facilities in the surveyed area and were a result of SRS operations. Naturally-occurring radiation levels were consistent with those levels detected in adjacent areas during previous surveys. The annual dose levels were within the range of levels found throughout the United States

  7. Savannah River Plant construction [100 Area History]: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This report discusses five Reactor (100) Areas constructed at SRP. They were designated as 100-C, K, L, P and R. A minimum distance of two miles separated any two of the areas which were laid out in the form of a semi-circle, Each area contained approximately 40 permanent buildings and facilities for a total of 200 buildings for all of the 100 Areas. Construction was started on the R Area first and this was the first area to be completed and accepted by Operations. Construction of the other areas was started and completed in the following sequence: P, L, K and C. The difference in the design and construction of the various facilities in these areas is noted under the individual building discussion on the following pages of this section of the Construction History and also in the du Pont Engineering and Design History. In the series of manufacturing operations the separation of fissionable materials produced in the 100 Areas is accomplished by chemical and physical means in the 200 Areas These are the 200-F and 200-H Areas which have duplicate facilities in the process phase. However, a central laboratory, area shops, laundry, metallurgical and storage magazine buildings were constructed in the 200-F Area only and serve both areas. These activities are also presented in this report.

  8. DOE Research Set-Aside Areas of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  9. DOE Research Set-Aside Areas of the Savannah River Site

    International Nuclear Information System (INIS)

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site's total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside

  10. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  11. Performance of sand filters for the separations areas at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Two new large sand filters, 30.5 by 100 m, were constructed and put into service at the Savannah River Plant (SRP) in 1975 and 1976. These units were designed to provide final filtration of process air - one for each of the two separations areas. Eventual flow will be 4950 m3/min (205,000 scfm) on each unit when all facilities are connected. They were built as replacements for the original sand filters that began operation in 1954 and 1955. The new filters have been operated in parallel with the old units following partial failure of the old units from acid attack and erosion of the concrete support structure for the sand beds. The design of the new units was based on extensive tests at SRP on characteristics of different sands. The performance of the new filters meets criteria for pressure drop, flow capacity, and efficiency. The efficiencies measured by DOP test are greater than 99.98%. Parallel operation reduces air velocity through the beds, which increases efficiency. A characteristic of sand filter performance has been low apparent efficiency at low input; efficiency increases as the activity input rises. This is attributed to a small entrainment release from the large amount of activity already sorbed on the filter; this release controls and lowers the calculated efficiency at low input. An analysis of efficiency as a function of input activity projects efficiencies greater than 99.99% for large inputs that might be characteristic of large internal accidents. The data indicate that DOP efficiencies can be used in hazards analyses to determine accident consequences. Routine evaluation of filter releases can be used for surveillance to establish that performance is normal at other times

  12. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wike, L.D.; Wilde, E.W. (eds.)

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) which temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.

  13. Area Completion Strategies at Savannah River Site: Characterization for Closure and Beyond

    International Nuclear Information System (INIS)

    During the first four decades of its 56 year existence, the Savannah River Site (SRS) was a key supplier of nuclear material for national defense. During the 1990's, the site's primary missions became waste site closure, environmental restoration, and deactivation and decommissioning (D and D) of remnant cold war apparatus. Since 1989, with the approval of State and Federal regulatory agencies and with the participation of interested stakeholders, SRS has implemented a final remedy for a majority of the more than 500 individual waste sites at the former nuclear materials complex. These waste sites range from small, inert rubble pits to large, heavy industrial areas and radioactive waste disposal grounds. The closure and final remediation of these waste sites mark significant progress toward achieving SRS's overarching goal of reducing or eliminating future environmental damage and human health threats. However, larger challenges remain. For example, what are appropriate and achievable end-states for decommissioned nuclear facilities? What environmental and human health risks are associated with these end-states? To answer these questions within the strictures of smaller budgets and accelerated schedules, SRS is implementing an 'area completion' strategy that: - unites several discrete waste units into one conceptual model, - integrates historically disparate environmental characterization and D and D activities - reduces the number of required regulatory documents, - and, in some cases, compresses schedules for achieving a stakeholder-approved end-state. The area completion approaches being implemented at SRS reflect an evolution of the traditional RCRA/ CERCLA remedial process. Area completion strategies: - group waste units and/or D and D facilities together for characterization, remediation, and possible reuse; - identify data needs and integrate data collection activities for D and D, characterization, and remediation; - identify problems that require action

  14. Savannah River Site Environmental Implentation Plan

    International Nuclear Information System (INIS)

    This report describes the organizational responsibilities for the Savannah River Site Environmental program. Operations, Engineering and projects, Environment, safety, and health, Quality assurance, and the Savannah River Laboratory are described

  15. Land Use Baseline Report Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Noah, J.C.

    1995-06-29

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

  16. Land Use Baseline Report Savannah River Site

    International Nuclear Information System (INIS)

    This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area

  17. Biofouling of microfilters at the Savannah River Site F/H-Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site. The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents orginating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The filters utilized in the process are Norton Ceraflo trademark ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically improved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance

  18. Biofouling of microfilters at the Savannah River Site F/H-area effluent treatment facility

    International Nuclear Information System (INIS)

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site, The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents originating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The Filters utilized in the process are Norton Ceraflo ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically unproved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance. (author)

  19. Radioactive effluents in Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1991-11-27

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years.

  20. Savannah River Laboratory monthly report, August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  1. Savannah River Laboratory monthly report, August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  2. Savannah River Laboratory monthly report, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  3. Savannah River Laboratory monthly report, October 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separations operations; environmental concerns; and waste management. (FI)

  4. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  5. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  6. Savannah River Site dose control

    International Nuclear Information System (INIS)

    Health physicists from the Brookhaven National Laboratory (BNL) visited the Savannah River Site (SRS) as one of 12 facilities operated by the Department of Energy (DOE) contractors with annual collective dose equivalents greater than 100 person-rem (100 person-cSv). Their charter was to review, evaluate and summarize as low as reasonably achievable (ALARA) techniques, methods and practices as implemented. This presentation gives an overview of the two selected ALARA practices implemented at the SRS: Administrative Exposure Limits and Goal Setting. These dose control methods are used to assure that individual and collective occupational doses are ALARA and within regulatory limits

  7. 33 CFR 80.715 - Savannah River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 80.715 Section 80.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Seventh District § 80.715 Savannah River. A line drawn from...

  8. 33 CFR 117.371 - Savannah River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Savannah River. 117.371 Section 117.371 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Georgia § 117.371 Savannah River. (a) The draw of...

  9. Savannah River Site Environmental Report for 1998

    International Nuclear Information System (INIS)

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program

  10. Savannah River Site Environmental Report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  11. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    International Nuclear Information System (INIS)

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples

  12. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  13. Interpretation of Geological Correlation Borings 1, 2, 3 in the A/M Area of the Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

    1997-06-01

    The Geophysical Correlation Boring (GCB) Program was organized to provide a comprehensive correlation capability between geological core and advanced borehole geophysical data, surface high resolution reflection seismic information and, when available, borehole geochemical and cone penetrometer data. This report provides results and initial geological interpretations of borings one, two, and three (GCB-1, GCB-2, GCB-3) located within the Upper Three Runs Watershed (A/M Area) of the Savannah River Site.

  14. RADIONUCLIDE DATA PACKAGE FOR PERFORMANCE ASSESSMENT CALCULATIONS RELATED TO THE E-AREA LOW-LEVEL WASTE FACILITY AT THE SAVANNAH RIVER SITE.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J

    2007-03-20

    The Savannah River Site disposes of low-level radioactive waste within on-site engineered disposal facilities. The Savannah River Site must demonstrate that these disposals meet the requirements of DOE Order 435 . 1 through a process known as performance assessment (PA). The objective of this document is to provide the radionuclide -specific data needed for the PA calculations . This work is part of an on-going program to periodically review and update existing PA work as new data becomes available. Revision of the E -Area Low-Level Waste Facility PA is currently underway. The number of radionuclides selected to undergo detailed analysis in the PA is determined by a screening process. The basis of this process is described. Radionuclide-specific data for half-lives, decay modes, daughters, dose conversion factors and groundwater concentration limits are presented with source references and methodologies.

  15. Hydrostratigraphy of the General Separations Area, Savannah River Site (SRS), South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Aadland, R.K.; Harris, M.K.; Lewis, C.M.; Gaughan, T.F. (Westinghouse Savannah River Co., Aiken, SC (United States)); Westbrook, T.M. (Dames and Moore, Atlanta, GA (United States))

    1991-01-01

    Detailed analysis and synthesis of geophysical, core, and hydrologic data from 230 wells were used to delineate the hydrostratigraphy and aquifer characteristics of the General Separations Area at SRS. The study area is hydrologically bounded on the north and northwest by Upper Three Runs Creek (UTRC) and on the south by Fourmile Branch (FB). The Cretaceous-Tertiary sedimentary sequence underlying the study area is divided into two Aquifer Systems; in ascending order, Aquifer Systems I and 11. The study concentrated on Aquifer System U, which includes all the Tertiary sediments above the Black Mingo Group (Paleocene) to the water table. This report includes a series of lithostratigraphic cross-sections, piezometric gradient profiles, head ratio contour maps, aquifer isopach maps, and potentiometric surface maps which illustrate the aquifer characteristics of the study area.

  16. Results of Aquifer Tests Performed Near R-Area, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, R.A.

    2001-01-31

    The aquifer testing described in this report was conducted in response to USEPA comments (WSRC, 1998) on the Rev. 0 R-Reactor Seepage Basins RFI/RI Report (WSRC, 1998a), Appendix G, Groundwater Contaminant Transport Modeling for the R-Reactor Seepage Basins (RRSB)/108-4R Overflow Basin Operable Unit. The R-area regional flow model described in Appendix G of the RFI/RI is based on small-scale and/or indirect measures of hydraulic conductivity, including laboratory tests, slug tests, cone penetration testing (CPT) and lithologic core descriptions. The USEPA proposed and SRS- agreed that large-scale conductivity estimates from multiple well pumping tests would be beneficial for validating the model conductivity field. Overall, the aquifer test results validate the 1998 R-area regional groundwater flow model.

  17. Preliminary characterization of the F-Area Railroad Crosstie Pile at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Historical information about the F-Area Railroad Crosstie Pile is limited. The unit is believed to have been a borrow area for earth fill that began receiving railroad crossties during the 1960s. The number of crossties at the unit began to increase significantly in 1984 when major repair of the SRS rail system was initiated. An estimated 100,000 used railroad crossties have accumulated at the unit since 1984. In an effort to determine the impact of the railroad crossties on the environment a total of 28 soil samples were collected from four test borings in March of 1991. Sample depths ranged from ground surface to 21.5 feet. Three of the borings were extended to the water table and groundwater samples were collected, one in an upgradient background'' area, and two downgradient from the unit. Few analytes were reported above detection limits. Test results are summarized in Section 4.0 and analytes not detected are summarized in Appendix A to this report. In three soil samples collected from depths between 10 and 21.5 feet, copper occurred at levels slightly above background. These copper values were detected in the sidegradient test boring and in the two downgradient test borings. Three organic analytes, acetone, pyridine, and Toluene, were reported above detection limits but well below drinking water standards (DWS) in all test borings, including the upgradient boring. Radionuclide activities were reported above background in both soil and water samples from all test borings. There do not appear to be any statistically significant trends in radionuclide activities with depth, or between upgradient or downgradient borings. The analytes detected in the test borings downgradient from the unit cannot be attributed to the railroad crosstie pile as they are not significantly different than the values reported for the upgradient, background test boring.

  18. Savannah River Site environmental data for 1995

    International Nuclear Information System (INIS)

    This document presents data from Savannah River Site routine environmental monitoring and surveillance programs. An attempt also has been made to include all available data from environmental research programs

  19. Advanced separations at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.; McCabe, D.

    1996-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (cesium, strontium, tritium, actinides) and hazardous components (polychlorinated biphenyls (PCBs), cyanide, metal ions).

  20. Savannah River Site Environmental Report for 1997

    International Nuclear Information System (INIS)

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site

  1. Savannah River Site Environmental Report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  2. Consequence Analyses Following Potential Savannah River Site Hydrological Releases

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-07-28

    Postulated accidental release of radiological material to surface water bodies on the Savannah River Site and the resulting downstream contamination of the Savannah River pose a potential threat to downstream river users.

  3. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    International Nuclear Information System (INIS)

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions

  4. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.F.

    1999-05-13

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions.

  5. Savannah River Site computing architecture

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site's production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  6. Savannah River Site computing architecture

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site`s production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  7. Savannah River site environmental report for 1996

    International Nuclear Information System (INIS)

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants

  8. Savannah River site environmental report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.; Mamatey, A. [eds.

    1998-12-31

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  9. TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

    2012-05-15

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via

  10. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  11. ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.

    2012-03-28

    Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended

  12. Savannah River Site Environmental Report for 1994

    International Nuclear Information System (INIS)

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site's mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants

  13. Savannah River Site Environmental Report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  14. Mobile teleoperator research at Savannah River Laboratory

    International Nuclear Information System (INIS)

    A Robotics Technology Group was organized at Savannah River Laboratory to employ modern automation and robotics for applications at the Savannah River site. Several industrial robots have been installed in plant processes. Other robotics systems are under development in the laboratories, including mobile teleoperators for general remote tasks and emergency response operations. This paper discusses present work on a low-cost wheeled mobile vehicle, a modular light duty manipulator arm, a large gantry telerobot system, and a high technology six-legged walking robot with a teleoperated arm

  15. Radioiodine in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  16. Intensive archaeological survey of the F/H Surface Enhancement Project Area, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Sassaman, K.E.; Gillam, J.C.

    1993-08-01

    Twelve archaeological sites and four artifact occurrences were located by intensive survey of two tracts of land for the F and H Surface Enhancement Project on the Savannah River Site, Aiken and Barnwell Counties, South Carolina. Fieldwork in the 480-acre project area included surface reconnaissance of 3.6 linear kilometers of transects, 140 shovel tests along 4.2 linear kilometers of transects, an additional 162 shovel tests at sites and occurrences, and the excavation of six l {times} 2 m test units. All but one of the sites contained artifacts of the prehistoric era; the twelfth site consists of the remains of a twentieth-century home place. The historic site and six of the prehistoric sites consist of limited and/or disturbed contexts of archaeological deposits that have little research potential and are therefore considered ineligible for nomination to the National Register of Historic Places (NRHP). The remaining five sites have sufficient content and integrity to yield information important to ongoing investigations into upland site use. These sites (38AK146, 38AK535, 38AK539, 38AK541, and 38AK543) are thus deemed eligible for nomination to the NRHP and the Savannah River Archaeological Research Program (SRARP) recommends that they be preserved through avoidance or data recovery.

  17. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  18. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    International Nuclear Information System (INIS)

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice

  19. Savannah River Technology Center monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: Acorn Cleaning Study, tritium, separation processes, bioremediation programs, environmental remediation, environmental sampling, waste management, statistical design, phase I array experiments, and, Monte Carlo Neutron Photon input files.

  20. Carolina bays of the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schalles, J.F. (Creighton Univ., Omaha, NE (USA)); Sharitz, R.R.; Gibbons, J.W.; Leversee, G.J.; Knox, J.N. (Savannah River Ecology Lab., Aiken, SC (USA))

    1989-01-01

    Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

  1. The Savannah River Site's groundwater monitoring program

    International Nuclear Information System (INIS)

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results

  2. Savannah River Technology Center. Monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.

  3. Reprocessing of seismic shear wave and tidem data collected at the A&M areas of the Savannah River Plant. Final report, September 1992--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The upper aquifers in the A&M area of the Savannah River Site are known to be contaminated by chlorinated solvents. Remediation plans depend critically on continuity of a confining zone known as the Crouch Branch Confining Unit (C8CU), which occurs at depths between about 250 feet and 300 feet. Under DOE Contract No: DE-AC21-92MC29, administered by Morgantown Energy Technology Center (METC) surface and borehole geophysical methods were tested and further developed between 1993 and 1995 to map the lithology (clay content) and stratigraphy of the CBCU. It was found that time domain electromagnetics (TDEM) soundings were effective in mapping lithology and changes in lithology, and shear (S-) wave reflection surveys were effective in mapping stratigraphy. An integrated interpretation of the two methods yielded a rather complete image of lithology and stratigraphy of the CBCU.

  4. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue

  5. Waste management units - Savannah River Site

    International Nuclear Information System (INIS)

    This report is a compilation of worksheets from the waste management units of Savannah River Plant. Information is presented on the following: Solid Waste Management Units having received hazardous waste or hazardous constituents with a known release to the environment; Solid Waste Management Units having received hazardous waste or hazardous constituents with no known release to the environment; Solid Waste Management Units having received no hazardous waste or hazardous constituents; Waste Management Units having received source; and special nuclear, or byproduct material only

  6. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  7. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  8. Savannah River waste plant takes another broadside

    International Nuclear Information System (INIS)

    This article is a discussion of Government Accounting Office findings related to the high-level waste disposal facilities, and in particular the Defense Waste Processing Facility, at Savannah River. Cost and schedule problems are noted, and the report concluded that ineffective management, both by DOE personnel and M ampersand AO contractor personnel, was a principal factor contributing to these problems at the DWPF and supporting facilities

  9. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  10. Savannah River Site 1996 epidemiologic surveillance report

    International Nuclear Information System (INIS)

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996

  11. Savannah River Site 1997 epidemiologic surveillance report

    International Nuclear Information System (INIS)

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997

  12. Visualization and Time-Series Analysis of Ground-Water Data for C-Area, Savannah River Site, South Carolina, 1984-2004

    Science.gov (United States)

    Conrads, Paul A.; Roehl, Edwin A.; Daamen, Ruby C.; Chapelle, Francis H.; Lowery, Mark A.; Mundry, Uwe H.

    2007-01-01

    In 2004, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, initiated a study of historical ground-water data of C-Area on the Savannah River Site in South Carolina. The soils and ground water at C-Area are contaminated with high concentrations of trichloroethylene and lesser amounts of tetrachloroethylene. The objectives of the investigation were (1) to analyze the historical data to determine if data-mining techniques could be applied to the historical database to ascertain whether natural attenuation of recalcitrant contaminants, such as volatile organic compounds, is occurring and (2) to determine whether inferential (surrogate) analytes could be used for more cost-effective monitoring. Twenty-one years of data (1984-2004) were collected from 396 wells in the study area and converted from record data to time-series data for analysis. A Ground-Water Data Viewer was developed to allow users to spatially and temporally visualize the analyte data. Overall, because the data were temporally and spatially sparse, data analysis was limited to only qualitative descriptions.

  13. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R. A.

    1982-04-01

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  14. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    International Nuclear Information System (INIS)

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy's (DOE's), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices

  15. Tiger Team Assessment of the Savannah River Site: Appendices

    International Nuclear Information System (INIS)

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three countries (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES ampersand H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation. This report contains the appendices to the assessment

  16. Tiger Team Assessment of the Savannah River Site

    International Nuclear Information System (INIS)

    This draft document contains findings identified during the Tiger Team Compliance Assessment of the US Department of Energy Savannah River Site (SRS), located in three counties (Aiken, Barnwell and Allendale), South Carolina. The Assessment was directed by the Department's Office of the Assistant Secretary for Environment, Safety, and Health (ES ampersand H) and was conducted from January 29 to March 23, 1990. The Savannah River Site Tiger Team Compliance Assessment was broad in scope covering the Environment, Safety and Health, and Management areas and was designed to determine the site's compliance with applicable Federal (including DOE), state, and local regulations and requirements. The scope of the Environmental assessment was sitewide while the Safety and Health assessments included site operating facilities (except reactors), and the sitewide elements of Aviation Safety, Emergency Preparedness, Medical Services, and Packaging and Transportation

  17. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  18. Characterization of groundwater flow and transport in the General Separations Areas, Savannah River Plant: Flow model refinement and particle-tracking analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Duffield, G.M.; Buss, D.R.; Root, R.W. Jr.; Hughes, S.S.; Mercer, J.W. [GeoTrans, Inc., Sterling, VA (United States)

    1986-03-01

    The Department of Energy (DOE) is preparing the necessary NEPA documentation for an Environmental Impact Statement (EIS) to address the waste disposal activities for groundwater protection at the Savannah River Plant (SRP). For purposes of this EIA, the areas within the plant have been separated into 26 functional groups based primarily on hydrogeologic setting and types of disposed waste materials. The overall objective is to provide an appropriate quantitative assessment of the environmental impacts from past and future operations within each functional group. The analysis from each functional group will be integrated to assess the impacts of plant-wide operations. A flexible approach to quantifying the impacts using several methods of quantitative analysis is being employed. Numerical flow and transport modeling is one method being applied to several functional groups. The scope of work can be divided into four broad categories: (1) Data Review and Conceptual Model Development, (2) Groundwater Flow Model Construction and Refinement, (3) Solute Transport Model Construction, and (4) Remedial Alternative Simulations. The major topics covered in this report are: (1) summary of the hydrogeologic conditions of the area, (2) observed flow velocities at the study site, (3) a summary of results from the preliminary flow modeling effort, (4) flow model refinement and results, and (5) particle tracking analyses based on the refined flow model.

  19. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  20. Natural Remediation at Savannah River Site

    International Nuclear Information System (INIS)

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  1. Natural Remediation at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  2. Moderator detritiation at the Savannah River Plant

    International Nuclear Information System (INIS)

    A study has been made of the technical and economic aspects of reducing tritium concentration in Savannah River Plant heavy-water moderator by 90%. A single detritiation plant would serve four operating reactors and the desired tritium reduction would be achieved in less than ten years. The process choice has narrowed to three processes. These involve a front-end extraction or preparation of molecular DT in a D2 stream, and a back-end fractional distillation of this stream followed by catalytic conversion to make 98% tritium T2

  3. Savannah River Site Environmental Report for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, Albert R.

    2005-06-07

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  4. Savannah River Site environmental report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    This volume of Savannah River Site Environmental report for 1988 (WSRC-RP-89-59-1) contains the figures and tables referenced in Volume 1. The figures contain graphic illustrations of sample locations and/or data. The tables contain summaries of the following types of data: Federal and State standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation dose commitments from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results.

  5. Savannah River Site environmental report for 1991

    International Nuclear Information System (INIS)

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included

  6. Savannah River Site environmental report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  7. Savannah River Site environmental report for 1995

    International Nuclear Information System (INIS)

    The 1990s have brought dramatic change to the Savannah River Site (SRS) in its role as a key part of the U.S. Department of Energy's (DOE) weapons complex. Shrinking federal budgets, sharp workforce reductions, the end of the Cold War, and a major shift in mission objectives have combined to severely test the mettle of SRS-South Carolina's largest employer. But the sprawling 310-square-mile site's employees have responded to the test in admirable fashion, effectively shifting their emphasis from weapons production to environmental restoration. This report describes the environmental report for the SRS for 1995

  8. Savannah River Site environmental report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A. [eds.

    1995-12-31

    The 1990s have brought dramatic change to the Savannah River Site (SRS) in its role as a key part of the U.S. Department of Energy`s (DOE) weapons complex. Shrinking federal budgets, sharp workforce reductions, the end of the Cold War, and a major shift in mission objectives have combined to severely test the mettle of SRS-South Carolina`s largest employer. But the sprawling 310-square-mile site`s employees have responded to the test in admirable fashion, effectively shifting their emphasis from weapons production to environmental restoration. This report describes the environmental report for the SRS for 1995.

  9. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2008-08-27

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment.

  10. Savannah River Laboratory monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  11. Westinghouse Savannah River Site Supplier Environmental Restoration and Waste Management Information Exchange Forum

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, H.F. Jr.; Hottel, R.E.; Christoper, N. [and others

    1994-06-01

    The Savannah River Site conducted its first Supplier Information Exchange in September 1993. The intent of the conference was to inform potential suppliers of the Savannah River Sites mission and research and development program objectives in the areas of environmental restoration and waste management, and to solicit proposals for innovative research in those areas. Major areas addressed were Solid Waste, Environmental Restoration, Environmental Monitoring, Transition/Decontamination and Decommissioning, and the Savannah River Technology Center. A total of 1062 proposals were received addressing the 89 abstracts presented. This paper will describe the forum the process for solicitation, the process for proposal review and selection, and review the overall results and benefits to Savannah River.

  12. Westinghouse Savannah River Site Supplier Environmental Restoration and Waste Management Information Exchange Forum

    International Nuclear Information System (INIS)

    The Savannah River Site conducted its first Supplier Information Exchange in September 1993. The intent of the conference was to inform potential suppliers of the Savannah River Sites mission and research and development program objectives in the areas of environmental restoration and waste management, and to solicit proposals for innovative research in those areas. Major areas addressed were Solid Waste, Environmental Restoration, Environmental Monitoring, Transition/Decontamination and Decommissioning, and the Savannah River Technology Center. A total of 1062 proposals were received addressing the 89 abstracts presented. This paper will describe the forum the process for solicitation, the process for proposal review and selection, and review the overall results and benefits to Savannah River

  13. Guide to Savannah River Laboratory Analytical Services Group

    International Nuclear Information System (INIS)

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary

  14. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  15. 46 CFR 7.75 - Savannah River/Tybee Roads.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Savannah River/Tybee Roads. 7.75 Section 7.75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PROCEDURES APPLICABLE TO THE PUBLIC BOUNDARY LINES Atlantic Coast § 7.75 Savannah River/Tybee Roads. A line drawn from the southwesternmost extremity of...

  16. Guide to Savannah River Laboratory Analytical Services Group

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  17. Assessment of plutonium in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports

  18. Mammals of the Savannah River Site

    International Nuclear Information System (INIS)

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ''The Forbearer Census'' and ''White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references

  19. Savannah River Site environmental report for 1993

    International Nuclear Information System (INIS)

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ''General Environmental Protection Program,'' requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS's on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ''SRS Environmental Monitoring Plan'' (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements

  20. Savannah River Site environmental report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R. [eds.

    1994-08-01

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ``General Environmental Protection Program,`` requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS`s on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ``SRS Environmental Monitoring Plan`` (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements.

  1. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  2. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-12-31

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  3. Development and testing of a contamination potential mapping system for a portion of the General Separations Area, Savannah River Site, South Carolina

    Science.gov (United States)

    Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.

    1998-01-01

    A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to

  4. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    International Nuclear Information System (INIS)

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships

  5. Assessment of tree toxicity near the F- and H-Area seepage basins of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C. (ed.) (Westinghouse Savannah River Co., Aiken, SC (USA)); Richardson, C.J. (ed.); Greenwood, K.P.; Hane, M.E.; Lander, A.J. (Duke Univ., Durham, NC (USA))

    1990-12-01

    Areas of tree mortality, originating in 1979, have been documented downslope of the F- and H-Area Seepage Basins. The basins were used as discharge areas for low-level radioactive and nonradioactive waste. Preliminary studies indicated that there are three possible causes of stress: altered hydrology; hazardous chemicals; and nonhazardous chemicals. It was originally hypothesized that the most likely hydrological stressors to Nyssa sylvatica var. biflora were flooding where water levels cover the lenticels for more than 26 percent of the growing season, resulting in low oxygen availability, and toxins produced under anaerobic conditions. In fact, trees began to show stress only flowing a drought year (1977) rather than a wet year. Dry conditions could exacerbate stress by concentrating contaminants, particularly salt. Study of the soil and water chemical parameters in the impacted sites indicated that salt concentrations in the affected areas have produced abnormally high exchangeable sodium percentages. Furthermore, significantly elevated concentrations of heavy metals were found in each impacted site, although no one metal was consistently elevated. Evaluation of the concentrations of various chemicals toxic to Nyssa sylvatica var. biflora revealed that aluminum was probably the most toxic in the F-Area. Manganese, cadmium, and zinc had concentrations great enough to be considered possible causes of tree mortality in the F-Area. Aluminum was the most likely cause of mortality in the H-Area. Controlled experiments testing metal and salt concentration effects on Nyssa sylvatica would be needed to specifically assign cause and effect mortality relationships.

  6. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Waste Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.

  7. Savannah River Site environmental data for 1992

    International Nuclear Information System (INIS)

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys

  8. Savannah River Site ALARA Program appraisals

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.R.

