WorldWideScience

Sample records for area expansivity modulus

  1. Theory of thermal expansivity and bulk modulus

    International Nuclear Information System (INIS)

    Kumar, Munish

    2005-01-01

    The expression for thermal expansivity and bulk modulus, claimed by Shanker et al. to be new [Physica B 233 (1977) 78; 245 (1998) 190; J. Phys. Chem. Solids 59 (1998) 197] are compared with the theory of high pressure-high temperature reported by Kumar and coworkers. It is concluded that the Shanker formulation and the relations based on this are equal to the approach of Kumar et al. up to second order

  2. Elastic modulus, thermal expansion, and specific heat at a phase transition

    International Nuclear Information System (INIS)

    Testardi, L.R.

    1975-01-01

    The interrelation of the elastic modulus, thermal-expansion coefficient, and specific heat of a transformed phase relative to the untransformed phase is calculated assuming a particular but useful form of the thermodynamic potential. For second-order phase transitions where this potential applies, measurements of modulus, expansion, and specific heat can yield the general (longitudinal as well as shear) first- and second-order stress (or strain) dependences of the transition temperature and of the order parameter at absolute zero. An exemplary application to one type of phase transition is given

  3. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  4. Analysis of equations of state and temperature dependence of thermal expansivity and bulk modulus for silicon

    International Nuclear Information System (INIS)

    Pandya, Tushar C; Bhatt, Apoorva D; Thakar, Nilesh A

    2012-01-01

    In the present paper an attempt has been made for the comparative study of different equations of state for silicon (Phase-1, cubic diamond structure) in the pressure range of 0-11 GPa. We compare the results of different equations of state (EOS) with available experimental data. The Kwon and Kim EOS is found to give far better agreement with the available experimental data. Results obtained by Poirier-Tarantola, Vinet, Tait and Suzuki's equations of state are not giving satisfactory agreement with the available experimental data. In the present study simple methods based on thermodynamic functions are presented to investigate the temperature dependence of thermal expansivity and bulk modulus for silicon. The results are reported for silicon. The calculated values of thermal expansivity are in good agreement with experimental data.

  5. The effect of elastic modulus on ablation catheter contact area.

    Science.gov (United States)

    Camp, Jon J; Linte, Cristian A; Rettmann, Maryam E; Sun, Deyu; Packer, Douglas L; Robb, Richard A; Holmes, David R

    2015-02-21

    Cardiac ablation consists of navigating a catheter into the heart and delivering RF energy to electrically isolate tissue regions that generate or propagate arrhythmia. Besides the challenges of accurate and precise targeting of the arrhythmic sites within the beating heart, limited information is currently available to the cardiologist regarding intricate electrode-tissue contact, which directly impacts the quality of produced lesions. Recent advances in ablation catheter design provide intra-procedural estimates of tissue-catheter contact force, but the most direct indicator of lesion quality for any particular energy level and duration is the tissue-catheter contact area, and that is a function of not only force, but catheter pose and material elasticity as well. In this experiment, we have employed real-time ultrasound (US) imaging to determine the complete interaction between the ablation electrode and tissue to accurately estimate contact, which will help to better understand the effect of catheter pose and position relative to the tissue. By simultaneously recording tracked position, force reading and US image of the ablation catheter, the differing material properties of polyvinyl alcohol cryogel [1] phantoms are shown to produce varying amounts of tissue depression and contact area (implying varying lesion quality) for equivalent force readings. We have shown that the elastic modulus significantly affects the surface-contact area between the catheter and tissue at any level of contact force. Thus we provide evidence that a prescribed level of catheter force may not always provide sufficient contact area to produce an effective ablation lesion in the prescribed ablation time.

  6. A computer simulation approach to quantify the true area and true area compressibility modulus of biological membranes

    International Nuclear Information System (INIS)

    Chacón, Enrique; Tarazona, Pedro; Bresme, Fernando

    2015-01-01

    We present a new computational approach to quantify the area per lipid and the area compressibility modulus of biological membranes. Our method relies on the analysis of the membrane fluctuations using our recently introduced coupled undulatory (CU) mode [Tarazona et al., J. Chem. Phys. 139, 094902 (2013)], which provides excellent estimates of the bending modulus of model membranes. Unlike the projected area, widely used in computer simulations of membranes, the CU area is thermodynamically consistent. This new area definition makes it possible to accurately estimate the area of the undulating bilayer, and the area per lipid, by excluding any contributions related to the phospholipid protrusions. We find that the area per phospholipid and the area compressibility modulus features a negligible dependence with system size, making possible their computation using truly small bilayers, involving a few hundred lipids. The area compressibility modulus obtained from the analysis of the CU area fluctuations is fully consistent with the Hooke’s law route. Unlike existing methods, our approach relies on a single simulation, and no a priori knowledge of the bending modulus is required. We illustrate our method by analyzing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers using the coarse grained MARTINI force-field. The area per lipid and area compressibility modulus obtained with our method and the MARTINI forcefield are consistent with previous studies of these bilayers

  7. Young's Modulus and Coefficient of Linear Thermal Expansion of ZnO Conductive and Transparent Ultra-Thin Films

    Directory of Open Access Journals (Sweden)

    Naoki Yamamoto

    2011-01-01

    Full Text Available A new technique for measuring Young's modulus of an ultra-thin film, with a thickness in the range of about 10 nm, was developed by combining an optical lever technique for measuring the residual stress and X-ray diffraction for measuring the strain in the film. The new technique was applied to analyze the mechanical properties of Ga-doped ZnO (GZO films, that have become the focus of significant attention as a substitute material for indium-tin-oxide transparent electrodes. Young's modulus of the as-deposited GZO films decreased with thickness; the values for 30 nm and 500 nm thick films were 205 GPa and 117 GPa, respectively. The coefficient of linear thermal expansion of the GZO films was measured using the new technique in combination with in-situ residual stress measurement during heat-cycle testing. GZO films with 30–100 nm thickness had a coefficient of linear thermal expansion in the range of 4.3 × 10−6 – 5.6 × 10−6 °C−1.

  8. Temperature and orientation dependence of the short-term strength characteristics, Young's modulus, and linear expansion coefficient of ZhS6F alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Svetlov, I L; Sukhanov, N N; Krivko, A I; Roshchina, I N; Khatsinskaia, I M

    1987-01-01

    Experimental data are presented on the temperature dependence of the short- term strength characteristics, Young's modulus, and linear expansion coefficients of single crystals of a nickel alloy, ZhS6F, with crystallographic orientations along the 001, 111, 011, and 112 lines. It is found that the mechanical properties and Young's modulus of the alloy crystals exibit anisotropy in the temperature range 20-900 C. The linear thermal expansion coefficient is isotropic up to 900 C and equal to that of the equiaxed alloy. 10 references.

  9. Thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure at high pressures and temperatures

    International Nuclear Information System (INIS)

    Sun Xiaowei; Liu Zijiang; Chen Qifeng; Chu Yandong; Wang Chengwei

    2006-01-01

    The thermal expansivity and bulk modulus of ZnO with NaCl-type cubic structure were estimated by using the constant temperature and pressure molecular dynamics technique with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction at high pressures and temperatures. It is shown that the calculated thermodynamic parameters including linear thermal expansion coefficient, isothermal bulk modulus and its pressure derivative are in good agreement with the available experimental data and the latest theoretical results. At an extended pressure and temperature ranges, linear thermal expansion coefficient and isothermal bulk modus have also been predicted. The thermodynamic properties of ZnO with NaCl-type cubic structure are summarized in the pressure 0-150 GPa ranges and the temperature up to 3000 K

  10. Determining a membrane's shear modulus, independent of its area-dilatation modulus, via capsule flow in a converging micro-capillary.

