WorldWideScience

Sample records for area liquid lithium

  1. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; R. Majeski; M. Boaz; P. Efthimion; G. Gettelfinger; T. Gray; D. Hoffman; S. Jardin; H. Kugel; P. Marfuta; T. Munsat; C. Neumeyer; S. Raftopoulos; V. Soukhanovskii; J. Spaleta; G. Taylor; J. Timberlake; R. Woolley; L. Zakharov; M. Finkenthal; D. Stutman; L. Delgado-Aparicio; R.P. Seraydarian; G. Antar; R. Doerner; S. Luckhardt; M. Baldwin; R.W. Conn; R. Maingi; M. Menon; R. Causey; D. Buchenauer; M. Ulrickson; B. Jones; D. Rodgers

    2004-06-07

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter.

  2. Effects of Large Area Liquid Lithium Limiters on Spherical Torus Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R; Jajeski, R; Boaz, M; Efthimion, P; Gettelfinger, G; Gray, T; Hoffman, D; Jardin, S; Kugel, H; Marfuta, P; Munsat, T; Neumeyer, C; Raftopoulos, S; Soukhanovskii, V; Spaleta, J; Taylor, G; Timberlake, J; Woolley, R; Zakharov, L; Finkenthal, M; Stutman, D; Delgado-Aparicio, L; Seraydarian, R; Antar, G; Doerner, R; Luckhardt, S; Baldwin, M; Conn, R; Maingi, R; Menon, M; Causey, R; Buchenauer, D; Ulrickson, M; Jones, B; Rodgers, D

    2004-06-03

    Use of a large-area liquid lithium surface as a first wall has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter.

  3. Effects of large area liquid lithium limiters on spherical torus plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States)]. E-mail: kaita@pppl.gov; Majeski, R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Boaz, M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Efthimion, P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Gettelfinger, G. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Gray, T. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Hoffman, D. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Jardin, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Marfuta, P. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Soukhanovskii, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Munsat, T.; Neumeyer, C.; Raftopoulos, S.; Spaleta, J.; Taylor, G.; Timberlake, J.; Woolley, R.; Zakharov, L. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08543 (United States); Finkenthal, M.; Stutman, D.; Delgado-Aparicio, L. [Johns Hopkins University, Baltimore, MD (United States); Seraydarian, R.P.; Antar, G.; Doerner, R.; Luckhardt, S.; Baldwin, M.; Conn, R.W. [University of California at San Diego, La Jolla, CA (United States); Maingi, R.; Menon, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Causey, R.; Buchenauer, D.; Ulrickson, M.; Jones, B. [Sandia National Laboratories, Albuquerque, NM (United States); Rodgers, D. [Drexel University, Philadelphia, PA (United States)

    2005-03-01

    Use of a large-area liquid lithium surface as a limiter has significantly improved the plasma performance in the Current Drive Experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory. Previous CDX-U experiments with a partially-covered toroidal lithium limiter tray have shown a decrease in impurities and the recycling of hydrogenic species. Improvements in loading techniques have permitted nearly full coverage of the tray surface with liquid lithium. Under these conditions, there was a large drop in the loop voltage needed to sustain the plasma current. The data are consistent with simulations that indicate more stable plasmas having broader current profiles, higher temperatures, and lowered impurities with liquid lithium walls. As further evidence for reduced recycling with a liquid lithium limiter, the gas puffing had to be increased by up to a factor of eight for the same plasma density achieved with an empty toroidal tray limiter.

  4. High performance discharges in the Lithium Tokamak eXperiment with liquid lithium wallsa)

    Science.gov (United States)

    Schmitt, J. C.; Bell, R. E.; Boyle, D. P.; Esposti, B.; Kaita, R.; Kozub, T.; LeBlanc, B. P.; Lucia, M.; Maingi, R.; Majeski, R.; Merino, E.; Punjabi-Vinoth, S.; Tchilingurian, G.; Capece, A.; Koel, B.; Roszell, J.; Biewer, T. M.; Gray, T. K.; Kubota, S.; Beiersdorfer, P.; Widmann, K.; Tritz, K.

    2015-05-01

    The first-ever successful operation of a tokamak with a large area (40% of the total plasma surface area) liquid lithium wall has been achieved in the Lithium Tokamak eXperiment (LTX). These results were obtained with a new, electron beam-based lithium evaporation system, which can deposit a lithium coating on the limiting wall of LTX in a five-minute period. Preliminary analyses of diamagnetic and other data for discharges operated with a liquid lithium wall indicate that confinement times increased by 10× compared to discharges with helium-dispersed solid lithium coatings. Ohmic energy confinement times with fresh lithium walls, solid and liquid, exceed several relevant empirical scaling expressions. Spectroscopic analysis of the discharges indicates that oxygen levels in the discharges limited on liquid lithium walls were significantly reduced compared to discharges limited on solid lithium walls. Tokamak operations with a full liquid lithium wall (85% of the total plasma surface area) have recently started.

  5. Liquid electrolytes for lithium and lithium-ion batteries

    Science.gov (United States)

    Blomgren, George E.

    A number of advances in electrolytes have occurred in the past 4 years, which have contributed to increased safety, wider temperature range of operation, better cycling and other enhancements to lithium-ion batteries. The changes to basic electrolyte solutions that have occurred to accomplish these advances are discussed in detail. The solvent components that have led to better low-temperature operation are also considered. Also, additives that have resulted in better structure of the solid electrolyte interphase (SEI) are presented as well as proposed methods of operation of these additives. Other additives that have lessened the flammability of the electrolyte when exposed to air and also caused lowering of the heat of reaction with the oxidized positive electrode are discussed. Finally, additives that act to open current-interrupter devices by releasing a gas under overcharge conditions and those that act to cycle between electrodes to alleviate overcharging are presented. As a class, these new electrolytes are often called "functional electrolytes". Possibilities for further progress in this most important area are presented. Another area of active work in the recent past has been the reemergence of ambient-temperature molten salt electrolytes applied to alkali metal and lithium-ion batteries. This revival of an older field is due to the discovery of new salt types that have a higher voltage window (particularly to positive potentials) and also have greatly increased hydrolytic stability compared to previous ionic liquids. While practical batteries have not yet emerged from these studies, the increase in the number of active researchers and publications in the area demonstrates the interest and potentialities of the field. Progress in the field is briefly reviewed. Finally, recent results on the mechanisms for capacity loss on shelf and cycling in lithium-ion cells are reviewed. Progress towards further market penetration by lithium-ion cells hinges on improved

  6. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  7. Ionic Liquids in Lithium-Ion Batteries.

    Science.gov (United States)

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  8. Diagnostics for liquid lithium experiments in CDX-U

    Energy Technology Data Exchange (ETDEWEB)

    R. Kaita; P. Efthimion; D. Hoffman; B. Jones; H. Kugel; R. Majeski; T. Munsat; S. Raftopoulos; G. Taylor; J. Timberlake; V. Soukhanovskii; D. Stutman; M. Iovea; M. Finkenthal; R. Doerner; S. Luckhardt; R. Maingi; R. Causey

    2000-06-21

    A flowing liquid lithium first wall or diverter target could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls in fusion reactors. To investigate the interaction of a spherical torus plasma with liquid lithium limiters, large area diverter targets, and walls, discharges will be established in the Current Drive Experiment-Upgrade (CDX-U) where the plasma-wall interactions are dominated by liquid lithium surfaces. Among the unique CDX-U lithium diagnostics is a multi-layer mirror (MLM) array, which will monitor the 135 {angstrom} LiIII line for core lithium concentrations. Additional spectroscopic diagnostics include a grazing incidence XUV spectrometer (STRS) and a filterscope system to monitor D{sub {alpha}} and various impurity lines local to the lithium limiter. Profile data will be obtained with a multichannel tangential bolometer and a multipoint Thomson scattering system configured to give enhanced edge resolution. Coupons on th e inner wall of the CDX-U vacuum vessel will be used for surface analysis. A 10,000 frame per second fast visible camera and an IR camera will also be available.

  9. Ionic liquids for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  10. Advances in primary lithium liquid cathode batteries

    Science.gov (United States)

    Blomgren, George E.

    1989-05-01

    Recent work on cell development and various aspects of cell chemistry and cell development of lithium/thionyl chloride liquid cathode batteries is reviewed. As a result of safety studies, a number of cell sizes can now be considered satisfactory for many applications and the energy densities of these cells is higher than any other developed battery system. Primary batteries operate with low to moderate currents and the anode delay effect appears to be under reasonable control. Reserve cells are in the design stage and operate at high to very high power densities as well as very high energy densities. The nature of the anode film and the operation of the lithium anode has been studied with substantial success and understanding has grown accordingly. Also, studies of the structure of the electrolyte and the effects on the electrolyte of impurities and additives have led to improved understanding in this area as well. Work in progress on new electrolytes is reviewed. The state of the art of mathematical modeling is also discussed and it is expected that this work will continue to develop.

  11. Different roles of ionic liquids in lithium batteries

    Science.gov (United States)

    Eftekhari, Ali; Liu, Yang; Chen, Pu

    2016-12-01

    Ionic liquids are often named solvents of the future because of flexibility in design. This statement has given credence that ionic liquids should simply replace the problematic electrolytes of lithium batteries. As a result, the promising potentials of ionic liquids in electrochemical systems are somehow obscured by inappropriate expectations. We summarize recent advancements in this field, especially, ionic liquids as standalone electrolytes, additives, plasticizers in gel polymer electrolytes, and binders; and attempt to shed light on the future pathway of this area of research. Ionic liquids are not dilute media to serve as pure solvents in electrochemical systems where mobility of ions is the priority; instead, they can contribute to the ionic conductivity of various components in a battery system. Owing to the enormous possibilities of ionic liquids, it is not merely a matter of choice. Ionic liquids can be used to design novel types of electrolytes for a new generation of lithium batteries. A promising possibility, which is still at a very early stage, is supercooled ionic liquid crystals for fast ion diffusion through the guided channels of a liquid-like medium. This, of course, will be a breakthrough in the realm of electrochemistry, far beyond lithium battery field, when materialized.

  12. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  13. Lithium conducting ionic liquids based on lithium borate salts

    Energy Technology Data Exchange (ETDEWEB)

    Zygadlo-Monikowska, E.; Florjanczyk, Z.; Sluzewska, K.; Ostrowska, J.; Langwald, N.; Tomaszewska, A. [Warsaw University of Technology, Faculty of Chemistry, ul. Noakowskiego 3, 00-664 Warsaw (Poland)

    2010-09-15

    The simple reaction of trialkoxyborates with butyllithium resulted in the obtaining of new lithium borate salts: Li{l_brace}[CH{sub 3}(OCH{sub 2}CH{sub 2}){sub n}O]{sub 3}BC{sub 4}H{sub 9}{r_brace}, containing oxyethylene substituents (EO) of n=1, 2, 3 and 7. Salts of n {>=} 2 show properties of room temperature ionic liquid (RTIL) of low glass transition temperature, T{sub g} of the order from -70 to -80 C. The ionic conductivity of the salts depends on the number of EO units, the highest conductivity is shown by the salt with n = 3; in bulk its ambient temperature conductivity is 2 x 10{sup -5} S cm{sup -1} and in solution in cyclic propylene sulfite or EC/PC mixture, conductivity increases by an order of magnitude. Solid polymer electrolytes with borate salts over a wide concentration range, from 10 to 90 mol.% were obtained and characterized. Three types of polymeric matrices: poly(ethylene oxide) (PEO), poly(trimethylene carbonate) (PTMC) and two copolymers of acrylonitrile and butyl acrylate p(AN-BuA) were used in them as polymer matrices. It has been found that for systems of low salt concentration (10 mol.%) the best conducting properties were shown by solid polymer electrolytes with PEO, whereas for systems of high salt concentration, of the polymer-in-salt type, good results were achieved for PTMC as polymer matrix. (author)

  14. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    KAUST Repository

    Lu, Yingying

    2014-08-10

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  15. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes

    Science.gov (United States)

    Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.

    2014-10-01

    Rechargeable lithium, sodium and aluminium metal-based batteries are among the most versatile platforms for high-energy, cost-effective electrochemical energy storage. Non-uniform metal deposition and dendrite formation on the negative electrode during repeated cycles of charge and discharge are major hurdles to commercialization of energy-storage devices based on each of these chemistries. A long-held view is that unstable electrodeposition is a consequence of inherent characteristics of these metals and their inability to form uniform electrodeposits on surfaces with inevitable defects. We report on electrodeposition of lithium in simple liquid electrolytes and in nanoporous solids infused with liquid electrolytes. We find that simple liquid electrolytes reinforced with halogenated salt blends exhibit stable long-term cycling at room temperature, often with no signs of deposition instabilities over hundreds of cycles of charge and discharge and thousands of operating hours. We rationalize these observations with the help of surface energy data for the electrolyte/lithium interface and impedance analysis of the interface during different stages of cell operation. Our findings provide support for an important recent theoretical prediction that the surface mobility of lithium is significantly enhanced in the presence of lithium halide salts. Our results also show that a high electrolyte modulus is unnecessary for stable electrodeposition of lithium.

  16. Liquid lithium for high power density fragmentation targets

    Science.gov (United States)

    Nolen, J. A.; Reed, C. B.; Hassanein, A.; Morrissey, D. J.; Ottarson, J. H.; Sherrill, B. M.

    2001-10-01

    Windowless liquid lithium targets for in-flight fragmentation or fission of high power heavy ion beams are being developed for the U.S. RIA project. With uranium beam power of 100 kW and a beam spot diameter of 1 mm the power density in the target is over 1 MW/cm3. Thermal analysis for this example indicates a very low peak temperature for the lithium when flowing at a linear velocity of 10 m/s. A vacuum test chamber is under construction at Argonne at an existing liquid lithium facility to demonstrate a 2 cm thick windowless target. As a first step towards using liquid lithium target technology at a nuclear physics fragmentation facility, a lower power target is being constructed for use at the NSCL. This target will use beryllium windows with flowing lithium. It is designed for beams between oxygen and calcium with beam power above 3 kW. The tapered beryllium windows are each 1 mm thick for the calcium beams and 7 mm thick for the oxygen beams. The lithium is 5 mm thick. This gives an overall target thickness ranging from about 1 g/cm2 to 3 g/cm2 which is adjusted by moving the target vertically. The designs of these targets and the status of the prototypes will be discussed.

  17. TECXY study of a liquid lithium divertor for DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Pelka, G.; Chmielewski, P.; Zagorski, R. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Pericoli-Ridolfini, V.; Viola, B. [ENEA C.R. Frascati, Roma (Italy)

    2016-08-15

    Divertor targets made out of a capillary porous system (CPS) filled with liquid lithium, have been proposed as an alternative to standard, solid state plates. In the current work we simulate the DEMO edge plasma in either a standard single-null or snowflake divertor configuration. Our tool is the 2D code TECXY. Lithium ablated from the target plate surface and released into the plasma is shown here to partially screen the incoming heat flux. Lithium's moderate SOL radiation levels suggest additional seeding to be beneficial. Very high heat fluxes to the divertor need to be avoided, as intensive lithium evaporation might unacceptably pollute the plasma. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The liquid lithium limiter control system on FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bertocchi, A. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)], E-mail: bertocchi@frascati.enea.it; Di Donna, M. [Department of Informatics, Systems and Productions, University of Rome Tor Vergata, Rome (Italy); Panella, M.; Vitale, V. [EURATOM-ENEA Association, Frascati Research Center, Via E. Fermi 45, 00044 Frascati (Rome) (Italy)

    2007-10-15

    In the second half of 2005, a liquid lithium limiter (LLL) with capillary porous system (CPS) configuration was installed to test on Tokamak FTU. The liquid lithium flows through capillaries from a reservoir to the side faced to the plasma to form a thin lithium film as wall coating. The system includes three stainless steel cases, which contain two thermocouples each one. A heating system brings the Li temperature about 200 deg. C to allow the liquid to flow. This temperature, monitored by thermocouples, needs to be controlled. To carry out this experimental procedure, some new features have been introduced in the existent control system based on Opto22{sup TM} modules and a CORBA/PHP/MySQL software architecture. The historical data storage to keep the lithium temperature evolution has been added. Two graphical tools - developed in MATLAB{sup TM} and Java environments, respectively, to monitor the lithium temperature coming from thermocouples - have been also implemented. The LLL control system allows to regulate the heater temperature in each unit to reach operational conditions, where the temperature adjustment can be performed either automatically through a specific control law or manually by the operator. During the plasma shot the system switches off the limiter power supply to prevent instruments damage. Moreover, in the same experimental context, a first approach to automatically obtain executable code - starting from control laws designed by Simulink{sup TM} tool - has been realized.

  19. Electrical detection of liquid lithium leaks from pipe jointsa)

    Science.gov (United States)

    Schwartz, J. A.; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R.

    2014-11-01

    A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 kΩ trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

  20. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes.

    Science.gov (United States)

    Grande, Lorenzo; von Zamory, Jan; Koch, Stephan L; Kalhoff, Julian; Paillard, Elie; Passerini, Stefano

    2015-03-18

    In this study, we report on the electroplating and stripping of lithium in two ionic liquid (IL) based electrolytes, namely N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl) imide (Pyr14FSI) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI), and mixtures thereof, both on nickel and lithium electrodes. An improved method to evaluate the Li cycling efficiency confirmed that homogeneous electroplating (and stripping) of Li is possible with TFSI-based ILs. Moreover, the presence of native surface features on lithium, directly observable via scanning electron microscope imaging, was used to demonstrate the enhanced electrolyte interphase (SEI)-forming ability, that is, fast cathodic reactivity of this class of electrolytes and the suppressed dendrite growth. Finally, the induced inhomogeneous deposition enabled us to witness the SEI cracking and revealed previously unreported bundled Li fibers below the pre-existing SEI and nonrod-shaped protuberances resulting from Li extrusion.

  1. Liquid electrolytes based on new lithium conductive imidazole salts

    Energy Technology Data Exchange (ETDEWEB)

    Niedzicki, L.; Kasprzyk, M.; Kuziak, K.; Zukowska, G.Z.; Marcinek, M.; Wieczorek, W. [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Armand, M. [LRCS, University de Picardie Jules Verne, UMR 6007 CNRS, 33 rue de Saint-Leu, 80039 Amiens (France)

    2011-02-01

    In the present paper new generation of imidazole-derived lithium salts (LiTDI - lithium 4,5-dicyano-2-(trifluoromethyl)imidazolide, LiPDI - lithium 4,5-dicyano-2-(pentafluoroethyl)imidazolide and LiHDI - lithium 4,5-dicyano-2-(n-heptafluoropropyl)imidazolide) applied in a model liquid electrolyte, with propylene carbonate used as a solvent, is described. Room temperature ionic conductivities measured by Impedance Spectroscopy are as high as 10{sup -2} to 10{sup -3} S cm{sup -1} for the 0.1-1 mol dm{sup -3} salt concentration range. Lithium cation transference numbers calculated using the Bruce-Vincent method exceed 0.4 at salt concentration equal to 1 mol dm{sup -3}. Interface resistance measurements showed good stability at high - 0.5 mol dm{sup -3} or low - 0.01 mol dm{sup -3} salt concentrations. Ionic associations were estimated using Fuoss-Kraus semiempirical method revealing relatively low association rates. The effect of anion structure on ionic interactions and electrochemical characteristics of the studied electrolytes is discussed. (author)

  2. Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium

    Science.gov (United States)

    Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.

    2014-10-01

    Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.

  3. Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces

    Science.gov (United States)

    Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David

    2014-10-01

    An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.

  4. New, ionic liquid-based membranes for lithium battery application

    Energy Technology Data Exchange (ETDEWEB)

    Sirisopanaporn, C.; Fernicola, A.; Scrosati, B. [Department of Chemistry, University of Rome La Sapienza, 00185 Rome (Italy)

    2009-01-15

    New types of dimensionally stable, flexible gel-type electrolyte membranes with a relatively wide electrochemical stability, high lithium ion conductivity and other desirable properties have been prepared by immobilizing N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethane)sulfonimide-lithium N,N-bis(trifluoromethane)sulfonimide (Py{sub 24}TFSI-LiTFSI), ionic liquid, IL, solutions in a poly(vinylidene fluoride)-hexafluoropropylene copolymer (PVdF-HFP) matrix. The addition of a discrete amount of ethylene and propylene carbonate (EC-PC), solvent mixture to the membranes resulted in an improvement of the ionic conductivity and in a stabilization of the interface with the lithium electrode. These IL-based gel type membranes can operate without degradation up to a temperature of 110 C where they reach conductivity values of the order of 10{sup -2} S cm{sup -1}. All these properties make these polymer electrolyte membranes of interest for applications as separators in advanced lithium batteries. (author)

  5. Investigation of parameters of interaction of hydrogen isotopes with liquid lithium and lithium capillary-porous system under reactor irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, I. L., E-mail: tazhibayeva@ntsc.kz; Kulsartov, T. V.; Gordienko, Yu. N.; Zaurbekova, Zh. A.; Ponkratov, Yu. V.; Barsukov, N. I.; Tulubayev, Ye. Yu.; Baklanov, V. V.; Gnyrya, V. S. [Institute of Atomic Energy NNC RK (Kazakhstan); Kenzhin, Ye. A. [Institute of Nuclear Physics (Kazakhstan)

    2015-12-15

    In this study, the effect of reactor irradiation on the processes of interaction of hydrogen with liquid lithium and a lithium capillary-porous system (CPS) is considered. The experiments are carried out by the gas-absorption method with use of a specially designed ampoule device. The results of investigation of the interaction of hydrogen with liquid lithium and a lithium CPS under conditions of reactor irradiation are described; namely, these are the temperature dependences of the rate constant for the interaction of hydrogen with liquid lithium at different reactor powers, the activation energies of the processes, and the pre-exponential factor in the Arrhenius dependence. The effect of increasing absorption of hydrogen by the samples under investigation as a result of the reactor irradiation is fixed. The effect can be explained by increasing mobility of hydrogen in liquid lithium due to hot spots in lithium bulk and the interaction of helium and tritium ions (formed as a result of the nuclear reaction of {sup 6}Li with neutron) with a surface hydride film.

  6. Preparation of the liquid lithium divertor plates for NSTX

    Science.gov (United States)

    Nygren, R. E.; McKee, G. R.; Fordham, J. A.; Lewis, S. A.; Kugel, H.; Ellis, R. A.; Viola, M. E.; O'Dell, J. S.

    2011-10-01

    Each of the four toroidal panels of the liquid lithium divertor being installed in NSTX for operation in the 2010 campaign is a conical section inclined at 22° like the previous graphite divertor tiles. Each panel is a copper plate clad with stainless steel and a surface layer of porous plasma sprayed molybdenum (Mo) that will host lithium deposited from an evaporator. This paper describes the processes in fabrication; these include cutting to rough shape, die pressing into conical sections, machining to near final shape with holes for electrical heaters, thermocouples and a groove for a cooling tube, brazing of the 0.25-mm cladding and vacuum plasma spraying of the Mo coating.

  7. Response of NSTX liquid lithium divertor to high heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Kallman, J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Kaita, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Foley, E.L. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); Gray, T.K. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kugel, H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Levinton, F. [Nova Photonics, Inc., Princeton, NJ 08543 (United States); McLean, A.G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Skinner, C.H. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2013-07-15

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ∼1.5 MW/m{sup 2} for 1–3 s. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the “bare” sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface.

  8. Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma

    Institute of Scientific and Technical Information of China (English)

    Li Cheng-Yue; J.P. Allain; Deng Bai-Quan

    2007-01-01

    This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario Ⅱ of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.

  9. Liquid lithium self-cooled breeding blanket design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, I.R.; Sidorenkov, S.I. [Research Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Danilov, I.V.; Strebkov, Yu.S. [Research and Development Institute of Power Engineering, 101100 Moscow (Russian Federation); Mattas, R.F.; Hua, T.Q.; Smith, D.L. [Fusion Power Program, Argonne National Laboratory, Chicago, IL 60439 (United States); Gohard, Y. [ITER Garching Joint Work Site, Max-Planck-Institut fur Plasmaphysik, D-85748 Garching bei Munchen (Germany)

    1998-09-01

    To meet the technical objectives of the ITER extended performance phase (EPP) an advanced tritium breeding lithium/vanadium (Li/V) blanket was developed by two home teams (US and RF). The design is based on the use of liquid Li as coolant and breeder and vanadium alloy (V-Cr-Ti) as structural material. The first wall is coated with a beryllium protection layer. Beryllium is also integrated in the blanket for neutron multiplication and improved shielding. The use of tungsten carbide in the primary shield and in vacuum vessel provides adequate protection for toroidal field coils. A self-healing electrical insulator in the form of CaO or AlN coating layer is utilized to reduce MHD pressure drop in the system. To have a self-consistent ITER design, liquid metal cooling of the divertor and vacuum vessel is considered as well. (orig.) 16 refs.

  10. Lithium ion conductive behavior of TiO2 nanotube/ionic liquid matrices

    OpenAIRE

    2014-01-01

    A series of TiO_2 nanotube (TNT)/ionic liquid matrices were prepared, and their lithium ion conductive properties were studied. SEM images implied that ionic liquid was dispersed on the whole surface of TNT. Addition of TNT to ionic liquid (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMImTFSA)) resulted in significant increase of ionic conductivity. Furthermore, lithium transference number was also largely enhanced due to the interaction of anion with TNT. Vogel-Fulcher-Tam...

  11. VUV/XUV measurements of impurity emission in plasmas with liquid lithium surfaces on LTX

    Science.gov (United States)

    Tritz, Kevin; Bell, Ronald E.; Beiersdorfer, Peter; Boyle, Dennis; Clementson, Joel; Finkenthal, Michael; Kaita, Robert; Kozub, Tom; Kubota, Shigeyuki; Lucia, Matthew; Majeski, Richard; Merino, Enrique; Schmitt, John; Stutman, Dan

    2014-12-01

    The VUV/XUV spectrum has been measured on the Lithium Tokamak eXperiment (LTX) using a transmission grating imaging spectrometer (TGIS) coupled to a direct-detection x-ray charge-coupled device camera. TGIS data show significant changes in the ratios between the lithium and oxygen impurity line emission during discharges with varying lithium wall conditions. Lithium coatings that have been passivated by lengthy exposure to significant levels of impurities contribute to a large O/Li ratio measured during LTX plasma discharges. Furthermore, previous results have indicated that a passivated lithium film on the plasma facing components will function as a stronger impurity source when in the form of a hot liquid layer compared to a solid lithium layer. However, recent TGIS measurements of plasma discharges in LTX with hot stainless steel boundary shells and a fresh liquid lithium coating show lower O/Li impurity line ratios when compared to discharges with a solid lithium film on cool shells. These new measurements help elucidate the somewhat contradictory results of the effects of solid and liquid lithium on plasma confinement observed in previous experiments.

  12. Mixed ionic liquid as electrolyte for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Diaw, M. [Universite Cheikh Anta Diop, Dakar (Senegal); Chagnes, A.; Carre, B.; Lemordant, D. [Laboratoire de Chimie-physique des Interfaces et des Milieux Reactionnels, (EA2098), Universite F. Rabelais, Faculte des Sciences et Techniques, Parc de Grandmont, 37200 Tours (France); Willmann, P. [CNES, 18 Avenue E. Belin, 31055 Toulouse Cedex (France)

    2005-08-26

    Ionic liquids like 1-butyl-3-methylimidazolium tetrafluoroborate (IMIBF{sub 4}) or hexafluorophosphate (IMIPF{sub 6}) and 1-butyl-4-methylpyridinium tetrafluoroborate (PyBF{sub 4}) were mixed with organic solvents such as butyrolactone (BL) and acetonitrile (ACN). A lithium salt (LiBF{sub 4} or LiPF{sub 6}) was added to these mixtures for possible application in the field of energy storage (batteries or supercapacitors). Viscosities, conductivities and electrochemical windows at a Pt electrode of these electrolytes were investigated. All studied electrolytes are stable toward oxidation and exhibit a vitreous phase transition, which has been determined by application of the VTF theory to conductivity measurements. Mixtures containing the BF{sub 4}{sup -} anion exhibit the lowest viscosity and the highest conductivity. Two mixtures have been optimized in terms of conductivity: BL/IMIBF{sub 4} (60/40, v/v) and ACN/IMIBF{sub 4} (70/30, v/v). (author)

  13. Commentary on the Liquid Metallic Hydrogen Model of the Sun III. Insight into Solar Lithium Abundances

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2013-04-01

    Full Text Available The apparent depletion of lithium represents one of the grea test challenges to modern gaseous solar models. As a result, lithium has been hypothes ized to undergo nuclear burning deep within the Sun. Conversely, extremely low lith ium abundances can be easily accounted for within the liquid metallic hydrogen mo del, as lithium has been hypothesized to greatly stabilize the formation of metalli c hydrogen (E. Zurek et al. A little bit of lithium does a lot for hydrogen. Proc. Nat. Acad. Sci. USA , 2009, v. 106, no. 42, 17640–17643. Hence, the abundances of lithium on th e solar surface can be explained, not by requiring the nuclear burning of this elem ent, but rather, by suggesting that the Sun is retaining lithium within the solar body in ord er to help stabilize its liquid metallic hydrogen lattice. Unlike lithium, many of t he other elements synthesized within the Sun should experience powerful lattice exclusio nary forces as they are driven out of the intercalate regions between the layered liquid me tallic hydrogen hexagonal planes (Robitaille J.C. and Robitaille P.M. Liquid Metalli c Hydrogen III. Intercalation and Lattice Exclusion Versus Gravitational Settling and Th eir Consequences Relative to Internal Structure, Surface Activity, and Solar Winds in the Sun. Progr. Phys ., 2013, v. 2, in press. As for lithium, its stabilizing role within t he solar interior helps to account for the lack of this element on the surface of the Sun.

  14. Hydrogen, lithium, and lithium hydride production

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.

    2017-06-20

    A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.

  15. Studies of ionic liquids in lithium-ion battery test systems

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Justin; Prausnitz, John M.; Newman, John

    2006-06-01

    In this work, thermal and electrochemical properties of neat and mixed ionic liquid - lithium salt systems have been studied. The presence of a lithium salt causes both thermal and phase-behavior changes. Differential scanning calorimeter DSC and thermal gravimetric analysis TGA were used for thermal analysis for several imidazolium bis(trifluoromethylsulfonyl)imide, trifluoromethansulfonate, BF{sub 4}, and PF{sub 6} systems. Conductivities and diffusion coefficient have been measured for some selected systems. Chemical reactions in electrode - ionic liquid electrolyte interfaces were studied by interfacial impedance measurements. Lithium-lithium and lithium-carbon cells were studied at open circuit and a charged system. The ionic liquids studied include various imidazolium systems that are already known to be electrochemically unstable in the presence of lithium metal. In this work the development of interfacial resistance is shown in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell as well as results from some cycling experiments. As the ionic liquid reacts with the lithium electrode the interfacial resistance increases. The results show the magnitude of reactivity due to reduction of the ionic liquid electrolyte that eventually has a detrimental effect on battery performance.

  16. Wetting Properties of Liquid Lithium on Stainless Steel and Enhanced Stainless Steel Surfaces

    Science.gov (United States)

    Fiflis, P.; Xu, W.; Raman, P.; Andruczyk, D.; Ruzic, D. N.; Curreli, D.

    2012-10-01

    Research into lithium as a first wall material has proven its ability to effectively getter impurities and reduce recycling of hydrogen ions at the wall. Current schemes for introducing lithium into a fusion device consist of lithium evaporators, however, as these devices evolve from pulsed to steady state, new methods will need to be employed such as the LIMIT concept of UIUC, or thin flowing film lithium walls. Critical to their implementation is understanding the interactions of liquid lithium with various surfaces. One such interaction is the wetting of materials by lithium, which may be characterized by the contact angle between the lithium and the surface. Experiments have been performed at UIUC into the contact angle of liquid lithium with a given surface, as well as methods to increase it. To reduce the oxidation rate of the droplets, the experiments were performed in vacuum, using a lithium injector to deposit drops on each surface. Among the materials investigated are stainless steel, both untreated and coated with a diamond like carbon (DLC) layer, molybdenum, and boronized molybdenum. The contact angle and its dependence on temperature is measured.

  17. Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries

    KAUST Repository

    Lu, Yingying

    2012-07-12

    Ionic liquid-tethered nanoparticle hybrid electrolytes comprised of silica nanoparticles densely grafted with imidazolium-based ionic liquid chains are shown to retard lithium dendrite growth in rechargeable batteries with metallic lithium anodes. The electrolytes are demonstrated in full cell studies using both high-energy Li/MoS2 and high-power Li/TiO2 secondary batteries. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Liquid Cooling of Tractive Lithium Ion Batteries Pack with Nanofluids Coolant.

    Science.gov (United States)

    Li, Yang; Xie, Huaqing; Yu, Wei; Li, Jing

    2015-04-01

    The heat generated from tractive lithium ion batteries during discharge-charge process has great impacts on the performances of tractive lithium ion batteries pack. How to solve the thermal abuse in tractive lithium ion batteries pack becomes more and more urgent and important for future development of electrical vehicles. In this work, TiO2, ZnO and diamond nanofluids are prepared and utilized as coolants in indirect liquid cooling of tractive lithium ion batteries pack. The results show that nanofluids present superior cooling performance to that of pure fluids and the diamond nanofluid presents relatively excellent cooling abilities than that of TiO2 and ZnO nanofluids. During discharge process, the temperature distribution of batteries in batteries pack is uniform and stable, due to steady heat dissipation by indirect liquid cooling. It is expected that nanofluids could be considered as a potential alternative for indirect liquid cooling in electrical vehicles.

  19. Lithium

    Science.gov (United States)

    Jaskula, B.W.

    2012-01-01

    In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.

  20. Investigation of tin-lithium eutectic as a liquid plasma facing material

    Science.gov (United States)

    Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar

    2016-10-01

    Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.

  1. Solution behavior of hydrogen isotopes and other non-metallic elements in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Maroni, V.A.; Calaway, W.F.; Veleckis, E.; Yonco, R.M.

    1976-01-01

    Results of experimental studies to measure selected thermodynamic properties for systems of lithium with non-metallic elements are reported. Investigations of the Li-H, Li-D, and Li-T systems have led to the elucidation of the dilute solution behavior and the H/D/T isotope effects. In the case of the Li-H and Li-D systems, the principal features of the respective phase diagrams have been delineated. The solubility of Li-D in liquid lithium has been measured down to 200/sup 0/C. The solubility of Li/sub 3/N in liquid lithium and the thermal decomposition of Li/sub 3/N have also been studied. From these data, the free energy of formation of Li/sub 3/N and the Sieverts' constant for dissolution of nitrogen in lithium have been determined. Based on studies of the distribution of non-metallic elements between liquid lithium and selected molten salts, it appears that molten salt extraction offers promise as a means of removing these impurity elements (e.g., H, D, T, O, N, C) from liquid lithium.

  2. Ionic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Zhang, Ruisi; Chen, Yuanfen; Montazami, Reza

    2015-01-01

    Application of gel polymer electrolytes (GPE) in lithium-ion polymer batteries can address many shortcomings associated with liquid electrolyte lithium-ion batteries. Due to their physical structure, GPEs exhibit lower ion conductivity compared to their liquid counterparts. In this work, we have investigated and report improved ion conductivity in GPEs doped with ionic liquid. Samples containing ionic liquid at a variety of volume percentages (vol %) were characterized for their electrochemical and ionic properties. It is concluded that excess ionic liquid can damage internal structure of the batteries and result in unwanted electrochemical reactions; however, samples containing 40–50 vol % ionic liquid exhibit superior ionic properties and lower internal resistance compared to those containing less or more ionic liquids.

  3. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor

    2010-02-16

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________

  4. Experiments with liquid metal walls: Status of the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert, E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlake, John [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2010-11-15

    Abstarct: Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  5. High-flux neutron source based on a liquid-lithium target

    Science.gov (United States)

    Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.

    2013-04-01

    A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.

  6. High-power liquid-lithium jet target for neutron production

    CERN Document Server

    Halfon, S; Kijel, D; Paul, M; Berkovits, D; Eliyahu, I; Feinberg, G; Friedman, M; Hazenshprung, N; Mardor, I; Nagler, A; Shimel, G; Tessler, M; Silverman, I

    2013-01-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center. The lithium target, to be bombarded by the high-intensity proton beam of the Soreq Applied Research Accelerator Facility (SARAF), will constitute an intense source of neutrons produced by the 7Li(p,n)7Be reaction for nuclear astrophysics research and as a pilot setup for accelerator-based Boron Neutron Capture Therapy (BNCT). The liquid-lithium jet target acts both as neutron-producing target and beam dump by removing the beam thermal power (>5 kW, >1 MW/cm3) with fast transport. The target was designed based on a thermal model, accompanied by a detailed calculation of the 7Li(p,n) neutron yield, energy distribution and angular distribution. Liquid lithium is circulated through the target loop at ~200oC and generates a stable 1.5 mm-thick film flowing at a velocity up to 7 m/s onto a concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can diss...

  7. Ionic liquid-based membranes as electrolytes for advanced lithium polymer batteries.

    Science.gov (United States)

    Navarra, M A; Manzi, J; Lombardo, L; Panero, S; Scrosati, Bruno

    2011-01-17

    Gel-type polymer electrolytes are formed by immobilizing a solution of lithium N,N-bis(trifluoromethanesulfonyl)imide (LiTFSI) in N-n-butyl-N-ethylpyrrolidinium N,N-bis(trifluoromethanesulfonyl)imide (Py₂₄TFSI) ionic liquid (IL) with added mixtures of organic solvents, such as ethylene, propylene and dimethyl carbonates (EC, PC, and DMC, respectively), into a poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-HFP) matrix, and their properties investigated. The addition of the organic solvent mixtures results in an improvement of the ionic conductivity and in the stabilization of the interface with the lithium electrode. Conductivity values in the range of 10⁻³-10⁻²  S cm⁻¹ are obtained in a wide temperature range. These unique properties allow the effective use of these membranes as electrolytes for the development of advanced polymer batteries based on a lithium metal anode and an olivine-type lithium iron phosphate cathode.

  8. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  9. Lithium in rocks from the Lincoln, Helena, and Townsend areas, Montana

    Science.gov (United States)

    Brenner-Tourtelot, Elizabeth F.; Meier, Allen L.; Curtis, Craig A.

    1978-01-01

    In anticipation of increased demand for lithium for energy-related uses, the U.S. Geological Survey has been appraising the lithium resources of the United States and investigating occurrences of lithium. Analyses of samples of chiefly lacustrine rocks of Oligocene age collected by M. R. Mudge near Lincoln, Mont. showed as much as 1,500 ppm lithium. Since then we have sampled the area in greater detail, and have sampled rocks of similar ages in the Helena and Townsend valleys. The lithium-rich beds crop out in a band about 1.3 km long by 0.3 km wide near the head of Beaver Creek, about 14 km northwest of Lincoln, Mont. These beds consist of laminated marlstone, oil shale, carbonaceous shale, limestone, conglomerate, and tuff. Some parts of this sequence average almost 0.1 percent lithium. The lithium-bearing rocks are too low in grade and volume to be economic. Samples of sedimentary rocks of Oligocene age from the Helena and Townsend valleys in the vicinity of Helena, Mont. were generally low in lithium (3-40 ppm). However, samples of rhyolites from the western side of the Helena valley and from the Lava Mountain area were slightly above average in lithium content (6-200 ppm).

  10. Properties and Structure of the LiCl-films on Lithium Anodes in Liquid Cathodes

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hennesø, Erik

    2016-01-01

    Lithium anodes passivated by LiCl layers in different types of liquid cathodes (catholytes) based on LiAlCl4 in SOCl2 or SO2 have been studied by means of impedance spectroscopy. The impedance spectra have been fitted with two equivalent circuits using a nonlinear least squares fit program...

  11. Use of Ionic Liquids in Rod-Coil Block Copolyimides for Improved Lithium Ion Conduction

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.; Chapin, Kara; Bennett, William R.

    2007-01-01

    Solvent-free, solid polymer electrolytes (SPE) have the potential to improve safety, increase design flexibility and enhance performance of rechargeable lithium batteries. Solution based electrolytes are flammable and typically incompatible with lithium metal anodes, limiting energy density. We have previously demonstrated use of polyimide rod coil block copolymers doped with lithium salts as electrolytes for lithium polymer batteries. The polyimide rod blocks provide dimensional stability while the polyethylene oxide (PEO) coil portions conduct ions. Phase separation of the rods and coils in these highly branched polymers provide channels with an order of magnitude improvement in lithium conduction over polyethylene oxide itself at room temperature. In addition, the polymers have been demonstrated in coin cells to be compatible with lithium metal. For practical use at room temperature and below, however, at least an order of magnitude improvement in ion conduction is still required. The addition of nonvolatile, room temperature ionic liquids has been shown to improve the ionic conductivity of high molecular weight PEO. Herein we describe use of these molten salts to improve ionic conductivity in the rod-coil block copolymers.

  12. Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries.

    Science.gov (United States)

    Porcarelli, Luca; Shaplov, Alexander S; Salsamendi, Maitane; Nair, Jijeesh R; Vygodskii, Yakov S; Mecerreyes, David; Gerbaldi, Claudio

    2016-04-27

    Polymer electrolytes have been proposed as replacement for conventional liquid electrolytes in lithium-ion batteries (LIBs) due to their intrinsic enhanced safety. Nevertheless, the power delivery of these materials is limited by the concentration gradient of the lithium salt. Single-ion conducting polyelectrolytes represent the ideal solution since their nature prevents polarization phenomena. Herein, the preparation of a new family of single-ion conducting block copolymer polyelectrolytes via reversible addition-fragmentation chain transfer polymerization technique is reported. These copolymers comprise poly(lithium 1-[3-(methacryloyloxy)propylsulfonyl]-1-(trifluoromethylsulfonyl)imide) and poly(ethylene glycol) methyl ether methacrylate blocks. The obtained polyelectrolytes show low Tg values in the range of -61 to 0.6 °C, comparatively high ionic conductivity (up to 2.3 × 10(-6) and 1.2 × 10(-5) S cm(-1) at 25 and 55 °C, respectively), wide electrochemical stability (up to 4.5 V versus Li(+)/Li), and a lithium-ion transference number close to unity (0.83). Owing to the combination of all mentioned properties, the prepared polymer materials were used as solid polyelectrolytes and as binders in the elaboration of lithium-metal battery prototypes with high charge/discharge efficiency and excellent specific capacity (up to 130 mAh g(-1)) at C/15 rate.

  13. Investigation of the susceptibility of EUROFER97 in lead-lithium to liquid metal embrittlement (LME)

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, R.W. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)], E-mail: rbosch@sckcen.be; Dyck, S. van; Al Mazouzi, A. [SCK-CEN, Belgian Nuclear Research Centre, Boeretang 200, B-2400 Mol (Belgium)

    2007-10-15

    Liquid metal embrittlement (LME) is defined as the brittle fracture (loss of ductility) of usually ductile materials in the presence of a liquid metal. The sensitivity to LME is likely to increase with irradiation hardening as localised stresses can promote the aggressive action of a liquid metal. To investigate the mechanical response of irradiated materials in contact with a liquid metal, an instrumented hot cell has been developed. The testing machine installed inside allows mechanical testing of active materials in liquid lead lithium under well controlled chemistry conditions. Typical mechanical tests that can be carried out are slow strain rate tests (SSRT), constant load and rising load tests at temperatures from 150 deg. C to 500 deg. C. In this paper the first results of the SSRT tests with EUROFER97 in argon and lead-lithium at different temperatures with different strain rates will be presented. The SSRT test method has been chosen due to the accelerated nature of the test, i.e., during straining the oxide layer will be ruptured and wetting of the sample surface by the lead-lithium melt is promoted. The results collected up till now showed no sign of LME. Tests with longer pre-exposure times and tests with irradiated samples will be carried out in the next phase. A longer pre-exposure time can enhance wetting and so the susceptibility to LME. An increase of the yield stress due to irradiation can also enhance the susceptibility to LME.

  14. Lithium

    Science.gov (United States)

    Lithium is used to treat and prevent episodes of mania (frenzied, abnormally excited mood) in people with bipolar disorder (manic-depressive disorder; a disease that causes episodes of depression, episodes of mania, and other abnormal ...

  15. Mechanical properties of low activation Cr-Mn austenitic steels changes in liquid lithium

    Science.gov (United States)

    Vertkov, A. V.; Evtikhin, V. A.; Lyublinski, I. E.; Syichev, A. A.; Demina, E. V.; Prusakova, M. D.

    1993-08-01

    The mechanical properties of Fe0.06C12Cr14Mn4NiAlMo, Fe0.10C12Cr20Mn W, Fe0.25C12Cr20Mn2W, Fe0.06C17Cr19Mn3NiNbN, Fe0.0713Cr20MnN steels attacked by liquid lithium were studied. Preexposure of steels was performed in static isothermal lithium at 723 and 873 K; in the hot leg of a convection loop at 723 K, and in inert atmosphere at 723 and 873 K for 2600 h. Lithium contained up to 400 ppm nitrogen and up to 1% hydrogen. The mechanical properties were determined by tensile test in lithium and in vacuum at a strain rate of 1×10 -5-1×10 -3 s -1. It was shown that mechanical properties of tested steels after exposure in the lithium changed more than for CrNi steels. The strong embrittlement of steels containing nitrogen is associated with intergranular penetration of lithium. The character of other steels mechanical properties changes is difficult to explain and may be associated with nometallic impurities redistribution and steel phase composition changes. The main mechanical properties change took place continually for the first 1000 h at 723 K exposure. Noticeable change in the mechanical properties of the steels exposed to lithium at 873 K occuredeven until 2600 h of exposure. The effect of strength and ductility reduction through absorption did not occur.

  16. Solvation of lithium salts in protic ionic liquids: a molecular dynamics study.

    Science.gov (United States)

    Méndez-Morales, Trinidad; Carrete, Jesús; Cabeza, Óscar; Russina, Olga; Triolo, Alessandro; Gallego, Luis J; Varela, Luis M

    2014-01-23

    The structure of solutions of lithium nitrate in a protic ionic liquid with a common anion, ethylammonium nitrate, at room temperature is investigated by means of molecular dynamics simulations. Several structural properties, such as density, radial distribution functions, hydrogen bonds, spatial distribution functions, and coordination numbers, are analyzed in order to get a picture of the solvation of lithium cations in this hydrogen-bonded, amphiphilically nanostructured environment. The results reveal that the ionic liquid mainly retains its structure upon salt addition, the interaction between the ammonium group of the cation and the nitrate anion being only slightly perturbed by the addition of the salt. Lithium cations are solvated by embedding them in the polar nanodomains of the solution formed by the anions, where they coordinate with the latter in a solid-like fashion reminiscent of a pseudolattice structure. Furthermore, it is shown that the average coordination number of [Li](+) with the anions is 4, nitrate coordinating [Li](+) in both monodentate and bidentate ways, and that in the second coordination layer both ethylammonium cations and other lithiums are also found. Additionally, the rattling motion of lithium ions inside the cages formed by their neighboring anions, indicative of the so-called caging effect, is confirmed by the analysis of the [Li](+) velocity autocorrelation functions. The overall picture indicates that the solvation of [Li](+) cations in this amphiphilically nanostructured environment takes place by means of a sort of inhomogeneous nanostructural solvation, which we could refer to as nanostructured solvation, and which could be a universal solvation mechanism in ionic liquids.

  17. Experiments on FTU with an actively water cooled liquid lithium limiter

    Energy Technology Data Exchange (ETDEWEB)

    Mazzitelli, G., E-mail: giuseppe.mazzitelli@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Apruzzese, G.; Crescenzi, F.; Iannone, F.; Maddaluno, G. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Pericoli-Ridolfini, V. [Associazione EURATOM-ENEA sulla Fusione, CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Roccella, S.; Reale, M.; Viola, B. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Lyublinski, I.; Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2015-08-15

    In order to prevent the overheating of the liquid Li surface and the consequent Li evaporation for T > 500 °C, an advanced version of the liquid lithium limiter has been realized and installed on FTU. This new system, named Cooled Lithium Limiter (CLL), has been optimized to demonstrate the lithium limiter capability to sustain thermal loads as high as 10 MW/m{sup 2} with up to 5 s of plasma pulse duration. The CLL operates with an actively cooled system with water circulation at the temperature of about 200 °C, for heating lithium up to the melting point and for the heat removal during the plasma discharges. To characterize CLL during discharges, a fast infrared camera and the spectroscopic signals from Li and D atom emission have been used. The experiments analyzed so far and simulated by ANSYS code, point out that heat loads as high as 2 MW/m{sup 2} for 1.5 s have been withstood without problems.

  18. Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein

    2004-12-14

    FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.

  19. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    R. Majeski

    2010-01-15

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700oC. However, at a sufficiently high operating temperature (700 - 1000 oC), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands1 and fusion experiments2,3 to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 oC), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  20. Quaternary Ammonium Ionic Liquids as a Less Flammable Electrolyte for Lithium Batteries

    Institute of Scientific and Technical Information of China (English)

    H.Matsumoto; Z.B.Zhou; H.Sakaebe; K.Tatsumi

    2007-01-01

    1 Results Less-flammability is one of the most valuable properties of ionic liquids (ILs) comprised of perfluoroanions such as BF-4,TFSI-([(CF3SO2)2N]-).Recently,such a unique liquid has been expected to use as an electrolyte in order to improve thermal stability and longevity of a lithium secondary battery,which have been increasingly required for an application especially to an electric vehicle and a hybrid car.We previously reported that PI13[TFSI] (PI13: N-methyl-N-propylpiperidinium) could be used ...

  1. Preliminary assessment of interactions between the FMIT deuteron beam and liquid-lithium target

    Energy Technology Data Exchange (ETDEWEB)

    Hassberger, J A

    1983-03-01

    Scoping calculations were performed to assess the limit of response of the FMIT lithium target to the deuteron-beam interactions. Results indicate that most response modes have acceptably minor impacts on the lithium-target behavior. Individual modes of response were studied separately to assess sensitivity of the target to various phenomena and to identify those needing detailed evaluation. A few responses are of sufficient magnitude to warrant further investigation. Potential for several different responses combining additively is identified as the major area requiring further consideration.

  2. Composite Electrolytes for Lithium Batteries: Ionic Liquids in APTES Crosslinked Polymers

    Science.gov (United States)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Bennett, William R.

    2007-01-01

    Solvent free polymer electrolytes were made consisting of Li(+) and pyrrolidinium salts of trifluoromethanesulfonimide added to a series of hyperbranched poly(ethylene oxide)s (PEO). The polymers were connected by triazine linkages and crosslinked by a sol-gel process to provide mechanical strength. The connecting PEO groups were varied to help understand the effects of polymer structure on electrolyte conductivity in the presence of ionic liquids. Polymers were also made that contain poly(dimethylsiloxane) groups, which provide increased flexibility without interacting with lithium ions. When large amounts of ionic liquid are added, there is little dependence of conductivity on the polymer structure. However, when smaller amounts of ionic liquid are added, the inherent conductivity of the polymer becomes a factor. These electrolytes are more conductive than those made with high molecular weight PEO imbibed with ionic liquids at ambient temperatures, due to the amorphous nature of the polymer.

  3. Comparison of lithium and the eutectic lead lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    Energy Technology Data Exchange (ETDEWEB)

    Malang, S. [Kernforschungszentrum Karlsruhe GmbH (Germany); Mattas, R. [Argonne National Lab., IL (United States)

    1994-06-01

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety, and required R&D program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeders and coolant. The remaining feasibility question for both breeder materials is the electrical insulation between liquid metal and duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and radiation induced electrical degradation are not yet demonstrated. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns.

  4. Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Kang-Shyang; Andreoli, Enrico; Curran, Seamus A. [Department of Physics, University of Houston, Houston, TX 77004 (United States); Sutto, Thomas E. [Naval Research Labs-DC, Materials Science and Technology Division, Washington, DC 20375 (United States); Ajayan, Pulickel [Department of Materials Engineering, Rice University, Houston, TX 77005 (United States); McGrady, Karen A. [Marine Corps System Command, 50 Tech Parkway, Garrisonville, VA 22463 (United States)

    2010-02-01

    Solid polymer gel electrolytes composed of 75 wt.% of the ionic liquid, 1-n-butyl-2,3-dimethylimidazolium bis-trifluoromethanesulfonylimide with 1.0 M lithium bis-trifluoromethanesulfonylimide and 25 wt.% poly(vinylidenedifluoro-hexafluoropropene) are characterized as the electrolyte/separator in solid-state lithium batteries. The ionic conductivity of these gels ranges from 1.5 to 2.0 mS cm{sup -1}, which is several orders of magnitude more conductive than any of the more commonly used solid polymers, and comparable to the best solid gel electrolytes currently used in industry. TGA indicates that these polymer gel electrolytes are thermally stable to over 280 C, and do not begin to thermally decompose until over 300 C; exhibiting a significant advancement in the safety of lithium batteries. Atomic force microscopy images of these solid thin films indicate that these polymer gel electrolytes have the structure of nano-sponges, with a sub-micron pore size. For these thin film batteries, 150 charge-discharge cycles are run for Li{sub x}CoO{sub 2} where x is cycled between 0.95 down to 0.55. Minimal internal resistance effects are observed over the charging cycles, indicating the high ionic conductivity of the ionic liquid solid polymer gel electrolyte. The overall cell efficiency is approximately 98%, and no significant loss in battery efficiency is observed over the 150 cycles. (author)

  5. Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes

    Science.gov (United States)

    Byrne, N.; Howlett, P. C.; MacFarlane, D. R.; Smith, M. E.; Howes, A.; Hollenkamp, A. F.; Bastow, T.; Hale, P.; Forsyth, M.

    An understanding of the solid electrolyte interphase (SEI) that forms on the lithium-metal surface is essential to the further development of rechargeable lithium-metal batteries. Currently, the formation of dendrites during cycling, which can lead to catastrophic failure of the cell, has mostly halted research on these power sources. The discovery of ionic liquids as electrolytes has rekindled the possibility of safe, rechargeable, lithium-metal batteries. The current limitation of ionic liquid electrolytes, however, is that when compared with conventional non-aqueous electrolytes the device rate capability is limited. Recently, we have shown that the addition of a zwitterion such as N-methyl- N-(butyl sulfonate) pyrrolidinium resulted in enhancement of the achievable current densities by 100%. It was also found that the resistance of the SEI layer in the presence of a zwitterion is 50% lower. In this study, a detailed chemical and electrochemical analysis of the SEI that forms in both the presence and absence of a zwitterion has been conducted. Clear differences in the chemical nature and also the thickness of the SEI are observed and these may account for the enhancement of operating current densities.

  6. Atomistic Simulation and Electronic Structure of Lithium Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability

    Science.gov (United States)

    Haskins, Justin B.; Bauschlicher, Charles W.; Lawson, John W.

    2015-01-01

    Zero-temperature density functional theory (DFT), density functional theory molecular dynamics (DFT-MD), and classical molecular dynamics using polarizable force fields (PFF-MD) are employed to evaluate the influence of Lithium ion on the structure, transport, and electrochemical stability of three potential ionic liquid electrolytes: N--methyl-N-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide ([pyr14][TFSI]), N--methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide ([pyr13][FSI]), and 1-ethyl-3--methylimidazolium boron tetrafluoride ([EMIM][BF4]). We characterize the Lithium ion solvation shell through zero-temperature DFT simulations of [Li(Anion)sub n](exp n-1) -clusters, DFT-MD simulations of isolated lithium ions in small ionic liquid systems, and PFF-MD simulations with high Li-doping levels in large ionic liquid systems. At low levels of Li-salt doping, highly stable solvation shells having 2-3 anions are seen in both [pyr14][TFSI] and [pyr13][FSI], while solvation shells with 4 anions dominate in [EMIM][BF sub 4]. At higher levels of doping, we find the formation of complex Li-network structures that increase the frequency of 4 anion-coordinated solvation shells. A comparison of computational and experimental Raman spectra for a wide range of [Li(Anion) sub n](exp n -1) - clusters shows that our proposed structures are consistent with experiment. We estimate the ion diffusion coefficients and quantify both size and simulation time effects. We find estimates of lithium ion diffusion are a reasonable order of magnitude and can be corrected for simulation time effects. Simulation size, on the other hand, is also important, with diffusion coefficients from long PFF-MD simulations of small cells having 20-40% error compared to large-cell values. Finally, we compute the electrochemical window using differences in electronic energy levels of both isolated cation/anion pairs and small ionic liquid systems with Li-salt doping. The single pair and liquid

  7. The effects of carbon and nitrogen on the corrosion resistance of type 316 stainless steel to liquid lithium

    Science.gov (United States)

    Barker, M. G.; Frankham, S. A.