    1992-06-01

    ALARA Program audits are recommended in PNL-6566, ``Health Physics Manual of Good Practices for Reducing Radiation Exposure to Levels that are As Low As Reasonably Achievable (ALARA).`` The Department of Energy (DOE) Order 5480.11, ``Radiation Protection For Occupational Workers,`` requires contractors to conduct internal audits of all functional elements of the radiological protection program, which includes the ALARA program, as often as necessary, but at a minimum every three years. At the Savannah River Site (SRS), these required audits are performed as part of the Health Protection Internal Appraisal Program. This program was established to review the Site radiological protection program, which includes the ALARA program, on an ongoing basis and to provide recommendations for improvement directly to senior Health Protection management. This paper provides an overview of the SRS Health Protection Internal Appraisal program. In addition, examples of specific performance criteria and detailed appraisal guidelines used ALARA appraisals are provided.

  9. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.

    2009-09-15

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts.

  10. Wildflowers of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Seger, Tona [Savannah River Site (SRS), Aiken, SC (United States). USDA Forest Service

    2015-08-01

    This guidebook is a resource to help field personnel (nonbotanists) identify plants on the Savannah River Site (SRS) premises. Although not a complete flora guide, this publication contains information about 123 plant species found on the SRS. Plants are listed by their common names and arranged by the color of the flower. The SRS supports a diverse array of plant communities. Land use history, the establishment of the SRS, and current land management practices have shaped the flora presently found on the SRS. Located south of Aiken, SC, SRS spans 198,344 acres with land covering Aiken, Allendale, and Barnwell Counties. Situated on the Upper Coastal Plain and Sandhills physiographic provinces, the SRS has more than 50 distinct soil types. The topography is rolling to flat with elevation ranges from 50 to 400 feet above sea level.

  11. Advanced separations at Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.C. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (poly-chlorinated biphenyls [PCBs], cyanide, metal ions). This task provides testbeds for ESP-developed materials and technology using actual SRS waste streams. The work includes different SRS waste streams: high-level waste (HLW) solutions currently stored in underground tanks onsite, water recycled from the waste vitrification plant, groundwater and other aqueous streams contaminated with metal ions and radionuclides, and reactor basin water in excess facilities. Another part of this task is to provide a report on materials for Cs removal from aqueous solutions for use as a reference.

  12. Savannah River Site environmental data for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W. [ed.

    1994-05-01

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys.

  13. Savannah River Site environmental data for 1993

    International Nuclear Information System (INIS)

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys

  14. Savannah River Site environmental report for 1989

    International Nuclear Information System (INIS)

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies

  15. Savannah River Site Environmental Implementation Plan

    International Nuclear Information System (INIS)

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period

  16. Savannah River Site environmental implementation plan

    International Nuclear Information System (INIS)

    Formal sitewide environmental planning at the Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period

  17. Savannah River Site environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies.

  18. Savannah River Site environmental report for 1989

    International Nuclear Information System (INIS)

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs

  19. Deer monitoring at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    1992-10-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter`s cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  20. Deer monitoring at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    1992-01-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter's cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  1. Savannah River Site's Site Specific Plan

    International Nuclear Information System (INIS)

    This Site Specific Plan (SSP) has been prepared by the Savannah River Site (SRS) in order to show the Environmental Restoration and Waste Management activities that were identified during the preparation of the Department of Energy-Headquarters (DOE-HQ) Environmental Restoration and Waste Management Five-Year Plan (FYP) for FY 1992--1996. The SSP has been prepared in accordance with guidance received from DOE-HQ. DOE-SR is accountable to DOE-HQ for the implementation of this plan. The purpose of the SSP is to develop a baseline for policy, budget, and schedules for the DOE Environmental Restoration and Waste Management activities. The plan explains accomplishments since the Fiscal Year (FY) 1990 plan, demonstrates how present and future activities are prioritized, identifies currently funded activities and activities that are planned to be funded in the upcoming fiscal year, and describes future activities that SRS is considering

  2. Savannah River Site Environmental Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  3. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2005

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2006-07-18

    The ''Savannah River Site Environmental Report for 2005'' (WSRC-TR-2006-00007) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  4. SAVANNAH RIVER ENVIRONMENTAL REPORT FOR 2006

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2007-08-22

    The ''Savannah River Site Environmental Report for 2006'' (WSRC-TR-2007-00008) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  5. Savannah River Site generic data base development

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard , A.

    2000-01-04

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values.

  6. Radioactive effluents in the Savannah River: Summary report for 1989

    International Nuclear Information System (INIS)

    Researchers at the Savannah River Site have low-level radiometric studies of the Savannah River to distinguish between the effluent contributions of the Savannah River Site and Plant Vogtle. Since the startup of Plant Vogtle in 1987, researchers have routinely detected neutron-activated isotopes in controlled releases, but all have routinely detected neutron-activated isotopes in controlled releases, but all have been well below the Department of Energy's (DOE) guidelines. The study has found that processing improvement at Plant Vogtle during 1989 have lowered the activities of effluents from Plant Vogtle. These studies will continue on a routine basis because they provide disturbing trends before actual health concerns evolve

  7. Regional groundwater flow model for C, K. L. and P reactor areas, Savannah River Site, Aiken, SC

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.P.

    2000-02-11

    A regional groundwater flow model encompassing approximately 100 mi2 surrounding the C, K, L, and P reactor areas has been developed. The reactor flow model is designed to meet the planning objectives outlined in the General Groundwater Strategy for Reactor Area Projects by providing a common framework for analyzing groundwater flow, contaminant migration and remedial alternatives within the Reactor Projects team of the Environmental Restoration Department. The model provides a quantitative understanding of groundwater flow on a regional scale within the near surface aquifers and deeper semi-confined to confined aquifers. The model incorporates historical and current field characterization data up through Spring 1999. Model preprocessing is automated so that future updates and modifications can be performed quickly and efficiently. The CKLP regional reactor model can be used to guide characterization, perform scoping analyses of contaminant transport, and serve as a common base for subsequent finer-scale transport and remedial/feasibility models for each reactor area.

  8. Preliminary characterization of the F-Area Railroad Crosstie Pile at the Savannah River Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    Historical information about the F-Area Railroad Crosstie Pile is limited. The unit is believed to have been a borrow area for earth fill that began receiving railroad crossties during the 1960s. The number of crossties at the unit began to increase significantly in 1984 when major repair of the SRS rail system was initiated. An estimated 100,000 used railroad crossties have accumulated at the unit since 1984. In an effort to determine the impact of the railroad crossties on the environment a total of 28 soil samples were collected from four test borings in March of 1991. Sample depths ranged from ground surface to 21.5 feet. Three of the borings were extended to the water table and groundwater samples were collected, one in an upgradient ``background`` area, and two downgradient from the unit. Few analytes were reported above detection limits. Test results are summarized in Section 4.0 and analytes not detected are summarized in Appendix A to this report. In three soil samples collected from depths between 10 and 21.5 feet, copper occurred at levels slightly above background. These copper values were detected in the sidegradient test boring and in the two downgradient test borings. Three organic analytes, acetone, pyridine, and Toluene, were reported above detection limits but well below drinking water standards (DWS) in all test borings, including the upgradient boring. Radionuclide activities were reported above background in both soil and water samples from all test borings. There do not appear to be any statistically significant trends in radionuclide activities with depth, or between upgradient or downgradient borings. The analytes detected in the test borings downgradient from the unit cannot be attributed to the railroad crosstie pile as they are not significantly different than the values reported for the upgradient, background test boring.

  9. PRELIMINARY DATA REPORT: HUMATE INJECTION AS AN ENHANCED ATTENUATION METHOD AT THE F-AREA SEEPAGE BASINS, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Millings, M.

    2013-09-16

    A field test of a humate technology for uranium and I-129 remediation was conducted at the F-Area Field Research Site as part of the Attenuation-Based Remedies for the Subsurface Applied Field Research Initiative (ABRS AFRI) funded by the DOE Office of Soil and Groundwater Remediation. Previous studies have shown that humic acid sorbed to sediments strongly binds uranium at mildly acidic pH and potentially binds iodine-129 (I-129). Use of humate could be applicable for contaminant stabilization at a wide variety of DOE sites however pilot field-scale tests and optimization of this technology are required to move this technical approach from basic science to actual field deployment and regulatory acceptance. The groundwater plume at the F-Area Field Research Site contains a large number of contaminants, the most important from a risk perspective being strontium-90 (Sr-90), uranium isotopes, I-129, tritium, and nitrate. Groundwater remains acidic, with pH as low as 3.2 near the basins and increasing to the background pH of approximately 5at the plume fringes. The field test was conducted in monitoring well FOB 16D, which historically has shown low pH and elevated concentrations of Sr-90, uranium, I-129 and tritium. The field test included three months of baseline monitoring followed by injection of a potassium humate solution and approximately four and half months of post monitoring. Samples were collected and analyzed for numerous constituents but the focus was on attenuation of uranium, Sr-90, and I-129. This report provides background information, methodology, and preliminary field results for a humate field test. Results from the field monitoring show that most of the excess humate (i.e., humate that did not sorb to the sediments) has flushed through the surrounding formation. Furthermore, the data indicate that the test was successful in loading a band of sediment surrounding the injection point to a point where pH could return to near normal during the study

  10. Intensive archaeological survey of the proposed Savannah River Ecology Laboratory Conference Center and Educational Facility, Savannah River Site, Aiken County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, K.; Crass, D.C.; Sassaman, K.E.

    1993-02-01

    Documented in this report are the methods and results of an intensive archaeological survey for the proposed University of Georgia Savannah River Ecology Laboratory (SREL) Conference Center and Educational Facility on the DOE Savannah River Site (SRS). Archaeological investigations conducted by the Savannah River Archaeological Research Program (SRARP) on the 70-acre project area and associated rights-of-way consisted of subsurface testing at two previously recorded sites and the discovery of one previously unrecorded site. The results show that 2 sites contain archaeological remains that may yield significant information about human occupations in the Aiken Plateau and are therefore considered eligible for nomination to the National Register of Historic Places. Adverse impacts to these sites can be mitigated through avoidance.

  11. Savannah River Site peer evaluator standards: Operator assessment for restart

    International Nuclear Information System (INIS)

    Savannah River Site has implemented a Peer Evaluator program for the assessment of certified Central Control Room Operators, Central Control Room Supervisors and Shift Technical Engineers prior to restart. This program is modeled after the nuclear Regulatory Commission's (NRC's) Examiner Standard, ES-601, for the requalification of licensed operators in the commercial utility industry. It has been tailored to reflect the unique differences between Savannah River production reactors and commercial power reactors

  12. Management of geohydrologic data using a geographic information system for a three-dimensional ground-water flow model of the Savannah River site area, South Carolina and Georgia

    International Nuclear Information System (INIS)

    Possible migration of ground-water contaminants beneath the Savannah River from South Carolina near the US Department of Energy (DOE), Savannah River Site (SRS), a nuclear processing and disposal facility, into Georgia is a source of recent environmental concern. SRS is adjacent to the Savannah River and is underlain by 650 to more than 1,000 feet of permeable, unconsolidated to poorly consolidated fluvial, deltaic, and marine Coastal Plain deposits of Cretaceous and Tertiary age, which locally have been modified by faulting. The US Geological Survey, in cooperation with the US Department of Energy and the Georgia Department of natural Resources, is evaluating ground-water flow through six regional aquifers in these Coastal Plain sediments within a 3,000-square-mile study area using a modular, three-dimensional, finite-difference ground-water flow model (MODFLOW). ARC/INFO Geographic Information System (GIS) was used to manage and prepare data for input into the flow model. Temporally and areally spaced water-quality and ground-water level data are available for more than 2,800 wells on the 300-square-mile area of the SRS and in the surrounding rural area. Data related to topography, geology, elevations of aquifer tops, well construction characteristics, water levels, and aquifer characteristics were compiled into GIS files or coverages within the system. A menu-driven program was developed to derive hydrogeologic surfaces from point and contoured data over the study area; assign wells to aquifers based on well-construction data; discretize aquifer property data into model input arrays; graphically display geologic, hydrologic, and ground-water flow model output data; check for data errors; and alter and refine input arrays

  13. Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, C.P.; Duffield, G.M.; Shaw, S.T. [GeoTrans, Inc., Herndon, VA (United States)

    1988-01-01

    The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios.

  14. Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, C.P.; Duffield, G.M.; Shaw, S.T. (GeoTrans, Inc., Herndon, VA (United States))

    1988-01-01

    The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios.

  15. Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area

    International Nuclear Information System (INIS)

    The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios

  16. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2009

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.; Fanning, R.

    2010-08-19

    The Savannah River Site Environmental Report for 2009 (SRNS-STI-2010-00175) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A,'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts. SRS maintained its record of environmental excellence in 2009, as its operations continued to result in minimal impact to the offsite public and the surrounding environment. The site's radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose from its discharges was less than the national dose standards. The largest radiation dose that an offsite, hypothetical, maximally exposed individual could have received from SRS operations during 2009 was estimated to be 0.12 millirem (mrem). (An mrem is a standard unit of measure for radiation exposure.) The 2009 SRS dose is just 0.12 percent of the DOE all-pathway dose standard of 100 mrem per year, and far less than the natural average dose of about 300 mrem per year (according to Report No. 160 of the National Council of Radiation Protection and Measurements) to people in the United States. This 2009 all-pathway dose of 0.12 mrem was the same as the 2008 dose. Environmental monitoring is conducted extensively within a 2,000-square-mile network

  17. Ecological research at the Savannah River Ecology Laboratory. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Research is organized around two major programs: thermal and aquatic stress and mineral cycling. These programs are strengthened by a previously established foundation of basic ecological knowledge. Research in basic ecology continues to be a major component of all SREL environmental programs. Emphasis in all programs has been placed upon field-oriented research relating to regional and local problems having broad ecological significance. For example, extensive research has been conducted in the Par Pond reservoir system and the Savannah River swamp, both of which have received thermal effluent, heavy metals, and low levels of radioisotopes. Furthermore, the availability of low levels of plutonium and uranium in both terrestrial and aquatic environments on the Savannah River Plant (SRP) has provided an unusual opportunity for field research in this area. The studies seek to document the effects, to determine the extent of local environmental problems, and to establish predictable relationships which have general applicability. In order to accomplish this objective it has been imperative that studies be carried out in the natural, environmentally unaffected areas on the SRP as a vital part of the overall program. Progress is reported in forty-nine studies.

  18. Isotopic Systematics (U, nitrate and Sr) of the F-Area Acidic Contamination Plume at the Savannah River Site: Clues to Contaminant History and Mobility

    Science.gov (United States)

    Christensen, J. N.; Conrad, M. E.; Bill, M.; Denham, M.; Wan, J.; Rakshit, S.; Stringfellow, W. T.; Spycher, N.

    2010-12-01

    Seepage basins in the F-Area of the Savannah River Site were used from 1955 to 1989 for the disposal of low-level radioactive acidic (ave. pH ˜2.9) waste solutions from site operations involving irradiated uranium billets and other materials used in the production of radionuclides. These disposal activities resulted in a persistent acidic groundwater plume (pH as low as 3.2) beneath the F-Area including contaminants such as tritium, nitrate, 90Sr, 129I and uranium and that has impinged on surface water (Four Mile Branch) about 600 m from the basins. After cessation of disposal in 1989, the basins were capped in 1991. Since that time, remediation has consisted of a pump-and-treat system that has recently been replaced with in situ treatment using a funnel-and-gate system with injection of alkaline solutions in the gates to neutralize pH. In order to delineate the history of contamination and the current mobility and fate of contaminants in F-Area groundwater, we have undertaken a study of variations in the isotopic compositions of U (234U/238U, 235U/238U, 236U/238U), Sr (87Sr/86Sr) and nitrate (δ15N, δ18O) within the contaminant plume. This data can be used to trace U transport within the plume, evaluate chemical changes of nitrate, and potentially track plume/sediment chemical interaction and trace the migration of 90Sr. We have analyzed a suite of groundwater samples from monitoring wells, as well as pore-water samples extracted from aquifer sediment cores to map out the isotopic variation within the plume. The isotopic compositions of U from well samples and porewater samples are all consistent with the variable burn-up of depleted U. The variation in U isotopic composition requires at least three different endmembers, without any significant influence of background natural U. The δ15N and δ18O of nitrate from F-Area plume groundwater are distinct both from natural and unaltered synthetic nitrate, and likely represents fractionation due to waste volume

  19. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T

    2008-11-11

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  20. Savannah River Site. Environmental report for 2001

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, Margaret W. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site. ed; Mamatey, Albert R. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site. ed

    2001-12-31

    The goal of the Savannah River Site (SRS)—and that of the U.S. Department of Energy (DOE)—is positive environmental stewardship and full regulatory compliance, with zero violations. The site’s employees maintained progress toward achievement of this goal in 2001, as demonstrated by examples in this chapter. The site’s compliance efforts were near-perfect again in 2001. No notices of violation (NOVs) were issued in 2001 under the Resource Conservation and Recovery Act (RCRA), the Safe Drinking Water Act (SDWA), or the Clean Water Act (CWA). Two NOVs were issued to SRS during 2001—one, associated with permit requirement compliance, was issued under the Clean Air Act (CAA); the other, related to an oil release, was issued under the South Carolina Pollution Control Act. Under the CWA, the site’s National Pollutant Discharge Elimination System (NPDES) compliance rate was 99.6 percent. Also, 274 National Environmental Policy Act (NEPA) reviews of newly proposed actions were conducted and formally documented in 2001, and only one of the year’s 799 Site Item Reportability and Issues Management (SIRIM) program-reportable events was categorized as environmental; it was classified as an off-normal event.

  1. Tritium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  2. Savannah River Site Environmental Report for 2003

    Energy Technology Data Exchange (ETDEWEB)

    A. MAMATEY

    2003-01-01

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations.

  3. Savannah River Site environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs.

  4. Savannah River Site environmental report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    During 1988, as in previous years, Savannah River Site operations had no adverse impact on the general public or the environment. Based on the SRS site-specific code, the maximum radiation dose commitment to a hypothetical individual at the SRS boundary from 1988 SRS atmospheric releases of radioactive materials was 0.46 millirem (mrem) (0.0046 millisievert (mSv)). To obtain the maximum dose, an individual would have had to reside on the SRS boundary at the location of highest dose for 24 hours per day, 365 days per year, consume a maximum amount of foliage and meat which originated from the general vicinity of the plant boundary, and drink a maximum amount of milk from cows grazing at the plant boundary. The average radiation dose commitment from atmospheric releases to the hypothetical individual on the SRS boundary in 1988 was 0.18 mrem (0. 0018 mSv). This person, unlike the maximumly exposed individual, consumes an average amount of foliage, meat, and milk which originated from the foliage and animals living at the plant boundary.

  5. Savannah River Site Environmental Report for 2003

    International Nuclear Information System (INIS)

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations

  6. Savannah River Site radioiodine atmospheric releases and offsite maximum doses

    Energy Technology Data Exchange (ETDEWEB)

    Marter, W.L.

    1990-11-01

    Radioisotopes of iodine have been released to the atmosphere from the Savannah River Site since 1955. The releases, mostly from the 200-F and 200-H Chemical Separations areas, consist of the isotopes, I-129 and 1-131. Small amounts of 1-131 and 1-133 have also been released from reactor facilities and the Savannah River Laboratory. This reference memorandum was issued to summarize our current knowledge of releases of radioiodines and resultant maximum offsite doses. This memorandum supplements the reference memorandum by providing more detailed supporting technical information. Doses reported in this memorandum from consumption of the milk containing the highest I-131 concentration following the 1961 1-131 release incident are about 1% higher than reported in the reference memorandum. This is the result of using unrounded 1-131 concentrations of I-131 in milk in this memo. It is emphasized here that this technical report does not constitute a dose reconstruction in the same sense as the dose reconstruction effort currently underway at Hanford. This report uses existing published data for radioiodine releases and existing transport and dosimetry models.

  7. Commercial integration and partnering at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Steele, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Babione, R.A.; Shikashio, L.A.; Wacaster, A.J.; Paterson, A.D. [SCIENTECH, Inc., Idaho Falls, ID (United States)

    1994-06-01

    Savannah River Site (SRS), particularly the Savannah River Technology Center (SRTC) with the experience from the first successful Integrated Technology Demonstration, can provide an excellent foundation for meeting DOE-EM`s objectives with the new DOE-EM five focus area approach. With this in mind, SRTC established an activity to pursue full commercialization of environmental technologies. This report is an assessment of the status of commercialization at SRS and provides recommendations for enhancement as well as some tools critical to implementation. A review was made of the current situation at SRS with regards to taking technology development to commercial fruition. This was done from the perspective of comparing it to known commercialization models and processes. It was found that SRTC already works through many of the steps in these processes. With integration and action-oriented efforts of the inclusion of business and market factors, SRTC could become an aggressive, successful developer of commercialized technologies. Commercial success criteria tools were developed with regards to integrating them with SRTC selection criteria to ensure that all critical factors are covered in technology commercialization project evaluations. Private investors are very clear that their interest lies in funding commercial enterprises, not merely technologies. Mobilizing private capital is critical to real job growth and long-term economic development. Also, potential industry partners were identified that are willing to be involved with SRS` technology applications and regional development efforts. As another important component to success, regional support organizations were reviewed and evaluated.

  8. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- and H-Areas at the Savannah River Site

    International Nuclear Information System (INIS)

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  9. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  10. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  11. Preliminary site selection report for the new sanitary landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Savannah River Site (SRS) has proposed a new sanitary landfill (NSL) for solid waste. A site selection team, comprised of representatives from Westinghouse Savannah River Company (WSRC) evaluated potential landfill sites. The site selection team conducted an initial screening of SRS to eliminate unsuitable areas. The screening was based on criteria that were principally environmental factors; however, the criteria also included avoiding areas with unacceptable features for construction or operation of the facility. This initial screening identified seven candidate sites for further evaluation.

  12. Shutdown of the River Water System at the Savannah River Site: Draft environmental impact statement

    International Nuclear Information System (INIS)

    This environmental impact statement (EIS) evaluates alternative approaches to and environmental impacts of shutting down the River Water System at the Savannah River Site (SRS). Five production reactors were operated at the site.to support these facilities, the River Water System was constructed to provide cooling water to pass through heat exchangers to absorb heat from the reactor core in each of the five reactor areas (C, K, L, P, and R). The DOE Savannah River Strategic Plan directs the SRS to find ways to reduce operating costs and to determine what site infrastructure it must maintain and what infrastructure is surplus. The River Water System has been identified as a potential surplus facility. Three alternatives to reduce the River Water System operating costs are evaluated in this EIS. In addition to the No-Action Alternative, which consists of continuing to operate the River Water System, this EIS examines one alternative (the Preferred Alternative) to shut down and maintain the River Water System in a standby condition until DOE determines that a standby condition is no longer necessary, and one alternative to shut down and deactivate the River Water System. The document provides background information and introduces the River Water System at the SRS; sets forth the purpose and need for DOE action; describes the alternatives DOE is considering; describes the environment at the SRS and in the surrounding area potentially affected by the alternatives addressed and provides a detailed assessment of the potential environmental impacts of the alternatives; and identifies regulatory requirements and evaluates their applicability to the alternatives considered

  13. Radionuclide limits for vault disposal at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above-grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater, and or waste package concentrations for those radionuclides which could affect intruders

  14. Savannah River Plant - Project 8980 engineering and design history. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This volume provides an engineering and design history of the 100 area of the Savannah River Plant. This site consisted of five separate production reactor sites, 100-R, P, L, K, and C. The document summarizes work on design of the reactors, support facilities, buildings, siting, etc. for these areas.

  15. Savannah River Site Environmental Report for 1997 Summary

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) publishes an environmental report each year to provide environmental monitoring and surveillance results to the U. S. Department of Energy (DOE), the public, Congress, state and federal regulators, universities, local governments, the news media, and environmental and civic groups. The Savannah River Site Environmental Report for 1997 (WSRC-TR-97-00322) contains detailed information on site operations, environmental monitoring and surveillance programs, environmental compliance activities, and special projects for the calendar year 1997. The purpose of this documents is to give a brief overview of the site and its activities, to summarize the site environmental report and the impact of 1997 SRS operations on the environment and the public, and to provide a brief explanation of radiation and dose.The data used to compile the annual environmental report and this summary can be found in Savannah River Site Environmental Data for 1997 (WSRC-TR-97-00324)

  16. Savannah River Site Environmental Report for 1995 Summary Pamphlet (U)

    International Nuclear Information System (INIS)

    Welcome to the Savannah River Site Environmental Report for 1995 Summary Pamphlet.Ibis pamphlet is written so you can better understand what goes on at the Savannah River Site and how it affects the environment and you personally. We hope this document also will help answer your questions on radiation and its effects. In this pamphlet we will discuss the operations at SRS, the potential impact of operations on the environment and the public, and special programs that SRS supports. This pamphlet is a summary of a detailed re- port entitled Savannah River Site Environmental Report for 1995 The report contains a summary of environmental Monitoring activities for the calendar year 1995. Additional data on groundwater are found in quarterly groundwater reports

  17. Radioactive effluents in Savannah River -- Summary report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1992-07-16

    During 1991, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. During 1991, the radioactive effluents in the Savannah River were somewhat less than those observed in 1990. This decreasing trend has followed Vogtle improvements in pre-processing their liquid effluents. These effluents continue to be dominated by {sup 58}Co, which had a maximum concentration of only 0.21 pCi/L, which is an order of magnitude lower than the maximum observed in 1990. Many of the other man-made radionuclides observed in 1987--1990 have now decreased to where some are not even detected, and no new radionuclides were detected in the 1991 Vogtle effluents.

  18. Radioactive effluents in the Savannah River: Summary report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1991-09-01

    Researchers at the Savannah River Site have low-level radiometric studies of the Savannah River to distinguish between the effluent contributions of the Savannah River Site and Plant Vogtle. Since the startup of Plant Vogtle in 1987, researchers have routinely detected neutron-activated isotopes in controlled releases, but all have routinely detected neutron-activated isotopes in controlled releases, but all have been well below the Department of Energy`s (DOE) guidelines. The study has found that processing improvement at Plant Vogtle during 1989 have lowered the activities of effluents from Plant Vogtle. These studies will continue on a routine basis because they provide disturbing trends before actual health concerns evolve.

  19. Radioactive effluents in the Savannah River: Summary report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1991-09-01

    Researchers at the Savannah River Site have low-level radiometric studies of the Savannah River to distinguish between the effluent contributions of the Savannah River Site and Plant Vogtle. Since the startup of Plant Vogtle in 1987, researchers have routinely detected neutron-activated isotopes in controlled releases, but all have routinely detected neutron-activated isotopes in controlled releases, but all have been well below the Department of Energy's (DOE) guidelines. The study has found that processing improvement at Plant Vogtle during 1989 have lowered the activities of effluents from Plant Vogtle. These studies will continue on a routine basis because they provide disturbing trends before actual health concerns evolve.

  20. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  1. Deep-bed sand filter at Savannah River Laboratory

    International Nuclear Information System (INIS)

    A deep-bed sand filter was placed in service during June 1974 at the Savannah River Laboratory. This filter provides a back-up for HEPA filters in the primary exhaust system. HEPA filters can fail due to deterioration, faulty seating mechanisms, fire, and/or pressure excursions. The deep bed filter area is 103 ft by 140 ft and consists of layers of rock, gravel, and sand to a depth of 7 ft 6 in. Design flow is 74,000 cfm at 5.15 linear fpm. Most of the pressure drop occurs in the 36-in. layer of the ''G'' sand (sieve size No. 50 to No. 30) where the submicron particulates are captured. The filter is described, and operating characteristics are summarized, including pressure drops and filter efficiencies as determined with DOP. (U.S.)

  2. Critical Radionuclide and Pathway Analysis for the Savannah River Site, 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hartman, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-08

    During the operational history of Savannah River Site, many different radionuclides have been released from site facilities. However, as shown in this analysis, only a relatively small number of the released radionuclides have been significant contributors to doses to the offsite public. This report is an update to the 2011 analysis, Critical Radionuclide and Pathway Analysis for the Savannah River Site. SRS-based Performance Assessments for E-Area, Saltstone, F-Tank Farm, H-Tank Farm, and a Comprehensive SRS Composite Analysis have been completed. The critical radionuclides and pathways identified in those extensive reports are also detailed and included in this analysis.