    Science.gov (United States)

    Dimitrakopoulos, P; Kuriakose, S

    2015-04-14

    Determination of the elastic properties of the membrane of artificial capsules is essential for the better design of the various devices that are utilized in their engineering and biomedical applications. However this task is complicated owing to the combined effects of the shear and area-dilatation moduli on the capsule deformation. Based on computational investigation, we propose a new methodology to determine a membrane's shear modulus, independent of its area-dilatation modulus, by flowing strain-hardening capsules in a converging micro-capillary of comparable size under Stokes flow conditions, and comparing the experimental measurements of the capsule elongation overshooting with computational data. The capsule prestress, if any, can also be determined with the same methodology. The elongation overshooting is practically independent of the viscosity ratio for low and moderate viscosity ratios, and thus a wide range of capsule fluids can be employed. Our proposed experimental device can be readily produced via glass fabrication while owing to the continuous flow in the micro-capillary, the characterization of a large number of artificial capsules is possible.

  11. Annual cropped area expansion and agricultural production ...

    African Journals Online (AJOL)

    Ethiopian Journal of Environmental Studies and Management ... considerable annual increase of varying extent over time and space for both annual output and area ... The study suggests improving productivity through sustainable agricultural ...

  12. Thermal expansion, modulus of elasticity, shrinkage, creep and residual strength of concrete for PCRVs at uniaxial stress state and elevated temperatures

    International Nuclear Information System (INIS)

    Aschl, H.; Stoeckl, S.

    1981-01-01

    At the Institut fuer Massivbau of the Technical University of Munich testing machines were built, which allow to test sealed and unsealed cylinders with uniaxial stress state at elevated temperatures till 523 K (250 0 C). With this equipment tests were carried out at predried, unsealed and sealed specimens to study - thermal expansion coefficient - modulus of elasticity - shrinkage and - creep of concrete at elevated temperatures of 353 K (80 0 C) and 393 K (120 0 C) and at a normal temperature of 293 K (20 0 C). In addition the residual strength of all specimens was measured. In the worst case (unsealed, i.e. drying specimens) some showed a maximum decrease in strength up to 60%. (orig.) [de

  13. Targeting global protected area expansion for imperiled biodiversity.

    Science.gov (United States)

    Venter, Oscar; Fuller, Richard A; Segan, Daniel B; Carwardine, Josie; Brooks, Thomas; Butchart, Stuart H M; Di Marco, Moreno; Iwamura, Takuya; Joseph, Liana; O'Grady, Damien; Possingham, Hugh P; Rondinini, Carlo; Smith, Robert J; Venter, Michelle; Watson, James E M

    2014-06-01

    Governments have agreed to expand the global protected area network from 13% to 17% of the world's land surface by 2020 (Aichi target 11) and to prevent the further loss of known threatened species (Aichi target 12). These targets are interdependent, as protected areas can stem biodiversity loss when strategically located and effectively managed. However, the global protected area estate is currently biased toward locations that are cheap to protect and away from important areas for biodiversity. Here we use data on the distribution of protected areas and threatened terrestrial birds, mammals, and amphibians to assess current and possible future coverage of these species under the convention. We discover that 17% of the 4,118 threatened vertebrates are not found in a single protected area and that fully 85% are not adequately covered (i.e., to a level consistent with their likely persistence). Using systematic conservation planning, we show that expanding protected areas to reach 17% coverage by protecting the cheapest land, even if ecoregionally representative, would increase the number of threatened vertebrates covered by only 6%. However, the nonlinear relationship between the cost of acquiring land and species coverage means that fivefold more threatened vertebrates could be adequately covered for only 1.5 times the cost of the cheapest solution, if cost efficiency and threatened vertebrates are both incorporated into protected area decision making. These results are robust to known errors in the vertebrate range maps. The Convention on Biological Diversity targets may stimulate major expansion of the global protected area estate. If this expansion is to secure a future for imperiled species, new protected areas must be sited more strategically than is presently the case.

  14. National Training Center Fort Irwin expansion area aquatic resources survey

    Energy Technology Data Exchange (ETDEWEB)

    Cushing, C.E.; Mueller, R.P.

    1996-02-01

    Biologists from Pacific Northwest National Laboratory (PNNL) were requested by personnel from Fort Irwin to conduct a biological reconnaissance of the Avawatz Mountains northeast of Fort Irwin, an area for proposed expansion of the Fort. Surveys of vegetation, small mammals, birds, reptiles, amphibians, and aquatic resources were conducted during 1995 to characterize the populations and habitats present with emphasis on determining the presence of any species of special concern. This report presents a description of the sites sampled, a list of the organisms found and identified, and a discussion of relative abundance. Taxonomic identifications were done to the lowest level possible commensurate with determining the status of the taxa relative to its possible listing as a threatened, endangered, or candidate species. Consultation with taxonomic experts was undertaken for the Coleoptera ahd Hemiptera. In addition to listing the macroinvertebrates found, the authors also present a discussion related to the possible presence of any threatened or endangered species or species of concern found in Sheep Creek Springs, Tin Cabin Springs, and the Amargosa River.

  15. 77 FR 59931 - Single Source Program Expansion Supplement Award to Area Health Education Centers (AHEC) Program...

    Science.gov (United States)

    2012-10-01

    ... Program Expansion Supplement Award to Area Health Education Centers (AHEC) Program Grantee; Exception to... Competition--Single Source Program Expansion Supplement Award to Area Health Education Centers (AHEC) Program... supplement award to the University of Guam School of Nursing, an Area Health Education Center (AHEC) Program...

  16. Monitoring the expansion of built-up areas in Seberang Perai region, Penang State, Malaysia

    International Nuclear Information System (INIS)

    Samat, N

    2014-01-01

    Rapid urbanization has caused land use transformation and encroachment of built environment into arable agriculture land. Uncontrolled expansion could bring negative impacts to society, space and the environment. Therefore, information on expansion and future spatial pattern of built-up areas would be useful for planners and decision makers in formulating policies towards managing and planning for sustainable urban development. This study demonstrates the usage of Geographic Information System in monitoring the expansion of built-up area in Seberang Perai region, Penang State, Malaysia. Built-up area has increased by approximately 20% between 1990 and 2001 and further increased by 12% between 2001 and 2007. New development is expected to continue encroach into existing open space and agriculture area since those are the only available land in this study area. The information on statistics of the expansion of built-up area and future spatial pattern of urban expansion were useful in planning and managing urban spatial growth

  17. Expansion of the uranium mines in the Elliot Lake area

    International Nuclear Information System (INIS)

    1979-11-01

    This report forms the response of the government of Ontario to an earlier report issued by an Envrionmental Assessment Board. Specifically, the report deals with the rapid growth of the town of Elliot Lake due to expansion of several uranium mine-mill operations. Rapid growth of small communities presents considerable problems in providing housing, essential services, and educational facilities. Several specific actions taken by the government to help the town cope with rapid growth are presented. (O.T.)