    1982-06-01

    Type 316 stainless steel plates have been exposed at 600°C to liquid lithium containing carbon and nitrogen at various chemical activities for periods of up to 672 h. The corrosion products Li 9CrN 5 and M 23C 6 have been identified on the plate surfaces and in the grain boundaries. Scanning electron microscopy has shown preferential nickel and chromium depletion at the steel surface in lithium with high nitrogen content. The diffusion coefficient of carbon in type 316 stainless steel from a lithium source was found to be 6.5 × 10 t 1¯5 m 2/s.

  8. Soft X-ray emission spectroscopy of liquids and lithium batterymaterials

    Energy Technology Data Exchange (ETDEWEB)

    Augustsson, Andreas [Uppsala Univ. (Sweden)

    2004-01-01

    Lithium ion insertion into electrode materials is commonly used in rechargeable battery technology. The insertion implies changes in both the crystal structure and the electronic structure of the electrode material. Side-reactions may occur on the surface of the electrode which is exposed to the electrolyte and form a solid electrolyte interface (SEI). The understanding of these processes is of great importance for improving battery performance. The chemical and physical properties of water and alcohols are complicated by the presence of strong hydrogen bonding. Various experimental techniques have been used to study geometrical structures and different models have been proposed to view the details of how these liquids are geometrically organized by hydrogen bonding. However, very little is known about the electronic structure of these liquids, mainly due to the lack of suitable experimental tools. In this thesis examples of studies of lithium battery electrodes and liquid systems using soft x-ray emission spectroscopy will be presented. Monochromatized synchrotron radiation has been used to accomplish selective excitation, in terms of energy and polarization. The electronic structure of graphite electrodes has been studied, before and after lithium intercalation. Changes in the electronic structure upon lithiation due to transfer of electrons into the graphite π-bands have been observed. Transfer of electrons in to the 3d states of transition metal oxides upon lithiation have been studied, through low energy excitations as dd- and charge transfer-excitations. A SEI was detected on cycled graphite electrodes. By the use of selective excitation different carbon sites were probed in the SEI. The local electronic structure of water, methanol and mixtures of the two have been examined using a special liquid cell, to separate the liquid from the vacuum in the experimental chamber. Results from the study of liquid water showed a strong influence on the 3a1 molecular

  9. Research proposal for development of an electron stripper using a thin liquid lithium film for rare isotope accelerator.

    Energy Technology Data Exchange (ETDEWEB)

    Momozaki, Y.; Nuclear Engineering Division

    2006-03-06

    Hydrodynamic instability phenomena in a thin liquid lithium film, which has been proposed for the first stripper in the driver linac of Rare Isotope Accelerator (RIA), were discussed. Since it was considered that film instability could significantly impair the feasibility of the liquid lithium film stripper concept, potential issues and research tasks in the RIA project due to these instability phenomena were raised. In order to investigate these instability phenomena, a research proposal plan was developed. In the theoretical part of this research proposal, a use of the linear stability theory was suggested. In the experimental part, it was pointed out that the concept of Reynolds number and Weber number scaling may allow conducting a preliminary experiment using inert simulants, hence reducing technical difficulty, complexity, and cost of the experiments. After confirming the thin film formation in the preliminary experiment using simulants, demonstration experiments using liquid lithium were proposed.

  10. Reduced cost design of liquid lithium target for international fusion material irradiation facility (IFMIF)

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Hiroo; Ida, Mizuho; Sugimoto, Masayoshi; Takeuchi, Hiroshi [Department of Fussion Engineering Research, Naka Fusion Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Yutani, Toshiaki [Toshiba Corp., Tokyo (Japan)

    2001-01-01

    The International Fusion Materials Irradiation Facility (IFMIF) is being jointly planned to provide an accelerator-based D-Li neutron source to produce intense high energy neutrons (2 MW/m{sup 2}) up to 200 dpa and a sufficient irradiation volume (500 cm{sup 3}) for testing the candidate materials and components up to about a full lifetime of their anticipated use in ITER and DEMO. To realize such a condition, 40 MeV deuteron beam with a current of 250 mA is injected into high speed liquid lithium flow with a speed of 20 m/s. Following Conceptual Design Activity (1995-1998), a design study with focus on cost reduction without changing its original mission has been done in 1999. The following major changes to the CAD target design have been considered in the study and included in the new design: i) number of the Li target has been changed from 2 to 1, ii) spare of impurity traps of the Li loop was removed although the spare will be stored in a laboratory for quick exchange, iii) building volume was reduced via design changes in lithium loop length. This paper describes the reduced cost design of the lithium target system and recent status of Key Element Technology activities. (author)

  11. Characteristics of free-surface wave on high-speed liquid lithium jet for IFMIF

    Energy Technology Data Exchange (ETDEWEB)

    Kanemura, Takuji, E-mail: kanemura@stu.nucl.eng.osaka-u.ac.jp [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Yoshihashi-Suzuki, Sachiko [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kondo, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Sugiura, Hirokazu; Yamaoka, Nobuo [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ida, Mizuho; Nakamura, Hiroo [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Matsushita, Izuru [Mitsubishi Heavy Industries Mechatronics Systems, Ltd., 1-16 5-chome, Komatsu-dori, Hyogo-ku, Kobe, Hyogo 652-0865 (Japan); Muroga, Takeo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Horiike, Hiroshi [Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2011-10-01

    The characteristics of the surface waves on a high-speed liquid lithium wall jet were examined in a Li circulation loop at Osaka University for the International Fusion Materials Irradiation Facility (IFMIF). Surface fluctuations were measured by a contact-type liquid level sensor at 175 mm downstream from the nozzle exit, which corresponds to the deuteron beam's axis in the IFMIF, and observed with a high-speed video (HSV) camera. Both the observation and measurement results indicated that the surface fluctuations were composed of various scale turbulent fluctuations. The measurement results especially showed good agreement with the log-normal distribution which is one of the turbulent intermittency theories. The dominant wavelength was found to be shorter with increase in the flow velocity, and reached approximately 4 mm at the velocity of 15 m/s, which gave close agreement with the visually observed wavelength.

  12. Development of a high energy pulsed plasma simulator for the study of liquid lithium trenches

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S., E-mail: jung73@illinois.edu [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Christenson, M.; Curreli, D. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Bryniarski, C. [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States); Andruczyk, D.; Ruzic, D.N. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana 61801 (United States)

    2014-12-15

    Highlights: • A pulse device for a liquid lithium trench study is developed. • It consists of a coaxial plasma gun, a theta pinch, and guiding magnets. • A large energy enhancement is observed with the use of the plasma gun. • A further increase in energy and velocity is observed with the theta pinch. - Abstract: To simulate detrimental events in a tokamak and provide a test-stand for a liquid-lithium infused trench (LiMIT) device [1], a pulsed plasma source utilizing a theta pinch in conjunction with a coaxial plasma accelerator has been developed. The plasma is characterized using a triple Langmuir probe, optical methods, and a calorimeter. Clear advantages have been observed with the application of a coaxial plasma accelerator as a pre-ionization source. The experimental results of the plasma gun in conjunction with the existing theta pinch show a significant improvement from the previous energy deposition by a factor of 14 or higher, resulting in a maximum energy and heat flux of 0.065 ± 0.002 MJ/m{sup 2} and 0.43 ± 0.01 GW/m{sup 2}. A few ways to further increase the plasma heat flux for LiMIT experiments are discussed.

  13. Measurement of hydrogen solubility and desorption rate in V-4Cr-4Ti and liquid lithium-calcium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Erck, R.; Park, E.T. [Argonne National Lab., IL (United States)] [and others

    1997-04-01

    Hydrogen solubility in V-4Cr-4Ti and liquid lithium-calcium was measured at a hydrogen pressure of 9.09 x 10{sup {minus}4} torr at temperatures between 250 and 700{degrees}C. Hydrogen solubility in V-4Cr-4Ti and liquid lithium decreased with temperature. The measured desorption rate of hydrogen in V-4Cr-4Ti is a thermally activated process; the activation energy is 0.067 eV. Oxygen-charged V-4Cr-4Ti specimens were also investigated to determine the effect of oxygen impurity on hydrogen solubility and desorption in the alloy. Oxygen in V-4Cr-4Ti increases hydrogen solubility and desorption kinetics. To determine the effect of a calcium oxide insulator coating on V-4Cr-4Ti, hydrogen solubility in lithium-calcium alloys that contained 0-8.0 percent calcium was also measured. The distribution ratio R of hydrogen between liquid lithium or lithium-calcium and V-4Cr-4Ti increased as temperature decreased (R {approx} 10 and 100 at 700 and 250{degrees}C, respectively). However at <267{degrees}C, solubility data could not be obtained by this method because of the slow kinetics of hydrogen permeation through the vanadium alloy.

  14. Lithium-antimony-lead liquid metal battery for grid-level energy storage

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J.; Boysen, Dane A.; Bradwell, David J.; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R.

    2014-10-01

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this finding

  15. Liquid lithium applications for solving challenging fusion reactor issues and NSTX-U contributions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M., E-mail: mono@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543 (United States); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Gray, T.K. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)

    2017-04-15

    Steady-state fusion reactor operation presents major divertor technology challenges, including high divertor heat flux both steady-state and transients. In addition, there are unresolved issues of long term dust accumulation and associated tritium inventory and safety concerns (Federici et al., 2001) . It has been suggested that radiative liquid lithium divertor concepts with a modest lithium-loop could provide a possible solution for these outstanding fusion reactor technology issues, while potentially improving reactor plasma performance (Ono et al., 2013, 2014) . The application of lithium (Li) in NSTX resulted in improved H-mode confinement, H-mode power threshold reduction, and reduction in the divertor peak heat flux while maintaining essentially Li-free core plasma operation even during H-modes. These promising results in NSTX and related modeling calculations motivated the radiative liquid lithium (LL) divertor (RLLD) concept (Ono et al., 2013) and its variant, the active liquid lithium divertor concept (ARLLD) (Ono et al., 2014) , taking advantage of the enhanced non-coronal Li radiation in relatively poorly confined divertor plasmas. It was estimated that only a few moles/s of lithium injection would be needed to significantly reduce the divertor heat flux in a tokamak fusion power plant. By operating at lower temperatures ≤450 °C than the first wall ∼600–700 °C, the LL-covered divertor chamber wall surfaces can serve as an effective particle pump, as impurities generally migrate toward lower temperature LL divertor surfaces. To maintain the LL purity, a closed LL loop system with a modest circulating capacity of ∼1 l/s (l/s) is envisioned to sustain the steady-state operation of a 1 GW-electric class fusion power plant. By running the Li loop continuously, it can carry the dust particles and impurities generated in the vacuum vessel to outside where the dust/impurities are removed by relatively simple filter and cold/hot trap systems. Using a

  16. Nanostructure of mixtures of protic ionic liquids and lithium salts: effect of alkyl chain length.

    Science.gov (United States)

    Méndez-Morales, Trinidad; Carrete, Jesús; Rodríguez, Julio R; Cabeza, Óscar; Gallego, Luis J; Russina, Olga; Varela, Luis M

    2015-02-21

    The bulk structure of mixtures of two protic ionic liquids, propylammonium nitrate and butylammonium nitrate, with a salt with a common anion, is analyzed at room temperature by means of small angle X-ray scattering and classical molecular dynamics simulations. The study of several structural properties, such as density, radial distribution functions, spatial distribution functions, hydrogen bonds, coordination numbers and velocity autocorrelation functions, demonstrates that increasing the alkyl chain length of the alkylammonium cation results in more segregated, better defined polar and apolar domains, the latter having a larger size. This increase, ascribed to the erosion of the H-bond network in the ionic liquid polar regions as salt is added, is confirmed by means of small angle X-ray scattering measurements, which show a clear linear increase of the characteristic spatial sizes of the studied protic ionic liquids with salt concentration, similar to that previously reported for ethylammonium nitrate (J. Phys. Chem. B, 2014, 118, 761-770). In addition, larger ionic liquid cations lead to a lower degree of hydrogen bonding and to more sparsely packed three-dimensional structures, which are more easily perturbed by the addition of lithium salts.

  17. Ionic liquid electrodeposition of strain-released Germanium nanowires as stable anodes for lithium ion batteries.

    Science.gov (United States)

    Hao, Jian; Yang, Yu; Zhao, Jiupeng; Liu, Xusong; Endres, Frank; Chi, Caixia; Wang, Binsheng; Liu, Xiaoxu; Li, Yao

    2017-06-22

    With the growing demand for portable and wearable electronic devices, it is imperative to develop high performance Li-ion batteries with long life times. Germanium-based materials have recently demonstrated excellent lithium-ion storage ability and are being considered as the most promising candidates for the anodes of lithium-ion batteries. Nevertheless, the practical implementation of Ge-based materials to Li-ion batteries is greatly hampered by the poor cycling ability that resulted from the huge volume variation during lithiation/delithiation processes. Herein, we develop a simple and efficient method for the preparation of Ge nanowires without catalyst nanoparticles and templates, using ionic liquid electrodeposition with subsequent annealing treatment. The Ge nanowire anode shows improved electrochemical performance compared with the Ge dense film anode. A capacity of ∼1200 mA h g(-1) after 200 cycles at 0.1 C is obtained, with an initial coulombic efficiency of 81.3%. In addition, the Ge nanowire anode demonstrates superior rate capability with excellent capacity retention and stability (producing highly stable discharge capacities of about 620 mA h g(-1) at 5 C). The improved electrochemical performance is the result of the enhanced electron migration and electron transport paths of the nanowires, and sufficient elasticity to buffer the volume expansion. This approach encompasses a low energy processing method where all the material is electrochemically active and binder free. The improved cycling stability and rate performance characteristics make these anodes highly attractive for the most demanding lithium-ion applications.

  18. Low surface area graphene/cellulose composite as a host matrix for lithium sulphur batteries

    Science.gov (United States)

    Patel, Manu U. M.; Luong, Nguyen Dang; Seppälä, Jukka; Tchernychova, Elena; Dominko, Robert

    2014-05-01

    Graphene/cellulose composites were prepared and studied as potential host matrixes for sulphur impregnation and use in Li-S batteries. We demonstrate that with the proper design of a relatively low surface area graphene/cellulose composite, a high electrochemical performance along with good cyclability can be achieved. Graphene cellulose composites are built from two constituents: a two-dimensional electronic conductive graphene and cellulose fibres as a structural frame; together they form a laminar type of pore. The graphene sheets that uniformly anchor sulphur molecules provide confinement ability for polysulphides, sufficient space to accommodate sulphur volumetric expansion, a large contact area with the sulphur and a short transport pathway for both electrons and lithium ions. Nano-cellulose prevents the opening of graphene sheets due to the volume expansion caused by dissolved polysulphides during battery operation. This, in turn, prevents the diffusion of lithium polysulphides into the electrolyte, enabling a long cycle life.

  19. Laboratory experiments of uptake and release of hydrogen isotopes in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Oyarzabal, E., E-mail: eider.oyarzabal@externos.ciemat.es; Martin-Rojo, A.B.; Tabarés, F.L.

    2015-08-15

    Laboratory studies of hydrogen and deuterium retention/desorption and hydride formation in liquid lithium samples exposed to those gases at 200 °C and 400 °C are reported in the present work. Two distinct absorption phases with different kinetics are observed and discussed. The calculated absorption rate constants show a preferential absorption of D{sub 2} over H{sub 2} in clean lithium and a faster absorption of H{sub 2} for predeuterated samples. First dynamic experiments on Li samples preimplanted with H{sub 2} and D{sub 2} show no evidence of isotope exchange at least up to 500 °C. TDS of Li samples exposed to H/D and of Li/LiH powder mixtures present desorption peaks at ∼500 °C, well below the observed decomposition temperature for LiH powder and no precipitated LiH is detected after the complete evaporation of Li (∼700 °C). Also, preferential release of H{sub 2} retained in the solution with respect to the formation of LiH is deduced from the desorption spectra.

  20. Safety analysis of the US dual coolant liquid lead lithium ITER test blanket module

    Science.gov (United States)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2007-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER test blanket module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER international team (IT) to address specific reactor safety concerns, such as vaccum vessel (VV) pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  1. An aprotic lithium/polyiodide semi-liquid battery with an ionic shield

    Science.gov (United States)

    Ren, Y. X.; Liu, M.; Zhao, T. S.; Zeng, L.; Wu, M. C.

    2017-02-01

    In this paper, we report a high-energy-density lithium/polyiodide (Li/PI) semi-liquid battery with soluble polyiodide in ether-based solvents as the catholyte. The challenge of shuttle effect is addressed by adopting a hybrid membrane coated with negatively charged sulfonate-ended perfluoroalkyl polymer, which allows for inhibition of polyiodide shuttles due to the electrostatic repulsion. The assembled Li/PI battery demonstrates a superior volumetric energy density (170.5 Wh L-1), a stable cycling performance (>100 cycles, averaged decay 84%, 100 cycles at 2 C), and a high coulombic efficiency (>95%, 100 cycles at 2 C). These high performances achieved suggest that the aprotic Li/polyiodide battery with a compact architecture has the potential for various energy storage applications.

  2. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane

    Science.gov (United States)

    Fernicola, A.; Weise, F. C.; Greenbaum, S. G.; Kagimoto, J.; Scrosati, B.; Soleto, A.

    2009-01-01

    This work concerns the design, the synthesis, and the characterization of the N-butyl-N-ethylpiperidinium N,N-bis(trifluoromethane)sulfonimide (PP24TFSI) ionic liquid (IL). To impart Li-ion transport, a suitable amount of lithium N,N-bis-(trifluoromethane)sulfonimide (LiTFSI) is added to the IL. The Li–IL mixture displays ionic conductivity values on the order of 10−4 S cm−1 and an electrochemical stability window in the range of 1.8–4.5 V vs Li+/Li. The voltammetric analysis demonstrates that the cathodic decomposition gives rise to a passivating layer on the surface of the working electrode, which kinetically extends the stability of the Li/IL interface as confirmed by electrochemical impedance spectroscopy measurements. The LiTFSI–PP24TFSI mixture is incorporated in a poly(vinylidene fluoride-co-hexafluoropropylene) matrix to form various electrolyte membranes with different LiTFSI–PP24TFSI contents. The ionic conductivity of all the membranes resembles that of the LiTFSI–IL mixture, suggesting an ionic transport mechanism similar to that of the liquid component. NMR measurements demonstrate a reduction in the mobility of all ions following the addition of LiTFSI to the PP24TFSI IL and when incorporating the mixture into the membrane. Finally, an unexpected but potentially significant enhancement in Li transference number is observed in passing from the liquid to the membrane electrolyte system. PMID:20354582

  3. Lithium-sulphur battery with activated carbon cloth-sulphur cathode and ionic liquid as electrolyte

    Science.gov (United States)

    Swiderska-Mocek, Agnieszka; Rudnicka, Ewelina

    2015-01-01

    In this study a binder-free activated carbon cloth-sulphur (ACC-S) composite cathode is presented. Such a cathode was obtained using the impregnating technique of microporous activated carbon cloth with elemental melted sulphur. The surface morphology of an activated carbon cloth-sulphur electrode was studied using a scanning electron microscope (SEM), which was equipped with an EDX spectroscopy attachment. Electrochemical properties of the ACC-S composite cathode was tested in an ionic liquid electrolyte consisting of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulphonyl)imide (EtMeImNTf2) and bis(trifluoromethanesulphonyl)imide (LiNTf2). The ACC-sulphur cathode working together with lithium anode was tested with the use of cyclic voltammetry (CV), galvanostatic charge/discharge cycles and electrochemical impedance spectroscopy (EIS). The capacity and cyclic stability of the ACC-S composite cathode were much better than those for the sulphur cathode (a mixture of sulphur from graphene nanoplatelets and carbon black) tested in the same ionic liquid electrolyte. The ACC-sulphur cathode showed good cyclability and coulombic efficiency (99%) with the ionic liquid electrolyte. The reversible capacity of the ACC-S|electrolyte|Li cell was ca. 830 mAh g-1 after 50 cycles.

  4. Lithium-antimony-lead liquid metal battery for grid-level energy storage.

    Science.gov (United States)

    Wang, Kangli; Jiang, Kai; Chung, Brice; Ouchi, Takanari; Burke, Paul J; Boysen, Dane A; Bradwell, David J; Kim, Hojong; Muecke, Ulrich; Sadoway, Donald R

    2014-10-16

    The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply. Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium-antimony-lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb-Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony-lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries. At charge-discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and charged at current densities as high as 1,000 milliamperes per square centimetre. Measured capacity loss after operation for 1,800 hours (more than 450 charge-discharge cycles at 100 per cent depth of discharge) projects retention of over 85 per cent of initial capacity after ten years of daily cycling. Our results demonstrate that alloying a high-melting-point, high-voltage metal (antimony) with a low-melting-point, low-cost metal (lead) advantageously decreases the operating temperature while maintaining a high cell voltage. Apart from the fact that this

  5. Lithium inclusion in indium metal-organic frameworks showing increased surface area and hydrogen adsorption

    Directory of Open Access Journals (Sweden)

    Mathieu Bosch

    2014-12-01

    Full Text Available Investigation of counterion exchange in two anionic In-Metal-Organic Frameworks (In-MOFs showed that partial replacement of disordered ammonium cations was achieved through the pre-synthetic addition of LiOH to the reaction mixture. This resulted in a surface area increase of over 1600% in {Li [In(1,3 − BDC2]}n and enhancement of the H2 uptake of approximately 275% at 80 000 Pa at 77 K. This method resulted in frameworks with permanent lithium content after repeated solvent exchange as confirmed by inductively coupled plasma mass spectrometry. Lithium counterion replacement appears to increase porosity after activation through replacement of bulkier, softer counterions and demonstrates tuning of pore size and properties in MOFs.

  6. Effects of carbon and nitrogen on the corrosion resistance of type 316 stainless steel to liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Barker, M.G.; Frankham, S.A. (Nottingham Univ. (UK). Dept. of Chemistry)

    1982-06-01

    Type 316 stainless steel plates have been exposed at 600/sup 0/C to liquid lithium containing carbon and nitrogen at various chemical activities for periods of up to 672 h. The corrosion products Li/sub 9/CrN/sub 5/ and M/sub 23/C/sub 6/ have been identified on the plate surfaces and in the grain boundaries. Scanning electron microscopy has shown preferential nickel and chromium depletion at the steel surface in lithium with high nitrogen content. The diffusion coefficient of carbon in type 316 stainless steel from a lithium source was found to be 6.5 x 10/sup -15/ m/sup 2//s.

  7. Effect of lithium salts addition on the ionic liquid based extraction of essential oil from Farfarae Flos.

    Science.gov (United States)

    Li, Zhen-Yu; Zhang, Sha-Sha; Jie-Xing; Qin, Xue-Mei

    2015-01-01

    In this study, an ionic liquids (ILs) based extraction approach has been successfully applied to the extraction of essential oil from Farfarae Flos, and the effect of lithium chloride was also investigated. The results indicated that the oil yields can be increased by the ILs, and the extraction time can be reduced significantly (from 4h to 2h), compared with the conventional water distillation. The addition of lithium chloride showed different effect according to the structures of ILs, and the oil yields may be related with the structure of cation, while the chemical compositions of essential oil may be related with the anion. The reduction of extraction time and remarkable higher efficiency (5.41-62.17% improved) by combination of lithium salt and proper ILs supports the suitability of the proposed approach.

  8. Evaluation of 2 1/4 Cr-1 Mo steel for liquid-lithium containment. III. Effect of velocity and lead content. Unabridged final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, B.D.; Edwards, G.R.

    1981-12-01

    The intergranular penetration of specially heat treated 2-1/4 Cr-1 Mo steel by lead-lithium liquids containing 0, 17.6, and 53 w/o lead has been investigated at temperatures ranging from 300 to 600/sup 0/C and for times to 1000 hours. Limited tests using a 99.3 w/o lead-lithium liquid were also conducted.

  9. Failure Mechanism of Fast-Charged Lithium Metal Batteries in Liquid Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Shao, Yuyan; Lozano, Terence J.; Bennett, Wendy D.; Graff, Gordon L.; Polzin, Bryant; Zhang, Jiguang; Engelhard, Mark H.; Saenz, Natalio T.; Henderson, Wesley A.; Bhattacharya, Priyanka; Liu, Jun; Xiao, Jie

    2015-02-01

    In recent years, lithium anode has re-attracted broad interest because of the necessity of employing lithium metal in the next-generation battery technologies such as lithium sulfur (Li-S) and lithium oxygen (Li-O2) batteries. Fast capacity degradation and safety issue associated with rechargeable lithium metal batteries have been reported, although the fundamental understanding on the failure mechanism of lithium metal at high charge rate is still under debate due to the complicated interfacial chemistry between lithium metal and electrolyte. Herein, we demonstrate that, at high current density, the quick growth of porous solid electrolyte interphase towards bulk lithium, instead of towards the separator, dramatically builds up the cell impedance that directly leads to the cell failure. Understanding the lithium metal failure mechanism is very critical to gauge the various approaches used to address the stability and safety issues associated with lithium metal anode. Otherwise, all cells will fail quickly at high rates before the observation of any positive effects that might be brought from adopting the new strategies to protect lithium.

  10. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  11. Mesoporous silica/ionic liquid quasi-solid-state electrolytes and their application in lithium metal batteries

    Science.gov (United States)

    Li, Xiaowei; Zhang, Zhengxi; Yin, Kun; Yang, Li; Tachibana, Kazuhiro; Hirano, Shin-ichi

    2015-03-01

    In this work, the ordered mesoporous silica, SBA-15, is chosen as the matrix for the first time to prepare quasi-solid-state electrolytes (QSSEs) with an ionic liquid, LiTFSI salt and PVdF-HFP. The as-obtained QSSEs are evaluated by electrochemical methods. Lithium metal batteries containing these QSSEs exhibit high discharge capacity and good cycle performance at room temperature, indicating successful battery operation.

  12. CaO insulator coatings on a vanadium-base alloy in liquid 2 at.% calcium-lithium

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Kassner, T.F. [Argonne National Laboratory, IL (United States)

    1996-10-01

    The electrical resistance of CaO coatings produced on V-4%Cr-4%Ti and V-15%Cr-5%Ti by exposure of the alloy (round bottom samples 6-in. long by 0.25-in. dia.) to liquid lithium that contained 2 at.% dissolved calcium was measured as a function of time at temperatures between 300-464{degrees}C. The solute element, calcium in liquid lithium, reacted with the alloy substrate at these temperatures for 17 h to produce a calcium coating {approx}7-8 {mu}m thick. The calcium-coated vanadium alloy was oxidized to form a CaO coating. Resistance of the coating layer on V-15Cr-5Ti, measured in-situ in liquid lithium that contained 2 at.% calcium, was 1.0 x 10{sup 10} {Omega}-cm{sup 2} at 300{degrees}C and 400 h, and 0.9 x 10{sup 10} {Omega}-cm{sup 2} at 464{degrees}C and 300 h. Thermal cycling between 300 and 464{degrees}C changed the resistance of the coating layer, which followed insulator behavior. Examination of the specimen after cooling to room temperature revealed no cracks in the CaO coating. The coatings were evaluated by optical microscopy, scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), and X-ray analysis. Adhesion between CaO and vanadium alloys was enhanced as exposure time increased.

  13. A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte

    Science.gov (United States)

    Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime

    2017-02-01

    Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.

  14. Study on hydrogen isotopes permeation in fluidized state of liquid lithium-lead

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, S.; Yoshimura, R.; Okada, M.; Fukada, S.; Edao, Y. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-shi, Fukuoka (Japan)

    2015-03-15

    Lithium-lead (Li-Pb) is one of the most promising candidate materials for the liquid blanket of fusion reactors. Hydrogen transfer under a fluidized condition of Li-Pb is investigated experimentally to design a Li-Pb blanket system. Li-Pb eutectic alloy flows inside a Ni tube in the experimental system, where H{sub 2} permeates into and out of the forced Li-Pb flow. The overall H{sub 2} permeation rate is analyzed using a mass balance model. Hydrogen atoms diffuse in Ni and Li-Pb. The steady-state H{sub 2} permeation rate obtained by this experiment is smaller than the result of the calculation model. A resistance factor is introduced to the present analysis in order to evaluate the influence of other H{sub 2} transfer mechanisms, such as diffusion in Li-Pb and dissolution reaction between Ni and Li-Pb. The contribution of the resistance to the overall H{sub 2} permeation rate becomes large when the flow rate of Li-Pb is low. This is because the boundary layer thickness between Ni and Li-Pb affects the overall H{sub 2} permeation rate. When the flow velocity of Li-Pb increases, the thickness of the boundary layer becomes thin, and the driving force of H{sub 2} permeation through the Ni wall becomes bigger. (authors)

  15. Limiting current density in bis(trifluoromethylsulfonyl)amide-based ionic liquid for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun-Woo; Yoshida, Kazuki; Tachikawa, Naoki; Dokko, Kaoru; Watanabe, Masayoshi [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2011-02-15

    The physicochemical and electrochemical properties of the binary ionic liquid (IL), lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) dissolved in N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethylsulfonyl)amide (DEMETFSA), were investigated. The ionic conductivity of the binary IL decreased with an increase in LiTFSA concentration. The self-diffusion coefficients of Li{sup +}, DEME{sup +}, and TFSA{sup -} dissolved in the IL were measured by using the pulsed-field-gradient spin-echo (PGSE) NMR method. The self-diffusion coefficient of each ionic species was also found to decrease with increasing concentration of LiTFSA. The limiting current density in the IL electrolyte was evaluated by chronoamperometry using symmetric Li vertical stroke IL vertical stroke Li cell. The results suggest that the diffusion process of Li(I) in the IL dominates the limiting current density in the cell. The highest limiting current density is achieved at a concentration of 0.64 mol dm{sup -3} of LiTFSA. (author)

  16. Ether and siloxane functionalized ionic liquids and their mixtures as electrolyte for lithium-ion batteries.

    Science.gov (United States)

    Chavan, Santosh N; Tiwari, Aarti; Nagaiah, Tharamani C; Mandal, Debaprasad

    2016-06-28

    The present study deals with an investigation of two novel imidazolium ionic liquids bearing ether-ether (1O2O2-Im-2O1) or ether-siloxane (1O2O2-Im-1SiOSi) functionalities with TFSI anion and their mixtures with propylene carbonate as electrolytes in lithium-ion batteries. The electrochemical stability and conductivity of these novel ILs were analyzed by electrochemical studies, such as cyclic voltammetry, linear sweep voltammetry and impedance measurements. The applicability of these ILs as electrolytes in Li-ion batteries was studied in the presence of a high concentration of LiTFSI (1 mol kg(-1) electrolyte) and the ether-ether IL was shown to possess a high electrochemical stability window (ESW) of 5.9 V and good conductivity of 2.2 mS cm(-1). The electrochemical stability and conductivity were further complimented by self-diffusion of different ions using pulsed gradient spin-echo (PGSE) NMR, viscosity and thermal properties like TGA and DSC analysis. More importantly, we explored the effect of temperature on the electrochemical stability and conductivity of these ILs by electrochemical impedance spectroscopy.

  17. Large-area regular nanodomain patterning in He-irradiated lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ofan, A; Gaathon, O; Osgood, R M Jr [Center for Integrated Science and Technology, Columbia University, New York, NY 10027 (United States); Lilienblum, M; Hoffmann, A; Soergel, E [Institute of Physics, University of Bonn, Wegelerstrasse 8, 53115 Bonn (Germany); Sehrbrock, A; Irsen, S [Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, 53175 Bonn (Germany); Bakhru, S; Bakhru, H, E-mail: ao2199@columbia.edu, E-mail: soergel@uni-bonn.de [College of Nanoscale Science and Engineering, State University of New York at Albany, Albany, NY 12222 (United States)

    2011-07-15

    Large-area ferroelectric nanodomain patterns, which are desirable for nonlinear optical applications, were generated in previously He-implanted lithium niobate crystals by applying voltage pulses to the tip of a scanning force microscope. The individual nanodomains were found to be of uniform size, which depended only on the inter-domain spacing and the pulse amplitude. We explain this behavior by the electrostatic repulsion of poling-induced buried charges between adjacent domains. The domain patterns were imaged by piezoresponse force microscopy and investigated by domain-selective etching in conjunction with focused ion beam etching followed by scanning electron microscopy imaging. In order to optimize the He-irradiation parameters for easy and reliable nanodomain patterning a series of samples subjected to various irradiation fluences and energies was prepared. The different samples were characterized by investigating nanodomains generated with a wide range of pulse parameters (amplitude and duration). In addition, these experiments clarified the physical mechanism behind the facile poling measured in He-irradiated lithium niobate crystals: the damage caused by the energy loss that takes place via electronic excitations appears to act to stabilize the domains, whereas the nuclear-collision damage degrades the crystal quality, and thus impedes reliable nanodomain generation.

  18. Development and implementation of flowing liquid lithium limiter control system for EAST

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, XiaoLin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230031 (China); Chen, Yue [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, JianSheng, E-mail: hujs@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, JianGang; Zuo, GuiZhong; Ren, Jun; Zhou, Yue; Li, ChangZheng; Sun, Zheng; Xu, Wei; Meng, XianCai; Huang, Ming; Zheng, XingWei; Yao, Xingjia [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • Development of a FLiLi remote control system for EAST. • Intelligent instruments are used to realize FLiLi remote control. • Good operating results of the control system were obtained in the EAST campaign. - Abstract: A control system of a flowing liquid lithium (FLiLi) limiter for the Experimental Advanced Superconducting Tokamak (EAST) was developed and implemented. The control system is not only able to control the direct current (DC) electromagnetic pump and heating power but can also set scanning parameters, receive the shot number, acquire the temperature, etc. The system consists of multifunctional LAN eXtensions for Instrumentation (LXI) instrument, temperature-acquisition module, programmable DC power supply, and programmable logic controller (PLC). The multi-range DC power supply is programmed to meet the operational requirements of the DC electromagnetic pump. The LXI instrument and temperature-acquisition module are used to obtain temperature data. The PLC is adopted to control the temperature of the FLiLi limiter. A safety interlock and protection function was developed for the FLiLi limiter control system. The software was designed by using LabVIEW to achieve data interaction between multiple protocols. The FLiLi limiter control system can acquire experimental data at a speed of 100 S/s and store it for later analysis. The control system was successfully applied to a FLiLi limiter to study the interaction between plasma and a fixed wall in the EAST campaign. This paper presents the framework, the implementation details, and results of the control system.

  19. Optimization of Pore Structure of Cathodic Carbon Supports for Solvate Ionic Liquid Electrolytes Based Lithium-Sulfur Batteries.

    Science.gov (United States)

    Zhang, Shiguo; Ikoma, Ai; Li, Zhe; Ueno, Kazuhide; Ma, Xiaofeng; Dokko, Kaoru; Watanabe, Masayoshi

    2016-10-04

    Lithium-sulfur (Li-S) batteries are a promising energy-storage technology owing to their high theoretical capacity and energy density. However, their practical application remains a challenge because of the serve shuttle effect caused by the dissolution of polysulfides in common organic electrolytes. Polysulfide-insoluble electrolytes, such as solvate ionic liquids (ILs), have recently emerged as alternative candidates and shown great potential in suppressing the shuttle effect and improving the cycle stability of Li-S batteries. Redox electrochemical reactions in polysulfide-insoluble electrolytes occur via a solid-state process at the interphase between the electrolyte and the composite cathode; therefore, creating an appropriate interface between sulfur and a carbon support is of great importance. Nevertheless, the porous carbon supports established for conventional organic electrolytes may not be suitable for polysulfide-insoluble electrolytes. In this work, we investigated the effect of the porous structure of carbon materials on the Li-S battery performance in polysulfide-insoluble electrolytes using solvate ILs as a model electrolyte. We determined that the pore volume (rather than the surface area) exerts a major influence on the discharge capacity of S composite cathodes. In particular, inverse opal carbons with three-dimensionally ordered interconnected macropores and a large pore volume deliver the highest discharge capacity. The battery performance in both polysulfide-soluble electrolytes and solvate ILs was used to study the effect of electrolytes. We propose a plausible mechanism to explain the different porous structure requirements in polysulfide-soluble and polysulfide-insoluble electrolytes.

  20. Analysis of SEI formed with cyano-containing imidazolium-based ionic liquid electrolyte in lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liwei; Yamaki, Jun-ichi [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580 (Japan); Egashira, Minato [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1, Yamaguchi 755-8611 (Japan)

    2007-12-06

    Two kinds of cyano-containing imidazolium-based ionic liquid, 1-cyanopropyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (CpMI-TFSI) and 1-cyanomethyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (CmMI-TFSI), each of which contained 20 wt% dissolved LiTFSI, were used as electrolytes for lithium secondary batteries. Compared with 1-ethyl-3-methylimidazolium-bis(trifluoromethane-sulfonyl)imide (EMI-TFSI) electrolyte, a reversible lithium deposition/dissolution on a stainless-steel working electrode was observed during CV measurements in these cyano-containing electrolytes, which indicated that a passivation layer (solid electrolyte interphase, SEI) was formed during potential scanning. The morphology of the working electrode with each electrolyte system was studied by SEM. Different dentrite forms were found on the electrodes with each electrolyte. The SEI that formed in CpMI-TFSI electrolyte showed the best passivating effect, while the deposited film formed in EMI-TFSI electrolyte showed no passivating effect. The chemical characteristics of the deposited films on the working electrodes were compared by XPS measurements. A component with a cyano group was found in SEIs in CpMI-TFSI and CmMI-TFSI electrolytes. The introduction of a cyano functional group suppressed the decomposition of electrolyte and improved the cathodic stability of the imidazolium-based ionic liquid. The reduction reaction route of imidazolium-based ionic liquid was considered to be different depending on whether or not the molecular structure contained a cyano functional group. (author)

  1. Lithium secondary batteries using an asymmetric sulfonium-based room temperature ionic liquid as a potential electrolyte

    Institute of Scientific and Technical Information of China (English)

    LUO ShiChun; ZHANG ZhengXi; YANG Li

    2008-01-01

    A new asymmetric sulfonium-based ionic liquid, 1-butyldimethylsulfonium bis(trifluoromethylsulfonyl) imide (S114TFSI), was developed as electrolyte material for lithium secondary battery. Its cathodic po-tential was a little more positive against the Li/Li+, so vinylene carbonate (VC) was added into the LiTFSI/S114TFSI ionic liquid electrolyte to ensure the formation of a solid electrolyte interface (SEI), which effectively prevented the decomposition of the electrolyte. The properties of the Li/LiMn2O4 cell containing S114TFSI-based electrolyte were studied and the cycle performances were compared to Electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD) were conducted to analyze the mechanisms affecting the cell performances at different temperatures. The lithium secondary bat-tery system, using the above ionic liquid electrolyte material, shows good cycle performances and good safety at room temperature, and is worthwhile to further investigate so as to find out the potential application.

  2. Liquid-phase plasma synthesis of silicon quantum dots embedded in carbon matrix for lithium battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Ying [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121000 (China); Yu, Hang; Li, Haitao; Ming, Hai; Pan, Keming; Huang, Hui [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Liu, Yang, E-mail: yangl@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China); Kang, Zhenhui, E-mail: zhkang@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou (China)

    2013-10-15

    Graphical abstract: - Highlights: • Silicon quantum dots embedded in carbon matrix (SiQDs/C) were fabricated. • SiQDs/C exhibits excellent battery performance as anode materials with high specific capacity. • The good performance was attributed to the marriage of small sized SiQDs and carbon. - Abstract: Silicon quantum dots embedded in carbon matrix (SiQDs/C) nanocomposites were prepared by a novel liquid-phase plasma assisted synthetic process. The SiQDs/C nanocomposites were demonstrated to show high specific capacity, good cycling life and high coulmbic efficiency as anode materials for lithium-ion battery.

  3. A Long-Life Lithium Ion Battery with Enhanced Electrode/Electrolyte Interface by Using an Ionic Liquid Solution.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Ulissi, Ulderico; Mueller, Franziska; Reiter, Jakub; Tsiouvaras, Nikolaos; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2016-05-10

    In this paper, we report an advanced long-life lithium ion battery, employing a Pyr14 TFSI-LiTFSI non-flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn-C) nanocomposite anode, and a layered LiNi1/3 Co1/3 Mn1/3 O2 (NMC) cathode. The IL-based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel-Tammann-Fulcher (VTF) trend. Lithium half-cells employing the Sn-C anode and NMC cathode in the Pyr14 TFSI-LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn-C electrodes are combined into a cathode-limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g(-1) and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL-based lithium ion cells are suitable batteries for application in electric vehicles.

  4. Influence of Polar Organic Solvents in an Ionic Liquid Containing Lithium Bis(fluorosulfonyl)amide: Effect on the Cation-Anion Interaction, Lithium Ion Battery Performance, and Solid Electrolyte Interphase.

    Science.gov (United States)

    Lahiri, Abhishek; Li, Guozhu; Olschewski, Mark; Endres, Frank

    2016-12-14

    Ionic liquid-organic solvent mixtures have recently been investigated as potential battery electrolytes. However, contradictory results with these mixtures have been shown for battery performance. In this manuscript, we studied the influence of the addition of polar organic solvents into the ionic liquid electrolyte 1 M lithium bis(fluorosulfonyl)amide (LiFSI)-1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)amide ([Py1,4]FSI) and tested it for lithium ion battery applications. From infrared and Raman spectroscopy, clear changes in the lithium solvation and cation-anion interactions in the ionic liquid were observed on addition of organic solvents. From the lithiation/delithiation studies on electrodeposited Ge, the storage capacity for the ionic liquid-highly polar organic solvent (acetonitrile) mixture was found to be the highest at low C-rates (0.425 C) compared to using an ionic liquid alone and ionic liquid-less polar solvent (dimethyl carbonate) mixtures. Furthermore, XPS and AFM were used to evaluate the solid electrolyte interphase (SEI) and to correlate its stability with Li storage capacity.

  5. Determination of ginsenoside compound K in human plasma by liquid chromatography–tandem mass spectrometry of lithium adducts

    Science.gov (United States)

    Chen, Yunhui; Lu, Youming; Yang, Yong; Chen, Xiaoyan; Zhu, Liang; Zhong, Dafang

    2015-01-01

    Ginsenoside compound K (GCK), the main metabolite of protopanaxadiol constituents of Panax ginseng, easily produces alkali metal adduct ions during mass spectrometry particularly with lithium. Accordingly, we have developed a rapid and sensitive liquid chromatography–tandem mass spectrometric method for analysis of GCK in human plasma based on formation of a lithium adduct. The analyte and paclitaxel (internal standard) were extracted from 50 µL human plasma using methyl tert-butyl ether. Chromatographic separation was performed on a Phenomenex Gemini C18 column (50 mm×2.0 mm; 5 μm) using stepwise gradient elution with acetonitrile–water and 0.2 mmol/L lithium carbonate at a flow rate of 0.5 mL/min. Detection was performed in the positive ion mode using multiple reaction monitoring of the transitions at m/z 629→449 for the GCK-lithium adduct and m/z 860→292 for the adduct of paclitaxel. The assay was linear in the concentration range 1.00–1000 ng/mL (r2>0.9988) with intra- and inter-day precision of ±8.4% and accuracy in the range of −4.8% to 6.5%. Recovery, stability and matrix effects were all satisfactory. The method was successfully applied to a pharmacokinetic study involving administration of a single GCK 50 mg tablet to healthy Chinese volunteers. PMID:26579476

  6. Electrolyte properties of 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids for lithium secondary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shiro; Kobayashi, Takeshi; Serizawa, Nobuyuki; Kobayashi, Yo; Takei, Katsuhito; Miyashiro, Hajime [Materials Science Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1, Iwado-kita, Komae, Tokyo 201-8511 (Japan); Hayamizu, Kikuko; Tsuzuki, Seiji [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Center 5, Tsukuba, Ibaraki 305-8565 (Japan); Mitsugi, Takushi; Umebayashi, Yasuhiro [Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Watanabe, Masayoshi [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa (Japan)

    2010-09-15

    The physicochemical and electrochemical properties of three 1-alkyl-2,3,5-trimethylpyrazolium cation-based room-temperature ionic liquids with various alkyl chain lengths were investigated. The temperature dependences of density, viscosity, and ionic conductivity were obtained by precise measurements. Electrolyte properties of these room-temperature ionic liquids were also examined from the viewpoint of their uses in lithium secondary batteries ([LiCoO{sub 2} positive electrode vertical stroke electrolyte vertical stroke lithium metal negative electrode]). It was found that the alkyl chain length affects the charge-discharge performances of cells. (author)

  7. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Science.gov (United States)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  8. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Science.gov (United States)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  9. Enhanced energy capacity of lithium-oxygen batteries with ionic liquid electrolytes by addition of ammonium ions

    Science.gov (United States)

    Matsuda, Shoichi; Uosaki, Kohei; Nakanishi, Shuji

    2017-07-01

    Lithium-oxygen (Li-O2) batteries with ionic liquid-based electrolytes have attracted much attention because of their superior battery performance and high safety. However, the practical energy capacities achieved to date are markedly lower than those of Li-ion batteries. A dominant factor that limits the energy capacities of Li-O2 batteries is the insulating characteristics and insolubility of lithium peroxide (Li2O2), which gradually accumulates on the positive electrode as a discharge product. Herein, we report that ammonium ions function as a promoter for the solution-route formation of Li2O2, which results in a significant improvement of the energy capacity of Li-O2 cells. Scanning electron microscopy analyses revealed that the structure of Li2O2 changed from spherical particles to toroidal particles with an increase in the ammonium ions concentration. Ionic additives that have been reported to function as promoters the solution-route formation of Li2O2 in ether-based electrolyte systems do not exhibit a promoting effect in ionic liquid-based electrolytes.

  10. Study of the corrosion behaviors of 304 austenite stainless steel specimens exposed to static liquid lithium at 600 K

    Science.gov (United States)

    Meng, Xiancai; Zuo, Guizhong; Ren, Jun; Xu, Wei; Sun, Zhen; Huang, Ming; Hu, Wangyu; Hu, Jiansheng; Deng, Huiqiu

    2016-11-01

    Investigation of corrosion behavior of stainless steel served as one kind of structure materials exposed to liquid lithium (Li) is one of the keys to apply liquid Li as potential plasma facing materials (PFM) or blanket coolant in the fusion device. Corrosion experiments of 304 austenite stainless steel (304 SS) were carried out in static liquid Li at 600 K and up to1584 h at high vacuum with pressure less than 4 × 10-4 Pa. After exposure to liquid Li, it was found that the weight of 304 SS slightly decreased with weight loss rate of 5.7 × 10-4 g/m2/h and surface hardness increased by about 50 HV. Lots of spinel-like grains and holes were observed on the surface of specimens measured by SEM. By further EDS, XRD and metallographic analyzing, it was confirmed that the main compositions of spinel-like grains were M23C6 carbides, and 304 SS produced a non-uniform corrosion behavior by preferential grain boundary attack, possibly due to the easy formation of M23C6 carbides and/or formation of Li compound at grain boundaries.

  11. Effect of ion structure on conductivity in lithium-doped ionic liquid electrolytes: A molecular dynamics study

    Science.gov (United States)

    Liu, Hongjun; Maginn, Edward

    2013-09-01

    Molecular dynamics simulations were performed to examine the role cation and anion structure have on the performance of ionic liquid (IL) electrolytes for lithium conduction over the temperature range of 320-450 K. Two model ionic liquids were studied: 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([bmim][Tf2N]) and 1-butyl-4-methylpyridinium pyrrolide ([bmpyr][pyl]) doped with Li[Tf2N] and Li[pyl], respectively. The results have demonstrated that the Li+ doped IL containing the planar [bmpyr] cation paired with the planar [pyl] anion significantly outperformed the [bmim][Tf2N] IL. The different coordination of Li+ with the [Tf2N]- or [pyl]- anions produces a remarkable change in IL structure with a concomitant effect on the transport of all ions. For the doped [bmim][Tf2N], each Li+ is coordinated by four oxygen atoms from [Tf2N]- anions. Formation of a rigid structure between Li+ and [Tf2N]- induces a decrease in the mobility of all ions. In contrast, for the doped [bmpyr][pyl], each Li+ is coordinated by two nitrogen atoms from [pyl]- anions. The original alternating structure cation|anion|cation in the neat [bmpyr][pyl] is replaced by another alternating structure cation|anion|Li+|anion|cation in the doped [bmpyr][pyl]. Increases of Li+ mole fraction in doped [bmpyr][pyl] affects the dynamics to a much lesser extent compared with [bmim][Tf2N] and leads to reduced diffusivities of cations and anions, but little change in the dynamics of Li+. More importantly, the calculations predict that the Li+ ion conductivity of doped [bmpyr][pyl] is comparable to that observed in organic liquid electrolytes and is about an order of magnitude higher than that of doped [bmim][Tf2N]. Such Li+ conductivity improvement suggests that this and related ILs may be promising candidates for use as electrolytes in lithium ion batteries and capacitors.

  12. NMR Studies on Diffusion and Molecular Motions of Imidazolium Ionic Liquids doped by Lithium Salts Related to Ionic Conductivity and Computational Interaction Energy

    Institute of Scientific and Technical Information of China (English)

    Kikuko; Hayamizua; Seiji; Tsuzuki; Shiro; Seki

    2007-01-01

    1 Results Room-temperature Ionic liquids (RTILs) are special class of compounds, where a combination of cations and anions produces neutral, stable and viscous liquids with high ionic conductivity. Widely spread applications are proposed to use conductors, electrolytes, clean solvents and others. Especially, RTILs are expected to be safe electrolytes in the ion-lithium batteries. In this study, NMR methods are used to clarify the basic properties of the individual movements of the anions and cations of ...

  13. Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery.

    Science.gov (United States)

    Zhou, Rui; Liu, Wanshuang; Leong, Yew Wei; Xu, Jianwei; Lu, Xuehong

    2015-08-05

    Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) are promising nonvolatile electrolytes with high ionic conductivity. The large cations of ILs are, however, difficult to diffuse into solid electrodes, making them unappealing for application in some electrochemical devices. To address this issue, a new strategy is used to introduce proton conduction into an IL-based electrolyte. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) copolymer is functionalized with sulfonic acid through covalent attachment of taurine. The sulfonic acid-grafted P(VDF-HFP) electrospun mats consist of interconnected nanofibers, leading to remarkable improvement in dimensional stability of the mats. IL-based polymer electrolytes are prepared by immersing the modified mats in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)). It is found that the SO3(-) groups can have Lewis acid-base interactions with the cations (BMIM(+)) of IL to promote the dissociation of ILs, and provide additional proton conduction, resulting in significantly improved ionic conductivity. Using this novel electrolyte, polyaniline-based electrochromic devices show higher transmittance contrast and faster switching behavior. Furthermore, the sulfonic acid-grafted P(VDF-HFP) electrospun mats can also be lithiated, giving additional lithium ion conduction for the IL-based electrolyte, with which Li/LiCoO2 batteries display enhanced C-rate performance.

  14. The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities

    Energy Technology Data Exchange (ETDEWEB)

    Nitti, F.S., E-mail: francesco.nitti@enea.it [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Ibarra, A. [CIEMAT, Madrid (Spain); Ida, M. [IHI Corporation, Tokyo (Japan); Favuzza, P. [ENEA Research Center Firenze (Italy); Furukawa, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Groeschel, F. [KIT Research Center, Karlsruhe (Germany); Heidinger, R. [F4E Research Center, Garching (Germany); Kanemura, T. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Knaster, J. [IFMIF/EVEDA Project Team, Rokkasho Japan (Japan); Kondo, H. [JAEA Research Center, Tokai-mura, Ibaraki (Japan); Micchiche, G. [ENEA Research Center, Brasimone (Italy); Sugimoto, M. [JAEA Research Center, Rokkasho Japan (Japan); Wakai, E. [JAEA Research Center, Tokai-mura, Ibaraki (Japan)

    2015-11-15

    Highlights: • Results of validation and design activity for the Li loop facility of IFMIF. • Demonstration of Li target stability, with surface disturbance <1 mm. • Demonstration of start-up and shut down procedures of Li loop. • Complete design of the heat removal system and C and O purification system. • Conceptual design of N and H isotopes purification systems. - Abstract: The International Fusion Material Irradiation Facility (IFMIF) is an experimental facility conceived for qualifying and characterizing structural materials for nuclear fusion applications. The Engineering Validation and Engineering Design Activity (EVEDA) is a fundamental step towards the final design. It presented two mandates: the Engineering Validation Activities (EVA), still on-going, and the Engineering Design Activities (EDA) accomplished on schedule in June 2013. Five main facilities are identified in IFMIF, among which the Lithium Target Facility constituted a technological challenge overcome thanks to the success of the main validation challenges impacting the design. The design of the liquid Lithium Target Facility at the end of the EDA phase is here detailed.

  15. Novel choline-based ionic liquids as safe electrolytes for high-voltage lithium-ion batteries

    Science.gov (United States)

    Yong, Tianqiao; Zhang, Lingzhi; Wang, Jinglun; Mai, Yongjin; Yan, Xiaodan; Zhao, Xinyue

    2016-10-01

    Three choline-based ionic liquids functionalized with trimethylsilyl, allyl, and cynoethyl groups are synthesized in an inexpensive route as safe electrolytes for high-voltage lithium-ion batteries. The thermal stabilities, viscosities, conductivities, and electrochemical windows of these ILs are reported. Hybrid electrolytes were formulated by doping with 0.6 M LiPF6/0.4 M lithium oxalydifluoroborate (LiODFB) as salts and dimethyl carbonate (DMC) as co-solvent. By using 0.6 M LiPF6/0.4 M LiODFB trimethylsilylated choline-based IL (SN1IL-TFSI)/DMC as electrolyte, LiCoO2/graphite full cell showed excellent cycling performance with a capacity of 152 mAh g-1 and 99% capacity retention over 90 cycles at a cut-off voltage of 4.4 V. The propagation rate of SN1IL-TFSI)/DMC electrolyte is only one quarter of the commercial electrolyte (1 M LiPF6 EC/DEC/DMC, v/v/v = 1/1/1), suggesting a better safety feature.

  16. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  17. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    Science.gov (United States)

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  18. Nano-Sponge Ionic Liquid-Polymer Composite Electrolytes for Solid-State Lithium Power Sources

    Science.gov (United States)

    2010-01-01

    Journal of Power Sources 195 (2010) 867–871 Contents lists available at ScienceDirect Journal of Power Sources journa l homepage: www.e lsev ier .com...locate / jpowsour Short communication Nano-sponge ionic liquid–polymer composite electrolytes for solid-state lithium power sources Kang-Shyang...As storage becomesmore important in alternative technologies, these systems are evolving the need for safe, compact, rechargeable power sources continues

  19. Lithium-system corrosion/erosion studies for the FMIT project

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G D [comp.

    1983-04-01

    The corrosion behavior of selected materials in a liquid lithium environment has been studied in support of system and component designs for the Fusion Materials Irradiation Test (FMIT) Facility. The liquid lithium test resources and the capabilities of several laboratories were used to study specific concerns associated with the overall objective. Testing conditions ranged from approx. 3700 hours to approx. 6500 hours of exposure to flowing lithium at temperatures from 230/sup 0/C to 270/sup 0/C and static lithium at temperatures from 200/sup 0/C to 500/sup 0/C. Principal areas of investigation included lithium corrosion/erosion effects of FMIT lithium system materials (largely Type 304 and Type 304L austenitic stainless steels) and candidate materials for major system components.

  20. Large Area Pico-second Photodetectors (LAPPD) in Liquid Argon

    Science.gov (United States)

    Dharmapalan, Ranjan; Lappd Collaboration

    2015-04-01

    The Large Area Pico-second Photodetector (LAPPD) project has recently produced the first working devices with a small form factor and pico-second timing resolution. A number of current and proposed neutrino and dark matter experiments use liquid argon as a detector medium. A flat photodetector with excellent timing resolution will help with background suppression and improve the overall sensitivity of the experiment. We present the research done and some preliminary results to customize the LAPPD devices to work in a cryogenic environment. Argonne National Laboratory (LDRD) and DOE.

  1. Liquid oxygen LOX compatibility evaluations of aluminum lithium (Al-Li) alloys: Investigation of the Alcoa 2090 and MMC weldalite 049 alloys

    Science.gov (United States)

    Diwan, Ravinder M.