  3. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Foley, T.

    2010-02-10

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  4. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina. Final report on macroinvertebrate stream assessments for F/H area ETF effluent discharge, July 1987--February 1990

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F?H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  5. Wetland restoration and compliance issues on the Savannah River site

    International Nuclear Information System (INIS)

    Operation of the nuclear production reactors on the Savannah River Site has faced potential conflicts with wetland regulations on several occasions. This paper provides two examples in which regulatory compliance and restoration research have been meshed, providing both compliance and better knowledge to aid future regulatory needs. The decision to restart the L reactor required the mitigation of thermal effluents under Sec. 316 of the Clean Water Act. The National Pollutant Discharge Elimination System, permit for the selected mitigation alternative, a 405-ha once-through cooling reservoir, required the establishment of a balanced biological community (BBC) within the lake. To promote the development of a BBC, the reservoir was seeded with water from an existing BBC (Par Pond) and stocked with fish and had artificial reefs constructed. The US Department of Energy (DOE) also requested that the Savannah River Ecology Laboratory establish littoral/wetland vegetation along the shoreline to provide aquatic and wildlife habitat, shoreline stabilization, and a good faith effort toward the establishment of a BBC. The development of wetland vegetation was deemed important to the successful development of a BBC within L Lake. However, in a similar cooling reservoir system constructed in 1957 (Par Pond), wetland vegetation successfully developed without any planting effort. Other than the good faith effort toward a BBC, there is no reason to assume a littoral/wetland community would not develop of its own accord. However, research conducted at L Lake indicates that the planting of wetland vegetation at L Lake accelerated the process of natural selection over that of areas that were not planted

  6. Evaluating DNAPL Source and Migration Zones: M-Area Settling Basin and the Western Sector of A/M Area, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, D.G.

    2001-09-11

    The objective of this investigation is to critically evaluate previous characterization and remediation data to determine the current extent and distribution of DNAPL associated with releases at the M-Area Basin within A/M Area. The primary objective of the effort is to develop an approximate recommendation for the target treatment location and volume near the M Area Settling Basin. Through this analysis the final objective is to identify those subsurface regions having specific geometry and character necessary to cost-effectively deploy DNAPL specific remediation alternatives.

  7. Onsite transportation of radioactive materials at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  8. Groundwater clean-up: The Savannah River Site experience (U)

    International Nuclear Information System (INIS)

    A full scale pump and treat groundwater remediation program which addresses a large plume of volatile organics has been ongoing at the Savannah River Site since 1985. The system has recovered over 100,000 kilograms of solvent and is containing the center of the plume. While overall protection is being achieved, reducing the concentration of contaminants to very low levels is problematic

  9. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  10. Numerical Weather Forecasting at the Savannah River Site

    International Nuclear Information System (INIS)

    Facilities such as the Savannah River Site (SRS), which contain the potential for hazardous atmospheric releases, rely on the predictive capabilities of dispersion models to assess possible emergency response actions. The operational design in relation to domain size and forecast time is presented, along with verification of model results over extended time periods with archived surface observations

  11. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  12. Westinghouse independent safety review of Savannah River production reactors

    International Nuclear Information System (INIS)

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K, L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours ampersand Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours ampersand Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone. 37 refs., 1 fig., 3 tabs

  13. Westinghouse independent safety review of Savannah River production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

    1989-04-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  14. Radioactive effluents in Savannah River. Summary report for 1990

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1991-11-27

    During 1990, low-level radiometric studies of the Savannah River continued to distinguish between effluent contributions from Plant Vogtle and the Savannah River Site. Measurements of these radioactive effluents are of mutual interest to both institutions, as they can address disturbing trends before they become health and legal concerns. The Environmental Technology Section (ETS) has conducted radiometric studies of Plant Vogtle since late 1986, prior to its startup. The plant has two 1100 MWe pressurized water reactors developed by Westinghouse. Unit 1 started commercial operations in June 1987, and Unit 2 began in May 1989. During powered operations, ETS has routinely detected neutron-activated isotopes in controlled releases but all activities have been several orders of magnitude below the DOE guide values. In 1990, processing improvements for Vogtle effluents have yielded even lower activities in the river. The Vogtle release data and the ETS measurements have tracked well over the past four years.

  15. Facility siting as a decision process at the Savannah River Site

    International Nuclear Information System (INIS)

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts

  16. PERFORMANCE OF THE SAVANNAH RIVER SITE COULOMETER FOR NEPTUNIUM PROCESSACCOUNTABILITY AND NEPTUNIUM OXIDE PRODUCT CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M; Patterson Nuessle, P; Sheldon Nichols, S; Joe Cordaro, J; George Reeves, G

    2008-06-04

    The Savannah River Site's (SRS) H-Area B-Line (HB-Line) nuclear facility is processing neptunium solutions for stabilization as an oxide. The oxide will eventually be reprocessed and fabricated into target material and the 237Np irradiated to produce {sup 238}Pu in support of National Aeronautics and Space Administration space program missions. As part of nuclear materials accountability, solution concentrations were measured using a high-precision controlled-potential coulometer developed and manufactured at the SRS for plutonium accountability measurements. The Savannah River Site Coulometer system and measurement methodology for plutonium meets performance standards in ISO 12183-2005, 'Controlled-Potential Coulometric Assay of Plutonium'. The Department of Energy (DOE) does not produce or supply a neptunium metal certified reference material, which makes qualifying a measurement method and determining accuracy and precision difficult. Testing and performance of the Savannah River Site Coulometer indicates that it can be used to measure neptunium process solutions and dissolved neptunium oxide without purification for material control and accountability purposes. Savannah River Site's Material Control and Accountability organization has accepted the method uncertainty for accountability and product characterization measurements.

  17. Facility siting as a decision process at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wike, L.D.

    1995-12-31

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.

  18. Waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    High-level nuclear wastes will be processed at the Savannah River Plant (SRP) to separate the high-level fraction from the low-level fraction. The separation will be accomplished in existing waste tanks by a process combining precipitation, adsorption, and filtration. The high-level fraction will be vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in a Federal repository. The low-level fraction, called decontaminated salt solution, will be mixed with a cement-fly ash blend. The resulting product, called saltstone, will be disposed onsite in an engineered disposal area. Laboratory testing of saltstone has shown the predominant mechanism for release of contaminants to the environment to be diffusion. The diffusion coefficient for nitrate has been determined to be 1.04 ± 0.09 x 10-8 cm2/sec. Field-testing of three 30-ton blocks of saltstone has been underweight since January 1984. Mathematical models, both analytical and numerical, have been applied to predict the impact of saltstone disposal on groundwater quality. Based on model predictions, the saltstone disposal area is designed to meet or exceed groundwater standards for all potential contaminants. Results of laboratory and field-testing and model results will be discussed. 2 refs., 10 figs., 5 tabs

  19. The Savannah River Site`s Groundwater Monitoring Program. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document contains information concerning the groundwater monitoring program at Savannah River Plant. The EPD/EMS (environmental protection department/environmental monitoring section) is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. This report consolidates information from field reports, laboratory analysis, and quality control. The groundwater in these areas has been contaminated with radioactive materials, organic compounds, and heavy metals.

  20. Savannah River Site environmental report for 1997 summary

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) publishes an environmental report each year to provide environmental monitoring and surveillance results to the US Department of Energy (DOE), the public, Congress, state and federal regulators, universities, local governments, the news media, and environmental and civic groups. The Savannah River Site Environmental Report for 1997 (WSRC-TR-97-00322) contains detailed information on site operations, environmental monitoring and surveillance programs, environmental compliance activities, and special projects for calendar year 1997. The purpose of this document is to give a brief overview of the site and its activities, to summarize the site environmental report and the impact of 1997 SRS operations on the environment and the public, and to provide a brief explanation of radiation and dose

  1. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  2. Environmental information document: Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  3. Recovery of plutonium from electrorefining anode heels at Savannah River

    International Nuclear Information System (INIS)

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control

  4. Worker Alienation and Compensation at the Savannah River Site.

    Science.gov (United States)

    Ashwood, Loka; Wing, Steve

    2016-05-01

    Corporations operating U.S. nuclear weapons plants for the federal government began tracking occupational exposures to ionizing radiation in 1943. However, workers, scholars, and policy makers have questioned the accuracy and completeness of radiation monitoring and its capacity to provide a basis for workers' compensation. We use interviews to explore the limitations of broad-scale, corporate epidemiological surveillance through worker accounts from the Savannah River Site nuclear weapons plant. Interviewees report inadequate monitoring, overbearing surveillance, limited venues to access medical support and exposure records, and administrative failure to report radiation and other exposures at the plant. The alienation of workers from their records and toil is relevant to worker compensation programs and the accuracy of radiation dose measurements used in epidemiologic studies of occupational radiation exposures at the Savannah River Site and other weapons plants. PMID:26956018

  5. Savannah River Site environmental report for 1996 summary

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) publishes an environmental report each year to provide environmental monitoring and surveillance results to the US department of Energy (DOE), the public, Congress, state and federal regulators, universities, local governments, the news media, environmental and civic groups. The Savannah River Site Environmental Report for 1996 (WSRC-TR-97-0171) contains detailed information on site operations, environmental monitoring and surveillance programs, environmental compliance activities, and special projects for the calendar year 1996. The purpose of this document is to give a brief overview of the site and its activities, to summarize the report and the impact of 1996 SRS operations on the environment and the public, and to provide a brief explanation of radiation and dose

  6. Savannah River Site Geographic Information System management plan

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, D.E.

    1992-02-01

    A plan for managing the development of Geographic Information System (GIS) applications at the Savannah River Site (SRS) in a coordinated, integrated fashion has been developed. Included in the plan are discussions on the guidance for GIS activities at the site, the overall strategy for managing GIS applications development, the specific administrative and programmatic tasks with projected completion schedules, and the organizational structure in place to direct this GIS effort. The Department of Energy-Savannah River Field Office (DOE-SR) has encouraged all primary subcontracting organizations at SRS involved with the mapping of spatial data to coordinate their efforts and be more cost effective. This plan provides a description of organized activities in 1992 for establishing a coordinated approach for developing and implementing GIS technology.

  7. Savannah River Site environmental report for 1993 summary pamphlet

    Energy Technology Data Exchange (ETDEWEB)

    Karapatakis, L.

    1994-05-01

    This pamphlet summarizes the impact of 1993 Savannah River Site operations on the environment and the off-site public. It includes an overview of site operations; the basis for radiological and nonradiological monitoring; 1993 radiological releases and the resulting dose to the off-site population; and results of the 1993 nonradiological program. The Savannah River Site Environmental Report for 1993 describes the findings of the environmental monitoring program for 1993. The report contains detailed information about site operations,the environmental monitoring and surveillance programs, monitoring and surveillance results, environmental compliance activities, and special programs. The report is distributed to government officials, members of the US Congress, universities, government facilities, environmental and civic groups, the news media, and interested individuals.

  8. Risk assessment for nuclear processes at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site, one of the US Department of Energy's nuclear materials processing facilities, has for many years conducted risk-based safety analyses for the nuclear processes conducted at the facilities. This approach has allowed comparisons of risks to established criteria for acceptability. When the risk-based program was begun, it was evident that its success would depend upon having a compilation of data that was site specific. The decision was made to create a data bank of undesirable events that had occurred at the site's nuclear fuel reprocessing facilities. From this modest beginning, five data banks have been created for nuclear fuel reprocessing, waste management, nuclear fuel fabrication, tritium operations, and the Savannah River Technology Center. In addition to the primary purpose of providing a sound basis for risk-based safety analyses, these highly versatile data banks are routinely used for equipment breakdown histories, incident investigations, design studies, project justifications, reliability studies, process problem solving, training, and audits

  9. Savannah River Site environmental restoration lessons learned program

    International Nuclear Information System (INIS)

    For the past three years environmental restoration has been formally consolidated at Savannah River Site. Accomplishments include waste site investigations to closure activities. Positive, as well as negatively impacting, events have occurred. Until recently, lessons learned were captured on a less than formal basis. Now, a program based upon critiques, evaluations and corrective actions is being used. This presentation reviews the development, implementation and use of that program

  10. Management of data banks at Westinghouse Savannah River Company

    International Nuclear Information System (INIS)

    The Risk Assessment Methodology Group (RAM) of the Nuclear Processes Safety Research Section (NPSR) maintains the compilation of incidents that have occurred at the Savannah River Site. The data banks have gained national recognition for their value in risk-related studies. The information provided by these data banks is widely used at SRS and across the DOE Complex. This report discusses these data banks

  11. Reptiles and amphibians of the Savannah River Plant

    International Nuclear Information System (INIS)

    Taxonomic, distributional, and ecological information on the reptiles and amphibians of the Savannah River Plant (SRP) is provided. The purpose of such a presentation is to give a professional biologist an initial familiarity with herpetology on the SRP, and to provide sufficient comprehensive information to an ecologist, regardless of his experience in herpetology, to permit him to undertake studies that in some manner incorporate the herpetofauna of the SRP

  12. Reptiles and amphibians of the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, J.W.; Patterson, K.K.

    1978-11-01

    Taxonomic, distributional, and ecological information on the reptiles and amphibians of the Savannah River Plant (SRP) is provided. The purpose of such a presentation is to give a professional biologist an initial familiarity with herpetology on the SRP, and to provide sufficient comprehensive information to an ecologist, regardless of his experience in herpetology, to permit him to undertake studies that in some manner incorporate the herpetofauna of the SRP. (ERB)

  13. New computer-controlled precipitator at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Moore, E N; Robbins, C C; Murdock, D W

    1988-01-01

    A new plutonium triflouride preciptation facility was successfully started up on the first attempt May 13, 1987 at the Savannah River Plant (SRP). This new facility provided a 75% reduction in radiation exposure, a substantial improvement in process performance, and elimination of the major SRP process bottleneck. This was accomplished through sound engineering, improved process control, process automation, and extensive testing of components, assemblies, and entire system prior to ''hot'' startup.

  14. 1997 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-06-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997.

  15. 1996 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  16. Operational Readiness Review: Savannah River Replacement Tritium Facility

    International Nuclear Information System (INIS)

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members

  17. Application of UAVs at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Pendergast, M.M.

    1996-08-01

    Small, unmanned aerial vehicles (UAVs) equipped with sensors for physical, chemical, and radiochemical measurements of remote environments have been tested at the Savannah River Site (SRS). A miniature helicopter was used as an aerial platform for testing a variety of sensors with outputs integrated with the flight control system for real-time data acquisition and evaluation. The sensors included a precision magnetometer, two broad band infra-red radiometers, a 1-inch by 1-inch Nal(TI) scintillation detector, and an on-board color video camera. Included in the avionics package was an ultrasonic altimeter, a precision barometer, and a portable Global Positioning System. Two separate demonstration locations at SRS were flown that had been previously characterized by careful sampling and analyses and by aerial surveys at high altitudes. The Steed Pond demonstration site contains elevated levels of uranium in the soil and pond silt due to runoff from one of the site`s uranium fuel and target production areas. The soil at the other site is contaminated with oil bearing materials and contains some buried objects. The results and limitations of the UAV surveys are presented and improvements for future measurements are discussed.

  18. Environmental data management system at the Savannah River Site

    International Nuclear Information System (INIS)

    The volume and complexity of data associated with escalating environmental regulations has prompted professionals at the Savannah River Site to begin taking steps necessary to better manage environmental information. This paper describes a plan to implement an integrated environmental information system at the site. Nine topic areas have been identified. They are: administrative, air, audit ampersand QA, chemical information/inventory, ecology, environmental education, groundwater, solid/hazardous waste, and surface water. Identification of environmental databases that currently exist, integration into a ''friendly environment,'' and development of new applications will all take place as a result of this effort. New applications recently completed include Groundwater Well Construction, NPDES (Surface Water) Discharge Monitoring, RCRA Quarterly Reporting, and Material Safety Data Sheet Information. Database applications are relational (Oracle RDBMS) and reside largely in DEC VMS environments. In today's regulatory and litigation climate, the site recognizes they must have knowledge of accurate environmental data at the earliest possible time. Implementation of this system will help ensure this

  19. Application of UAVs at the Savannah River Site

    International Nuclear Information System (INIS)

    Small, unmanned aerial vehicles (UAVs) equipped with sensors for physical, chemical, and radiochemical measurements of remote environments have been tested at the Savannah River Site (SRS). A miniature helicopter was used as an aerial platform for testing a variety of sensors with outputs integrated with the flight control system for real-time data acquisition and evaluation. The sensors included a precision magnetometer, two broad band infra-red radiometers, a 1-inch by 1-inch Nal(TI) scintillation detector, and an on-board color video camera. Included in the avionics package was an ultrasonic altimeter, a precision barometer, and a portable Global Positioning System. Two separate demonstration locations at SRS were flown that had been previously characterized by careful sampling and analyses and by aerial surveys at high altitudes. The Steed Pond demonstration site contains elevated levels of uranium in the soil and pond silt due to runoff from one of the site's uranium fuel and target production areas. The soil at the other site is contaminated with oil bearing materials and contains some buried objects. The results and limitations of the UAV surveys are presented and improvements for future measurements are discussed

  20. Association of Landscape Metrics to Surface Water Biology in the Savannah River Basin

    OpenAIRE

    Nash, Maliha S.; Deborah J. Chaloud; Susan E. Franson

    2005-01-01

    Surface water quality for the Savannah River basin was assessed using water biology and landscape metrics. Two multivariate analyses, partial least square and canonical correlation, were used to describe how the structural variation in landscape metrics may affect surface water biology and to define the key landscape variable(s) that contribute the most to variation in surface water quality. The results showed that the key landscape metrics in this study area were: percent...

  1. Savannah River Plant Works Technical Department progress report, July 1960: Deleted Version

    Energy Technology Data Exchange (ETDEWEB)

    1960-08-17

    This progress report by the Atomic Energy Division of the Savannah River Plant covers: Reactor Technology; Separation Technology; Engineering Assistance; Health Physics; and General Laboratory work. (JT)

  2. Savannah River Plant Works Technical Department monthly progress report for May 1958: Deleted Version

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-17

    This progress report by the Atomic Energy Division of the Savannah River Plant covers: Reactor Technology; Separation Technology; Engineering Assistance; Health Physics; and General Laboratory Work. (JT)

  3. Surface water transport of tritium to the Savannah River, 1992--1993

    International Nuclear Information System (INIS)

    A network of remote, automated samplers are used to collect water samples in the five major streams from SRS which flow into the Savannah River. Concentration monitored during 1992 and 1993 at the various sampling points are used to study the effect of site releases on the environmental and public health of Savannah River water users below the site. Automated samplers are also maintained at locations downriver of the SRS and at the mouth of the Savannah River in Savannah, Georgia. In the event of an unanticipated release to the Savannah River, the network of samplers provide a rapid response to help characterize the release the predict its impact on water treatment facilities at Beaufort, South Carolina and Port Wentworth, Georgia on the Savannah River below SRS. This report summarizes the data and its dosimetry impact for 1992 and 1993

  4. Preliminary Review of Safety Assessment Issues at Savannah River Site, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-09-19

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Several issues were presented at the meeting for discussion. This is a short summary that is organized in accordance with the primary issues discussed, which is not necessarily a chronological record. Issues include: SRS Meteorological Data and its Use in MACCS2; Deposition Velocities for Particles; Deposition Velocities for Tritium; MACCS2 Dispersion Coefficients; Use of Low Surface Roughness in Open Areas; Adequacy of Meteorological Tower and Instrumentation; Displacement Height; and Validity of MACCS2 Calculations at Close-in Distances. A longer report will be issued at a later date that expands upon these topics and recommendations.

  5. Population status of the American alligator on the Savannah River Plant, South Carolina

    International Nuclear Information System (INIS)

    Estimates are presented of alligator numbers, size distribution, sex ratios, reproductive effort, and population trends for all major components of the entire Savannah River Plant (SRP) alligator population. Savannah River Plant operations have impacted the alligator population in many different ways. The formation of man-made reservoirs has dramatically increased the amount of aquatic habitat available to alligators and has therefore increased the carrying capacity of the SRP site for this species. The thermal alteration of aquatic habitats on the SRP has also impacted the resident alligator population. Temperature elevations of aquatic habitat to greater than 380C result in the loss of this habitat to alligators. Moderate thermal increases on the other hand are responded to by alligator movement. The current information available on the alligators of the SRP suggests the following future trends: low density populations distant from thermally altered areas will continue at a low density with the exception of localized increases

  6. Assessment of mercury in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

  7. Assessment of mercury in the Savannah River Site environment

    International Nuclear Information System (INIS)

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities' gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard

  8. Used nuclear materials at Savannah River Site: asset or waste?

    International Nuclear Information System (INIS)

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable ''assets'' to worthless ''wastes''. In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or - in the case of high level waste - awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site's (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as ''waste'' include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national interest.

  9. Savannah River Laboratory seepage basins: Environmental information document

    International Nuclear Information System (INIS)

    The basins are located in the northwestern section of the Savannah River Plant in the 700 Area. The four basins are out of service and are awaiting closure. When in operation, the basins received a total of 128,820 m3 of low-level radioactive wastewater from laboratories located in Buildings 735-A and 773-A. Wastewater with radioactivity less than 100 d/m/mL alpha and/or 50 d/m/mL beta-gamma was discharged to the basins. Low concentrations of radioactive and nonradioactive constituents were found in the sediments beneath the seepage basins and a statistical analysis of monitoring data from the six water-table wells indicates elevated levels of chloride, manganese, and sodium in the groundwater. The closure options considered for the basins are waste removal and closure, no waste removal and closure, and no action. The environmental impact evaluation indicates that the human health risks for all closure options are low. Radioactive risk is dominated by tritium, but there is no significant difference between the closure options because the tritium has leached from the site prior to the closure action. The most significant noncarcinogenic risk results from arsenic. All atmospheric and occupational risks are low. The primary calculated ecological effect is due to direct contact with the basin sediments in the no action option. The relative costs for the various options are $9 million for waste removal and closure, $2.9 million for no waste removal and closure with cap, $2.4 million for no waste removal and closure without cap, and $0.26 million for no action. 36 refs., 27 figs., 98 tabs

  10. Two new research melters at the Savannah River Technology Center

    International Nuclear Information System (INIS)

    The Savannah River Technology Center (SRTC) is a US Department of Energy (DOE) complex leader in the development of vitrification technology. To maintain and expand this SRTC core technology, two new melter systems are currently under construction in SRTC. This paper discusses the development of these two new systems, which will be used to support current as well as future vitrification programs in the DOE complex. The first of these is the new minimelter, which is a joule-heated glass melter intended for experimental melting studies with nonradioactive glass waste forms. Testing will include surrogates of Defense Waste processing Facility (DWPF) high-level wastes. To support the DWPF testing, the new minimelter was scaled to the DWPF melter based on melt surface area. This new minimelter will replace an existing system and provide a platform for the research and development necessary to support the SRTC vitrification core technology mission. The second new melter is the British Nuclear Fuels, Inc., research melter system (BNFL melter), which is a scaled version of the BNFL low-activity-waste (LAW) melter proposed for vitrification of LAW at Hanford. It is designed to process a relatively large amount of actual radiative Hanford tank waste and to gather data on the composition of off-gases that will be generated by the LAW melter. Both the minimelter and BNFL melter systems consist of five primary subsystems: melter vessel, off-gas treatment, feed, power supply, and instrumentation and controls. The configuration and design of these subsystems are tailored to match the current system requirements and provide the flexibility to support future DOE vitrification programs. This paper presents a detailed discussion of the unique design challenges represented by these two new melter systems

  11. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  12. Nondestructive assay instrumentation for a Savannah River Plant upgrade project

    International Nuclear Information System (INIS)

    We have designed and are developing three different computer-based spectrometer systems. Two will measure the concentration of Pu solutions by gamma-ray and by stimulated x-ray fluorescence emissions of solid samples in closed containers. All systems are coupled to remote terminals and bar code readers, and also to mini-computer based multichannel analyzers, which in turn are linked to another computer to provide a state-of-the-art nondestructive assay capability. Installation at the Savannah River Plant is planned in late 1985. 7 references

  13. Savannah River Site K-Reactor Probabilistic Safety Assessment

    International Nuclear Information System (INIS)

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety

  14. Savannah River Site Waste Management Program Plan, FY 1993

    International Nuclear Information System (INIS)

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes

  15. Successful characterization of radioactive waste at the Savannah River Site

    International Nuclear Information System (INIS)

    Characterization of the low-level radioactive waste generated by forty five independent operating facilities at The Savannah River Site (SRS) experienced a slow start. However, the site effectively accelerated waste characterization based on findings of an independent assessment that recommended several changes to the existing process. The new approach included the development of a generic waste characterization protocol and methodology and the formulation of a technical board to approve waste characterization. As a result, consistent, detailed characterization of waste streams from SRS facilities was achieved in six months

  16. Inspection Report on "Employment Verification at Savannah River Site"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-11-01

    We conducted a review at the Savannah River Site to determine if Site subcontractors verified the employment status of all employees in accordance with Federal requirements and, if unauthorized individuals accessed the site. During our field work, we reviewed 600 I-9 Forms from 21 subcontractors to verify whether Site subcontractors were using the I-9 Forms; and if the forms were accurate and complete. We also conducted a judgmental sample of individuals who accessed the Site during a six-month period to determine if there were any documentation anomalies.

  17. Environmental Survey preliminary report, Savannah River Plant, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Savannah River Plant (SRP), located at Aiken, South Carolina. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The following topics are discussed: general site information; air, soil, surface water and ground water; hydrogeology; waste management; toxic and chemical materials; release of tritium oxides; radioactivity in milk; contamination of ground water and wildlife; pesticide use; and release of radionuclides into seepage basins. 149 refs., 44 figs., 53 tabs.

  18. Mixed Waste Management Facility closure at the Savannah River Site

    International Nuclear Information System (INIS)

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein

  19. Savannah River Site environmental report for 1991. [Contains Glossary

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  20. Savannah River Plant history plantwide activities, July 1954--December 1972

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1972-12-31

    This report recounts the yearly activities of the Savannah River Plant nonproduction agencies and is concerned mainly with Plant personnel and items of general interest. The ``History of Plantwide Activities`` is published as an accumulative document; at the end of each year a new writeup is added to the volume to bring it up to date. Writeups for 1955 and 1956 are based on the governmental fiscal year; those for 1957 and subsequent years are on a calendar year basis. The history of the period from prestartup through June 30, 1953, is presented in DPSP 53-368; the history from July 1953 through June 1954 is presented in DPSP 54-448.

  1. Adverse experiences with nitric acid at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Durant, W.S.; Craig, D.K.; Vitacco, M.J.; McCormick, J.A.

    1991-06-01

    Nitric acid is used routinely at the Savannah River Site (SRS) in many processes. However, the site has experienced a number of adverse situations in handling nitric acid. These have ranged from minor injuries to personnel to significant explosions. This document compiles many of these events and includes discussions of process upsets, fires, injuries, and toxic effects of nitric acid and its decomposition products. The purpose of the publication is to apprise those using the acid that it is a potentially dangerous material and can react in many ways as demonstrated by SRS experience. 10 refs.

  2. Savannah River Site K-Reactor Probabilistic Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O`Kula, K.R.; Wittman, R.S.; Woody, N.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N.; Weingardt, J.J. [Science Applications International Corp. (United States)

    1992-12-01

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety.

  3. Waterfowl of the Savannah River Plant: Comprehensive cooling water study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.J.; Kennamer, R.A.; Hoppe, R.T.

    1986-06-01

    Thirty-one species of waterfowl have been documented on the Savannah River Plant (SPR). The Savannah River Ecology Laboratory (SREL) has been conducting waterfowl research on the site for the past 15 years. This research has included work on waterfowl utilization of the SRP, wood duck reproductive biology, and waterfowl wintering ecology. Results are described.

  4. 33 CFR 100.724 - Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA.

    Science.gov (United States)

    2010-07-01

    ... Rowing Regatta; Savannah River, Augusta, GA. 100.724 Section 100.724 Navigation and Navigable Waters... WATERS § 100.724 Annual Augusta Invitational Rowing Regatta; Savannah River, Augusta, GA. (a) Definitions... all non-participants. (2) After the termination of the Invitational Rowing Regatta each day,...