  18. Expansion of urban area and wastewater irrigated rice area in Hyderabad, India

    Science.gov (United States)

    Gumma, K.M.; van, Rooijen D.; Nelson, A.; Thenkabail, P.S.; Aakuraju, Radha V.; Amerasinghe, P.

    2011-01-01

    The goal of this study was to investigate land use changes in urban and peri-urban Hyderabad and their influence on wastewater irrigated rice using Landsat ETM + data and spectral matching techniques. The main source of irrigation water is the Musi River, which collects a large volume of wastewater and stormwater while running through the city. From 1989 to 2002, the wastewater irrigated area along the Musi River increased from 5,213 to 8,939 ha with concurrent expansion of the city boundaries from 22,690 to 42,813 ha and also decreased barren lands and range lands from 86,899 to 66,616 ha. Opportunistic shifts in land use, especially related to wastewater irrigated agriculture, were seen as a response to the demand for fresh vegetables and easy access to markets, exploited mainly by migrant populations. While wastewater irrigated agriculture contributes to income security of marginal groups, it also supplements the food basket of many city dwellers. Landsat ETM + data and advanced methods such as spectral matching techniques are ideal for quantifying urban expansion and associated land use changes, and are useful for urban planners and decision makers alike. ?? 2011 Springer Science+Business Media B.V.

  19. On the area expansion of magnetic flux tubes in solar active regions

    Energy Technology Data Exchange (ETDEWEB)

    Dudík, Jaroslav [DAMTP, CMS, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Dzifčáková, Elena [Astronomical Institute of the Academy of Sciences of the Czech Republic, Fričova 298, 251 65 Ondřejov (Czech Republic); Cirtain, Jonathan W., E-mail: J.Dudik@damtp.cam.ac.uk, E-mail: elena@asu.cas.cz [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States)

    2014-11-20

    We calculated the three-dimensional (3D) distribution of the area expansion factors in a potential magnetic field, extrapolated from the high-resolution Hinode/SOT magnetogram of the quiescent active region NOAA 11482. Retaining only closed loops within the computational box, we show that the distribution of area expansion factors show significant structure. Loop-like structures characterized by locally lower values of the expansion factor are embedded in a smooth background. These loop-like flux tubes have squashed cross-sections and expand with height. The distribution of the expansion factors show an overall increase with height, allowing an active region core characterized by low values of the expansion factor to be distinguished. The area expansion factors obtained from extrapolation of the Solar Optical Telescope magnetogram are compared to those obtained from an approximation of the observed magnetogram by a series of 134 submerged charges. This approximation retains the general flux distribution in the observed magnetogram, but removes the small-scale structure in both the approximated magnetogram and the 3D distribution of the area expansion factors. We argue that the structuring of the expansion factor can be a significant ingredient in producing the observed structuring of the solar corona. However, due to the potential approximation used, these results may not be applicable to loops exhibiting twist or to active regions producing significant flares.

  20. 75 FR 30782 - Reorganization/Expansion of Foreign-Trade Zone 20; Hampton Roads, VA, Area

    Science.gov (United States)

    2010-06-02

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Order No. 1683] Reorganization/Expansion of Foreign-Trade Zone 20; Hampton Roads, VA, Area Pursuant to its authority under the Foreign-Trade Zones Act...) in the Hampton Roads, Virginia, area within the Norfolk Customs and Border Protection port of entry...

  1. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

    Science.gov (United States)

    Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  2. Experimental Young's modulus calculations

    International Nuclear Information System (INIS)

    Chen, Y.; Jayakumar, R.; Yu, K.

    1994-01-01

    Coil is a very important magnet component. The turn location and the coil size impact both mechanical and magnetic behavior of the magnet. The Young's modulus plays a significant role in determining the coil location and size. Therefore, Young's modulus study is essential in predicting both the analytical and practical magnet behavior. To determine the coil Young's modulus, an experiment has been conducted to measure azimuthal sizes of a half quadrant QSE101 inner coil under different loading. All measurements are made at four different positions along an 8-inch long inner coil. Each measurement is repeated three times to determine the reproducibility of the experiment. To ensure the reliability of this experiment, the same measurement is performed twice with a open-quotes dummy coil,close quotes which is made of G10 and has the same dimension and similar azimuthal Young's modulus as the inner coil. The difference between the G10 azimuthal Young's modulus calculated from the experiments and its known value from the manufacturer will be compared. Much effort has been extended in analyzing the experimental data to obtain a more reliable Young's modulus. Analysis methods include the error analysis method and the least square method

  3. Impact factors on expansion of built-up areas in Zhejiang Province, China

    Science.gov (United States)

    Liu, Dong; Zhu, Qiankun; Li, Yan; Gong, Fang

    2017-10-01

    Built-up areas are the results of human activities. Not only are they the real reflection of human and society activities, but also one of the most important input parameters for the simulation of biogeochemical cycle. Therefore, it is very necessary to map the distribution of built-up areas and monitor their changes by using new technologies and methods at high spatiotemporal resolution. By combining technologies of GIS (Geographic Information System) and RS (Remote Sensing), this study mainly explored the expansion and driving factors of built-up areas at the beginning of the 21st century in Zhejiang Province, China. Firstly, it introduced the mapping processes of LULC (Land Use and Land Cover) based on the method which combined object-oriented method and binary decision tree. Then, it analyzed the expansion features of built-up areas in Zhejiang from 2000 to 2005 and 2005 to 2010. In addition to these, potential driving factors on the expansion of built-up areas were also explored, which contained physical geographical factors, railways, highways, rivers, urban centers, elevation, and slop. Results revealed that the expansions of built-up areas in Zhejiang from 2000 to 2005 and from 2005 to 2010 were very obvious and they showed high levels of variation in spatial heterogeneity. Except those, increased built-up areas with distance to railways, highways, rivers, and urban centers could be fitted with power function (y = a*xb ), with minimum R2 of 0.9507 for urban centers from 2000 to 2005; the increased permillages of built-up areas to mean elevation and mean slop could be fitted with exponential functions (y = a*ebx), with minimum R2 of 0.6657 for mean slop from 2005 to 2010. Besides, government policy could also impact expansion of built-up areas. In a nutshell, a series of conclusions were obtained through this study about the spatial features and driving factors of evolution of built-up areas in Zhejiang from 2000 to 2010.

  4. Global protected area expansion is compromised by projected land-use and parochialism.

    Science.gov (United States)

    Montesino Pouzols, Federico; Toivonen, Tuuli; Di Minin, Enrico; Kukkala, Aija S; Kullberg, Peter; Kuusterä, Johanna; Lehtomäki, Joona; Tenkanen, Henrikki; Verburg, Peter H; Moilanen, Atte

    2014-12-18

    Protected areas are one of the main tools for halting the continuing global biodiversity crisis caused by habitat loss, fragmentation and other anthropogenic pressures. According to the Aichi Biodiversity Target 11 adopted by the Convention on Biological Diversity, the protected area network should be expanded to at least 17% of the terrestrial world by 2020 (http://www.cbd.int/sp/targets). To maximize conservation outcomes, it is crucial to identify the best expansion areas. Here we show that there is a very high potential to increase protection of ecoregions and vertebrate species by expanding the protected area network, but also identify considerable risk of ineffective outcomes due to land-use change and uncoordinated actions between countries. We use distribution data for 24,757 terrestrial vertebrates assessed under the International Union for the Conservation of Nature (IUCN) 'red list of threatened species', and terrestrial ecoregions (827), modified by land-use models for the present and 2040, and introduce techniques for global and balanced spatial conservation prioritization. First, we show that with a coordinated global protected area network expansion to 17% of terrestrial land, average protection of species ranges and ecoregions could triple. Second, if projected land-use change by 2040 (ref. 11) takes place, it becomes infeasible to reach the currently possible protection levels, and over 1,000 threatened species would lose more than 50% of their present effective ranges worldwide. Third, we demonstrate a major efficiency gap between national and global conservation priorities. Strong evidence is shown that further biodiversity loss is unavoidable unless international action is quickly taken to balance land-use and biodiversity conservation. The approach used here can serve as a framework for repeatable and quantitative assessment of efficiency, gaps and expansion of the global protected area network globally, regionally and nationally, considering

  5. Protected areas and agricultural expansion: Biodiversity conservation versus economic growth in the Southeast of Brazil.