    1989-01-01

    The behavior of liquid oxygen (LOX) compatibility of aluminum lithium (Al-Li) alloys is investigated. Alloy systems of Alcoa 2090, vintages 1 to 3, and of Martin Marietta Corporation (MMC) Weldalite 049 were evaluated for their behavior related to the LOX compatibility employing liquid oxygen impact test conditions under ambient pressures and up to 1000 psi. The developments of these aluminum lithium alloys are of critical and significant interest because of their lower densities and higher specific strengths and improved mechanical properties at cryogenic temperatures. Of the different LOX impact tests carried out at the Marshall Space Flight Center (MSFC), it is seen that in certain test conditions at higher pressures, not all Al-Li alloys are LOX compatible. In case of any reactivity, it appears that lithium makes the material more sensitive at grain boundaries due to microstructural inhomogeneities and associated precipitate free zones (PFZ). The objectives were to identify and rationalize the microstructural mechanisms that could be relaxed to LOX compatibility behavior of the alloy system in consideration. The LOX compatibility behavior of Al-Li 2090 and Weldalite 049 is analyzed in detail using microstructural characterization techniques with light optical metallography, scanning electron microscopy (SEM), electron microprobe analysis, and surface studies using secondary ion mass spectrometry (SIMS), electron spectroscopy in chemical analysis (ESCA) and Auger electron spectroscopy (AES). Differences in the behavior of these aluminum lithium alloys are assessed and related to their chemistry, heat treatment conditions, and microstructural effects.

  2. Lithium as a blanket coolant

    Energy Technology Data Exchange (ETDEWEB)

    Wells, W.M.

    1977-01-01

    Recent re-assessment of tokamak reactors which move towards smaller size and lower required field strength (higher beta)/sup 2/ change the picture as regards the magnitude of MHD effects on flow resistance for lithium coolant. Perhaps the most important consequence of this as regards use of this coolant is that of clear acceptability of such effects when the flow is predominantly transverse to the magnetic field. This permits defining a blanket that consists entirely of round tubes containing the circulated lithium with voids between the tubes. Required thermal-hydraulic calculations are then on bases which are well established, especially in view of recent results dealing with perturbations of ducts and magnetic fields. Mitigation of MHD effects is feasible through tapering of tube wall thickness or use of insulated layers, but their use was not mandatory for the assumed conditions. Blanket configurations utilizing flowing lithium in round tubes immersed in static lithium may be suitable, but calculational methods do not now exist for this situation. Use of boiling potassium or cesium appears to be prohibitive in terms of vapor flow area when temperature levels are consistent with stainless steel. Liquid sodium, in addition to not being a breeding material, requires higher velocity than lithium for the same heat removal.

  3. Electrochemical characterisation of a lithium-ion battery electrolyte based on mixtures of carbonates with a ferrocene-functionalised imidazolium electroactive ionic liquid.

    Science.gov (United States)

    Forgie, John C; El Khakani, Soumia; MacNeil, Dean D; Rochefort, Dominic

    2013-05-28

    Electrolytic solutions of lithium-ion batteries can be modified with additives to improve their stability and safety. Electroactive molecules can be used as such additives to act as an electron (redox) shuttle between the two electrodes to prevent overcharging. The electroactive ionic liquid, 1-ferrocenylmethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide (TFSI), was synthesised and its electrochemical properties were investigated when diluted with ethylene carbonate-diethyl carbonate solvent at various concentrations. Cyclic voltammetry data were gathered to determine the redox potential, diffusion coefficient and heterogeneous rate constants of the electroactive imidazolium TFSI ionic liquid in the carbonate solution. The properties of this molecule as an additive in lithium battery electrolytes were studied in standard coin cells with a metallic Li anode and a Li4Ti5O12 cathode.

  4. Structures and Electronic Properties of Lithium Chelate-Based Ionic Liquids.

    Science.gov (United States)

    Si, Dawei; Chen, Kexian; Yao, Jia; Li, Haoran

    2016-04-28

    The conformations, electronic properties, and interaction energies of four chelate-based ionic liquids [Li(EA)][Tf2N], [Li(HDA)][Tf2N], [Li(DEA)][Tf2N], and [Li(DOBA)][Tf2N] have been theoretically explored. The reliability of the located conformers has been confirmed via the comparison between the simulated and experimental infrared spectra. Our results show that the N-Li and O-Li coordinate bonds in cation are elongated as the numbers of coordinate heteroatoms of alkanolamine ligands to Li(+) increased. Also the binding energies between Li(+) and ligands are increased and the interaction energies between cations and Tf2N anion are decreased. The cation-anion interaction energies follow the order of [Li(DOBA)][Tf2N] ionic liquids. Interestingly, the strongest stabilization orbital interactions in these ionic liquids and their cations revealed by the natural bond orbital analysis lie in the interaction between the lone pair (LP) of the coordinate heteroatoms in ligands or anion as donors and the vacant valence shell nonbonding orbital (LP*) of Li(+) as acceptors, which are very different from that of conventional ionic liquids. Moreover, the charges transferred from cations to anion are quite similar, and the charge of Li(+) is proposed for possibly predicting the order of the interaction energies of ionic liquids in series. The present study allows for the deeper understanding the differences between chelate-based ionic liquids and conventional ionic liquids.

  5. Atomistic molecular point of view for liquid lead and lithium in Nuclear Fusion technology

    Energy Technology Data Exchange (ETDEWEB)

    Fraile, A. [Instituto de Fusión Nuclear, ETSI Industriales, Universidad Politécnica de Madrid, José Gutierrez Abascal, 2, 28006 Madrid (Spain); Cuesta-López, S., E-mail: scuesta@ubu.es [Universidad de Burgos, Parque Científico I-D-I, Plaza Misael Bañuelos s/n, 09001 Burgos (Spain); Iglesias, R. [Universidad de Oviedo, Departamento de Física, Calvo Sotelo s/n, 33007 Oviedo (Spain); Caro, A. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Perlado, J.M. [Instituto de Fusión Nuclear, ETSI Industriales, Universidad Politécnica de Madrid, José Gutierrez Abascal, 2, 28006 Madrid (Spain)

    2013-09-15

    Understanding the behavior and properties of liquid metals is a crucial milestone in different current Nuclear Technology developments. Extracting both structural and dynamical properties of liquid metals via Molecular Dynamics simulations, represents a strong pillar for multiscale modeling efforts aiming to understand the suitability of these compounds. Here we present first results on the validation of two semi-empirical potentials for Li and Pb in liquid phase. Our results establish a solid base as a previous, but crucial step, to implement a LiPb cross potential. Structural and thermodynamical analyses confirm that the analyzed potentials for Li and Pb are sufficiently accurate to simulate both elements in the liquid phase, and in conditions of interest for Nuclear Technology.

  6. Demonstration of a high-intensity neutron source based on a liquid-lithium target for Accelerator based Boron Neutron Capture Therapy.

    Science.gov (United States)

    Halfon, S; Arenshtam, A; Kijel, D; Paul, M; Weissman, L; Berkovits, D; Eliyahu, I; Feinberg, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Tessler, M

    2015-12-01

    A free surface liquid-lithium jet target is operating routinely at Soreq Applied Research Accelerator Facility (SARAF), bombarded with a ~1.91 MeV, ~1.2 mA continuous-wave narrow proton beam. The experiments demonstrate the liquid lithium target (LiLiT) capability to constitute an intense source of epithermal neutrons, for Accelerator based Boron Neutron Capture Therapy (BNCT). The target dissipates extremely high ion beam power densities (>3 kW/cm(2), >0.5 MW/cm(3)) for long periods of time, while maintaining stable conditions and localized residual activity. LiLiT generates ~3×10(10) n/s, which is more than one order of magnitude larger than conventional (7)Li(p,n)-based near threshold neutron sources. A shield and moderator assembly for BNCT, with LiLiT irradiated with protons at 1.91 MeV, was designed based on Monte Carlo (MCNP) simulations of BNCT-doses produced in a phantom. According to these simulations it was found that a ~15 mA near threshold proton current will apply the therapeutic doses in ~1h treatment duration. According to our present results, such high current beams can be dissipated in a liquid-lithium target, hence the target design is readily applicable for accelerator-based BNCT.

  7. Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shubin; Feng, Xinliang; Muellen, Klaus [Max Planck Institute for Polymer Research, Mainz (Germany)

    2011-08-16

    Sandwich-like, graphene-based mesoporous titania (G-TiO{sub 2}) nanosheets possess thin thickness, large aspect ratio, and mesoporous structure and show enhanced electrical conductivity. Such unique features provide numerous open channels for the access of electrolyte and facilitate the fast diffusion of lithium ions during the cycling processes. The graphene layer within each nanosheet can act as a mini-current collector, which is favorable for the fast electron transport in the electrode. As a consequence, G-TiO{sub 2} nanosheets exhibit a ultrahigh rate capability and excellent cycle performance, holding great potential as a high-rate anode material for lithium storage. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Tribological Behavior of Si3N4/Ti3SiC2 Contacts Lubricated by Lithium-Based Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Haizhong Wang

    2014-01-01

    Full Text Available The tribological performance of Si3N4 ball sliding against Ti3SiC2 disc lubricated by lithium-based ionic liquids (ILs was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT and elevated temperature (100°C. Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonylimide (L-F106 were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2 contacts. [Li(urea]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2 contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products.

  9. The requirements for processing tritium recovered from liquid lithium blankets: The blanket interface

    Energy Technology Data Exchange (ETDEWEB)

    Clemmer, R.G.; Finn, P.A.; Greenwood, L.R.; Grimm, T.L.; Sze, D.K.; Bartlit, J.R.; Anderson, J.L.; Yoshida, H.; Naruse

    1988-03-01

    We have initiated a study to define a blanket processing mockup for Tritium Systems Test Assembly. Initial evaluation of the requirements of the blanket processing system have been started. The first step of the work is to define the condition of the gaseous tritium stream from the blanket tritium recovery system. This report summarizes this part of the work for one particular blanket concept, i.e., a self-cooled lithium blanket. The total gas throughput, the hydrogen to tritium ratio, the corrosive chemicals, and the radionuclides are defined. The key discoveries are: the throughput of the blanket gas stream (including the helium carrier gas) is about two orders of magnitude higher than the plasma exhaust stream;the protium to tritium ratio is about 1, the deuterium to tritium ratio is about 0.003;the corrosion chemicals are dominated by halides;the radionuclides are dominated by C-14, P-32, and S-35;their is high level of nitrogen contamination in the blanket stream. 77 refs., 6 figs., 13 tabs.

  10. Investigation of the electrochemically active surface area and lithium diffusion in graphite anodes by a novel OsO4 staining method

    Science.gov (United States)

    Pfaffmann, Lukas; Birkenmaier, Claudia; Müller, Marcus; Bauer, Werner; Mitsch, Tim; Feinauer, Julian; Krämer, Yvonne; Scheiba, Frieder; Hintennach, Andreas; Schleid, Thomas; Schmidt, Volker; Ehrenberg, Helmut

    2016-03-01

    Negative electrodes of lithium-ion batteries generally consist of graphite-based active materials. In order to realize batteries with a high current density and therefore accelerated charging processes, the intercalation of lithium and the diffusion processes of these carbonaceous materials must be understood. In this paper, we visualized the electrochemical active surface area for three different anode materials using a novel OsO4 staining method in combination with scanning electron microscopy techniques. The diffusion behavior of these three anode materials is investigated by potentiostatic intermittent titration technique measurements. From those we determine the diffusion coefficient with and without consideration of the electrochemical active surface area.

  11. Temperature dependence of the liquid eutectic lead-lithium alloy density

    Institute of Scientific and Technical Information of China (English)

    Alchagirov; Boris; B.; Mozgovoi; Alexandr; G.; Taova; Tamara; M.

    2005-01-01

    Lead-lithium alloys are of great interest for practice as the advanced materials to be used in new technique, nuclear energetics, and so forth. Terefore, study on the physico-chemical properties of the latter is of major significance. An analysis of the available literature shows that there are a few works, devoted to study of Pb-Li alloys densities. However, temperature dependence of the density ρ(T), and its temperature coefficientK=dρ/dT for eutectic alloy were obtained by either extrapolation of the density data up to the eutectic alloy's composition, or calculation method. There is a certain discrepancy amounting to as high as 4%, while the allowable error in the density measurements is less than 0.5%. The discrepancy between the results for the temperature coefficients of density amounts to 80%.In this work we present the experimental data on the temperature dependence of Ph0.83 Li0.17 eutectic alloy's density in the temperature range 520K to 643 K. The alloys were prepared using Pb and Li with 99. 999% and 99.8% contents of the basic elements, respectively. We use the improved device, which permits to get the results with error less than 0. 15%. The results of 115 measurements of density in 520K to 643K temperature range were processed by the least-square method. Density polytherm of Pb0.83 Li0. 17 eutectic alloy is described by linear equation ρ(T) =9507.89-0. 79813(T-508) , kg/m3 ,where T is the absolute temperature by K. Mearsurement error was 0. 12% at 95% reliability.Discrepancy in the temperature coefficient data was 1.08%.Thus, the temperature dependence of the Pb-Li eutectic alloy density was studied by the precise two-capillary method. The obtained results may be recommended as the most reliable reference data.

  12. Lithium literature review: lithium's properties and interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, D.W.; Ballif, J.L.; Yuan, W.W.; Chou, B.E.

    1978-04-01

    The lithium literature has been reviewed to provide a better understanding of the effects of lithium spills that might occur in magnetic fusion energy (MFE) facilities. Lithium may be used as a breeding blanket and reactor coolant in these facilities. Physical and chemical properties of lithium as well as the chemical interactions of lithium with various gases, metals and non-metals have been identified. A preliminary assessment of lithium-concrete reactions has been completed using differential thermal analysis. Suggestions are given for future studies in areas where literature is lacking or limited.

  13. Lithium generated by cosmic rays: an estimator of the time that Mars had a thicker atmosphere and liquid water

    CERN Document Server

    Durand-Manterola, Hector Javier

    2012-01-01

    Lithium is overabundant in cosmic rays because protons impact on carbon and oxygen nuclei and fission them. Among the products of this fission is lithium. Given this preference for carbon and oxygen atoms, in this work I propose that in an atmosphere of almost pure CO2, such as Mars and Venus atmospheres, lithium nuclei are produced by interaction with cosmic rays. I calculated the production rate of lithium and came to the conclusion that, for pressures of two bars or greater, are produced between 21 and 81 lithium nuclei for each primary cosmic rays proton. For lower pressures, the production is less and almost nil with the current pressure of Mars or Earth (pressure of CO2). Assuming a rate of cosmic ray arrival at Mars equal to that of Earth, and a pressure greater than two bars throughout the history of Mars, the amount of lithium that would occur would be between 162 and 642 million metric tons (in the Earth lithium estimated reserves are 30 million metric tons). These values are an upper limit; the act...

  14. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.

    Science.gov (United States)

    Huie, Matthew M; DiLeo, Roberta A; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-10

    Batteries are multicomponent systems where the theoretical voltage and stoichiometric electron transfer are defined by the electrochemically active anode and cathode materials. While the electrolyte may not be considered in stoichiometric electron-transfer calculations, it can be a critical factor determining the deliverable energy content of a battery, depending also on the use conditions. The development of ionic liquid (IL)-based electrolytes has been a research area of recent reports by other researchers, due, in part, to opportunities for an expanded high-voltage operating window and improved safety through the reduction of flammable solvent content. The study reported here encompasses a systematic investigation of the physical properties of IL-based hybrid electrolytes including quantitative characterization of the electrolyte-separator interface via contact-angle measurements. An inverse trend in the conductivity and wetting properties was observed for a series of IL-based electrolyte candidates. Test-cell measurements were undertaken to evaluate the electrolyte performance in the presence of functioning anode and cathode materials, where several promising IL-based hybrid electrolytes with performance comparable to that of conventional carbonate electrolytes were identified. The study revealed that the contact angle influenced the performance more significantly than the conductivity because the cells containing IL-tetrafluoroborate-based electrolytes with higher conductivity but poorer wetting showed significantly decreased performance relative to the cells containing IL-bis(trifluoromethanesulfonyl)imide electrolytes with lower conductivity but improved wetting properties. This work contributes to the development of new IL battery-based electrolyte systems with the potential to improve the deliverable energy content as well as safety of lithium-ion battery systems.

  15. Crosslinked polymer gel electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chen [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

    2013-01-01

    Gel polymer electrolytes were synthesized by copolymerization polyethylene glycol methyl ether methacrylate with polyethylene glycol dimethacrylate in the presence of a room temperature ionic liquid, methylpropylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPY TFSI). The physical properties of gel polymer electrolytes were characterized by thermal analysis, impedance spectroscopy, and electrochemical tests. The ionic conductivities of the gel polymer electrolytes increased linearly with the amount of MPPY TFSI and were mainly attributed to the increased ion mobility as evidenced by the decreased glass transition temperatures. Li||LiFePO4 cells were assembled using the gel polymer electrolytes containing 80 wt% MPPY TFSI via an in situ polymerization method. A reversible cell capacity of 90 mAh g 1 was maintained under the current density of C/10 at room temperature, which was increased to 130 mAh g 1 by using a thinner membrane and cycling at 50 C.

  16. Online management of lithium-ion battery based on time-triggered controller area network for fuel-cell hybrid vehicle applications

    Science.gov (United States)

    Li, Xiangjun; Li, Jianqiu; Xu, Liangfei; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Lin, Chengtao

    This paper introduces a state of charge (SOC) estimation algorithm that was implemented for an automotive lithium-ion battery system used in fuel-cell hybrid vehicles (FCHVs). The proposed online control strategy for the lithium-ion battery, based on the Ah current integration method and time-triggered controller area network (TTCAN), incorporates a signal filter and adaptive modifying concepts to estimate the Li 2MnO 4 battery SOC in a timely manner. To verify the effectiveness of the proposed control algorithm, road test experimentation was conducted with an FCHV using the proposed SOC estimation algorithm. It was confirmed that the control technique can be used to effectively manage the lithium-ion battery and conveniently estimate the SOC.

  17. Online management of lithium-ion battery based on time-triggered controller area network for fuel-cell hybrid vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangjun; Li, Jianqiu; Xu, Liangfei; Ouyang, Minggao; Han, Xuebing; Lu, Languang; Lin, Chengtao [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    This paper introduces a state of charge (SOC) estimation algorithm that was implemented for an automotive lithium-ion battery system used in fuel-cell hybrid vehicles (FCHVs). The proposed online control strategy for the lithium-ion battery, based on the Ah current integration method and time-triggered controller area network (TTCAN), incorporates a signal filter and adaptive modifying concepts to estimate the Li{sub 2}MnO{sub 4} battery SOC in a timely manner. To verify the effectiveness of the proposed control algorithm, road test experimentation was conducted with an FCHV using the proposed SOC estimation algorithm. It was confirmed that the control technique can be used to effectively manage the lithium-ion battery and conveniently estimate the SOC. (author)

  18. Effect of the specific surface area on thermodynamic and kinetic properties of nanoparticle anatase TiO2 in lithium-ion batteries

    Science.gov (United States)

    Madej, Edyta; Klink, Stefan; Schuhmann, Wolfgang; Ventosa, Edgar; La Mantia, Fabio

    2015-11-01

    Anatase TiO2 nanoparticles with a specific surface area of 100 m2 g-1 and 300 m2 g-1 have been investigated as negative insertion electrode material for lithium-ion batteries. Galvanostatic intermittent titration (GITT) and electrochemical impedance spectroscopy (EIS) were used to investigate the effect of the specific surface area on the performance of the material. GITT was performed at C/10 rate, followed by an EIS measurement after each relaxation step. Separation of kinetic and thermodynamic contributions to the overpotential of the phase transformation on Li+ (de-)insertion allowed revealing a dependency of both terms on the specific surface area. The material with higher surface area undergoes intrinsic transformation during the initial cycles affecting the thermodynamics of (de-)insertion while the sample with lower surface area shows large and asymmetric kinetic hindrances. For the material with 15 nm particles, Li+ de-insertion appears to have a higher resistance than lithium insertion.

  19. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  20. Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lv, DP; Shao, YY; Lozano, T; Bennett, WD; Graff, GL; Polzin, B; Zhang, JG; Engelhard, MH; Saenz, NT; Henderson, WA; Bhattacharya, P; Liu, J; Xiao, J

    2014-09-11

    In recent years, the Li metal anode has regained a position of paramount research interest because of the necessity for employing Li metal in next-generation battery technologies such as Li-S and Li-O-2. Severely limiting this utilization, however, are the rapid capacity degradation and safety issues associated with rechargeable Li metal anodes. A fundamental understanding of the failure mechanism of Li metal at high charge rates has remained elusive due to the complicated interfacial chemistry that occurs between Li metal and liquid electrolytes. Here, it is demonstrated that at high current density the quick formation of a highly resistive solid electrolyte interphase (SEI) entangled with Li metal, which grows towards the bulk Li, dramatically increases up the cell impedance and this is the actual origin of the onset of cell degradation and failure. This is instead of dendritic or mossy Li growing outwards from the metal surface towards/through the separator and/or the consumption of the Li and electrolyte through side reactions. Interphase, in this context, refers to a substantive layer rather than a thin interfacial layer. Discerning the mechanisms and consequences for this interphase formation is crucial for resolving the stability and safety issues associated with Li metal anodes.

  1. Liquid-lithium nitrate: candidate fusion reactor coolant or chemical curiosity

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.G.

    1986-01-01

    On the basis of the recent Blanket Comparison and Selection Study, 700 K was selected as the threshold for useful high-temperature operation of a liquid nitrate coolant and 800 K was assumed as a realistic upper operating limit. Both standard Second Law equilibrium calculations and computerized Gibbs energy minimization methods were used to determine equilibrium compositions of multiphase, multicomponent salt systems at specified temperatures under certain condensed were performed on the LiNO/sub 3/-LiNO/sub 2/, NaNO/sub 3/- NaNO/sub 2/, and KNO/sub 3/-KNO/sub 2/ systems, and then predicted decomposition pressures were compared for equivalent degrees of decomposition at temperatures ranging from 600 to 900K. Two approaches were taken in calculating decomposition pressures over MNO/sub 3/-MNO/sub 2/ systems: (a) allowing the formation of molecular N/sub 2/ as a gaseous reaction product and (b) not allowing its formation. In calculations of MNO/sub 2/-M/sub 2/O-MOH-H/sub 2/O equilibria, which were used to evaluate the reversibility of tritium dissolution and release, the activity of hydroxide reaction product was determined as a function of water activity at two representative temperatures. Preliminary results and conclusions are summarized.

  2. Electric batteries. Lithium batteries; Piles electrique. Piles au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Sarrazin, Ch. [Delegation Generale pour l' Armement, DGA/DRET, 75 - Paris (France)

    2002-05-01

    Lithium has the most negative potential and the highest mass capacity of all solid anode materials. It is the metal that allows to reach the highest mass energies in batteries when associated to a high potential cathode. The search for high performance cathodes has led to many different types of lithium batteries (transition metal oxides or sulfides, halogenides, oxi-halogenides, carbon, organic compounds etc..). These batteries can have a solid cathode (Li/CuO, Li/MnO{sub 2}, Li/CF{sub x}, etc..), or a liquid cathode (Li/SOCl{sub 2}, Li/SO{sub 2}, etc..) and in some cases they can have also a solid electrolyte, but not all types of lithium battery led to important industrial fabrication. The increasing use of lithium batteries is linked with the development of portable equipments for which, the compactness of the energy source is a key point. This article examines only the lithium batteries that have been the object of a significant industrial fabrication: lithium-sulfur dioxide, lithium-thionyl chloride, lithium-manganese dioxide, lithium-copper oxide, lithium-carbon fluoride, lithium-iron disulfide, other types of lithium batteries. (J.S.)

  3. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4.

    Science.gov (United States)

    Rock, Simon E; Wu, Lin; Crain, Daniel J; Krishnan, Sitaraman; Roy, Dipankar

    2013-03-01

    Nonvolatile and nonflammable ionic liquids (ILs) have distinct thermal advantages over the traditional organic solvent electrolytes of lithium ion batteries. However, this beneficial feature of ILs is often counterbalanced by their high viscosity (a limiting factor for ionic conductivity) and, sometimes, by their unsuitable electrochemistry for generating protective layers on electrode surfaces. In an effort to alleviate these limiting aspects of ILs, we have synthesized a PEGylated imidazolium bis(trifluoromethylsulfonyl)amide (bistriflamide) IL that exhibited better thermal and electrochemical stability than a conventional electrolyte based on a blend of ethylene carbonate and diethyl carbonate. The electrochemical performance of this IL has been demonstrated using a cathode consisting of ball-milled LiMn2O4 particles. A direct comparison of the ionic liquid electrolyte with the nonionic low-viscosity conventional solvent blend is presented.

  4. A compact self-flowing lithium system for use in an industrial neutron source

    Science.gov (United States)

    Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David

    2016-10-01

    A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.

  5. Leaching Characteristics of Lithium Adsorbents in Seawater and its Implication of Marine Environmental Impacts

    Science.gov (United States)

    Yoon, H. O.; Kim, J. A.; Jeong, S.; Chung, K. S.; Ryu, J. H.

    2016-12-01

    The lithium-manganese oxide adsorbent material have been developed by KIGAM (Korea Institute of Geoscience and Mineral Resources) to recovery the lithium from seawater and pilot plant was conducted in Okgye Harbor, Gangneung, Korea. There is the possibility of release toxic substances to marine environments from lithium recovery adsorbents during the operation of lithium recovery process on the marine station. Therefore, the changes in marine environmental impact should be predicted to assure marine environmental integrity for application of lithium recovery adsorbents in real sea. In this study, the batch-scale experiments was conducted using natural seawater (NSW) and artificial seawater (ASW) to determine the leaching characteristics of lithium recovery adsorbents. Solid-liquid ratio was determine by considering the unit area of exposing lithium recovery adsorbents in pilot plant, NSW and ASW were exchanged every two days for 14 days to simulate the real marine environment. After agitating with 30 rpm to simulate water movement under 10 and 25°C (average seawater temperature in winter and summer in Okgye Harbor, respectively), dynamic leached substances (heavy metals) and their leaching rate were determined. This study provides the practical design factors, maximum dose of lithium recovery adsorbents, duration, and frequency, for lithium recovery from seawater based on marine environmental risk. Acknowledgments: This research was supported by the national research project titled "The Development of Technology for Extraction of Resources Dissolved in Seawater" of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Ocean and Fisheries.

  6. Large area liquid argon detectors for interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)

    2013-04-19

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  7. Reducing the thermal stress in a heterogeneous material stack for large-area hybrid optical silicon-lithium niobate waveguide micro-chips

    Science.gov (United States)

    Weigel, P. O.; Mookherjea, S.

    2017-04-01

    The bonding of silicon-on-insulator (SOI) to lithium niobate-on-insulator (LNOI) is becoming important for a new category of linear and nonlinear micro-photonic optical devices. In studying the bonding of SOI to LNOI through benzocyclobutene (BCB), a popular interlayer bonding dielectric used in hybrid silicon photonic devices, we use thermal stress calculations to suggest that BCB thickness does not affect thermal stress in this type of structure, and instead, thermal stress can be mitigated satisfactorily by matching the handles of the SOI and LNOI. We bond LNOI with a silicon handle to a silicon chip, remove the handle on the LNOI side, and thermally cycle the bonded stack repeatedly from room temperature up to 300°C and back down without incurring thermal stress cracks, which do appear when using LNOI with a lithium niobate handle, regardless of the BCB thickness. We show that this process can be used to create many hybrid silicon-lithium niobate waveguiding structures on a single patterned SOI chip bonded to a large-area (16 mm × 4.2 mm) lithium niobate film.

  8. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Cohen, D; Eliyahu, I; Kijel, D; Mardor, I; Silverman, I

    2014-06-01

    A compact Liquid-Lithium Target (LiLiT) was built and tested with a high-power electron gun at Soreq Nuclear Research Center (SNRC). The target is intended to demonstrate liquid-lithium target capabilities to constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals. The lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power >5kW generated by high-intensity proton beams, necessary for sufficient therapeutic neutron flux. In preliminary experiments liquid lithium was flown through the target loop and generated a stable jet on the concave supporting wall. Electron beam irradiation demonstrated that the liquid-lithium target can dissipate electron power densities of more than 4kW/cm(2) and volumetric power density around 2MW/cm(3) at a lithium flow of ~4m/s, while maintaining stable temperature and vacuum conditions. These power densities correspond to a narrow (σ=~2mm) 1.91MeV, 3mA proton beam. A high-intensity proton beam irradiation (1.91-2.5MeV, 2mA) is being commissioned at the SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator. In order to determine the conditions of LiLiT proton irradiation for BNCT and to tailor the neutron energy spectrum, a characterization of near threshold (~1.91MeV) (7)Li(p,n) neutrons is in progress based on Monte-Carlo (MCNP and Geant4) simulation and on low-intensity experiments with solid LiF targets. In-phantom dosimetry measurements are performed using special designed dosimeters based on CR-39 track detectors.

  9. Towards Li(Ni0.33Mn0.33Co0.33)O2/graphite batteries with ionic liquid-based electrolytes. I. Electrodes' behavior in lithium half-cells

    Science.gov (United States)

    Simonetti, E.; Maresca, G.; Appetecchi, G. B.; Kim, G.-T.; Loeffler, N.; Passerini, S.

    2016-11-01

    Lithium cells based on NMC cathodes or graphite anodes and ionic liquid-based electrolyte mixtures are investigated. The electrode tapes, using water-soluble natural binders, as well as the ionic liquid materials, are prepared through eco-friendly routes involving H2O as the only processing solvent. The Li/NMC and Li/graphite half-cells are studied by cyclic voltammetry, impedance spectroscopy and galvanostatic cycling tests at different temperatures. The results herein reported, demonstrate the performance improvement in terms of cycling behavior and ageing resistance, granted by the ionic liquid mixtures with respect to the electrolytes reported in literature based on a single ionic liquid.

  10. The hippocampus and dorsal raphe nucleus are key brain areas associated with the antidepressant effects of lithium augmentation of desipramine.

    Science.gov (United States)

    Cussotto, Sofia; Cryan, John F; O'Leary, Olivia F

    2017-03-27

    Approximately 50% of depressed individuals fail to achieve remission with first-line antidepressant drugs and a third remain treatment-resistant. When first-line antidepressant treatment is unsuccessful, second-line strategies include dose optimisation, switching to another antidepressant, combination with another antidepressant, or augmentation with a non-antidepressant medication. Much of the evidence for the efficacy of augmentation strategies comes from studies using lithium to augment the effects of tricyclic antidepressants. The neural circuitry underlying the therapeutic effects of lithium augmentation is not yet fully understood. Recently, we reported that chronic treatment with a combination of lithium and the antidepressant desipramine, exerted antidepressant-like behavioural effects in a mouse strain (BALB/cOLaHsd) that did not exhibit an antidepressant-like behavioural response to either drug alone. In the present study, we used this model in combination with ΔFosB/FosB immunohistochemistry to identify brain regions chronically affected by lithium augmentation of desipramine when compared to either treatment alone. The data suggest that the dorsal raphe nucleus and the CA3 regions of the dorsal hippocampus are key nodes in the neural circuitry underlying antidepressant action of lithium augmentation of desipramine. These data give new insight into the neurobiology underlying the mechanism of lithium augmentation in the context of treatment-resistant depression.

  11. Orderly packed anodes for high-power lithium-ion batteries with super-long cycle life: rational design of MnCO3/large-area graphene composites.

    Science.gov (United States)

    Zhong, Yiren; Yang, Mei; Zhou, Xianlong; Luo, Yuting; Wei, Jinping; Zhou, Zhen

    2015-02-01

    MnCO3 particles uniformly distributed on large-area graphene form 2D composites whose large-area character enables them to self-assemble face-to-face into orderly packed electrodes. Such regular structures form continuous and efficient transport networks, leading to outstanding lithium storage with high capacity, ultralong cycle life, and excellent rate capability--all characteristics that are required for high-power lithium-ion batteries.

  12. Imidazolium ionic liquid induced one-step synthesis of -Fe2O3 nanorods and nanorod assemblies for lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Shuting Xie

    2016-12-01

    Full Text Available α-Fe2O3 nanorods and nanorod assemblies are prepared via a facile one-step method with the assistance of imidazolium-based ionic liquid. The aspect ratio of synthesized nanorods is determined by the alkyl chain length of [Cnmim]+. The inter-molecular π−π interaction and intra-molecular dipole-dipole interaction among imidazole rings of [C4mim]+[PhCOO]− play critical roles in both nucleation and assembly processes of α-Fe2O3 nanorods. The α-Fe2O3 nanorod assemblies show an excellent performance in lithium-ion batteries with a reversible capacity of 1007.3 mA h g−1 at the rate of 500 mA g−1 after 150 cycles.

  13. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    Science.gov (United States)

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25 nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  14. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

    Science.gov (United States)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A.

    Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA 12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO 2 (SBA-15) and (ii) a commercial nano-size one (HiSil™ T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm -1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil™-based membrane, the Li/LiFePO 4 cells with PVdF-HFP/PYRA 12O1TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.

  15. A modular large-area lithium foil multi-wire proportional counter neutron detector

    Science.gov (United States)

    Nelson, Kyle A.; Edwards, Nathaniel S.; Kusner, Michael R.; Mayhugh, Michael R.; Montag, Benjamin W.; Schmidt, Aaron J.; Wayant, Clayton D.; McGregor, Douglas S.

    2015-11-01

    Several Li foil multi-wire proportional counters were constructed with five layers of 75 μm thick 6Li foils spaced 1.63 cm apart. Each detector had 1250 cm2 of active area and was backfilled with 1.0 atm of P-10 gas. Two of these detectors were positioned back-to-front with 5.0 cm of high-density polyethylene (HDPE) positioned between the two detectors and on the front and back. Additional 2.54 cm thick HDPE sheets were added to the remaining sides. The detectors were operated with a single electronics unit and were delivered to a test facility where multiple neutron and gamma-ray sensitivity experiments were completed. First, a 252Cf neutron source was positioned at various distances from the front of the detector and the absolute detection efficiency (cps ng-1) was recorded at each distance. Second, a transient test was completed by moving the neutron source in front of the detector at a constant rate while recording the change in count rate (cps). Third, the lateral sensitivity and symmetry of the detection system was investigated by positioning a 252Cf source up to 5.0 m away from the centerline of the arrayed detectors in 1.0 m increments in both outward directions. The angular response was investigated by positioning the 252Cf source 2.0 m from the center of the device and recording the count rate at each stationary position in 15° increments from 0° to 360°. The count rate varied 15% from minimum to maximum during the angular response test. Additionally, the arrayed system was modeled in MCNP6 and had an intrinsic neutron detection efficiency of 12.6% for a bare 252Cf source, less than the experimentally determined efficiency of 13.9±0.03%, as expected. The gamma-ray sensitivity of the detection system was also investigated and pulse-height spectra were collected and plotted against a neutron response spectrum for comparison.

  16. Influence of the structure of the anion in an ionic liquid electrolyte on the electrochemical performance of a silicon negative electrode for a lithium-ion battery

    Science.gov (United States)

    Yamaguchi, Kazuki; Domi, Yasuhiro; Usui, Hiroyuki; Shimizu, Masahiro; Matsumoto, Kuninobu; Nokami, Toshiki; Itoh, Toshiyuki; Sakaguchi, Hiroki

    2017-01-01

    We investigated the influence of the anions in ionic liquid electrolytes on the electrochemical performance of a silicon (Si) negative electrode for a lithium-ion battery. While the electrode exhibited poor cycle stability in tetrafluoroborate-based and propylene carbonate-based electrolytes, better cycle performance was achieved in bis(fluorosulfonyl)amide (FSA-)- and bis(trifluoromethanesulfonyl)amide (TFSA-)-based electrolytes, in which the discharge capacity of a Si electrode was more than 1000 mA h g-1 at the 100th cycle. It is considered that a surface film derived from FSA-- and TFSA--based electrolytes effectively suppressed continuous decomposition of the electrolyte. In a capacity limitation test, a discharge capacity of 1000 mA h g-1 was maintained even after about the 1600th cycle in the FSA--based electrolyte, which corresponds to a cycle life almost twice as long as that in TFSA--based electrolyte. This result should be explained by the high structural stability of FSA--derived surface film. In addition, better rate capability with a discharge capacity of 700 mA h g-1 was obtained at a high current rate of 6 C (21 A g-1) in FSA--based electrolyte, which was 7-fold higher than that in TFSA--based electrolyte. These results clarified that FSA--based ionic liquid electrolyte is the most promising candidate for Si-based negative electrodes.

  17. Ionic Liquid-Organic Carbonate Electrolyte Blends To Stabilize Silicon Electrodes for Extending Lithium Ion Battery Operability to 100 °C.

    Science.gov (United States)

    Ababtain, Khalid; Babu, Ganguli; Lin, Xinrong; Rodrigues, Marco-Tulio F; Gullapalli, Hemtej; Ajayan, Pulickel M; Grinstaff, Mark W; Arava, Leela Mohana Reddy

    2016-06-22

    Fabrication of lithium-ion batteries that operate from room temperature to elevated temperatures entails development and subsequent identification of electrolytes and electrodes. Room temperature ionic liquids (RTILs) can address the thermal stability issues, but their poor ionic conductivity at room temperature and compatibility with traditional graphite anodes limit their practical application. To address these challenges, we evaluated novel high energy density three-dimensional nano-silicon electrodes paired with 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfonyl)imide (Pip) ionic liquid/propylene carbonate (PC)/LiTFSI electrolytes. We observed that addition of PC had no detrimental effects on the thermal stability and flammability of the reported electrolytes, while largely improving the transport properties at lower temperatures. Detailed investigation of the electrochemical properties of silicon half-cells as a function of PC content, temperature, and current rates reveal that capacity increases with PC content and temperature and decreases with increased current rates. For example, addition of 20% PC led to a drastic improvement in capacity as observed for the Si electrodes at 25 °C, with stability over 100 charge/discharge cycles. At 100 °C, the capacity further increases by 3-4 times to 0.52 mA h cm(-2) (2230 mA h g(-1)) with minimal loss during cycling.

  18. Lithium-vanadium advanced blanket development. ITER final report on U.S. contribution: Task T219/T220

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F. [comps.

    1997-07-01

    The objective of this task is to develop the required data base and demonstrate the performance of a liquid lithium-vanadium advanced blanket design. The task has two main activities related to vanadium structural material and liquid lithium system developments. The vanadium alloy development activity included four subtasks: (1.1) baseline mechanical properties of non irradiated base metal and weld metal joints; (1.2) compatibility with liquid lithium; (1.3) material irradiation tests; and (1.4) development of material manufacturing and joining methods. The lithium blanket technology activity included four subtasks: (2.1) electrical insulation development and testing for liquid metal systems; (2.2) MHD pressure drop and heat transfer study for self-cooled liquid metal systems; (2.3) chemistry of liquid lithium; and (2.4) design, fabrication and testing of ITER relevant size blanket mockups. A summary of the progress and results obtained during the period 1995 and 1996 in each of the subtask areas is presented in this report.

  19. Apogee system using the lithium and water reaction

    Energy Technology Data Exchange (ETDEWEB)

    Duchemin, O.; Poinsot, C. [Ecole Nationale Superieure des Ingenieurs des Etudes et Techniques d`Armement, 29 - Brest (France)

    1996-12-31

    We investigate the feasibility of an apogee engine using Lithium and water as a bi-liquid propellant for a 2-ton class geostationary satellite. The Lithium and water reaction is briefly described, and after a discussion on how the high mass fraction of condensed products yielded by the reaction is handled by the NASA-Lewis code, the specific impulse is computed. A water to Lithium ratio of 2.4 at a chamber pressure of 5 bar and at a temperature of 1800 K is proposed as a baseline, for vacuum specific impulse of 286 s with a nozzle area ratio of 300. The most relevant issues of engineering design are eventually addressed. (authors) 4 refs.

  20. Lithium Intoxication

    Directory of Open Access Journals (Sweden)

    Sermin Kesebir

    2011-09-01

    Full Text Available Lithium has been commonly used for the treatment of several mood disorders particularly bipolar disorder in the last 60 years. Increased intake and decreased excretion of lithium are the main causes for the development of lithium intoxication. The influence of lithium intoxication on body is evaluated as two different groups; reversible or irreversible. Irreversible damage is usually related with the length of time passed as intoxicated. Acute lithium intoxication could occur when an overdose of lithium is received mistakenly or for the purpose of suicide. Patients may sometimes take an overdose of lithium for self-medication resulting in acute intoxication during chronic, while others could develop chronic lithium intoxication during a steady dose treatment due to a problem in excretion of drug. In such situations, it is crucial to be aware of risk factors, to recognize early clinical symptoms and to conduct a proper medical monitoring. In order to justify or exclude the diagnosis, quantitative evaluation of lithium in blood and toxicologic screening is necessary. Following the monitoring schedules strictly and urgent intervention in case of intoxication would definitely reduce mortality and sequela related with lithium intoxication. In this article, the etiology, frequency, definition, clinical features and treatment approaches to the lithium intoxication have been briefly reviewed.

  1. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A. [Dept. of Physical Chemistry, University of Pavia, Via Taramelli 16, 27100 Pavia (Italy); Fagnoni, M.; Protti, S. [Dept. of Organic Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia (Italy); Gerbaldi, C. [Dept. of Material Science and Chemical Engineering, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129 Torino (Italy); Spinella, A. [Centro Grandi Apparecchiature - UniNetLab, University of Palermo, Via F. Marini 14, 90128 Palermo (Italy)

    2010-01-15

    Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA{sub 12O1}TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO{sub 2} (SBA-15) and (ii) a commercial nano-size one (HiSil trademark T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm{sup -1} are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil trademark -based membrane, the Li/LiFePO{sub 4} cells with PVdF-HFP/PYRA{sub 12O1}TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles. (author)

  2. Molecular dynamics analysis of the effect of electronic polarization on the structure and single-particle dynamics of mixtures of ionic liquids and lithium salts.

    Science.gov (United States)

    Lesch, Volker; Montes-Campos, Hadrián; Méndez-Morales, Trinidad; Gallego, Luis Javier; Heuer, Andreas; Schröder, Christian; Varela, Luis M

    2016-11-28

    We report a molecular dynamics study on the effect of electronic polarization on the structure and single-particle dynamics of mixtures of the aprotic ionic liquid 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide ([EMIM][TFSI]) doped with a lithium salt with the same anion at 298 K and 1 bar. In particular, we analyze the effect of electron density fluctuations on radial distribution functions, velocity autocorrelation functions, cage correlation functions, mean-squared displacements, and vibrational densities of states, comparing the predictions of the quantum-chemistry-based Atomistic Polarizable Potential for Liquids, Electrolytes, & Polymers (APPLE&P) with those of its nonpolarizable version and those of the standard non-polarizable Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA). We found that the structure of the mixture is scarcely modified by the fluctuations in electron charge of their constituents, but their transport properties are indeed quite drastically changed, with larger mobilities being predicted for the different species in the bulk mixtures with the polarizable force field. Specifically, the mean-squared displacements are larger for the polarizable potentials at identical time intervals and the intermediate subdiffusive plateaus are greatly reduced, so the transition to the diffusive regime takes place much earlier than in the non-polarizable media. Moreover, the correlations of the added cations inside their cages are weakened out earlier and their vibrational densities of states are slightly red-shifted, reflecting the weakening effect of the electronic polarization on the Coulomb coupling in these dense ionic media. The comparison of OPLS-AA with non-polarizable APPLE&P indicates that adding polarization to OPLS-AA is not sufficient to achieve results close to experiments.

  3. Molecular dynamics analysis of the effect of electronic polarization on the structure and single-particle dynamics of mixtures of ionic liquids and lithium salts

    Science.gov (United States)

    Lesch, Volker; Montes-Campos, Hadrián; Méndez-Morales, Trinidad; Gallego, Luis Javier; Heuer, Andreas; Schröder, Christian; Varela, Luis M.

    2016-11-01

    We report a molecular dynamics study on the effect of electronic polarization on the structure and single-particle dynamics of mixtures of the aprotic ionic liquid 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)-imide ([EMIM][TFSI]) doped with a lithium salt with the same anion at 298 K and 1 bar. In particular, we analyze the effect of electron density fluctuations on radial distribution functions, velocity autocorrelation functions, cage correlation functions, mean-squared displacements, and vibrational densities of states, comparing the predictions of the quantum-chemistry-based Atomistic Polarizable Potential for Liquids, Electrolytes, & Polymers (APPLE&P) with those of its nonpolarizable version and those of the standard non-polarizable Optimized Potentials for Liquid Simulations-All Atom (OPLS-AA). We found that the structure of the mixture is scarcely modified by the fluctuations in electron charge of their constituents, but their transport properties are indeed quite drastically changed, with larger mobilities being predicted for the different species in the bulk mixtures with the polarizable force field. Specifically, the mean-squared displacements are larger for the polarizable potentials at identical time intervals and the intermediate subdiffusive plateaus are greatly reduced, so the transition to the diffusive regime takes place much earlier than in the non-polarizable media. Moreover, the correlations of the added cations inside their cages are weakened out earlier and their vibrational densities of states are slightly red-shifted, reflecting the weakening effect of the electronic polarization on the Coulomb coupling in these dense ionic media. The comparison of OPLS-AA with non-polarizable APPLE&P indicates that adding polarization to OPLS-AA is not sufficient to achieve results close to experiments.

  4. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries.

    Science.gov (United States)

    Liu, Zhikun; Cao, Zeyuan; Deng, Biwei; Wang, Yuefeng; Shao, Jiayi; Kumar, Prashant; Liu, C Richard; Wei, Bingqing; Cheng, Gary J

    2014-06-07

    Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications.

  5. Fabrication and performance testing of CaO insulator coatings on V-5%Cr-5%Ti in liquid lithium

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Dragel, G. [Argonne National Lab., Chicago, IL (United States)

    1995-04-01

    Corrosion resistance of structural materials, and the magnetohydrodynamic (MHD) force and its influence on thermal hydraulics and corrosion, are major concerns in the design of liquid-metal blankets for magnetic fusion reactors (MFRs). The objective of this study is to develop in-situ stable coatings at the liquid-metal/structural-material interface, with emphasis on coatings that can be converted to an electrically insulating film to prevent adverse currents that are generated by the MHD force from passing through the structural walls. The electrical resistance of CaO coatings produced on V-5Cr-5Ti by exposure of the alloy to liquid Li that contained 0.5 - 8.5 wt.% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degree}C. The solute element, Ca in liquid Li, reacted with the alloy substrate at 400-420{degree}C to produce a CaO coating.

  6. Radioactive liquid wastes discharged to ground in the 200 Areas during 1978

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J. D.; Poremba, B. E.

    1979-03-26

    This document is issued quarterly for the purpose of summarizing the radioactive liquid wastes that have been discharged to the ground in the 200 Areas. In addition to data for 1978, cumulative data since plant startup are presented. Also, in this document is a listing of decayed activity to the various plant sites.

  7. A liquid-helium cooled large-area silicon PIN photodiode x-ray detector

    CERN Document Server

    Inoue, Y; Hara, H; Minowa, M; Shimokoshi, F; Inoue, Yoshizumi; Moriyama, Shigetaka; Hara, Hideyuki; Minowa, Makoto; Shimokoshi, Fumio

    1995-01-01

    An x-ray detector using a liquid-helium cooled large-area silicon PIN photodiode has been developed along with a tailor-made charge sensitive preamplifier whose first-stage JFET has been cooled. The operating temperature of the JFET has been varied separately and optimized. The x- and \\gamma-ray energy spectra for an \

  8. 30 CFR 57.4262 - Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Underground transformer stations, combustible... and Control Firefighting Equipment § 57.4262 Underground transformer stations, combustible liquid storage and dispensing areas, pump rooms, compressor rooms, and hoist rooms. Transformer stations,...

  9. Experimental lithium system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kolowith, R.; Berg, J.D.; Miller, W.C.

    1985-04-01

    A full-scale mockup of the Fusion Materials Irradiation Test (FMIT) Facility lithium system was built at the Hanford Engineering Development Laboratory (HEDL). This isothermal mockup, called the Experimental Lithium System (ELS), was prototypic of FMIT, excluding the accelerator and dump heat exchanger. This 3.8 m/sup 3/ lithium test loop achieved over 16,000 hours of safe and reliable operation. An extensive test program demonstrated satisfactory performance of the system components, including the HEDL-supplied electromagnetic lithium pump, the lithium jet target, the purification and characterization hardware, as well as the auxiliary argon and vacuum systems. Experience with the test loop provided important information on system operation, performance, and reliability. This report presents a complete overview of the entire Experimental Lithium System test program and also includes a summary of such areas as instrumentation, coolant chemistry, vapor/aerosol transport, and corrosion.

  10. Novel Electrolytes for Lithium Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Brett L. [Univ. of Rhode Island, Kingston, RI (United States). Dept. of Chemistry

    2014-12-12

    We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

  11. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yadong; Dahn, J.R. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS (Canada); Zaghib, K.; Guerfi, A. [Institut de Recherche d' Hydro-Quebec, 1800 Lionel-Boulet, Varennes, Que. (Canada); Bazito, Fernanda F.C.; Torresi, Roberto M. [Instituto de Quimica Universidade de Sao Paulo, CP 26077, 05513-970 Sao Paulo (Brazil)

    2007-06-30

    Using accelerating rate calorimetry (ARC), the reactivity between six ionic liquids (with and without added LiPF{sub 6}) and charged electrode materials is compared to the reactivity of standard carbonate-based solvents and electrolytes with the same electrode materials. The charged electrode materials used were Li{sub 1}Si, Li{sub 7}Ti{sub 4}O{sub 12} and Li{sub 0.45}CoO{sub 2}. The experiments showed that not all ionic liquids are safer than conventional electrolytes/solvents. Of the six ionic liquids tested, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) shows the worst safety properties, and is much worse than conventional electrolyte. 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) and 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (Py13-FSI) show similar reactivity to carbonate-based electrolyte. The three ionic liquids 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMI-TFSI), 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide (Pp14-TFSI) and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide (TMBA-TFSI) show similar reactivity and are much safer than the conventional carbonate-based electrolyte. A comparison of the reactivity of ionic liquids with common anions and cations shows that ionic liquids with TFSI{sup -} are safer than those with FSI{sup -}, and liquids with EMI{sup +} are worse than those with BMMI{sup +}, Py13{sup +}, Pp14{sup +} and TMBA{sup +}. (author)

  12. Hydrogen, lithium, and lithium hydride production

    Science.gov (United States)

    Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

    2014-03-25

    A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

  13. CaO insulator and Be intermetallic coatings on V-base alloys for liquid-lithium fusion blanket applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Kassner, T.F. [Argonne National Laboratory, Chicago, IL (United States)

    1996-04-01

    The objective of this study is to develop (a) stable CaO insulator coatings at the Liquid-Li/structural-material interface, with emphasis on electrically insulating coating that prevent adverse MHD-generated currents from passing through the V-alloy wall, and (b) stable Be-V intermetallic coating for first-wall components that face the plasma. Electrically insulating and corrosion-resistant coatings are required at the liquid-Li/structural interface in fusion first-wall/blanket application. The electrical resistance of CaO coatings produced on oxygen-enriched surface layers of V-5%Cr-5%Ti by exposing the alloy to liquid Li that contained 0.5-85 wt% dissolved Ca was measured as a function of time at temperatures between 250 and 600{degrees}C. Crack-free Be{sub 2}V intermetallic coatings were also produced by exposing V-alloys to liquid Li that contained Be as a solute. These techniques can be applied to various shapes (e.g., inside/outside of tubes, complex geometrical shapes) because the coatings are formed by liquid-phase reactions.

  14. Main Directions and Recent Test Modeling Results of Lithium Capillary-Pore Systems as Plasma Facing Components

    Institute of Scientific and Technical Information of China (English)

    V.A. Evtikhin; V. M. Korzhavin; I.E. Lyublinski; A.V. Vertkov; E.A. Azizov; S.V. Mirnov; V. B. Lazarev; S. M. Sotnikov; V. M. Safronov; A. S. Prokhorov

    2004-01-01

    At present the most promising principal solution of the divertor problem appears to be the use of liquid metals and primarily of lithium Capillary-Pore Systems (CPS) as of plasma facing materials. A solid CPS filled with liquid lithium will have a high resistance to surface and volume damage because of neutron radiation effects, melting, splashing and thermal stressinduced cracking in steady state and during plasma transitions to provide the normal operation of divertor target plates and first-wall protecting elements. These materials will not be the sources of impurities inducing an increase of Zeff and they will not be collected as dust in the divertor area and in ducts.Experiments with lithium CPS under simulating conditions of plasma disruption on a hydrogenplasma accelerator MK-200 [~ (10 - 15) MJ/m2, ~ 50 μs] have been performed. The formation of a shielding layer of lithium plasma and the high stability of these systems have been shown.The new lithium limiter tests on an up-graded T-11M tokamak (plasma current up to 100 kA,pulse length ~0.3 s) have been performed. Sorption and desorption of plasma-forming gas, lithium emission into discharge, lithium erosion, deposited power of the limiter are investigated in these experiments. The first results of experiments are presented.

  15. Lithium Poisoning

    DEFF Research Database (Denmark)

    Baird-Gunning, Jonathan; Lea-Henry, Tom; Hoegberg, Lotte C G

    2017-01-01

    is required. The cause of lithium poisoning influences treatment and 3 patterns are described: acute, acute-on-chronic, and chronic. Chronic poisoning is the most common etiology, is usually unintentional, and results from lithium intake exceeding elimination. This is most commonly due to impaired kidney...... function caused by volume depletion from lithium-induced nephrogenic diabetes insipidus or intercurrent illnesses and is also drug-induced. Lithium poisoning can affect multiple organs; however, the primary site of toxicity is the central nervous system and clinical manifestations vary from asymptomatic...... supratherapeutic drug concentrations to clinical toxicity such as confusion, ataxia, or seizures. Lithium poisoning has a low mortality rate; however, chronic lithium poisoning can require a prolonged hospital length of stay from impaired mobility and cognition and associated nosocomial complications. Persistent...

  16. Quaternary ammonium room-temperature ionic liquid including an oxygen atom in side chain/lithium salt binary electrolytes: ab initio molecular orbital calculations of interactions between ions.

    Science.gov (United States)

    Tsuzuki, Seiji; Hayamizu, Kikuko; Seki, Shiro; Ohno, Yasutaka; Kobayashi, Yo; Miyashiro, Hajime

    2008-08-14

    Interactions of the lithium bis(trifluoromethylsulfonyl)amide (LiTFSA) complex with N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium (DEME), 1-ethyl-3-methylimidazolium (EMIM) cations, neutral diethylether (DEE), and the DEMETFSA complex were studied by ab initio molecular orbital calculations. An interaction energy potential calculated for the DEME cation with the LiTFSA complex has a minimum when the Li atom has contact with the oxygen atom of DEME cation, while potentials for the EMIM cation with the LiTFSA complex are always repulsive. The MP2/6-311G**//HF/6-311G** level interaction energy calculated for the DEME cation with the LiTFSA complex was -18.4 kcal/mol. The interaction energy for the neutral DEE with the LiTFSA complex was larger (-21.1 kcal/mol). The interaction energy for the DEMETFSA complex with LiTFSA complex is greater (-23.2 kcal/mol). The electrostatic and induction interactions are the major source of the attraction in the two systems. The substantial attraction between the DEME cation and the LiTFSA complex suggests that the interaction between the Li cation and the oxygen atom of DEME cation plays important roles in determining the mobility of the Li cation in DEME-based room temperature ionic liquids.

  17. In situ SEM observation of the Si negative electrode reaction in an ionic-liquid-based lithium-ion secondary battery.

    Science.gov (United States)

    Tsuda, Tetsuya; Kanetsuku, Tsukasa; Sano, Teruki; Oshima, Yoshifumi; Ui, Koichi; Yamagata, Masaki; Ishikawa, Masashi; Kuwabata, Susumu

    2015-06-01

    By exploiting characteristics such as negligible vapour pressure and ion-conductive nature of an ionic liquid (IL), we established an in situ scanning electron microscope (SEM) method to observe the electrode reaction in the IL-based Li-ion secondary battery (LIB). When 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)amide ([C2mim][FSA]) with lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]) was used as the electrolyte, the Si negative electrode exhibited a clear morphology change during the charge process, without any solid electrolyte interphase (SEI) layer formation, while in the discharge process, the appearance was slightly changed, suggesting that a morphology change is irreversible in the charge-discharge process. On the other hand, the use of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([C2mim][TFSA]) with Li[TFSA] did not induce a change in the Si negative electrode. It is interesting to note this distinct contrast, which could be attributed to SEI layer formation from the electrochemical breakdown of [C2mim](+) at the Si negative electrode|separator interface in the [C2mim][TFSA]-based LIB. This in situ SEM observation technique could reveal the effect of the IL species electron-microscopically on the Si negative electrode reaction.