  5. Geologic setting of the New Production Reactor within the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Price, V. [Westinghouse Savannah River Co., Aiken, SC (United States); Fallaw, W.C. [Furman Univ., Greenville, SC (United States). Dept. of Geology; McKinney, J.B. [Exploration Resources, Inc., Athens, GA (United States)

    1991-12-31

    The geology and hydrology of the reference New Production Reactor (NPR) site at Savannah River Site (SRS) have been summarized using the available information from the NPR site and areas adjacent to the site, particularly the away from reactor spent fuel storage site (AFR site). Lithologic and geophysical logs from wells drilled near the NPR site do not indicate any faults in the upper several hundred feet of the Coastal Plain sediments. However, the Pen Branch Fault is located about 1 mile south of the site and extends into the upper 100 ft of the Coastal Plain sequence. Subsurface voids, resulting from the dissolution of calcareous portions of the sediments, may be present within 200 ft of the surface at the NPR site. The water table is located within 30 to 70 ft of the surface. The NPR site is located on a groundwater divide, and groundwater flow for the shallowest hydraulic zones is predominantly toward local streams. Groundwater flow in deeper Tertiary sediments is north to Upper Three Runs Creek or west to the Savannah River Swamp. Groundwater flow in the Cretaceous sediments is west to the Savannah River.

  6. Bats of the Savannah River Site and vicinity.

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Menzel; J.M. Menzel; J.C. Kilgo; W.M. Ford; T.C. Carter; J.W. Edwards

    2003-10-01

    The U.S. Department of Energy's Savannah River Site supports a diverse bat community. Nine species occur there regularly, including the eastern pipistrelle (Pipistrellus subflavus), southeastern myotis (Myotis austroriparius), evening bat (Nycticeius humeralis), Rafinesque's big-eared bat (Corynorhinus rafinesquii), silver-haired bat (Lasionycteris noctivagans), eastern red bat (Lasiurus borealis), Seminole bat (L. seminolus), hoary bat (L. cinereus), and big brown bat (Eptesicus fuscus). There are extralimital capture records for two additional species: little brown bat (M. lucifigus) and northern yellow bat (Lasiurus intermedius). Acoustical sampling has documented the presence of Brazilian free-tailed bats (Tadarida brasiliensis), but none has been captured. Among those species common to the Site, the southeastern myotis and Rafinesque's big-eared bat are listed in South Carolina as threatened and endangered, respectively. The presence of those two species, and a growing concern for the conservation of forest-dwelling bats, led to extensive and focused research on the Savannah River Site between 1996 and 2002. Summarizing this and other bat research, we provide species accounts that discuss morphology and distribution, roosting and foraging behaviors, home range characteristics, habitat relations, and reproductive biology. We also present information on conservation needs and rabies issues; and, finally, identification keys that may be useful wherever the bat species we describe are found.

  7. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  8. Rheology of Savannah River Site Tank 51 HLW radioactive sludge

    International Nuclear Information System (INIS)

    Savannah River Site (SRS) Tank 51 HLW radioactive sludge represents a major portion of the first batch of sludge to be vitrified in the Defense Waste Processing Facility (DWPF) at SRS. The rheological properties of Tank 51 sludge will determine if the waste sludge can be pumped by the current DWPF process cell pump design and the homogeneity of melter feed slurries. The rheological properties of Tank 51 sludge and sludge/frit slurries at various solids concentrations were measured remotely in the Shielded Cells Operations (SCO) at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer system. Rheological properties of Tank 51 radioactive sludge/Frit 202 slurries increased drastically when the solids content was above 41 wt %. The yield stresses of Tank 51 sludge and sludge/frit slurries fall within the limits of the DWPF equipment design basis. The apparent viscosities also fall within the DWPF design basis for sludge consistency. All the results indicate that Tank 51 waste sludge and sludge/frit slurries are pumpable throughout the DWPF processes based on the current process cell pump design, and should produce homogeneous melter feed slurries

  9. Demolitions of the Savannah River Site's concentrator and finishing facilities

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) has produced Special Nuclear Materials (SNMs) starting in the early 1950's to the mid 1970's for the Atomic Energy Commission (AEC) and from the mid 1970's to the present for the Department of Energy (DOE). In that time, over 1,000 facilities have been built in the sixteen operational areas of the eight hundred square kilometer site. Over the years, many of the facilities have been dispositioned by the DOE as inactive. In FY-03, DOE identified two hundred and forty-seven (inactive or soon to be inactive) facilities that required demolition. Demolition work was scheduled to start in FY-04 and be completed in the first quarter of FY-07. Two-hundred and thirty-nine of these facilities have been demolished employing Routine demolition techniques. This presentation reviews and discusses two of the eight Non-Routine demolitions Facilities, 420-D 'The Concentrator Facility', and 421-D 'The Finishing Facility'. Facilities 420-D and 421-D were toppled by attaching rigging from the structural steel building frame to bulldozers and toppling the facilities over. The greatest advantage of this method is that it employs equipment that is on hand at SRS, saving time on locating and leasing offsite equipment as well as operator training. In addition, although the toppled structure does not land in the original facilities footprint, it does land in a contained area that is easily barricaded to prevent access during the operation. There are several disadvantages. First, there must be adequate area for the structure to topple into. Also if the wire rope size required to topple the structure is larger than two in., the ropes become extremely difficult to work with. Lastly, the yield strength of steel members is guaranteed by the manufacturer as a minimum strength, so its ultimate strength is unknown. This requires extremely conservative specifications sizing the bulldozers and any rigging equipment employed. Two hundred and forty-seven facilities have

  10. Chemical Properties of Pore Water and Sediment at Three Wetland Sites Near the F- and H-Area Seepage Basins, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.

    2001-05-15

    In 1980, vegetative stress and arboreal mortality in wetland plant communities down-gradient from the F- and H-Area seepage basins were detected using aerial imagery. By 1988, approximately six acres in H-Area and four acres in F-Area had been adversely impacted. Today, wetland plant communities have become well established at the H-Area tree-kill zone.

  11. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  12. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Thibault, Jeffrey [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Millings, Margaret [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Prater, Phil [Savannah River Site (SRS), Aiken, SC (United States)

    2015-03-16

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent

  13. Radioactive effluents in Savannah River. Summary report for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.

    1993-09-21

    During 1992, the radioactive effluents in the Savannah River were less than those observed in 1991. Vogtle reported no significant releases in 1992, and in earlier years Vogtle improvements in pre-processing their releases had already effected a decreasing trend in release levels. Their effluents continue to be dominated by {sup 58}Co, which had a maximum concentration of only 0.068 pCi/L, which is just 1/3 of the maximum observed in 1991. Many of the other man-made radionuclides observed in earlier years have now decreased to where some are not even detected, and no new radionuclides were detected in the 1992 Vogtle effluents. In addition to {sup 58}Co, low levels of {sup 60}Co were frequently observed, but only traces of {sup 54}Mn and {sup 95}Nb were observed. Contrary to earlier years no {sup 51}Cr, {sup 57}Co, {sup 59}Fe, or {sup 95}Zr were seen in 1992. Tritium and {sup 137}Cs were also monitored, but their levels generally remain consistent with known SRS sources. The maximum tritium observed near Vogtle was 2 pCi,/mL. The maximum downstream tritium was higher (3.8 pCi/mL), primarily due to the tritium release from K-Reactor in December 1991; however, the levels had abated significantly prior to collection of the tritium samples of the present study. In addition to natural sources, the general levels in the Savannah River are due to routine releases from the effluent treatment facility and seepage basin migration into plant streams that flow into the river.

  14. Integration of Environmental Compliance at the Savannah River Site - 13024

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, David [United States Department of Energy - Savannah River Operations Office (United States); Griffith, Michael [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation

  15. Integrated radioactive waste management plan: Savannah River Plant, Aiken, South Carolina

    International Nuclear Information System (INIS)

    This document presents Savannah River's plan for controlling the releases of radioactivity and ensuring the safe storage of radioactive wastes generated by past, present, and future operation of the Savannah River Plant. The basic and fundamental objective of the Savannah River waste management program is to handle these wastes at all times in a manner: (1) that will not endanger the health and safety of the employees or the public; (2) that will not have an adverse impact on man's environment or on the ecology; and (3) that will be accepted by the public. For the purpose of this document, waste was categorized into solid, liquid, and gaseous terms. The various waste management operations are categorized as treatment, storage, and release operations. Following a summary of the environmental effects of SRP emissions, the document includes in succession (1) a description of processes that generate wastes, (2) a description of the various waste treatment techniques, (3) a description of the waste holding facilities, and (4) a description of the plant's waste storage facilities. Future plans are also described. The document is of sufficient detail that it provides a ready reference describing the origin of the wastes as well as the techniques currently employed in managing the wastes. Throughout this document, concentration limits are noted that govern releases of radioactive effluents to the environment from individual operations or facilities within a plant area. These concentration limits are designed to assure that the summation of releases from each facility within the area does not exceed the annual operating guide established for that area. The area operating guides are tabulated

  16. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    International Nuclear Information System (INIS)

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today's legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ''Indifference'' decision process in assessing the Beneficial Reuse option relative to the Burial option are described

  17. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  18. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  19. Management of New Production Reactor waste streams at Savannah River

    International Nuclear Information System (INIS)

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program

  20. Savannah River Site Seismic Qualification Program boundary selection

    Energy Technology Data Exchange (ETDEWEB)

    Ketcham, D.R.; Nickell, C.G.; Monahon, T.M.

    1991-04-01

    The Savannah River Site Seismic Qualification Program utilizes methodology developed by the Seismic Qualification Utilities Group and endorsed by both the Nuclear Regulatory Commission and the Department of Energy. The systems selected for seismic upgrade prior to restart will ensure that following a seismic event, the reactor can be safely shut down, decay heat removal can be maintained, and the reactor status can be monitored for a minimum of seventy-two hours. Systems selected were reviewed to establish the boundaries of seismic qualification. Program implementation is being conducted in two phases. Phase on will be conducted prior to restart. It will include evaluating accident prevention systems and selected monitoring and mitigation systems and upgrading as necessary to ensure compliance with DOE requirements. Phase two will evaluate/upgrade other mitigation systems after restart to provide enhanced assurance of reactor safety.

  1. Quantitative studies of Savannah River aquatic insects, 1959--1985

    Energy Technology Data Exchange (ETDEWEB)

    Soltis, R. (ed.); Hart, D.; Nagy, T.

    1986-10-30

    As part of a long-term study of water quality patterns, scientists from the Academy of Natural Sciences have collected aquatic insects from artificial substrates placed at several stations in Savannah River. This report presents the first detailed compilation and analysis of this substantial data base, and examines patterns of variations of insect distribution and abundance (both spatial and temporal) during the last quarter century. Data on the number of individuals of various taxa found in the insect traps were obtained from tables in the Academy's cursory reports. Computer data files created from these records were subjected to extensive statistical analyses in order to examine variation among stations, seasons and years in the abundances of major taxa and various aggregate properties of the insect assemblage. Although a total of 83 taxa were collected over the 27-year study, 10 taxa accounted for nearly 80% of the individuals collected from the traps, hence there 10 taxa were analyzed more intensively.

  2. Quantitative studies of Savannah River aquatic insects, 1959--1985

    Energy Technology Data Exchange (ETDEWEB)

    Soltis, R. [ed.; Hart, D.; Nagy, T.

    1986-10-30

    As part of a long-term study of water quality patterns, scientists from the Academy of Natural Sciences have collected aquatic insects from artificial substrates placed at several stations in Savannah River. This report presents the first detailed compilation and analysis of this substantial data base, and examines patterns of variations of insect distribution and abundance (both spatial and temporal) during the last quarter century. Data on the number of individuals of various taxa found in the insect traps were obtained from tables in the Academy`s cursory reports. Computer data files created from these records were subjected to extensive statistical analyses in order to examine variation among stations, seasons and years in the abundances of major taxa and various aggregate properties of the insect assemblage. Although a total of 83 taxa were collected over the 27-year study, 10 taxa accounted for nearly 80% of the individuals collected from the traps, hence there 10 taxa were analyzed more intensively.

  3. SALT CORE SAMPLING EVOLUTION AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Nance, T; Daniel Krementz, D; William Cheng, W

    2007-11-29

    The Savannah River Site (SRS), a Department of Energy (DOE) facility, has over 30 million gallons of legacy waste from its many years of processing nuclear materials. The majority of waste is stored in 49 buried tanks. Available underground piping is the primary and desired pathway to transfer waste from one tank to another until the waste is delivered to the glass plant, DWPF, or the grout plant, Saltstone. Prior to moving the material, the tank contents need to be evaluated to ensure the correct destination for the waste is chosen. Access ports are available in each tank top in a number of locations and sizes to be used to obtain samples of the waste for analysis. Material consistencies vary for each tank with the majority of waste to be processed being radioactive salts and sludge. The following paper describes the progression of equipment and techniques developed to obtain core samples of salt and solid sludge at SRS.

  4. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  5. Greater confinement disposal program at the Savannah River Plant

    International Nuclear Information System (INIS)

    The first facility to demonstrate Greater Confinement Disposal (GCD) in a humid environment in the United States has been built and is operating at the Savannah River Plant. GCD practices of waste segregation, packaging, emplacement below the root zone, and waste stabilization are being used in the demonstration. Activity concentrations to select wastes for GCD are based on a study of SRP burial records, and are equal to or less than those for Class B waste in 10CFR61. The first disposal units to be constructed are 9-foot diameter, thirty-foot deep boreholes which will be used to dispose of wastes from production reactors, tritiated wastes, and selected wastes from off-site. In 1984 an engineered GCD trench will be constructed for disposal of boxed wastes and large bulky items. 2 figures, 1 table

  6. L-Reactor operation, Savannah River Plant: environmental assessment

    International Nuclear Information System (INIS)

    The purpose of this document is to assess the significance of the effects on the human environment of the proposed resumption of L-reactor operation at the Savannah River Plant, scheduled for October 1983. The discussion is presented under the following section headings: need for resumption of L-Reactor operations and purpose of this environmental assessment; proposed action and alternative; affected environment (including, site location and description, land use, historic and archeological resources, socioeconomic and community characteristics, geology and seismology, hydrology, meteorology and climatology, ecology, and radiation environment); environmental consequences; summary of projected L-Reactor releases and impacts; and Federal and State permits and approval. The three appendices are entitled: radiation dose calculation methods and assumptions; floodplain/wetlands assessment - L-Reactor operations; and, conversion table. A list of references is included at the end of each chapter

  7. Establishment of new disposal capacity for the Savannah River Plant

    International Nuclear Information System (INIS)

    Two new low-level waste (LLW) disposal sites for decontaminated salt solidified with cement and fly ash (saltstone) and for conventional solid LLW are planned for SRP in the next several years. An above-ground vault disposal system for saltstone was designed to minimize impact on the environment by controlling permeability and diffusivity of the waste form and concrete liner. The experimental program leading to the engineered disposal system included formulation studies, multiple approaches to measurement of permeability and diffusivity, extensive mathematical modeling, and large-scale lysimeter tests to validate model projections. The overall study is an example of the systems approach to disposal site design to achieve a predetermined performance objective. The same systems approach is being used to develop alternative designs for disposal of conventional LLW at the Savannah River Plant. 14 figures

  8. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  9. Costs of nuclear waste glassmaking at Savannah River

    International Nuclear Information System (INIS)

    Recently developed reference schedules for processing high-level nuclear wastes into solid glass froms at Savannah River provide bases for economic evaluations of potential improvements of glass melter design and operation. Greater melter output is achieved through increases in capacity and attainment and possible higher glass waste loadings. The economic evaluation indicates only minor beneficial impacts on total waste disposal costs for melter outputs greater than current reference values. In contrast, cost impacts are detrimentally large for outputs less than reference values, providing important incentives for development to ensure the reference output. The limits on cost benefits for greater-than-reference output are not intrinsic to on melter feed specified to control radiation and heat loads of the product glass waste form. 14 ref., 3 figs., 1 tab

  10. Waste migration studies at the Savannah River Plant burial ground

    International Nuclear Information System (INIS)

    The low-level radioactive waste burial ground at the Savannah River Plant is a typical shallow-land-burial disposal site in a humid region. Studies of waste migration at this site provide generic data for designing other disposal facilities. A program of field, laboratory, and modeling studies for the SRP burial ground has been conducted for several years. Recent results of lysimeter tests, soil-water chemistry studies, and transport modeling are reported. The lysimeter experiments include ongoing tests with 40 lysimeters containing a variety of defense wastes, and recently concluded lysimeter tests with tritium and plutonium waste forms. The tritium lysimeter operated 12 years. In chemistry studies, measurements of soil-water distribution coefficients (K/sub d/) were concluded. Current emphasis is on identification of trace organic compounds in groundwater from the burial site. Development of the dose-to-man model was completed, and the computer code is available for routine use. 16 refs., 2 figs., 2 tabs

  11. Characterization plan for TNX Burying Ground, Savannah River Plant

    International Nuclear Information System (INIS)

    The TNX Burying Ground, which is located within the TNX security fenceline, was originally built in 1953 for the disposal of waste and debris from an experimental evaporator explosion. The material buried contained approximately 590 kg of uranyl nitrate, with unspecified amounts of tin, conduit, timbers, and other debris. Partial removals were performed in the early 1980s when the waste was encountered during the construction of buildings and process structures at TNX. This Characterization Plan has been prepared to fulfill requirements outlined in the ''Scope of Work for Technical Assistance on Characterization of the TNX Burying Ground.'' This plan provides recommendations for collection of technical data to characterize the Savannah River Plant (SRP) TNX Burying Ground by identifying the numbers, types, depths, and locations of samples, the analyses to be performed, and the methodologies for collection

  12. Savannah River National Laboratory Involvement in the European ENSEMBLE Program

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. L.; Addies, Robert P.

    2005-10-24

    Many atmospheric transport and dispersion models now exist to provide consequence assessment during emergency response to near-field releases. One way of estimating the uncertainty for a given forecast is to statistically analyze an ensemble of results from several models. ENSEMBLE is a European Union program that utilizes an internet-based system to ingest transport results from numerous modeling agencies. This paper addresses the involvement of the Savannah River National Laboratory (SRNL) in ENSEMBLE, and the resulting improvements in SRNL modeling capabilities. SRNL, the only United States agency involved in the ENSEMBLE program, uses a prognostic atmospheric numerical model (the Regional Atmospheric Modeling System, RAMS) to provide three-dimensional and time-varying meteorology as input to a stochastic Lagrangian particle mode . The model design used by SRNL is discussed, including recent upgrades to the system using parallel processing which allows for finer grid resolution in the generation of the meteorology.

  13. Epidemiologic surveillance. Annual report for Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Epidemiologic surveillance at US Department of Energy (DOE) facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Savannah River Site (SRS) are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 16-75 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and salary status; (2) the absences per person, diagnoses per absences, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  14. Savannah River Site production reactor technical specifications. K Production Reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    These technical specifications are explicit restrictions on the operation of the Savannah River Site K Production Reactor. They are designed to preserve the validity of the plant safety analysis by ensuring that the plant is operated within the required conditions bounded by the analysis, and with the operable equipment that is assumed to mitigate the consequences of an accident. Technical specifications preserve the primary success path relied upon to detect and respond to accidents. This report describes requirements on thermal-hydraulic limits; limiting conditions for operation and surveillance for the reactor, power distribution control, instrumentation, process water system, emergency cooling and emergency shutdown systems, confinement systems, plant systems, electrical systems, components handling, and special test exceptions; design features; and administrative controls.

  15. Nondestructive assay instrumentation for Savannah River Plant reprocessing accountability

    International Nuclear Information System (INIS)

    We have designed, developed, and calibrated three different types of nondestructive assay systems for the Savannah River Plant (SRP). These systems will be delivered to SRP in 1986 and become part of the nuclear material accounting instrumentation at one of SRP's reprocessing facilities. Among the various types of nondestructive assay systems to be implemented are a neutron counter (Los Alamos National Laboratory - LANL), a four-station calorimeter (Mound Laboratories), a waste solution assay system (LANL), two gamma-ray solution concentration assay systems (LLNL), two x-ray fluorescence analysis concentration assay systems (LLNL), and one 2-detector plutonium solids isotopics system (LLNL). Los Alamos also has the responsibility of combining the individual measurement systems into an integrated accountability capability. Each NDA instrument will report results to a central Instrument Control Computer (ICC). Figure 1 illustrates schematically the integrated system with each Laboratory's contribution shown by dotted lines

  16. Assessment of radiocarbon in the Savannah River Site Environment

    International Nuclear Information System (INIS)

    This report is a radiological assessment of 14C releases from the Savannah River Site. During the operation of five production reactors 14C has been produced at SRS. Approximately 3000 curies have been released to the atmosphere but there are no recorded releases to surface waters. Once released, the 14C joins the carbon cycle and a portion enters the food chain. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by a dose of 1.1 mrem, compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Releases of 14C have resulted in a negligible risk to the environment and the population it supports

  17. Savannah River Site Environmental Implementation Plan. Volume 2, Protection programs

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  18. Investigation on the Combined Use of Ground Penetrating Radar, Cone Penetrometer and High Resolution Seismic Data for Near Surface and Vadose Zone Characterization in the A/M Area of the Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    This study compares data from Cone Penetrometer Tests (CPT), high resolution surface reflection seismic (HRS) data and ground penetrating radar (GPR) data in the upper 120 feet (40 meters) of the A/M Area, Upper Three Runs Watershed at the Savannah River Site in South Carolina. The CPT, GPR, and HRS data were obtained along the Silverton Road in the western sector of the A/M Area groundwater plume, and adjacent to Geophysical Correlation Boring number-sign 1 (GCB-1). This location allows for multiple correlations to be made between the various data sources, and supports shallow investigations for near surface affects of the Crackerneck Fault, a major structural feature in the area. Borehole geophysical data from GCB-1 were used to provide subsurface constraints on the CPT, GPR, and HRS data. core data, natural gamma ray, spectral gamma data, multi-level induction resistivity, density and sonic data were utilized to distinguish clays, sands and silts. The CPT data provided tip bearing and sleeve stress, as an indicator of stratigraphy. Reflection seismic data provided continuous subsurface profiles of key marker horizons. Ground Penetrating Radar provided information on shallow subsurface geological features. Conclusions from this study suggest that there is a high degree of correlation between the CPT and borehole geophysical data, specifically, the Friction Ratio and gamma/spectral gamma curves. The Upland/Tobacco Road, Tobacco Road/Dry Branch, Dry Branch/Santee, Santee/Warley Hill and the Warley Hill/Congaree contacts are discernible. From these contacts it is possible to map structural relationships in the shallow subsurface that are tied to regional data. Because formation contacts are discernible, CPT, HRS, GPR, and geophysical log intra-formational anomalies are mappable. These features allow for stratigraphic and facies mapping using the GPR and HRS data for continuity and the CPT and geophysical data for lithofacies analysis. It is possible to use the

  19. Savannah River Laboratory hydrogeochemical and stream sediment reconnaissance. Preliminary raw data release, Charlotte 10 x 20 NTMS area, North Carolina and South Carolina. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    This report presents preliminary results of stream sediment and ground water reconnaissance in the Charlotte National Topographic Map Series (NTMS) 10 x 20 quadrangle. Stream sediment samples were collected from small streams at 1254 sites for a nominal density of one site per 13 square kilometers (five square miles) in rural areas. Ground water samples were collected at 759 sites for a nominal density of one site per 25 square kilometers (ten squre miles). Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Key data are presented in page-sized hard copy. Supplementary data are on microfiche. Key data from stream sites include (1) water quality measurements (pH, conductivity, and alkalinity), (2) elements that may be related to potential uranium and thorium mineralization in this area (U, Th, Hf, Ce, and Dy), and (3) elements useful for geologic classification of the sample area (Ti, V, Fe, Mn, Al, and Sc). Supplementary data from stream sites include sample site descriptors (stream characteristics, vegetation, stream width, etc.) and additional elemental analyses that may be useful (F, Eu, Sm, La, Yb, and Lu). Key data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) and (2) elemental analyses (U, Na, Cl, Mg, Al, Mn, Br, V, and F). Supplementary data include site descriptors, information about the collection of the samples (well age, well depth, frequency of use of well, etc.), and analytical data for dysprosium

  20. Seismic evaluation of safety systems at the Savannah River reactors

    International Nuclear Information System (INIS)

    A thorough review of all safety related systems in commercial nuclear power plants was prompted by the accident at the Three Mile Island Nuclear Power Plant. As a consequence of this review, the Nuclear Regulatory Commission (NRC) focused its attention on the environmental and seismic qualification of the industry's electrical and mechanical equipment. In 1980, the NRC issued Unresolved Safety Issue (USI) A-46 to verify the seismic adequacy of the equipment required to safely shut down a plant and maintain a stable condition for 72 hours. After extensive research by the NRC, it became apparent that traditional analysis and testing methods would not be a feasible mechanism to address this USI A-46 issue. The costs associated with utilizing the standard analytical and testing qualification approaches were exorbitant and could not be justified. In addition, the only equipment available to be shake table testing which is similar to the item being qualified is typically the nuclear plant component itself. After 8 years of studies and data collection, the NRC issued its ''Generic Safety Evaluation Report'' approving an alternate seismic qualification approach based on the use of seismic experience data. This experience-based seismic assessment approach will be the basis for evaluating each of the 70 pre-1972 commercial nuclear power units in the United States and for an undetermined number of nuclear plants located in foreign countries. This same cost-effective developed for the commercial nuclear power industry is currently being applied to the Savannah River Production Reactors to address similar seismic adequacy issues. This paper documents the results of the Savannah River Plant seismic evaluating program. This effort marks the first complete (non-trial) application of this state-of-the-art USI A-46 resolution methodology

  1. Fall 1993 Hardwood Seed Collection Project for the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Boatwright, N.I. III [Canal Environmental Services (United States)

    1993-12-31

    The Fall 1993 Hardwood Seed Collection Project was conducted as an initial step towards regenerating creek habitat on the Savannah River Site (SRS) that was damaged by past plant operating activities. Seed from various hardwood species was collected from the coastal plain of South Carolina (See Table 1). The contract required that seed collected from each tree be kept separate through processing and delivery. Height and dbh measurements and a photograph of each tree were also required. The contract procurement area was expanded eastward in an effort to alleviate problems associated with locating adequate seed sources in and around SRP.

  2. D ampersand D Characterization of the 232-F Old Tritium Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    The 232-F ''Old Tritium Facility'' operated in the 1950s as the first tritium production facility at the Savannah River Site (SRS). In 1957, the 232-F operation ceased with tritium production turned over to a larger, technologically improved facility at SRS. The 232-F Facility was abandoned in 1958 and the process areas have remained contaminated with radiological, hazardous and mixed constituents. Decontamination and decommissioning (D ampersand D) of the 232-F Facility is scheduled to occur in the years 1995-1996. This paper presents the D ampersand D characterization efforts for the 232-F Facility

  3. Westinghouse Savannah River Site vendor forum: An innovative cooperative technology development success

    International Nuclear Information System (INIS)

    The Westinghouse Savannah River Company (WSRC) Supplier Environmental and Waste Management Information Exchange Forum was held August 31 - September 1, 1993. The forum, which was planned and conducted in concert with the Department of Energy Savannah River Operations Office (DOE-SROO), was held to foster a technical exchange in which new, innovative technologies were proposed by suppliers, to identify more cost-effective methods to apply to future and on-going activities, to increase use of the private sector, and to promote partnerships with other industries. The two day forum provided the opportunity for WSRC and DOE-SR to review program activities and challenges in five major areas, Savannah River Technology Center, Solid Waste Facilities, Environmental Restoration, Environmental Monitoring, and Decontamination and Decommissioning through formal presentations. The second day was designed to provide suppliers the opportunity to talk about current and future activities and challenges with representatives of each of these areas at display booths, special high interest topic interactive sessions, and site tours. Each attendee was then invited to submit pre-proposals relative to the abstracts presented in The Special Consolidate Solicitation for Environmental and Waste Management Basic and Applied Research and Research-Related Development and/or Demonstration No. E10600-E1 document. Twenty-five contracts totaling $12 million were awarded. Twenty-four contracts have now been completed. This paper provides an overview of the pre forum activities, the forum, post-forum and proposal review process, and most importantly a description of the technologies demonstrated, the benefits and savings derived, and future use potential from a DOE perspective, as well as technology transfer and industrial partnership potential

  4. Radionuclide tracers for the fate of metals in the Savannah estuary: River-ocean exchange processes

    International Nuclear Information System (INIS)

    Plutonium-238 from the US Department of Energy's Savannah River Plant labels riverborne particles, providing a unique opportunity for examining the fate of metals in estuaries and for tracing river-ocean exchange processes. Results indicate that plutonium and lead-210 are enriched on estuarine particles and that inputs of plutonium from oceanic sources greatly exceed inputs from riverborne or drainage-basin sources as far upstream as the landward limit of seawater penetration. We suggest that these radionuclides (and other chemically reactive metals) are being scavenged from oceanic water by sorption onto particles in turbid estuarine and coastal areas. Since estuaries, bays, mangroves, and intertidal areas serve as effective traps for fine particles and associated trace substances, these results have important implications concerning the disposal of chemically reactive substances in oceanic waters. 13 refs., 1 fig., 1 tab

  5. Characterizing the Environmental Availability of Trace Metals in Savannah River Site Soils

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    1999-03-18

    An eight step sequential extraction technique was used to characterize the environmental availability of trace metals from background and waste site soil samples collected from the US Department of Energy's Savannah River Site (SRS).