    Science.gov (United States)

    Moraes, Mayra Cristina Prado de; Mello, Kaline de; Toppa, Rogério Hartung

    2017-03-01

    The conversion of natural ecosystems to agricultural land and urban areas plays a threat to the protected areas and the natural ecosystems conservation. The aim of this paper is to provide an analysis of the agricultural expansion and its impact on the landscape spatial and temporal patterns in a buffer zone of a protected area located in the transition zone between the Atlantic Forest and Cerrado, in the State of São Paulo, Brazil. The land use and land cover were mapped between 1971 and 2008 and landscape metrics were calculated to provide a spatiotemporal analysis of the forest structure and the expansion of the croplands. The results showed that the landscape patterns were affected by the economic cycles. The predominant crop surrounding the protected area is sugar cane, which increased by 39% during this period, followed by citrus. This landscape change is connected to the Brazilian oil crisis in 1973. The rapid expansion of sugar cane was largely driven by Brazil's biofuel program, the "Proálcool" (pro-alcohol), a project in 1975 that mixed ethanol with gas for automotive fuel. The forest loss occurred mainly between 1971 and 1988, decreasing the forest cover from 17% in 1971 to 12.7% in 2008. Most of the forest patches are smaller than 50 ha and has low connectivity. Throughout the years, the fragments in the buffer zone have become smaller and with an elongated shape, and the park has become isolated. This forest fragmentation process and the predominance of monoculture lands in the buffer zone threaten the protected areas, and can represent a barrier for these areas to provide the effective biodiversity conservation. The measures proposed are necessary to ensure the capability of this ecosystem to sustain its original biodiversity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Correlations between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence from the Heavily Urbanised Shanghai Metropolitan Area, China

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2017-07-01

    Full Text Available Rapid urban expansion resulting in increased impervious surfaces causes a series of urban environmental problems, e.g., the urban heat island and urban forest fragmentation. Urban expansion is a serious threat to human quality of life and living environments. It has been studied from a variety of aspects, but its driving factors and time series expansion characteristics (i.e., expansion intensity, pattern and direction need to be better explained in order to devise more effective management strategies. This study examined how social and economic factors are linked in driving urban expansion. Based on multi-temporal aerial images, a rapid urban expansion period, 2000–2010, in Shanghai was analysed. The urban area expanded from 1770.36 to 2855.44 km2 in the period, with a mean annual expansion rate of 108.51 km2. Urban expansion in 2000–2005 (40.42% was much faster than in 2005–2010 (14.86%, and its direction was southeast, southwest and south. The main pattern was edge expansion in both sub-periods. Social factors, especially population density, significantly affected urban expansion. These findings can help understand the urban expansion process and its driving factors, which has important implications for urban planning and management in Shanghai and similar cities.

  7. The expansion of coal mining in the depression areas – a way to development?

    Directory of Open Access Journals (Sweden)

    Stanislav Martinát

    2014-05-01

    Full Text Available The coal has been mined in the Karviná area for more than 150 years. During the course of time mining areas were continuously extended at the expense of the settled areas. At the beginnings the mining was limited, but later, namely under conditions of centrally planned economy in the period between 1950s and 1980s, it was heavily intensified. Then, as a result of economic restructuring of the Czech Republic mining was reduced in the region to be re-developed in the last decade again. The expansion of coal mining has been continuously affecting the socio-economic structure of local population (huge working immigration, industrialisation, construction of mass housing for miners – miners dormitories, later housing estates etc., displacement of settlements, surrounding landscape (subsidence of terrain, undermining, hydrological changes and formation of artificial lakes, occurrence of plenty of post-mining brownfields after the reduction of mining etc., but also contemporary outward, image and socio-spatial structure of cities (dominance housing in housing estates, effects of communists spatial urban planning etc.. Currently, negotiations about expansion of coal mining are in progress in this region, namely the city parts of Karviná (Staré Město and Orlová (Výhoda should be affected. In the introductory parts of this paper social, economical and environmental aspects of coal mining on the development of regions and connected problems are discussed and both cities are shortly presented. The questionnaire survey focused on perceptions of after-mining renewal and potential expansion of mining in the area of cities of Karviná and Orlová was conducted (n=1000. As the most important predictor that influences perception of mining and renewal, employment in mining companies has been identified. The higher education respondents achieved, the higher level of opposition against mining was manifested. The correlation was also found between the level of

  8. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  9. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  10. Pressure-induced referred pain areas are more expansive in individuals with a recovered fracture

    DEFF Research Database (Denmark)

    Doménech-García, Víctor; Skuli Palsson, Thorvaldur; Boudreau, Shellie Ann

    2018-01-01

    the shoulder region was induced by a 60-s pressure stimulation (PPT+20%) at the infraspinatus muscle and recorded on an electronic body chart. Following Day-0 assessments, delayed onset muscle soreness (DOMS) was induced to challenge the pain systems by exercising the external rotators of the recovered...... a shoulder fracture and 20 age/gender matched controls participated in two experimental sessions (Day-0, Day-1) separated by 24 hours. On both days, pressure pain thresholds (PPTs) were measured bilaterally at infraspinatus, supraspinatus, trapezius, and gastrocnemius muscles. Referred pain towards....../dominant shoulder. The size of pressure-induced pain referral on Day-0 did not differ between groups although there was a tendency for a smaller referred pain area in recovered group. PPTs at the infraspinatus muscle on the DOMS side was reduced on Day-1 in both groups (P=0.03). An expansion of pressure...

  11. Sound Transmission in a Duct with Sudden Area Expansion, Extended Inlet, and Lined Walls in Overlapping Region

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2016-01-01

    Full Text Available The transmission of sound in a duct with sudden area expansion and extended inlet is investigated in the case where the walls of the duct lie in the finite overlapping region lined with acoustically absorbent materials. By using the series expansion in the overlap region and using the Fourier transform technique elsewhere we obtain a Wiener-Hopf equation whose solution involves a set of infinitely many unknown expansion coefficients satisfying a system of linear algebraic equations. Numerical solution of this system is obtained for various values of the problem parameters, whereby the effects of these parameters on the sound transmission are studied.

  12. The temperature dependence of the isothermal bulk modulus at 1 bar pressure

    International Nuclear Information System (INIS)

    Garai, J.; Laugier, A.