  18. Effects of compatibility of polymer binders with solvate ionic liquid electrolytes on discharge and charge reactions of lithium-sulfur batteries

    Science.gov (United States)

    Nakazawa, Toshitada; Ikoma, Ai; Kido, Ryosuke; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2016-03-01

    Electrochemical reactions in Li-S cells with a solvate ionic liquid (SIL) electrolyte composed of tetraglyme (G4) and Li[TFSA] (TFSA: bis(trifluoromethanesulfonyl)amide) are studied. The sulfur cathode (S cathode) comprises sulfur, carbon powder, and a polymer binder. Poly(ethylene oxide) (PEO) and poly(vinyl alcohol) (PVA-x) with different degrees of saponification (x%) are used as binders to prepare the composite cathodes. For the Li-S cell containing PEO binder, lithium polysulfides (Li2Sm, 2 ≤ m ≤ 8), reaction intermediates of the S cathode, dissolve into the electrolyte, and Li2Sm acts as a redox shuttle in the Li-S cell. In contrast, in the Li-S cell with PVA-x binder, the dissolution of Li2Sm is suppressed, leading to high columbic efficiencies during charge-discharge cycles. The compatibility of the PVA-x binder with the SIL electrolyte changes depending on the degree of saponification. Decreasing the degree of saponification leads to increased electrolyte uptake by the PVA-x binder, increasing the charge and discharge capacities of Li-S cell. The rate capability of Li-S cell is also enhanced by the partial swelling of the PVA-x binder. The enhanced performance of Li-S cell containing PVA-x is attributed to the lowering of resistance of Li+ ion transport in the composite cathode.

  19. One-pot synthesis of SnO{sub 2}/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Changdong, E-mail: cdgu@zju.edu.cn; Zhang, Heng; Wang, Xiuli; Tu, Jiangping

    2013-10-15

    Graphical abstract: - Highlights: • A facile and low-temperature method is developed for SnO{sub 2}/graphene composite. • Synthesis performed in a choline chloride-based ionic liquid. • The composite shows an enhanced cycling stability as anode for Li-ion batteries. • 4 nm SnO{sub 2} nanoparticles mono-dispersed on the surface of reduced graphene oxide. - Abstract: A facile and low-temperature method is developed for SnO{sub 2}/graphene composite which involves an ultrasonic-assistant oxidation–reduction reaction between Sn{sup 2+} and graphene oxide in a choline chloride–ethylene glycol based ionic liquid under ambient conditions. The reaction solution is non-corrosive and environmental-friendly. Moreover, the proposed technique does not require complicated infrastructures and heat treatment. The SnO{sub 2}/graphene composite consists of about 4 nm sized SnO{sub 2} nanoparticles with cassiterite structure mono-dispersed on the surface of reduced graphene oxide. As anode for lithium-ion batteries, the SnO{sub 2}/graphene composite shows a satisfying cycling stability (535 mAh g{sup −1} after 50 cycles @100 mA g{sup −1}), which is significantly prior to the bare 4 nm sized SnO{sub 2} nanocrsytals. The graphene sheets in the hybrid nanostructure could provide a segmentation effect to alleviate the volume expansion of the SnO{sub 2} and restrain the small and active Sn-based particles aggregating into larger and inactive clusters during cycling.

  20. Performance Projections For The Lithium Tokamak Experiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

    2009-06-17

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

  1. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries.

    Science.gov (United States)

    Zheng, Jiaxin; Hou, Yuyang; Duan, Yandong; Song, Xiaohe; Wei, Yi; Liu, Tongchao; Hu, Jiangtao; Guo, Hua; Zhuo, Zengqing; Liu, Lili; Chang, Zheng; Wang, Xiaowei; Zherebetskyy, Danylo; Fang, Yanyan; Lin, Yuan; Xu, Kang; Wang, Lin-Wang; Wu, Yuping; Pan, Feng

    2015-09-09

    LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible.

  2. Lithium nephrotoxicity.

    Science.gov (United States)

    Oliveira, Jobson Lopes de; Silva Júnior, Geraldo Bezerra da; Abreu, Krasnalhia Lívia Soares de; Rocha, Natália de Albuquerque; Franco, Luiz Fernando Leonavicius G; Araújo, Sônia Maria Holanda Almeida; Daher, Elizabeth de Francesco

    2010-01-01

    Lithium has been widely used in the treatment of bipolar disorder. Its renal toxicity includes impaired urinary concentrating ability and natriuresis, renal tubular acidosis, tubulointerstitial nephritis progressing to chronic kidney disease and hypercalcemia. The most common adverse effect is nephrogenic diabetes insipidus, which affects 20-40% of patients within weeks of lithium initiation. Chronic nephropathy correlates with duration of lithium therapy. Early detection of renal dysfunction should be achieved by rigorous monitoring of patients and close collaboration between psychiatrists and nephrologists. Recent experimental and clinical studies begin to clarify the mechanisms by which lithium induces changes in renal function. The aim of this study was to review the pathogenesis, clinical presentation, histopathological aspects and treatment of lithium-induced nephrotoxicity.

  3. Solid solution lithium alloy cermet anodes

    Science.gov (United States)

    Richardson, Thomas J.

    2013-07-09

    A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

  4. Evaluation of ultrasonic influence intensities providing formation of cavitation area in liquids with various rheological properties

    Directory of Open Access Journals (Sweden)

    R.N.Golykh

    2014-12-01

    Full Text Available The model of cavitation area containing cavitation bubbles ensemble in high-viscous and nonNewtonian (usually with a solid dispersed phase liquids is presented in this article. Proposed model is based on the study of the cavitation bubbles ensemble as a whole but taking into account the main effects and phenomena occurring inside this ensemble. This model takes into account coalescence and breakup of bubbles due to collapsing. According to model, breakup and coalescence effects lead to concentration bubbles dependency on ultrasonic pressure amplitude or intensity. Thus, these effects affect on total energy of shock waves being generated by collapsing cavitation bubbles as well as bubble radius. The analysis of the model allows revealing optimum intensities of the ultrasonic influence, that are necessary to provide maximum total shock wave energy, at which, for example, the maximum degree of solid particle’s destruction (maximum interphase surface contact or maximum free surface “liquid-gas” due to formation and breakage of capillary waves (formed on liquid’s free surface is achieved. The analysis of the model lets evaluating, that optimum intensity of the influence for the most of liquids does not exceed 40 W/cm2 at the frequency of 22 kHz. However for dilatant liquids intensity of influence can achieve 100 W/cm2 . Obtained results can be applied for the choice of power modes of the ultrasonic technological equipment to increase interphase surface under cavitation influence.

  5. Lithium Polymer Battery

    Science.gov (United States)

    2003-11-01

    formation of the galvanic cell , lithium foil approximately 150 µm thick and with an area of 0.785 cm2 was placed on top of the pressed electrolyte/cathode...pellet. The entire galvanic cell fabricated in this configuration was hermetically sealed and under pressure. A Tenney environmental chamber was

  6. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    Science.gov (United States)

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm(-2)) present superior cycling stability (727.4 mAh g(-1) after 500 cycles at 0.2 C) and high rate capability (814 mAh g(-1) at 2 C) and power density (∼10 mW cm(-2)), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm(-2)) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  7. Performance of a Large Area Avalanche Photodiode in a Liquid Xenon Ionization and Scintillation Chamber

    CERN Document Server

    Ni, K; Day, D; Giboni, K L; Lopes, J A M; Majewski, P; Yamashita, M

    2005-01-01

    Scintillation light produced in liquid xenon (LXe) by alpha particles, electrons and gamma-rays was detected with a large area avalanche photodiode (LAAPD) immersed in the liquid. The alpha scintillation yield was measured as a function of applied electric field. We estimate the quantum efficiency of the LAAPD to be 45%. The best energy resolution from the light measurement at zero electric field is 7.5%(sigma) for 976 keV internal conversion electrons from Bi-207 and 2.6%(sigma) for 5.5 MeV alpha particles from Am-241. The detector used for these measurements was also operated as a gridded ionization chamber to measure the charge yield. We confirm that using a LAAPD in LXe does not introduce impurities which inhibit the drifting of free electrons.

  8. Electrochemical performance of Si@TiN composite anode synthesized in a liquid ammonia for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Jiguo; Wang, Wei [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Jiao, Shuqiang, E-mail: sjiao@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Hou, Jungang; Huang, Kai [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Hongmin, E-mail: hzhu@metall.ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2012-10-15

    High-efficiency Si@TiN composite anode was synthesized by a homogeneous reduction reaction in the liquid ammonia, then calcinated at 950 Degree-Sign C for 2 h in vacuum. The crystal structure and morphology of the obtained in-situ coated composites were characterized by XRD, FESEM. The results showed that the micron-sized Si particles were almost coated by the TiN nanoparticles with the average size of 50 nm, while the morphology of Si@TiN composite was almost unchanged over 50 discharge-charge cycles. The electrochemical performances of Si@TiN composite anode were studied by galvanostatic discharge-charge tests, cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CV curves showed that the two redox peaks remained stable and were attributed to the alloying/dealloying process of Li with active Si particles. It could be seen from the EIS curves that the charge transfer resistance (R{sub ct}) for fresh was larger than that for the 50th cycle, which was mainly because the electrons and Li ions conducted on the electrode surface more difficultly for fresh. The cycle stability of the as-prepared Si@TiN composite anode was investigated, with the result showing that the cycling performance was stable and optimal at a rate of 0.2 C. The initial charge capacity was as high as 3226.99 mAh g{sup -1}, which was kept as 467.02 mAh g{sup -1} over 50 cycles. -- Highlights: Black-Right-Pointing-Pointer Si@TiN composite anode was synthesized in-situ in a liquid ammonia. Black-Right-Pointing-Pointer The size of TiN nanoparticles was about 50 nm. Black-Right-Pointing-Pointer The initial charge capacity was as high as 3226.99 mAh g{sup -1}.

  9. Radioactive liquid wastes discharged to ground in the 200 Areas during 1976

    Energy Technology Data Exchange (ETDEWEB)

    Mirabella, J.E.

    1977-05-09

    An overall summary is presented giving the radioactive liquid wastes discharged to ground during 1976 and since startup (for both total and decayed depositions) within the Production and Waste Management Division control zone (200 Area plateau). Overall summaries are also presented for 200 East Area and for 200 West Area. The data contain an estimate of the radioactivity discharged to individual ponds, cribs and specific retention sites within the Production and Waste Management Division during 1976 and from startup through December 31, 1976; an estimate of the decayed activities from startup through 1976; the location and reference drawings of each disposal site; and the usage dates of each disposal site. The estimates for the radioactivity discharged and for decayed activities dicharged from startup through December 31, 1976 are based upon Item 4 of the Bibliography. The volume of liquid discharged to the ponds also includes major nonradioactive streams. The wastes discharged during 1976 to each active disposal site are detailed on a month-to-month basis, along with the monthly maximum concentration and average concentration data. An estimate of the radioactivity discharged to each active site along with the remaining decayed activities is given.

  10. [Lithium nephropathy].

    Science.gov (United States)

    Kaczmarczyk, Ireneusz; Sułowicz, Władysław

    2013-01-01

    Lithium salts are the first-line drug therapy in the treatment of uni- and bipolar disorder since the sixties of the twentieth century. In the mid-70s, the first information about their nephrotoxicity appeared. Lithium salts have a narrow therapeutic index. Side effects during treatment are polyuria, polydipsia and nephrogenic diabetes insipidus. Accidental intoxication can cause acute renal failure requiring renal replacement therapy while receiving long-term lithium salt can lead to the development of chronic kidney disease. The renal biopsy changes revealed a type of chronic tubulointerstitial nephropathy. The imaging studies revealed the presence of numerous symmetric microcysts. Care of the patient receiving lithium should include regular determination of serum creatinine, creatinine clearance and monitoring of urine volume. In case of deterioration of renal function reducing the dose should be considered.

  11. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices.

    Science.gov (United States)

    Zhou, Dan; Zhou, Rui; Chen, Chuanxiang; Yee, Wu-Aik; Kong, Junhua; Ding, Guoqiang; Lu, Xuehong

    2013-06-27

    A series of solvent-free ionic liquid (IL)-based polymer electrolytes composed of amorphous and biodegradable poly(propylene carbonate) (PPC) host, LiClO4, and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)) were prepared and characterized for the first time. FTIR studies reveal that the interaction between PPC chains and imidazolium cations weakens the complexation between PPC chains and Li(+) ions. Thermal analysis (DSC and TGA) results show that the incorporation of BMIM(+)BF4(-) into PPC/LiClO4 remarkably decreases the glass transition temperature and improves the thermal stability of the electrolytes. AC impedance results show that the ionic conductivities of the electrolytes are significantly increased with the increase of BMIM(+)BF4(-) amount, the ambient ionic conductivity of the electrolyte at a PPC/LiClO4/BMIM(+)BF4(-) weight ratio of 1/0.2/3 is 1.5 mS/cm, and the ionic transport behavior follows the Arrhenius equation. Both PPC/LiClO4/BMIM(+)BF4(-) and PPC/BMIM(+)BF4(-) electrolytes were applied in electrochromic devices with polyaniline as the electrochromic layer. The PPC/LiClO4/BMIM(+)BF4(-)-based device exhibits much better electrochromic performance in terms of optical contrast and switching time due to the presence of much smaller cations.

  12. Toward uniform and ultrathin carbon layer coating on lithium iron phosphate using liquid carbon dioxide for enhanced electrochemical performance

    Science.gov (United States)

    Hong, Seung-Ah; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung; Yoo, Jibeom; Kim, Jaehoon

    2014-09-01

    In this communication, uniform and ultrathin carbon coating on LiFePO4 (LFP) particles are performed using liquid carbon dioxide (l-CO2)-based free-meniscus coating. The uniform and conformal coverage of the carbon layer on LFP with a thickness of 3.3 nm, and a uniform distribution of carbon on the entire surface of the LFP particle are confirmed. The carbon-coated LFP (C-LFP) with a carbon content of 1.9 wt.% obtained using l-CO2-based coating exhibits a discharge capacity of 169 mAh g-1 at 0.1 C and 71 mAh g-1 at 30 C, while much lower discharge capacity of 146 mAh g-1 at 0.1 C and 17 mAh g-1 at 30 C is observed when C-LFP with an optimized carbon content of 6.0 wt.% is prepared using conventional aqueous-based coating.

  13. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  14. Chinese Tritium Technology of the Liquid Lithium-lead Alloy Experimental Loop for ITER%ITER中国液态锂铅实验回路中的氚技术

    Institute of Scientific and Technical Information of China (English)

    谢波; 吴宜灿; 翁葵平; 杨通在; 刘云怒; 宋勇; FDS团队

    2011-01-01

    The multinational cooperation in the International Thermonuclear Experimental Reactor (ITER) plan aims to show that fusion reactors are a new and viable way to address global energy concerns.The Chinese Dual Function Lithium Lead Testing Blanket Module (DFLL-TBM) is one of the major research programs and uses liquid lithium-lead as both breeder and cooler, and a helium-hydrogen gas bubbling method is used to extract tritium.So, tritium technology is a key issue in the liquid metal blanket.Based on the development strategy for Chinese liquid lithium-lead experimental blanket technology, development of Chinese tritium technology for liquid lithiumlead loops between 2004 and 2010 was elaberated in three fields, namely, theoretical analysis and calculation, experimental research, and engineering design.Some important information were introduced, such as the simulation-design-develop of liquid lithium-lead bubbler,tritium analysis and permeation barriers in the loops, tritium release from lithium-lead after irradiation, design of tritium extraction system for the blanket, etc.These works indicate that it is possible to completely overcome the difficulties involving very small solubility of tritium in the lithium-lead, accumulation of Magneto-Hydro-Dynamics (MHD) after a long period of continuous operation, materials corrosion together with the pressure drop caused by wall stress, and many technical problems, such as tritium retention, penetration,recovery and environment pollution, can be thoroughly solved.%多方合作的国际热核实验堆(ITER)计划是全球能源问题关注的一个重要进展标志,中国参与提出的双功能液态锂铅包层模块(DFLL-TBM)是一重要组成部分,采用液态锂铅合金作为氚增殖剂和冷却剂,氢-氦混合气鼓泡方式提取氚.因此,氚技术成为关系液态金属包层成败的关键问题之一.结合中国液态锂铅实验包层技术的发展战略,从理论分析与计算

  15. High-surface-area mesoporous TiO2 microspheres via one-step nanoparticle self-assembly for enhanced lithium-ion storage.

    Science.gov (United States)

    Wang, Hsin-Yi; Chen, Jiazang; Hy, Sunny; Yu, Linghui; Xu, Zhichuan; Liu, Bin

    2014-12-21

    Mesoporous TiO2 microspheres assembled from TiO2 nanoparticles with specific surface areas as high as 150 m(2) g(-1) were synthesized via a facile one-step solvothermal reaction of titanium isopropoxide and anhydrous acetone. Aldol condensation of acetone gradually releases structural H2O, which hydrolyzes and condenses titanium isopropoxide, forming TiO2 nanocrystals. Simultaneous growth and aggregation of TiO2 nanocrystals leads to the formation of high-surface-area TiO2 microspheres under solvothermal conditions. After a low-temperature post-synthesis calcination, carbonate could be incorporated into TiO2 as a dopant with the carbon source coming from the organic byproducts during the synthesis. Carbonate doping modifies the electronic structure of TiO2 (e.g., Fermi level, Ef), and thus influences its electrochemical properties. Solid electrolyte interface (SEI) formation, which is not common for titania, could be initiated in carbonate-doped TiO2 due to elevated Ef. After removing carbonate dopants by high-temperature calcination, the mesoporous TiO2 microspheres showed much improved performance in lithium insertion and stability at various current rates, attributed to a synergistic effect of high surface area, large pore size and good anatase crystallinity.

  16. Time-of-flight secondary ion mass spectrometry study of lithium intercalation process in LiCoO2 thin film

    Science.gov (United States)

    Dellen, C.; Gehrke, H.-G.; Möller, S.; Tsai, C.-L.; Breuer, U.; Uhlenbruck, S.; Guillon, O.; Finsterbusch, M.; Bram, M.

    2016-07-01

    A detailed time-of-flight secondary ion mass spectrometry (ToF-SIMS) analysis of the lithium de-/intercalation in thin films of the insertion cathode material lithium cobalt oxide is presented. The LiCoO2 (LCO) thin films are deposited by radio frequency magnetron sputtering at 600 °C, having a (003) preferred orientation after the deposition. The thin electrode films are cycled with liquid electrolyte against lithium metal, showing 80-86% extractable capacities. After disassembling the cells, the depth resolved elemental distribution in the LCO is investigated by ToF-SIMS and glow discharge optical emission spectroscopy. Both techniques show a stepwise lithium distribution in charged state, leading to a lithium depleted layer close to the surface. In combination with the electrochemical results, the qualitative comparison of the different lithium depth profiles yields a reversible lithium extraction in the depleted area below the stability limit for bulk materials of LCO. For bulk LCO, a phase change normally occurs when the lithium concentration in LixCoO2 is lower than x = 0.5. As a possible cause for the inhibition of the phase change, the preferred orientation and thus pinning of the crystal structure of the film by the substrate is proposed.

  17. Lithium and magnesium separation from salt lake brine by ionic liquids containing tributyl phosphate%离子液体-磷酸三丁酯体系分离盐湖卤水镁锂

    Institute of Scientific and Technical Information of China (English)

    石成龙; 贾永忠; 景燕

    2015-01-01

    In the present work, a typical room temperature ionic liquids (RTILs), 1-octyl-3-methyl-imidazolium hexafluorophosphate ([C8mim][PF6]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquids and tributyl phosphate (TBP) were used as extraction medium and extractant respectively. The effects of solution pH value, phase ratio and other factors on lithium extraction efficiency had been investigated. The preliminary experimental results had demonstrated that, compared with using conventional extraction system, the extraction efficiency had been increased greatly in this ionic liquid system. Optimal extraction conditions of this system include the ratio of TBP/ILs at 9/1(vol), O/A at 2:1 and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium ion and magnesium ion were 80.64% and 5.30%, respectively. And total extraction efficiency of 99.42% was obtained by triple-stage countercurrent extraction. The single stripping rate of lithium ion and magnesium ion were 98.78% and 99.15%, respectively, at 80℃ when the A/O phase ratio was 2. The Mg/Li ratio was 3.03 in the aqueous phase after stripping, which have dropped 93.41% when compared with the initial value.To evaluate the potential use of RTILs to replace traditional volatile organic compounds (VOCs) in liquid/liquid extraction of lithium, the extractions of lithium ion with VOCs and ionic liquid were compared. Compared with using conventional extraction system, the extraction efficiency had been increased greatly in this ionic liquid system. In addition, the equipment corrosion and the environmental pollution had been avoided in this new extraction system. The extraction mechanism was deduced based on the ultraviolet-visible(UV) absorption. Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. So the ionic liquid was not only regarded as the solvent but also the co

  18. Module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I., E-mail: yublinski@yandex.ru [FSUE ' Red Star' , Moscow (Russian Federation); Vertkov, A.; Evtikhin, V.; Balakirev, V.; Ionov, D.; Zharkov, M. [FSUE ' Red Star' , Moscow (Russian Federation); Tazhibayeva, I. [IAE NNC RK, Kurchatov (Kazakhstan); Mirnov, S. [TRINITI, Troitsk, Moscow Region (Russian Federation); Khomiakov, S.; Mitin, D. [OJSC Dollezhal Institute, Moscow (Russian Federation); Mazzitelli, G. [ENEA RC Frascati (Italy); Agostini, P. [ENEA RC Brasimone (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Black-Right-Pointing-Pointer Capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. Black-Right-Pointing-Pointer Lithium divertor module for KTM tokamak is under development. Black-Right-Pointing-Pointer Lithium filled tungsten felt is offered as the base plasma facing material of divertor. Black-Right-Pointing-Pointer Results of this project addresses to the progress in the field of fusion neutrons source and fusion energy source creation. - Abstract: Activity on projects of ITER and DEMO reactors has shown that solution of problems of divertor target plates and other plasma facing elements (PFEs) based on the solid plasma facing materials cause serious difficulties. Problems of PFE degradation, tritium accumulation and plasma pollution can be overcome by the use of liquid lithium-metal with low Z. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life; to reduce power flux due to intensive re-irradiation on lithium atoms in plasma periphery that will essentially facilitate a problem of heat removal from PFE; to reduce Z{sub eff} of plasma to minimally possible level close to 1; to exclude tritium accumulation, that is provided with absence of dust products and an opportunity of the active control of the tritium contents in liquid lithium. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) - new material in which liquid lithium fill a solid matrix from porous material. The progress in development of lithium technology and also activity in lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, HT-7 and stellarator TJ II permits of solving the problems in development of

  19. Parabolic lithium mirror for a laser-driven hot plasma producing device

    Science.gov (United States)

    Baird, James K.

    1979-06-19

    A hot plasma producing device is provided, wherein pellets, singly injected, of frozen fuel are each ignited with a plurality of pulsed laser beams. Ignition takes place within a void area in liquid lithium contained within a pressure vessel. The void in the liquid lithium is created by rotating the pressure vessel such that the free liquid surface of molten lithium therein forms a paraboloid of revolution. The paraboloid functions as a laser mirror with a reflectivity greater than 90%. A hot plasma is produced when each of the frozen deuterium-tritium pellets sequentially arrive at the paraboloid focus, at which time each pellet is illuminated by the plurality of pulsed lasers whose rays pass through circular annuli across the top of the paraboloid. The beams from the lasers are respectively directed by associated mirrors, or by means of a single conical mirror in another embodiment, and by the mirror-like paraboloid formed by the rotating liquid lithium onto the fuel pellet such that the optical flux reaching the pellet can be made to be uniform over 96% of the pellet surface area. The very hot plasma produced by the action of the lasers on the respective singly injected fuel pellets in turn produces a copious quantity of neutrons and X-rays such that the device has utility as a neutron source or as an x-ray source. In addition, the neutrons produced in the device may be utilized to produce tritium in a lithium blanket and is thus a mechanism for producing tritium.

  20. Navy Lithium Battery Safety

    Science.gov (United States)

    2010-07-14

    lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval

  1. Novel polymer electrolyte from poly(carbonate-ether) and lithium tetrafluoroborate for lithium-oxygen battery

    Science.gov (United States)

    Lu, Qi; Gao, Yonggang; Zhao, Qiang; Li, Ji; Wang, Xianhong; Wang, Fosong

    2013-11-01

    Novel polymer electrolyte based on low-molecular weight poly(carbonate-ether) and lithium tetrafluoroborate has been prepared and used in lithium-oxygen battery for the first time, the electrolyte with approximate 17% of LiBF4 showed ionic conductivity of 1.57 mS cm-1. Infrared spectra analysis indicates that obvious interaction between the lithium ions and partial oxygen atoms in the host polymer exists, and the lithium salt and the host polymer have good miscibility. The lithium-oxygen battery from this polymer electrolyte shows similar cyclic stability to traditional liquid electrolyte observed by FT-IR, AFM and electrochemical measurements, which may provide a new choice for fabrication of all-solid-state high-capacity rechargeable lithium-oxygen battery with better safety.

  2. Vacuum distillation refining of crude lithium (Ⅰ)——Thermodynamics on separating impurities from lithium

    Institute of Scientific and Technical Information of China (English)

    陈为亮; 杨斌; 柴立元; 闵小波; 戴永年; 于霞; 张传福

    2001-01-01

    Thermodynamics on vacuum refining process of the crude lithium has been studied by using separation coefficients of impurities in the crude lithium and vapor-liquid equilibrium composition diagrams of Li-i binary alloy (i stands for an impurity) at different temperatures. Behaviors of impurities in the vacuum distillation process have been examined.The results show that fractional vacuum distillation should be taken to obtain metal lithium with high purity more than 99.99 % Li, in which metal K, Na and partial Mg are volatilized at lower temperature of 673~873 K. Lithium is distilled from the residual liquid containing other impurities, such as Ca, Mg, Al, Si, Fe and Ni at higher temperature of 873~1 073 K and the chamber pressure is less than the critical pressure of lithium.

  3. A lithium superionic conductor.

    Science.gov (United States)

    Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro; Hirayama, Masaaki; Kanno, Ryoji; Yonemura, Masao; Kamiyama, Takashi; Kato, Yuki; Hama, Shigenori; Kawamoto, Koji; Mitsui, Akio

    2011-07-31

    Batteries are a key technology in modern society. They are used to power electric and hybrid electric vehicles and to store wind and solar energy in smart grids. Electrochemical devices with high energy and power densities can currently be powered only by batteries with organic liquid electrolytes. However, such batteries require relatively stringent safety precautions, making large-scale systems very complicated and expensive. The application of solid electrolytes is currently limited because they attain practically useful conductivities (10(-2) S cm(-1)) only at 50-80 °C, which is one order of magnitude lower than those of organic liquid electrolytes. Here, we report a lithium superionic conductor, Li(10)GeP(2)S(12) that has a new three-dimensional framework structure. It exhibits an extremely high lithium ionic conductivity of 12 mS cm(-1) at room temperature. This represents the highest conductivity achieved in a solid electrolyte, exceeding even those of liquid organic electrolytes. This new solid-state battery electrolyte has many advantages in terms of device fabrication (facile shaping, patterning and integration), stability (non-volatile), safety (non-explosive) and excellent electrochemical properties (high conductivity and wide potential window).

  4. Stable Lithium Deposition Generated from Ceramic-Cross-Linked Gel Polymer Electrolytes for Lithium Anode.

    Science.gov (United States)

    Tsao, Chih-Hao; Hsiao, Yang-Hung; Hsu, Chun-Han; Kuo, Ping-Lin

    2016-06-22

    In this work, a composite gel electrolyte comprising ceramic cross-linker and poly(ethylene oxide) (PEO) matrix is shown to have superior resistance to lithium dendrite growth and be applicable to gel polymer lithium batteries. In contrast to pristine gel electrolyte, these nanocomposite gel electrolytes show good compatibility with liquid electrolytes, wider electrochemical window, and a superior rate and cycling performance. These silica cross-linkers allow the PEO to form the lithium ion pathway and reduce anion mobility. Therefore, the gel not only features lower polarization and interfacial resistance, but also suppresses electrolyte decomposition and lithium corrosion. Further, these nanocomposite gel electrolytes increase the lithium transference number to 0.5, and exhibit superior electrochemical stability up to 5.0 V. Moreover, the lithium cells feature long-term stability and a Coulombic efficiency that can reach 97% after 100 cycles. The SEM image of the lithium metal surface after the cycling test shows that the composite gel electrolyte with 20% silica cross-linker forms a uniform passivation layer on the lithium surface. Accordingly, these features allow this gel polymer electrolyte with ceramic cross-linker to function as a high-performance lithium-ionic conductor and reliable separator for lithium metal batteries.

  5. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  6. Reproducibility of retention time and peak area in comprehensive two-dimensional liquid chromatography.

    Science.gov (United States)

    Elsner, Victoria; Wulf, Volker; Wirtz, Michaela; Schmitz, Oliver J

    2015-01-01

    Comprehensive two-dimensional liquid chromatography is used to separate anionic, nonionic, and amphoteric surfactants by substance class, alkyl chain distribution, and degree of ethoxylation. A nearly orthogonal system with a hydrophilic interaction chromatography (HILIC) phase in the first and a reversed-phase material in the second dimension is applied to generate a separation with maximum peak capacity. The potential of the developed method is demonstrated by the reproducibility of retention time and peak area, which shows standard deviations less than 5 % and the analysis of real samples. An external calibration and the standard addition method were applied to determine unknown concentrations for the alkyl chain homologues of a betaine and for one ethoxylate (EO) homologue of a fatty alcohol ethoxylate in a sample mixture.

  7. Space-charge at the lithium-lithium chloride interface

    Science.gov (United States)

    Jamnik, J.; Gaberscek, M.; Meden, A.; Pejovnik, S.

    1991-06-01

    The electrical properties of the passive layer formed on lithium as the product of the corrosion reaction in thionyl chloride are discussed. The passive layer is regarded as a thin layer of an ionic crystal placed between two party blocking electrodes (i.e., lithium and liquid electrolyte). After a short review of thermodynamic properties of the system, a model for description of the electric properties of the static space-charge regions is presented. On this basis, a comment on and partial reinterpretation of impedance measurements of the passive layer is given. The suggested approach leads to the conclusion that the quality of Li/SOCl2 batteries decisively depends on the properties of the lithium passive layer interface. Finally, experiments to confirm the model are suggested.

  8. Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries

    Science.gov (United States)

    Zegeye, Tilahun Awoke; Tsai, Meng-Che; Cheng, Ju-Hsiang; Lin, Ming-Hsien; Chen, Hung-Ming; Rick, John; Su, Wei-Nien; Kuo, Chung-Feng Jeffrey; Hwang, Bing-Joe

    2017-06-01

    High capacity lithium-sulfur batteries with stable cycle performance and sulfur loadings greater than 70 wt% are regarded as promising candidates for energy storage devices. However, it has been challenged to achieving practical application of sulfur cathode because of low loading of active sulfur and poor cycle performance. Herein, we design novel nanocomposite cathode materials consist of sulfur (80 wt%) embedded within nitrogen doped three-dimensional reduced graphene oxide (N-3D-rGO) by controllable sulfur-impregnation method. Nitrogen doping helps increase the surface area by ten times from pristine graphene, and pore volume by seven times. These structural features allow the cathode to hold more sulfur. It also adsorbs polysulfides and prevents their detachment from the host materials; thereby achieving stable cycle performance. The solution drop sulfur-impregnation method provides uniform distribution of nano-sulfur in controlled manner. The material delivers a high initial discharge capacity of 1042 mAhg-1 and 916 mAhg-1 with excellent capacity retention of 94.8% and 81.9% at 0.2 C and 0.5 C respectively after 100 cycles. Thus, the combination of solution drop and nitrogen doping opens a new chapter for resolving capacity fading as well as long cycling problems and creates a new strategy to increase sulfur loading in controlled mechanism.

  9. High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

    Science.gov (United States)

    Krause, Andreas; Dörfler, Susanne; Piwko, Markus; Wisser, Florian M.; Jaumann, Tony; Ahrens, Eike; Giebeler, Lars; Althues, Holger; Schädlich, Stefan; Grothe, Julia; Jeffery, Andrea; Grube, Matthias; Brückner, Jan; Martin, Jan; Eckert, Jürgen; Kaskel, Stefan; Mikolajick, Thomas; Weber, Walter M.

    2016-06-01

    We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

  10. Lithium Circuit Test Section Design and Fabrication

    Science.gov (United States)

    Godfroy, Thomas; Garber, Anne; Martin, James

    2006-01-01

    The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.

  11. Characterizing the Impact of Enhanced Solubilization Reagents on Organic-Liquid Morphology and Organic-Liquid/Water Interfacial Area Using Synchrotron X-ray Microtomography

    Science.gov (United States)

    Narter, M.; Brusseau, M.

    2010-12-01

    A primary goal of enhanced solubilization reagents is to increase contaminant mass transfer into the aqueous phase in order to achieve faster and more efficient mass removal from the subsurface. The rate of mass transfer depends on the degree of contact between the aqueous phase and the contaminant, and thus is dependent upon the interfacial area between the two phases. It is therefore important to understand the impact of enhanced solubilization reagents on organic-liquid distribution and morphology. This was accomplished using synchrotron X-ray microtomography to examine entrapped organic liquid in a natural porous medium. Polyoxyethylene Sorbitan Monooleate (tween 80), hydroxypropyl-β-cyclodextrin (HPCD), sodium dodecyl sulfate (SDS), and ethanol were used as the solubilization agents. Tetrachloroethene (PCE) was used as the entrapped organic immiscible liquid. Microtomography images were collected prior to and after successive floods with three concentrations of each reagent. The results were compared to those obtained from equivalent experiments conducted with water flooding.

  12. Control System for the NSTX Lithium Pellet Injector

    Energy Technology Data Exchange (ETDEWEB)

    P. Sichta; J. Dong; R. Gernhardt; G. Gettelfinger; H. Kugel

    2003-10-27

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI.

  13. RECOVERY OF LITHIUM FROM WASTE MATERIALS

    Directory of Open Access Journals (Sweden)

    JITKA JANDOVÁ

    2012-03-01

    Full Text Available In this study, processes based on roasting-leaching-crystallization steps and condensation-precipitation steps for Li2CO3 separation from spent Li/MnO2 batteries and lithium-containing wastewaters were developed and verified on a laboratory scale. Spent Li/MnO2 batteries were roasted under reduced pressure at 650°C, which split the castings and deactivated the batteries by reduction of LiMnO2 and MnO2 with residual lithium metal and graphite to form MnO and Li2CO3. The resultant lithium carbonate was selectively solubilised in water with manganese remaining in the leach residue. Li2CO3 of 99.5 % purity was obtained after evaporation of 95 % water. Processing of lithium-containing alkaline wastewaters from the production of liquid rubber comprises condensation up to lithium concentration of 12-13 g/l Li and a two-step precipitation of lithium carbonate using CO2 as a precipitation agent. Sparingly soluble Li2CO3 was produced in the second step at 95°C, whilst most impurities remain in the solution. Obtained lithium carbonate products contained on average more than 99.5 % Li2CO3. The lithium precipitation efficiency was about 90 %.

  14. The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Avasarala, S. [Princeton Plasma Physics Laboratory (PPPL); Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Berzak, L. [Princeton Plasma Physics Laboratory (PPPL); Beiersdorfer, P. [Lawrence Livermore National Laboratory (LLNL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Gransted, E. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. [Princeton Plasma Physics Laboratory (PPPL); Jacobson, C. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); Kozub, T. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Lepson, J. [Lawrence Livermore National Laboratory (LLNL); Lundberg, D. P. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. F. [Princeton Plasma Physics Laboratory (PPPL); Pereverzev, G. V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Strickler, T. [Princeton Plasma Physics Laboratory (PPPL); Stotler, D. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

    2010-01-01

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed. (c) 2010 Elsevier B.V. All rights reserved.

  15. Lithium in 2012

    Science.gov (United States)

    Jaskula, B.W.

    2013-01-01

    In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.

  16. Capillary Electrophoresis as Analysis Technique for Battery Electrolytes: (i Monitoring Stability of Anions in Ionic Liquids and (ii Determination of Organophosphate-Based Decomposition Products in LiPF6-Based Lithium Ion Battery Electrolytes

    Directory of Open Access Journals (Sweden)

    Marcelina Pyschik

    2017-09-01

    Full Text Available In this work, a method for capillary electrophoresis (CE hyphenated to a high-resolution mass spectrometer was presented for monitoring the stability of anions in ionic liquids (ILs and in commonly used lithium ion battery (LIB electrolytes. The investigated ILs were 1-methyl-1-propylpyrrolidinium bis(trifluoromethanesulfonylimide (PYR13TFSI and 1-methyl-1-propylpyrrolidinium bis(fluorosulfonylimide (PYR13FSI. The method development was conducted by adjusting the following parameters: buffer compositions, buffer concentrations, and the pH value. Also the temperature and the voltage applied on the capillary were optimized. The ILs were aged at room temperature and at 60 °C for 16 months each. At both temperatures, no anionic decomposition products of the FSI− and TFSI− anions were detected. Accordingly, the FSI− and TFSI− anions were thermally stable at these conditions. This method was also applied for the investigation of LIB electrolyte samples, which were aged at 60 °C for one month. The LP30 (50/50 wt. % dimethyl carbonate/ethylene carbonate and 1 M lithium hexafluorophosphate electrolyte was mixed with the additive 1,3-propane sultone (PS and with one of the following organophosphates (OP: dimethyl phosphate (DMP, diethyl phosphate (DEP, and triethyl phosphate (TEP, to investigate the influence of these compounds on the formation of OPs.

  17. Formulation and study some inverse problems in modeling of hydrophysical fields in water areas with "liquid" boundaries

    Science.gov (United States)

    Agoshkov, Valery

    2017-04-01

    There are different approaches for modeling boundary conditions describing hydrophysical fields in water areas with "liquid" boundaries. Variational data assimilation may also be considered as one of such approaches. Development of computer equipment, together with an increase in the quantity and quality of data from the satellites and other monitoring tools proves that the development of this particular approach is perspective. The range of connected the problems is wide - different recording forms of boundary conditions, observational data assimilation procedures and used models of hydrodynamics are possible. In this work some inverse problems and corresponding variational data assimilation ones, connected with mathematical modeling of hydrophysical fields in water areas (seas and oceans) with "liquid" ("open") boundaries, are formulated and studied. Note that the surface of water area (which can also be considered as a "liquid" boundary) is not included in the set of "liquid" boundaries, in this case "liquid" boundaries are borders between the areas "water-water". In the work, mathematical model of hydrothermodynamics in the water areas with "liquid" ("open") part of the boundary, a generalized statement of the problem and the splitting method for time approximation are formulated. Also the problem of variational data assimilation and iterative algorithm for solving inverse problems mentioned above are formulated. The work is based on [1]. The work was partly supported by the Russian Science Foundation (project 14-11-00609, the general formulation of the inverse problems) and by the Russian Foundation for Basic Research (project 16-01-00548, the formulation of the problem and its study). [1] V.I. Agoshkov, Methods for solving inverse problems and variational data assimilation problems of observations in the problems of the large-scale dynamics of the oceans and seas, Institute of Numerical Mathematics, RAS, Moscow, 2016 (in Russian).

  18. High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.

    Science.gov (United States)

    Yao, Xiayin; Liu, Deng; Wang, Chunsheng; Long, Peng; Peng, Gang; Hu, Yong-Sheng; Li, Hong; Chen, Liquan; Xu, Xiaoxiong

    2016-11-09

    High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode-solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-solid-state lithium batteries. Here, we report a general interfacial architecture, i.e., Li7P3S11 electrolyte particles anchored on cobalt sulfide nanosheets, by an in situ liquid-phase approach. The anchored Li7P3S11 electrolyte particle size is around 10 nm, which is the smallest sulfide electrolyte particles reported to date, leading to an increased contact area and intimate contact interface between electrolyte and active materials. The neat Li7P3S11 electrolyte synthesized by the same liquid-phase approach exhibits a very high ionic conductivity of 1.5 × 10(-3) S cm(-1) with a particle size of 0.4-1.0 μm. All-solid-state lithium batteries employing cobalt sulfide-Li7P3S11 nanocomposites in combination with the neat Li7P3S11 electrolyte and Super P as the cathode and lithium metal as the anode exhibit excellent rate capability and cycling stability, showing reversible discharge capacity of 421 mAh g(-1) at 1.27 mA cm(-2) after 1000 cycles. Moreover, the obtained all-solid-state lithium batteries possesses very high energy and power densities, exhibiting 360 Wh kg(-1) and 3823 W kg(-1) at current densities of 0.13 and 12.73 mA cm(-2), respectively. This contribution demonstrates a new interfacial design for all-solid-state battery with high performance.

  19. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  20. Liquid cathode primary batteries

    Science.gov (United States)

    Schlaikjer, Carl R.

    1985-03-01

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150 °C, and efficient discharge at moderate rates. he lithium/sulfur dioxide cell is the most efficient system at temperatures below 0 °C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60 °C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  1. Liquid cathode primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Schlaikjer, C.R.

    1985-01-15

    Lithium/liquid cathode/carbon primary batteries offer from 3 to 6 times the volumetric energy density of zinc/alkaline manganese cells, improved stability during elevated temperature storage, satisfactory operation at temperatures from -40 to +150/sup 0/C, and efficient discharge at moderate rates. The lithium/sulfur dioxide cell is the most efficient system at temperatures below 0/sup 0/C. Although chemical reactions leading to electrolyte degradation and lithium corrosion are known, the rates of these reactions are slow. While the normal temperature cell reaction produces lithium dithionite, discharge at 60/sup 0/C leads to a reduction in capacity due to side reactions involving sulfur dioxide and discharge intermediates. Lithium/thionyl chloride and lithium/sulfuryl chloride cells have the highest practical gravimetric and volumetric energy densities when compared with aqueous and most other nonaqueous systems. For thionyl chloride, discharge proceeds through a series of intermediates to sulfur, sulfur dioxide and lithium chloride. Catalysis, leading to improved rate capability and capacity, has been achieved. The causes of rapid reactions leading to thermal runaway are thought to be chemical in nature. Lithium/sulfuryl chloride cells, which produce sulfur dioxide and lithium chloride on discharge, experience more extensive anode corrosion. An inorganic cosolvent and suitable salt are capable of alleviating this corrosion. Calcium/oxyhalide cells have been studied because of their promise of increased safety without substantial sacrifice of energy density relative to lithium cells. Anode corrosion, particularly during discharge, has delayed practical development.

  2. Operation and uphold of area of liquid ammonia in Selective Catalytic Reduction%SCR氨区的运行维护

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2014-01-01

    液氨是选择性催化还原脱硝法( SCR)工艺首选的脱硝反应剂,它属于危险化学品。氨区的安全运行是SCR系统安全运行的基础保障。从氨区的运行、维护、人员防护和事故处理等方面阐述了SCR系统运行维护中需要注意的一些关键点。%Liquid ammonia is the first choice of reductant in selective catalytic reduction,it is a sort of dangerous chemical. The safe operation in the area of liquid ammonia is foundation of SCR. lt describes take notice of SCR from the operation,uphold,physical protection and accident handling in the area of liquid ammonia.

  3. Decoupling of dynamic processes in surfactant-based liquid mixtures: the case of lithium-containing bis(2-ethylhexyl)phosphoric acid/bis(2-ethylhexyl)amine systems.

    Science.gov (United States)

    Nicotera, Isabella; Oliviero Rossi, Cesare; Turco Liveri, Vincenzo; Calandra, Pietro

    2014-07-22

    Pure surfactant liquids and their binary mixtures, because of the amphiphilic nature of the molecules involved, can exhibit nanosegregation and peculiar transport properties. The idea that inspired this work is that the possibility of including in such media salts currently used for technological applications should lead to a synergy between the properties of the salt and those of the medium. Therefore, the dynamic features of bis(2-ethylhexyl)amine (BEEA) and bis(2-ethylhexyl)phosphoric acid (HDEHP) liquid mixtures were investigated as a function of composition and temperature by (1)H nuclear magnetic resonance (NMR) spectroscopy and rheometry. Inclusion of litium trifluoromethanesulfonate (LiT) has been investigated by infrared spectroscopy, pulsed field gradient NMR, and conductimetry methods to highlight the solubilizing and confining properties of these mixtures as well as the lithium conductivity. It was found that BEEA/HDEHP binary liquid mixtures show zero-threshold percolating self-assembly with a maximum in viscosity and a minimum in molecular diffusion at a 1:1 composition. Dissolution of LiT in such system can occur via confinement in the locally self-assembled polar domains. Despite this confinement, Li(+) conduction is scarcely dependent on the medium composition because of the possibility of a field-induced hopping decoupled by the structural and dynamical features of the medium.

  4. Characterization and monitoring of 300 Area facility liquid waste streams: 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Ballinger, M.Y.; Damberg, E.G.; Evans, J.C.; Julya, J.L.; Olsen, K.B.; Ozanich, R.M.; Thompson, C.J.; Vogel, H.R.

    1995-04-01

    This report summarizes the results of characterizing and monitoring the following sources during calendar year 1994: liquid waste streams from Buildings 306, 320, 324, 326, 331, and 3720 in the 300 Area of Hanford Site and managed by the Pacific Northwest Laboratory; treated and untreated Columbia River water (influent); and water at the confluence of the waste streams (that is, end-of-pipe). Data were collected from March to December before the sampling system installation was completed. Data from this initial part of the program are considered tentative. Samples collected were analyzed for chemicals, radioactivity, and general parameters. In general, the concentrations of chemical and radiological constituents and parameters in building wastewaters which were sampled and analyzed during CY 1994 were similar to historical data. Exceptions were the occasional observances of high concentrations of chloride, nitrate, and sodium that are believed to be associated with excursions that were occurring when the samples were collected. Occasional observances of high concentrations of a few solvents also appeared to be associated with infrequent building r eases. During calendar year 1994, nitrate, aluminum, copper, lead, zinc, bis(2-ethylhexyl) phthalate, and gross beta exceeded US Environmental Protection Agency maximum contaminant levels.

  5. Extraction of arsenic from a soil in the blackfoot disease endemic area with ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Yu [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Peng, Ching-Yu [Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105 (United States); Wang, Hong-Chung [Division of Chest Medicine, Department of Medicine, Veterans General Hospital-Kaohsiung, Kaohsiung 81362, Taiwan (China); Kang, Hsu-Ya [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.tw [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-10-01

    Speciation of arsenic extracted with room temperature ionic liquids (RTILs) ([bmim][BF{sub 4}] (1-butyl-3-methylimidazolium tetrafluoroborate) and [bmim][PF{sub 6}] (1-butyl-3-methylimidazolium hexafluorophosphate)) from an As-humic acid (As-HA) complex contaminated soil (As-HA/soil) in a blackfoot disease endemic area has been studied by X-ray absorption (near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)) spectroscopy. About 45% of arsenic in the As-HA/soil can be extracted with [bmim][BF{sub 4}] while the relatively less hydrophilic [bmim][PF{sub 6}] extracts 25% of arsenic. The extracted arsenic in the [bmim][BF{sub 4}] and [bmim][PF{sub 6}] from the As-HA/soil possesses mainly As(III) species, suggesting that at least two reaction paths may be involved in the extraction process: (1) splitting of As-HA and (2) reduction of As(V) to As(III). The refined EXAFS spectra also indicate that the As(III) extracted in the RTILs possesses the AsO{sub 2}{sup -} structure, which has the As-O bond distances of 1.77-1.79 A and coordination numbers of 4.0-4.2.

  6. Primary nucleation of lithium carbonate

    Institute of Scientific and Technical Information of China (English)

    Yuzhu SUN; Xingfu SONG; Jin WANG; Yan LUO; Jianguo YU

    2009-01-01

    A set of laser apparatus was used to explore the induction period and the primary nucleation of lithium carbonate. Results show that the induction period increases with the decrease of supersaturation, temperature and stirring speed. Through the classical theory of primary nucleation, many important properties involved in primary nucleation under different conditions were obtained quantitatively, including the interfacial tension between solid and liquid, contact angle, critical nucleus size, critical nuleation free energy etc.

  7. Fluorescence resonance-energy-transfer in systems of Rhodamine 6G with ionic liquid showing emissions by excitation at wide wavelength areas.

    Science.gov (United States)

    Izawa, Hironori; Wakizono, Satoshi; Kadokawa, Jun-ichi

    2010-09-14

    Fluorescence resonance-energy-transfer occurred in a solution of Rhodamine 6G in an ionic liquid by excitation at wide wavelength areas owing to specific fluorescent behavior of the ionic liquid to show emissions at each excitation wavelength, which was also observed in the guar gum/ionic liquid gel material containing Rhodamine 6G.

  8. Lithium-associated hyperthyroidism.

    Science.gov (United States)

    Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana

    2013-08-01

    Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication.

  9. Influence of laser-generated surface structures on electrochemical performance of lithium cobalt oxide

    Science.gov (United States)

    Kohler, R.; Proell, J.; Ulrich, S.; Przybylski, M.; Seifert, H. J.; Pfleging, W.

    2012-03-01

    The further development of energy storage devices especially of lithium-ion batteries plays an important role in the ongoing miniaturization process towards lightweight, flexible mobile devices. To improve mechanical stability and to increase the power density of electrode materials while maintaining the same footprint area, a three-dimensional battery design is necessary. In this study different designs of three-dimensional cathode materials are investigated with respect to the electrochemical performance. Lithium cobalt oxide is considered as a standard cathode material, since it has been in use since the first commercialization of lithium-ion batteries. Various electrode designs were manufactured in lithium cobalt oxide electrodes via laser micro-structuring. Laser ablation experiments in ambient air were performed to obtain hierarchical and high aspect surface structures. Laser structuring using mask techniques as well as the formation of self-organized conical surface structures were studied in detail. In the latter case a density of larger than twenty million microstructures per square centimeter was obtained with a significant increase of active surface area. Laser annealing was applied for the control of the average grain size and the adjustment of a crystalline phase which exhibits electrochemical capacities in the range of the practical capacity known for lithium cobalt oxide. An investigation of cycling stability with respect to annealing parameters such as annealing time and temperature was performed using a diode laser operating at 940 nm. Information on the phase and crystalline structure were obtained using Raman spectroscopy and X-ray diffraction analysis. The electrochemical performance of the laser modified cathodes was studied via cyclic voltammetry and galvanostatic testing using a lithium anode and a standard liquid electrolyte.

  10. Heteroaromatic-based electrolytes for lithium and lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Gang; Abraham, Daniel P.

    2017-04-18

    The present invention provides an electrolyte for lithium and/or lithium-ion batteries comprising a lithium salt in a liquid carrier comprising heteroaromatic compound including a five-membered or six-membered heteroaromatic ring moiety selected from the group consisting of a furan, a pyrazine, a triazine, a pyrrole, and a thiophene, the heteroaromatic ring moiety bearing least one carboxylic ester or carboxylic anhydride substituent bound to at least one carbon atom of the heteroaromatic ring. Preferred heteroaromatic ring moieties include pyridine compounds, pyrazine compounds, pyrrole compounds, furan compounds, and thiophene compounds.

  11. Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery

    Science.gov (United States)

    Higuchi, Akitoshi; Ankei, Naoki; Nishihama, Syouhei; Yoshizuka, Kazuharu

    2016-10-01

    Selective recovery of lithium from four kinds of cathode materials, manganese-type, cobalt-type, nickel-type, and ternary-type, of spent lithium ion battery was investigated. In all cathode materials, leaching of lithium was improved by adding sodium persulfate (Na2S2O8) as an oxidant in the leaching solution, while the leaching of other metal ions (manganese, cobalt, and nickel) was significantly suppressed. Optimum leaching conditions, such as pH, temperature, amount of Na2S2O8, and solid/liquid ratio, for the selective leaching of lithium were determined for all cathode materials. Recovery of lithium from the leachate as lithium carbonate (Li2CO3) was then successfully achieved by adding sodium carbonate (Na2CO3) to the leachate. Optimum recovery conditions, such as pH, temperature, and amount of Na2CO3, for the recovery of lithium as Li2CO3 were determined for all cases. Purification of Li2CO3 was achieved by lixiviation in all systems, with purities of the Li2CO3 higher than 99.4%, which is almost satisfactory for the battery-grade purity of lithium.

  12. NSTX Plasma Response to Lithium Coated Divertor

    Energy Technology Data Exchange (ETDEWEB)

    H.W. Kugel, M.G. Bell, J.P. Allain, R.E. Bell, S. Ding, S.P. Gerhardt, M.A. Jaworski, R. Kaita, J. Kallman, S.M. Kaye, B.P. LeBlanc, R. Maingi, R. Majeski, R. Maqueda, D.K. Mansfield, D. Mueller, R. Nygren, S.F. Paul, R. Raman, A.L. Roquemore, S.A. Sabbagh, H. Schneider, C.H. Skinner, V.A. Soukhanovskii, C.N. Taylor, J.R. Timberlak, W.R. Wampler, L.E. Zakharov, S.J. Zweben, and the NSTX Research Team

    2011-01-21

    NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Zeff and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, <0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed.

  13. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.

    Science.gov (United States)

    Tu, Zhengyuan; Nath, Pooja; Lu, Yingying; Tikekar, Mukul D; Archer, Lynden A

    2015-11-17

    Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the

  14. Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

    KAUST Repository

    Tu, Zhengyuan

    2015-11-17

    © 2015 American Chemical Society. ConspectusSecondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum.Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost

  15. Disequilibrium crystal-liquid processes at Hamblin-Cleopatra volcano, Lake Mead area, Nevada

    Science.gov (United States)

    Barker, Daniel S.; Thompson, Keith G.; Smith, Eugene I.; McDowell, Fred W.

    2012-09-01

    The 60 km3 Hamblin-Cleopatra stratovolcano produced shoshonite, latite, and trachyte lavas throughout its Miocene eruptive history. Low-silica rhyolite and silica-undersaturated hawaiite erupted before and after lavas of the Hamblin-Cleopatra volcano. Shoshonite, latite, and trachyte resulted from contamination of felsic (trachyte to low-silica rhyolite) anatectic liquids with crystals from hawaiite. Most of the entrained crystals were not in equilibrium with liquid represented by groundmass, but were mingled with liquid shortly before eruption. Crystal aggregates are common inclusions in the lavas, and are sources of the contaminating minerals. The resulting bulk compositions of these porphyritic lavas form a continuum that resembles a liquid line of descent, as dictated by mass balance.

  16. 液态锂铅回路冷阱过滤芯捕集效率数值分析%Numerical analysis on collection efficiency of the cold trap filter unit of liquid lithium lead loop

    Institute of Scientific and Technical Information of China (English)

    陈云龙; 黄群英; 朱志强; 高胜; 吴庆生

    2012-01-01

    液态锂铅纯化技术是聚变堆锂铅包层关键技术之一,冷阱是锂铅在线纯化的常用装置.鉴于冷阱过滤芯捕集杂质的效率难以在线测量,本文利用Fluent中离散相模型(DPM模型)对某些影响过滤芯捕集效率因素进行了数值模拟,得出了三种规格单层过滤芯周围的离散相浓度场分布及捕集效率.结果显示:在考虑杂质结晶析出速度的前提下,增大流体速度和降低过滤芯孔隙率可以提高过滤芯对杂质的捕集效率,且速度增大到一定数值之后,过滤芯对杂质捕集的效率增速减缓.相关结果可为冷阱过滤芯的的优化设计及液态金属流速的确定提供理论依据与参考.%Liquid LiPb (lithium-lead) purification technology was one of the key technologies on liquid LiPb breeder blankets for fusion reactors. Cold trap was commonly used in the lithium-lead-line purification devices. Since the cold trap filter unit collection efficiency is difficult to be measured on-line, the discrete phase model (PDM) was used to simulate the impurity trapped efficiency factors of filter by fluent in this paper. It analyzed discrete phase concentration distribution and collection efficiency on three different sizes of singlE-layer filter unit. The results indicated that increasing fluid velocity and reducing the filter unit porosity can increase the impurities collection efficiency at the premise of considering impurities crystallization rate. When the velocity increased to the certain value, the growth of collection efficiency became slowly. The analysis results were useful for the optimization design of cold trap filter unit and determination of liquid metal flow velocity through the cold trap filter unit.