  6. Evaluation of Cone Penetrometer Data for Permeability Correlation at the Savannah River Site

    International Nuclear Information System (INIS)

    This report documents the results of an assessment of cone penetrometer technology (CPT) use at the Savannah River Site. The study is intended to provide valuable insight into methods of increasing the utility of CPT data for site characterization

  7. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    Energy Technology Data Exchange (ETDEWEB)

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  8. Demonstration of Small Tank Tetraphenylborate Precipitation Process Using Savannah River Site High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.B.

    2001-09-10

    This report details the experimental effort to demonstrate the continuous precipitation of cesium from Savannah River Site High Level Waste using sodium tetraphenylborate. In addition, the experiments examined the removal of strontium and various actinides through addition of monosodium titanate.

  9. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    Energy Technology Data Exchange (ETDEWEB)

    Moore, F.S.

    1999-10-07

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials.

  10. Data Summary Report for Savannah River Integrator Operable Unit Fish Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Craig, B.

    2001-02-13

    This report presents the results of the verification and validation of the analytical data for the Savannah River Fish (SRF) investigation. The data were validated to determine if the records conform to the technical criteria associated with definitive data.

  11. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, M.J.; Brooks, R.D.; Sassaman, K.E.; Crass, D.C. [and others

    1995-10-01

    The Savannah River Archaeological Research Program (SRARP) continued through FY95 with the United States Department of Energy to fulfill a threefold mission of cultural resource management, research, and public education at the Savannah River Site. Over 2,300 acres of land on the SRS came under cultural resources review in FY95. This activity entailed 30 field surveys, resulting in the recording of 86 new sites. Twenty-two existing sites within survey tract boundaries were revisited to update site file records. Research conducted by SRARP was reported in 11 papers and monographs published during FY95. SRARP staff also presented research results in 18 papers at professional meetings. Field research included several testing programs, excavations, and remote sensing at area sites, as well as data collection abroad. Seven grants were acquired by SRARP staff to support off-site research. In the area of heritage education, the SRARP expanded its activities in FY95 with a full schedule of classroom education, public outreach, and on-site tours. Volunteer excavations at the Tinker Creek site were continued with the Augusta Archaeological Society and other avocational groups, and other off-site excavations provided a variety of opportunities for field experience. Some 80 presentations, displays and tours were provided for schools, historical societies, civic groups, and environmental and historical awareness day celebrations. Additionally, SRARP staff taught four anthropology courses at area colleges.

  12. Natural resource management activities at the Savannah River Site. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This environmental assessment (EA) reviews the environmental consequences of ongoing natural resource management activities on the Savannah River Site (SRS). Appendix A contains the Natural Resources Management Plant (NRMP). While several SRS organizations have primary responsibilities for different elements of the plan, the United States Department of Agriculture (USDA), Forest Service, Savannah River Forest Station (SRFS) is responsible for most elements. Of the river scenarios defined in 1985, the High-Intensity Management alternative established the upper bound of environmental consequences; it represents a more intense level of resource management than that being performed under current resource management activities. This alternative established compliance mechanisms for several natural resource-related requirements and maximum practical timber harvesting. Similarly, the Low-Intensity Management alternative established the lower bound of environmental consequences and represents a less intense level of resource management than that being performed under current resource management activities. This alternative also established compliance mechanisms, but defined a passively managed natural area. The Proposed Action of this EA describes the current level of multiple-natural resource management. This EA reviews the proposed action, and the high and low intensity alternative scenarios.

  13. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-03-26

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions.

  14. Robotics and Automation Activities at the Savannah River Site: A Site Report for SUBWOG 39F

    International Nuclear Information System (INIS)

    The Savannah River Site has successfully used robots, teleoperators, and remote video to reduce exposure to ionizing radiation, improve worker safety, and improve the quality of operations. Previous reports have described the use of mobile teleoperators in coping with a high level liquid waste spill, the removal of highly contaminated equipment, and the inspection of nuclear reactor vessels. This report will cover recent applications at the Savannah River, as well as systems which SRS has delivered to other DOE site customers

  15. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of ''refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs

  16. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  17. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    International Nuclear Information System (INIS)

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions

  18. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  19. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    International Nuclear Information System (INIS)

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams

  20. Management approaches for improving environmental restoration at the Savannah River Site: Projectization, performance, and communications; Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Pope, J.M.; Hoffman, W.D. (Westinghouse Savannah River Co., Aiken, SC (United States)); Goidell, L. (USDOE, Washington, DC (United States))

    1993-01-01

    The purpose of this paper is to communicate how new and established management techniques are applied to environmental restoration projects at the Savannah River Site. Specifically, the paper discusses application of four (4) management approaches: Total Quality Principles; Task Team Structure; Cost Time Management; SAFER (Streamlined Approach for Environmental Restoration). The objective is to share Savannah River Site experience and document case studies where certain approaches have enhanced projects at hand. Each management approach is demonstrated by its project application and impact on performance. The visibility given the project is discussed to emphasize communications as avenues for public information, technical exchange, and employee motivation.

  1. Management approaches for improving environmental restoration at the Savannah River Site: Projectization, performance, and communications; Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Pope, J.M.; Hoffman, W.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Goidell, L. [USDOE, Washington, DC (United States)

    1993-02-01

    The purpose of this paper is to communicate how new and established management techniques are applied to environmental restoration projects at the Savannah River Site. Specifically, the paper discusses application of four (4) management approaches: Total Quality Principles; Task Team Structure; Cost Time Management; SAFER (Streamlined Approach for Environmental Restoration). The objective is to share Savannah River Site experience and document case studies where certain approaches have enhanced projects at hand. Each management approach is demonstrated by its project application and impact on performance. The visibility given the project is discussed to emphasize communications as avenues for public information, technical exchange, and employee motivation.

  2. Carbon-14 geochemistry at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kimberly A.; Kaplan, Daniel I.

    2013-05-10

    Carbon-14 is among the key radionuclides driving risk at the E-Area Low-Level Waste Disposal Facility on the Savannah River Site (SRS). Much of this calculated risk is believed to be the result of having to make conservative assumptions in risk calculations because of the lack of site-specific data. The original geochemical data package (Kaplan 2006) recommended that performance assessments and composite analyses for the SRS assume that {sup 14}C did not sorbed to sediments or cementitious materials, i.e., that C-14 K{sub d} value (solid:liquid concentration ratio) be set to 0 mL/g (Kaplan 2006). This recommendation was based primarily on the fact that no site-specific experimental work was available and the assumption that the interaction of anionic {sup 14}C as CO{sub 2}{sup 2-}) with similarly charged sediments or cementitious materials would be minimal. When used in reactive transport equations, the 0 mL/g Kd value results in {sup 14}C not interacting with the solid phase and moving quickly through the porous media at the same rate as water. The objective of this study was to quantify and understand how aqueous {sup 14}C, as dissolved carbonate, sorbs to and desorbs from SRS sediments and cementitious materials. Laboratory studies measuring the sorption of {sup 14}C, added as a carbonate, showed unequivocally that {sup 14}C-carbonate K{sub d} values were not equal to 0 mL/g for any of the solid phases tested, but they required several months to come to steady state. After six months of contact, the apparent K{sub d} values for a clayey sediment was 3,000 mL/g, for a sandy sediment was 10 mL/g, for a 36-year-old concrete was 30,000 mL/g, and for a reducing grout was 40 mL/g. Furthermore, it was demonstrated that (ad)sorption rates were appreciably faster than desorption rates, indicating that a kinetic sorption model, as opposed to the steady-state K{sub d} model, may be a more accurate description of the {sup 14}C-carbonate sorption process. A second study

  3. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University's Institute of Ecology. The laboratory's overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M ampersand O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give

  4. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  5. Striped Bass Spawning in Non-Estuarine Portions of the Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.; Paller, M.

    2007-04-17

    Historically, the estuarine portions of the Savannah River have been considered to be the only portion of the river in which significant amounts of striped bass (Morone saxatilis) spawning normally occur. A reexamination of data from 1983 through 1985 shows a region between River Kilometers 144 and 253 where significant numbers of striped bass eggs and larvae occur with estimated total egg production near that currently produced in the estuarine reaches. It appears possible that there are two separate spawning populations of striped bass in the Savannah River.

  6. Axial power monitoring uncertainty in the Savannah River Reactors

    International Nuclear Information System (INIS)

    The results of this analysis quantified the uncertainty associated with monitoring the Axial Power Shape (APS) in the Savannah River Reactors. Thermocouples at each assembly flow exit map the radial power distribution and are the primary means of monitoring power in these reactors. The remaining uncertainty in power monitoring is associated with the relative axial power distribution. The APS is monitored by seven sensors that respond to power on each of nine vertical Axial Power Monitor (APM) rods. Computation of the APS uncertainty, for the reactor power limits analysis, started with a large database of APM rod measurements spanning several years of reactor operation. A computer algorithm was used to randomly select a sample of APSs which were input to a code. This code modeled the thermal-hydraulic performance of a single fuel assembly during a design basis Loss-of Coolant Accident. The assembly power limit at Onset of Significant Voiding was computed for each APS. The output was a distribution of expected assembly power limits that was adjusted to account for the biases caused by instrumentation error and by measuring 7 points rather than a continuous APS. Statistical analysis of the final assembly power limit distribution showed that reducing reactor power by approximately 3% was sufficient to account for APS variation. This data confirmed expectations that the assembly exit thermocouples provide all information needed for monitoring core power. The computational analysis results also quantified the contribution to power limits of the various uncertainties such as instrumentation error

  7. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  8. Assessment of strontium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Strom, R.N.

    1992-12-31

    This document on strontium is published as a part of the Radiological Assessment Program (RAP). It is the sixth in a series of eight documents on individual radioisotopes released to the environment as a result of SRS (Savannah River Site) operations. Strontium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Strontium has been produced at SRS during the operation of 5 production reactors. About 300 curies of radiostrontium were released into streams in the late 50s and 60s, primarily from leaking fuel elements in reactor storage basins. Smaller quantities were released from the fuel reprocessing operations. About 400 Ci were released to seepage basins. A much smaller quantity, about 2 Ci, was released to the atmosphere. The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 6.2 mrem (atmospheric) and 1.4 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Radiostrontium releases have resulted in a negligible risk to the environment and the population it supports.

  9. Tritium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  10. Radiolytic gas production from concrete containing Savannah River Plant waste

    International Nuclear Information System (INIS)

    To determine the extent of gas production from radiolysis of concrete containing radioactive Savannah River Plant waste, samples of concrete and simulated waste were irradiated by 60Co gamma rays and 244Cm alpha particles. Gamma radiolysis simulated radiolysis by beta particles from fission products in the waste. Alpha radiolysis indicated the effect of alpha particles from transuranic isotopes in the waste. With gamma radiolysis, hydrogen was the only significant product; hydrogen reached a steady-state pressure that increased with increasing radiation intensity. Hydrogen was produced faster, and a higher steady-state pressure resulted when an organic set retarder was present. Oxygen that was sealed with the wastes was depleted. Gamma radiolysis also produced nitrous oxide gas when nitrate or nitrite was present in the concrete. With alpha radiolysis, hydrogen and oxygen were produced. Hydrogen did not reach a steady-state pressure at 137Cs and 90Sr), hydrogen will reach a steady-state pressure of 8 to 28 psi, and oxygen will be partially consumed. These predictions were confirmed by measurement of gas produced over a short time in a container of concrete and actual SRP waste. The tests with simulated waste also indicated that nitrous oxide may form, but because of the low nitrate or nitrite content of the waste, the maximum pressure of nitrous oxide after 300 years will be 238Pu and 239Pu will predominate; the hydrogen and oxygen pressures will increase to >200 psi

  11. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the US Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  12. Airborne radioactive effluent study at the Savannah River Plant

    International Nuclear Information System (INIS)

    Under the Clean Air Act, Sections 112 and 122 as amended in 1977, the Office of Radiation Programs (OPR) of the United States Environmental Protection Agency is currently developing standards for radionuclides emitted to the air by several source categories. In order to confirm source-term measurements and pathway calculations for radiation exposures to humans offsite, the ORP performs field studies at selected facilities that emit radionuclides. This report describes the field study conducted at the Savannah River Plant (SRP), a laboratory operated by E.I. du Pont de Nemours and Company for the US Department of Energy. This purpose of the study at ARP was to verify reported airborne releases and resulting radiation doses from the facility. Measurements of radionuclide releases for brief periods were compared with measurements performed by SRP staff on split samples and with annual average releases reported by SRP for the same facilities. The dispersion model used by SRP staff to calculate radiation doses offsite was tested by brief environmental radioactivity measurements performed simultaneously with the release measurements, and by examining radioactivity levels in environmental samples. This report describes in detail all measurements made and data collected during the field study and presents the results obtained. 34 references, 18 figures, 49 tables

  13. Law enforcement tools available at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.

    2000-03-29

    A number of nuclear technologies developed and applied at the Savannah River Site in support of nuclear weapons material production and environmental remediation can be applied to problems in law enforcement. Techniques and equipment for high-sensitivity analyses of samples are available to identify and quantify trace elements and establish origins and histories of forensic evidence removed from crime scenes. While some of theses capabilities are available at local crime laboratories, state-of-the-art equipment and breakthroughs in analytical techniques are continually being developed at DOE laboratories. Extensive experience with the handling of radioactive samples at the DOE labs minimizes the chances of cross-contamination of evidence received from law enforcement. In addition to high-sensitivity analyses, many of the field techniques developed for use in a nuclear facility can assist law enforcement personnel in detecting illicit materials and operations, in retrieving of pertinent evidence and in surveying crime scenes. Some of these tools include chemical sniffers, hand-held detectors, thermal imaging, etc. In addition, mobile laboratories can be deployed to a crime scene to provide field screening of potential evidence. A variety of portable sensors can be deployed on vehicle, aerial, surface or submersible platforms to assist in the location of pertinent evidence or illicit operations. Several specific nuclear technologies available to law enforcement and their potential uses are discussed.

  14. VITRIFICATION OF HIGH LEVEL WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Peeler, D.

    2009-06-17

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent high level waste Sludge Batch 5 (SB5) as vitrified at the Savannah River Site Defense Waste Processing Facility. These data were used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of candidate frits. The study glasses were fabricated using depleted uranium and their chemical compositions, crystalline contents and chemical durabilities were characterized. Trevorite was the only crystalline phase that was identified in a few of the study glasses after slow cooling, and is not of concern as spinels have been shown to have little impact on the durability of high level waste glasses. Chemical durability was quantified using the Product Consistency Test (PCT). All of the glasses had very acceptable durability performance. The results of this study indicate that a frit composition can be identified that will provide a processable and durable glass when combined with SB5.

  15. Neptunium Disposal to the Savannah River Site Tank Farm

    International Nuclear Information System (INIS)

    Researchers investigated the neutralization of an acidic neptunium solution from a Savannah River Site (SRS) processing canyon and the properties of the resulting slurry to determine the feasibility of disposal in the SRS tank farm. The acidic solution displayed no properties that precluded the proposed disposal route. Neutralization of the acidic neptunium forms a 4 wt per cent slurry of precipitated metal hydroxides. The insoluble solids consist largely of iron (92 per cent) and neptunium hydroxides (2 per cent). The concentration of soluble neptunium remaining after neutralization equaled much less than previous solubility measurements predicted. Researchers used an apparatus similar to an Ostwald-type viscometer to estimate the consistency of the neptunium slurry with the solids present. The yield stress and consistency of the 4 wt per cent slurry will allow transfer through the tank farm, although concentration of the insoluble solids above 4 wt per cent may cause significant problems due to increased consistency and yield stress. The consistency of the 4 wt per cent slurry is 7.6 centipoise (cP) with a yield stress less than 1 Pascal (Pa). The neptunium slurry, when combined with actual washed radioactive sludge, slightly reduces the yield stress and consistency of the sludge and produces a combined slurry with acceptable rheological properties for vitrification

  16. A climatological description of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  17. Characterization recommendations for waste sites at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil.

  18. Characterization recommendations for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil

  19. MOX Lead Assembly Fabrication at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Spiker, D.L.; Poon, A.P.

    1997-12-01

    The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

  20. Geochemistry of ground water at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marine, I.W.

    1976-09-01

    Subsurface hydrogeologic systems underlying the Savannah River Plant (SRP) were studied to determine the origin and age of the contained fluids. Three distinct systems exist beneath SRP: the Coastal Plain sediments, crystalline metamorphic basement rock, and a Triassic rock basin surrounded by the crystalline rock. The water in the Coastal Plain sediments is low in dissolved solids (approximately 30 mg/l), acidic (pH approximately 5.5), and comparatively recent. Water in the crystalline rock is high in dissolved solids (approximately 6000 mg/l), alkaline (pH approximately 8), and approximately 840,000 years old as determined by helium dating techniques. Water in the Triassic rock is highest in dissolved solids (approximately 18,000 mg/l) and is probably older than the water in the surrounding crystalline rock; a quantitative age was not determined. The origin of the water in the crystalline and Triassic rock could not be determined with certainty; however, it is not relic sea water. A detailed geologic-hydrologic history of the SRP region is presented.

  1. Analysis and evaluation of VOC removal technologies demonstrated at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Chesnut, D.A.; Wagoner, J.; Nitao, J.J.; Boyd, S.; Shaffer, R.J.; Kansa, E.J.; Buscheck, T.A. [Lawrence Livermore National Lab., CA (United States); Pruess, K. [Lawrence Berkeley Lab., CA (United States); Falta, R.W. [Clemson Univ., SC (United States)

    1993-09-01

    Volatile Organic Compounds, or VOCs, are ubiquitous subsurface contaminants at industrial as well as DOE sites. At the Savannah River Plant, the principles VOCs contaminating the subsurface below A-Area and M-Area are Trichloroethylene (C{sub 2}HCl{sub 3}, or TCE) and Tetrachloroethylene (C{sub 2}Cl{sub 4}, or PCE). These compounds were used extensively as degreasing solvents from 1952 until 1979, and the waste solvent which did not evaporate (on the order of 2{times}10{sup 6} pounds) was discharged to a process sewer line leading to the M-Area Seepage Basin (Figure I.2). These compounds infiltrated into the soil and underlying sediments from leaks in the sewer line and elsewhere thereby contaminating the vadose zone between the surface and the water table as well as the aquifer.

  2. Analysis and evaluation of VOC removal technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    Volatile Organic Compounds, or VOCs, are ubiquitous subsurface contaminants at industrial as well as DOE sites. At the Savannah River Plant, the principles VOCs contaminating the subsurface below A-Area and M-Area are Trichloroethylene (C2HCl3, or TCE) and Tetrachloroethylene (C2Cl4, or PCE). These compounds were used extensively as degreasing solvents from 1952 until 1979, and the waste solvent which did not evaporate (on the order of 2x106 pounds) was discharged to a process sewer line leading to the M-Area Seepage Basin (Figure I.2). These compounds infiltrated into the soil and underlying sediments from leaks in the sewer line and elsewhere thereby contaminating the vadose zone between the surface and the water table as well as the aquifer

  3. Groundwater quality assessment/corrective action feasibility plan. Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  4. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory's research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL)

  5. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  6. Selecting the seismic HRA approach for Savannah River Plant PRA revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Papouchado, K.; Salaymeh, J. [eds.] [Westinghouse Savannah River Co., Aiken, SC (United States); Wingo, H.E.; Benhardt, H.C.; van Buijtenen, C.M.; Mitts, T.M. [Battelle Pacific Northwest Labs., Richland, WA (United States)

    1993-10-01

    The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field.

  7. Selecting the seismic HRA approach for Savannah River Plant PRA revision 1

    International Nuclear Information System (INIS)

    The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field

  8. LONG-TERM CHANGES IN MERCURY CONCENTRATIONS IN FISH FROM THE MIDDLE SAVANNAH RIVER

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Bill Littrell, B

    2007-01-02

    Total mercury levels were measured in largemouth bass (Micropterus salmoides), ''sunfishes'' (Lepomis spp)., and ''catfish'' (primarily Ameiurus spp.) from 1971 to 2004 in the middle reaches of the Savannah River, which drains the coastal plain of the southeastern U.S. Mercury levels were highest in 1971 but declined over the next ten years due to the mitigation of point sources of industrial pollution. Mercury levels began to increase in the 1980s as a possible consequence of mercury inputs from tributaries and associated wetlands where mercury concentrations were significantly elevated in water and fish. Mercury levels in Savannah River fish decreased sharply in 2001-2003 coincident with a severe drought in the Savannah River basin, but returned to previous levels in 2004 with the resumption of normal precipitation. Regression models showed that mercury levels in Savannah River fish changed significantly over time and were affected by river discharge. Despite temporal changes, there was little overall difference in Savannah River fish tissue mercury levels between 1971 and 2004.

  9. Savannah River Site, Liquid Waste Program, Savannah River Remediation American Recovery and Reinvestment Act Benefits and Lessons Learned - 12559

    International Nuclear Information System (INIS)

    Utilizing funding provided by the American Recovery and Reinvestment Act (ARRA), the Liquid Waste Program at Savannah River site successfully executed forty-one design, procurement, construction, and operating activities in the period from September 2009 through December 2011. Project Management of the program included noteworthy practices involving safety, integrated project teams, communication, and cost, schedule and risk management. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure were accomplished. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually identified and applied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. The funding of a portion of the Liquid Waste Program at SRS by ARRA was a major success. Significant upgrades to plant capacity, progress toward waste tank closure and procurement of needed infrastructure was accomplished. Integrated Project Teams ensured quality products and services were provided to the Operations customers. Over 1.5 million hours were worked without a single lost work day case. Lessons Learned were continually reviewed and reapplied to enhance the program. Investment of Recovery Act monies into the Liquid Waste Program has ensured continued success in the disposition of radioactive wastes and the closure of high level waste tanks at SRS. (authors)

  10. Investigation of cable deterioration in the containment building of the Savannah River Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, K.T.; Clough, R.L.; Jones, L.H.

    1982-08-01

    This report describes an investigation of the deterioration of polyethylene and polyvinylchloride cable materials which occurred in the containment building of the Savannah River nuclear reactor located at Aiken, South Carolina. Radiation dosimetry and temperature mapping data of the containment area indicated that the maximum dose experienced by the cable materials was only 2.5 Mrad at an average operating temperature of 43/sup 0/C. Considering this relatively moderate environment, the amount of material degradation seemed surprising. To understand these findings, an experimental program was performed on the commercial polyethylene and polyvinylchloride materials used at the plant to investigate their degradation behavior under combined ..gamma..-radiation and elevated temperature conditions. It is established that the material deterioration at the plant resulted from radiation-induced oxidation and that the degradation rate can be correlated with local levels of radiation intensity in the containment area.

  11. Biological monitoring of Upper Three Runs Creek, Savannah River Plant, Aiken County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1991-10-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F H area effluent on the creek, the study includes qualitative and quantitative macroinvertebrate stream surveys at five sites, chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. This final report presents the results of both pre-operational and post-operational qualitative and quantitative (artificial substrate) macroinvertebrate studies. Six quantitative and three qualitative studies were conducted prior to the initial release of the F/H ETF effluent and five quantitative and two qualitative studies were conducted post-operationally.

  12. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    International Nuclear Information System (INIS)

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D ampersand D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D ampersand D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D ampersand D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D ampersand D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D ampersand D. Additional details on specific technologies and applications to D ampersand D will be made available on request

  13. Investigation of cable deterioration in the containment building of the Savannah River Nuclear Reactor

    International Nuclear Information System (INIS)

    This report describes an investigation of the deterioration of polyethylene and polyvinylchloride cable materials which occurred in the containment building of the Savannah River nuclear reactor located at Aiken, South Carolina. Radiation dosimetry and temperature mapping data of the containment area indicated that the maximum dose experienced by the cable materials was only 2.5 Mrad at an average operating temperature of 430C. Considering this relatively moderate environment, the amount of material degradation seemed surprising. To understand these findings, an experimental program was performed on the commercial polyethylene and polyvinylchloride materials used at the plant to investigate their degradation behavior under combined γ-radiation and elevated temperature conditions. It is established that the material deterioration at the plant resulted from radiation-induced oxidation and that the degradation rate can be correlated with local levels of radiation intensity in the containment area

  14. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between

  15. GEOTECHNICAL ENGINEERING AT THE SAVANNAH RIVER SITE AND BECHTEL

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M; I. Arango, I; Michael Mchood, M

    2007-07-17

    The authors describe two aspects of geotechnical engineering; site characterization utilizing the CPT and recognition of aging as a factor affecting soil properties. These methods were pioneered by Professor Schmertmann and are practiced by the Bechtel Corporation in general and at the Savannah River Site in South Carolina, in particular. This paper describes a general subsurface exploration approach that we have developed over the years. It consists of ''phasing'' the investigation, employing the principles of the observational method suggested by Peck (1969) and others. In doing so, we have found that the recommendations proposed by Sowers in terms of borehole spacing and exploration cost, are reasonable for developing an investigation program, recognizing that through continuous review the final investigation program will evolve. At the SRS shallow subsurface soils are of Eocene and Miocene age. It was recognized that the age of these deposits would have a marked effect on their cyclic resistance. A field investigation and laboratory testing program was devised to measure and account for aging as it relates to the cyclic resistance of the site soils. Recently, a panel of experts (Youd et al., 2001) has made recommendations regarding the liquefaction assessment of soils. This paper will address some of those recommendations in the context of re-assessing the liquefaction resistance of the soils at the SRS. It will be shown that, indeed, aging plays a major role in the cyclic resistance of the soils at the SRS, and that aging should be accounted for in liquefaction potential assessments for soils older than Holocene age.

  16. Savannah River Site Waste Removal Program - Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Saldivar, E.

    2002-02-25

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  17. Storing solid radioactive wastes at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Horton, J.H.; Corey, J.C.

    1976-06-01

    The facilities and the operation of solid radioactive waste storage at the Savannah River Plant (SRP) are discussed in the report. The procedures used to segregate and the methods used to store radioactive waste materials are described, and the monitoring results obtained from studies of the movement of radionuclides from buried wastes at SRP are summarized. The solid radioactive waste storage site, centrally located on the 192,000-acre SRP reservation, was established in 1952 to 1953, before any radioactivity was generated onsite. The site is used for storage and burial of solid radioactive waste, for storage of contaminated equipment, and for miscellaneous other operations. The solid radioactive waste storage site is divided into sections for burying waste materials of specified types and radioactivity levels, such as transuranium (TRU) alpha waste, low-level waste (primarily beta-gamma), and high-level waste (primarily beta-gamma). Detailed records are kept of the burial location of each shipment of waste. With the attention currently given to monitoring and controlling migration, the solid wastes can remain safely in their present location for as long as is necessary for a national policy to be established for their eventual disposal. Migration of transuranium, activation product, and fission product nuclides from the buried wastes has been negligible. However, monitoring data indicate that tritium is migrating from the solid waste emplacements. Because of the low movement rate of ground water, the dose-to-man projection is less than 0.02 man-rem for the inventory of tritium in the burial trenches. Limits are placed on the amounts of beta-gamma waste that can be stored so that the site will require minimum surveillance and control. The major portion (approximately 98 percent) of the transuranium alpha radioactivity in the waste is stored in durable containers, which are amenable to recovery for processing and restorage should national policy so dictate.