    2007-01-01

    It is well established that the product of the volume coefficient of thermal expansion and the bulk modulus is nearly constant at temperatures higher than the Debye temperature. Using this approximation allows predicting the values of the bulk modulus. The derived analytical solution for the temperature dependence of the isothermal bulk modulus has been applied to ten substances. The good correlations to the experiments indicate that the expression may be useful for substances for which bulk modulus data are lacking

  13. A Method for Exploring the Link between Urban Area Expansion over Time and the Opportunity for Crime in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mofza Algahtany

    2016-10-01

    Full Text Available Urban area expansion is one of the most critical types of worldwide change, and most urban areas are experiencing increased growth in population and infrastructure development. Urban change leads to many changes in the daily activities of people living within an affected area. Many studies have suggested that urbanization and crime are related. However, they focused particularly on land uses, types of land use, and urban forms, such as the physical features of neighbourhoods, roads, shopping centres, and bus stations. Understanding the correlation between urban area expansion and crime is very important for criminologists and urban planning decision-makers. In this study, we have used satellite images to measure urban expansion over a 10-year period and tested the correlations between these expansions and the number of criminal activities within these specific areas. The results show that there is a measurable relationship between urban expansion and criminal activities. Our findings support the crime opportunity theory as one possibility, which suggests that population density and crime are conceptually related. We found the correlations are stronger where there has been greater urban growth. Many other factors that may affect crime rate are not included in this paper, such as information on the spatial details of the population, city planning, economic considerations, the distance from the city centre, neighbourhood quality, and police numbers. However, this study will be of particular interest to those who aim to use remote sensing to study patterns of crime.

  14. Construction area expansion in relation to economic-demographic development and land resource in the Pearl River Delta of China

    NARCIS (Netherlands)

    Liu, Zhijia; Huang, Heqing; Werners, Saskia E.; Yan, Dan

    2016-01-01

    Since 1979, the Pearl River Delta (PRD) of China has experienced rapid socioeconomic development along with a fast expansion of construction area. Affected by both natural and human factors, a complex interdependency is found among the regional changes in construction area, GDP and population. A

  15. Reduction Expansion Synthesis as Strategy to Control Nitrogen Doping Level and Surface Area in Graphene

    Directory of Open Access Journals (Sweden)

    Russell Canty

    2015-10-01

    Full Text Available Graphene sheets doped with nitrogen were produced by the reduction-expansion (RES method utilizing graphite oxide (GO and urea as precursor materials. The simultaneous graphene generation and nitrogen insertion reactions are based on the fact that urea decomposes upon heating to release reducing gases. The volatile byproducts perform two primary functions: (i promoting the reduction of the GO and (ii providing the nitrogen to be inserted in situ as the graphene structure is created. Samples with diverse urea/GO mass ratios were treated at 800 °C in inert atmosphere to generate graphene with diverse microstructural characteristics and levels of nitrogen doping. Scanning electron microscopy (SEM and transmission electron microscopy (TEM were used to study the microstructural features of the products. The effects of doping on the samples structure and surface area were studied by X-ray diffraction (XRD, Raman Spectroscopy, and Brunauer Emmet Teller (BET. The GO and urea decomposition-reduction process as well as nitrogen-doped graphene stability were studied by thermogravimetric analysis (TGA coupled with mass spectroscopy (MS analysis of the evolved gases. Results show that the proposed method offers a high level of control over the amount of nitrogen inserted in the graphene and may be used alternatively to control its surface area. To demonstrate the practical relevance of these findings, as-produced samples were used as electrodes in supercapacitor and battery devices and compared with conventional, thermally exfoliated graphene.

  16. Landscape structure in the expansion area of deforestation of the Brazilian Cerrado in Minas Gerais

    Science.gov (United States)

    Brito, A. D.; Streher, A. S.

    2013-05-01

    The Cerrado is the second largest Brazilian biome and is listed as one of the hotspots for biodiversity conservation priority. The biome provides important ecosystem services such as maintenance of the biodiversity, water cycle and carbon storage, and your preservation is essential to protecting the Amazon Rainforest. Although its importance, it was heavily affected by deforestation, with a loss of about 49% of its original native cover by the year of 2010. In Minas Gerais state, the remaining Cerrado original cover is very expressive, shaped by a mosaic of phytophysionomies, comprising grassland, savanna and forest. The great species diversity and endemism in these landscapes, associated with changes imposed by man over time, caused major environmental damage in this biome. Recently, new deforestation fronts have been identified throughout the Brazilian Cerrado, including Minas Gerais State. This study aimed to analyze the landscape structure in front of expansion in this state, as a subsidy for the establishment of guidelines for future biodiversity conservation and landscape planning. The study site comprised the sub basins of the Paracatú River (SF7) and Middle São Francisco (SF9). The analyses were performed based on land use, mapped through remote sensing techniques, resulting in 18 classes of land use. The most important results of the calculated indices showed that the study area is highly fragmented, with most of the remaining patches small, with large perimeter and strong edge effect, favoring biodiversity loss. Moreover, the biological flow in the study area is hindered by the presence of few fragments into a predetermined radius of 10 km. It has been found that less than 30% of the native vegetation remnant in the area, making all existing fragments relevant to conservation. Finally, the landscape metrics analyzed showed that there is a high level of environmental risk determining low support existing biodiversity in the landscape.

  17. Impacts of Built-Up Area Expansion in 2D and 3D on Regional Surface Temperature

    Directory of Open Access Journals (Sweden)

    Hongyan Cai

    2017-10-01

    Full Text Available Many studies have reported the thermal effects of urban expansion from non-built-up land; however, how changes in building height in built-up land influence the regional thermal environment is still uncertain. Thus, taking the transitional region between the Chinese megacities of Beijing and Tianjin as the study area, this study investigated the impacts of built-up land expansion in 2D and 3D on regional land surface temperature (LST. The expansion in 2D refers to the conversion from non-built-up land to built-up land, whereas the expansion in 3D characterized the building height change in the built-up land, referring to the conversion from low- and moderate-rise building (LMRB to high-rise building (HRB lands. The land use change from 2010 to 2015 was manually interpreted from high spatial resolution SPOT5 and Gaofen2 images, and the LST information in the corresponding period was derived from Landsat5/8 thermal images using an image-based method. The results showed that between 2010 and 2015, approximately 87.25 km2 non-built-up land was transformed to built-up land, and 13.21 km2 LMRB land was built into HRB land. These two types of built-up land expansions have induced opposing thermal effects in regard to regional surface temperature. The built-up land expansions from cropland and urban green land have raised the regional LST. However, the built-up land expansion from LMRB to HRB lands has induced a cooling effect. Thus, this study suggested that for the cooling urban design, the building height should also be considered. Furthermore, for future studies on thermal impacts of urbanization, it should be cautioned that, besides the urban area expansion, the building height change should also be emphasized due to its potential cooling effects.

  18. Development of complex simulation suite 'VEB' and application area expansion - 15326

    International Nuclear Information System (INIS)

    Obraztsov, E.; Kapista, D.; Kremnev, I.; Korokhov, T.; Kukhtevich, V.; Bezlepkin, V.