  17. Efficient Electrolytes for Lithium-Sulfur Batteries

    Directory of Open Access Journals (Sweden)

    Natarajan eAngulakshmi

    2015-05-01

    Full Text Available This review article mainly encompasses on the state-of-the-art electrolytes for lithium–sulfur batteries. Different strategies have been employed to address the issues of lithium-sulfur batteries across the world. One among them is identification of electrolytes and optimization of their properties for the applications in lithium-sulfur batteries. The electrolytes for lithium-sulfur batteries are broadly classified as (i non-aqueous liquid electrolytes, (ii ionic liquids, (iii solid polymer and (iv glass-ceramic electrolytes. This article presents the properties, advantages and limitations of each type of electrolytes. Also the importance of electrolyte additives on the electrochemical performance of Li-S cells is discussed.

  18. Synthesis of Lithium Fluoride from Spent Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Daniela S. Suarez

    2017-05-01

    Full Text Available Lithium (Li is considered a strategic element whose use has significantly expanded. Its current high demand is due to its use in lithium ion batteries for portable electronic devices, whose manufacture and market are extensively growing every day. These days there is a great concern about the final disposal of these batteries. Therefore, the possibility of developing new methodologies to recycle their components is of great importance, both commercially and environmentally. This paper presents results regarding important operational variables for the dissolution of the lithium and cobalt mixed-oxide (LiCoO2 cathodes from spent lithium ion batteries (LIBs with hydrofluoric acid. The recovery and synthesis of Co and Li compounds were also investigated. The dissolution parameters studied were: temperature, reaction time, solid-liquid ratio, stirring speed, and concentration of HF. The investigated recovery parameters included: pH, temperature, and time with and without stirring. The final precipitation of lithium fluoride was also examined. The results indicate that an increase in the HF concentration, temperature, and reaction time favors the leaching reaction of the LiCoO2. Dissolutions were close to 60%, at 75 °C and 120 min with a HF concentration of 25% (v/v. The recovery of Co and Li were 98% and 80%, respectively, with purities higher than 94%. Co and Li compounds, such as Co3O4 and LiF, were synthesized. Furthermore, it was possible to almost completely eliminate the F− ions as CaF2.

  19. Laser-adjusted three-dimensional Li-Mn-O cathode architectures for secondary lithium-ion cells

    Science.gov (United States)

    Pröll, J.; Kohler, R.; Torge, M.; Bruns, M.; Przybylski, M.; Ulrich, S.; Seifert, H. J.; Pfleging, W.

    2012-03-01

    Three-dimensional cathode architectures for rechargeable lithium-ion cells can provide better Li-ion diffusion due to larger electrochemical active surface area and therefore, may stabilize the cycling behaviour of an electrochemical cell. This features show great importance when aiming for long-life batteries, e.g. in stationary or portable power devices. In this study, lithium manganese oxide thin films were used as cathode material with the goal to stabilize their cycling behavior and to counter degradation effects which come up within the lithium manganese oxide system. Firstly, appropriate laser ablation parameters were selected in order to achieve defined three-dimensional structures with features sizes down to micro- and sub-micrometer scale by using mask imaging technique. Laser annealing was also applied onto the laser structured material in a second step in order to form an electrochemically active phase. Process development led to a laser annealing strategy for a flexible adjustment of crystallinity and grain size. Laser annealing was realized using a high power diode laser system operating at a wavelength of 940 nm. Information on the surface composition, chemistry and topography as well as studies on the crystalline phase of the material were obtained by using Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction analysis. The electrochemical activity of the laser modified lithium manganese oxide cathodes was explored by cyclic voltammetry measurements and galvanostatic testing by using a lithium anode and standard liquid electrolyte.

  20. Magadiite Templated High Surface Area Graphene-Type Carbons from Metal-Halide based Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, Pasquale F [ORNL; Hillesheim, Patrick C [ORNL; Bauer, John C [ORNL; Mahurin, Shannon Mark [ORNL; Dai, Sheng [ORNL; Arend, Nikolas [ORNL

    2013-01-01

    Freestanding silicon films with a thickness ranging from 1 nm to several micrometers were prepared by Cat-CVD onto ionic liquid ([BMIM][BF4]) surfaces for the first time. The films, obtained without a solid substrate, can be facilely characterized by TEM and AFM to study the film formation and growth process.

  1. Collaborative Research and Development on Liquid Metal Plasma Facing Components

    Science.gov (United States)

    Jaworski, M. A.; Abrams, T.; Ellis, R.; Khodak, A.; Leblanc, B.; Menard, J.; Ono, M.; Skinner, C. H.; Stotler, D. P.; Detemmerman, G.; Gleeson, M. A.; Lof, A. R.; Scholten, J.; van den Berg, M. A.; van den Meiden, H. J.; Gray, T. K.; Sabbagh, S. A.; Soukhanovskii, V. A.; Hu, J.; Wang, L.; Zuo, G.

    2012-10-01

    Liquid metal plasma facing components (PFCs) provide the potential to avoid component replacement by continually replenishing the plasma-facing surface. Data during the NSTX liquid lithium divertor (LLD) campaign indicate that impurity accumulation on the static lithium resulted in a mixed-material surface. However, no lithium ejection nor substrate influx was observed during normal operation. This motivates research on flowing systems for near-term machines. Experiments on the Magnum-PSI linear test-stand and EAST tokamak have begun to explore issues related to near-surface lithium transport, surface evolution and coating lifetime for exposures of 5-10s. Technology development for a fully-flowing liquid lithium PFC is being conducted including construction of a liquid lithium flow loop and thermal-hydraulic studies of novel, capillary-restrained lithium PFCs for possible use on EAST and NSTX-U.

  2. Lithium and Pregnancy

    Science.gov (United States)

    ... best live chat Live Help Fact Sheets Share Lithium and Pregnancy Saturday, 20 September 2014 In every ... risk. This sheet talks about whether exposure to lithium may increase the risk for birth defects over ...

  3. Preparation of lithium ion-sieve and utilizing in recovery of lithium from seawater

    Institute of Scientific and Technical Information of China (English)

    Lu WANG; Changgong MENG; Wei MA

    2009-01-01

    Lithium is one of the most important light metals, which is widely used as raw materials for large-capacity rechargeable batteries, light aircraft alloys and nuclear fusion fuel. Seawater, which contains 250 billion tons of lithium in total, has thus recently been noticed as a possible resource of lithium. While, since the aver-age concentration of lithium in seawater is quite low (0.17mg.L-1), enriching it to an adequate high density becomes the primary step for industrial applications. The adsorption method is the most prospective technology for increasing the concentration of lithium in liquid. Among the adsorbents for lithium, the ion-sieve is a kind of special absorbent which has high selectivity for Li+, especially the spinel manganese oxides (SMO), which among the series of ion-sieves, has become the most promising adsorption material for lithium. In this study, the SMO ion-sieve was prepared by a coprecipitation method. The preparation conditions were discussed and the sample characters were analyzed. Recovery of Li+ from seawater were studied in batch experiments using prepared ion-sieve, and the effect of solution pH and the uptake rates were also investigated in different Li+ solutions.

  4. Lithium batteries; Les accumulateurs au lithium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop on lithium batteries is divided into 4 sections dealing with: the design and safety aspects, the cycling, the lithium intercalation and its modeling, and the electrolytes. These 4 sections represent 19 papers and are completed by a poster session which corresponds to 17 additional papers. (J.S.)

  5. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.xbatteries containing the electrodes.

  6. Lithium use in batteries

    Science.gov (United States)

    Goonan, Thomas G.

    2012-01-01

    Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.

  7. Stellar 30-keV neutron capture in 94,96Zr and the 90Zr(gamma,n)89Zr photonuclear reaction with a high-power liquid-lithium target

    CERN Document Server

    Tessler, M; Arenshtam, A; Feinberg, G; Friedman, M; Halfon, S; Kijel, D; Weissman, L; Aviv, O; Berkovits, D; Eisen, Y; Eliyahu, I; Haquin, G; Kreisel, A; Mardor, I; Shimel, G; Shor, A; Silverman, I; Yungrais, Z

    2015-01-01

    A high-power Liquid-Lithium Target (LiLiT) was used for the first time for neutron production via the thick-target 7Li(p,n)7Be reaction and quantitative determination of neutron capture cross sections. Bombarded with a 1-2 mA proton beam at 1.92 MeV from the Soreq Applied Research Accelerator Facility (SARAF), the setup yields a 30-keV quasi-Maxwellian neutron spectrum with an intensity of 3-5e10 n/s, more than one order of magnitude larger than present near-threshold 7Li(p,n) neutron sources. The setup was used here to determine the 30-keV Maxwellian averaged cross section (MACS) of 94Zr and 96Zr as 28.0+-0.6 mb and 12.4+-0.5 mb respectively, based on activation measurements. The precision of the cross section determinations results both from the high neutron yield and from detailed simulations of the entire experimental setup. We plan to extend our experimental studies to low-abundance and radioactive targets. In addition, we show here that the setup yields intense high-energy (17.6 and 14.6 MeV) prompt cap...

  8. Capillary electrophoresis with contactless conductivity detection for the quantification of fluoride in lithium ion battery electrolytes and in ionic liquids-A comparison to the results gained with a fluoride ion-selective electrode.

    Science.gov (United States)

    Pyschik, Marcelina; Klein-Hitpaß, Marcel; Girod, Sabrina; Winter, Martin; Nowak, Sascha

    2017-02-01

    In this study, an optimized method using capillary electrophoresis (CE) with a direct contactless conductivity detector (C(4) D) for a new application field is presented for the quantification of fluoride in common used lithium ion battery (LIB) electrolyte using LiPF6 in organic carbonate solvents and in ionic liquids (ILs) after contacted to Li metal. The method development for finding the right buffer and the suitable CE conditions for the quantification of fluoride was investigated. The results of the concentration of fluoride in different LIB electrolyte samples were compared to the results from the ion-selective electrode (ISE). The relative standard deviations (RSDs) and recovery rates for fluoride were obtained with a very high accuracy in both methods. The results of the fluoride concentration in the LIB electrolytes were in very good agreement for both methods. In addition, the limit of detection (LOD) and limit of quantification (LOQ) values were determined for the CE method. The CE method has been applied also for the quantification of fluoride in ILs. In the fresh IL sample, the concentration of fluoride was under the LOD. Another sample of the IL mixed with Li metal has been investigated as well. It was possible to quantify the fluoride concentration in this sample.

  9. Development of non-flammable lithium secondary battery with room-temperature ionic liquid electrolyte: Performance of electroplated Al film negative electrode

    Energy Technology Data Exchange (ETDEWEB)

    Ui, Koichi; Yamamoto, Keigo; Ishikawa, Kohei; Minami, Takuto; Takeuchi, Ken; Itagaki, Masayuki; Watanabe, Kunihiro; Koura, Nobuyuki [Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510 (Japan)

    2008-08-15

    The negative electrode performance of the electroplated Al film electrode in the LiCl saturated AlCl{sub 3}-1-ethyl-3-methylimizadolium chloride (EMIC) + SOCl{sub 2} melt as the electrolyte for use in non-flammable lithium secondary batteries was evaluated. In the cyclic voltammogram of the electroplated Al film electrode in the melt, the oxidation and reduction waves corresponding to the electrochemical insertion/extraction reactions of the Li{sup +} ion were observed at 0-0.80 V vs. Li{sup +}/Li, which suggested that the electroplated Al film electrode operated well in the electrolyte. The almost flat potential profiles at about 0.40 V vs. Li{sup +}/Li on discharging were shown. The discharge capacity and charge-discharge efficiency was 236 mAh g{sup -1} and 79.2% for the 1st cycle and it maintained 232 mAh g{sup -1} and 77.9% after the 10th cycle. In addition, the initial charge-discharge efficiencies of the electroplated Al film electrode were higher than that of carbon electrodes. The main cathodic polarization reaction was the insertion of Li{sup +} ions, and side reactions hardly occurred due to the decomposition reaction of the melt because the Li content corresponding to the electricity was almost totally inserted into the film after charging. (author)

  10. High performance batteries with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen

    2012-08-07

    The present invention is directed to lithium-ion batteries in general and more particularly to lithium-ion batteries based on aligned graphene ribbon anodes, V.sub.2O.sub.5 graphene ribbon composite cathodes, and ionic liquid electrolytes. The lithium-ion batteries have excellent performance metrics of cell voltages, energy densities, and power densities.

  11. Lithium carbon batteries with solid polymer electrolyte; Accumulateur lithium carbone a electrolyte solide polymere

    Energy Technology Data Exchange (ETDEWEB)

    Andrieu, X.; Boudin, F. [Alcatel Alsthom Recherche, 91 - Marcoussis (France)

    1996-12-31

    The lithium carbon batteries studied in this paper use plasticized polymer electrolytes made with passive polymer matrix swollen by a liquid electrolyte with a high ionic conductivity (> 10{sup -3} S/cm at 25 deg. C). The polymers used to prepare the gels are polyacrylonitrile (PAN) and vinylidene poly-fluoride (PVdF). The electrochemical and physical properties of these materials are analyzed according to their composition. The behaviour of solid electrolytes with different materials of lithium ion insertion (graphite and LiNiO{sub 2}) are studied and compared to liquid electrolytes. The parameters taken into account are the reversible and irreversible capacities, the cycling performance and the admissible current densities. Finally, complete lithium ion batteries with gelled electrolytes were manufactured and tested. (J.S.) 2 refs.

  12. Experimental studies of lithium-based surface chemistry for fusion plasma-facing materials applications

    Energy Technology Data Exchange (ETDEWEB)

    Allain, J.P., E-mail: allain@purdue.ed [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Rokusek, D.L.; Harilal, S.S. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Nieto-Perez, M. [CICATA-IPN, Cerro Blanco 141 Cimatario, Queretaro, QRO 76090 (Mexico); Skinner, C.H.; Kugel, H.W. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Heim, B. [Purdue University, West Lafayette, 400 Central Drive, IN 47907 (United States); Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States)

    2009-06-15

    Lithium has enhanced the operational performance of fusion devices such as: TFTR, CDX-U, FTU, T-11 M, and NSTX. Lithium in the solid and liquid state has been studied extensively in laboratory experiments including its erosion and hydrogen-retaining properties. Reductions in physical sputtering up to 40-60% have been measured for deuterated solid and liquid lithium surfaces. Computational modeling indicates that up to a 1:1 deuterium volumetric retention in lithium is possible. This paper presents the results of systematic in situ laboratory experimental studies on the surface chemistry evolution of ATJ graphite under lithium deposition. Results are compared to post-mortem analysis of similar lithium surface coatings on graphite exposed to deuterium discharge plasmas in NSTX. Lithium coatings on plasma-facing components in NSTX have shown substantial reduction of hydrogenic recycling. Questions remain on the role lithium surface chemistry on a graphite substrate has on particle sputtering (physical and chemical) as well as hydrogen isotope recycling. This is particularly due to the lack of in situ measurements of plasma-surface interactions in tokamaks such as NSTX. Results suggest that the lithium bonding state on ATJ graphite is lithium peroxide and with sufficient exposure to ambient air conditions, lithium carbonate is generated. Correlation between both results is used to assess the role of lithium chemistry on the state of lithium bonding and implications on hydrogen pumping and lithium sputtering. In addition, reduction of factors between 10 and 30 reduction in physical sputtering from lithiated graphite compared to pure lithium or carbon is also measured.

  13. Conference Report on the 3rd International Symposium on Lithium Application for Fusion Devices

    Science.gov (United States)

    Mazzitelli, G.; Hirooka, Y.; Hu, J. S.; Mirnov, S. V.; Nygren, R.; Shimada, M.; Ono, M.; Tabares, F. L.

    2015-02-01

    The third International Symposium on Lithium Application for Fusion Device (ISLA-2013) was held on 9-11 October 2013 at ENEA Frascati Centre with growing participation and interest from the community working on more general aspect of liquid metal research for fusion energy development. ISLA-2013 has been confirmed to be the largest and the most important meeting dedicated to liquid metal application for the magnetic fusion research. Overall, 45 presentation plus 5 posters were given, representing 28 institutions from 11 countries. The latest experimental results from nine magnetic fusion devices were presented in 16 presentations from NSTX (PPPL, USA), FTU (ENEA, Italy), T-11M (Trinity, RF), T-10 (Kurchatov Institute, RF), TJ-II (CIEMAT, Spain), EAST(ASIPP, China), HT-7 (ASIPP, China), RFX (Padova, Italy), KTM (NNC RK, Kazakhstan). Sessions were devoted to the following: (I) lithium in magnetic confinement experiments (facility overviews), (II) lithium in magnetic confinement experiments (topical issues), (III) special session on liquid lithium technology, (IV) lithium laboratory test stands, (V) Lithium theory/modelling/comments, (VI) innovative lithium applications and (VII) special Session on lithium-safety and lithium handling. There was a wide participation from the fusion technology communities, including IFMIF and TBM communities providing productive exchange with the physics oriented magnetic confinement liquid metal research groups. This international workshop will continue on a biennial basis (alternating with the Plasma-Surface Interactions (PSI) Conference) and the next workshop will be held at CIEMAT, Madrid, Spain, in 2015.

  14. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    Science.gov (United States)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  15. Microporous PVdF gel for lithium-ion batteries

    Science.gov (United States)

    Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I. I.

    A novel ionic conductor for lithium-ion batteries was developed. This electrolyte is based on a porous polymer matrix filled and swollen by a liquid. The polymer matrix obtained by phase inversion was characterized in terms of porosity and average pore size. The microporous PVdF gel formed by impregnation of this polymer matrix with liquid electrolyte exhibited a high equivalent conductivity and a good temperature stability. Complete lithium-ion batteries using this polymer-based electrolyte were manufactured with a new process. Preliminary cycling results show a good rate capability and a capacity evolution similar to that of regular lithium-ion cells. The interest of this technology, as many other lithium-polymer ones, also lies in the possibility of designing and manufacturing new battery shapes at lower cost.

  16. Technology roadmap for lithium ion batteries 2030; Technologie-Roadmap Lithium-Ionen-Batterien 2030

    Energy Technology Data Exchange (ETDEWEB)

    Thielmann, Axel; Isenmann, Ralf; Wietschel, Martin [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2010-07-01

    The technology roadmap for lithium ion batteries 2030 presents a graphical representation of the cell components, cell types and cell characteristics of lithium ion batteries and their connection with the surrounding technology field from today through 2030. This is a farsighted orientation on the way into the future and an implementation of the ''Roadmap: Batterieforschung Deutschland'' of the BMBF (Federal Ministry of Education and Science). The developments in lithium ion batteries are identified through 2030 form today's expert view in battery development and neighbouring areas. (orig.)

  17. Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement

    Science.gov (United States)

    Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.

    2016-10-01

    We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation-glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids.

  18. Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement

    Science.gov (United States)

    Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.

    2016-01-01

    We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069

  19. Correlating emissions with time and temperature to predict worst-case emissions from open liquid area sources.

    Science.gov (United States)

    Nagaraj, Archana; Sattler, Melanie L

    2005-08-01

    The two primary factors influencing ambient air pollutant concentrations are emission rate and dispersion rate. Gaussian dispersion modeling studies for odors, and often other air pollutants, vary dispersion rates using hourly meteorological data. However, emission rates are typically held constant, based on one measured value. Using constant emission rates can be especially inaccurate for open liquid area sources, like wastewater treatment plant units, which have greater emissions during warmer weather, when volatilization and biological activity increase. If emission rates for a wastewater odor study are measured on a cooler day and input directly into a dispersion model as constant values, odor impact will likely be underestimated. Unfortunately, because of project schedules, not all emissions sampling from open liquid area sources can be conducted under worst-case summertime conditions. To address this problem, this paper presents a method of varying emission rates based on temperature and time of the day to predict worst-case emissions. Emissions are varied as a linear function of temperature, according to Henry's law, and a tenth order polynomial function of time. Equation coefficients are developed for a specific area source using concentration and temperature measurements, captured over a multiday period using a data-logging monitor. As a test case, time/temperature concentration correlation coefficients were estimated from field measurements of hydrogen sulfide (H2S) at the Rowlett Creek Wastewater Treatment Plant in Garland, TX. The correlations were then used to scale a flux chamber emission rate measurement according to hourly readings of time and temperature, to create an hourly emission rate file for input to the dispersion model ISCST3. ISCST3 was then used to predict hourly atmospheric concentrations of H2S. With emission rates varying hourly, ISCST3 predicted 384 acres of odor impact, compared with 103 acres for constant emissions. Because field

  20. Status of design and experimental activity on module of lithium divertor for KTM tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, Igor E., E-mail: lyublinski@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Vertkov, Alexey V.; Zharkov, Mikhail Yu.; Semenov, Vladimir V. [JSC “Red Star”, Moscow (Russian Federation); Mirnov, Sergey V.; Lazarev, Vladimir B. [GSC RF TRINITI, Troitsk, Moscow Region (Russian Federation); Tazhibayeva, Irina L.; Shapovalov, Gennadiy V.; Kulsartov, Timur V.; D’yachenko, Alexandr V. [IAE of National Nuclear Center, Kurchatov (Kazakhstan); Mazzitelli, Giuseppe [Associazione EURATOM-ENEA sulla Fusione, C.R. ENEA Frascati, Rome (Italy); Agostini, Pietro [ENEA Brasimone, Camugnano, BO (Italy)

    2013-10-15

    Highlights: • Lithium divertor module based on capillary-porous system is created for KTM tokamak. • The hydraulic tests of lithium divertor module were conducted. • The results were compared with the calculation data. • The analysis of results’ discrepancies was conducted. • The lithium divertor module is ready for tests on KTM tokamak. -- Abstract: The projects of ITER and DEMO reactors showed that there are serious difficulties with solving the issues of plasma facing elements (PFE) based on the solid materials. Problems of PFE can be overcome by the use of liquid lithium. Application of lithium will allow to create a self-renewal and MHD stable liquid metal surface of the in-vessel devices possessing practically unlimited service life. Realization of these advantages is based on use of so-called lithium capillary-porous system (CPS) – new material, in which liquid lithium fills a solid matrix from porous material. The progress in development of lithium technology and also lithium experiments in the tokamaks TFTR, T-11M, T-10, FTU, NSTX, LTX, HT-7 and stellarator TJ II is a good basis for development of the project of steady-state operating lithium divertor module for Kazakhstan tokamak. At present the lithium divertor module for KTM tokamak is development and manufacturing. The paper describes main design features of the module of lithium divertor (MLD). The first step of the hydraulic tests of MLD with fully assembled external thermo-stabilization system, which was connected to in-vessel lithium unit, were performed using ethanol as a model heat transfer media. Test results of MLD have shown that operating parameters of designed and manufactured system for thermo-stabilization are sufficient for proper operation; basic hydraulic characteristics of the system are close to expected values.

  1. Effect of lithium on the casting microstructure of Cu-Li alloys

    Institute of Scientific and Technical Information of China (English)

    ZHU Dachuan; SONG Mingzhao; YANG Dingming; CHEN Jiazhao; TU Mingjing

    2005-01-01

    The effect of lithium on the casting microstructure of Cu-Li alloys was studied via the Wild MPS 46 Automatic camera, Deitz Diaplan, and scanning electron microscope. The result shows that trace lithium added to copper coarsens the grains of Cu-Li alloys in equiaxed crystal area because of the excellent purification effect. With the amount of lithium increasing, the average grain size increases sharply. But when the amount of lithium increases more, the average grain size decreases instead. At the same time, the typical dentritic crystal area of copper is diminished when lithium is added to pure copper.

  2. Lithium associated autoimmune thyroiditis.

    OpenAIRE

    Shimizu, M; Hirokawa, M.; T. Manabe; Shimozuma, K; Sonoo, H; Harada, T.

    1997-01-01

    A case of autoimmune thyroiditis after long term treatment with lithium is described in a 29 year old Japanese woman with manic depression. Positive serum antithyroglobulin and antimicrosomal antibodies, diffuse goitre, and microscopic chronic thyroiditis, as well as the clinical history of long term lithium treatment were suggestive of lithium associated autoimmune thyroiditis. Microscopically, there was a mild degree of interstitial fibrosis and a moderate degree of lymphocytic infiltration...

  3. Assessment of corrosion phenomena in liquid lithium at T < 873 K. A Li(d,n) neutron source as case study

    Energy Technology Data Exchange (ETDEWEB)

    Knaster, J., E-mail: juan.knaster@ifmif.org [IFMIF/EVEDA Project Team (F4E), Rokkasho (Japan); Favuzza, P. [ENEA, Firenze (Italy)

    2017-05-15

    The corrosion induced by alkali metals in steels has been the subject of long decades of intense studies under both nuclear fission and fusion research programs. Li or its eutectic Pb-17Li is the liquid metal coolant choice for fusion blankets due to the tritium breeder capability of Li. Non-metal impurities enhance corrosion, but only N becomes potentially a problem given its high solubility in liquid Li and the depletion of Cr through ternary nitrides Li-Cr-N. The low solubility of C and O allow its cold trapping to values <10 wppm, however N can only be hot trapped demanding temperatures typically of 873 K. The inherent difficulties of experimentation on physicochemical kinetics related with alkali metals lead to a confusing divergence of results available in the literature; however, the understanding of the corrosion phenomena of RAFM steels exposed to flowing Li up to 873 K is mature. Next decade, 14 MeV neutrons will be available for fusion materials testing through Li(d,n) nuclear reactions. In such a facility, a concave RAFM steel backplate will be channelling 523 K flowing Li in the region where the 40 MeV deuteron beam will be impacting. If RAFM steels are considered, two main concurrent mechanisms will take place: a) mass transport of alloying elementsalong the loop and b) depletion of Cr through formation of Li{sub 9}CrN{sub 5}. Fortunately, the mass transport phenomena of Cr within the ΔT = 350 K in the loop is limited due to the poor solubility of Cr in liquid Li (0.21 wppm at 873 K). In turn, at 523 K Li the activity of N to form the ternary compound is negligible. However, the high solubility of Ni in Li (2144 wppm at 873 K), suggests the presence of mass transport phenomena of Ni from the stainless steel piping; unfortunately, the physicochemical kinetics are not fully understood. Lifus 6, in operation in Brasimone (ENEA) since the end 2015, will close in a definitive manner remaining open questions.

  4. Stellar 30-keV neutron capture in 94, 96Zr and the Zr90(γ,nZr89 photonuclear reaction with a high-power liquid-lithium target

    Directory of Open Access Journals (Sweden)

    M. Tessler

    2015-12-01

    Full Text Available A high-power Liquid-Lithium Target (LiLiT was used for the first time for neutron production via the thick-target Li7(p,nBe7 reaction and quantitative determination of neutron capture cross sections. Bombarded with a 1–2 mA proton beam at 1.92 MeV from the Soreq Applied Research Accelerator Facility (SARAF, the setup yields a 30-keV quasi-Maxwellian neutron spectrum with an intensity of 3–5×1010 n/s, more than one order of magnitude larger than present near-threshold Li7(p,n neutron sources. The setup was used here to determine the 30-keV Maxwellian averaged cross section (MACS of 94Zr and 96Zr as 28.0±0.6 mb and 12.4±0.5 mb respectively, based on activation measurements. The precision of the cross section determinations results both from the high neutron yield and from detailed simulations of the entire experimental setup. We plan to extend our experimental studies to low-abundance and radioactive targets. In addition, we show here that the setup yields intense high-energy (17.6 and 14.6 MeV prompt capture γ rays from the Li7(p,γBe8 reaction with yields of ∼3×108γs−1mA−1 and ∼4×108γs−1mA−1, respectively, evidenced by the Zr90(γ,nZr89 photonuclear reaction.

  5. Lithium nephrotoxicity revisited.

    Science.gov (United States)

    Grünfeld, Jean-Pierre; Rossier, Bernard C

    2009-05-01

    Lithium is widely used to treat bipolar disorder. Nephrogenic diabetes insipidus (NDI) is the most common adverse effect of lithium and occurs in up to 40% of patients. Renal lithium toxicity is characterized by increased water and sodium diuresis, which can result in mild dehydration, hyperchloremic metabolic acidosis and renal tubular acidosis. The concentrating defect and natriuretic effect develop within weeks of lithium initiation. After years of lithium exposure, full-blown nephropathy can develop, which is characterized by decreased glomerular filtration rate and chronic kidney disease. Here, we review the clinical and experimental evidence that the principal cell of the collecting duct is the primary target for the nephrotoxic effects of lithium, and that these effects are characterized by dysregulation of aquaporin 2. This dysregulation is believed to occur as a result of the accumulation of cytotoxic concentrations of lithium, which enters via the epithelial sodium channel (ENaC) on the apical membrane and leads to the inhibition of signaling pathways that involve glycogen synthase kinase type 3beta. Experimental and clinical evidence demonstrates the efficacy of the ENaC inhibitor amiloride for the treatment of lithium-induced NDI; however, whether this agent can prevent the long-term adverse effects of lithium is not yet known.

  6. Interfacial areas and gas hold-ups in gas-liquid contactors at elevated pressures from 0.1 to 8.0 MPa

    NARCIS (Netherlands)

    Oyevaar, M.H.; Bos, R.; Bos, A.N.R.; Westerterp, K.R.

    1991-01-01

    Interfacial areas and gas hold-ups have been determined at pressures up to 8.0 MPa in a mechanically agitated gas—liquid reactor and a bubble column with a diameter of 81 mm for superficial gas velocites between 1 and 5 and 1 and 10 cm/s, respectively. The interfacial areas have been determined by

  7. Research on lithium batteries

    Science.gov (United States)

    Hill, I. R.; Goledzinowski, M.; Dore, R.

    1993-12-01

    Research was conducted on two types of lithium batteries. The first is a rechargeable Li-SO2 system using an all-inorganic electrolyte. A Li/liquid cathode system was chosen to obtain a relatively high discharge rate capability over the +20 to -30 C range. The fabrication and cycling performance of research cells are described, including the preparation and physical properties of porous polytetra fluoroethylene bonded carbon electrodes. Since the low temperature performance of the standard electrolyte was unsatisfactory, studies of electrolytes containing mixed salts were made. Raman spectroscopy was used to study the species present in these electrolytes and to identify discharge products. Infrared spectroscopy was used to measure electrolyte impurities. Film growth on the LiCl was also monitored. The second battery is a Li-thionyl chloride nonrechargeable system. Research cells were fabricated containing cobalt phthalo cyanine in the carbon cathode. The cathode was heat treated at different temperatures and the effect on cell discharge rate and capacity evaluated. Commercially obtained cells were used in an investigation of a way to identify substandard cells. The study also involved electrochemical impedance spectroscopy and cell discharging at various rates. The results are discussed in terms of LiCl passivation.

  8. Lithium-Air Cell Development

    Science.gov (United States)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  9. Thin film passivation of laser generated 3D micro patterns in lithium manganese oxide cathodes

    Science.gov (United States)

    Pröll, J.; Kohler, R.; Bruns, M.; Oberst, V.; Weidler, P. G.; Heißler, S.; Kübel, C.; Scherer, T.; Prang, R.; Seifert, H. J.; Pfleging, W.

    2013-03-01

    The increasing need for long-life lithium-ion batteries requires the further development of electrode materials. Especially on the cathode side new materials or material composites are needed to increase the cycle lifetime. On the one hand, spinel-type lithium manganese oxide is a promising candidate to be used as cathode material due to its non-toxicity, low cost and good thermal stability. On the other hand, the spinel structure suffers from change in the oxidation state of manganese during cycling which is also accompanied by loss of active material into the liquid electrolyte. The general trend is to enhance the active surface area of the cathode in order to increase lithium-ion mobility through the electrode/electrolyte interface, while an enhanced surface area will also promote chemical degradation. In this work, laser microstructuring of lithium manganese oxide thin films was applied in a first step to increase the active surface area. This was done by using 248 nm excimer laser radiation and chromium/quartz mask imaging techniques. In a second step, high power diode laser-annealing operating at a wavelength of 940 nm was used for forming a cubic spinel-like battery phase. This was verified by means of Raman spectroscopy and cyclic voltammetric measurements. In a last step, the laser patterned thin films were coated with indium tin oxide (ITO) layers with a thickness of 10 nm to 50 nm. The influence of the 3D surface topography as well as the ITO thickness on the electrochemical performance was studied by cyclic voltammetry. Post-mortem studies were carried out by using scanning electron microscopy and focused ion beam analysis.

  10. Olivine-type nanosheets for lithium ion battery cathodes.

    Science.gov (United States)

    Rui, Xianhong; Zhao, Xiaoxu; Lu, Ziyang; Tan, Huiteng; Sim, Daohao; Hng, Huey Hoon; Yazami, Rachid; Lim, Tuti Mariana; Yan, Qingyu

    2013-06-25

    Olivine-type LiMPO4 (M = Fe, Mn, Co, Ni) has become of great interest as cathodes for next-generation high-power lithium-ion batteries. Nevertheless, this family of compounds suffers from poor electronic conductivities and sluggish lithium diffusion in the [010] direction. Here, we develop a liquid-phase exfoliation approach combined with a solvothermal lithiation process in high-pressure high-temperature (HPHT) supercritical fluids for the fabrication of ultrathin LiMPO4 nanosheets (thickness: 3.7-4.6 nm) with exposed (010) surface facets. Importantly, the HPHT solvothermal lithiation could produce monodisperse nanosheets while the traditional high-temperature calcination, which is necessary for cathode materials based on high-quality crystals, leads the formation of large grains and aggregation of the nanosheets. The as-synthesized nanosheets have features of high contact area with the electrolyte and fast lithium transport (time diffusion constant in at the microsecond level). The estimated diffusion time for Li(+) to diffuse over a [010]-thickness of <5 nm (L) was calculated to be less than 25, 2.5, and 250 μs for LiFePO4, LiMnPO4, and LiCoPO4 nanosheets, respectively, via the equation of t = L(2)/D. These values are about 5 orders of magnitude lower than the corresponding bulk materials. This results in high energy densities and excellent rate capabilities (e.g., 18 kW kg(-1) and 90 Wh kg(-1) at a 80 C rate for LiFePO4 nanosheets).

  11. RECOVERY GARAM LITHIUM DARI AIR ASIN (BRINE DENGAN METODA PRESIPITASI

    Directory of Open Access Journals (Sweden)

    Sumarno Sumarno

    2012-07-01

    Full Text Available Lithium demand increases as it is widely used as raw material for rechargeable battery, alloy for airplane, andfuel for fusion nuclear reactor. Lithium is an extremely reactive element, that it is never found as free element innature. Lithium compounds are found in earth crust, with very small concentration (20 – 70 ppm and totalcontent of more than 20 million tons. The biggest lithium reserve is in seawater (0,14 – 0,25 ppm andgeothermal water (7 ppm with total amount of 230 billion tons. There is no industry applies the technology torecover lithium from seawater. Having a vast sea area and abundant geothermal sources, Indonesia needs todevelop a technology to recover lithium from both sources. This research is aimed to recover lithium fromgeothermal water. The experiment was conducted using synthetic and geothermal water with lithiumconcentration range of 220 – 400 ppm, temperature range of 20 – 40°C, and mixing time range of 1 – 4 hours.The experiment was designed with 2 level factorial design. The results show that the most influencing variable ismixing time, while significant interaction amongst variables is not observed. Further experiment usinggeothermal water from Bledug Kuwu with initial lithium concentration of 400 ppm and temperature 30°Cresulted in optimum mixing time, i.e. 3 hours with 92,5% of the lithium could be recovered

  12. Current status of environmental, health, and safety issues of lithium polymer electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D; Hammel, C J

    1995-02-01

    Lithium solid polymer electrolyte (SPE) batteries are being investigated by researchers worldwide as a possible energy source for future electric vehicles (EVs). One of the main reasons for interest in lithium SPE battery systems is the potential safety features they offer as compared to lithium battery systems using inorganic and organic liquid electrolytes. However, the development of lithium SPE batteries is still in its infancy, and the technology is not envisioned to be ready for commercialization for several years. Because the research and development (R&D) of lithium SPE battery technology is of a highly competitive nature, with many companies both in the United States and abroad pursuing R&D efforts, much of the information concerning specific developments of lithium SPE battery technology is proprietary. This report is based on information available only through the open literature (i.e., information available through library searches). Furthermore, whereas R&D activities for lithium SPE cells have focused on a number of different chemistries, for both electrodes and electrolytes, this report examines the general environmental, health, and safety (EH&S) issues common to many lithium SPE chemistries. However, EH&S issues for specific lithium SPE cell chemistries are discussed when sufficient information exists. Although lithium batteries that do not have a SPE are also being considered for EV applications, this report focuses only on those lithium battery technologies that utilize the SPE technology. The lithium SPE battery technologies considered in this report may contain metallic lithium or nonmetallic lithium compounds (e.g., lithium intercalated carbons) in the negative electrode.

  13. Electrolyte compositions for lithium ion batteries

    Science.gov (United States)

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  14. Mitigation of plasma–material interactions via passive Li efflux from the surface of a flowing liquid lithium limiter in EAST

    Science.gov (United States)

    Zuo, G. Z.; Hu, J. S.; Maingi, R.; Ren, J.; Sun, Z.; Yang, Q. X.; Chen, Z. X.; Xu, H.; Tritz, K.; Zakharov, L. E.; Gentile, C.; Meng, X. C.; Huang, M.; Xu, W.; Chen, Y.; Wang, L.; Yan, N.; Mao, S. T.; Yang, Z. D.; Li, J. G.; EAST Team

    2017-04-01

    A new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at  >5  ×  1020 atom s‑1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. The Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.

  15. In-situ measurement of the lithium distribution in Li-ion batteries using micro-IBA techniques

    Science.gov (United States)

    Yamazaki, A.; Orikasa, Y.; Chen, K.; Uchimoto, Y.; Kamiya, T.; Koka, M.; Satoh, T.; Mima, K.; Kato, Y.; Fujita, K.

    2016-03-01

    Direct observation of lithium concentration distribution in lithium-ion battery composite electrodes has been performed for the first time. Lithium-ion battery model cells for particle induced X-ray emission (PIXE) and particle induced gamma ray emission (PIGE) measurements were designed and fabricated. Two dimensional images of lithium concentration in LiFePO4 composite electrodes were obtained with PIXE and PIGE by scanning the proton microbeam for various charged states of the electrodes. Lithium concentration in LiFePO4 composite electrodes was decreased from the contact interface between LiFePO4 electrode and liquid electrolyte during the charge reaction.

  16. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  17. Graphene oxide hydrogel as a restricted-area nanoreactor for synthesis of 3D graphene-supported ultrafine TiO2 nanorod nanocomposites for high-rate lithium-ion battery anodes

    Science.gov (United States)

    Cheng, Jianli; Gu, Guifang; Ni, Wei; Guan, Qun; Li, Yinchuan; Wang, Bin

    2017-07-01

    Three-dimensional graphene-supported TiO2 nanorod nanocomposites (3D GS-TNR) are prepared using graphene oxide hydrogel as a restricted-area nanoreactor in the hydrothermal process, in which well-distributed TiO2 nanorods with a width of approximately 5 nm and length of 30 nm are conformally embedded in the 3D interconnected graphene network. The 3D graphene oxide not only works as a restricted-area nanoreactor to constrain the size, distribution and morphology of the TiO2; it also work as a highly interconnected conducting network to facilitate electrochemical reactions and maintain good structural integration when the nanocomposites are used as anode materials in lithium-ion batteries. Benefiting from the nanostructure, the 3D GS-TNR nanocomposites show high capacity and excellent long-term cycling capability at high current rates. The 3D GS-TNR composites deliver a high initial charge capacity of 280 mAh g-1 at 0.2 C and maintain a reversible capacity of 115 mAh g-1, with a capacity retention of 83% at 20 C after 1000 cycles. Meanwhile, compared with that of previously reported TiO2-based materials, the 3D GS-TNR nanocomposites show much better performance, including higher capacity, better rate capability and long-term cycling stability.

  18. Shadowing and mask opening effects during selective-area vapor-liquid-solid growth of InP nanowires by metalorganic molecular beam epitaxy.

    Science.gov (United States)

    Kelrich, A; Calahorra, Y; Greenberg, Y; Gavrilov, A; Cohen, S; Ritter, D

    2013-11-29

    Indium phosphide nanowires were grown by metalorganic molecular beam epitaxy using the selective-area vapor-liquid-solid method. We show experimentally and theoretically that the size of the annular opening around the nanowire has a major impact on nanowire growth rate. In addition, we observed a considerable reduction of the growth rate in dense two-dimensional arrays, in agreement with a calculation of the shadowing of the scattered precursors. Due to the impact of these effects on growth, they should be considered during selective-area vapor-liquid-solid nanowire epitaxy.

  19. New type of imidazole based salts designed specifically for lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Niedzicki, L., E-mail: asalm@ch.pw.edu.p [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw (Poland); Zukowska, G.Z.; Bukowska, M.; Szczecinski, P. [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw (Poland); Grugeon, S.; Laruelle, S.; Armand, M. [Laboratoire de Reactivite et de Chimie des Solides University de Picardie Jules Verne, 33 rue de Saint-Leu, 80039 Amiens (France); Panero, S.; Scrosati, B. [Department of Chemistry, University of Rome ' La Sapienza' , Piazzale Aldo Moro 5, 00185 Rome (Italy); Marcinek, M.; Wieczorek, W. [Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00664 Warsaw (Poland)

    2010-01-25

    In this manuscript we announce new type of 'tailored' imidazole-derived salts designed, synthesized and tested for application in lithium conductive electrolytes. Basic characterization of the structure of described materials has been made by Raman, IR and NMR ({sup 13}C NMR, {sup 19}F NMR) techniques. DSC and CV studies showed thermal stability of all salts over 200 deg. C and electrochemical stability in liquid and solid polymer solvents up to +4.6 V vs. metallic lithium anode and Al collectors. Such properties proved applicability of these salts as lithium electrolytes for modern types of lithium ion batteries.

  20. Modifications Made to the MELCOR Code for Analyzing Lithium Fires in Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, Brad Johnson

    2000-04-01

    This report documents initial modifications made to the MELCOR code that allows MELCOR to predict the consequences of lithium spill accidents for evolving fusion reactor designs. These modifications include thermodynamic and transport properties for lithium, and physical models for predicting the rate of reaction of and energy production from the lithium-air reaction. A benchmarking study was performed with this new MELCOR capability. Two lithium-air reaction tests conducted at the Hanford Engineering Development Laboratory (HEDL) were selected for this benchmark study. Excellent agreement was achieved between MELCOR predictions and measured data. Recommendations for modeling lithium fires with MELCOR and for future work in this area are included in this report.

  1. Modifications made to the MELCOR Code for Analyzing Lithium Fires in Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Merrill

    2000-04-01

    This report documents initial modifications made to the MELCOR code that allows MELCOR to predict the consequences of lithium spill accidents for evolving fusion reactor designs. These modifications include thermodynamic and transport properties for lithium, and physical models for predicting the rate of reaction of and energy production from the lithium-air reaction. A benchmarking study was performed with this new MELCOR capability. Two lithium-air reaction tests conducted at the Hanford Engineering Development Laboratory (HEDL) were selected for this benchmark study. Excellent agreement was achieved between MELCOR predictions and measured data. Recommendations for modeling lithium fires with MELCOR and for future work in this area are included in this report.

  2. Nanostructured titanium nitride as a novel cathode for high performance lithium/dissolved polysulfide batteries

    Science.gov (United States)

    Mosavati, Negar; Chitturi, Venkateswara Rao; Salley, Steven O.; Ng, K. Y. Simon

    2016-07-01

    Lithium-sulfur (Lisbnd S) batteries could potentially revolutionize the rechargeable battery market due to their high energy density and low cost. However, low active material utilization, electrode volumetric expansion and a high rate of capacity fade due to the dissolution of lithium polysulfide intermediates in the liquid electrolyte are the main challenges facing further Lisbnd S battery development. Here, we enhanced Lisbnd S batteries active material utilization and decreased the volumetric expansion by using the lithium/dissolved polysulfide configuration. Moreover, a novel class of cathode materials, Titanium Nitride (TiN), was developed for polysulfide conversion reactions. The surface chemical environment of the TiN has been investigated by X-ray photoelectron spectroscopy (XPS) analysis. The existence of Ssbnd Tisbnd N bonding at the cathode electrode surface was observed, which indicates the strong interactions between TiN and polysulfides. Therefore, the TiN electrode retains the sulfur species on the cathode surface, minimizing the active material and surface area loss and consequently, improves the capacity retention. The resultant cells demonstrated a high initial capacity of 1524 mAh g-1 and a good capacity retention for 100 cycles at a C/10 current rate.

  3. Interphase Evolution of a Lithium-Ion/Oxygen Battery.

    Science.gov (United States)

    Elia, Giuseppe Antonio; Bresser, Dominic; Reiter, Jakub; Oberhumer, Philipp; Sun, Yang-Kook; Scrosati, Bruno; Passerini, Stefano; Hassoun, Jusef

    2015-10-14

    A novel lithium-ion/oxygen battery employing Pyr14TFSI-LiTFSI as the electrolyte and nanostructured LixSn-C as the anode is reported. The remarkable energy content of the oxygen cathode, the replacement of the lithium metal anode by a nanostructured stable lithium-alloying composite, and the concomitant use of nonflammable ionic liquid-based electrolyte result in a new and intrinsically safer energy storage system. The lithium-ion/oxygen battery delivers a stable capacity of 500 mAh g(-1) at a working voltage of 2.4 V with a low charge-discharge polarization. However, further characterization of this new system by electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy reveals the progressive decrease of the battery working voltage, because of the crossover of oxygen through the electrolyte and its direct reaction with the LixSn-C anode.

  4. Modified natural graphite as anode material for lithium ion batteries

    Science.gov (United States)

    Wu, Y. P.; Jiang, C.; Wan, C.; Holze, R.

    A concentrated nitric acid solution was used as an oxidant to modify the electrochemical performance of natural graphite as anode material for lithium ion batteries. Results of X-ray photoelectron spectroscopy, electron paramagnetic resonance, thermogravimmetry, differential thermal analysis, high resolution electron microscopy, and measurement of the reversible capacity suggest that the surface structure of natural graphite was changed, a fresh dense layer of oxides was formed. Some structural imperfections were removed, and the stability of the graphite structure increased. These changes impede decomposition of electrolyte solvent molecules, co-intercalation of solvated lithium ions and movement of graphene planes along the a-axis direction. Concomitantly, more micropores were introduced, and thus, lithium intercalation and deintercalation were favored and more sites were provided for lithium storage. Consequently, the reversible capacity and the cycling behavior of the modified natural graphite were much improved by the oxidation. Obviously, the liquid-solid oxidation is advantageous in controlling the uniformity of the products.

  5. Capacity loss and faradaic efficiency of lithium thionyl chloride cells

    Energy Technology Data Exchange (ETDEWEB)

    Hoier, S. [Sandia National Labs., Albuquerque, NM (United States); Schlaikjer, C.; Johnson, A.; Riley, S. [Battery Engineering, Inc., Boston, MA (United States)

    1996-05-01

    In lithium/thionyl chloride (Li/TC) cells, a lithium limited design was thought to be safer than a cathode limited design because the amount of lithium left in discharged cells would be minimal. However, lithium corrosion reduces the capacity faster than does cathode degradation during storage. The optimization of the ratio of lithium to carbon was studied, considering storage time and temperature. The efficiency of converting chemical energy into electrical energy has been studied for the case of D cells with surface area from 45 to 345 cm{sup 2}, under constant and various pulsed loads. Microcalorimetric monitoring of the heat output during discharge allowed the direct measurement of faradaic efficiency, and showed that self discharge is far more pervasive that previously acknowledged. Typical faradaic efficiencies for constant load varied from 30% at low current density to 90% at moderate and 75 % at high current density. Pulsed current further depresses these efficiencies, except at very low average current density.

  6. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    Science.gov (United States)

    2015-01-01

    Titanate for Lithium-Air Batteries by Victoria L Blair, Claire V Weiss Brennan, and Joseph M Marsico Approved for public...TR-7584 ● JAN 2015 US Army Research Laboratory Grain Boundary Engineering of Lithium-Ion- Conducting Lithium Lanthanum Titanate for Lithium... Titanate for Lithium-Air Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Victoria L Blair, Claire V

  7. Influence of lithium coating on the optics of Doppler backscatter system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. H.; Liu, A. D., E-mail: lad@ustc.edu.cn; Zhou, C.; Hu, J. Q.; Wang, M. Y.; Yu, C. X.; Liu, W. D.; Li, H.; Lan, T.; Xie, J. L. [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-10-15

    This paper presents the first investigation of the effect of lithium coating on the optics of Doppler backscattering. A liquid lithium limiter has been applied in the Experimental Advanced Superconducting Tokamak (EAST), and a Doppler backscattering has been installed in the EAST. A parabolic mirror and a flat mirror located in the vacuum vessel are polluted by lithium. An identical optical system of the Doppler backscattering is set up in laboratory. The power distributions of the emission beam after the two mirrors with and without lithium coating (cleaned before and after), are measured at three different distances under four incident frequencies. The results demonstrate that the influence of the lithium coating on the power distributions are very slight, and the Doppler backscattering can work normally under the dosage of lithium during the 2014 EAST campaign.

  8. A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells.

    Science.gov (United States)

    Krämer, Yvonne; Birkenmaier, Claudia; Feinauer, Julian; Hintennach, Andreas; Bender, Conrad L; Meiler, Markus; Schmidt, Volker; Dinnebier, Robert E; Schleid, Thomas

    2015-04-13

    A novel approach for the marking of deposited lithium on graphite anodes from large automotive lithium-ion cells (≥6 Ah) is presented. Graphite anode samples were extracted from two different formats (cylindrical and pouch cells) of pristine and differently aged lithium-ion cells. The samples present a variety of anodes with various states of lithium deposition (also known as plating). A chemical modification was performed to metallic lithium deposited on the anode surface due to previous plating with isopropanol (IPA). After this procedure an oxygenated species was detected by scanning electron microscopy (SEM), which later was confirmed as Li2 CO3 by Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). A valuation of the covered area by Li2 CO3 was carried out with an image analysis using energy-dispersive X-ray spectroscopy (EDX) and quantitative Rietveld refinement.

  9. Safety considerations for fabricating lithium battery packs

    Science.gov (United States)

    Ciesla, J. J.

    1986-09-01

    Lithium cell safety is a major issue with both manufacturers and end users. Most manufacturers have taken great strides to develop the safest cells possible while still maintaining performance characteristics. The combining of lithium cells for higher voltages, currents, and capacities requires the fabricator of lithium battery packs to be knowledgable about the specific electrochemical system being used. Relatively high rate, spirally wound (large surface area) sulfur oxychloride cells systems, such as Li/Thionyl or Sulfuryl chloride are considered. Prior to the start of a design of a battery pack, a review of the characterization studies for the cells should be conducted. The approach for fabricating a battery pack might vary with cell size.

  10. Connecting the Morphological and Crystal Structural Changes during the Conversion of Lithium Hydroxide Monohydrate to Lithium Carbonate Using Multi-Scale X-ray Scattering Measurements

    Directory of Open Access Journals (Sweden)

    Greeshma Gadikota

    2017-09-01

    Full Text Available While CO2 storage technologies via carbon mineralization have focused on the use of earth-abundant calcium- and magnesium-bearing minerals, there is an emerging interest in the scalable synthesis of alternative carbonates such as lithium carbonate. Lithium carbonate is the carbonated end-product of lithium hydroxide, a highly reactive sorbent for CO2 capture in spacecraft and submarines. Other emerging applications include tuning the morphology of lithium carbonates synthesized from the effluent of treated Li-bearing batteries, which can then be reused in ceramics, glasses, and batteries. In this study, in operando Ultra-Small-Angle, Small-Angle, and Wide-Angle X-ray Scattering (USAXS/SAXS/WAXS measurements were used to link the morphological and crystal structural changes as lithium hydroxide monohydrate is converted to lithium carbonate. The experiments were performed in a flow-through reactor at PCO2 of 1 atm and at temperatures in the range of 25–500 °C. The dehydration of lithium hydroxide monohydrate to form lithium hydroxide occurs in the temperature range of 25–150 °C, while the onset of carbonate formation is evident at around 70 °C. A reduction in the nanoparticle size and an increase in the surface area were noted during the dehydration of lithium hydroxide monohydrate. Lithium carbonate formation increases the nanoparticle size and reduces the surface area.

  11. Simultaneous determination of pregnenolone sulphate, dehydroepiandrosterone and allopregnanolone in rat brain areas by liquid chromatography-electrospray tandem mass spectrometry.

    Science.gov (United States)

    Rustichelli, Cecilia; Pinetti, Diego; Lucchi, Chiara; Ravazzini, Federica; Puia, Giulia

    2013-07-01

    Neurosteroids (NSs) are well known modulators of neuronal activity and by binding to different neuronal receptors are responsible for a broad spectrum of biological and pathophysiological conditions. Here, a sensitive liquid chromatographic-electrospray ionization-tandem mass spectrometric method (LC-ESI-MS/MS) has been developed and validated for the simultaneous determination in rat brain areas of three NSs, i.e. pregnenolone sulphate (PS), dehydroepiandrosterone (DHEA) and allopregnanolone (AP). NSs were extracted with methanol-formic acid, purified by Hybrid-SPE cartridges and subjected to LC-ESI-MS/MS without any preliminary derivatization or deconjugation procedure. Quantitation was performed by multiple reaction monitoring mode with the internal standard method, using deuterium-labelled analogues of the analyzed NSs. The proposed method provided for the first time a direct quantitative determination of PS without hydrolysis; in particular, PS concentrations were found significantly (pmemory, than in cortical tissue of control rats, suggesting the important role of this NS in the process of memory formation. The developed method could be successfully applied to quantify simultaneously PS, DHEA and AP levels in brain tissue in order to study their changes during various neurodegenerative diseases and to investigate the role of PS in the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  13. Lithium metal oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  14. From ionic-liquid@metal-organic framework composites to heteroatom-decorated large-surface area carbons: superior CO2 and H2 uptake.

    Science.gov (United States)

    Aijaz, Arshad; Akita, Tomoki; Yang, Hui; Xu, Qiang

    2014-06-21

    For the first time, high surface area uniformly nitrogen (N)- and boron-nitrogen (BN)-decorated nanoporous carbons have been successfully fabricated by impregnation of ionic liquids (ILs) within a metal-organic framework (MOF), MIL-100(Al), followed by carbonization, which exhibit remarkable CO2 and H2 adsorption capacities.

  15. Lithium Sulfuryl Chloride Battery.

    Science.gov (United States)

    Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds

  16. New lithium gas sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Chuntonov, K. [Nanoshell Materials R and D GmbH, Primoschgasse 3, 9020 Klagenfurt (Austria)], E-mail: k.chuntonov@nanoshell.at; Setina, J. [Institute of Metals and Technology, 1000 Ljubljana (Slovenia)

    2008-05-08

    Solid solutions of lithium in Ag and Cu in the form of balls, wires, or strips are convenient sources for depositing lithium films as getters on the walls of vacuum vessels. Measurement of the O{sub 2}, CO and CO{sub 2} sorption characteristics have shown that these films - e.g. those generated electrothermally from Ag/Li solid solutions - excel the best getters of the Ba-film type or the high porosity getters based on Ti, V and Zr alloys. It has been found that tight lithium films passivate as a sorption depth of approximately 100 A is reached. Methods for further improvement of the sorption behavior of lithium coatings are discussed.

  17. Solid-state lithium battery

    Science.gov (United States)

    Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

    2014-11-04

    The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

  18. Graphene-Analogues Boron Nitride Nanosheets Confining Ionic Liquids: A High-Performance Quasi-Liquid Solid Electrolyte.