  18. CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2011-08-30

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  19. Critical Radionuclide And Pathway Analysis For The Savannah River Site

    International Nuclear Information System (INIS)

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  20. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    International Nuclear Information System (INIS)

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig

  1. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  2. Geochemical and physical properties of wetland soils at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  3. The influence of Savannah River discharge and changing SRS cooling water requirements on the potential entrainment of ichthyoplankton at the SRS Savannah River intakes

    International Nuclear Information System (INIS)

    Entrainment (i.e., withdrawal of fish larvae and eggs in cooling water) at the SRS Savannah River intakes is greatest when periods of high river water usage coincide with low river dischargeduring the spawning season. American shad and striped bass are the two species of greatest concern because of their recreational and/or commercial importance and because they produce drifting eggs and larvae vulnerable to entrainment. In the mid-reaches of the Savannah River, American shad and striped bass spawn primarily during April and May. An analysis of Savannah River discharge during April and May 1973--1989 indicated the potential for entrainment of 4--18% of the American shad and striped bass larvae and eggs that drifted past the SRS. This analysis assumed the concurrent operation of L-, K-, and P-Reactors. Additional scenarios investigated were: (1) shutting down L- and P-Reactors, and operating K-Reactor with a recycle cooling tower; and (2) shutting down L- and P-Reactors, eliminating minimum flows to Steel Creek, and operating K-Reactor with a recycle cooling tower. The former scenario reduced potential entrainment to 0.7--3.3%, and the latter scenario reduced potential entrainment to 0.20.8%. Thus, the currently favored scenario of operating K-Reactor with a cooling tower and not operating L- and P-Reactors represents a significant lessening of the impact of SRS operations

  4. Stabilization of Savannah River National Laboartory (SRNL) Aqueous Waste by Fluidized Bed Steam Reforming (FBSR)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C

    2004-11-01

    The Savannah River National Laboratory (SRNL) is a multidisciplinary laboratory operated by Westinghouse Savannah River Company (WSRC) in Aiken, South Carolina. Research and development programs have been conducted at SRNL for {approx}50 years generating non-radioactive (hazardous and non-hazardous) and radioactive aqueous wastes. Typically the aqueous effluents from the R&D activities are disposed of from each laboratory module via the High Activity Drains (HAD) or the Low Activity Drains (LAD) depending on whether they are radioactive or not. The aqueous effluents are collected in holding tanks, analyzed and shipped to either H-Area (HAD waste) or the F/H Area Effluent Treatment Facility (ETF) (LAD waste) for volume reduction. Because collection, analysis, and transport of LAD and HAD waste is cumbersome and since future treatment of this waste may be curtailed as the F/H-Area evaporators and waste tanks are decommissioned, SRNL laboratory operations requested several proof of principle demonstrations of alternate technologies that would define an alternative disposal path for the aqueous wastes. Proof of principle for the disposal of SRNL HAD waste using a technology known as Fluidized Bed Steam Reforming (FBSR) is the focus of the current study. The FBSR technology can be performed either as a batch process, e.g. in each laboratory module in small furnaces with an 8'' by 8'' footprint, or in a semi-continuous Bench Scale Reformer (BSR). The proof of principle experiments described in this study cover the use of the FBSR technology at any scale (pilot or full scale). The proof of principle experiments described in this study used a non-radioactive HAD simulant.

  5. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zullo, V.A.; Harris, W.B.; Price, V. [eds.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  6. Safety aspects of receipt and storage of spent nuclear fuel at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Busby, A.S.; Andes, T.C. [Westinghouse Savannah River Co., Aiken, SC 29808 (United States)

    2001-07-01

    The Savannah River Site receives and stores aluminum-based spent nuclear fuel from research reactors world-wide in support of the U.S. Department of Energy's take back policy for U.S. origin enriched uranium. For over 35 years the Savannah River Site has supported this policy in a safe and deliberate manner. Facilities dedicated to this mission include the Receiving Basin for Offsite Fuels and L-Basin. Current inventories are about 6,500 aluminum-based research reactor assemblies and about 700 stainless steel or zirconium clad prototype power reactor assemblies. The purpose of this paper is to briefly describe the processes that the Savannah River Site employs to safely receive, handle, and store spent nuclear fuel. (author)

  7. Rheology of Savannah River Site Tank 42 radioactive sludges. Revision 1

    International Nuclear Information System (INIS)

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site (SRS) is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site (SRS), Tank 42 sludge represents one of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility (DWPF). The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center (SRTC) using a modified Haake Rotovisco viscometer. Rheological properties of Tank 42 radioactive sludge were measured as a function of weight percent total solids to ensure that the first DWPF radioactive sludge batch can be pumped and processed in the DWPF with the current design bases. The yield stress and consistency of the sludge slurries were determined by assuming a Bingham plastic fluid model

  8. Modeling of the in-situ biodegradation demonstration at Savannah River

    International Nuclear Information System (INIS)

    An in situ bioremediation technology was demonstrated at the U.S. Department of Energy's Savannah River site in 1992-1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvents present in the subsurface would be degraded. In support of this technology demonstration, we performed site-specific numerical simulations. Our simulations indicate that the technology can be very effective in stimulating growth of methanotrophic bacteria over a wide area, and in biodegrading a significant amount of TCE in situ especially if methane pulsing is used

  9. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  10. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021)

  11. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  12. Mobile robots in research and development programs at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.P.; Byrd, J.S.; Fisher, J.J.

    1987-01-01

    Mobile robots for deployment in nuclear applications at the Savannah River Plant (SRP) have been developed. Teleoperated mobile vehicles have been successfully used for several onsite applications. Development work using two research vehicles is underway to demonstrate semi-autonomous intelligent expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes of these vehicles is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being developed at SRL to allow vehicles to autonomously navigate and perform tasks in known environments, without the need for large computer systems. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation functions, and to analyze sensory information.

  13. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  14. Research in Support of Remediation Activities at the Savannah River Site

    International Nuclear Information System (INIS)

    The USDOE Savannah River Site (SRS), an 803-km2 (310-mile2) facility located south of Aiken, SC on the upper Atlantic Coastal Plain and bounded to the west by the Savannah River, was established in the 1950s for the production and refinement of nuclear materials. To fulfill this mission during the past 50 years SRS has operated five nuclear reactors, two large chemical separation areas, waste disposal facilities (landfills, waste ponds, waste tanks, and waste stabilization), and a large number of research and logistics support facilities. Contaminants of concern (COC) resulting from site operations include chlorinated solvents, radionuclides, metals, and metalloids, often found as complex mixtures that greatly complicate remediation efforts when compared with civilian industries. The objective of this article is to provide a description of the lithology and hydrostratigraphy of the SRS, as well as a brief history of site operations and research activities as a preface to the current special section of Vadose Zone Journal (VZJ) dedicated to SRS, focusing mainly on issues that are unique to the USDOE complex. Contributions to the special section reflect a diverse range of topics, from hydrologic tracer experiments conducted both within the vadose and saturated zones to studies specifically aimed at identifying geochemical processes controlling the migration and partitioning of specific contaminants (e.g., TCE, 137Cs, U, and Pu) in SRS subsurface environments. Addressing the diverse environmental challenges of the SRS provides a unique opportunity to conduct both fundamental and applied research across a range of experimental scales. Hence, the SRS has been a pioneering force in several areas of environmental research and remediation, often through active interdisciplinary collaboration with researchers from other USDOE facilities, academic and federal institutions, and commercial entities

  15. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, manages archaeological resources on the Savannah River Site (SRS). An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. The SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1994.

  16. Demographic responses of amphibians to wetland restoration in Carolina bays on the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Kinkead, Karen E.

    2004-09-30

    This project studied the effects of wetland restoration on amphibian populations. These wetlands were Carolina bays located on the Savannah River Site, located near Aiken, S.C. The Savannah River Site is a National Environmental Research Park owned and operated by the U.S. Department of Energy. The study sites included three reference bays (functionally intact), three control bays (with active drainage ditches), six treatment bays (restored during 2001), and four bays near two of the treatment bays (in effect creating two metapopulations).

  17. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    2001-08-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively.

  18. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.; Tibrea, S.; Nance, T.

    2010-09-27

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  19. Test program for closure activities at a mixed waste disposal site at the Savannah River Plant

    International Nuclear Information System (INIS)

    A 58-acre site at the Savannah River Plant which was used for disposal of low-level radioactive waste and quantities of the hazardous materials lead, cadmium, scintillation fluid, and oil will be the first large waste site at the Savannah River Plant to be permanently closed. The actions leading to closure of the facility will include surface stabilization and capping of the site. Test programs have been conducted to evaluate the effectiveness of dynamic compaction as a stabilization technique and the feasibility of using locally derived clay as a capping material

  20. A QUICK KEY TO THE SUBFAMILIES AND GENERA OF ANTS OF THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D

    2007-09-04

    This taxonomic key was devised to support development of a Rapid Bioassessment Protocol using ants at the Savannah River Site. The emphasis is on 'rapid' and, because the available keys contained a very large number of genera not known to occur at the Savannah River Site, we found that the available keys were unwieldy. Because these keys contained many more genera than we would ever encounter and because this larger number of genera required more couplets in the key and often required examination of characters that are difficult to assess without higher magnifications (60X or higher), more time was required to process samples. In developing this set of keys I emphasized character states that are easier for nonspecialists to recognize. I recognize that the character sets used may lead to some errors but I believe that the error rate will be small and, for the purpose of rapid bioassessment, this error rate will be acceptable provided that overall sample sizes are adequate. Oliver and Beattie (1996a, 1996b) found that for rapid assessment of biodiversity the same results were found when identifications were done to morphospecies by people with minimal expertise as when the same data sets were identified by subject matter experts. Basset et al. (2004) concluded that it was not as important to correctly identify all species as it was to be sure that the study included as many functional groups as possible. If your study requires high levels of accuracy, it is highly recommended that, when you key out a specimen and have any doubts concerning the identification, you should refer to keys in Bolton (1994) or to the other keys used to develop this area specific taxonomic key.

  1. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  2. Impingement and entrainment of fishes at the Savannah River Plant: an NPDES 316b demonstration

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, R.W.; Frietsche, R.F.; Miracle, R.D.

    1978-02-01

    Environmental impacts of the Savannah River Plant's withdrawal of Savannah River water include impingement of juvenile and adult fish on trash removal screens, and entrainment of planktonic fish eggs and larval fish into the pumping system. The Savannah River Plant (SRP) has the capacity to pump 3.6 million cubic meters of water per day--25% of the minimal river discharge--for cooling and other purposes. Present removal is 7% of the actual river discharge. In the river and intake canals reside sixty-nine species of fishes. The species composition of the resident fish community of the intake canals is similar to the species composition in the river, but different in relative species abundance. The dominant sunfishes tend to reside in the canals for long periods and seldom go from canal to canal. The fish impingement rate at the plant ranks very low in comparison with electric power plants on inland waters. Thirty-five species of fishes were impinged during 1977. The average impingement rate of 7.3 fish per day extrapolates to 2,680 fish per year. No single species comprised more than 10% of the sample. The most commonly impinged species were bluespotted sunfish, warmouth, channel catfish, and yellow perch. The relative abundance of those species impinged deviates from their relative abundance in the canal fish population.

  3. Desorption Behavior of Trichloroethene and Tetrachloroethene in U.S. Department of Energy Savannah River Site Unconfined Aquifer Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert G.; Szecsody, Jim E.; Mitroshkov, Alexandre V.; Brown, Christopher F.

    2006-06-21

    The DOE Savannah River Site (SRS) is evaluating the potential applicability of the monitored natural attenuation (MNA) process as a contributor to the understanding of the restoration of its unconfined groundwater aquifer known to be contaminated with the chlorinated hydrocarbon compounds trichloroethylene (TCE) and tetrachloroethylene (PCE). This report discusses the results from aqueous desorption experiments on SRS aquifer sediments from two different locations at the SRS (A/M Area; P-Area) with the objective of providing technically defensible TCE/PCE distribution coefficient (Kd) data and data on TCE/PCE reversible and irreversible sorption behavior needed for further MNA evaluation.

  4. Innovative in situ treatment approach for DOE Savannah River Site Sanitary Landfill

    International Nuclear Information System (INIS)

    Pursuant to a settlement agreement reached between the US Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC), the Sanitary Landfill at the Savannah River Site will be closed. This paper addresses the approach used to select the innovative in situ treatment alternative for the groundwater and the vadose zone associated with the landfill

  5. Design of a pilot silvicultural biomass farm at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Salo, D.J.; Henry, J.F.; Inman, R.E.

    1979-03-01

    Metrek has designed a detailed plan for the establishment and operation of a 1000-acre silvicultural biomass farm at the Savannah River Plant, Aiken, South Carolina. The plan includes a discussion of possible sites, layout and design, and installation and operation. The estimated costs of installation and operation are also presented.

  6. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  7. Snakes of the Savannah River Plant with Information About Snakebite Prevention and Treatment.

    Science.gov (United States)

    Gibbons, Whit

    This booklet is intended to provide information on the snakes of South Carolina, to point out the necessary steps to avoid a snakebite, and to indicate the current medical treatment for poisonous snakebite. It includes a checklist of South Carolina reptiles and a taxonomic key for the identification of snakes in the Savannah River Plant. Three…

  8. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    International Nuclear Information System (INIS)

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results

  9. Basement Surface Faulting and Topography for Savannah River Site and Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Cumbest, R.J.

    1998-12-17

    This report integrates the data from more than 60 basement borings and over 100 miles of seismic reflection profiling acquired on the Savannah River Site to map the topography of the basement (unweathered rock) surface and faulting recorded on this surface.

  10. Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkus, M.R.; Wein, G.R. [eds.; Johnson, G.

    1993-11-01

    This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

  11. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  12. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  13. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  14. ASSOCIATION OF LANDSCAPE METRICS TO SURFACE WATER BIOLOGY IN THE SAVANNAH RIVER BASIN

    Science.gov (United States)

    Surface water quality for the Savannah River basin was assessed using water biology and landscape metrics. Two multivariate analyses, partial least square and cannonical correlation, were used to describe how the structural variation in landscape variable(s) that contribute the ...

  15. Overview of the Spent Nuclear Fuel Storage Facilities at the Savannah River Site. Revision 1

    International Nuclear Information System (INIS)

    This paper provides an overview of activities related to fuel receipt and storage in both the Receiving Basin for Off-site Fuels and L-Basin facilities. This paper provides a useful reference to foreign facilities, cask owners and shipping contractors on the cask and fuel handling capabilities of the Savannah River Site

  16. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    Energy Technology Data Exchange (ETDEWEB)

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  17. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  18. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  19. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-12-10

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

  20. Sensitivity Analyses of Site Selection for a Concrete Batch Plant at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.P.

    2001-07-10

    A site selection study was conducted to evaluate locations for an onsite concrete batch plant to support the construction of the proposed surplus plutonium disposition facilities at the Savannah River site. Presented in this report is a sensitivity analysis that demonstrates the robustness of the site evaluations.

  1. 78 FR 20625 - Spent Nuclear Fuel Management at the Savannah River Site

    Science.gov (United States)

    2013-04-05

    ... of Decision (ROD) pursuant to the Savannah River Site Spent Nuclear Fuel Management Final... Concerning Foreign Research Reactor Spent Nuclear Fuel Environmental Impact Statement (DOE/EIS-0218, 1996... to create LEU feedstock for fuel fabrication for commercial nuclear reactors. The shipments of...

  2. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  3. Basement Surface Faulting and Topography for Savannah River Site and Vicinity

    International Nuclear Information System (INIS)

    This report integrates the data from more than 60 basement borings and over 100 miles of seismic reflection profiling acquired on the Savannah River Site to map the topography of the basement (unweathered rock) surface and faulting recorded on this surface

  4. The Savannah River Site's Groundwater Monitoring Program 1991 well installation report

    International Nuclear Information System (INIS)

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1991. It includes discussion of environmental soil borings, surveying, well installations, abandonments, maintenance, and stabilization

  5. 76 FR 65380 - Safety Zone; 2011 Head of the South Regatta, Savannah River, Augusta, GA

    Science.gov (United States)

    2011-10-21

    ... Head of the South Regatta, which will consist of a series of rowing races. The 2011 Head of the South... hazards associated with the event. ] Discussion of Rule On November 11 and 12, 2011, Augusta Rowing Club is hosting the 2011 Head of the South Regatta, a series of rowing races on the Savannah River...

  6. The Savannah River site`s groundwater monitoring program: second quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  7. CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2013-01-24

    A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilities of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150°C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon with 12.9 %, Piercan Hypalon with 11.4 %, and Jung butyl‐Viton with 5.2% mass loss all at approximately 140°C. The smallest mass losses were experienced by the Jung Viton and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured

  8. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  9. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ''review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992

  10. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C. [Brookhaven National Lab., Upton, NY (United States); Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L. [Lawrence Livermore National Lab., CA (United States)

    1993-03-01

    An assessment of the health risks was made for releases of tritium and {sup 137}Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor.

  11. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, L.D.; Holtzman, S.; Meinhold, A.; Morris, S.C.; Pardi, R.; Sun, C. (Brookhaven National Lab., Upton, NY (United States)); Daniels, J.I.; Layton, D.; McKone, T.E.; Straume, T.; Anspaugh, L. (Lawrence Livermore National Lab., CA (United States))

    1993-03-01

    An assessment of the health risks was made for releases of tritium and [sup 137]Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor.

  12. Pilot study risk assessment for selected problems at the Savannah River Site (SRS)

    International Nuclear Information System (INIS)

    An assessment of the health risks was made for releases of tritium and 137Cs from the Savannah River Site (SRS) at water-receptor locations downriver. Although reactor operations were shut down at the SRS in 1989, liquid wastes continue to be released to the Savannah River either by direct discharges into onsite surface waters or by groundwater transport into surface waters from waste facilities. Existing state mandates will cause the liquid waste streams from future operations to go directly into surface waters. Two drinking water processing plants take water from the river approximately 129 km downriver from the SRS. Potential incremental risks of cancer fatality to individuals and each population were analyzed for either no further reactor operations or resumption of operation of one specific reactor

  13. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    Energy Technology Data Exchange (ETDEWEB)

    Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and

  14. The changing role of Material Control and Accountability at Savannah River Site

    International Nuclear Information System (INIS)

    As Westinghouse Savannah River Company has been faced with the challenge of better meeting DOE needs with reduced budgets and manpower, the Materials Control and Accountability (MC ampersand A) organization has taken a hard look at its roles and responsibilities. A MC ampersand A program is composed of many functions that can not only meet safeguards needs, but can be used by several organizations across the site to meet their needs as well. These functions include nuclear material measurements, tracking, accounting, and inventory control. The infrastructure in place to provide these functions for accountable nuclear materials requires only a few adjustments to expand to other areas of nuclear materials accounting and control. By integrating several organizations' requirements, the MC ampersand A section can allow line organizations to reduce their costs and rely on the section to better service their needs. On the reverse side, MC ampersand A has completed several cost reduction measures that will allow it to expand its role with no increased costs. The roles and responsibilities of the nuclear material control and accountability program should be expanded. The program's existing information infrastructure, and knowledge and experience in nuclear material measurements and safeguards can be built upon to meet the needs of new areas such as waste management and decommissioning and decontamination while continuing to support the existing processing. and storage efforts of current facilities

  15. Intensive archaeological survey of the proposed Central Sanitary Wastewater Treatment Facility, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, D.K.; Sassaman, K.E.

    1993-11-01

    The project area for the proposed Central Sanitary Wastewater Treatment Facility on the Savannah River Site includes a six-acre tract along Fourmile Branch and 18 mi of trunk line corridors. Archaeological investigations of the six-acre parcel resulted in the discovery of one small prehistoric site designated 38AK465. This cultural resource does not have the potential to add significantly to archaeological knowledge of human occupation in the region. The Savannah River Archaeological Research Program (SRARP) therefore recommends that 38AK465 is not eligible for nomination to the National Register of Historic Places (NRHP) and further recommends a determination of no effect. Archaeological survey along the trunk line corridors implicated previously recorded sites 38AK92, 38AK145, 38AK415, 38AK417, 38AK419, and 38AK436. Past disturbance from construction had severely disturbed 38AK92 and no archaeological evidence of 38AK145, 38AK419, and 38AK436 was recovered during survey. Lacking further evidence for the existence of these sites, the SRARP recommends that 38AK92, 38AK145, 38AK419, and 38AK436 are not eligible for nomination to the NRHP and thus warrant a determination of no effect. Two of these sites, 38Ak415 and 38AK417, required further investigation to evaluate their archaeological significance. Both of the sites have the potential to yield significant data on the prehistoric period occupation of the Aiken Plateau and the SRARP recommends that they are eligible for nomination to the NRHP. The Savannah River Archaeological Research Program recommends that adverse effects to sites 38AK415 and 38AK417 from proposed construction can be mitigated through avoidance.

  16. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  17. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. In accordance with the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1993.

  18. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Group of the Health Protection Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1988 (October--December), routine sampling of monitoring wells and drinking water locations was performed. The drinking water samples were collected from Savannah River Site (SRS) drinking water systems supplied by wells. Two sets of flagging criteria were established in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. The drinking water samples were analyzed for radioactive constituents.

  19. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  20. Geographic Information Systems (GIS) Evaluation of Proposed Savannah River Site L-Lake Drawdown

    International Nuclear Information System (INIS)

    L-Lake was created in 1985 to function as a once-through cooling water reservoir for L-Reactor at the Savannah River Site. The lake must be artificially maintained by pumping water from the Savannah River--at a significant annual cost. When L-Reactor was permanently shut down, studies were initiated to examine the ecological impact of a controlled L-Lake drawdown. An important part of these studies involved using GIS to develop a surface elevation model of the L-Lake floor based on side-scan sonar bathymetry data. The surface elevation model was validated by comparing computed lake volumes with engineering data acquired when the lake was filled. The surface model finally was used to determine the lake bottom slope and to estimate the spatial extent of the lake at various water levels

  1. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  2. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  3. Preparation and properties of SYNROC D containing simulated Savannah River Plant high-level defense waste

    International Nuclear Information System (INIS)

    We describe in detail the formulation and processing steps used to prepare all SYNROC D samples tested in the Comparative Leach Testing Program at the Savannah River Laboratory. We also discuss how the composition of the Savannah River Plant sludge influences the formulation and ultimate preparation of SYNROC D. Mechanical properties are reported in the categories of elastic constants, flexural and compressive strengths, and microhardness; thermal expansion and thermal conductivity results are presented. The thermal expansion data indicated the presence of significant residual strain and the possibility of an unidentified amorphous or glassy phase in the microstructure. We summarize the standardized (MCC) leaching results for both crushed Synroc and monoliths in deionized water, silicate water, and salt brine at 900C and 1500C

  4. Destructive Testing of an ES-3100 Shipping Container at the Savannah River National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loftin, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Abramczyk, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-06-09

    Destructive testing of an ES-3100 Shipping Container was completed by the Packaging Technology and Pressurized Systems organization within the Savannah River National Laboratory in order to qualify the ES-3100 as a candidate storage and transport package for applications at various facilities at the Savannah River Site. The testing consisted of the detonation of three explosive charges at separate locations on a single ES-3100. The locations for the placement were chosen based the design of the ES-3100 as well as the most likely places for the package to incur damage as a result of the detonation. The testing was completed at an offsite location, which raised challenges as well as allowed for development of new partnerships for this testing and for potential future testing. The results of the testing, the methods used to complete the testing, and similar, potential future work will be discussed.

  5. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  6. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  7. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  8. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  9. UTILIZING INNOVATIVE TECHNOLOGIES FOR ENVIRONMENTAL CLEAN-UP AT SAVANNAH RIVER SITE

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy nuclear facility located along the Savannah River near Aiken, South Carolina. During operations, which started in 1951, hazardous substances (chemicals and radionuclides) were released to the environment. The releases occurred as a result of inadvertent spills and waste disposal in unlined pits and basins which was common practice before environmental regulations existed. The hazardous substances have migrated to the vadose zone and groundwater in many areas of the SRS, resulting in 515 waste units and facilities that are required by environmental regulations, to undergo characterization and, if needed, remediation. In the initial years of the SRS environmental cleanup program (early 1990s), the focus was to use common technologies (such as pump and treat, air stripping, excavation and removal) that actively and tangibly removed contamination. Exclusive use of these technologies required continued and significant funding while often failing to meet acceptable clean-up goals and objectives. Recognizing that a more cost-effective approach was needed, SRS implemented new and complementary remediation methods focused on active and passive technologies targeted to solve specific remediation problems. Today, SRS uses technologies such as chemical/pH-adjusting injection, phytoremediation, underground cutoff walls, dynamic underground stripping, soil fracturing, microbial degradation, baroballs, electrical resistance heating, soil vapor extraction, and microblowers to more effectively treat contamination at lower costs. Additionally, SRS's remediation approach cost effectively maximizes cleanup as SRS works proactively with multiple regulatory agencies. Using GIS, video, animation, and graphics, SRS is able to provide an accurate depiction of the evolution of SRS groundwater and vadose zone cleanup activities to convince stakeholders and regulators of the effectiveness of various cleanup

  10. Characterization and reclamation assessment for the central shops diesel storage facility at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.W.

    1994-12-31

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful cleanups. Using innovative approaches, the central Shops Diesel Storage Facility at the Savannah River Site (SRS) was characterized to determine the extent of subsurface diesel fuel contamination. Effective bioremediation techniques for cleaning up of the contaminant plume were established.

  11. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-17

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  12. Savannah River Laboratory environmental transport and effects research. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.V. (comp.)

    1979-11-01

    Research in the environmental sciences by the Savannah River Laboratory during 1978 is described in 43 articles. These articles are in the fields of terrestrial ecology, geologic studies, aquatic transport, aquatic ecology, atmospheric transport, emergency response, computer methods development, ocean program, and fuel cycle program. Thirty-seven of the articles were abstracted individually for ERA/EDB; those in scope were also included in INIS.

  13. Decommissioning and dismantling of 305-M test pile at the Savannah River Plant

    International Nuclear Information System (INIS)

    The 305-M Test Pile was started up at the Savannah River Plant in 1952 and operated until 1981. The pile was used to measure the uranium content of reactor fuel. In 1984 work began to decommission and dismantle the pile. Extensive procedures were used that included a detailed description of the radiological controls and safety measures. These controls allowed the job to be completed with radiation doses as low as reasonably achievable

  14. Savannah River Laboratory data banks for risk assessment of fuel reprocessing plants

    International Nuclear Information System (INIS)

    The Savannah River Laboratory maintains a series of computerized data banks primarily as an aid in probabilistic risk assessment studies in the fuel reprocessing facilities. These include component failure rates, generic incidents, and reports of specific deviations from normal operating conditions. In addition to providing data for probability studies, these banks, have served as a valuable aid in trend analysis, equipment histories, process hazards analysis, consequence assessments, incident audit, process problem solving, and training

  15. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  16. Investigation of nonlinear dynamic soil property at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.C.

    2000-01-17

    This document summarizes laboratory dynamic soil testing investigations conducted by the University of Texas at Austin (UTA) for the Savannah River Site (SRS) (Stokoe et al., 1995a, Stokoe et al., 1995b, Sponseller and Stokoe, 1995). The purpose of the investigation is to provide an evaluation of past testing results in the context of new test data and the development of consistent site wide models of material strain dependencies based upon geologic formation, depth, and relevant index properties.