    2015-01-01

    Complex simulation suite 'Virtual Unit of NPP' (CSS 'VEB') is a set of connected software tools and computer codes that allow the simulation of various physical processes occurring in a power nuclear reactor (initially VVER - pressurized water reactor). A coupled computational model developed by means of CSS 'VEB' is based on a specific design and called an NPP Virtual Power Unit (VPU). And in November 2012 a pilot version of the Leningrad NPP-2 VPU (NPP-2006 design with water-cooled power reactor) successfully passed acceptance tests. The paper presents further development of CSS 'VEB' and application area expansion both on new tasks such as VPU calculations for the Probability Safety Analysis (PSA) and all modeling of other NPP types, like sodium-cooled reactor (that means a possibility to create a VPU not only for NPP with PWR). In the first part of this paper we will recall the basic idea and concept of CSS 'VEB' and VPU. Then we will describe the main components of CSS 'VEB' and their improvements. In the last part we will briefly describe the broadening of VPU uses

  19. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    NARCIS (Netherlands)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-01-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular

  20. Potential areas for the expansion of the sugar cane production; Areas potenciais para a expansao da producao de cana-de-acucar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    The evaluation of the potential areas for the expansion of the sugar cane cultivation was based on the estimation of the agricultural productivity aptitude as function of the soil and climate characteristics using maps with geo referred in scales of 1/5,000,000. Areas had been discarded which integrate of three large biomass of the country: Amazonia, Pantanal and Mata Atlantica, and all the areas with some type of restriction, such as environmental reservations, national parks, indigenous, military and urban areas. Were not considered areas with crop mechanization essential for the environmental and social sustainability with declivity more than 12%.

  1. Resilient modulus of black cotton soil

    Directory of Open Access Journals (Sweden)

    K.H. Mamatha

    2017-03-01

    Full Text Available Resilient modulus (MR values of pavement layers are the basic input parameters for the design of pavements with multiple layers in the current mechanistic empirical pavement design guidelines. As the laboratory determination of resilient modulus is costly, time consuming and cumbersome, several empirical models are developed for the prediction of resilient modulus for different regions of the world based on the database of resilient modulus values of local soils. For use of these relationships there is a need to verify the suitability of these models for local conditions. Expansive clay called black cotton soil (BC soil is found in several parts of India and is characterized by low strength and high compressibility. This soil shows swell – shrink behaviour upon wetting and drying and are problematic. The BC soil shows collapse behaviour on soaking and therefore the strength of the soil needs to be improved. Additive stabilization is found to be very effective in stabilizing black cotton soils and generally lime is used to improve the strength and durability of the black cotton soil. In this paper, the results of repeated load tests on black cotton soil samples for the determination of MR under soaked and unsoaked conditions at a relative compaction levels of 100% and 95% of both standard and modified proctor conditions are reported. The results indicate that the black cotton soil fails to meet the density requirement of the subgrade soil and shows collapse behaviour under soaked condition. To overcome this, lime is added as an additive to improve the strength of black cotton soil and repeated load tests were performed as per AASHTO T 307 - 99 for MR determination. The results have shown that the samples are stable under modified proctor condition with MR values ranging from 36 MPa to 388 MPa for a lime content of 2.5% and curing period ranging from 7 to 28 days. Also, it is observed that, the CBR based resilient modulus is not in agreement

  2. Analysis of simulated ECT signals obtained at tubesheet and tube expansion area

    International Nuclear Information System (INIS)

    Song, Sung Chul; Lee, Yun Tai; Jung, Hee Sung; Shin, Young Kil

    2006-01-01

    Steam generator(SG) tubes are expanded inside tubesheet holes by using explosive or hydraulic methods to be fixed in the tubesheet. In the tube expansion process, it is important to minimize the crevice gap between tubesheet and expanded tube. In this paper, absolute and differential signals are predicted by a numerical method for several different locations of tube expansion inside and outside the tubesheet and signal variations due to tubesheet, tube expansion and operating frequency are observed. Results show that low frequency is good for detecting tubesheet location in both types of signals and high frequency is suitable for sizing of tube diameter as well as the detection of transition region. Also learned is that the absolute signal is good for measuring tube diameter, while the differential signal is good for locating the top of tubesheet and both ends of the transition region.

  3. Stability Evaluation of Buildings in Urban Area Using Persistent Scatterer Interfometry -Focused on Thermal Expansion Effect

    Science.gov (United States)

    Choi, J. H.; Kim, S. W.; Won, J. S.

    2017-12-01

    The objective of this study is monitoring and evaluating the stability of buildings in Seoul, Korea. This study includes both algorithm development and application to a case study. The development focuses on improving the PSI approach for discriminating various geophysical phase components and separating them from the target displacement phase. A thermal expansion is one of the key components that make it difficult for precise displacement measurement. The core idea is to optimize the thermal expansion factor using air temperature data and to model the corresponding phase by fitting the residual phase. We used TerraSAR-X SAR data acquired over two years from 2011 to 2013 in Seoul, Korea. The temperature fluctuation according to seasons is considerably high in Seoul, Korea. Other problem is the highly-developed skyscrapers in Seoul, which seriously contribute to DEM errors. To avoid a high computational burden and unstable solution of the nonlinear equation due to unknown parameters (a thermal expansion parameter as well as two conventional parameters: linear velocity and DEM errors), we separate a phase model into two main steps as follows. First, multi-baseline pairs with very short time interval in which deformation components and thermal expansion can be negligible were used to estimate DEM errors first. Second, single-baseline pairs were used to estimate two remaining parameters, linear deformation rate and thermal expansion. The thermal expansion of buildings closely correlate with the seasonal temperature fluctuation. Figure 1 shows deformation patterns of two selected buildings in Seoul. In the figures of left column (Figure 1), it is difficult to observe the true ground subsidence due to a large cyclic pattern caused by thermal dilation of the buildings. The thermal dilation often mis-leads the results into wrong conclusions. After the correction by the proposed method, true ground subsidence was able to be precisely measured as in the bottom right figure

  4. Simulation and Analysis of ECT Signals Obtained at Tubesheet and Tube Expansion Area

    International Nuclear Information System (INIS)

    Song, Sung Chul; Lee, Yun Tai; Jung, Hee Sung; Shin, Young Kil

    2006-01-01

    Steam generator (SG) tubes are expanded inside tubesheet holes by using explosive or hydraulic methods to be fixed in a tubesheet. In the tube expansion process, it is important to minimize the crevice gap between expanded tube and tube sheet. In this paper, absolute and differential signals are computed by a numerical method for several different locations of tube expansion inside and outside a tubesheet and signal variations due to tubesheet, tube expansion and operating frequencies are observed. Results show that low frequency is good for detecting tubesheet location in both types of signals and high frequency is suitable for sizing of tube diameter as well as the detection of transition region. Also learned is that the absolute signal is good for measuring tube diameter, while the differential signal is good for locating the top of tubesheet and both ends of the transition region. In the case of mingled anomaly with tube expansion and tubesheet, low frequency inspection is found to be useful to analyze the mixed signal

  5. Economic Growth and Expansion of China’s Urban Land Area: Evidence from Administrative Data and Night Lights, 1993–2012

    Directory of Open Access Journals (Sweden)

    John Gibson

    2014-11-01

    Full Text Available The relationship between economic growth, expansion of urban land area and the broader issue of cultivated land conversion in China has been closely examined for the late 1980s and 1990s. Much less is known about recent urban expansion and if the effects of economic growth on this expansion have changed over time. This paper updates estimates of urban expansion for China and examines the relationship with city economic growth for 1993–2012. To see if patterns are robust to different types of evidence, administrative data on the area of 225 urban cores are compared to estimates of brightly lit areas from remotely sensed night lights. The trend annual expansion rate in lit area is 8% and was significantly faster in the decade to 2002 than in the most recent decade. Expansion is slower according to administrative data, at just 5% per annum, with no change in unconditional expansion rates between decades, while conditional expansion rates have declined. The elasticity of area with respect to city economic output is about 0.3. Over time, expansion of urban land area is becoming less responsive to the growth of the local non-agricultural population.