    Science.gov (United States)

    Li, Mingtao; Zhu, Wenshuai; Zhang, Pengfei; Chao, Yanhong; He, Qian; Yang, Bolun; Li, Huaming; Borisevich, Albinab; Dai, Sheng

    2016-07-01

    Solid electrolytes are one of the most promising electrolyte systems for safe lithium batteries, but the low ionic conductivity of these electrolytes seriously hinders the development of efficient lithium batteries. Here, a novel class of graphene-analogues boron nitride (g-BN) nanosheets confining an ultrahigh concentration of ionic liquids (ILs) in an interlayer and out-of-layer chamber to give rise to a quasi-liquid solid electrolyte (QLSE) is reported. The electron-insulated g-BN nanosheet host with a large specific surface area can confine ILs as much as 10 times of the host's weight to afford high ionic conductivity (3.85 × 10(-3) S cm(-1) at 25 °C, even 2.32 × 10(-4) S cm(-1) at -20 °C), which is close to that of the corresponding bulk IL electrolytes. The high ionic conductivity of QLSE is attributed to the enormous absorption for ILs and the confining effect of g-BN to form the ordered lithium ion transport channels in an interlayer and out-of-layer of g-BN. Furthermore, the electrolyte displays outstanding electrochemical properties and battery performance. In principle, this work enables a wider tunability, further opening up a new field for the fabrication of the next-generation QLSE based on layered nanomaterials in energy conversion devices.

  19. Lithium and Thyroid Disorders

    OpenAIRE

    Lut Tamam; Emel Kulan; Nurgul Ozpoyraz

    2003-01-01

    Lithium is a mood stabilizator drug which has been used in the treatment of many mental disorders including bipolar disorders, cyclothymia, recurrent depression, and schizoaffective disorder for the last 50 years. Clinical and experimental studies have shown that patients under lithium treatment could develop thyroid disorders in a range from single disorder in TSH response to severe mxyedema. [Archives Medical Review Journal 2003; 12(2.000): 99-114

  20. Lithium and Thyroid Disorders

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2003-04-01

    Full Text Available Lithium is a mood stabilizator drug which has been used in the treatment of many mental disorders including bipolar disorders, cyclothymia, recurrent depression, and schizoaffective disorder for the last 50 years. Clinical and experimental studies have shown that patients under lithium treatment could develop thyroid disorders in a range from single disorder in TSH response to severe mxyedema. [Archives Medical Review Journal 2003; 12(2.000: 99-114

  1. Lithium battery management system

    Science.gov (United States)

    Dougherty, Thomas J [Waukesha, WI

    2012-05-08

    Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

  2. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  3. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  4. Review of Reactivity Experiments for Lithium Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Bolind, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  5. Lithium: for harnessing renewable energy

    Science.gov (United States)

    Bradley, Dwight; Jaskula, Brian W.

    2014-01-01

    Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.

  6. Piperidinium tethered nanoparticle-hybrid electrolyte for lithium metal batteries

    KAUST Repository

    Korf, Kevin S.

    2014-06-23

    We report on the synthesis of novel piperidinium-based ionic liquid tethered nanoparticle hybrid electrolytes and investigate their physical and electrochemical properties. Hybrid electrolytes based on the ionic liquid 1-methyl-1-propylpiperidinium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO2-PP-TFSI) were blended with propylene carbonate-1 M lithium bis(trifluoromethanesulfone) imide (LiTFSI). We employed NMR analysis to confirm the successful creation of the hybrid material. Dielectric and rheological measurements show that these electrolytes exhibit exceptional room-temperature DC ionic conductivity (10-2 to 10 -3 S cm-1) as well as high shear mechanical moduli (105 to 106 Pa). Lithium transference numbers were found to increase with particle loading and to reach values as high as 0.22 at high particle loadings where the particle jam to form a soft glassy elastic medium. Analysis of lithium electrodeposits obtained in the hybrid electrolytes using SEM and EDX spectra show that the SiO2-PP-TFSI nanoparticles are able to smooth lithium deposition and inhibit lithium dendrite proliferation in Li metal batteries. LTOSiO2-PP-TFSI/PC in 1 M LiTFSILi half-cells based on the SiO2-PP-TFSI hybrid electrolytes exhibit attractive voltage profiles and trouble-free extended cycling behavior over more than 1000 cycles of charge and discharge. This journal is © the Partner Organisations 2014.

  7. Lithium-based surfaces controlling fusion plasma behavior at the plasma-material interfacea)

    Science.gov (United States)

    Allain, Jean Paul; Taylor, Chase N.

    2012-05-01

    The plasma-material interface and its impact on the performance of magnetically confined thermonuclear fusion plasmas are considered to be one of the key scientific gaps in the realization of nuclear fusion power. At this interface, high particle and heat flux from the fusion plasma can limit the material's lifetime and reliability and therefore hinder operation of the fusion device. Lithium-based surfaces are now being used in major magnetic confinement fusion devices and have observed profound effects on plasma performance including enhanced confinement, suppression and control of edge localized modes (ELM), lower hydrogen recycling and impurity suppression. The critical spatial scale length of deuterium and helium particle interactions in lithium ranges between 5-100 nm depending on the incident particle energies at the edge and magnetic configuration. Lithium-based surfaces also range from liquid state to solid lithium coatings on a variety of substrates (e.g., graphite, stainless steel, refractory metal W/Mo/etc., or porous metal structures). Temperature-dependent effects from lithium-based surfaces as plasma facing components (PFC) include magnetohydrodynamic (MHD) instability issues related to liquid lithium, surface impurity, and deuterium retention issues, and anomalous physical sputtering increase at temperatures above lithium's melting point. The paper discusses the viability of lithium-based surfaces in future burning-plasma environments such as those found in ITER and DEMO-like fusion reactor devices.

  8. Lithium nephropathy: a case report

    OpenAIRE

    Raphael Reis Pereira-Silva; Debora Esperancini-Tebar

    2014-01-01

    Although widely used in the management of bipolar disorder, lithium may cause adverse kidney effects. The importance of the present study is to report the case of a 59-year-old woman who was under regular treatment with lithium for bipolar disorder and whose imaging studies demonstrated the presence of multiple renal microcysts, suggesting lithium nephropathy as main diagnostic hypothesis.

  9. Lithium nephropathy: a case report

    Directory of Open Access Journals (Sweden)

    Raphael Reis Pereira-Silva

    2014-01-01

    Full Text Available Although widely used in the management of bipolar disorder, lithium may cause adverse kidney effects. The importance of the present study is to report the case of a 59-year-old woman who was under regular treatment with lithium for bipolar disorder and whose imaging studies demonstrated the presence of multiple renal microcysts, suggesting lithium nephropathy as main diagnostic hypothesis.

  10. The Improvement of Discharge Capacity of Zr-doped Lithium Titanate for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Chen Yongjian

    2016-01-01

    Full Text Available Li4Ti5−xZrxO12 (0 ≪ x ≪ 0.05 materials are synthesized via one-step liquid method in this work. The morphology, elemental distribution and lithium storage performance of Zr-doped lithium titanate are systematic analyzed by field emitting scanning electron microscopy (FE-SEM, Hitachi S-4800, energy dispersive X-ray (EDS and Land battery test system (LAND CT2001A together with the pristine lithium titanate for comparison. The FE-SEM images show the uniform morphology and narrow particle size distribution of Zr-doped samples. The cycle performance measurements demonstrate that the Li4Ti4.97Zr0.03O12 electrode displays the best discharge capacities among the composites. It delivers the initial discharge capacities of 165.4 mAh/g and 152.9 mAh/g at 5C and 10C, and remains the values of 142.9 mAh/g and 127.4 mAh/g after 200 cycles. Furthermore, the charge and discharge curves exhibit that the Zr-doped composite presents smaller polarization than the pristine lithium titanate.

  11. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.

    Science.gov (United States)

    Zeng, Xianlai; Li, Jinhui; Shen, Bingyu

    2015-09-15

    With the booming of consumer electronics (CE) and electric vehicle (EV), a large number of spent lithium-ion battery (LIBs) have been generated worldwide. Resource depletion and environmental concern driven from the sustainable industry of CE and EV have motivated spent LIBs should be recovered urgently. However, the conventional process combined with leaching, precipitating, and filtering was quite complicated to recover cobalt and lithium from spent LIBs. In this work, we developed a novel recovery process, only combined with oxalic acid leaching and filtering. When the optimal parameters for leaching process is controlled at 150 min retention time, 95 °C heating temperature, 15 g L(-1) solid-liquid ratio, and 400 rpm rotation rate, the recovery rate of lithium and cobalt from spent LIBs can reach about 98% and 97%, respectively. Additionally, we also tentatively discovered the leaching mechanism of lithium cobalt oxide (LiCoO2) using oxalic acid, and the leaching order of the sampling LiCoO2 of spent LIBs. All the obtained results can contribute to a short-cut and high-efficiency process of spent LIBs recycling toward a sound closed-loop cycle. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Intensive evaporation and boiling of a heterogeneous liquid droplet with an explosive disintegration in high-temperature gas area

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The using of the high-speed (not less than 105 frames per second video recording tools (“Phantom” and the software package ("TEMA Automotive" allowed carrying out an experimental research of laws of intensive vaporization with an explosive disintegration of heterogeneous (with a single solid nontransparent inclusion liquid droplet (by the example of water in high-temperature (500-800 K gases (combustion products. Times of the processes under consideration and stages (liquid heat-up, evaporation from an external surface, bubble boiling at internal interfaces, growth of bubble sizes, explosive droplet breakup were established. Necessary conditions of an explosive vaporization of a heterogeneous droplet were found out. Mechanisms of this process and an influence of properties of liquid and inclusion material on them were determined.

  13. Lithium isotope geochemistry and origin of Canadian shield brines.

    Science.gov (United States)

    Bottomley, D J; Chan, L H; Katz, A; Starinsky, A; Clark, I D

    2003-01-01

    Hypersaline calcium/chloride shield brines are ubiquitous in Canada and areas of northern Europe. The major questions relating to these fluids are the origin of the solutes and the concentration mechanism that led to their extreme salinity. Many chemical and isotopic tracers are used to solve these questions. For example, lithium isotope systematics have been used recently to support a marine origin for the Yellowknife shield brine (Northwest Territories). While having important chemical similarities to the Yellowknife brine, shield brines from the Sudbury/Elliot Lake (Ontario) and Thompson/Snow Lake (Manitoba) regions, which are the focus of this study, exhibit contrasting lithium behavior. Brine from the Sudbury Victor mine has lithium concentrations that closely follow the sea water lithium-bromine concentration trajectory, as well as delta6Li values of approximately -28/1000. This indicates that the lithium in this brine is predominantly marine in origin with a relatively minor component of crustal lithium leached from the host rocks. In contrast, the Thompson/Snow Lake brine has anomalously low lithium concentrations, indicating that it has largely been removed from solution by alteration minerals. Furthermore, brine and nonbrine mine waters at the Thompson mine have large delta6Li variations of approximately 30/1000, which primarily reflects mixing between deep brine with delta6Li of -35 +/- 2/1000 and near surface mine water that has derived higher delta6Li values through interactions with their host rocks. The contrary behavior of lithium in these two brines shows that, in systems where it has behaved conservatively, lithium isotopes can distinguish brines derived from marine sources.

  14. A Study on Stoichiometry of Complexes of Tributyl Phosphate and Methyl Isobutyl Ketone with Lithium in the Presence of FeCl3

    Institute of Scientific and Technical Information of China (English)

    周智勇; 秦炜; 费维扬; 李以圭

    2012-01-01

    To study the characteristic of liquid-liquid extraction equilibrium of lithium from brine sources, the complexes formed from tributyl phosphate (TBP) and methyl isobutyl ketone (MIBK) with lithium were investi- gated using FeCl3 as coextracting agent. Liquid-liquid extraction reaction mechanisms were proposed and the stoichiometry of tetrachloroferrate(III) complex with lithium was obtained by regressing the experimental data. It is found that the stoichiometry of tetrachloroferrate(III) to lithium in the complex is 1 : 1 with either TBP or MIBK as extractant in kerosene. The stoichiometry of the complex of TBP with Li was 1 : 1 and that of MIBK with Li was 2 : 1. The formed complexes of TBP and MIBK with lithium are determined to be LiFeCla-TBP and LiFeC14.2MIBK, respectively, according to the rule of neutralization.

  15. Dissolution behavior of lithium compounds in ethanol

    Directory of Open Access Journals (Sweden)

    Tomohiro Furukawa

    2016-12-01

    Full Text Available In order to exchange the components which received irradiation damage during the operation at the International Fusion Materials Irradiation Facility, the adhered lithium, which is partially converted to lithium compounds such as lithium oxide and lithium hydroxide, should be removed from the components. In this study, the dissolution experiments of lithium compounds (lithium nitride, lithium hydroxide, and lithium oxide were performed in a candidate solvent, allowing the clarification of time and temperature dependence. Based on the results, a cleaning procedure for adhered lithium on the inner surface of the components was proposed.

  16. Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium-Air Batteries

    Science.gov (United States)

    2014-11-01

    Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium -Air Batteries by Claire Weiss Brennan, Victoria Blair...Ground, MD 21005-5069 ARL-TR-7145 November 2014 Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium -Air...COVERED (From - To) 1 June–31 August 2014 4. TITLE AND SUBTITLE Density Optimization of Lithium Lanthanum Titanate Ceramics for Lightweight Lithium

  17. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.

    Science.gov (United States)

    Sun, Liang; Qiu, Keqiang

    2012-08-01

    Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO(2) and CoO directly as CoC(2)O(4)·2H(2)O with 1.0 M oxalate solution at 80°C and solid/liquid ratio of 50 g L(-1) for 120 min. The reaction efficiency of more than 98% of LiCoO(2) can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries.

  18. Preparation techniques of the submicron lithium titanate materials by electro-spinning

    Science.gov (United States)

    Wang, Yudong; Yang, Kai; Gao, Fei; Liu, Hao; Zhang, Mingjie

    2017-01-01

    Combining sol-gel process and electro-spinning, the submicron lithium titanate materials are prepared with lithium acetate and titanium tetraisopropanolate respectively as the lithium and titanium sources, and polyvinylpyrrolidone (PVP) as the template. It's found by scanning electron microscope(SEM )that, the prepared lithium titanate materials are characterized by the fiber diameter 150~200nm, a large number of irregular indentations in the surface, and the larger specific surface area than that before calcination. The lithium titanate cell receives charge-discharge test and cyclic voltammetry. The capacity of the submicron lithium titanate materials is up to 160mAh·g-1 at the rate of 0.1C, and it's revealed by cyclic voltammetry that the cell in the charge or discharge process undergoes a single redox reaction, but having good reversibility.

  19. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  20. Current status of environmental, health, and safety issues of lithium ion electric vehicle batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, L.J.; Ring, S.; Hammel, C.J.

    1995-09-01

    The lithium ion system considered in this report uses lithium intercalation compounds as both positive and negative electrodes and has an organic liquid electrolyte. Oxides of nickel, cobalt, and manganese are used in the positive electrode, and carbon is used in the negative electrode. This report presents health and safety issues, environmental issues, and shipping requirements for lithium ion electric vehicle (EV) batteries. A lithium-based electrochemical system can, in theory, achieve higher energy density than systems using other elements. The lithium ion system is less reactive and more reliable than present lithium metal systems and has possible performance advantages over some lithium solid polymer electrolyte batteries. However, the possibility of electrolyte spills could be a disadvantage of a liquid electrolyte system compared to a solid electrolyte. The lithium ion system is a developing technology, so there is some uncertainty regarding which materials will be used in an EV-sized battery. This report reviews the materials presented in the open literature within the context of health and safety issues, considering intrinsic material hazards, mitigation of material hazards, and safety testing. Some possible lithium ion battery materials are toxic, carcinogenic, or could undergo chemical reactions that produce hazardous heat or gases. Toxic materials include lithium compounds, nickel compounds, arsenic compounds, and dimethoxyethane. Carcinogenic materials include nickel compounds, arsenic compounds, and (possibly) cobalt compounds, copper, and polypropylene. Lithiated negative electrode materials could be reactive. However, because information about the exact compounds that will be used in future batteries is proprietary, ongoing research will determine which specific hazards will apply.

  1. Ceramic and polymeric solid electrolytes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2010-08-01

    Lithium-ion batteries are important for energy storage in a wide variety of applications including consumer electronics, transportation and large-scale energy production. The performance of lithium-ion batteries depends on the materials used. One critical component is the electrolyte, which is the focus of this paper. In particular, inorganic ceramic and organic polymer solid-electrolyte materials are reviewed. Solid electrolytes provide advantages in terms of simplicity of design and operational safety, but typically have conductivities that are lower than those of organic liquid electrolytes. This paper provides a comparison of the conductivities of solid-electrolyte materials being used or developed for use in lithium-ion batteries. (author)

  2. First-Principles Investigations of the Working Mechanism of 2D h-BN as an Interfacial Layer for the Anode of Lithium Metal Batteries.

    Science.gov (United States)

    Shi, Le; Xu, Ao; Zhao, Tianshou

    2017-01-18

    An issue with the use of metallic lithium as an anode material for lithium-based batteries is dendrite growth, causing a periodic breaking and repair of the solid electrolyte interphase (SEI) layer. Adding 2D atomic crystals, such as h-BN, as an interfacial layer between the lithium metal anode and liquid electrolyte has been demonstrated to be effective to mitigate dendrite growth, thereby enhancing the Columbic efficiency of lithium metal batteries. But the underlying mechanism leading to the reduced dendrite growth remains unknown. In this work, with the aid of first-principle calculations, we find that the interaction between the h-BN and lithium metal layers is a weak van der Waals force, and two atomic layers of h-BN are thick enough to block the electron tunneling from lithium metal to electrolyte, thus prohibiting the decomposition of electrolyte. The interlayer spacing between the h-BN and lithium metal layers can provide larger adsorption energies toward lithium atoms than that provided by bare lithium or h-BN, making lithium atoms prefer to intercalate under the cover of h-BN during the plating process. The combined high stiffness of h-BN and the low diffusion energy barriers of lithium at the Li/h-BN interfaces induce a uniform distribution of lithium under h-BN, therefore effectively suppressing dendrite growth.

  3. Lithium Coatings on NSTX Plasma Facing Components and Its Effects On Boundary Control, Core Plasma Performance, and Operation

    Energy Technology Data Exchange (ETDEWEB)

    H.W.Kugel, M.G.Bell, H.Schneider, J.P.Allain, R.E.Bell, R Kaita, J.Kallman, S. Kaye, B.P. LeBlanc, D. Mansfield, R.E. Nygen, R. Maingi, J. Menard, D. Mueller, M. Ono, S. Paul, S.Gerhardt, R.Raman, S.Sabbagh, C.H.Skinner, V.Soukhanovskii, J.Timberlake, L.E.Zakharov, and the NSTX Research Team

    2010-01-25

    NSTX high-power divertor plasma experiments have used in succession lithium pellet injection (LPI), evaporated lithium, and injected lithium powder to apply lithium coatings to graphite plasma facing components. In 2005, following wall conditioning and LPI, discharges exhibited edge density reduction and performance improvements. Since 2006, first one, and now two lithium evaporators have been used routinely to evaporate lithium onto the lower divertor region at total rates of 10-70 mg/min for periods 5-10 min between discharges. Prior to each discharge, the evaporators are withdrawn behind shutters. Significant improvements in the performance of NBI heated divertor discharges resulting from these lithium depositions were observed. These evaporators are now used for more than 80% of NSTX discharges. Initial work with injecting fine lithium powder into the edge of NBI heated deuterium discharges yielded comparable changes in performance. Several operational issues encountered with lithium wall conditions, and the special procedures needed for vessel entry are discussed. The next step in this work is installation of a Liquid Lithium Divertor surface on the outer part of the lower divertor.

  4. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  5. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  6. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  7. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.

    Science.gov (United States)

    Deng, Changjian; Lau, Miu Lun; Barkholtz, Heather M; Xu, Haiping; Parrish, Riley; Xu, Meiyue Olivia; Xu, Tao; Liu, Yuzi; Wang, Hao; Connell, Justin G; Smith, Kassiopeia A; Xiong, Hui

    2017-08-03

    We report an amorphous boron nanorod anode material for lithium-ion batteries prepared through smelting non-toxic boron oxide in liquid lithium. Boron in theory can provide capacity as high as 3099 mA h g(-1) by alloying with Li to form B4Li5. However, experimental studies of the boron anode have been rarely reported for room temperature lithium-ion batteries. Among the reported studies the electrochemical activity and cycling performance of the bulk crystalline boron anode material are poor at room temperature. In this work, we utilized an amorphous nanostructured one-dimensional (1D) boron material aiming at improving the electrochemical reactivity between boron and lithium ions at room temperature. The amorphous boron nanorod anode exhibited, at room temperature, a reversible capacity of 170 mA h g(-1) at a current rate of 10 mA g(-1) between 0.01 and 2 V. The anode also demonstrated good rate capability and cycling stability. The lithium storage mechanism was investigated by both sweep voltammetry measurements and galvanostatic intermittent titration techniques (GITTs). The sweep voltammetric analysis suggested that the contributions from lithium ion diffusion into boron and the capacitive process to the overall lithium charge storage are 57% and 43%, respectively. The results from GITT indicated that the discharge capacity at higher potentials (>∼0.2 V vs. Li/Li(+)) could be ascribed to a capacitive process and at lower potentials (lithium-ion batteries.

  8. Lithium clearance in chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1989-01-01

    1. Lithium clearance measurements were made in 72 patients with chronic nephropathy of different aetiology and moderate to severely reduced renal function. 2. Lithium clearance was strictly correlated with glomerular filtration rate, and there was no suggestion of distal tubular reabsorption...... of lithium or influence of osmotic diuresis. 3. Fractional reabsorption of lithium was reduced in most patients with glomerular filtration rates below 25 ml/min. 4. Calculated fractional distal reabsorption of sodium was reduced in most patients with glomerular filtration rates below 50 ml/min. 5. Lithium...... that lithium clearance may be a measure of the delivery of sodium and water from the renal proximal tubule. With this assumption it was found that adjustment of the sodium excretion in chronic nephropathy initially takes place in the distal parts of the nephron (loop of Henle, distal tubule and collecting duct...

  9. Inhalation toxicity of lithium combustion aerosols in rats

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, B.J.; Allen, M.D.; Rebar, A.H.

    1986-01-01

    Studies of the acute inhalation toxicity of lithium combustion aerosols were undertaken to aid in evaluating the health hazards associated with the proposed use of lithium metal in fusion reactors. Male and female F344/Lov rats, 9-12 wk of age, were exposed once for 4 h to concentrations of 2600, 2300, 1400, or 620 mg/m/sup 3/ of aerosol (MMAD = 0.69 ..mu..m, sigma/sub g/ = 1.45) that was approximately 80% lithium carbonate and 20% lithium hydroxide to determine the acute toxic effects. Fourteen-day LC50 values (with 95% confidence limits) of 1700 (1300-2000) mg/m/sup 3/ for the male rats and 2000 (1700-2400) mg/m/sup 3/ for the female rate were calculated. Clinical signs of anorexia, dehydration, respiratory difficulty, and perioral and perinasal encrustation were observed. Body weights were decreased the first day after exposure in relation to the exposure concentration. In animals observed for an additional 2 wk, body weights, organ weights, and clinical signs began to return to pre-exposure values. Histopathologic examination of the respiratory tracts from the animals revealed ulcerative or necrotic laryngitis, focal to segmental ulcerative rhinitis often accompanied by areas of squamous metaplasia, and, in some cases, a suppurative bronchopneumonia or aspiration pneumonia, probably secondary to the laryngeal lesions. The results of these studies indicate the moderate acute toxicity of lithium carbonate aerosols and will aid in the risk analysis of accidental releases of lithium combustion aerosols.

  10. Separators for Lithium Ion Batteries

    Institute of Scientific and Technical Information of China (English)

    G.C.Li; H.P.Zhang; Y.P.Wu

    2007-01-01

    1 Results A separator for rechargeable batteries is a microporous membrane placed between electrodes of opposite polarity, keeping them apart to prevent electrical short circuits and at the same time allowing rapid transport of lithium ions that are needed to complete the circuit during the passage of current in an electrochemical cell, and thus plays a key role in determining the performance of the lithium ion battery. Here provides a comprehensive overview of various types of separators for lithium io...

  11. Lithium-Associated Kidney Microcysts

    OpenAIRE

    Jennifer Tuazon; David Casalino; Ehteshamuddin Syed; Daniel Batlle

    2008-01-01

    Long-term lithium therapy is associated with impairment in concentrating ability and, occasionally, progression to advanced chronic kidney disease from tubulointerstitial nephropathy. Biopsy findings in patients with lithium-induced chronic tubulointerstitial nephropathy include tubular atrophy and interstitial fibrosis interspersed with tubular cysts and dilatations. Recent studies have shown that cysts are seen in 33––62.5% of the patients undergoing lithium therapy. MR imaging is highly ca...

  12. Membranes in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Junbo Hou

    2012-07-01

    Full Text Available Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  13. Membranes in lithium ion batteries.

    Science.gov (United States)

    Yang, Min; Hou, Junbo

    2012-07-04

    Lithium ion batteries have proven themselves the main choice of power sources for portable electronics. Besides consumer electronics, lithium ion batteries are also growing in popularity for military, electric vehicle, and aerospace applications. The present review attempts to summarize the knowledge about some selected membranes in lithium ion batteries. Based on the type of electrolyte used, literature concerning ceramic-glass and polymer solid ion conductors, microporous filter type separators and polymer gel based membranes is reviewed.

  14. Lithium Carbonate Recovery from Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process.

    Science.gov (United States)

    Gao, Wenfang; Zhang, Xihua; Zheng, Xiaohong; Lin, Xiao; Cao, Hongbin; Zhang, Yi; Sun, Zhi

    2017-02-07

    A closed-loop process to recover lithium carbonate from cathode scrap of lithium-ion battery (LIB) is developed. Lithium could be selectively leached into solution using formic acid while aluminum remained as the metallic form, and most of the other metals from the cathode scrap could be precipitated out. This phenomenon clearly demonstrates that formic acid can be used for lithium recovery from cathode scrap, as both leaching and separation reagent. By investigating the effects of different parameters including temperature, formic acid concentration, H2O2 amount, and solid to liquid ratio, the leaching rate of Li can reach 99.93% with minor Al loss into the solution. Subsequently, the leaching kinetics was evaluated and the controlling step as well as the apparent activation energy could be determined. After further separation of the remaining Ni, Co, and Mn from the leachate, Li2CO3 with the purity of 99.90% could be obtained. The final solution after lithium carbonate extraction can be further processed for sodium formate preparation, and Ni, Co, and Mn precipitates are ready for precursor preparation for cathode materials. As a result, the global recovery rates of Al, Li, Ni, Co, and Mn in this process were found to be 95.46%, 98.22%, 99.96%, 99.96%, and 99.95% respectively, achieving effective resources recycling from cathode scrap of spent LIB.

  15. Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries

    Science.gov (United States)

    Yanilmaz, Meltem

    of the resultant composite membranes is restricted because these nanoparticles are not exposed to liquid electrolytes and have limited effect on improving the cell performance. Hence, we introduced new nanoparticle-on-nanofiber hybrid membrane separators by combining electrospraying with electrospinning techniques. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. To design a high-performance separator with enhanced mechanical properties and good thermal stability, electrospun SiO2/nylon 6,6 nanofiber membranes were fabricated. It was found that SiO2/nylon 6,6 nanofiber membranes had superior thermal stability and mechanical strength. Electrospinning has serious drawbacks such as low spinning rate and high production cost. Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning. SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells exhibited good cycling and C-rate performance.

  16. Three-dimensional investigation of liquid film structure at the initial area of annular-dispersed flow

    Directory of Open Access Journals (Sweden)

    Alekseenko Sergey

    2016-01-01

    Full Text Available Initial stage of downward flow of gas-sheared liquid film in a vertical rectangular duct was studied using brightness-based laser-induced fluorescence technique. Measurements were resolved along both longitudinal and transverse coordinates and time. The initial high-frequency waves which are formed at the inlet were found to be two-dimensional. These waves are promptly broken into localised horseshoe-shaped waves which merge downstream to form large-scale quasi-2D disturbance waves. Peculiarities of three-dimensional evolution of waves of different types were studied in a wide range of flow parameters.

  17. Could alarmingly high rates of negative diagnoses in remote rural areas be minimized with liquid-based citology? preliminary results from the RODEO study team

    OpenAIRE

    Fregnani, José Humberto; Neto, Cristovam Scapulatempo; Haikel Junior, Raphael L.; Saccheto, T.; Campacci, N.; Mauad, Edmund C.; Longatto Filho, Adhemar

    2013-01-01

    Objective: It was the aim of this study to compare diagnostic performances of the BD SurePath (TM) liquid-based Papanicolaou test (LBC) and the conventional Papanicolaou test (CPT) in cervical samples of women from remote rural areas of Brazil. Study Design: Specimens were collected by mobile units provided by Barretos Cancer Hospital. This report evaluates the manual screening arm of the RODEO study. Of 12,048 women seen between May and December 2010, 6,001 were examined using LBC and 6,047 ...

  18. Self-Regulative Nanogelator Solid Electrolyte: A New Option to Improve the Safety of Lithium Battery.

    Science.gov (United States)

    Wu, Feng; Chen, Nan; Chen, Renjie; Zhu, Qizhen; Tan, Guoqiang; Li, Li

    2016-01-01

    The lack of suitable nonflammable electrolytes has delayed battery application in electric vehicles. A new approach to improve the safety performance for lithium battery is proposed here. This technology is based on a nanogelator-based solid electrolyte made of porous oxides and an ionic liquid. The electrolyte is fabricated using an in situ method and the porous oxides serve as a nonflammable "nanogelator" that spontaneously immobilizes the ionic liquid. The electrolyte exhibits a high liquid-like apparent ionic conductivity of 2.93 × 10(-3) S cm(-1) at room temperature. The results show that the nanogelator, which possess self-regulating ability, is able to immobilize imidazolium-, pyrrolidinium-, or piperidinium-based ionic liquids, simply by adjusting the ion transport channels. Our prototype batteries made of Ti-nanogeltor solid electrolyte outperform conventional lithium batteries made using ionic liquid and commercial organic liquid electrolytes.

  19. First results of a large-area cryogenic gaseous photomultiplier coupled to a dual-phase liquid xenon TPC

    CERN Document Server

    Arazi, L; Erdal, E; Israelashvili, I; Rappaport, M L; Shchemelinin, S; Vartsky, D; Santos, J M F dos; Breskin, A

    2015-01-01

    We discuss recent advances in the development of cryogenic gaseous photomultipliers (GPM), for possible use in dark matter and other rare-event searches using noble-liquid targets. We present results from a 10 cm diameter GPM coupled to a dual-phase liquid xenon (LXe) TPC, demonstrating - for the first time - the feasibility of recording both primary ("S1") and secondary ("S2") scintillation signals. The detector comprised a triple Thick Gas Electron Multiplier (THGEM) structure with cesium iodide photocathode on the first element; it was shown to operate stably at 180 K with gains above 10^5, providing high single-photon detection efficiency even in the presence of large alpha particle-induced S2 signals comprising thousands of photoelectrons. S1 scintillation signals were recorded with a time resolution of 1.2 ns (RMS). The energy resolution ({\\sigma}/E) for S2 electroluminescence of 5.5 MeV alpha particles was ~9%, which is comparable to that obtained in the XENON100 TPC with PMTs. The results are discusse...

  20. New lithium gas sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Chuntonov, K. [NanoShell Consulting, Zalman Shneour 16, 32544 Haifa (Israel)], E-mail: konstantin@chuntonov.com; Ivanov, A.; Permikin, D. [Ural State University, Lenin Avenue 51, 620083 Ekaterinburg (Russian Federation)

    2009-03-05

    A theory of gas sorption by lithium solid solutions, which is based on a simple diffusion model, has been applied to the processes of gettering residual gases in small sealed-off chambers of a MEMS-cavity type. The analysis of kinetics of the process leads to the conclusion that under certain conditions, which are formulated in the form of a criterial inequality G > 1, there is no further need of outside means for pumping down the microchambers before sealing-off. A vacuum inside the microchamber is created and further maintained for a long time at a constant level due to gas sorption by the getter material itself. The huge sorption capacity of lithium solid solutions is able to increase the lifetime of evacuated MEMS devices by more than one order of magnitude and to extend it to 20 years.

  1. Lithium - induced tardive dystonia.

    Directory of Open Access Journals (Sweden)

    Chakrabarti S

    2002-10-01

    Full Text Available Tardive dystonia is an uncommon form of chronic dystonia, which usually develops on exposure to neuroleptics. Tardive dystonia (Tdt following lithium therapy has not been previously reported. The case of 38 year old man with bipolar affective disorder who developed tardive dystonia while on maintenance lithium treatment is described. Presentation of Tdt in this patient was fairly characteristic although there was no suggestion of recent neuroleptic exposure. Tdt known to have poor treatment response, responded very well to clozapine, a novel anti-psychotic, in this case. To conclude, Tdt may develop on exposure to drugs other than neuroleptics. An adequate trial to clozapine can prove to be a useful treatment option.

  2. Study with liquid and steam tracers at the Tejamaniles area, Los Azufres, Mich., geothermal field; Estudio con trazadores de liquido y vapor en el area Tejamaniles del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, Eduardo R. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico)]. E-mail: iglesias@iie.org.mx; Flores Armenta, Magaly [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Torres, Rodolfo J. [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Ramirez Montes, Miguel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Reyes Picasso, Neftali [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Reyes Delgado, Lisette [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)

    2011-01-15

    The Mexican Federal Commission for Electricity injects brines produced by nearby geothermal wells into well Az-08, located in the Tejamaniles area, in the southwestern portion of Los Azufres, Mich., geothermal field. The main goals of this study are to determine whether or not the injected fluid recharges nine producing wells in the area, and if so, to estimate the fraction of the injected fluid recharging each producing well. Five of the selected wells produce mixes of liquid and steam and the rest produce only steam. For this reason, we designed this study with simultaneous injections of liquid- and steam-tracers. The nine selected producing wells detected the steam-tracer, and the five wells producing mixes detected the liquid-phase tracer. The residence curves of both tracers present a series of peaks reflecting the known fractured nature of the reservoir. The results show the feeding areas of the nine selected wells are recharged by the fluid injected into well Az-08. When this paper was written, the arrival of steam-tracers in all wells was completed, but the wells producing mixes of liquid and steam continued to record the arrival of the liquid-tracer. Until 407 days after injecting the tracer, the total percentage recovery of liquid phase tracer in the five wells producing mixes of liquid and steam was 3.5032%. The arrival of the steam tracer ended in all nine wells 205 days after the tracer was injected, with an overall recovery rate of 2.1553 x 10-2%. The recovery rates imply the recharge rates of the monitored wells by the injector Az-08 are modest, but it appears the amounts of the recovered liquid-phase tracer will increase significantly. The modest recovery rates suggest most of the fluid injected into the well Az-08 disperses in the reservoir, contributing to recharge and maintaining the pressure. Results reveal that: (i) the injected fluid is heated at depths from 700 to over 1000 m, where it boils and rises to reach the feeding areas of the

  3. Optimized lithium oxyhalide cells

    Science.gov (United States)

    Kilroy, W. P.; Schlaikjer, C.; Polsonetti, P.; Jones, M.

    1993-04-01

    Lithium thionyl chloride cells were optimized with respect to electrolyte and carbon cathode composition. Wound 'C-size' cells with various mixtures of Chevron acetylene black with Ketjenblack EC-300J and containing various concentrations of LiAlCl4 and derivatives, LiGaCl4, and mixtures of SOCl2 and SO2Cl2 were evaluated as a function of discharge rate, temperature, and storage condition.

  4. New lithium gas sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chuntonov, K. [Nanoshell Materials R and D GmbH, Primoschgasse 3, 9020 Klagenfurt (Austria)], E-mail: konstantin@chuntonov.com; Setina, J. [Institute of Metals and Technology, 1000 Ljubljana (Slovenia); Ivanov, A.; Permikin, D. [Ural State University, Lenin Avenue 51, 620083 Ekaterinburg (Russian Federation)

    2008-07-28

    The kinetics of lithium evaporation from Ag-Li wire has been studied experimentally in the temperature interval 520-630 deg. C. The initial stage of the process takes place in the kinetic regime and finishes with the formation of a thin layer of silver on the surface of the alloy. Then the process moves to the diffusion region where the evaporation flow and the mass of the deposited film can be described quantitatively with the help of simple analytical expressions.

  5. Lithium ion sources

    Science.gov (United States)

    Roy, Prabir K.; Greenway, Wayne G.; Grote, Dave P.; Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L.

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ˜100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm2 was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40-50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10-7, at an operating temperature of 1250-1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10-15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  6. Lithium ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prabir K., E-mail: pkroy@lbl.gov [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States); Grote, Dave P. [Lawrence Livermore National Laboratory LLC, CA-94550 (United States); Kwan, Joe W.; Lidia, Steven M.; Seidl, Peter A.; Waldron, William L. [Lawrence Berkeley National Laboratory (LBNL), One Cyclotron Road, Berkeley, California CA-94720 (United States)

    2014-01-01

    A 10.9 cm diameter lithium alumino-silicate ion source has been chosen as a source of ∼100mA lithium ion current for the Neutralized Drift Compression Experiment (NDCX-II) at LBNL. Research and development was carried out on lithium alumino-silicate ion sources prior to NDCX-II source fabrication. Space-charge-limited emission with the current density exceeding 1 mA/cm{sup 2} was measured with 0.64 cm diameter lithium alumino-silicate ion sources at 1275 °C. The beam current density is less for the first 10.9 cm diameter NDCX-II source, and it may be due to an issue of surface coverage. The lifetime of a thin coated (on a tungsten substrate) source is varied, roughly 40–50 h, when pulsed at 0.05 Hz and with pulse length of 6μs each, i.e., a duty factor of 3×10{sup −7}, at an operating temperature of 1250–1275 °C. The 10.9 cm diameter source lifetime is likely the same as of a 0.64 cm source, but the lifetime of a source with a 2 mm diameter (without a tungsten substrate) is 10–15 h with a duty factor of 1 (DC extraction). The lifetime variation is dependent on the amount of deposition of β-eucryptite mass, and the surface temperature. The amount of mass deposition does not significantly alter the current density. More ion source work is needed to improve the large source performance.

  7. Electroless Formation of Hybrid Lithium Anodes for Fast Interfacial Ion Transport.

    Science.gov (United States)

    Choudhury, Snehashis; Tu, Zhengyuan; Stalin, Sanjuna; Vu, Dylan; Fawole, Kristen; Gunceler, Deniz; Sundararaman, Ravishankar; Archer, Lynden

    2017-08-17

    Rechargeable batteries based on metallic anodes are of interest for fundamental and applications-focused studies of chemical and physical kinetics of liquids at solid interfaces. Approaches that allow facile creation of uniform coatings on these metals to prevent physical contact with liquid electrolytes, while enabling fast ion-transport, are essential to address chemical instability of the anodes. Here, we report a simple electroless ion-exchange chemistry for creating coatings of the metal Indium on lithium. By means of Joint-Density Functional theory and interfacial characterization experiments, we show that In coatings stabilize Li by multiple processes, including enabling exceptionally fast surface diffusion of lithium ions and high chemical resistance to liquid electrolytes. Indium coatings also undergo reversible alloying reactions with lithium ions, facilitating design of high-capacity hybrid In-Li anodes that utilize both alloying and plating chemistries for charge storage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nonflammable gel electrolyte containing alkyl phosphate for rechargeable lithium batteries

    Science.gov (United States)

    Yoshimoto, Nobuko; Niida, Yoshihiro; Egashira, Minato; Morita, Masayuki

    A nonflammable polymeric gel electrolyte has been developed for rechargeable lithium battery systems. The gel film consists of poly(vinylidenefluoride- co-hexafluoropropylene) (PVdF-HFP) swollen with lithium hexafluorophosphate (LiPF 6) solution in ternary solvent containing trimethyl phosphate (TMP). High ionic conductivity of 6.2 mS cm -1 at 20 °C was obtained for the gel electrolyte consisting of 0.8 M LiPF 6/EC + DEC + TMP (55:25:20) with PVdF-HFP, which is comparable to that of the liquid electrolyte containing the same electrolytic salt. Addition of a small amount of vinylene carbonate (VC) in the gel electrolyte improved the rechargeability of a graphite electrode. The rechargeable capacity of the graphite in the gel containing VC was ca. 300 mAh g -1, which is almost the same as that in a conventional liquid electrolyte system.

  9. Specific interface area and self-stirring in a two-liquid system experiencing intense interfacial boiling below the bulk boiling temperatures of both components

    CERN Document Server

    Goldobin, Denis S

    2016-01-01

    We present an approach to theoretical assessment of the mean specific interface area $(\\delta{S}/\\delta{V})$ for a well-stirred system of two immiscible liquids experiencing interfacial boiling. The assessment is based on the balance of transformations of mechanical energy and the laws of the momentum and heat transfer in the turbulent boundary layer. The theory yields relations between the specific interface area and the characteristics of the system state. In particular, this allows us to derive the equations of self-cooling dynamics of the system in the absence of external heat supply. The results provide possibility for constructing a self-contained mathematical description of the process of interfacial boiling. In this study, we assume the volume fractions of two components to be similar as well as the values of their kinematic viscosity and molecular heat diffusivity.

  10. Polymer electrolytes for rechargeable lithium batteries. Final report; Polymere Elektrolyte fuer wiederaufladbare Lithium-Batterien. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Sandner, B. [Halle-Wittenberg Univ., Merseburg (Germany). Inst. fuer Technische und Makromolekulare Chemie; Wegner, G.; Meyer, W. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany); Bronstert, B.; Moehwald, H.; Hennig, I. [BASF AG, Ludwigshafen am Rhein (Germany). Kunststofflaboratorium

    1999-07-01

    Rechargeable lithium batteries with water-free organic electrolytes have the highest energy density of all battery systems. Some of their weak points, e.g. concerning safety, cell production, cost etc. could be overcome by replacing the liquid low-molecular electrolytes with polymer electrolytes. The investigation focused on acrylically unsaturated oligomers/prepolymers. [German] Wiederaufladbare Lithiumbatterien mit wasserfreien organischen Elektrolyten sind die Akkumulatoren mit der hoechsten Energiedichte. Durch Ersatz der fluessigen niedermolekularen Elektrolyte durch Polymerfestelektrolyte koennen manche Schwachpunkte dieser Batterien, vor allem bezueglich Sicherheit, Zellfertigung, Kosten, etc., ausgeraeumt werden. Ausgangspunkt der Arbeiten waren acrylisch ungesaettigte Oligomere/Praepolymere. (orig.)

  11. Fabrication of All-Solid-State Lithium-ion Cells using Three-Dimensionally Structured Solid Electrolyte Li7La3Zr2O12 Pellets

    Directory of Open Access Journals (Sweden)

    MAO SHOJI

    2016-08-01

    Full Text Available All-solid-state lithium-ion batteries using Li+-ion conducting ceramic electrolytes have been focused on as attractive future batteries for electric vehicles and renewable energy conversion systems because high safety can be realized due to non-flammability of ceramic electrolytes. In addition, a higher volumetric energy density than that of current lithium-ion batteries is expected since the all-solid-state lithium-ion batteries can be made in bipolar cell configurations. However, the special ideas and techniques based on ceramic processing are required to construct the electrochemical interface for all-solid-state lithium-ion batteries since the battery development has been done so far based on liquid electrolyte system over 100 years. As one of promising approaches to develop practical all-solid-state batteries, we have been focusing on three-dimensionally (3D structured cell configurations such as an interdigitated combination of 3D pillars of cathode and anode, which can be realized by using solid electrolyte membranes with hole-array structures. The application of such kinds of 3D structures effectively increases the interface between solid electrode and solid electrolyte per unit volume, lowering the internal resistance of all-solid-state lithium-ion batteries. In this study, Li6.25Al0.25La3Zr2O12 (LLZAl, which is a Al-doped Li7La3Zr2O12 (LLZ with Li+-ion conductivity of ~10–4 S cm–1 at room temperature and high stability against lithium-metal, was used as a solid electrolyte, and its pellets with 700 um depth holes in 700 x 700 um2 area were fabricated to construct 3D-structured all-solid-state batteries with LiCoO2 / LLZAl / lithium-metal configuration. It is expected that the LiCoO2-LLZAl interface is formed by point to point contact even when the LLZAl pellet with 3D hole-array structure is applied. Therefore, the application of mechanically soft Li3BO3 with a low melting point at around 700 °C was also performed as a supporting

  12. The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors.

    Science.gov (United States)

    Pohlmann, Sebastian; Lobato, Belén; Centeno, Teresa A; Balducci, Andrea

    2013-10-28

    This study analyses and compares the behaviour of 5 commercial porous carbons in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) and its mixture with propylene carbonate (PC) as electrolytes. The results of this investigation show that the existence of a distribution of pore sizes and/or constrictions at the entrance of the pores leads to significant changes in the specific capacitance of the investigated materials. The use of PYR14TFSI as an electrolyte has a positive effect on the EDLC energy storage, but its high viscosity limits the power density. The mixture 50 : 50 wt% propylene carbonate-PYR14TFSI provides high operative voltage as well as low viscosity and thus notably enhances EDLC operation.

  13. Lithium Polymer Electrolytes and Solid State NMR

    Science.gov (United States)

    Berkeley, Emily R.

    2004-01-01

    Research is being done at the Glenn Research Center (GRC) developing new kinds of batteries that do not depend on a solution. Currently, batteries use liquid electrolytes containing lithium. Problems with the liquid electrolyte are (1) solvents used can leak out of the battery, so larger, more restrictive, packages have to be made, inhibiting the diversity of application and decreasing the power density; (2) the liquid is incompatible with the lithium metal anode, so alternative, less efficient, anodes are required. The Materials Department at GRC has been working to synthesize polymer electrolytes that can replace the liquid electrolytes. The advantages are that polymer electrolytes do not have the potential to leak so they can be used for a variety of tasks, small or large, including in the space rover or in space suits. The polymers generated by Dr. Mary Ann Meador's group are in the form of rod -coil structures. The rod aspect gives the polymer structural integrity, while the coil makes it flexible. Lithium ions are used in these polymers because of their high mobility. The coils have repeating units of oxygen which stabilize the positive lithium by donating electron density. This aids in the movement of the lithium within the polymer, which contributes to higher conductivity. In addition to conductivity testing, these polymers are characterized using DSC, TGA, FTIR, and solid state NMR. Solid state NMR is used in classifying materials that are not soluble in solvents, such as polymers. The NMR spins the sample at a magic angle (54.7') allowing the significant peaks to emerge. Although solid state NMR is a helpful technique in determining bonding, the process of preparing the sample and tuning it properly are intricate jobs that require patience; especially since each run takes about six hours. The NMR allows for the advancement of polymer synthesis by showing if the expected results were achieved. Using the NMR, in addition to looking at polymers, allows for

  14. Protective effect and mechanism of lithium chloride pretreatment on myocardial ischemia-reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Fang-Jiang Li; Tao Hsu; Hui-Xian Li; Jin-Zheng Shi; Mei-Ling Du; Xiao-Yuan Wang; Wen-Ting Zhang

    2014-01-01

    Objective:To investigate the protective effect and mechanism of lithium chloride pretreatment on myocardial ischemia-reperfusion injury(I-RI) in rats.Methods:A total of60SD rats were randomly divided into control group, model group, lithium chloride intervention group and L-arginine methyl ester+ lithium chloride intervention group with15 in each.TheI-RI model was established in model group, the lithium chloride intervention group andL-arginine methyl ester+ lithium chloride intervention group by method of seaming along left anterior descending coronary artery myocardial, control group was only opened the chest without seaming,ST-elevation within2 min was regarded as modeling success.Model group did not adopted any intervention, lithium chloride intervention group was treated with lithium chloride injection 15 mg/kg by jugular venipuncture preoperatively,L-arginine methyl ester+ lithium chloride intervention group was treated with intraperitoneal injection of30 mg•kg-1•d-1L-arginine methyl ester7 d before the test, and intravenous catheter of15 mg/kg lithium chloride preoperatively. The hydroxybutyric acid dehydrogenase(HBDH), creatine kinase isoenzyme(CK-MB), superoxide dismutase(SOD), malondialdehyde(MDA) level and nitric oxide synthase(NOS) activites were tested.Each large area of myocardial ischemia tissue was extracted for determination of the MDA content,SOD activity in tissue and serum, and morphological changes of myocardial tissue.Results:SOD activity was highest in lithium chloride intervention group, followed by L-arginine methyl ester+ lithium chloride intervention group, control group and model group (P0.05);HBDH andCK-MB of plasma were highest in model group, followed byL-arginine methyl ester+ lithium chloride intervention group, lithium chloride intervention group and control group(P<0.05).A significantly lighter myocardial damage was observed microscopically in lithium chloride intervention group than that inL-arginine methyl ester+ lithium

  15. Metabolic Side Effects of Lithium

    Directory of Open Access Journals (Sweden)

    M. Cagdas Eker

    2010-04-01

    Full Text Available Lithium is an alkaline ion being used since 19th century. After its widespread use in psychiatric disorders, observed side effects caused skepticism about its therapeutic efficacy. Despite several disadvantages, lithium is one of the indispensible drugs used in affective disorders, especially in bipolar disorder. It became a necessity for physicians to recognize its side effects since lithium is still accepted as a gold standard in the treatment of bipolar disorder. Adverse effects of chronic administration of lithium on several organ systems are widely known. In this article metabolic effects of lithium on thyroid and parathyroid glands, body mass index and kidneys will be discussed along with their mechanisms, clinical findings, possible risk factors and treatment. One of the most common side effect of lithium is hypothyroidism. It has the same clinical and biochemical properties as primary hypothyroidism and observed as subclinical hypothyroidism in the first place. Hypothyroidism, even its subclinical form, may be associated with non-response or inadequate response and is indicated as a risk factor for development of rapid cycling bipolar disorder. Therefore, hypothyroidism should be screened no matter how severe it is and should be treated with thyroid hormone in the presence of clinical hypothyroidism. Weight gain due to lithium administration disturbs the compliance to treatment and negatively affects the course of the illness. Increased risk for diabetes, hypertension, ischemic heart disease and stroke because of weight gain constitute other centers of problem. Indeed, it is of importance to determine the risk factors before treatment, to follow up the weight, to re-organize nutritional habits and to schedule exercises. Another frequent problematic side effect of lithium treatment is renal dysfunction which clinically present as nephrogenic diabetes insipidus with the common symptoms of polyuria and polydipsia. Nephrogenic diabetes

  16. Novel composite polymer electrolyte for lithium air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Deng; Li, Ruoshi; Huang, Tao; Yu, Aishui [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2010-02-15

    Hydrophobic ionic liquid-silica-PVdF-HFP polymer composite electrolyte is synthesized and employed in lithium air batteries for the first time. Discharge performance of lithium air battery using this composite electrolyte membrane in ambient atmosphere shows a higher capacity of 2800 mAh g{sup -1} of carbon in the absence of O{sub 2} catalyst, whereas, the cell with pure ionic liquid as electrolyte delivers much lower discharge capacity of 1500 mAh g{sup -1}. When catalyzed by {alpha}-MnO{sub 2}, the initial discharge capacity of the cell with composite electrolyte can be extended to 4080 mAh g{sup -1} of carbon, which can be calculated as 2040 mAh g{sup -1} associated with the total mass of the cathode. The flat discharge plateau and large discharge capacity indicate that the hydrophobic ionic liquid-silica-PVdF-HFP polymer composite electrolyte membrane can effectively protect lithium from moisture invasion. (author)

  17. Pulsed-Field Gradient NMR Self Diffusion and Ionic Conductivity Measurements for Liquid Electrolytes Containing LiBF₄ and Propylene Carbonate

    OpenAIRE

    Richardson, PM; Voice, AM; Ward, IM

    2014-01-01

    Liquid electrolytes have been prepared using lithium tetrafluoroborate (LiBF₄) and propylene carbonate (PC). Pulsed-field gradient nuclear magnetic resonance (PFG-NMR) measurements were taken for the cation, anion and solvent molecules using lithium (⁷Li), fluorine (¹⁹F) and hydrogen (¹H) nuclei, respectively. It was found that lithium diffusion was slow compared to the much larger fluorinated BF₄ anion likely resulting from a large solvation shell of the lithium. Ionic conductivity and visco...

  18. Therapeutic Drug Monitoring of Lithium

    DEFF Research Database (Denmark)

    Mose, Tina; Damkier, Per; Petersen, Magnus

    2015-01-01

    BACKGROUND: Serum lithium is monitored to ensure levels within the narrow therapeutic window. This study examines the interlaboratory variation and inaccuracy of lithium monitoring in Denmark. METHODS: In 16 samples consisting of (1) control materials (n = 4), (2) pooled patient serum (n = 5......), and (3) serum from individual patients (n = 7), lithium was measured in 19 laboratories using 20 different instruments. The lithium concentrations were targeted by a reference laboratory. Ion-selective electrode (n = 5), reflective spectrophotometric (RSM, n = 5), and spectrophotometric (n = 10) methods...... of >12%. Seven of these instruments had a systematic positive or negative bias and more so at lower lithium concentrations. Three poorly calibrated instruments were found in the ion-selective electrode group, 3 in the spectrophotometric group, and 2 in the RSM group. The instruments using reflectance...

  19. Tabular equation of state of lithium for laser-fusion reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Ross, M.; Rogers, F.J.

    1979-01-19

    A tabular lithium equation of state was formulated from three separate equation-of-state models to carry out hydrodynamic simulations of a lithium-waterfall laser-fusion reactor. The models we used are: ACTEX for the ionized fluid, soft-sphere for the liquid and vapor, and pseudopotential for the hot, dense liquid. The models are smoothly joined over the range of density and temperature conditions appropriate for a laser-fusion reactor. We also fitted the models into two forms suitable for hydrodynamic calculations.

  20. 渝南水江板桥铝土矿区锂的分布规律及其影响因素研究%Distribution law of Lithium and its influencing factors in Shuijiangbanqiao bauxite mining area, Southern Chongqing

    Institute of Scientific and Technical Information of China (English)

    邓国仕; 李军敏; 杨桂花; 赵晓东; 陈莉; 陈阳; 吕涛

    2014-01-01

    Based on the study of the bauxite and Scandium of Shuijiangbanqiao mine in Southern Chongqing ,the Al2 O3 was found distribute mainly in the upper and middle-upper layers ,the main type of bauxite are pisolitic ,olitic structures and massive structures .The Lithium was found distributed mainly in the upper and middle-upper layers ,the main type of bauxite is massive bauxite .Lithium is changing from 200 to 1400 × 10-6 and average in 830 .23 × 10-6 .The content of Lithium which is higher in Aluminum clay than in bauxite .The average of correlation coefficient r=0 .820 between Lithium and Al2 O3 ,it is a severe plus correlation .The average of correlation coefficient r= -0 .653 between Lithium and SiO2 ,it is a moderate negative correlation .The average of correlation coefficient r=0 .885 between Lithium and A/S ,it is a severe plus correlation .The seam of Li was affected by horizons ,the impact of ore types ,southern Chingqing , China .%通过对渝南水江板桥铝土矿区五个典型探槽中铝土矿(岩)和稀散元素锂的研究,发现Al2 O3主要分布在含矿层位的上部和中上部,其矿石类型主要为豆(鲕)状和砾屑状,锂主要分布在含矿层位的上部和中上部,主要赋存的岩石类型为砾屑状高铝黏土岩。Li含量在200~1400×10-6之间,平均含量为830.23×10-6;Li在铝土矿含矿岩系上部和中上部的高铝黏土岩中最为富集;铝土矿矿石中Li含量较高,平均为531.37×10-6。Li与Al2 O3相关系数平均值 r=0.820,为正的强相关;Li与SiO2相关系数平均值r=-0.653,为负的中等相关;Li与A/S比值的相关系数平均值 r=0.885,为正的强相关。在渝南铝土矿含矿岩系中,Li矿层的形成受层位、矿石类型的影响。

  1. Performance of the lithium metal infused trenches in the magnum PSI linear plasma simulator

    Science.gov (United States)

    Fiflis, P.; Morgan, T. W.; Brons, S.; Van Eden, G. G.; Van Den Berg, M. A.; Xu, W.; Curreli, D.; Ruzic, D. N.

    2015-09-01

    The application of liquid metal, especially liquid lithium, as a plasma facing component (PFC) has the capacity to offer a strong alternative to solid PFCs by reducing damage concerns and enhancing plasma performance. The liquid-metal infused trenches (LiMIT) concept is a liquid metal divertor alternative which employs thermoelectric current from either plasma or external heating in tandem with the toroidal field to self-propel liquid lithium through a series of trenches. LiMIT was tested in the linear plasma simulator, Magnum PSI, at heat fluxes of up to 3 MW m-2. Results of these experiments, including velocity and temperature measurements, as well as power handling considerations are discussed, focusing on the 80 shots performed at Magnum scanning magnetic fields and heat fluxes up to ~0.3 T and 3 MW m-2. Comparisons to predictions, both analytical and modelled, are made and show good agreement. Concerns over MHD droplet ejection are additionally addressed.