  17. 2003 Savannah River Site Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-05

    Annual Illness and Injury Surveillance Program report for 2003 for the Savannah River Site. DOE is commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The report monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  18. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  19. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal

  20. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  1. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  2. High-frequency acoustic imaging of L Lake Phase 4 [Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    The objective of the seismic reflection and side scan sonar survey is to determine the location, aerial extent, and depth of burial pits situated along the reservoir bottom of L Lake, Savannah River Site, SC. The results will be used in the overall characterization of L Lake by providing continuous profile line coverage of the bottom and subbottom sediment structure along the entire length of the project area. The results are also intended to supplement previous scientific information obtained from soil samples, aerial photography, and radiometric studies. Resultant information will be used as input for an Environmental Impact Statement of the site. Overall, the seismic reflection data will provide better descriptions of variations in the actual subbottom conditions and help identify the differing sediment layers. The side scan sonar will help identify the location of the burial pits and any other features on the bottom of the reservoir. A 3.5 kiloHertz (kHz), high resolution subbottom profiling system and an EG and G Model 260 side scan sonar system were used to meet the primary objectives of the investigation

  3. VOCs in non-arid soils ID at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) near Aiken, South Carolina, a nuclear materials production facility, was selected by the Department of Energy (DOE) Office of Technology Development in 1989 to evaluate innovative remediation technologies using the integrated demonstration (ID) approach. The contaminants targeted at the SRS are solvents (TCE and PCE) classified as Volatile Organic Compounds (VOCs). The principal objective of the ID at the SRS is to establish, validate and implement systems of technologies for full-scale use in the remediation of soils and groundwater contaminated with VOCS. This is accomplished through collaborative partnership with the DOE laboratories, universities, Federal Agencies, and private industries. Several remediation technologies involving the use of directionally drilled wells for extraction and delivery, innovative monitoring and characterization technologies, in-situ heating for the removal of adsorbed contaminants from clay-rich horizons, and off-gas treatment technologies have been successfully demonstrated, and their performance, safety, and cost effectiveness are evaluated against that of existing baseline technologies. To achieve these and similar projected savings, a critical step in the ID program is implementation of the successfully demonstrated technologies by DOE's Environmental Restoration organizations, and transfer of these technologies to other governmental agencies and the public sector. This has been accomplished by granting user licenses to the private industry in the areas of in situ air stripping via horizontal wells, sensors and bioremediation. Following the successful completion of its mission, the ID is slated for close-out at the end of Fiscal Year 1994

  4. Site Selection for the Salt Disposition Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.B.; Rueter, K.J.; Morin, J.P.

    2000-11-15

    A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation.

  5. Savannah River Certification Plan for newly generated, contact-handled transuranic waste

    International Nuclear Information System (INIS)

    This Certification Plan document describes the necessary processes and methods for certifying unclassified, newly generated, contact-handled solid transuranic (TRU) waste at the Savannah River Plant and Laboratory (SRP, SRL) to comply with the Waste Isolation Pilot Plant Waste Acceptance Criteria (WIPP-WAC). Section 2 contains the organizational structure as related to waste certification including a summary of functional responsibilities, levels of authority, and lines of communication of the various organizations involved in certification activities. Section 3 describes general plant operations and TRU waste generation. Included is a description of the TRU Waste classification system. Section 4 contains the SR site TRU Waste Quality Assurance Program Plan. Section 5 describes waste container procurement, inspection, and certification prior to being loaded with TRU waste. Certification of waste packages, after package closure in the waste generating areas, is described in Section 6. The packaging and certification of individual waste forms is described in Attachments 1-5. Included in each attachment is a description of controls used to ensure that waste packages meet all applicable waste form compliance requirements for shipment to the WIPP. 3 figs., 3 tabs

  6. Demonstration of Eastman Christensen horizontal drilling system -- Integrated Demonstration Site, Savannah River Site

    International Nuclear Information System (INIS)

    An innovative horizontal drilling system was used to install two horizontal wells as part of an integrated demonstration project at the Savannah River Site (SRS), Aiken, South Carolina. The SRS is located in south-central South Carolina in the upper Coastal Plain physiographic province. The demonstration site is located near the A/M Area, and is currently known as the Integated Demonstration Site. The Department of Energy's Office of Technology Development initiated an integrated demonstration of innovative technologies for cleanup of volatile organic compounds (VOCS) in soils and groundwater at the SRS in 1989. The overall goal of the program is to demonstrate, at a single location, multiple technologies in the fields of drilling, characterization, monitoring, and remediation. Innovative technologies are compared to one another and to baseline technologies in terms of technical performance and cost effectiveness. Transfer of successfully demonstrated technologies and systems to DOE environmental restoration organizations, to other government agencies, and to industry is a critical part of the program

  7. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  8. Microcrustaceans (Branchipoda and Copepoda) of Wetland Impoundments on the Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    DeBiase, Adrienne E; Taylor, Barbara E

    2005-09-21

    The United States Department of Energy’s Savannah River Site (SRS) in Aiken, Allendale, and Barnwell Counties, South Carolina, contains an abundance of freshwater wetlands and impoundments. Four large impoundments, as well as several small, abandoned farm and mill ponds, and about 400 Carolina bays and other small, isolated depression wetland ponds are located within the 893 km2 area of the SRS. Crustaceans of the orders Branchiopoda and Copepoda are nearly ubiquitous in these water bodies. Although small in size, these organisms are often very abundant. They consequently play an important trophic role in freshwater food webs supporting fish, larval salamanders, larval insects, and numerous other animals, aquatic and terrestrial. This report provides an introduction to the free-living microcrustaceans of lentic water bodies on the SRS and a comprehensive list of species known to occur there. Occurrence patterns are summarized from three extensive survey studies, supplemented with other published and unpublished records. In lieu of a key, we provide a guide to taxonomic resources and notes on undescribed species. Taxa covered include the orders Cladocera, Anostraca, Laevicaudata, and Spinicaudata of the Subclass Branchiopoda and the Superorders Calanoida and Cyclopoida of Subclass Copepoda. Microcrustaceans of the Superorder Harpacticoida of the Subclass Copepoda and Subclass Ostracoda are also often present in lentic water bodies. They are excluded from this report because they have not received much study at the species level on the SRS.

  9. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    International Nuclear Information System (INIS)

    The Department of Energy's Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ''Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.'' New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure

  10. The Savannah River Site`s Groundwater Monitoring Program 1993 well installation, abandonment, and maintenance report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This report is a summary of the well and environmental soil boring information compiled for the groundwater monitoring program of the Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) at the Savannah River Site (SRS) during 1993. It includes discussions of environmental soil borings, surveying, well construction, abandonments, maintenance, and stabilization. EPD/EMS is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. The majority of this monitoring is required by US Department of Energy (DOE) orders and by federal and state regulations administered by the US Environmental Protection Agency (EPA) and the South Carolina Department of Health and Environmental Control (SCDHEC). The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells; environmental soil borings; development of sampling and analytical schedules; collection and analyses of groundwater samples; review of analytical and other data; maintenance of the databases containing groundwater monitoring data; quality assurance (QA) evaluations of laboratory performance; and reports of results to waste site facility custodians and to the Environmental Protection Section (EPS) of EPD. EPD/EMS is responsible for monitoring the wells but is not responsible for the facilities that are monitored. It is the responsibility of the custodian of each waste site to ensure that EPD/EMS is informed of sampling requirements and special requests for the sampling schedule, to assist in reviewing the data, and to make any decisions regarding groundwater monitoring at the waste site.

  11. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  12. Environmental assessment for the domestic water supply upgrades and consolidation on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The domestic water systems on the Savannah River Site (SRS) are currently in need of upgrading to ensure compliance with the Safe Drinking Water Act and South Carolina Department of Health and Environmental Control (SCDHEC) Drinking Water Regulations. The SRS has 28 separate goundwater-based drinking water systems in use across the site. These aging systems were designed and constructed in the 1950s and are now facing increasing difficulties in meeting cur-rent regulations. Audits of the systems conducted by SCDHEC in 1986, 1988, 1991, and 1993 identified shortfalls in meeting the requirements for secondary maximum containment levels (MCLS) and SCDHEC design standards. Secondary MCLs are those items, such as odor or appearance, that do not pose a direct health impact. SRS has committed to SCDHEC to correct the drinking water discrepancies and construct two new consolidated inter-area drinking water systems. Upgrading the SRS drinking water systems would be necessary to support site activities regardless of the makeup or the mission at SRS. As such, the proposed upgrade and consolidation of SRS domestic water systems is treated as part of the ``No Action`` alternative for the Programmatic Environmental Impact Statement for Reconfiguration of the Nuclear Weapons Complex .

  13. DEMOLITIONS OF THE SAVANNAH RIVER SITE'S CONCENTRATOR AND FINISHING FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Mcdonagh, P; Cathy Sizemore, C

    2007-01-17

    The Savannah River Site (SRS) has produced Special Nuclear Materials (SNMs) starting in the early 1950's to the mid 1970's for the Atomic Energy Commission (AEC) and from the mid 1970's to the present for the Department of Energy (DOE). In that time, over 1,000 facilities have been built in the sixteen (16) operational areas of the eight hundred (800) square kilometer site. Over the years, many of the facilities have been dispositioned by the DOE as inactive. In FY-03, DOE identified two hundred and forty-seven (247) (inactive or soon to be inactive) facilities that required demolition. Demolition work was scheduled to start in FY-04 and be completed in the first quarter of FY-07. Two-hundred and thirty-nine (239) of these facilities have been demolished employing Routine demolition techniques. This presentation reviews and discusses two (2) of the eight (8) Non-Routine demolitions Facilities, 420-D ''The Concentrator Facility'', and 421-D ''The Finishing Facility''.

  14. Sensitivity of Savannah River Plant loss of coolant accident power limit to break size and location

    International Nuclear Information System (INIS)

    Savannah River Plant reactors are low-pressure, heavy-water reactors with six external process water loops that drive the coolant into an upper plenum and then downward through the assemblies. Assembly loss-of-coolant accident power limits are currently set in these reactors to prevent Ledinegg flow instability (FI) in any assembly flow channel. This might occur due to the power-flow mismatch during the first 2 s of the transient, i.e., the flow drops faster than the power. This study determined the sensitivity of the power limit to the postulated break area and location. The transient reactor analysis code (TRAC) was used to compute steady-state and transient system flows and pressures. The FLOWTRAN code, which employs one-dimensional hydraulics and two- or three-dimensional heat transfer, used the driving pressures generated by TRAC to compute assembly thermal-hydraulic conditions. The FLOWTRAN also iterates on assembly power to determine the minimum assembly power for which the onset of nucleate boiling (ONB) is predicted. Experimental data were then used to convert from ONB to FI. The ONB criterion was recently replaced with an onset-of-significant-voiding criterion since it is a more accurate predictor of flow instability

  15. Savannah River Site, spent nuclear fuel management, draft environmental impact statement: Summary

    International Nuclear Information System (INIS)

    The proposed DOE action described in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets assigned to the Savannah River Site (SRS), including placing these materials informs suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional reprocessing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE's preference is to prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using conventional processing. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts

  16. EFFECTIVE HALF-LIFE OF CESIUM-137 IN VARIOUS ENVIRONMENTAL MEDIA AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.; Paller, M.; Baker, R.

    2013-12-12

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities into the SRS environment. However, only a relatively small number of pathways, most importantly {sup 137}Cs in fish and deer, have contributed significantly to doses and risks to the public. The “effective” half-lives (T{sub e}) of {sup 137}Cs (which include both physical decay and environmental dispersion) in Savannah River floodplain soil and vegetation and in fish and white-tailed deer from the SRS were estimated using long-term monitoring data. For 1974–2011, the T{sub e}s of {sup 137}Cs in Savannah River floodplain soil and vegetation were 17.0 years (95% CI = 14.2–19.9) and 13.4 years (95% CI = 10.8–16.0), respectively. These T{sub e}s were greater than in a previous study that used data collected only through 2005 as a likely result of changes in the flood regime of the Savannah River. Field analyses of {sup 137}Cs concentrations in deer collected during yearly controlled hunts at the SRS indicated an overall T{sub e} of 15.9 years (95% CI = 12.3–19.6) for 1965–2011; however, the T{sub e} for 1990–2011 was significantly shorter (11.8 years, 95% CI = 4.8–18.8) due to an increase in the rate of {sup 137}Cs removal. The shortest T{sub e}s were for fish in SRS streams and the Savannah River (3.5–9.0 years), where dilution and dispersal resulted in rapid {sup 137}Cs removal. Long-term data show that T{sub e}s are significantly shorter than the physical half-life of {sup 137}Cs in the SRS environment but that they can change over time. Therefore, it is desirable have a long period of record for calculating Tes and risky to extrapolate T{sub e}s beyond this period unless the processes governing {sup 137}Cs removal are clearly understood.

  17. Effective Half-Life of Caesium-137 in Various Environmental Media at the Savannah River Site

    International Nuclear Information System (INIS)

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities into the SRS environment. However, only a relatively small number of pathways, most importantly 137Cs in fish and deer, have contributed significantly to doses and risks to the public. The “effective” half-lives (Te) of 137Cs (which include both physical decay and environmental dispersion) in Savannah River floodplain soil and vegetation and in fish and white-tailed deer from the SRS were estimated using long-term monitoring data. For 1974–2011, the Tes of 137Cs in Savannah River floodplain soil and vegetation were 17.0 years (95% CI = 14.2–19.9) and 13.4 years (95% CI = 10.8–16.0), respectively. These Tes were greater than in a previous study that used data collected only through 2005 as a likely result of changes in the flood regime of the Savannah River. Field analyses of 137Cs concentrations in deer collected during yearly controlled hunts at the SRS indicated an overall Te of 15.9 years (95% CI = 12.3–19.6) for 1965–2011; however, the Te for 1990–2011 was significantly shorter (11.8 years, 95% CI = 4.8–18.8) due to an increase in the rate of 137Cs removal. The shortest Tes were for fish in SRS streams and the Savannah River (3.5–9.0 years), where dilution and dispersal resulted in rapid 137Cs removal. Long-term data show that Tes are significantly shorter than the physical half-life of 137Cs in the SRS environment but that they can change over time. Therefore, it is desirable have a long period of record for calculating Tes and risky to extrapolate Tes beyond this period unless the processes governing 137Cs removal are clearly understood. - Highlights: • 137Cs Tes in SRS floodplain soil, floodplain vegetation, and deer were 13–17 years. • 137Cs Tes in fish from SRS streams were 4–7 years due to washout and sedimentation. • 137Cs Tes in SRS ecosystems were generally comparable to those at other sites

  18. Environmental assessment for the reuse of TNX as a multi-purpose pilot plant campus at the Savannah River Site

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental and safety impacts of DOE planning to allow asset reuse of the TNX Area at the Savannah River Site (SRS) located near Aiken, South Carolina. The proposed action would include providing for a location for the Centers of Excellence at or adjacent to SRS and entering into a cooperative agreement with a non-profit management and operations (management firm) contractor to operate and market the TNX facilities and equipment. The area (formerly TNX) would be called a Multi-Purpose Pilot Plant Campus (MPPC) and would be used: (1) as location for technology research, development, demonstration, and commercial operations; (2) to establish partnerships with industry to develop applied technologies for commercialization; and (3) serve as administrative headquarters for Centers of Excellence in the program areas of soil remediation, radioecology, groundwater contamination, and municipal solid waste minimization

  19. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

  20. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory's work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft2 multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE's new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft2 office and library addition to S at sign s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building

  1. Plutonium isotopes in the terrestrial environment at the Savannah River Site, USA: a long-term study.

    Science.gov (United States)

    Armstrong, Christopher R; Nuessle, Patterson R; Brant, Heather A; Hall, Gregory; Halverson, Justin E; Cadieux, James R

    2015-02-01

    This work presents the findings of a long-term plutonium (Pu) study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at the Savannah River National Laboratory (SRNL) in the A-Area. Plutonium content and isotopic abundances were measured over this time period by α particle and thermal ionization mass spectrometry (3STIMS). We detail the complete process of the sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the (238)Pu/(239+240)Pu activity ratios attributed to SRS are substantially different than fallout due to past (238)Pu production on the site. The (240)Pu/(239)Pu atom ratios are reasonably consistent from year to year and are lower than fallout indicating an admixture of weapons-grade material, while the (242)Pu/(239)Pu atom ratios are higher than fallout values, again due to actinide production activities. Overall, the plutonium signatures obtained in this study reflect a distinctive mixture of weapons-grade, heat source, and higher burn-up plutonium with fallout material. This study provides a unique opportunity for developing and demonstrating a blue print for long-term low-level monitoring of trace plutonium in the environment.

  2. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing

  3. Estimating salinity intrusion effects due to climate change on the Lower Savannah River Estuary

    Science.gov (United States)

    Conrads, Paul A.; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.; Sexton, Charles T.; Tufford, Daniel L.; Carbone, Gregory J.; Dow, Kristin

    2010-01-01

    The ability of water-resource managers to adapt to future climatic change is especially challenging in coastal regions of the world. The East Coast of the United States falls into this category given the high number of people living along the Atlantic seaboard and the added strain on resources as populations continue to increase, particularly in the Southeast. Increased temperatures, changes in regional precipitation regimes, and potential increased sea level may have a great impact on existing hydrological systems in the region. The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga., and forms the state boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 238 miles upstream from the Atlantic Ocean, is responsible for most of the flow regulation that affects the Savannah River from Augusta, Ga., to the coast. The Savannah Harbor experiences semi-diurnal tides of two low and two high tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. Salinity intrusion results from the interaction of three principal forces - streamflow, mean tidal water levels, and tidal range. To analyze, model, and simulate hydrodynamic behaviors at critical coastal streamgages in the Lower Savannah River Estuary, data-mining techniques were applied to over 15 years of hourly streamflow, coastal water-quality, and water-level data. Artificial neural network (ANN) models were trained to learn the variable interactions that cause salinity intrusions. Streamflow data from the 9,850 square-mile Savannah River Basin were input into the model as time-delayed variables. Tidal inputs to the models were obtained by decomposing tidal water-level data into a “periodic” signal of tidal range and a “chaotic” signal of mean water levels. The ANN models were able to convincingly reproduce historical behaviors and generate

  4. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  5. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  6. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data, referred to a geochemical data packages (Kaplan, 2007; Kaplan, 2010; McDowell-Boyer et al., 2000). This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  7. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D ampersand D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D ampersand D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS

  8. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    International Nuclear Information System (INIS)

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team down-selected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their down-selection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives

  9. Effects of salinity on striped bass eggs and larvae from the Savannah River, Georgia

    Science.gov (United States)

    Winger, P.V.; Lasier, P.J.

    1994-01-01

    Operation of a tide gate installed in the Savannah River by the U.S. Army Corps of Engineers to reduce dredging activities increased salinities upstream in important spawning habitat for striped bass Morone saxatilis. To assess the effects of salinity on survival and growth of striped bass at early life stages, newly fertilized eggs and 48-h-posthatch were exposed to serial dilutions of seawater, with salinities ranging from 0 to 33 permill (g/L) in increments of 3 permill in addition, older larvae (5-d posthatch) were exposed to salinities of 0, 6, 12, 18, and 24 permill. Eggs were exposed until 24 h posthatch, 48-h-posthatch larvae were exposed for 10 d, and 5-d-posthatch larvae were exposed for 6 d. Eggs died within 24 h in salinities greater than 18 permill. Both survival and total length of larvae hatched from eggs exposed to salinities of 15 permill or higher were reduced. Percent mortality and mean total lengths of newly hatched larvae followed the same pattern for each of three sets of salinity regimes (i.e., changes in salinities over time) that striped bass eggs might encounter during passage downstream in the Savannah River. Hardening eggs in freshwater did not increase survival or length of hatched larvae over that shown by eggs hardened in saline water. The 5-d-posthatch larvae were less sensitive to salinity than the 48-h-posthatch larvae. Survival of larvae was negatively con-elated with both salinity and exposure time. For 48-h-posthatch larvae, the 10-d LC50 (the salinity lethal to 50% of the test fish within 10 d) was 10 permill. Probabilities of survival for larval striped bass exposed to different salinities for different amounts of time can be estimated from curves generated from models of survival analysis. Salinities judged to be critical to Savannah River striped bass eggs and larvae are those greater than 9 permill.

  10. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site

    International Nuclear Information System (INIS)

    As a result of operations at the Savannah River Site (SRS), over 50 radionuclides have been released to the atmosphere and to onsite streams and seepage basins. Now, many of these radionuclides are available to aquatic and/or terrestrial organisms for uptake and cycling through the food chain. Knowledge about the uptake and cycling of these radionuclides is now crucial in evaluating waste management and clean-up alternatives for the site. Numerous studies have been conducted at the SRS over the past forty years to study the uptake and distribution of radionuclides in the Savannah River Site environment. In many instances, bioconcentration factors have been calculated to quantify the uptake of a radionuclide by an organism from the surrounding medium (i.e., soil or water). In the past, it has been common practice to use bioconcentration factors from the literature because site-specific data were not readily available. However, because of the variability of bioconcentration factors due to experimental or environmental conditions, site-specific data should be used when available. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at the Savannah River Site (SRS). An extensive literature search yielded site-specific bioconcentration factors for cesium, strontium, cobalt, plutonium, americium, curium, and tritium. These eight radionuclides have been the primary radionuclides studied at SRS because of their long half lives or because they are major contributors to radiological dose from exposure. For most radionuclides, it was determined that the site-specific bioconcentration factors were higher than those reported in literature. This report also summarizes some conditions that affect radionuclide bioavailability to and bioconcentration by aquatic and terrestrial organisms

  11. Independent Assessment of the Savannah River Site High-Level Waste Salt Disposition Alternatives Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    J. T. Case (DOE-ID); M. L. Renfro (INEEL)

    1998-12-01

    This report presents the results of the Independent Project Evaluation (IPE) Team assessment of the Westinghouse Savannah River Company High-Level Waste Salt Disposition Systems Engineering (SE) Team's deliberations, evaluations, and selections. The Westinghouse Savannah River Company concluded in early 1998 that production goals and safety requirements for processing SRS HLW salt to remove Cs-137 could not be met in the existing In-Tank Precipitation Facility as currently configured for precipitation of cesium tetraphenylborate. The SE Team was chartered to evaluate and recommend an alternative(s) for processing the existing HLW salt to remove Cs-137. To replace the In-Tank Precipitation process, the Savannah River Site HLW Salt Disposition SE Team downselected (October 1998) 140 candidate separation technologies to two alternatives: Small-Tank Tetraphenylborate (TPB) Precipitation (primary alternative) and Crystalline Silicotitanate (CST) Nonelutable Ion Exchange (backup alternative). The IPE Team, commissioned by the Department of Energy, concurs that both alternatives are technically feasible and should meet all salt disposition requirements. But the IPE Team judges that the SE Team's qualitative criteria and judgments used in their downselection to a primary and a backup alternative do not clearly discriminate between the two alternatives. To properly choose between Small-Tank TPB and CST Ion Exchange for the primary alternative, the IPE Team suggests the following path forward: Complete all essential R and D activities for both alternatives and formulate an appropriate set of quantitative decision criteria that will be rigorously applied at the end of the R and D activities. Concurrent conceptual design activities should be limited to common elements of the alternatives.

  12. Savannah River Site chemical, metal, and pesticide (CMP) waste vitrification treatability studies

    International Nuclear Information System (INIS)

    Numerous Department of Energy (DOE) facilities, as well as Department of Defense (DOD) and commercial facilities, have used earthen pits for disposal of chemicals, organic contaminants, and other waste materials. Although this was an acceptable means of disposal in the past, direct disposal into earthen pits without liners or barriers is no longer a standard practice. At the Savannah River Site (SRS), approximately three million pounds of such material was removed from seven chemical, metal, and pesticide disposal pits. This material is known as the Chemical, Metal, and Pesticide (CMP) Pit waste and carries several different listed waste codes depending on the contaminants in the respective storage container. The waste is not classified as a mixed waste because it is believed to be non-radioactive; however, in order to treat the material in a non-radioactive facility, the waste would first have to be screened for radioactivity. The Defense Waste Processing Technology (DWPT) Section of the Savannah River Technology Center (SRTC) was requested by the DOE-Savannah River (SR) office to determine the viability of vitrification of the CMP Pit wastes. Radioactive vitrification facilities exist which would be able to process this waste, so the material would not have to be analyzed for radioactive content. Bench-scale treatability studies were performed by the DWPT to determine whether a homogeneous and durable glass could be produced from the CMP Pit wastes. Homogeneous and durable glasses were produced from the six pits sampled. The optimum composition was determined to be 68.5 wt% CMP waste, 7.2 wt% Na2O, 9 wt% CaO, 7.2 wt% Li2O and 8.1 wt% Fe2O3. This glass melted at 1,150 C and represented a two fold volume reduction

  13. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.

    1994-09-01

    As a result of operations at the Savannah River Site (SRS), over 50 radionuclides have been released to the atmosphere and to onsite streams and seepage basins. Now, many of these radionuclides are available to aquatic and/or terrestrial organisms for uptake and cycling through the food chain. Knowledge about the uptake and cycling of these radionuclides is now crucial in evaluating waste management and clean-up alternatives for the site. Numerous studies have been conducted at the SRS over the past forty years to study the uptake and distribution of radionuclides in the Savannah River Site environment. In many instances, bioconcentration factors have been calculated to quantify the uptake of a radionuclide by an organism from the surrounding medium (i.e., soil or water). In the past, it has been common practice to use bioconcentration factors from the literature because site-specific data were not readily available. However, because of the variability of bioconcentration factors due to experimental or environmental conditions, site-specific data should be used when available. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at the Savannah River Site (SRS). An extensive literature search yielded site-specific bioconcentration factors for cesium, strontium, cobalt, plutonium, americium, curium, and tritium. These eight radionuclides have been the primary radionuclides studied at SRS because of their long half lives or because they are major contributors to radiological dose from exposure. For most radionuclides, it was determined that the site-specific bioconcentration factors were higher than those reported in literature. This report also summarizes some conditions that affect radionuclide bioavailability to and bioconcentration by aquatic and terrestrial organisms.

  14. Environmental Stewardship at the Savannah River Site: Generations of Success - 13212

    International Nuclear Information System (INIS)

    Approximately sixty years ago, the Savannah River Site (SRS) was built to produce nuclear materials. SRS production operations impacted air, soil, groundwater, ecology, and the local environment. Throughout its history, SRS has addressed these contamination issues directly and has maintained a commitment to environmental stewardship. The Site boasts many environmental firsts. Notably, SRS was the first major Department of Energy (DOE) facility to perform a baseline ecological assessment. This pioneering effort, by Ruth Patrick and the Philadelphia Academy of Sciences, was performed during SRS planning and construction in the early 1950's. This unique early generation of work set the stage for subsequent efforts. Since that time, the scientists and engineers at SRS pro-actively identified environmental problems and developed and implemented effective and efficient environmental management and remediation solutions. This second generation, spanning the 1980's through the 2000's, is exemplified by numerous large and small cleanup actions to address metals and radionuclides, solvents and hydrocarbons, facility and area decommissioning, and ecological restoration. Recently, a third generation of environmental management was initiated as part of Enterprise SRS. This initiative to 'Develop and Deploy Next Generation Cleanup Technologies' formalizes and organizes the major technology matching, development, and implementation processes associated with historical SRS cleanup success as a resource to support future environmental management missions throughout DOE. The four elements of the current, third generation, effort relate to: 1) transition from active to passive cleanup, 2) in situ decommissioning of large nuclear facilities, 3) new long term monitoring paradigms, and 4) a major case study related to support for recovery and restoration of the Japanese Fukushima-Daiichi nuclear power plant and surrounding environment. (authors)

  15. Characterization of the Burma Road Rubble Pit at the Savannah River Site, Aiken, South Carolina

    International Nuclear Information System (INIS)

    The Burma Road Rubble Pit (BRRP) is located at the Savannah River Site (SRS). The BRRP unit consists of two unlined earthen pits dug into surficial soil and filled with various waste materials. It was used from 1973--1983 for the disposal of dry inert rubble such as metal, concrete, lumber, poles, light fixtures, and glass. No record of the disposal of hazardous substances at the BRRP has been found. In 1983, the BRRP was closed by covering it with soil. In September 1988, a Ground Penetrating Radar survey detected three disturbed areas of soil near the BRRP, and a detailed and combined RCRA Facility Investigation/Remedial Investigation was conducted from November 1993 to February 1994 to determine whether hazardous substances were present in the subsurface, to evaluate the nature and extent of contamination, and to evaluate the risks posed to the SRS facility due to activities conducted at the BRRP site. Metals, semi-volatile organic compounds, volatile organic compounds, radionuclides and one pesticide (Aldrin) were detected in soil and groundwater samples collected from seventeen BRRP locations. A baseline risk assessment (BRA) was performed quantitatively to evaluate whether chemical and radionuclide concentrations detected in soil and groundwater at the BRRP posed an unacceptable threat to human health and the environment. The exposure scenarios identifiable for the BRRP were for environmental researchers, future residential and occupational land use. The total site noncancer hazard indices were below unity, and cancer risk levels were below 1.0E-06 for the existing and future case environmental researcher scenario. The future case residential and occupational scenarios showed total hazard and risk levels which exceeded US EPA criterion values relative to groundwater scenarios. For the most part, the total carcinogenic risks were within the 1.0E-04 to 1.0E-06 risk range. Only the future adult residential scenario was associated with risks exceeding 1.0E-04

  16. CERCLA document flow: Compressing the schedule, saving costs, and expediting review at the Savannah River Site

    International Nuclear Information System (INIS)

    The purpose of this paper is to convey the logic of the CERCLA document flow including Work Plans, Characterization Studies, Risk Assessments, Remedial Investigations, Feasibility Studies, proposed plans, and Records of Decision. The intent is to show how schedules at the Savannah River Site are being formulated to accomplish work using an observational approach where carefully planned tasks can be initiated early and carried out in parallel. This paper will share specific proactive experience in working with the EPA to expedite projects, begin removal actions, take interim actions, speed document flow, and eliminate unnecessary documents from the review cycle

  17. Savannah River Site Waste Management Program Plan, FY 1993. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report on facilities being used to manage wastes, forces acting to change current waste management (WM) systems, and how operations are conducted. This document also reports on plans for the coming fiscal year and projects activities for several years beyond the coming fiscal year to adequately plan for safe handling and disposal of radioactive wastes generated at the Savannah River Site (SRS) and for developing technology for improved management of wastes.