  6. Iron, Oil, and Emeryville: Resource Industrialization and Metropolitan Expansion in the San Francisco Bay Area, 1850-1900

    OpenAIRE

    Lunine, Seth

    2013-01-01

    Scholars have largely overlooked the formative role of industry in both California's economic development and the San Francisco Bay Area's metropolitan expansion during the late nineteenth century. Beginning in the early 1880s, leading firms in San Francisco's specialized industries, such as the iron and chemicals sectors, dispersed to the metropolitan periphery. This process of industrial suburbanization created an integrative metropolitan economy, as well as individual suburbs. In this di...

  7. Modulus D-term inflation

    Science.gov (United States)

    Kadota, Kenji; Kobayashi, Tatsuo; Saga, Ikumi; Sumita, Keigo

    2018-04-01

    We propose a new model of single-field D-term inflation in supergravity, where the inflation is driven by a single modulus field which transforms non-linearly under the U(1) gauge symmetry. One of the notable features of our modulus D-term inflation scenario is that the global U(1) remains unbroken in the vacuum and hence our model is not plagued by the cosmic string problem which can exclude most of the conventional D-term inflation models proposed so far due to the CMB observations.

  8. Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow

    Science.gov (United States)

    Kooijman, G.; Testud, P.; Aurégan, Y.; Hirschberg, A.

    2008-03-01

    The scattering of sound at a sudden area expansion in a duct with subsonic mean flow has been modelled with a multimodal method. Technological applications are for instance internal combustion engine exhaust silencers and silencers in industrial duct systems. Both two-dimensional (2D) rectangular and 2D cylindrical geometry and uniform mean flow as well as non-uniform mean flow profiles are considered. Model results for the scattering of plane waves in case of uniform flow, in which case an infinitely thin shear layer is formed downstream of the area expansion, are compared to results obtained by other models in literature. Generally good agreement is found. Furthermore, model results for the scattering are compared to experimental data found in literature. Also here fairly good correspondence is observed. When employing a turbulent pipe flow profile in the model, instead of a uniform flow profile, the prediction for the downstream transmission- and upstream reflection coefficient is improved. However, worse agreement is observed for the upstream transmission and downstream reflection coefficient. On the contrary, employing a non-uniform jet flow profile, which represents a typical shear layer flow downstream of the expansion, gives worse agreement for the downstream transmission- and the upstream reflection coefficient, whereas prediction for the upstream transmission and downstream reflection coefficient improves.

  9. [Prediction and simulation of urban area expansion in Pearl River Delta Region under the RCPs climate scenarios].

    Science.gov (United States)

    Jiang, Oun-ou; Deng, Xiang-zheng; Ke, Xin-li; Zhao, Chun-hong; Zhang, Wei

    2014-12-01

    The sizes and number of cities in China are increasing rapidly and complicated changes of urban land use system have occurred as the social economy develops rapidly. This study took the urban agglomeration of Pearl River Delta Region as the study area to explore the driving mechanism of dynamic changes of urban area in the urbanization process under the joint influence of natural environment and social economic conditions. Then the CA (cellular automata) model was used to predict and simulate the urban area changes until 2030 under the designed scenarios of planning and RCPs (representative concentration pathways). The results indicated that urbanization was mainly driven by the non-agricultural population growth and social-economic development, and the transportation had played a fundamental role in the whole process, while the areas with high elevation or steep slope restricted the urbanization. Besides, the urban area would keep an expanding trend regardless of the scenarios, however, the expanding speed would slow down with different inflection points under different scenarios. The urban expansion speed increased in the sequence of the planning scenario, MESSAGE scenario and AIM scenario, and that under the MESSAGE climate scenario was more consistent with the current urban development trend. In addition, the urban expansion would mainly concentrate in regions with the relatively high urbanization level, e.g., Guangzhou, Dongguan, Foshan, Shenzhen, Zhanjiang and Chaoshan.

  10. Characterizing Factors Associated with Built-Up Land Expansion in Urban and Non-Urban Areas from a Morphological Perspective

    Directory of Open Access Journals (Sweden)

    Zhonghao Zhang

    2017-08-01

    Full Text Available In this paper, built-up land expansion patterns and the associated factors were characterized in urban and non-urban areas across the Wen-Tai region of eastern China. Fractal dimension can be used as a reliable indicator of the complexity of built-up land form, and the increasing trend of fractal dimension indicated a more complex, dispersed pattern of built-up land in urban areas. Spatial regression models were quantitatively implemented to identify the indicators influencing the variation of fractal dimensions. Our findings suggested that the fractal dimension of built-up land forms was positively correlated to the patch density and elevation when built-up land expansion was more concentrated. Both landscape shape index and Gross Domestic Product (GDP were positively correlated with fractal dimension in urban areas, and total edge, edge density, and connective index had impacts on fractal dimension in non-urban areas. Slope and agricultural population also showed an influence on fractal dimension. This study provided a new way for urban studies in interpreting the complex interactions between fractal dimension and related factors. The combined approach of fractal dimension and spatial analysis can provide the government planners with valuable information that can be efficiently used to realize the influences of land use policies in urban and non-urban areas.

  11. Mapping the expansion of galamsey gold mines in the cocoa growing area of Ghana using optical remote sensing

    Science.gov (United States)

    Snapir, B.; Simms, D. M.; Waine, T. W.

    2017-06-01

    Artisanal gold mining (galamsey) and cocoa farming are essential sources of income for local populations in Ghana. Unfortunately the former poses serious threats to the environment and human health, and conflicts with cocoa farming and other livelihoods. Timely and spatially referenced information on the extent of galamsey is needed to understand and limit the negative impacts of mining. To address this, we use multi-date UK-DMC2 satellite images to map the extent and expansion of galamsey from 2011 to 2015. We map the total area of galamsey in 2013 over the cocoa growing area, using k-means clustering on a cloud-free 2013 image with strong spectral contrast between galamsey and the surrounding vegetation. We also process a pair of hazy images from 2011 and 2015 with Multivariate Alteration Detection to map the 2011-2015 galamsey expansion in a subset, labelled the change area. We use a set of visually interpreted random sample points to compute bias-corrected area estimates. We also delineate an indicative impact zone of pollution proportional to the density of galamsey, assuming a maximum radius of 10 km. In the cocoa growing area of Ghana, the estimated total area of galamsey in 2013 is 27,839 ha with an impact zone of 551,496 ha. In the change area, galamsey has more than tripled between 2011 and 2015, resulting in 603 ha of direct encroachment into protected forest reserves. Assuming the same growth rate for the rest of the cocoa growing area, the total area of galamsey in 2015 is estimated at 43,879 ha. Galamsey is developing along most of the river network (Offin, Ankobra, Birim, Anum, Tano), with downstream pollution affecting both land and water.

  12. Expansion of Sugarcane area for Ethanol production in Brazil: a Threat to Food Production and Environmental Sustainability?