  2. Basic technology for 6Li enrichment using an ionic-liquid impregnated organic membrane

    Science.gov (United States)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the 6Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the 6Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  3. Lithium Reserve Battery.

    Science.gov (United States)

    the high temperature stability of 2M LiAsF6/MF electrolyte solutions. It was found that the addition of small amounts of LiBF4 to these solutions...greatly increased their high temperature storage capabilities. It was determined that the LiBF4 was effective only when lithium metal was also present in...the solution. LiBF4 was able to stabilize solutions prepared with grades of LiAsF6 obtained from other vendors but to a much lesser degree.

  4. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    Science.gov (United States)

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices.

  5. Design and Characterisation of Solid Electrolytes for All-Solid-State Lithium Batteries

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn

    The development of all-solid-state lithium batteries, in which the currently used liquid electrolytes are substituted for solid electrolyte materials, could lead to safer batteries offering higher energy densities and longer cycle lifetimes. Designing suitable solid electrolytes with sufficient...... chemical and electrochemical stability, high lithium ion conduction and negligible electronic conduction remains a challenge. The highly lithium ion conducting LiBH4-LiI solid solution is a promising solid electrolyte material. Solid solutions with a LiI content of 6.25%-50% were synthesised by planetary......-rich microstructures during ball milling is found to significantly influence the conductivity of the samples. The long-range diffusion of lithium ions was measured using quasi-elastic neutron scattering. The solid solutions are found to exhibit two-dimensional conduction in the hexagonal plane of the crystal structure...

  6. Determining the effect of solid and liquid vectors on the gaseous interfacial area and oxygen transfer rates in two-phase partitioning bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Quijano, Guillermo [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico); Rocha-Rios, Jose [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Departamento de Ingenieria de Procesos e Hidraulica (IPH), Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Hernandez, Maria; Villaverde, Santiago [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Revah, Sergio [Departamento de Procesos y Tecnologia, Universidad Autonoma Metropolitana-Cuajimalpa, c/o IPH, UAM-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 Mexico, D.F. (Mexico); Munoz, Raul, E-mail: mutora@iq.uva.es [Departmento de Ingenieria Quimica y Tecnologia del Medio Ambiente, Universidad de Valladolid, Paseo del Prado de la Magdalena, s/n, 47005 Valladolid (Spain); Thalasso, Frederic [Departamento de Biotecnologia y Bioingenieria, Centro de Investigacion y de Estudios, Avanzados del IPN (Cinvestav), Apdo. Postal 14-740, 07360 Mexico, D.F. (Mexico)

    2010-03-15

    The effect of liquid and solid transfer vectors (silicone oil and Desmopan, respectively) on the gaseous interfacial area (a{sub g}) was evaluated in a two-phase partitioning bioreactor (TPPB) using fresh mineral salt medium and the cultivation broth of a toluene degradation culture (Pseudomonas putida DOT-T1E cultures continuously cultivated with and without silicone oil at low toluene loading rates). Higher values of a{sub g} were recorded in the presence of both silicone oil and Desmopan compared to the values obtained in the absence of a vector, regardless of the aqueous medium tested (1.6 and 3 times higher, respectively, using fresh mineral salt medium). These improvements in a{sub g} were well correlated to the oxygen mass transfer enhancements supported by the vectors (1.3 and 2.5 for liquid and solid vectors, respectively, using fresh medium). In this context, oxygen transfer rates of 2.5 g O{sub 2} L{sup -1} h{sup -1} and 1.3 g O{sub 2} L{sup -1} h{sup -1} were recorded in the presence of Desmopan and silicone oil, respectively, which are in agreement with previously reported values in literature. These results suggest that mass transfer enhancements in TPPBs might correspond to an increase in a{sub g} rather than to the establishment of a high-performance gas/vector/water transfer pathway.

  7. Experimental Investigation on the Internal Resistance of Lithium Iron Phosphate Battery Cells during Calendar Ageing

    DEFF Research Database (Denmark)

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina

    2013-01-01

    is directly related to its internal resistance. This work aims to investigate the dependency of the internal resistance of lithium-ion batteries on the storage temperature and on the storage time. For this purpose, accelerated ageing calendar lifetime tests were carried out over a period of one year. Based......Lithium-ion batteries are increasingly considered for a wide area of applications because of their superior characteristics in comparisons to other energy storage technologies. However, at present, Lithium-ion batteries are expensive storage devices and consequently their ageing behavior must...... be known in order to estimate their economic viability in different application. The ageing behavior of Lithium-ion batteries is described by the fade of their discharge capacity and by the decrease of their power capability. The capability of a Lithium-ion battery to deliver or to absorb a certain power...

  8. 离子液体/苯并15-冠-5浸渍XAD-7树脂萃取分离锂同位素%Extraction Separation of Lithium Isotopes by Using XAD-7 Resins Impregnated With Ionic Liquid and Benzo-15-Crown-5

    Institute of Scientific and Technical Information of China (English)

    顾玲; 孙晓利; 任冬红; 邱丹; 顾志国; 李在均

    2015-01-01

    Imidazolium-type ionic liquid ([C8 mim][BF4 ],[C8 mim][PF6 ]and [C8 mim] [(SO2 CF3 )2 N])and benzo-15-crown-5 were immobilized on XAD-7 resin to obtain the im-pregnated resin for lithium isotopes separation.IR and SEM characterizations of the impreg-nated resins indicate that ionic liquids and benzo-15-crown-5 are immobilized in the resins successfully and the thermal analysis indicates that the materials are thermally stable.The optimum E was obtained in the initial solution at pH=5.55.The larger extraction percenta-ges and separation factors values were obtained from LiSCN solution and CF3 COOLi solu-tion,respectively.The maximum single-stage isotopes separation factor of 6 Li/7 Li is up to 1.045±0.002.The equilibrium time of extraction is attained in 2.5-3 h.The thermodynamic parameters of the system were presented and revealed that the extraction reaction was a spontaneous process and the temperature had slight influence on the extraction separation of lithium isotopes.The mechanism of extraction system show that 6 Li enriches in the solid phase and 7 Li concentrates in the aqueous phase.The impregnated resins can be regenerated and reused for lithium isotopes separation.%以 XAD-7树脂为支撑担体制备了含有三种不同咪唑型离子液体([C8 mim][BF4]、[C8 mim][PF6]、[C8 mim][(SO2 CF3)2 N])和萃取剂(苯并15-冠-5)的浸渍树脂,并用于锂同位素的萃取分离。浸渍树脂的红外和扫描电镜表征表明,离子液体成功负载到了树脂上;热重分析表明,该浸渍树脂具有良好的热稳定性。在水相初始 pH=5.55时,浸渍树脂具有最佳萃取率。浸渍树脂在 LiSCN 溶液中具有较高的萃取率,而在CF3 COOLi 溶液中呈现较大的单级分离因子,最大单级分离因子达到1.045±0.002。浸渍树脂的萃取平衡时间为2.5~3 h。萃取热力学研究表明,该反应为自发过程,温度对体系的影响较小。6 Li 富集于固相,7 Li 富集在水相。该系列浸渍树脂易于再生,可循环使用。

  9. The use of anions with sulfate function in electrolyte for lithium battery. Study of transport mechanism; Utilisation d'anions a fonction sulfate dans des electrolytes pour batterie au lithium. Etude des mecanismes de transport

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, Ch.

    2005-05-15

    Lithium salts based on oligo-ether sulfate were synthesized and characterised. They incorporate oxy-ethylene units which enable the lithium cation salvation and, potentially, their use as ionic liquids. Their properties as lithium salts dissolved in liquid or polymer electrolytes were evaluated. Their electrochemical and thermal stabilities are sufficient for lithium battery application. Due to their weak dissociation in POE, their conductivities are fairly low. On the other hand, they have high cationic transference numbers. In mixture with usual salts as LiTFSI, they provide a good compromise between conductivities/transference number/cost. The second part of this study deals with the synthesis and characterisation of an ionomer with sulfate function and polyether backbone. The electrochemical, physical and chemical properties of this material show that it could be used as polymer electrolyte. Its potential as cross-linked gelled polymer electrolyte is outstanding. Structural analyses on an ionomeric monocrystal have been corroborated with quantum chemistry calculations. (author)

  10. Experimental evaluation of the potential for thermal striping in the FMIT lithium system

    Energy Technology Data Exchange (ETDEWEB)

    Ingham, J.G.; Dickinson, D.R.; Adkins, H.E.

    1983-01-01

    Tests were conducted to evaluate the potential for thermal striping in the liquid lithium system of the proposed Fusion Materials Irradiation Test (FMIT) Facility. In FMIT, a high speed liquid lithium jet will be nonuniformly heated as it is continuously bombarded by a high energy deuteron beam. The lithium near the center of the 1.9 cm thick jet will be heated to a temperature about 540 C hotter than that at the edges. The rectangular jet will discharge downwards into a 0.76 m diameter quench tank containing a pool of lithium. A full-scale water model of the jet and quench tank was constructed in which 82 C hot water was injected into the center of a 38 C main flow of water to model approximately the nonuniform temperature distribution produced in the FMIT lithium. The local fluctuating temperatures in the tank were measured by assemblies of movable fast-response thermocouples and read out through a computer which calculated fluctuation amplitudes. The thermal striping amplitudes on the quench tank surfaces were found to be acceptably small under both Froude and Reynolds number modeling. Testing is continuing to more thoroughly evaluate the potential for thermal striping on the drain which transfers the heated jet to the liquid pool in the quench tank. Conservative results from preliminary testing indicate levels of thermal striping which are higher than desirable on this drain.

  11. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  12. High power density self-cooled lithium-vanadium blanket.

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Majumdar, S.; Smith, D.

    1999-07-01

    A self-cooled lithium-vanadium blanket concept capable of operating with 2 MW/m{sup 2} surface heat flux and 10 MW/m{sup 2} neutron wall loading has been developed. The blanket has liquid lithium as the tritium breeder and the coolant to alleviate issues of coolant breeder compatibility and reactivity. Vanadium alloy (V-4Cr-4Ti) is used as the structural material because it can accommodate high heat loads. Also, it has good mechanical properties at high temperatures, high neutron fluence capability, low degradation under neutron irradiation, good compatibility with the blanket materials, low decay heat, low waste disposal rating, and adequate strength to accommodate the electromagnetic loads during plasma disruption events. Self-healing electrical insulator (CaO) is utilized to reduce the MHD pressure drop. A poloidal coolant flow with high velocity at the first wall is used to reduce the peak temperature of the vanadium structure and to accommodate high surface heat flux. The blanket has a simple blanket configuration and low coolant pressure to reduce the fabrication cost, to improve the blanket reliability, and to increase confidence in the blanket performance. Spectral shifter, moderator, and reflector are utilized to improve the blanket shielding capability and energy multiplication, and to reduce the radial blanket thickness. Natural lithium is used to avoid extra cost related to the lithium enrichment process.

  13. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  14. Lithium and GSK-3β promoter gene variants influence cortical gray matter volumes in bipolar disorder.

    Science.gov (United States)

    Benedetti, Francesco; Poletti, Sara; Radaelli, Daniele; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Vai, Benedetta; Bollettini, Irene; Falini, Andrea; Smeraldi, Enrico; Colombo, Cristina

    2015-04-01

    Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase-3β (GSK-3β). The less active GSK-3β promoter gene variants have been associated with less detrimental clinical features of BD. GSK-3β gene variants and lithium can influence brain gray and white matter structure in psychiatric conditions, so we studied their combined effect in BD. The aim of this study is to investigate the effects of ongoing long-term lithium treatment and GSK-3β promoter rs334558 polymorphism on regional gray matter (GM) volumes of patients with BD. GM volumes were estimated with 3.0 Tesla MRI in 150 patients affected by a major depressive episode in course of BD. Duration of lifetime lithium treatment was retrospectively assessed. Analyses were performed by searching for significant effects of lithium and rs334558 in the whole brain. The less active GSK-3β rs334558*G gene promoter variant and the long-term administration of lithium were synergistically associated with increased GM volumes in the right frontal lobe, in a large cluster encompassing the boundaries of subgenual and orbitofrontal cortex (including Brodmann areas 25, 11, and 47). Effects of lithium on GM revealed in rs334558*G carriers only, consistent with previously reported clinical effects in these genotype groups, and were proportional to the duration of treatment. Lithium and rs334558 influenced GM volumes in areas critical for the generation and control of affect, which have been widely implicated in the process of BD pathophysiology. In the light of the protective effects of lithium on white matter integrity, our results suggest that the clinical effects of lithium associate with a neurotrophic effect on the whole brain, probably mediated by GSK-3β inhibition.

  15. Design and Experiment Research on Parallel Type of Liquid Phase Thermal Management System for Power Lithium Battery%动力锂电池的并联式液相热管理系统的设计及实验研究

    Institute of Scientific and Technical Information of China (English)

    李兵

    2016-01-01

    In this paper, the parallel liquid phase thermal management system of power lithium battery is designed, the cooling and heating system experiments are carried out as well by comparing the common system. The result shows that this system can improve the cooling and heating temperature consistency of the batteries, greatly shorten the batteries cooling or heating time, and obviously reduce the energy consumption of thermal management. The sys-tem has been applied in some vehicles and can provide reference for the design of the battery thermal management system.%设计一种动力锂电池的并联式液相热管理系统,并对该系统和常规系统进行冷却和加热的对比实验。结果表明,应用该管理系统能够提高电池冷却或加热的一致性,并大大缩短电池的冷却或加热时间,同时明显降低热管理的能耗。该系统已在部分车辆上实际应用,可为电池热管理系统的设计提供参考。

  16. Lithium ion batteries with titania/graphene anodes

    Science.gov (United States)

    Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

    2013-05-28

    Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

  17. Flow and heat transfer of quasi-static liquid metal Lithium-Lead in the SLL blanket%准静态液态金属锂铅在SLL包层中的流动换热

    Institute of Scientific and Technical Information of China (English)

    唐婵; 王红艳; 裘浔隽

    2013-01-01

    依据国际热核聚变实验堆(ITER)的中国单冷准静态液态锂铅实验包层模块(Single-coolant Lithium Lead,SLL),研究液态金属工质锂铅在磁场作用下,不同的第一壁热流密度对缓慢流动的液态锂铅流动和传热特性的影响,为热工水力设计提供参考.研究表明,液态金属处于准静态缓慢流动时,第一壁热流密度的增加使得流道整体的温度有所提高,特别是靠近第一壁的L1流道的温度增加幅度最大;L1流道温度和速度变化剧烈,产生变化较大的感应磁场和感应电流密度,对应的洛伦兹力影响了流动换热.

  18. 山西平朔矿区4号煤中锂、镓资源成矿地质特征研究%Lithium and Gallium Resources Metallogenic Geological Characteristics in Coal No.4, Pingshuo Mining Area, Shanxi

    Institute of Scientific and Technical Information of China (English)

    李华; 许霞; 杨恺

    2014-01-01

    The Pingshuo mining area is situated at the north end of Ningwu coalfield, Shuozhou City, Shanxi Province. The Taiyuan For⁃mation is the main coal-bearing strata, with main coal mineable seams Nos.4, 9 and 11 and stably developed in the whole area. Through test of samples from sections and boreholes has found the lithium content in coal No.4 is much greater than the average in Chi⁃nese coals, also the higher content of gallium as a whole, and come to industrial grade, obviously paranormal enrichment. The enrich⁃ment of lithium and gallium in coal No.4 may relate to the mining area history of clogged embayment and lesser seawater actions, as well as abundant material sources;later stage appropriate paleoclimate, weathering, erosion, transport, corrosion and leaching made cal⁃cium and sulfur run away, aluminum, silica, lithium and gallium enrichment.%平朔矿区位于山西省朔州市宁武煤田北端,太原组为主要含煤地层,主要可采煤层为4,9,11号煤层,全区稳定发育。通过对剖面和钻孔采样测试,发现区内4号煤锂的平均含量远远大于中国煤中锂含量的均值,同时,镓的整体含量也比较高,达到工业品位,超常富集状态明显。4号煤中锂、镓富集可能是与矿区位于不畅通的海湾地带,海水作用较小有关,同时物源供给丰富,后期适宜的古气候条件,风化、剥蚀、搬运、溶蚀、淋滤等作用使黏土中钙、硫等流失,铝、硅、锂、镓等富集。

  19. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    Science.gov (United States)

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  20. Atomically resolved images of lithium purple bronze

    Energy Technology Data Exchange (ETDEWEB)

    Klinke, Melanie; Bienert, Robert; Waelsch, Michael; Podlich, Tatjana; Matzdorf, Rene [Experimentalphysik II, Universitaet Kassel (Germany); Jin, Rongying [Department of Physics and Astronomy, Lousiana State University (United States)

    2012-07-01

    The lithium molybdenum purple bronze Li{sub 0.9}Mo{sub 6}O{sub 17} is a quasi 1D metal at room temperature showing Luttinger liquid physics. The highly anisotropic conductivity runs along the crystallographic b axis where Mo-O chains, formed by the shared edges of the MoO{sub 6} octahedra, provide the electrical transport. Li{sub 0.9}Mo{sub 6}O{sub 17} samples were investigated with low-temperature scanning tunneling microscopy and spectroscopy. By cleaving the samples at low temperatures (60 K) we obtained atomically resolved images of the surface. In these images the Mo-O chains are visible, which are covered by layers of MoO{sub 6} octahedra and MoO{sub 4} tetrahedra.

  1. Lithium batteries for electric road vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bo; Hallgren, B.; Johansson, Arne; Selaanger, P. [Catella Generics, Kista (Sweden)

    1995-12-31

    Lithium is one of the most promising negative electrode materials to be used for the manufacturing of batteries. It is the most electronegative material in the table of standard potentials and its low weight will facilitate a high gravimetric coulombic density. Theoretically, as high values as 6 kWh/kg could be reached for lithium based batteries. The aim of this study has been to make an inventory of what is internationally known about lithium batteries suitable for electric vehicle applications. It is representative for the development status by the summer of 1995. Both high and ambient temperature lithium batteries are described in the study even if the analysis is concentrated on the latter. Ambient temperature systems has gathered the major interest, especially from manufacturers in the `3Cs` market segment (Consumer electronics, Communications and Computers). There is no doubt, a bright future for lithium rechargeable batteries. Depending on the ambition of a national research programme, one can await the ongoing development of batteries for the 3Cs market segment or take the lead in a near-term or advanced system R and D for EV batteries. In the zero ambition EV battery programme, we recommend allocation of funds to follow the development within the 3Cs sector. The corresponding funding level is 1-2 MSEK/year granted to a stable receiver. In a low ambition EV programme, we recommend to keep a few groups active in the front-line of specific research areas. The purpose is to keep a link for communication open to the surrounding battery world. The cost level is 4-6 MSEK per year continually. In a high ambition programme we recommend the merging of Swedish resources with international EV battery R and D programmes, e.g. the EUCAR project. The research team engaged should be able to contribute to the progress of the overall project. The cost for the high ambition programme is estimated at the level 15-20 MSEK per year continually. 47 refs, 17 figs, 16 tabs

  2. Preliminary Evaluations of Polymer-based Lithium Battery Electrolytes Under Development for the Polymer Electrolyte Rechargeable Systems Program

    Science.gov (United States)

    Manzo, Michelle A.; Bennett, William R.

    2003-01-01

    A component screening facility has been established at The NASA Glenn Research Center (GRC) to evaluate candidate materials for next generation, lithium-based, polymer electrolyte batteries for aerospace applications. Procedures have been implemented to provide standardized measurements of critical electrolyte properties. These include ionic conductivity, electronic resistivity, electrochemical stability window, cation transference number, salt diffusion coefficient and lithium plating efficiency. Preliminary results for poly(ethy1ene oxide)-based polymer electrolyte and commercial liquid electrolyte are presented.

  3. A review of thermal management and safety for lithium ion batteries

    DEFF Research Database (Denmark)

    Saeed Madani, Seyed; Swierczynski, Maciej Jozef; Kær, Søren Knudsen

    2017-01-01

    performance. Therefore,thermal management of batteries is essential for various purposes containing thermal runaway and longstanding of cell functioning period. The favorable outcome of electricdriven vehicles (EDVs) depends on the lithium-ion battery technology. Notwithstanding, the safety concern...... is a considerable technical problem and has become an important factor which might postpones subsequent extension of lithium-ion batteries. This paper reviews different methods for thermal management of lithium-ion batteries. Various methods such as using Phase change materials and using air cooling, straight...... liquid cooling, ancillary liquid cooling, fin cooling have been considered to assess their usefulness from the viewpoint of coolant energy utilization, highest temperature growth, temperature alteration, and extra mass required for the cooling scheme....

  4. Nuclear quantum and electronic exchange-correlation effects on the high pressure phase diagram of lithium

    Science.gov (United States)

    Clay, Raymond; Morales, Miguel; Bonev, Stanimir

    Lithium at ambient conditions is the simplest alkali metal and exhibits textbook nearly-free electron character. However, increased core/valence electron overlap under compression leads to surprisingly complex behavior. Dense lithium is known to posses a maximum in the melting line, a metal to semiconductor phase transition around 80GPa, reemergent metallicity around 120GPa, and low coordination solid and liquid phases. In addition to its complex electronic structure at high pressure, the atomic mass of lithium is low enough that nuclear quantum effects could have a nontrivial impact on its phase diagram. Through a combination of density functional theory based path-integral and classical molecular dynamics simulations, we have investigated the impact of both nuclear quantum effects and anharmonicity on the melting line and solid phase boundaries. Additionally, we have determined the robustness of previously predicted tetrahedral clustering in the dense liquid to the inclusion of nuclear quantum effects and approximate treatment of electronic exchange-correlation effects.

  5. Comparative analysis of the electroactive area of Pt/C PEMFC electrodes in liquid and solid polymer contact by underpotential hydrogen adsorption/desorption

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro, A.M.; Martin, A.J.; Folgado, M.A.; Gallardo, B. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Daza, L. [Dep. de Energia, CIEMAT, Avda. Complutense, 22, 28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain)

    2009-06-15

    Because of the different experimental conditions found in literature for the measurement of the electroactive area of Pt/C electrodes of proton exchange membrane fuel cells (PEMFC) by means of underpotential hydrogen adsorption (H{sub UPD}) voltammetry, specially concerning sweep rate and temperature, it was found necessary to perform an analysis of these parameters. With this aim, the electroactive area of PEMFC electrodes has been measured by means of H{sub UPD} voltammetry at different sweep rates and temperatures, in liquid electrolyte and solid polymer contact. Both configurations show that H{sub UPD} adsorption and desorption charges are strongly dependent on sweep rate voltage and temperature. The most common behaviour observed is a maximum in H{sub UPD} desorption charge, typically in the 100-10 mV s{sup -1} sweep rate range, whereas H{sub UPD} adsorption charge shows continuous increase with decreasing sweep rate. The decrease of desorption charge at low sweep rates is attributed to adsorbing species related with carbon support reactivity. These processes are also responsible for the increase in desorption H{sub UPD} charge at low sweep rate. At high sweep rate, both adsorption and desorption H{sub UPD} charges decrease due to limiting diffusion of protons through the microporous electrode. As a consequence, it is found that the closest approximation to the real electroactive area (i.e. the area accessible to protons) corresponds to the maximum in the H{sub UPD} desorption charge in the range of 10-100 mV s{sup -1} sweep rate. The influence of measuring temperature is also tested in the range 25 C-80 C. A dependence of the adsorption and desorption hydrogen charges is found, due to thermodynamic and kinetics factors. We observe that the processes competing with hydrogen adsorption, i.e. generation and adsorption of carbon species are enhanced with temperature, so a low measuring temperature is found as most appropriate. (author)

  6. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... estimates. Furthermore, the maintenance dose estimated from the central compartment (V1) led to plasma concentrations within the therapeutic range. Thus, a regimen where 12.2 mmol lithium was given after each hemodialysis session resulted in stable between-dialysis plasma lithium concentrations...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  7. Does lithium protect against dementia?

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Forman, Julie Lyng; Andersen, Per Kragh

    2010-01-01

    OBJECTIVE: To investigate whether treatment with lithium in patients with mania or bipolar disorder is associated with a decreased rate of subsequent dementia. METHODS: Linkage of register data on prescribed lithium in all patients discharged from psychiatric health care service with a diagnosis...... exposed to lithium (50.4%), 1,781 to anticonvulsants (36.7%), 4,280 to antidepressants (88.1%), and 3,901 to antipsychotics (80.3%) during the study period. A total of 216 patients received a diagnosis of dementia during follow-up (103.6/10,000 person-years). During the period following the second...... prescription of lithium, the rate of dementia was decreased compared to the period following the first prescription. In contrast, the rates of dementia during multiple prescription periods with anticonvulsants, antidepressants, or antipsychotics, respectively, were not significantly decreased compared...

  8. Rechargeable Lithium Metal Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PSI proposes to develop a rechargeable lithium metal cell with energy density >400Wh/kg. This represents a >70% increase as compared to similarly constructed...

  9. Rotational Mixing and Lithium Depletion

    CERN Document Server

    Pinsonneault, M H

    2010-01-01

    I review basic observational features in Population I stars which strongly implicate rotation as a mixing agent; these include dispersion at fixed temperature in coeval populations and main sequence lithium depletion for a range of masses at a rate which decays with time. New developments related to the possible suppression of mixing at late ages, close binary mergers and their lithium signature, and an alternate origin for dispersion in young cool stars tied to radius anomalies observed in active young stars are discussed. I highlight uncertainties in models of Population II lithium depletion and dispersion related to the treatment of angular momentum loss. Finally, the origins of rotation are tied to conditions in the pre-main sequence, and there is thus some evidence that enviroment and planet formation could impact stellar rotational properties. This may be related to recent observational evidence for cluster to cluster variations in lithium depletion and a connection between the presence of planets and s...

  10. Fueling studies on the lithium tokamak experiment

    Science.gov (United States)

    Lundberg, Daniel Patrick

    Lithium plasma facing components reduce the flux of "recycled" particles entering the plasma edge from the plasma facing components. This results in increased external fueling requirements and provides the opportunity to control the magnitude and distribution of the incoming particle flux. It has been predicted that the plasma density profile will then be determined by the deposition profile of the external fueling, rather than dominated by the recycled particle flux. A series of experiments on the Lithium Tokamak Experiment demonstrate that lithium wall coatings facilitate control of the neutral and plasma particle inventories. With fresh lithium coatings and careful gas injection programming, over 90% of the injected particle inventory can be absorbed in the lithium wall during a discharge. Furthermore, dramatic changes in the fueling requirements and plasma parameters were observed when lithium coatings were applied. This is largely due to the elimination of water as an impurity on the plasma facing components. A Molecular Cluster Injector (MCI) was developed for the fueling of LTX plasmas. The MCI uses a supersonic nozzle, cooled to liquid nitrogen temperatures, to create the conditions necessary for molecular cluster formation. It has been predicted that molecular clusters will penetrate deeper into plasmas than gas-phase molecules via a reduced ionization cross-section and by improving the collimation of the neutral jet. Using an electron beam diagnostic, the densities of the cryogenic MCI are measured to be an order of magnitude higher than in the room-temperature jets formed with the same valve pressure. This indicates increased collimation relative to what would be expected from ideal gas dynamics alone. A systematic study of the fueling efficiencies achieved with the LTX fueling systems is presented. The fueling efficiency of the Supersonic Gas Injector (SGI) is demonstrated to be strongly dependent on the distance between the nozzle and plasma edge. The

  11. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries.

    Science.gov (United States)

    Sun, Liang; Qiu, Keqiang

    2011-10-30

    Spent lithium-ion batteries contain lots of strategic resources such as cobalt and lithium together with other hazardous materials, which are considered as an attractive secondary resource and environmental contaminant. In this work, a novel process involving vacuum pyrolysis and hydrometallurgical technique was developed for the combined recovery of cobalt and lithium from spent lithium-ion batteries. The results of vacuum pyrolysis of cathode material showed that the cathode powder composing of LiCoO(2) and CoO peeled completely from aluminum foils under the following experimental conditions: temperature of 600°C, vacuum evaporation time of 30 min, and residual gas pressure of 1.0 kPa. Over 99% of cobalt and lithium could be recovered from peeled cobalt lithium oxides with 2M sulfuric acid leaching solution at 80°C and solid/liquid ratio of 50 g L(-1) for 60 min. This technology offers an efficient way to recycle valuable materials from spent lithium-ion batteries, and it is feasible to scale up and help to reduce the environmental pollution of spent lithium-ion batteries.

  12. Lithium Abundance of Metal-poor Stars

    Institute of Scientific and Technical Information of China (English)

    Hua-Wei Zhang; Gang Zhao

    2003-01-01

    High-resolution, high signal-to-noise ratio spectra have been obtained for 32 metal-poor stars. The equivalent widths of Li λ6708A were measured and the lithium abundances were derived. The average lithium abundance of 21 stars on the lithium plateau is 2.33±0.02 dex. The Lithium plateau exhibits a marginal trend along metallicity, dA(Li)/d[Fe/H] = 0.12±0.06, and no clear trend with the effective temperature. The trend indicates that the abundance of lithium plateau may not be primordial and that a part of the lithium was produced in Galactic Chemical Evolution (GCE).

  13. Lithium compensation for full cell operation

    Science.gov (United States)

    Xiao, Jie; Zheng, Jianming; Chen, Xilin; Lu, Dongping; Liu, Jun; Jiguang, Jiguang

    2016-05-17

    Disclosed herein are embodiments of a lithium-ion battery system comprising an anode, an anode current collector, and a layer of lithium metal in contact with the current collector, but not in contact with the anode. The lithium compensation layer dissolves into the electrolyte to compensate for the loss of lithium ions during usage of the full cell. The specific placement of the lithium compensation layer, such that there is no direct physical contact between the lithium compensation layer and the anode, provides certain advantages.

  14. Lithium isotope separation by laser

    Energy Technology Data Exchange (ETDEWEB)

    Arisawa, T.; Maruyama, Y.; Suzuki, Y.; Shiba, K.

    1982-01-01

    A lithium isotope separation was performed using a laser isotope separation method. It was found that the lithium atoms with a natural isotopic abundance enhanced its /sup 6/Li concentration up to over 90% by tuning the laser wavelength to the /sup 2/Psub(1/2) of /sup 6/Li. Too high power, however, leads to a loss of enrichment due to the power broadening effect which was analysed by the equation of motion of density matrices.

  15. Air breathing lithium power cells

    Science.gov (United States)

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  16. The lithium air battery fundamentals

    CERN Document Server

    Imanishi, Nobuyuki; Bruce, Peter G

    2014-01-01

    Lithium air rechargeable batteries are the best candidate for a power source for electric vehicles, because of their high specific energy density. In this book, the history, scientific background, status and prospects of the lithium air system are introduced by specialists in the field. This book will contain the basics, current statuses, and prospects for new technologies. This book is ideal for those interested in electrochemistry, energy storage, and materials science.

  17. Kleptomania, mood disorder and lithium

    OpenAIRE

    Fábio Lopes Rocha; Maria Elizabete Guimarães Rocha

    1992-01-01

    Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  18. Kleptomania, mood disorder and lithium

    Directory of Open Access Journals (Sweden)

    Fábio Lopes Rocha

    1992-12-01

    Full Text Available Kleptomania has been found in association with major depression in a fairly large number of reports in recent years. We describe a patient with concurrent DSM-III-R Bipolar Mood Disorder and Kleptomania, whose symptoms remitted completely, apparently in response to lithium therapy, which raised the possibility that pharmacological treatment may benefit kleptomania. Further studies are needed to establish the possible relationship between kleptomania, mood disorders and lithium therapy.

  19. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  20. Modeling the Lithium Ion Battery

    Science.gov (United States)

    Summerfield, John

    2013-01-01

    The lithium ion battery will be a reliable electrical resource for many years to come. A simple model of the lithium ions motion due to changes in concentration and voltage is presented. The battery chosen has LiCoO[subscript 2] as the cathode, LiPF[subscript 6] as the electrolyte, and LiC[subscript 6] as the anode. The concentration gradient and…

  1. Extracorporeal Treatment for Lithium Poisoning

    DEFF Research Database (Denmark)

    Decker, Brian S; Goldfarb, David S; Dargan, Paul I

    2015-01-01

    The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical and toxico......The Extracorporeal Treatments in Poisoning Workgroup was created to provide evidence-based recommendations on the use of extracorporeal treatments in poisoning. Here, the EXTRIP workgroup presents its recommendations for lithium poisoning. After a systematic literature search, clinical...... extraction of patient-level data. The workgroup concluded that lithium is dialyzable (Level of evidence=A) and made the following recommendations: Extracorporeal treatment is recommended in severe lithium poisoning (1D). Extracorporeal treatment is recommended if kidney function is impaired and the [Li...... treatment (1D), but continuous RRT is an acceptable alternative (1D). The workgroup supported the use of extracorporeal treatment in severe lithium poisoning. Clinical decisions on when to use extracorporeal treatment should take into account the [Li(+)], kidney function, pattern of lithium toxicity...

  2. Aqueous lithium air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  3. Time course effects of lithium administration on spatial memory acquisition and cholinergic marker expression in rats

    Directory of Open Access Journals (Sweden)

    M H Karimfar

    2009-08-01

    Full Text Available Background: The effects of chronic lithium exposure on spatial memory in rats remain controversial. In this study a time course of the effects of lithium, administered systemically, on spatial memory acquisition in Morris water maze was investigated. Material and Methods: Lithium (600 mg/L was administered to four groups of rats in their drinking water; the first group of animals received lithium for one week, the second group for two weeks, the third group for three weeks, and the fourth group for four weeks.  As controls, four groups of animals received only normal drinking water for the same period of time.  Toward the end of their lithium or water treatment, all animals were trained for four days; each day included one block and each block contained four trials.  Test trials were conducted 48 hrs after completion of the lithium treatment. Escape latency, traveled distance and swimming speed were evaluated during testing trials. Brain tissues from animals were processed according to the standard protocols for immunohistochemical analysis.  Results: Lithium treatment decreased escape latency and traveled distance, but not swimming speed, compared with controls, suggesting significant spatial memory acquisition enhancement by lithium. Quantitative analysis showed that lithium, particularly after four weeks of exposure, significantly increased the number and density of immunostained ChAT-containing (choline acetyltransferase neurons in the medial septal area in comparison with control groups.  There was also a significant correlation between the number of immunostained ChAT neurons and behavioral measures. Conclusion: These results suggest that chronic oral administration of lithium causes spatial memory acquisition improvement in rats and an increase in ChAT immunostaining levels in medial septal nuclei.

  4. Preparation and Characterization of Lithium Zirconium Silicate for CO2 Capture

    Directory of Open Access Journals (Sweden)

    T.S. Bhosale

    2014-10-01

    Full Text Available The samples of lithium zirconium silicate were prepared by precipitation, template and sol-gel meth-ods. The samples were prepared with several mol ratios of Li:Zr:Si. The preparation of lithium zirco-nium silicate samples by precipitation method were carried out by using the lithium nitrate, zirconyl nitrate, zirconium(IV oxypropoxide and tetramethylorthosilicate (TEOS as precursors. The samples of lithium zirconium silicate were prepared by using cetyltrimethyl-ammonium bromide (C-TAB and tetramethyl ammonium hydroxide (TMAOH by template method. The samples of lithium zirconium silicate were characterized by XRD, TEM, SEM, 29Si-MAS NMR and FTIR. The surface area, alkalinity / acidity of the samples of lithium zirconium silicate were measured. The TGA analysis of lithium zirco-nium silicate samples was done. The CO2 captured by the samples of lithium zirconium silicate was es-timated. The captured CO2 by the samples of lithium zirconium silicate was found to be in the range 3.3 to 8.6 wt%. © 2014 BCREC UNDIP. All rights reservedReceived: 27th March 2014; Revised: 31st July 2014; Accepted: 2nd August 2014How to Cite: Bhosale, T.S. , Gaikwad, A.G. (2014. Preparation and Characterization of Lithium Zirconium Silicate for CO2 Capture. Bulletin of Chemical Reaction Engineering & Catalysis, 9(3: 249-262. (doi:10.9767/bcrec.9.3.6646.249-262Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6646.249-262

  5. Application of PVDF composite for lithium-ion battery separator

    Science.gov (United States)

    Sabrina, Q.; Majid, N.; Prihandoko, B.

    2016-11-01

    In this study a composite observed in PVDF composite as lithium ion battery separator. Observation of performance cell battery with cyclic voltametry and charge discharge capacity. Surface morphology PVDF separator and commercial separator observed with Scanning electron microscopy (SEM). Cyclic Voltamerty test (CV) and Charge Discharge (CD) showed a capacity value on the coin cell. Coin cell is composed of material LiFePO4 cathode, anode material of lithium metal and varies as graphite, liquid electrolyte varied use LiBOB and LiPF6. While the PVDF as compared to the commercial separator. Coin cell commercial separator has a better high capacity value when compared with Coin cell with the PVDF separator. Life cycle coin cell with the commercial separator material is still longer than coin cell separator with PVDF Copolymer. Development of PVDF as separator remains to be done in order to improve the performance of the battery exceeds the usage of commercial material.

  6. Preparation and properties of gel membrane containing porous PVDF-HFP matrix and cross-linked PEG for lithium ion conduction

    Institute of Scientific and Technical Information of China (English)

    Mei ZHANG; Aiqing ZHANG; Zhenyu CUI; Baoku ZHU; Gaigc HAN; Youyi XU

    2008-01-01

    Lithium ion conducting membranes are the key materials for lithium batteries. The lithium ion conducting gel polymer electrolyte membrane (Li-GPEM) based on porous poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix and cross-linked PEG network is pre-pared by a typical phase inversion process. By immersing the porous PVDF-HFP membrane in liquid electrolyte con-taining poly(ethylene glycol) diacrylate (PEGDA) and an initiator to absorb the liquid electrolyte at 25℃, and then thermally cross-linking at 60℃, the Li-GPEM is fabricated successfully. The measurements on its weight loss, mech-anical and electrochemical properties reveal that the obtained Li-GPEM has better overall performance than the liquid and blend gel systems used as conductive media in lithium batteries. The ionic conductivity of the fabricated Li-GPEM can reach as high as 2.25 × 10-3S/cm at 25℃.

  7. Grain Boundary Engineering of Lithium-Ion-Conducting Lithium Lanthanum Titanate for Lithium-Air Batteries

    Science.gov (United States)

    2016-01-01

    release; distribution is unlimited. 1 1. Introduction Lithium (Li)-ion batteries are currently one of the leading energy storage device technologies...phase) were submerged in concentrated LiCl solution. The LiCl solution was made by dissolving lithium carbonate (LiCO3) into hydrogen chloride until...Direct correlations between fracture toughness and grain boundary segregation behavior in ytterbium- doped magnesium aluminate spinel. Scripta

  8. Neutronics and activation analysis of lithium-based ternary alloys in IFE blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, Alejandra, E-mail: aleja311@berkeley.edu [University of California Berkeley, Berkeley, CA 94706 (United States); Kramer, Kevin [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA (United States); Meier, Wayne; DeMuth, James; Reyes, Susana [TerraPower, Bellevue, WA 98005 (United States); Fratoni, Massimiliano [University of California Berkeley, Berkeley, CA 94706 (United States)

    2016-06-15

    Highlights: • Monte Carlo calculations were performed on numerous lithium ternary alloys. • Elements with high neutron multiplication performed well with low absorbers. • Enriching lithium decreases minimum lithium concentration of alloys by 60% or more. • Alloys that performed well neutronically were selected for activation calculations. • Alloys activated, except LiBaBi, do not pose major environmental or safety concerns. - Abstract: An attractive feature of using liquid lithium as the breeder and coolant in fusion blankets is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. The Lawrence Livermore National Laboratory is carrying an effort to develop a lithium-based ternary alloy that maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) and at the same time reduces overall flammability concerns. This study evaluates the neutronics performance of lithium-based alloys in the blanket of an inertial fusion energy chamber in order to inform such development. 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and the fusion energy multiplication factor (EMF). It was found that elements that exhibit low absorption cross sections and higher q-values such as Pb, Sn, and Sr, perform well with those that have high neutron multiplication such as Pb and Bi. These elements meet TBR constrains ranging from 1.02 to 1.1. However, most alloys do not reach EMFs greater than 1.15. Additionally, it was found that enriching lithium with {sup 6}Li significantly increases the TBR and decreases the minimum lithium concentration by more than 60%. The amount of enrichment depends on how much total lithium is in the alloy to begin with. Alloys that performed well in the TBR

  9. Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium-Sulfur Batteries.

    Science.gov (United States)

    Peng, Hong-Jie; Wang, Dai-Wei; Huang, Jia-Qi; Cheng, Xin-Bing; Yuan, Zhe; Wei, Fei; Zhang, Qiang

    2016-01-01

    Owing to the conversion chemistry of the sulfur cathode, the lithium-sulfur (Li-S) batteries exhibit high theoretical energy density. However, the intrinsic mobile redox centers during the sulfur/Li2S-to-lithium polysulfides solid-to-liquid phase transition induce low sulfur utilization and poor cycling life. Herein, the Janus separator of mesoporous cellular graphene framework (CGF)/polypropylene membrane to promote the utilization of sulfur cathode is introduced. The porous polypropylene membrane serves as an insulating substrate in contact with lithium anode while CGFs that possess high electrical conductivity of 100 S cm(-1), a large mesopore volume of 3.1 cm(3) g(-1), and a huge surface area of 2120 m(2) g(-1) are adhered on cathode side to reactivate the shuttling-back polysulfides and to preserve the ion channels. Therefore, the Li-S cell with the "two-face" CGF Janus separator exhibit a high initial capacity of 1109 mAh g(-1) and superior capacity preserved upon 800 mAh g(-1) after 250 cycles at 0.2 C, which is 40% higher on sulfur utilization efficiency than the corresponding results with routine polypropylene separators. There are significant improvements on capacity as well as electrochemical kinetics. A very high areal capacity of 5.5 mAh cm(-2) combined with high sulfur content of 80% and areal loading amount of 5.3 mg cm(-2) is achieved for such advanced configuration. The negative impact of shuttle mechanism on lowering the utilization of sulfur and overall energy density of a Li-S battery is well eliminated by applying CGF separators. Consequently, employing carbonaceous materials as Janus face of separators enlightens new opportunities for improving the utilization of active materials and energy density of devices that involve complex phase evolution and conversion electrochemistry.

  10. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  11. Multi-layered, chemically bonded lithium-ion and lithium/air batteries

    Science.gov (United States)

    Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

    2014-05-13

    Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

  12. Sealed Primary Lithium-Inorganic Electrolyte Cell

    Science.gov (United States)

    1977-02-01

    Battery , Thionyl Chloride , Lithium , Lithium Aluminum Chloride , Hermetic Lithium Battery , D Cell, Voltage-Delay, Shelf Life, High Energy Density Battery ... lithium - thionyl chloride , inorganic electrclyte system is one of the highest energy density systems known to date (1-4). The cells contain an Li anoae, a...However, this is not tne case with te thionyl chloride system. A completely discharged battery , while sitting on

  13. Lithium Ion Battery Anode Aging Mechanisms

    Directory of Open Access Journals (Sweden)

    Victor Agubra

    2013-03-01

    Full Text Available Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  14. Lithium Ion Battery Anode Aging Mechanisms

    OpenAIRE

    Victor Agubra; Jeffrey Fergus

    2013-01-01

    Degradation mechanisms such as lithium plating, growth of the passivated surface film layer on the electrodes and loss of both recyclable lithium ions and electrode material adversely affect the longevity of the lithium ion battery. The anode electrode is very vulnerable to these degradation mechanisms. In this paper, the most common aging mechanisms occurring at the anode during the operation of the lithium battery, as well as some approaches for minimizing the degradation are reviewed.

  15. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    T. Strickler, R. Majeski, R. Kaita, B. LeBlanc

    2008-07-31

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ~ 3.4kG, IP ~ 400kA, and pulse length ~ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited "line of sight" access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  16. Lithium. Effects on excitable cell membranes

    NARCIS (Netherlands)

    Ploeger, Egbert Johan

    1974-01-01

    LITHIUM: Effects on excitable cell membranes. Lithium salts have been used in the treatment of manic-depressive psychosis for many years but their mechanism of action is not well understood. Many workers assume that the action of lithium on catecholamine metabolism and/or on electrolyte distribution

  17. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  18. 77 FR 28259 - Mailings of Lithium Batteries

    Science.gov (United States)

    2012-05-14

    ... quantity, size, watt hours, and whether the cells or batteries are packed in equipment, with equipment, or... 111 Mailings of Lithium Batteries AGENCY: Postal Service TM . ACTION: Final rule. SUMMARY: The Postal... batteries and devices containing lithium batteries. This prohibition also extends to the mailing of lithium...

  19. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    2011-01-01

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  20. Anode materials for lithium-ion batteries

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  1. Phase transition in a rechargeable lithium battery

    NARCIS (Netherlands)

    Dreyer, W.; Gaberscek, M.; Guhlke, C.; Huth, R.; Jamnik, J.

    2011-01-01

    We discuss the lithium storage process within a single-particle cathode of a lithium-ion battery. The single storage particle consists of a crystal lattice whose interstitial lattice sites may be empty or reversibly filled with lithium atoms. The resulting evolution equations describe diffusion with

  2. Lithium batteries in Japan; Les batteries lithium au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Mercier, A.; Tarascon, J.M.

    2000-04-01

    This document is a mission report about the development of lithium batteries research in Japan. The mission took place between November 29 and December 3, 1999 and was organized by the Science and Technology Service of the French embassy in Tokyo. The organizations shown during the mission were: ETL, NEDO/LIBES, the Kyoto university, Yuasa, Hitachi, Matsushita, Japan Storage, Sanyo and Sony. The mission has shown that the government program is clearly backward. The Japanese research on battery materials remains important. The leaders of the lithium-ion technology are Sony, first, and then Hitachi and Sanyo. Applications of lithium-ion batteries are developing for small electric-powered vehicles. (J.S.)

  3. Lithium-Associated Kidney Microcysts

    Directory of Open Access Journals (Sweden)

    Jennifer Tuazon

    2008-01-01

    Full Text Available Long-term lithium therapy is associated with impairment in concentrating ability and, occasionally, progression to advanced chronic kidney disease from tubulointerstitial nephropathy. Biopsy findings in patients with lithium-induced chronic tubulointerstitial nephropathy include tubular atrophy and interstitial fibrosis interspersed with tubular cysts and dilatations. Recent studies have shown that cysts are seen in 33––62.5% of the patients undergoing lithium therapy. MR imaging is highly capable of defining renal morphological features and has been demonstrated to be superior to US and CT scan for the visualization of small renal cysts. The microcysts are found in both cortex and medulla, particularly in the regions with extensive atrophy and fibrosis, and can be multiple and bilateral. They tend to be sparse and do not normally exceed 1–2 mm in diameter. The renal microcysts in the image here reported are subtle, but consistent with lithium-induced chronic nephropathy. An MRI of the kidneys provides noninvasive evidence that strengthens the diagnosis of lithium-induced nephropathy.

  4. Lithium-associated kidney microcysts.

    Science.gov (United States)

    Tuazon, Jennifer; Casalino, David; Syed, Ehteshamuddin; Batlle, Daniel

    2008-08-31

    Long-term lithium therapy is associated with impairment in concentrating ability and, occasionally, progression to advanced chronic kidney disease from tubulointerstitial nephropathy. Biopsy findings in patients with lithium-induced chronic tubulointerstitial nephropathy include tubular atrophy and interstitial fibrosis interspersed with tubular cysts and dilatations. Recent studies have shown that cysts are seen in 33-62.5% of the patients undergoing lithium therapy. MR imaging is highly capable of defining renal morphological features and has been demonstrated to be superior to US and CT scan for the visualization of small renal cysts. The microcysts are found in both cortex and medulla, particularly in the regions with extensive atrophy and fibrosis, and can be multiple and bilateral. They tend to be sparse and do not normally exceed 1-2 mm in diameter. The renal microcysts in the image here reported are subtle, but consistent with lithium-induced chronic nephropathy. An MRI of the kidneys provides noninvasive evidence that strengthens the diagnosis of lithium-induced nephropathy.

  5. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  6. Imprintable, bendable, and shape-conformable polymer electrolytes for versatile-shaped lithium-ion batteries.

    Science.gov (United States)

    Kil, Eun-Hye; Choi, Keun-Ho; Ha, Hyo-Jeong; Xu, Sheng; Rogers, John A; Kim, Mi Ri; Lee, Young-Gi; Kim, Kwang Man; Cho, Kuk Young; Lee, Sang-Young

    2013-03-13

    A class of imprintable, bendable, and shape-conformable polymer electrolyte with excellent electrochemical performance in a lithium battery system is reported. The material consists of a UV-cured polymer matrix, high-boiling point liquid electrolyte, and Al2 O3 nanoparticles, formulated for use in lithium-ion batteries with 3D-structured electrodes or flexible characteristics. The unique structural design and well-tuned rheological characteristics of the UV-curable electrolyte mixture, in combination with direct UV-assisted nanoimprint lithography, allow the successful fabrication of polymer electrolytes in geometries not accessible with conventional materials.

  7. Composite electrodes for lithium batteries.

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, S. A.; Johnson, C. S.; Kahaian, A. J.; Kepler, K. D.; Shao-Horn, Y.; Thackeray, M. M.; Vaughey, J. T.

    1999-02-03

    The stability of composite positive and negative electrodes for rechargeable lithium batteries is discussed. Positive electrodes with spinel-type structures that are derived from orthorhombic-LiMnO{sub 2} and layered-MnO{sub 2} are significantly more stable than standard spinel Li[Mn{sub 2}]O{sub 4} electrodes when cycled electrochemically over both the 4-V and 3-V plateaus in lithium cells. Transmission electron microscope data of cycled electrodes have indicated that a composite domain structure accounts for this greater electrochemical stability. The performance of composite Cu{sub x}Sn materials as alternative negative electrodes to amorphous SnO{sub x} electrodes for lithium-ion batteries is discussed in terms of the importance of the concentration of the electrochemically inactive copper component in the electrode.

  8. Lithium clearance in chronic nephropathy

    DEFF Research Database (Denmark)

    Kamper, A L; Holstein-Rathlou, N H; Leyssac, P P

    1989-01-01

    1. Lithium clearance measurements were made in 72 patients with chronic nephropathy of different aetiology and moderate to severely reduced renal function. 2. Lithium clearance was strictly correlated with glomerular filtration rate, and there was no suggestion of distal tubular reabsorption...... clearance data were independent of whether renal disease was of primarily glomerular or tubular origin and, further, were not influenced by long-term conventional antihypertensive treatment. 6. It is concluded that, even with a reduced kidney function, the data are compatible with the suggestion...... that lithium clearance may be a measure of the delivery of sodium and water from the renal proximal tubule. With this assumption it was found that adjustment of the sodium excretion in chronic nephropathy initially takes place in the distal parts of the nephron (loop of Henle, distal tubule and collecting duct...

  9. Preliminary design and analysis of a process for the extraction of lithium from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.; Dang, V.D.

    1975-09-01

    The U.S. demand for lithium by the industrial sector and by a fusion power economy in the future is discussed. For a one million MW(e) CTR (D-T fuel cycle) economy, growing into the beginning of the next century (the years 2000 to 2030), the cumulative demand for lithium is estimated to range from (0.55 to 4.7) x 10/sup 7/ to 1.0 x 10/sup 9/ kg. Present estimates of the available U.S. supply are 6.9 x 10/sup 8/ kg of lithium from mineral resources and 4.0 x 10/sup 9/ kg of lithium from concentrated natural brines. There is, however, a vast supply of lithium in seawater: 2.5 x 10/sup 14/ kg. A preliminary process design for the extraction of lithium from seawater is presented: seawater is first evaporated by solar energy to increase the concentration of lithium and to decrease the concentration of other cations in the bittern which then passes into a Dowex-50 ion exchange bed for cation adsorption. Lithium ions are then eluted with dilute hydrochloric acid forming an aqueous lithium chloride which is subsequently concentrated and electrolyzed. The energy requirement for lithium extraction varies between 0.08 and 2.46 kWh(e)/gm for a range of production rates varying between 10/sup 4/ and 10/sup 8/ kg/y; this is small compared to the energy produced from the use of lithium in a CTR having a value of 3400 kWh(e)/g Li. Production cost of the process is estimated to be in the range of 2.2 to 3.2 cents/g Li. As a basis for the process design, it is recommended that a phase equilibria study of the solid--liquid crystallization processes of seawater be conducted. Uncertainties exist in the operation of large solar ponds for concentrating large quantities of seawater. A search for a highly selective adsorbent or extractant for Li from low concentration aqueous solutions should be made. Other physical separation processes such as using membranes should be investigated. 9 tables. (DLC)

  10. Twin boundary-assisted lithium-ion transport

    KAUST Repository

    Nie, Anmin

    2015-01-14

    With the increased need for high-rate Li-ion batteries, it has become apparent that new electrode materials with enhanced Li-ion transport should be designed. Interfaces, such as twin boundaries (TBs), offer new opportunities to navigate the ionic transport within nanoscale materials. Here, we demonstrate the effects of TBs on the Li-ion transport properties in single crystalline SnO2 nanowires. It is shown that the TB-assisted lithiation pathways are remarkably different from the previously reported lithiation behavior in SnO2 nanowires without TBs. Our in situ transmission electron microscopy study combined with direct atomic-scale imaging of the initial lithiation stage of the TB-SnO2 nanowires prove that the lithium ions prefer to intercalate in the vicinity of the (101¯) TB, which acts as conduit for lithium-ion diffusion inside the nanowires. The density functional theory modeling shows that it is energetically preferred for lithium ions to accumulate near the TB compared to perfect neighboring lattice area. These findings may lead to the design of new electrode materials that incorporate TBs as efficient lithium pathways, and eventually, the development of next generation rechargeable batteries that surpass the rate performance of the current commercial Li-ion batteries.

  11. Lithium synthesis in microquasar accretion.

    Science.gov (United States)

    Iocco, Fabio; Pato, Miguel

    2012-07-13

    We study the synthesis of lithium isotopes in the hot tori formed around stellar mass black holes by accretion of the companion star. We find that sizable amounts of both stable isotopes 6Li and 7Li can be produced, the exact figures varying with the characteristics of the torus and reaching as much as 10(-2) M⊙ for each isotope. This mass output is enough to contaminate the entire Galaxy at a level comparable with the original, pregalactic amount of lithium and to overcome other sources such as cosmic-ray spallation or stellar nucleosynthesis.

  12. Optimizing lithium dosing in hemodialysis

    DEFF Research Database (Denmark)

    Bjarnason, N H; Munkner, R; Kampmann, J P;

    2006-01-01

    We studied a 62-year-old female hemodialysis patient during initiation and maintenance of lithium carbonate therapy. Three different methods were applied to estimate the regimen: a scenario based on volume of distribution (V(d)), a scenario based on glomerular filtration rate (GFR), and a scenario...... in this patient with no residual kidney function. We did not observe adverse effects related to this regimen, which was monitored from 18 days to 8 months of therapy, and the patient experienced relief from her severe depressive disorder. In conclusion, dialysis patients may be treated with lithium administrated...

  13. Lithium nephropathy: unique sonographic findings.

    Science.gov (United States)

    Di Salvo, Donald N; Park, Joseph; Laing, Faye C

    2012-04-01

    This case series describes a unique sonographic appearance consisting of numerous microcysts and punctate echogenic foci seen on renal sonograms of 10 adult patients receiving chronic lithium therapy. Clinically, chronic renal insufficiency was present in 6 and nephrogenic diabetes insipidus in 2. Sonography showed numerous microcysts and punctate echogenic foci. Computed tomography in 5 patients confirmed microcysts and microcalcifications, which were fewer in number than on sonography. Magnetic resonance imaging in 2 patients confirmed microcysts in each case. Renal biopsy in 1 patient showed chronic interstitial nephritis, microcysts, and tubular dilatation. The diagnosis of lithium nephropathy should be considered when sonography shows these findings.