  18. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    International Nuclear Information System (INIS)

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991

  19. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    International Nuclear Information System (INIS)

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS

  20. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  1. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  2. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  3. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  4. Reliability Centered Maintenance for Savannah River Site's interim waste management facilities

    International Nuclear Information System (INIS)

    The application of Reliability Centered Maintenance (RCM) has been shown to be an effective means to optimize maintenance programs or to establish new programs. The key to success of any RCM program is to customize the methodology to meet the specific needs of the implementing organization. This paper discusses how RCM is being used to establish the preventive maintenance program and how the resulting system data is being used to support the Technical Baseline reconstitution effort for the interim Waste Management Division of Westinghouse Savannah River Company (WSRC)

  5. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2010-03-15

    The Savannah River Site disposes of low-activity radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data become available.

  6. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    International Nuclear Information System (INIS)

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS)

  7. ASME N510 test results for Savannah River Site AACS filter compartments

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.D.; Punch, T.M. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-02-01

    The K-Reactor at the Savannah River Site recently implemented design improvements for the Airborne Activity Confinement System (AACS) by procuring, installing, and testing new Air Cleaning Units, or filter compartments, to ASME AG-11, N509, and N510 requirements. Specifically, these new units provide documentable seismic resistance to a Design Basis Accident earthquake, provide 2 inch adsorber beds with 0.25 second residence time, and meet all AG-1, N509, and N510 requirements for testability and maintainability. This paper presents the results of the Site acceptance testing and discusses an issue associated with sample manifold qualification testing.

  8. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-12-31

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

  9. Cesium transport in Four Mile Creek of the Savannah River Plant

    International Nuclear Information System (INIS)

    The behavior of a large radioactive cesium release to a Savannah River Plant (SRP) stream was examined using a stable cesium release to Four Mile Creek. Measurements following the release show that most of the cesium released was transported downstream; however, sorption and desorption decreased the maximum concentration and increased the travel time and duration, relative to a dye tracer, at sampling stations downstream. The study was made possible by the development of an analytical technique using ammonium molybdophosphate and neutron activation that permitted the measurement of stable cesium concentrations as low as 0.2 μg/L

  10. Review of Savannah River Site K Reactor inservice inspection and testing restart program

    International Nuclear Information System (INIS)

    Inservice inspection (ISI) and inservice testing (IST) programs are used at commercial nuclear power plants to monitor the pressure boundary integrity and operability of components in important safety-related systems. The Department of Energy (DOE) - Office of Defense Programs (DP) operates a Category A (> 20 MW thermal) production reactor at the Savannah River Site (SRS). This report represents an evaluation of the ISI and IST practices proposed for restart of SRS K Reactor as compared, where applicable, to current ISI/IST activities of commercial nuclear power facilities

  11. Upgrade of the Department of Energy's Savannah River Site's reactor operations and maintenance procedures

    International Nuclear Information System (INIS)

    This paper describes the program in progress at the Savannah River Site (SRS) to upgrade the existing reactor operating and maintenance procedures to current commercial nuclear industry standards. In order to meet this goal, the following elements were established: administrative procedures to govern the upgrade process, tracking system to provide status and accountability; and procedure writing guides. The goal is to establish a benchmark of excellence by which other Department of Energy (DOE) sites will measure themselves. The above three elements are addressed in detail in this paper

  12. Summary performance assessment of in situ remediation technologies demonstrated at Savannah River

    International Nuclear Information System (INIS)

    The Office of Technology Development (OTD) in the Department of Energy's (DOE) Office of Environmental Restoration and Waste Management is investigating new technologies for ''better, faster, cheaper, safer'' environmental remediation. A program at DOE's Savannah River site was designed to demonstrate innovative technologies for the remediation of volatile organic compounds (VOCs) at nonarid sites. Two remediation technologies, in situ air stripping and in situ bioremediation--both using horizontal wells, were demonstrated at the site between 1990--1993. This brief report summarizes the conclusions from three separate modeling studies on the performance of these technologies

  13. Department of Energy Plutonium ES ampersand H Vulnerability Assessment Savannah River Site interim compensatory measures

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) has recently completed a self-assessment of potential vulnerabilities associated with plutonium and other transuranic materials stored at the site. An independent Working Group Assessment Team (WGAT) appointed by DOE/ES ampersand H also performed an independent assessment, and reviewed and validated the site self-assessment. The purpose of this report is to provide a status of interim compensatory measures at SRS to address hazards in advance of any corrective actions. ES ampersand H has requested this status for all vulnerabilities ranked medium or higher with respect to potential consequences to workers, environment, and the public

  14. Integration of NDA instruments into the Savannah River Plant computer network

    International Nuclear Information System (INIS)

    The Safeguards Systems Group at the Los Alamos National Laboratory is collaborating with several other national laboratories in designing an integrated, state-of-the-art nondestructive assay (NDA) system for a new facility being constructed at the Savannah River Plant. We have focused our efforts on the development of an Instrument Control Computer (ICC) that will perform interfacing and communication tasks among small computers controlling NDA instruments in the Sample Assay Room and Feed Assay Room, the host computer for the process control system, and an existing nuclear materials accounting computer. Solution sample scheduling, feed-material sample verification, and other ICC functions will be described in detail. 4 references, 5 figures

  15. The effects of PAT on the Savannah River ecosystem, particularly fisheries

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, R.

    1994-03-01

    The main purpose of this study was to determine whether or not the pre-startup activities at K-Reactor, i.e., Power Ascension Testing (PAT), have caused damage because of temperature rises in the Savannah River. Therefore, the biological studies were mainly aimed at providing information as to changes that might cause the damage of the fish population, and to other important organisms in the ecosystem. To determine if deleterious effects had occurred, one had to review the past studies to determine the condition and diversity of aquatic life before these PAT studies started. Therefore old reports were reviewed and a current study made in 1992.

  16. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  17. Savannah River Site Radiological Technology Center's Efforts Supporting Waste Minimization

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberger, K. H.; Smith, L. S.; Bates, R. L.

    2003-02-25

    This paper describes the efforts of the newly formed Radiological Technology Center (RTC) at the Department of Energy's Savannah River Site (SRS) to support waste minimization. The formation of the RTC was based upon the highly successful ALARA Center at the DOE Hanford Site. The RTC is tasked with evaluation and dissemination of new technologies and techniques for radiological hazard reduction and waste minimization. Initial waste minimization efforts have focused on the promotion of SRS containment fabrication capabilities, new personal protective equipment and use of recyclable versus disposable materials.

  18. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    International Nuclear Information System (INIS)

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3, 000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research in this area

  19. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Paul M. Bertsch, (Director)

    2002-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3,000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research

  20. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related

  1. A study of post-thermal recovery of the macroinvertebrate community of Four Mile Creek, June 1985--September 1987. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, D.; Starkel, W.; Specht, W.

    1989-11-01

    Four Mile Creek is one of several streams at the Savannah River Site which has received thermal effluents ({le}70{degrees}C water) from nuclear production operations. From 1955--mid-1985, Four Mile Creek received thermal effluent from C-Reactor as well as non-thermal discharges from F and H Separation Areas. Total discharges from all of these facilities was about ten times higher than the natural flow of the creek (Firth et al. 1986). All water being discharged into Four Mile Creek was originally pumped from the Savannah River. This study reports the results of the artificial substrate sampling of macroinvertebrate communities of Four Mile Creek from June 1985 through September 1987, when sampling was terminated. Macroinvertebrate taxa richness, densities, and biomass data from this study are compared to Four Mile data collected prior to the shutdown of C-Reactor (Kondratieff and Kondratieff 1985 and Firth et al. 1986), and to comparable macroinvertebrate data from other Savannah River Site streams. 29 refs., 11 figs., 4 tabs.

  2. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ''refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022)

  3. Tritium in the Savannah River environment addendum to WSRC-RP--90-424-1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Carlton, W.H.

    1992-05-28

    This document is an addendum to Tritium in the Savannah River Site Environment,'' WSRC-RP90-424- 1, released in May of 1991. The purpose of this report is to update the information found in WSRC-RP-90-424-1 for the four year period 1987--1990. Some data has also been included from 1991. The report includes summaries of atmospheric and aqueous monitoring of tritium and estimates of the dose to the population surrounding the Savannah River Site.

  4. Tritium in the Savannah River environment addendum to WSRC-RP--90-424-1, Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Carlton, W.H.

    1992-05-28

    This document is an addendum to ``Tritium in the Savannah River Site Environment,`` WSRC-RP90-424- 1, released in May of 1991. The purpose of this report is to update the information found in WSRC-RP-90-424-1 for the four year period 1987--1990. Some data has also been included from 1991. The report includes summaries of atmospheric and aqueous monitoring of tritium and estimates of the dose to the population surrounding the Savannah River Site.

  5. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT SUMMARY FOR 2012

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, M.; Meyer, A.

    2013-09-12

    This report's purpose is to: Present summary environmental data that characterize Site environmental management performance, Describe compliance status with respect to environmental standards and requirements, and Highlight significant programs and efforts. Environmental monitoring is conducted extensively with a 2,000-square-mile network extending 25 miles from SRS, with some monitoring performed as far as 100 miles from the Site. The area includes neighboring cities, towns, and counties in Georgia (GA) and South Carolina (SC). Thousands of samples of air, rainwater, surface water, drinking water, groundwater, food products, wildlife, soil, sediment, and vegetation are collected by SRS and analyzed for the presence of radioactive and nonradioactive contaminants. During 2012, SRS accomplished several significant milestones while maintaining its record of environmental excellence, as its operations continued to result in minimal impact to the public and the environment. The Site's radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose to the public was well below the DOE public dose limit.

  6. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT SUMMARY FOR 2012

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, M.; Meyer, A.

    2013-09-12

    This report's purpose is to: � Present summary environmental data that characterize Site environmental management performance, � Describe compliance status with respect to environmental standards and requirements, and � Highlight significant programs and efforts. Environmental monitoring is conducted extensively with a 2,000-square-mile network extending 25 miles from SRS, with some monitoring performed as far as 100 miles from the Site. The area includes neighboring cities, towns, and counties in Georgia (GA) and South Carolina (SC). Thousands of samples of air, rainwater, surface water, drinking water, groundwater, food products, wildlife, soil, sediment, and vegetation are collected by SRS and analyzed for the presence of radioactive and nonradioactive contaminants. During 2012, SRS accomplished several significant milestones while maintaining its record of environmental excellence, as its operations continued to result in minimal impact to the public and the environment. The Site�s radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose to the public was well below the DOE public dose limit.

  7. Use of Electronic Hand-held Devices for Collection of Savannah River Site Environmental Data - 13329

    International Nuclear Information System (INIS)

    Savannah River Nuclear Solutions has begun using Xplore Tablet PC's to collect data in the field for soil samples, groundwater samples, air samples and round sheets at the Savannah River Site (SRS). EPA guidelines for groundwater sampling are incorporated into the application to ensure the sample technician follows the proper protocol. The sample technician is guided through the process for sampling and round sheet data collection by a series of menus and input boxes. Field measurements and well stabilization information are entered into the tablet for uploading into Environmental Restoration Data Management System (ERDMS). The process helps to eliminate input errors and provides data integrity. A soil sample technician has the ability to collect information about location of sample, field parameter, describe the soil sample, print bottle labels, and print chain of custody for the sample that they have collected. An air sample technician has the ability to provide flow, pressure, hours of operation, print bottle labels and chain of custody for samples they collect. Round sheets are collected using the information provided in the various procedures. The data are collected and uploaded into ERDMS. The equipment used is weather proof and hardened for the field use. Global Positioning System (GPS) capabilities are integrated into the applications to provide the location where samples were collected and to help sample technicians locate wells that are not visited often. (authors)

  8. Development And Deployment Of Vacuum Salt Distillation At The Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO2). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recovery of >99.8 wt % of the ceric oxide (CeO2) - the surrogate for PuO2 - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO2 samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.

  9. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, R.

    2012-07-31

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  10. Technical assessment of the bedrock waste storage at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.F.; Corey, J.C.

    1976-11-01

    An assessment of the safety and feasibility of ultimate storage of radioactive wastes produced at the Savannah River Plant (SRP) in horizontal tunnels excavated in the bedrock beneath the plant site is presented. Results indicate that a cavern with an excavated volume of 130 million gallons could contain 80 million gallons of concentrated radioactive SRP wastes with minimal risks if the cavern is located in the impermeable Triassic Basin underlying the Savannah River site. The cavern could be placed so that it would lie wholly within the boundaries of the plantsite. The document summarizes the general geological, hydrological, and chemical knowledge of the geological structures beneath the plantsite; develops evaluation guidelines; and utilizes mathematical models to conduct risk analyses. The risk models are developed from known soil and salt solution mechanics; from past, present, and future geological behavior of the onsite rock formations; and from known waste handling technology. The greatest risk is assessed to exist during transfer of the radioactive wastes to the cavern. When the cavern is filled and sealed, further population risks are asessed to be very low.

  11. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update (U)

    International Nuclear Information System (INIS)

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE's requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information

  12. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Lindsay; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  13. Technical assessment of the bedrock waste storage at the Savannah River Plant

    International Nuclear Information System (INIS)

    An assessment of the safety and feasibility of ultimate storage of radioactive wastes produced at the Savannah River Plant (SRP) in horizontal tunnels excavated in the bedrock beneath the plant site is presented. Results indicate that a cavern with an excavated volume of 130 million gallons could contain 80 million gallons of concentrated radioactive SRP wastes with minimal risks if the cavern is located in the impermeable Triassic Basin underlying the Savannah River site. The cavern could be placed so that it would lie wholly within the boundaries of the plantsite. The document summarizes the general geological, hydrological, and chemical knowledge of the geological structures beneath the plantsite; develops evaluation guidelines; and utilizes mathematical models to conduct risk analyses. The risk models are developed from known soil and salt solution mechanics; from past, present, and future geological behavior of the onsite rock formations; and from known waste handling technology. The greatest risk is assessed to exist during transfer of the radioactive wastes to the cavern. When the cavern is filled and sealed, further population risks are asessed to be very low

  14. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    International Nuclear Information System (INIS)

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal

  15. Software quality assurance for safety analysis and risk management at the Savannah River Site

    International Nuclear Information System (INIS)

    As part of its Reactor Operations Improvement Program at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC), in cooperation with the Westinghouse Hanford Company, has developed and implemented quality assurance for safety-related software for technical programs essential to the safety and reliability of reactor operations. More specifically, the quality assurance process involved the development and implementation of quality standards and attendant procedures based on industry software quality standards. These procedures were then applied to computer codes in reactor safety and probabilistic risk assessment analyses. This paper provides a review of the major aspects of the WSRC safety-related software quality assurance. In particular, quality assurance procedures are described for the different life cycle phases of the software that include the Requirements, Software Design and Implementation, Testing and Installation, Operation and Maintenance, and Retirement Phases. For each phase, specific provisions are made to categorize the range of activities, the level of responsibilities, and the documentation needed to assure the control of the software. The software quality assurance procedures developed and implemented are evolutionary in nature, and thus, prone to further refinements. These procedures, nevertheless, represent an effective controlling tool for the development, production, and operation of safety-related software applicable to reactor safety and probabilistic risk assessment analyses

  16. A QUICK KEY TO THE SUBFAMILIES AND GENERA OF ANTS OF THE SAVANNAH RIVER SITE, AIKEN, SC

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D

    2006-10-04

    This taxonomic key was devised to support development of a Rapid Bioassessment Protocol using ants at the Savannah River Site. The emphasis is on ''rapid'' and, because the available keys contained a large number of genera not known to occur at the Savannah River Site, we found that the available keys were unwieldy. Because these keys contained more genera than we would likely encounter and because this larger number of genera required both more couplets in the key and often required examination of characters that are difficult to assess without higher magnifications (60X or higher) more time was required to process samples. In developing this set of keys I recognize that the character sets used may lead to some errors but I believe that the error rate will be small and, for the purpose of rapid bioassessment, this error rate will be acceptable provided that overall sample sizes are adequate. Oliver and Beattie (1996a, 1996b) found that for rapid assessment of biodiversity the same results were found when identifications were done to morphospecies by people with minimal expertise as when the same data sets were identified by subject matter experts. Basset et al. (2004) concluded that it was not as important to correctly identify all species as it was to be sure that the study included as many functional groups as possible. If your study requires high levels of accuracy, it is highly recommended that when you key out a specimen and have any doubts concerning the identification, you should refer to keys in Bolton (1994) or to the other keys used to develop this area specific taxonomic key.

  17. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  18. The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhaohua; Trettin, Carl, C.; Parresol, Bernard, R.

    2011-11-30

    The Savannah River Site (SRS) has changed from an agricultural-woodland landscape in 1951 to a forested landscape during that latter half of the twentieth century. The corresponding change in carbon (C) pools associated land use on the SRS was estimated using comprehensive inventories from 1951 and 2001 in conjunction with operational forest management and monitoring data from the site.

  19. The Savannah River Site's Groundwater Monitoring Program - Third Quarter 1999 (July through September 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    2000-09-05

    This report summarizes the Savannah River Site Groundwater Monitoring Program during the third quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program activities; and serves as an official record of the analytical results.

  20. The Savannah River Site's Groundwater Monitoring Program First Quarter 1999 (January through March 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-08

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  1. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the savannah river site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  2. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-16

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  3. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  4. The Savannah River Site's Groundwater Monitoring Program First Quarter 1998 (January through March 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-05-26

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River Site during first quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  5. The Savannah River Site's Groundwater Monitoring Program - Fourth Quarter 1999 (October through December 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    2000-10-12

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River site during fourth quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official records of the analytical results.

  6. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  7. Characterization of the geochemical and physical properties of wetland soils on the Savannah River Site: Field sampling activities

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.L. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-11-01

    There are 36,000 acres of wetlands on the Savannah River Site (SRS) and an additional 5,000 acres of floodplain. Recent studies of wetland soils near various waste sites at SRS have shown that some wetlands have been contaminated with pollutants resulting from SRS operations. In general, releases of contaminants to wetland areas have been indirect. These releases may have originated at disposal lagoons or waste facilities located in the vicinity of the wetland areas. Transport mechanisms such as surface runoff, soil erosion, sediment transport, and groundwater seepage into downgradient wetland areas are responsible for the indirect discharges to the wetland areas. The SRS determined that a database of background geochemical and physical properties for wetland soils on the SRS was needed to facilitate future remedial investigations, human health and ecological risk assessments, treatability studies, and feasibility studies for the wetland areas. These data are needed for comparison to contaminant data collected from wetland soils that have been affected by contamination from SRS operations. This report describes the efforts associated with the collection of soil cores, preparation of a lithologic log for each core, and the processing and packaging of individual soil samples for shipment to analytical laboratory facilities.

  8. Characterization of the geochemical and physical properties of wetland soils on the Savannah River Site: Field sampling activities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.L. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-11-01

    There are 36,000 acres of wetlands on the Savannah River Site (SRS) and an additional 5,000 acres of floodplain. Recent studies of wetland soils near various waste sites at SRS have shown that some wetlands have been contaminated with pollutants resulting from SRS operations. In general, releases of contaminants to wetland areas have been indirect. These releases may have originated at disposal lagoons or waste facilities located in the vicinity of the wetland areas. Transport mechanisms such as surface runoff, soil erosion, sediment transport, and groundwater seepage into downgradient wetland areas are responsible for the indirect discharges to the wetland areas. The SRS determined that a database of background geochemical and physical properties for wetland soils on the SRS was needed to facilitate future remedial investigations, human health and ecological risk assessments, treatability studies, and feasibility studies for the wetland areas. These data are needed for comparison to contaminant data collected from wetland soils that have been affected by contamination from SRS operations. This report describes the efforts associated with the collection of soil cores, preparation of a lithologic log for each core, and the processing and packaging of individual soil samples for shipment to analytical laboratory facilities.

  9. Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178

    International Nuclear Information System (INIS)

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order

  10. Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178

    Energy Technology Data Exchange (ETDEWEB)

    Prod' homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

    2012-07-01

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order

  11. Long-Term Assessment of Critical Radionuclides and Associated Environmental Media at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T.; Baker, R. A.; Lee, P. L.; Eddy, T. P.; Blount, G. C.; Whitney, G. R.

    2012-11-06

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities. However, only a relatively small number of the released radionuclides have been significant contributors to doses and risks to the public. At SRS dose and risk assessments indicate tritium oxide in air and surface water, and Cs-137 in fish and deer have been, and continue to be, the critical radionuclides and pathways. In this assessment, indepth statistical analyses of the long-term trends of tritium oxide in atmospheric and surface water releases and Cs-137 concentrations in fish and deer are provided. Correlations also are provided with 1) operational changes and improvements, 2) geopolitical events (Cold War cessation), and 3) recent environmental remediation projects and decommissioning of excess facilities. For example, environmental remediation of the F- and H-Area Seepage Basins and the Solid Waste Disposal Facility have resulted in a measurable impact on the tritium oxide flux to the onsite Fourmile Branch stream. Airborne releases of tritium oxide have been greatly affected by operational improvements and the end of the Cold War in 1991. However, the effects of SRS environmental remediation activities and ongoing tritium operations on tritium concentrations in the environment are measurable and documented in this assessment. Controlled hunts of deer and feral hogs are conducted at SRS for approximately six weeks each year. Before any harvested animal is released to a hunter, SRS personnel perform a field analysis for Cs-137 concentrations to ensure the hunter's dose does not exceed the SRS administrative game limit of 0.22 millisievert (22 mrem). However, most of the Cs-137 found in SRS onsite deer is not from site operations but is from nuclear weapons testing fallout from the 1950's and early 1960's. This legacy source term is trended in the SRS deer, and an assessment of the ''effective'' half-life of Cs-137 in deer

  12. The red-cockaded woodpecker on the Savannah River Site: Aspects of reproductive success.

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Peter A.; Imm, Donald, W.; Jarvis, William L.

    2004-12-31

    Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 5. Status and Trends of Populations. Pp 224-229. Abstract: The red-cockaded woodpecker (Picoides borealis) population on the Savannah River Site has been closely monitored and studied over the last 17 years. In 1985, the USDA Forest Service Southern Research Station was given responsibility to study and manage this population in an effort to prevent its extirpation. In December 1985, there were only 4 individuals on the site: 1 pair and 2 solitary males. The population had increased to a total of 175 individuals in 42 active clusters in 2002. Although this represents a very successful recovery effort, there has been substantial annual variation in nesting survival from banding to fledging. Data were analyzed to more completely understand the factors affecting reproduction. No significant effects of age of the breeding male and female, years paired, number of helpers, habitat quality, number of nestings, and time of nest initiation were found when comparing reproductive success in 117 nesting attempts from 1999 to 2002. However, the number of neighboring groups had a direct effect on mortality rates, possibly demonstrating the importance of cluster spacing.

  13. The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  14. Technology for removing sludge and cleaning Savannah River Plant radioactive liquid waste tanks

    International Nuclear Information System (INIS)

    A new two-step process has been developed for removing sludge and cleaning Savannah River Plant waste tanks scheduled for retirement. Step 1 is a low-pressure, hydraulic-slurrying technique that uses a minimum amount of power to recirculate liquid waste and to suspend sludges. Step 2 is a chemical technique for dissolving unsuspended residue with oxalic acid, and includes water rinses and continued hydraulic slurrying. Full-scale demonstrations of the hydraulic slurrying steps in a waste tank mockup (with kaolin clay as a stand-in for waste sludges) confirmed theoretical predictions that the effective cleaning radius was directly proportional to the momentum of the jet. Small-scale dissolving tests with actual sludges showed that over 95 percent of the sludge could be dissolved in oxalic acid solutions. 24 figures

  15. Site restoration: Restoring Lost Lake, a Carolina bay at the Savannah River Site

    International Nuclear Information System (INIS)

    The Savannah River Site (SRS) in Aiken, SC, is part of the U.S. Department of Energy complex for production of materials for U.S. Government defense activities. From 1958 to 1985 mixed wastes (wastes which are both hazardous and radioactive) generated by aluminum forming/metal finishing processes at SRS were discharged to a settling basin with overflow directed to an adjacent Carolina bay known as Lost Lake. Use of the basin system was discontinued in 1985, and physical closure in situ began in 1988. The project's Closure Plan required that Lost Lake be restored to a 'natural wetland system'. An on-site interdisciplinary team designed the restoration project to demonstrate the effectiveness of various levels of active remediation of Carolina bays as well as restoring Lost Lake. Closure was completed in August 1991, and the site will be maintained for at least 30 years. (author)

  16. Rapid Bioassessment Methods for Assessing Stream Macroinvertebrate Community on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1999-11-22

    Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used in developing the Biotic Index, the index was very successful at detecting impact.

  17. Tritium processing at the Savannah River Site (SRS): Present and future

    Energy Technology Data Exchange (ETDEWEB)

    Ortman, M.S.; Heung, L.K.; Nobile, A.; Rabun, R.L. III.

    1989-01-01

    Tritium handling equipment and methods at the Savannah River Site Tritium Facilities have been continually improved since tritium processing operations began in 1955. Several new technologies were introduced into the Tritium Facilities in the 1980's. One of these is the use of fluidless, mechanical pumps (Normetex and Metal Bellows) to replace mercury pumps. A second is the use of metal hydride technology to store, purify, isotopically separate, pump, and compress hydrogen isotopes. Metal hydrides, such as La-Ni-Al alloys and Pd loaded on kieselguhr, offer significant flexibility and size advantages compared with conventional tritium handling technology, such as gas tanks, thermal diffusion columns, and mechanical compressors. Metal hydrides have been used in the Tritium Facilities since 1984 with the most important application of this technology being planned for the Replacement Tritium Facility, a $140 million facility scheduled for completion in 1990 and startup in 1991. 11 refs., 9 figs.

  18. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  19. Numerical simulations in support of the in situ bioremediation demonstration at Savannah River

    International Nuclear Information System (INIS)

    This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies

  20. Savannah River Site Environmental Monitoring Plan. Volume 1, Section 1000 Addendum: Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G.T.

    1994-10-01

    This document -- the Savannah River Site Environmental Monitoring Plan (SRS EM Plan) -- has been prepared according to guidance contained in the DOE 5400 Series orders, in 10 CFR 834, and in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and environmental Surveillance [DOE, 1991]. The SRS EM Plan`s purpose is to define the criteria, regulations, and guideline requirements with which SRS will comply. These criteria and requirements are applicable to environmental monitoring activities performed in support of the SRS Environmental Monitoring Program (SRS EM Program), WSRC-3Q1-2, Volume 1, Section 1100. They are not applicable to monitoring activities utilized exclusively for process monitoring/control. The environmental monitoring program requirements documented in the SRS EM Plan incorporate all applicable should requirements of DOE/EH-0173T and expand upon them to include nonradiological environmental monitoring program requirements.