  14. Predictors of excellent response to lithium

    DEFF Research Database (Denmark)

    Kessing, Lars Vedel; Hellmund, Gunnar; Andersen, Per Kragh

    2011-01-01

    The aim of this study was to identify sociodemographic and clinical predictors of excellent response, that is, 'cure' of future affective episodes, to lithium in monotherapy. We used nationwide registers to identify all patients with a diagnosis of bipolar disorder in psychiatric hospital settings...... who were prescribed lithium from 1995 to 2006 in Denmark (N=3762). Excellent lithium responders were defined as patients who after a stabilization lithium start-up period of 6 months, continued lithium in monotherapy without getting hospitalized. The rate of excellent response to lithium...... in monotherapy was 8.9% [95% confidence interval (CI): 7.9-9.9] at 5-year follow-up and 5.4% (95% CI: 4.4-6.3) at 10-year follow-up. The rate of nonresponse to lithium monotherapy was significantly increased for female patients [hazards ratio (HR)=1.12, 95% CI: 1.04-1.21) and for patients with a depressive index...

  15. Surface protected lithium-metal-oxide electrodes

    Science.gov (United States)

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  16. Metal-organic frameworks for lithium ion batteries and supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefit from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.

  17. Ionic liquids--an overview.

    Science.gov (United States)

    Jenkins, Harry Donald Brooke

    2011-01-01

    A virtually unprecedented exponential burst of activity resulted following the publication, in 1998, of an article by Michael Freeman (Freemantle, M. Chemical & Engineering News, 1998, March 30, 32), which speculated on the role and contribution that ionic liquids (ILs) might make in the future on the development of clean technology. Up until that time only a handful of researchers were routinely engaged in the study of ILs but frenzied activity followed that continues until the present day. Scientists from all disciplines related to Chemistry have now embarked on studies, including theoreticians who are immersed in the aim of improving the "designer role" so that they can tailor ILs to deliver specified properties. This article, whilst not in any sense attempting to be exhaustive, highlights the main features which characterise ILs, presenting these in a form readily assimilated by newcomers to this area of research. An extensive glossary is featured in this article as well as a chronological list which charts the major areas of development. What follows consists of a number of sections briefly describing the role of lLs as solvents, hypergolic fuels, their use in some electrochemical devices such as solar cells and lithium batteries and their use in polymerisation reactions, followed by a concise summary of some of the other roles that they are capable of playing. The role of empirical, volume-based thermodynamics procedures, as well as large scale computational studies on ILs is also highlighted. These developments which are described are remarkable in that they have been achieved in less than a decade and a half although knowledge of these materials has existed for much longer.

  18. 49 CFR 173.185 - Lithium cells and batteries.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Lithium cells and batteries. 173.185 Section 173... Class 7 § 173.185 Lithium cells and batteries. (a) Cells and batteries. A lithium cell or battery, including a lithium polymer cell or battery and a lithium-ion cell or battery, must conform to all of...

  19. Review and Outlook of China’s Lithium Market

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>In 2011 China’s lithium carbonate output was about 30000 tonnes. In 2012, China’s lithium carbonate output (including battery grade lithium carbonate) was 35000 tonnes, up by 17% on Y-o-Y basis. (1) Capacity of Ganfeng Lithium expanded considerably The company enjoys obvious technological advantages, its organic lithium deep processing

  20. Lithium in drinking water and the incidence of bipolar disorder: A nation-wide population-based study.

    Science.gov (United States)

    Kessing, Lars V; Gerds, Thomas A; Knudsen, Nikoline N; Jørgensen, Lisbeth F; Kristiansen, Søren M; Voutchkova, Denitza; Ernstsen, Vibeke; Schullehner, Jörg; Hansen, Birgitte; Andersen, Per K; Ersbøll, Annette K

    2017-07-17

    Animal data suggest that subtherapeutic doses, including micro doses, of lithium may influence mood, and lithium levels in drinking water have been found to correlate with the rate of suicide. It has never been investigated whether consumption of lithium may prevent the development of bipolar disorder (primary prophylaxis). In a nation-wide population-based study, we investigated whether long-term exposure to micro levels of lithium in drinking water correlates with the incidence of bipolar disorder in the general population, hypothesizing an inverse association in which higher long-term lithium exposure is associated with lower incidences of bipolar disorder. We included longitudinal individual geographical data on municipality of residence, data from drinking water lithium measurements and time-specific data from all cases with a hospital contact with a diagnosis of mania/bipolar disorder from 1995 to 2013 (N=14 820) and 10 age- and gender-matched controls from the Danish population (N= 140 311). Average drinking water lithium exposure was estimated for all study individuals. The median of the average lithium exposure did not differ between cases with a diagnosis of mania/bipolar disorder (12.7 μg/L; interquartile range [IQR]: 7.9-15.5 μg/L) and controls (12.5 μg/L; IQR: 7.6-15.7 μg/L; P=.2). Further, the incidence rate ratio of mania/bipolar disorder did not decrease with higher long-term lithium exposure, overall, or within age categories (0-40, 41-60 and 61-100 years of age). Higher long-term lithium exposure from drinking water was not associated with a lower incidence of bipolar disorder. The association should be investigated in areas with higher lithium levels than in Denmark. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Lithium to back photovoltaic; Le lithium au service du photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-01-15

    Lithium-ion batteries have valuable assets to be an alternative to lead batteries for the storage of solar energy: they age 5 times less quickly, they do not require maintenance and they show a good charge-discharge cycling with no sensitivity to cycle interruptions. (A.C.)

  2. Discharge model for the lithium iron-phosphate electrode

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Venkat; Newman, John

    2004-02-28

    This paper develops a mathematical model for lithium intercalation and phase change in an iron phosphate-based lithium-ion cell in order to understand the cause for the low power capability of the material. The juxtaposition of the two phases is assumed to be in the form of a shrinking core, where a shell of one phase covers a core of the second phase. Diffusion of lithium through the shell and the movement of the phase interface are described and incorporated into a porous electrode model consisting of two different particle sizes. Open-circuit measurements are used to estimate the composition ranges of the single-phase region. Model-experimental comparisons under constant current show that ohmic drops in the matrix phase, contact resistances between the current collector and the porous matrix, and transport limitations in the iron phosphate particle limit the power capability of the cells. Various design options, consisting of decreasing the ohmic drops, using smaller particles, and substituting the liquid electrolyte by a gel are explored, and their relative importance discussed. The model developed in this paper can be used as a means of optimizing the cell design to suit a particular application.

  3. Advances and development of all-solid-state lithium-ion batteries

    Science.gov (United States)

    Trevey, James Edward

    Lithium-ion battery technologies have always been accompanied by severe safety issues; therefore recent research efforts have focused on improving battery safety. In large part, the hazardous nature of lithium-ion batteries stems from the high flammability of liquid electrolytes. Consequently, numerous researchers have attempted to replace liquid electrolytes with nonflammable solid electrolytes in order to avoid potential safety problems. Unfortunately, current solid electrolytes are incapable of performing as effectively as liquid electrolytes in lithium-ion batteries due to inferior electrochemical capabilities. While some "all-solid-state" batteries have found niche application, further technological advancement is required for large scale replacement of liquid-based batteries. The goal of this research is to develop all-solid-state batteries that can outperform liquid batteries and understand the mechanisms that dictate battery operation and behavior. This involves fabrication of highly conducting solid electrolytes, production and analyzation of batteries employing state-of-the-art electrode materials, and generation of high power and high energy density lithium batteries. In this dissertation, the first objective was to manufacture highly conducting solid electrolytes that are stable in contact with lithium metal. Numerous characterization techniques were used to gain understanding of physical and chemical properties of solid electrolytes, as well as mechanisms for fast ion conduction. A new process for production of highly conducting and stable solid electrolytes is developed and materials are used to evaluate performance of electrodes in an all-solid-state construction. The second objective of this work was to research the performance of both positive and negative electrodes incorporating solid electrolyte. Evaluation of electrochemical results allowed for a good understanding of reaction mechanisms taking place within composite battery materials and at

  4. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    Science.gov (United States)

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  5. Lithium content in potable water, surface water, ground water, and mineral water on the territory of Republic of Macedonia

    OpenAIRE

    Vesna Kostik; Biljana Bauer; Zoran Kavrakovski

    2014-01-01

    The aim of this study was to determine lithium concentration in potable water, surface water, ground, and mineral water on the territory of the Republic of Macedonia. Water samples were collected from water bodies such as multiple public water supply systems located in 13 cities, wells boreholes located in 12 areas, lakes and rivers located in three different areas. Determination of lithium concentration in potable water, surface water was performed by the technique of inductively coupl...

  6. Ionic Liquid Fuels for Chemical Propulsion

    Science.gov (United States)

    2016-10-31

    energetic materials; chemical kinetics ; hypergolic fuels; salts; ligands; lithium; borohydrides; density functional theory; flammability 16. SECURITY...continuum model  DFT  density functional theory  DME   dimethoxethane  DNB  1,5‐dinitrobiuret  GIL   generalized ionic liquid  He  helium  IL  ionic liquid... kinetics and reaction dynamics involved in the hypergolic and catalytic ignition of ionic liquid propellants with the purpose of identifying key

  7. Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries

    Science.gov (United States)

    Jung, Sung-Kyun; Kim, Hyunchul; Cho, Min Gee; Cho, Sung-Pyo; Lee, Byungju; Kim, Hyungsub; Park, Young-Uk; Hong, Jihyun; Park, Kyu-Young; Yoon, Gabin; Seong, Won Mo; Cho, Yongbeom; Oh, Myoung Hwan; Kim, Haegyeom; Gwon, Hyeokjo; Hwang, Insang; Hyeon, Taeghwan; Yoon, Won-Sub; Kang, Kisuk

    2017-01-01

    Lithium-ion batteries based on intercalation compounds have dominated the advanced portable energy storage market. The positive electrode materials in these batteries belong to a material group of lithium-conducting crystals that contain redox-active transition metal and lithium. Materials without lithium-conducting paths or lithium-free compounds could be rarely used as positive electrodes due to the incapability of reversible lithium intercalation or the necessity of using metallic lithium as negative electrodes. These constraints have significantly limited the choice of materials and retarded the development of new positive electrodes in lithium-ion batteries. Here, we demonstrate that lithium-free transition metal monoxides that do not contain lithium-conducting paths in their crystal structure can be converted into high-capacity positive electrodes in the electrochemical cell by initially decorating the monoxide surface with nanosized lithium fluoride. This unusual electrochemical behaviour is attributed to a surface conversion reaction mechanism in contrast with the classic lithium intercalation reaction. Our findings will offer a potential new path in the design of positive electrode materials in lithium-ion batteries.

  8. Tests of the cryogenic target for lithium and hydrogen isotopes extraction from the chamber of T-11M tokamak without its venting

    Energy Technology Data Exchange (ETDEWEB)

    Mirnov, Sergey V., E-mail: mirnov@triniti.ru [SSC RF TRINITI Troitsk, Moscow 142 190 (Russian Federation); NRNU MEPhI, Kashirskoye sh. 31, Moscow 115409 (Russian Federation); Djigailo, Nadejda T.; Dzhurik, Sergey P.; Kostina, Anastasiya N.; Kravchuk, Sergey I.; Lazarev, Vladimir B. [SSC RF TRINITI Troitsk, Moscow 142 190 (Russian Federation); Lyublinski, Igor E. [JSC “Red Star”, Elektrolitnyj pr. 1A, Moscow 113 230 (Russian Federation); NRNU MEPhI, Kashirskoye sh. 31, Moscow 115409 (Russian Federation); Nesterenko, Vladislav M.; Petrov, Yuri V. [SSC RF TRINITI Troitsk, Moscow 142 190 (Russian Federation); Vertkov, Aleksei V.; Zharkov, Mikhail Yu. [JSC “Red Star”, Elektrolitnyj pr. 1A, Moscow 113 230 (Russian Federation)

    2014-12-15

    Graphical abstract: - Highlights: • We tested the cryogenic target as pump of Li ions sputtered from tokamak chamber by glow discharge. • We found a positive effect on the Li collection an addition of the residual gases to glow discharge. • Cooled target can be used during plasma operation to collect and remove Li and H from tokamak chamber. - Abstract: T-11M lithium program is focused on a solution of technological issues of a steady-state tokamak with liquid lithium plasma facing components (PFC). Lithium, collected by the chamber wall of such tokamak is able to capture a considerable amount of tritium, which is unacceptable. In order to restrict the level of lithium deposited on the chamber wall and captured tritium it was suggested early to use a cryogenic target technique. Such target placed in the plasma of glow discharge (GDH, He or Ar) during the tokamak conditioning can play the role of collector of lithium and tritium atoms which were sputtered by GD bombardment of the wall. The collected lithium and tritium can be evacuated mechanically together with target from tokamak chamber through vacuum lock without venting. Cryogenic target, cooled by liquid nitrogen (LN), was installed in the T-11M and tested in different modes of wall conditioning and tokamak operations. The maximum speed of the lithium collection during GDH was 3.5 mg/h, that corresponds “to contamination” of wall by lithium during approximately 200 regular shots of T-11M which are equivalent to two-week regular operations. It was established that considerable part of lithium was collected in ionized state. On this basis it can be suggested the creation in tokamak chamber an equivalent ionic pump for extraction both lithium and tritium from chamber without venting during regular tokamak operation.

  9. Easy and versatile functionalization of lithium niobate wafers by hydrophobic trichlorosilanes

    Energy Technology Data Exchange (ETDEWEB)

    Bennes, Jonathan; Ballandras, Sylvain [Institut FEMTO-ST, CNRS, Universite de Franche-Comte, 32 Avenue de l' Observatoire, F-24044 Besancon Cedex (France); Cherioux, Frederic [Institut FEMTO-ST, CNRS, Universite de Franche-Comte, 32 Avenue de l' Observatoire, F-24044 Besancon Cedex (France)], E-mail: frederic.cherioux@femto-st.fr

    2008-12-30

    The functionalization of lithium niobate surface has been successfully obtained by the grafting of trichloro-organosilane derivatives thanks to liquid phase silanization or micro-contact printing. This functionalization has been proved by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The data show that the stability of the self-assembled monolayer (SAM) film on the trichloro(1H,1H,2H,2H-perfluorooctyl)silane-modified lithium niobate surface is largely due to the formation of a siloxy-niobate (-Si-O-Nb-) bond via a condensation reaction between -Si-Cl and niobate hydroxide (-NbOH). The extremely hydrophobic and stable SAM on lithium niobate could have useful applications in acoustic droplet handling and more generally surface acoustic waves (SAW) device preparation for lab-on-chip devices.

  10. Easy and versatile functionalization of lithium niobate wafers by hydrophobic trichlorosilanes

    Science.gov (United States)

    Bennès, Jonathan; Ballandras, Sylvain; Chérioux, Frédéric

    2008-12-01

    The functionalization of lithium niobate surface has been successfully obtained by the grafting of trichloro-organosilane derivatives thanks to liquid phase silanization or micro-contact printing. This functionalization has been proved by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The data show that the stability of the self-assembled monolayer (SAM) film on the trichloro(1H,1H,2H,2H-perfluorooctyl)silane-modified lithium niobate surface is largely due to the formation of a siloxy-niobate (-Si-O-Nb-) bond via a condensation reaction between -Si-Cl and niobate hydroxide (-NbOH). The extremely hydrophobic and stable SAM on lithium niobate could have useful applications in acoustic droplet handling and more generally surface acoustic waves (SAW) device preparation for lab-on-chip devices.

  11. Observations of the freeze/thaw performance of lithium fluoride by motion picture photography

    Science.gov (United States)

    Jaworske, D. A.; Perry, W. D.

    1991-01-01

    To gain direct observation of the molten salt phase change, a novel containerless technique was developed where the high surface tension of lithium fluoride was used to suspend a bead of the molten salt inside a specially designed wire cage. By varying the current passing through the wire, the cage also served as a variable heat source. In this way, the freeze/thaw performance of the lithium fluoride could be photographed by motion picture photography without the influence of container walls. The motion picture photography of the lithium fluoride sample revealed several zones during the phase change, a solid zone and a liquid zone, as expected, and a slush zone that was predicted by thermal analysis modeling.

  12. Gelled Electrolytes For Lithium Batteries

    Science.gov (United States)

    Nagasubramanian, Ganesan; Attia, Alan; Halpert, Gerald

    1993-01-01

    Gelled polymer electrolyte consists of polyacrylonitrile (PAN), LiBF4, and propylene carbonate (PC). Thin films of electrolyte found to exhibit stable bulk conductivities of order of 10 to the negative 3rd power S/cm at room temperature. Used in thinfilm rechargeable lithium batteries having energy densities near 150 W h/kg.

  13. Interfacial reactions in lithium batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Rachid; Ma, Zi-Feng; Amine, Khalil

    2017-08-01

    The lithium-ion battery was first commercially introduced by Sony Corporation in 1991 using LiCoO2 as the cathode material and mesocarbon microbeads (MCMBs) as the anode material. After continuous research and development for 25 years, lithium-ion batteries have been the dominant energy storage device for modern portable electronics, as well as for emerging applications for electric vehicles and smart grids. It is clear that the success of lithium-ion technologies is rooted to the existence of a solid electrolyte interphase (SEI) that kinetically suppresses parasitic reactions between the lithiated graphitic anodes and the carbonate-based non-aqueous electrolytes. Recently, major attention has been paid to the importance of a similar passivation/protection layer on the surface of cathode materials, aiming for a rational design of high-energy-density lithium-ion batteries with extended cycle/calendar life. In this article, the physical model of the SEI, as well as recent research efforts to understand the nature and role of the SEI are summarized, and future perspectives on this important research field will also be presented.

  14. Vertical flow in the Thermoelectric Liquid Metal Plasma Facing Structures (TELS) facility at Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Fiflis, P., E-mail: fiflis1@illinois.edu [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Szott, M.; Kalathiparambil, K.; Jung, S.; Christenson, M.; Haehnlein, I.; Kapat, A. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); Andruczyk, D. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States); PPPL (United States); Curreli, D.; Ruzic, D.N. [Center for Plasma-Material Interaction, Dept. Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana (United States)

    2015-08-15

    Flowing liquid metal PFCs may offer a solution to the issues faced by solid divertor materials in tokamak plasmas. The Liquid–Metal Infused Trenches (LiMIT) concept of Illinois Ruzic et al. (2011) is a liquid metal plasma facing structure which employs thermoelectric magnetohydrodynamic (TEMHD) effects to self-propel lithium through a series of trenches. The combination of an incident heat flux and a magnetic field provide the driving mechanism. Tests have yielded experimental lithium velocities under different magnetic fields, which agree well with theoretical predictions Xu et al. (2013). The thermoelectric force is expected to overcome gravity and be able to drive lithium flow along an arbitrary direction and the strong surface tension of liquid lithium is believed to maintain the surface when Li flows in open trenches. This paper discusses the behavior of the LiMIT structure when inclined to an arbitrary angle with respect to the horizontal.

  15. High-capacity nanocarbon anodes for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haitao; Sun, Xianzhong; Zhang, Xiong; Lin, He; Wang, Kai; Ma, Yanwei, E-mail: ywma@mail.iee.ac.cn

    2015-02-15

    Highlights: • The nanocarbon anodes in lithium-ion batteries deliver a high capacity of ∼1100 mA h g{sup −1}. • The nanocarbon anodes exhibit excellent cyclic stability. • A novel structure of carbon materials, hollow carbon nanoboxes, has potential application in lithium-ion batteries. - Abstract: High energy and power density of secondary cells like lithium-ion batteries become much more important in today’s society. However, lithium-ion battery anodes based on graphite material have theoretical capacity of 372 mA h g{sup −1} and low charging-discharging rate. Here, we report that nanocarbons including mesoporous graphene (MPG), carbon tubular nanostructures (CTN), and hollow carbon nanoboxes (HCB) are good candidate for lithium-ion battery anodes. The nanocarbon anodes have high capacity of ∼1100, ∼600, and ∼500 mA h g{sup −1} at 0.1 A g{sup −1} for MPG, CTN, and HCB, respectively. The capacity of 181, 141, and 139 mA h g{sup −1} at 4 A g{sup −1} for MPG, CTN, and HCB anodes is retained. Besides, nanocarbon anodes show high cycling stability during 1000 cycles, indicating formation of a passivating layer—solid electrolyte interphase, which support long-term cycling. Nanocarbons, constructed with graphene layers which fulfill lithiation/delithiation process, high ratio of graphite edge structure, and high surface area which facilitates capacitive behavior, deliver high capacity and improved rate-capability.

  16. Primary lithium cell life studies

    Science.gov (United States)

    Capulli, John; Donley, Sam; Deligiannis, Frank; Shen, David

    1990-01-01

    One solution for providing a truly independent power source is to package, within the critical subsystem element, a primary battery that can remain dormant for time periods as long as the mission life, which can be 10-15 years, maximum. When primary power from the spacecraft solar array/battery system is interrupted, the backup battery system, which is connected through a diode to the power input line, would automatically support the load to avoid a power interruption to the critical load for a time period long enough to ensure that ground control could access the satellite and correct the anomaly by sending appropriate commands to the spacecraft. Critical subsystems identified for the application are telemetry and command circuits, volatile computer memory, attitude control circuits, and some critical payloads. Due to volume packaging and weight restrictions that exist on most spacecraft, coupled with the long storage periods required, lithium cell technology was selected for the backup power source. Because of the high energy density (200-400 Wh/kg), long shelf life, and load capability, soluble cathode primary lithium technology was chosen. The most important lithium cell properties that require detail characterization for this application are capacity loss, shelf life, and the voltage delay mechanism. These are functions of storage time and temperature. During storage, a passive film builds up on the lithium electrode. The film protects the lithium electrode from progressive capacity decay but requires time to break down when a load is applied. This phenomenon results in a depressed voltage during the period of film breakdown which can last from fractions of a second to minutes.

  17. Effect of lithium therapy on glomerular filtration rate.

    Science.gov (United States)

    Decina, P; Oliver, J A; Sciacca, R R; Colt, E; Fieve, R R

    1983-08-01

    Patients taking lithium had a slightly higher serum creatinine concentration than controls. Creatinine concentration was independent of lithium level or therapy length, suggesting that lithium decreases glomerular filtration but that this effect is small, noncumulative, and of marginal clinical significance.

  18. Control of Internal and External Short Circuits in Lithium Ion and Lithium Batteries Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified needs for compact high-energy-density primary and secondary batteries. Lithium and Lithium Ion cells, respectively, are meeting these needs for...

  19. Repression of a lithium pump as a consequence of lithium ingestion by manic-depressive subjects.

    Science.gov (United States)

    Meltzer, H L; Kassir, S; Dunner, D L; Fieve, R R

    1977-10-20

    The lithium pump in human erythrocyte membranes, which is responsible for extrusion of lithium against a concentration gradient, has been found to be reversibly repressed during periods of lithium carbonate administration. The pump activity of patients prior to lithium therapy is not different from controls. The onset of repression may require several days to several weeks and occurs at specific individual threshold levels of lithium carbonate dosage. Reactivation of the lithium pump occurs sometime after the dosage is discontinued. We postulate that repression of the lithium pump results from systemically available factors which alter membrane structure, and suggest that is such changes also occur in the central nervous system, they may provide insight into one means by which lithium produces its psychotropic affects.

  20. Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles

    Science.gov (United States)

    Mandal, D.

    2013-09-01

    Hydrochloric acid was used. The reasons to use hydrochloric acid are discussed below. Sodium carbonate (Na2CO3) analytical grade, procured form Merck Chemicals, Mumbai, India. To precipitate lithium as lithium carbonate from lithium hydroxide solution sodium carbonate was used. Distilled water. Distilled was used in the experiments, primarily to dilute hydrochloric acid to the desired molar solution. Leaching agent. Concentration of the leaching agent. Temperature. Speed of agitation. Solid to liquid ratio, and Particle Size. In the experimental work spherical Li2TiO3 pebbles of size 1.0 was used as mentioned above. To study the effect of particle size on the recovery of lithium from fine Li2TiO3 particles of size range 100-200 μm were used. These fines were obtained by pulverizing 1.0 mm Li2TiO3 pebbles in a planetary ball mill and classified standard sieves.It is reported that both HNO3 and HCl give relatively more recovery of lithium compared to H2SO4[11-13]. Though the handling of HCl is difficulties due to the chloride corrosion, it is preferred to HNO3 because the deposal of nitrate waste which will generate due to the latter's use viz. sodium nitrate is a problem as per the norms of pollution control standard [11,12].The leaching of Li2TiO3 pebbles were carried out in a 1000 ml three necked and flat bottom glass reactor. The flux was fitted with a reflux condenser to reduce the loss of solution by evaporation and a thermometer. The solid was suspended in the solution by stirring the solution using a magnetic stirrer. The flux was kept on a hot plate with a temperature controller to heat the slurry at constant temperature. The temperature of the solution was controlled within ±3 °C and the temperature of the slurry was noted at an interval of 5 min and the average temperature of each run is determined by time average of the noted readings.A known of volume of HCl solution with known concentration was added to the flux. After the desired stirring speed and reaction

  1. Liquidity (risk) concepts: definitions and interactions

    OpenAIRE

    Nikolaou, Kleopatra

    2009-01-01

    We discuss the notion of liquidity and liquidity risk within the financial system. We distinguish between three different liquidity types, central bank liquidity, funding and market liquidity and their relevant risks. In order to understand the workings of financial system liquidity, as well as the role of the central bank, we bring together relevant literature from different areas and review liquidity linkages among these three types in normal and turbulent times. We stress that the root of ...

  2. Lithium kan anvendes til patienter i hæmodialyse

    DEFF Research Database (Denmark)

    Kancir, Anne Sophie Pinholt; Viftrup, Jens Emil; Pedersen, Erling Bjerregaard

    2015-01-01

    Lithium-induced nephropathy is a known complication of lithium treatment in bipolar disorder. Treatment with lithium should be discontinued, if there is evidence of lithium-induced nephropathy. However, lithium can be given to patients with end-stage-renal-disease on haemodialysis treatment......, if there is no other way to control the bipolar disorder. We report one patient who was successfully treated with lithium in parallel with haemodialysis....

  3. Repression and reactivation of lithium efflux from erythrocytes.

    Science.gov (United States)

    Goodnick, P J; Meltzer, H L; Dunner, D L; Fieve, R R

    1979-10-01

    Efflux of lithium from human erythrocytes was studied in patients before, during, and after discontinuation of administration of lithium carbonate. Onset of lithium-induced repression of efflux took approximately 10 days and was significantly shorter in patients who had had lithium therapy previously. Reactivation took a longer period of time--approximately 2 week--and was found to be related to duration of lithium therapy. Theoretical pathways of lithium flow through membranes are discussed.

  4. [Lithium can be given to patients on haemodialysis treatment].

    Science.gov (United States)

    Kancir, Anne Sophie Pinholt; Viftrup, Jens Emil; Pedersen, Erling Bjerregaard

    2015-01-26

    Lithium-induced nephropathy is a known complication of lithium treatment in bipolar disorder. Treatment with lithium should be discontinued, if there is evidence of lithium-induced nephropathy. However, lithium can be given to patients with end-stage-renal-disease on haemodialysis treatment, if there is no other way to control the bipolar disorder. We report one patient who was successfully treated with lithium in parallel with haemodialysis.

  5. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    OpenAIRE

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion t...

  6. Thermal modeling of the lithium/polymer battery

    Energy Technology Data Exchange (ETDEWEB)

    Pals, Carolyn R. [Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

    1994-10-01

    Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.

  7. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  8. Mineral-deposit model for lithium-cesium-tantalum pegmatites

    Science.gov (United States)

    Bradley, Dwight C.; McCauley, Andrew D.; Stillings, Lisa M.

    2017-06-20

    derived by fractional crystallization. In cases where a parental granite pluton is not exposed, one is inferred to lie at depth. Lithium-cesium-tantalum LCT pegmatite melts are enriched in fluxing components including H2O, F, P, and B, which depress the solidus temperature, lower the density, and increase rates of ionic diffusion. This, in turn, enables pegmatites to form thin dikes and massive crystals despite having a felsic composition and temperatures that are significantly lower than ordinary granitic melts. Lithium-cesium-tantalum pegmatites crystallized at remarkably low temperatures (about 350–550 °C) in a remarkably short time (days to years).Lithium-cesium-tantalum pegmatites form in orogenic hinterlands as products of plate convergence. Most formed during collisional orogeny (for example, Kings Mountain district, North Carolina). Specific causes of LCT pegmatite-related magmatism could include: ordinary arc processes; over thickening of continental crust during collision or subduction; slab breakoff during or after collision; slab delamination before, during, or after collision; and late collisional extensional collapse and consequent decompression melting. Lithium-cesium-tantalum pegmatite deposits are present in all continents including Antarctica and in rocks spanning 3 billion years of Earth history. The global age distribution of LCT pegmatites is similar to those of common pegmatites, orogenic granites, and detrital zircons. Peak times of LCT pegmatite genesis at about 2640, 1800, 960, 485, and 310 Ma (million years before present) correspond to times of collisional orogeny and supercontinent assembly. Between these pulses were long intervals when few or no LCT pegmatites formed. These minima overlap with supercontinent tenures at ca. 2450–2225, 1625–1000, 875–725, and 250–200 Ma.Exploration and assessment for LCT pegmatites are guided by a number of observations. In frontier areas where exploration has been minimal at best, the key first

  9. Lithium in drinking water and suicide mortality: The interplay with lithium prescriptions

    NARCIS (Netherlands)

    Helbich, M; Leitner, M; Kapusta, N

    2015-01-01

    Background Little is known about the effects of lithium intake through drinking water on suicide. This intake originates either from natural rock and soil elution and/or accumulation of lithium-based pharmaceuticals in ground water. Aims To examine the interplay between natural lithium in drinking w

  10. Lithium in Stellar Atmospheres: Observations and Theory

    Science.gov (United States)

    Lyubimkov, L. S.

    2016-09-01

    Of all the light elements, lithium is the most sensitive indicator of stellar evolution. This review discusses current data on the abundance of lithium in the atmospheres of A-, F-, G-, and K-stars of different types, as well as the consistency of these data with theoretical predictions. The variety of observed Li abundances is illustrated by the following objects in different stages of evolution: (1) Old stars in the galactic halo, which have a lithium abundance logɛ(Li)=2.2 (the "lithium plateau") that appears to be 0.5 dex lower than the primordial abundance predicted by cosmological models. (2) Young stars in the galactic disk, which have been used to estimate the contemporary initial lithium abundance logɛ(Li)=3.2±0.1 for stars in the Main sequence. Possible sources of lithium enrichment in the interstellar medium during evolution of the galaxy are discussed. (3) Evolving FGK dwarfs in the galactic disk, which have lower logɛ(Li) for lower effective temperature T eff and mass M. The "lithium dip" near T eff ~6600 K in the distribution of logɛ(Li) with respect to T eff in old clusters is discussed. (4) FGK giants and supergiants, of which most have no lithium at all. This phenomenon is consistent with rotating star model calculations. (5) Lithium rich cold giants with logɛ(Li) ≥ 2.0, which form a small, enigmatic group. Theoretical models with rotation can explain the existence of these stars only in the case of low initial rotation velocities V 0 synthesis of lithium (capture of a giant planet is an alternative). (6) Magnetic Ap-stars, where lithium is concentrated in spots located at the magnetic poles. There the lithium abundance reaches logɛ(Li)=6. Discrepancies between observations and theory are noted for almost all the stars discussed in this review.

  11. Column Liquid Chromatography.

    Science.gov (United States)

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  12. Lithium and suicide in mood disorders: Updated meta-review of the scientific literature.

    Science.gov (United States)

    Smith, Katharine A; Cipriani, Andrea

    2017-09-12

    Suicide and suicidal behaviour are increased in mood disorders, particularly bipolar disorders. Observational studies and small randomized controlled trials (RCTs) support the idea that taking lithium is associated with a reduction in these rates. This paper aims to review the best evidence for the effect of lithium on rates of suicide and self harm. We searched PubMed, PsycINFO, and the Cochrane Library systematically for systematic reviews and meta-analyses of RCTs of lithium and suicide and self harm published between January 1980 and June 2017. In the case of multiple publications on the same topic, only the most recent or most comprehensive review was considered. A large number of reviews were identified, but only 16 publications were systematic reviews. Of these, three systematic reviews of lithium and suicide rates and one of lithium and self harm confined only to RCTs were identified. Despite some methodological concerns and heterogeneity in terms of participants, diagnoses, comparators, durations, and phase of illness, the evidence to date is overwhelmingly in favour of lithium as an antisuicidal agent, even balanced against any potential disadvantages of its use in regular clinical practice. The anti-suicidal effects of lithium have been consistently reported over the past 40 years. The most robust evidence comes from RCTs, but these results are also discussed in the context of the difficulties in conducting high quality studies in this area, and the supporting evidence that observational and non-randomized studies can also provide. Given this evidence, however, the use of lithium is still underrepresented in clinical practice and should be incorporated more assertively into current guidelines. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The association of antipsychotic medication and lithium with brain measures in patients with bipolar disorder.

    Science.gov (United States)

    Abramovic, Lucija; Boks, Marco P M; Vreeker, Annabel; Bouter, Diandra C; Kruiper, Caitlyn; Verkooijen, Sanne; van Bergen, Annet H; Ophoff, Roel A; Kahn, René S; van Haren, Neeltje E M

    2016-11-01

    There is evidence that brain structure is abnormal in patients with bipolar disorder. Lithium intake appears to ׳normalise׳ global and local brain volumes, but effects of antipsychotic medication on brain volume or cortical thickness are less clear. Here, we aim to disentangle disease-specific brain deviations from those induced by antipsychotic medication and lithium intake using a large homogeneous sample of patients with bipolar disorder type I. Magnetic resonance imaging brain scans were obtained from 266 patients and 171 control subjects. Subcortical volumes and global and focal cortical measures (volume, thickness, and surface area) were compared between patients and controls. In patients, the association between lithium and antipsychotic medication intake and global, subcortical and cortical measures was investigated. Patients showed significantly larger lateral and third ventricles, smaller total brain, caudate nucleus, and pallidum volumes and thinner cortex in some small clusters in frontal, parietal and cingulate regions as compared with controls. Lithium-free patients had significantly smaller total brain, thalamus, putamen, pallidum, hippocampus and accumbens volumes compared to patients on lithium. In patients, use of antipsychotic medication was related to larger third ventricle and smaller hippocampus and supramarginal cortex volume. Patients with bipolar disorder show abnormalities in total brain, subcortical, and ventricle volume, particularly in the nucleus caudate and pallidum. Abnormalities in cortical thickness were scattered and clusters were relatively small. Lithium-free patients showed more pronounced abnormalities as compared with those on lithium. The associations between antipsychotic medication and brain volume are subtle and less pronounced than those of lithium. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  14. CLASSICAL AREAS OF PHENOMENOLOGY: Study on the optical limiting properties of the mixed liquid of carbon black suspensions and green tea solution by multi-pulse laser

    Science.gov (United States)

    Niu Yan-, Xiong; Yang, Hai-Lin; Zhang, Peng; Shen, Xue-Ju; Jiang, Nan; Chen, Yan; Tang, Fang

    2008-09-01

    The optical limiting properties of the mixed liquid of carbon black suspensions (CBS) and green tea solution were studied by using an 8 ns laser pulse at 532 nm. The optical limiting effects of the CBS and mixed liquid have been compared between 5 and 10 Hz repetition frequencies with nanosecond laser pulse. The experimental results indicate that the optical limiting threshold of the sample with the incidence laser at 10 Hz repetition frequency is lower than at 5 Hz repetition frequency. The possible reasons for the influence of the repetition frequency on the samples are discussed. And by observing the optical radiant distributions when the laser pulse passing through different samples, a possible mechanism for the observed effects is suggested. At the same time, the result shows that the optical limiting of CBS is the dominant factor to optical limiting of the mixed liquid.

  15. Relationship between altitude and lithium in groundwater in the United States of America: results of a 1992-2003 study.

    Science.gov (United States)

    Huber, Rebekah S; Kim, Namkug; Renshaw, Carl E; Renshaw, Perry F; Kondo, Douglas G

    2014-11-01

    Therapeutic dosages of lithium are known to reduce suicide rates, which has led to investigations of confounding environmental risk factors for suicide such as lithium in groundwater. It has been speculated that this might play a role in the potential relationship between suicide and altitude. A recent study in Austria involving geospatial analysis of lithium in groundwater and suicide found lower levels of lithium at higher altitudes. Since there is no reason to suspect this correlation is universal given variation in geology, the current study set out to investigate the relationship between altitude and lithium in groundwater in the United States of America (USA). The study utilised data extracted from the National Water-Quality Assessment programme implemented by the United States Geological Survey that has collected 5,183 samples from 48 study areas in USA for the period of 1992 to 2003. Lithium was the trace-element of interest and 518 samples were used in the current analyses. Due to uneven lithium sampling within the country, only the states (n=15) with the highest number of lithium samples were included. Federal information processing standard codes were used to match data by county with the mean county altitude calculated using altitude data from the Shuttle Radar Topography Mission. The study was controlled for potential confounding factors known to affect levels of lithium in groundwater including aquifer, aquifer type, lithology, water level and the depths of wells. The levels of lithium in groundwater, increased with altitude (R(2) = 0.226, P accounting also for the impact of geographical variation.

  16. A lithium-oxygen battery based on lithium superoxide.

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jun; Lee, Yun Jung; Luo, Xiangyi; Lau, Kah Chun; Wen, Jianguo; Wang, Hsien-Hau; Zhai, Dengyun; Miller, Dean; Jeong, Yo-Sub; Park, Jin-Bum; Curtiss, Larry A.; Amine, Khalil

    2016-01-11

    Although the superoxide of lithium (LiO2) is believed to be a key intermediate in Li-O2 batteries leading to the formation of lithium peroxide, LiO2 has never been observed in its pure state. In this work, we provide evidence that use of a cathode based on a reduced graphene oxide with Ir nanoparticles in a Li-O2 battery results in a LiO2 discharge product formed by single electron transfer without further electron transfer or disproportionation to form Li2O2. High energy X-ray diffraction (HE-XRD) patterns indicates the presence of crystalline LiO2 with no evidence of Li2O2 or Li2O. The HEXRD studies as a function of time also show that LiO2 can be stable in its crystalline form after one week of aging in the presence of electrolyte. The results provide evidence that LiO2 is stable enough that it can be repeatedly charged and discharged with a very low charge potential (~3.2 V) and may open the avenue for a lithium superoxide-based battery.

  17. Lithium Metal Anodes for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Jiulin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shanghai Jiao Tong Univ. (China); Ding, Fei [Tianjin Inst. of Power Sources (China); Chen, Xilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nasybulin, Eduard N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhang, Yaohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Harbin Inst. of Technology (China); Zhang, Jiguang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  18. Lithium-ion batteries fundamentals and applications

    CERN Document Server

    Wu, Yuping

    2015-01-01

    Lithium-Ion Batteries: Fundamentals and Applications offers a comprehensive treatment of the principles, background, design, production, and use of lithium-ion batteries. Based on a solid foundation of long-term research work, this authoritative monograph:Introduces the underlying theory and history of lithium-ion batteriesDescribes the key components of lithium-ion batteries, including negative and positive electrode materials, electrolytes, and separatorsDiscusses electronic conductive agents, binders, solvents for slurry preparation, positive thermal coefficient (PTC) materials, current col

  19. Lithium interaction with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nalimova, V.A. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Sklovsky, D.E. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Khimicheskij Fakul`tet; Bondarenko, G.N. [Topcheiv Institute of Petrochemical Synthesis, Leninsky Prospekt, 29, Moscow (Russian Federation); Alvergnat-Gaucher, H. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Bonnamy, S. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France); Beguin, F. [CRMD, CNRS, Universite d`Orleans, 1B rue de la Ferollerie, 45071, Orleans Cedex 02 (France)

    1997-05-01

    Lithium interaction with catalytic carbon nanotubes under high-pressure conditions was studied. A large amount of Li (2Li/C) reacted with the carbon nanotubes forming an intercalation compound (I{sub c}{proportional_to}4.1 A) which follows from X-ray diffraction and IR spectroscopy data. We cannot exclude also the possibility of insertion of a part of Li into the channel of the nanotubes. (orig.)

  20. Lithium battery safety and reliability

    Science.gov (United States)

    Levy, Samuel C.

    Lithium batteries have been used in a variety of applications for a number of years. As their use continues to grow, particularly in the consumer market, a greater emphasis needs to be placed on safety and reliability. There is a useful technique which can help to design cells and batteries having a greater degree of safety and higher reliability. This technique, known as fault tree analysis, can also be useful in determining the cause of unsafe behavior and poor reliability in existing designs.

  1. Electroencephalographic characteristics of lithium hydroxybutyrate.

    Science.gov (United States)

    Saratikov, A S; Zamoshchina, T A

    1986-10-01

    Lithium hydroxybutyrate influence on excitability, functional mobility and frequency range power of the cortex electrograms, midbrain reticular formation, posterior hypothalamus caudate nucleus, dorsal hippocampus, basolateral amygdala and medial thalamus in rabbits has been investigated. It has been shown that the drug suppresses the non-specific activating systems of the midbrain and posterior hypothalamus, intensifies work of the caudatocortical inhibitory mechanisms and the forebrain limbic formations (the hippocampus and amygdala).

  2. High energy density lithium batteries

    CERN Document Server

    Aifantis, Katerina E; Kumar, R Vasant

    2010-01-01

    Cell phones, portable computers and other electronic devices crucially depend on reliable, compact yet powerful batteries. Therefore, intensive research is devoted to improving performance and reducing failure rates. Rechargeable lithium-ion batteries promise significant advancement and high application potential for hybrid vehicles, biomedical devices, and everyday appliances. This monograph provides special focus on the methods and approaches for enhancing the performance of next-generation batteries through the use of nanotechnology. Deeper understanding of the mechanisms and strategies is

  3. New glyme-cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, Takashi; Hachida, Takeshi; Yoshida, Kazuki; Tachikawa, Naoki; Dokko, Kaoru; Watanabe, Masayoshi [Department of Chemistry and Biotechnology, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2010-09-15

    New glyme-Li salt complexes were prepared by mixing equimolar amounts of a novel cyclic imide lithium salt LiN(C{sub 2}F{sub 4}S{sub 2}O{sub 4}) (LiCTFSI) and a glyme (triglyme (G3) or tetraglyme (G4)). The glyme-Li salt complexes, [Li(G3)][CTFSI] and [Li(G4)][CTFSI], are solid and liquid, respectively, at room temperature. The thermal stability of [Li(G4)][CTFSI] is much higher than that of pure G4, and the vapor pressure of [Li(G4)][CTFSI] is negligible at temperatures lower than 100 C. Although the viscosity of [Li(G4)][CTFSI] is high (132.0 mPa s at 30 C), because of its high molar concentration (ca. 3 mol dm{sup -3}), its ionic conductivity at 30 C is relatively high, i.e., 0.8 mS cm{sup -1}, which is slightly lower than that of a conventional organic electrolyte solution (1 mol dm{sup -3} LiTFSI dissolved in propylene carbonate). The self-diffusion coefficients of a Li{sup +} cation, a CTFSI{sup -} anion, and a glyme molecule were measured by the pulsed gradient spin-echo NMR method (PGSE-NMR). The ionicity (dissociativity) of [Li(G4)][CTFSI] at 30 C is ca. 0.5, as estimated from the PGSE-NMR diffusivity measurements and the ionic conductivity measurements. Results of linear sweep voltammetry revealed that [Li(G4)][CTFSI] is electrochemically stable in an electrode potential range of 0-4.5 V vs. Li/Li{sup +}. The reversible deposition-stripping behavior of lithium was observed by cyclic voltammetry. The [LiCoO{sub 2} vertical stroke [Li(G4)][CTFSI] vertical stroke Li metal] cell showed a stable charge-discharge cycling behavior during 50 cycles, indicating that the [Li(G4)][CTFSI] complex is applicable to a 4 V class lithium secondary battery. (author)

  4. Novel configuration of poly(vinylidenedifluoride)-based gel polymer electrolyte for application in lithium-ion batteries

    Science.gov (United States)

    Fasciani, Chiara; Panero, Stefania; Hassoun, Jusef; Scrosati, Bruno

    2015-10-01

    Herein we propose a novel poly(vinylidene difluoride) (PVdF)-based gel polymer electrolyte (GPE) for application in lithium-ion batteries, LIBs. The GPE is prepared under air as a dry, flexible film and directly gelled during LIB assembly with a conventional liquid organic electrolyte. The dry-gel here originally reported maintains its structural integrity due to the presence of crystallized EC-solvent within its matrix that avoids structural collapse, as demonstrated by TGA analysis. By avoiding the use of controlled atmosphere, the GPE is easy to handle and suitable for roll-to-roll scaling-up, i.e. characteristics missed by the common gel membranes. Scanning Electron Microscopy (SEM) evidences a micrometric polymer network of the dry membrane precursor acting as the support matrix for the gelation. Electrochemical impedance spectroscopy (EIS) measurements and galvanostatic tests suggest a good stability of the lithium electrode/gel electrolyte interface and a satisfactory lithium transference number. Cycling tests of gel-electrolyte-based lithium half-cells using lithium iron phosphate (LiFePO4, LFP) and graphite (C), respectively, as counter electrodes, as well as of a full C/LFP lithium-ion battery confirm the suitability of the GPE developed in this work for application in stable, low cost and environmentally friendly energy storage systems.

  5. Lithium ion storage between graphenes

    Directory of Open Access Journals (Sweden)

    Chan Yue

    2011-01-01

    Full Text Available Abstract In this article, we investigate the storage of lithium ions between two parallel graphene sheets using the continuous approximation and the 6-12 Lennard-Jones potential. The continuous approximation assumes that the carbon atoms can be replaced by a uniform distribution across the surface of the graphene sheets so that the total interaction potential can be approximated by performing surface integrations. The number of ion layers determines the major storage characteristics of the battery, and our results show three distinct ionic configurations, namely single, double, and triple ion forming layers between graphenes. The number densities of lithium ions between the two graphenes are estimated from existing semi-empirical molecular orbital calculations, and the graphene sheets giving rise to the triple ion layers admit the largest storage capacity at all temperatures, followed by a marginal decrease of storage capacity for the case of double ion layers. These two configurations exceed the maximum theoretical storage capacity of graphite. Further, on taking into account the charge-discharge property, the double ion layers are the most preferable choice for enhanced lithium storage. Although the single ion layer provides the least charge storage, it turns out to be the most stable configuration at all temperatures. One application of the present study is for the design of future high energy density alkali batteries using graphene sheets as anodes for which an analytical formulation might greatly facilitate rapid computational results.

  6. Solubility of hydrogen in V-4Cr-4Ti and lithium

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.H.; Dragel, G.; Erck, R.A.; Smith, D.L. [Argonne National Laboratory, Chicago, IL (United States)] [and others

    1996-04-01

    The solubility of hydrogen in V-4Cr-4Ti and liquid lithium was determined at 400-675{degrees}C and a hydrogen pressure of 1.76x10{sup -4} torr (2.35 x 10{sup -2}Pa). Hydrogen concentration in both materials decreased as temperature increased, and the ratio of the hydrogen concentration in liquid lithium and V-4Cr-4Ti (hydrogen distribution ratio R) increased with temperature, e.g., R was {approx} 17 at 400{degrees}C and {approx} 80 at 700{degrees}C. Desorption of hydrogen from V-4Cr-4Ti is a thermally activated process and the activation energy of the desorption rate is 0.405 eV.

  7. Study on property-gradient polymer electrolyte for rechargeable lithium batteries; Lithium niji denchi no tame no keisha tokusei kobunshi denkaishitsu no sosei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kokumi, Z.; Kanemura, S.; Inaba, M.; Takehara, Z.; Yao, K.; Uchimoto, Y. [Kyoto University, Kyoto (Japan)

    1997-02-01

    This paper describes the fundamental experiments for creating property-gradient polymer electrolyte for rechargeable lithium batteries. The rechargeable lithium battery is composed of an anodic composite agent section with high ion conductivity, a separator equivalent section with high mechanical strength (high bridging degree), and a section surpressing the precipitation of metal lithium by contacting with it. The continuous property-gradient polymer electrolyte was tried to be synthesized by means of the plasma polymerization method. As a result, plasma polymerization electrolyte with high ion conductivity could be prepared from the liquid phase by using a monomer with low vapor pressure. Porous material simulating the anodic composite agent was impregnated by the monomer, which was plasma-polymerized. As a result, it was found that the bridging degree decreased from the surface towards the inside of the plasma-polymerized porous material. In addition, polymer was prepared using fluorine-base monomer. Thus, LiF thin film could be prepared through the reaction between the polymer and metal lithium. 3 figs.

  8. EADS-Astrium Lithium Technology Experiences

    Science.gov (United States)

    Mattesco, P.

    2008-09-01

    The Lithium-ion battery has been perceived ten years ago by EADS Astrium as a very promising technology in terms of technical, industrial and cost aspects for satellite platforms with respect to NiCd and NiH2 technologies. In 2008, lithium technology is the baseline for all new spacecrafts, whatever the missions.For telecommunication satellite, since 2003, more than 18 Lithium batteries for Eurostar E3000 platform have been fully tested and integrated (with SAFT VES140S Lithium cells) up to now. 6 E3000 satellites are in orbit equipped with Lithium batteries with more than 4 years in orbit for the first E3000 satellite equipped with Lithium-ion batteries. 7 others E3000 satellites with lithium batteries are currently at various stage of production.For LEO missions (THEOS, PLEIADES…), ABSL batteries with Sony 18650 HC lithium cells will replace, on the latest LEO platform the NiCd technology. The same technology change has been also successfully done previously for scientific missions: since June 2003 for Mars Express and November 2005 for Venus Express.Associated expected system improvements (weight reduction of the battery system, easiest on ground and launch pad management, highest available energy during launch, ….) driven by specific lithium-ion technology features are today demonstrated and in orbit behaviours are as expected [1], [13].The paper will give an overview of experience of EADS-Astrium on lithium battery technology with the description (design, management, architecture) of lithium batteries used on board LEO and GEO satellites. It will give also a picture of the effort done the last ten years to reach this level of experience (test characterisation, simulation…).

  9. Conductivity and self-diffusivity measurements on molten lithium electrolytes for battery applications

    Science.gov (United States)

    Videa, Marcelo Vargas

    Several lithium salt systems, classified in this work as solvent-free and solvent containing, have been investigated with the purpose of determining their qualities as potential electrolytes for applications in lithium batteries. With this objective, their thermal. properties, of which the glassforming ability was considered of fundamental importance, and their experimental conductivities and lithium self-diffusivities were determined to build a body of information that could be considered complete insofar as the evaluation of the material was concerned. Mixtures of lithium salts with fluorine-based anions, including LiCF 3SO3, LiBF4 and LiN(SO2CF3) 2 (or LiIm), were studied as part of a search for chemically and electrochemically stable glassforming lithium salts. Although the observation of the glassforming ability of some binary and ternary systems was considered a partial success, the high glass transition temperatures recorded and their inability to avoid crystallization discouraged the author from any attempt of using these materials as practical electrolytes. Attention was then placed on a family of tetrahaloaluminate lithium salts among which LiAlCl4, although non-glassforming when pure, can be easely vitrified upon the addition of small amounts of a second component or plasticizing agent. By extrapolation to zero content of plasticizing agent it was found that Tg for this salt is -35°C, the lowest value recorded for an ionic system. Although the LiAlCl4-based systems obtained by introducing LiIm, LiIm-AlCl3 or LiAl(SO3Cl)4 as second components produce room temperature, non-crystallizing liquids, they unfortunately fail in providing conductivities with values acceptable for the applications intended. In the case of the system LiAlC14-LiAl(SO3Cl) 4, lithium self-diffusivity measurements are compared via the Nernst-Einstein relation to the conductivity values in order to obtain insight on lithium-ion transport properties. Solvent-containing electrolytes

  10. Liquid lubrication for space applications

    Science.gov (United States)

    Fusaro, Robert L.; Khonsari, Michael M.

    1993-01-01

    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  11. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  12. Magnetic Propulsion of Intense Lithium Streams in a Tokamak Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Leonid E. Zakharov

    2002-03-13

    The paper gives the theory of magnetic propulsion of liquid lithium streams and their stability in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integro-differential equation which takes into account the propulsion effect, viscosity and the drag force due to magnetic pumping and other interactions with the magnetic field. A criterion is obtained for the stabilization of the ''sausage'' instability of the streams by centrifugal force.

  13. The Influence of Polymer Binders on the Performance of Cathodes for Lithium-Ion Batteries

    OpenAIRE

    Barsykov, V; V. Khomenko

    2001-01-01

    A systematic electrochemical investigation is performed to study the effect of polyvinylidene difluoride (PVDF) based polymer binders on the performance of different cathodes for lithium-ion batteries in ionic liquid (IL) based electrolytes. Electrochemical tests indicate that the nature of PVDF effects significantly on cathode stability in IL based electrolytes. The copolymer such as hexafluoropropylene (HFP) plays a significant role in the interfacial resistance. Application of PVDF-HFP bi...

  14. Nanoconfinement of LiBH4 for High Ionic Conductivity in Lithium Ion Batteries

    DEFF Research Database (Denmark)

    Lefevr, Jessica Emilia Avlina; Das, Supti; Blanchard, Didier

    2016-01-01

    Efficient energy conversion and storage is crucial for development of systems based on renewable energy sources. For electricity storage, Li-ion batteries are commonly used in electronics devices but require many improvements to obtain longer life-time and higher energy densities. The current use...... of organic liquids and gels electrolytes limits these improvements because of lithium dendrites formation, reducing the lifetime of the battery and which can possibly be hazardous due to risks of short circuits....

  15. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  16. Usage of Liquid Metals in the Positron Production System of Linear Collider

    CERN Document Server

    Mikhailichenko, Alexander

    2015-01-01

    In this publication we collected descriptions of some installations with liquid metals which could be used for high-energy colliders, ILC particularly, for the purposes of targeting, collimation, cooling, collection of secondary particles etc. Some important components of the system with liquid metals, such as pumps, nozzles, windows, and the fluid dynamics in the Lithium lens are described also.

  17. Physical chemistry studies of ionic conduction gel electrolytes for lithium batteries; Etudes physico-chimiques d'electrolytes gelifies a conduction ionique pour batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Caillon-Caravanier, M.

    2002-12-01

    With the development of new electronic technologies, the research on gel electrolytes basic properties has been widely increased. The use of these materials, produced under thin plastic films, improves the stored energy - battery volume ratio. The ionic gel conductivity, liquid-type, is ensured by the ion migration in the liquid electrolyte incorporated to the polymer network. Thus a preliminary study of liquid phases to be incorporated has been done before the gel investigation. In order to optimize the conductive properties of liquid electrolytes, a simplified model of ionic conductivity has been established. It is based on the ion pair dissociation equilibrium. The ionic mobility is supposed to be inversely proportional to the macroscopic medium viscosity. The liquid electrolytes are then incorporated in the polymer network, based on di-acrylate monomers (DAC) or fluorinated copolymer (PVdF-HFP/SiO{sub 2}). The conductivity loss of the liquid encapsulated phases, more pronounced in the DAC case, is attributed to ion-polymer network interactions, which lead to a decrease of both the concentration and the mobility of free ions in the system. In the case of gel electrolytes DAC based, these interactions are quantified from an ionic transport model, which relies on the hypothesis of a 3D quasi-cubic reticulation. This hypothesis also allows anticipating the network maximal ability to contain the liquid phase. For gel electrolytes PVdF-HFP/SiO{sub 2} based, the kinetic study of the liquid phase absorption has allowed us to optimize the elaboration conditions. The ion-ion, ion-solvent and ion-polymer interactions have. been qualitatively and quantitatively studied by the mean of Raman spectroscopy. The performance of elaborated gel electrolytes is also estimated in cyclability terms towards commercial electrodes for lithium batteries. So the gel behavior has been studied with half-batteries associating a metal lithium electrode to a carbon anode or a lithiated cobalt

  18. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  19. Patterns and clinical outcomes of lithium treatment

    NARCIS (Netherlands)

    Wilting, I.

    2008-01-01

    Patterns and consequences of lithium use’. In chapter 2.1 we studied lithium use patterns in out-patients within the last decade. In line with the increase in alternatives and the Dutch guidelines, we observed an increase in use of atypical antipsychotics and valproic acid and a decrease in use tric

  20. Lithium use and the risk of fractures

    NARCIS (Netherlands)

    Wilting, Ingeborg; de Vries, Frank; Thio, Brahm M. K. S.; Cooper, Cyrus; Heerdink, Eibert R.; Leutkens, Hubert G. M.; Nolen, Willem A.; Egberts, Antoine C. G.; van Staa, Tjeerd P.

    A recent study reported a decreased risk of fractures among lithium users. We conducted a case-control study within the UK General Practice Research Database, comparing never, ever, current, recent and past lithium use in 231,778 fracture cases to matched controls. In addition, the risk of fractures