    Science.gov (United States)

    Monteiro, J. M.; Coutinho, H. L.; Veiga, L. B.

    2012-12-01

    The raise in fossil fuels prices and the increase in Greenhouse Gas emissions is leading nations to adopt non-fossil fuels based energy sources. Sugarcane crops for biofuel production are expanding fast in Brazil, mainly through land use change (LUC) processes, in substitution of pasturelands and grain crops plantations. Would these changes affect negatively sustainability assessments of bioethanol production in the future? We estimate the extent of sugarcane cropland needed to produce sufficient ethanol to attend to market demands. This work presents a baseline scenario for sugarcane cropping area in Brazil in 2017, taking into account market forces (supply and demand). We also comment on a policy instrument targetting sustainable sugarcane production in Brazil. The expansion scenarios took into account the demand for ethanol from 2008-2017, produced by the Energy Research Corporation, of Brazil. In order to develop the expansion scenario, we estimated the amount of sugarcane needed to attend the ethanol demand. We then calculated the area needed to generate that amount of sugarcane. The analytical parameters were: 1) one tonne of sugarcane produces an average 81.6 liters of ethanol; 2) the average sugarcane crop productivity varied linearly from 81.4 tons/hectare in 2008 to 86.2 tons/hectare in 2017. We also assumed that sugarcane productivity in 2017 as the current average productivity of sugarcane in the State of São Paulo. The results show that the requirement for 3.5 million ha in 2007 will increase to 9 million ha in 2017. The Sugarcane Agroecologic Zoning (ZAECANA), published by Embrapa (2009), is a tool that not only informs the territory occupation and use policies, but also classifies land as qualified, restricted or non-qualified for the plantation of sugarcane crops. The ZAECANA is based on soil and climate suitability assessments, and is presented in a spatially-explicit format. Adopting the precautionary principle, a national policy was established

  13. Global protected area expansion is compromised by projected land-use and parochialism

    NARCIS (Netherlands)

    Pouzols, F.M.; Toivonen, T.; Di Minin, E.; Kukkala, A.; Kullberg, P.; Kuustera, J.; Lehtomaki, J.; Tenkanen, H.; Verburg, P.H.; Moilanan, A.

    2014-01-01

    Protected areas are one of the main tools for halting the continuing global biodiversity crisis caused by habitat loss, fragmentation and other anthropogenic pressures. According to the Aichi Biodiversity Target 11 adopted by the Convention on Biological Diversity, the protected area network should

  14. 75 FR 9827 - Proposed Expansion of the Santa Maria Valley Viticultural Area (2008R-287P)

    Science.gov (United States)

    2010-03-04

    ...,'' by Harry P. Bailey, University of California Press, 1966). The maritime fringe climate derives from... California Press, 1975.) Soils: According to the petition, the current Santa Maria Valley viticultural area... viticultural area in Santa Barbara and San Luis Obispo Counties, California, by 18,790 acres. We designate...

  15. Influence of various factors on the Young modulus of metals

    International Nuclear Information System (INIS)

    Drapkin, B.M.

    1980-01-01

    The equivalence of temperature and pressure effects in the elastic area on the Young modulus of different metals (Ni, Mo, W, Na, Fe and ets.) is established on the basis of the analysis of literature and calculated data. It is shown that the value of the change in the Young modulus of the alloy is connected with mutual arrangement of alloy components in the periodic system of elements

  16. Examining Young's modulus for wood

    International Nuclear Information System (INIS)

    Perkalskis, Benjamin S; Freeman, J Reuben; Suhov, Alexander

    2004-01-01

    Symmetry considerations, dimensional analysis and simple approximations are used to derive a formula for Young's modulus of a simple anisotropic system, a straight-layer wood bar whose fibre axis makes an angle with respect to the bar's longitudinal axis. Agreement between the derived formula and experiment (carried out in far from ideal conditions) is within 10%. Improvements and extensions are suggested for this undergraduate physics experiment

  17. Assessing the MODIS crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil.

    Science.gov (United States)

    Gusso, Anibal; Arvor, Damien; Ducati, Jorge Ricardo; Veronez, Mauricio Roberto; da Silveira, Luiz Gonzaga

    2014-01-01

    Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.

  18. Expansion of Protected Areas under Climate Change: An Example of Mountainous Tree Species in Taiwan

    Directory of Open Access Journals (Sweden)

    Wei-Chih Lin

    2014-11-01

    Full Text Available Tree species in mountainous areas are expected to shift their distribution upward in elevation in response to climate change, calling for a potential redesign of existing protected areas. This study aims to predict whether or not the distributions of two high-mountain tree species, Abies (Abies kawakamii and Tsuga (Tsuga chinensis var. formosana, will significantly shift upward due to temperature change, and whether current protected areas will be suitable for conserving these species. Future temperature change was projected for 15 different future scenarios produced from five global climate models. Shifts in Abies and Tsuga distributions were then predicted through the use of species distribution models (SDMs which included occurrence data of Abies and Tsuga, as well as seasonal temperature, and elevation. The 25 km × 25 km downscaled General Circulation Model (GCMs data for 2020–2039 produced by the Taiwan Climate Change Projection and Information Platform was adopted in this study. Habitat suitability in the study area was calculated using maximum entropy model under different climatic scenarios. A bootstrap method was applied to assess the parameter uncertainty of the maximum entropy model. In comparison to the baseline projection, we found that there are significant differences in suitable habitat distributions for Abies and Tsuga under seven of the 15 scenarios. The results suggest that mountainous ecosystems will be substantially impacted by climate change. We also found that the uncertainty originating from GCMs and the parameters of the SDM contribute most to the overall level of variability in species distributions. Finally, based on the uncertainty analysis and the shift in habitat suitability, we applied systematic conservation planning approaches to identify suitable areas to add to Taiwan’s protected area network.

  19. 76 FR 70866 - Expansions of the Russian River Valley and Northern Sonoma Viticultural Areas

    Science.gov (United States)

    2011-11-16

    .... ACTION: Final rule; Treasury decision. SUMMARY: This Treasury decision expands the Russian River Valley... describe the origin of their wines and to allow consumers to better identify wines they may purchase. DATES... consumers to identify wines they may purchase. Establishment of a viticultural area is neither an approval...

  20. 75 FR 81846 - Expansion of the Santa Maria Valley Viticultural Area

    Science.gov (United States)

    2010-12-29

    ... decision. SUMMARY: This Treasury decision expands the Santa Maria Valley viticultural area in Santa Barbara... may purchase. DATES: Effective Date: January 28, 2011. FOR FURTHER INFORMATION CONTACT: Elisabeth C... origin of their wines to consumers and helps consumers to identify wines they may purchase. Establishment...

  1. The use of computer graphics in the visual analysis of the proposed Sunshine Ski Area expansion

    Science.gov (United States)

    Mark Angelo

    1979-01-01

    This paper describes the use of computer graphics in designing part of the Sunshine Ski Area in Banff National Park. The program used was capable of generating perspective landscape drawings from a number of different viewpoints. This allowed managers to predict, and subsequently reduce, the adverse visual impacts of ski-run development. Computer graphics have proven,...

  2. Mobile Launch Platform Vehicle Assembly Area (SWMU 056) Biosparge Expansion Interim Measures Work Plan

    Science.gov (United States)

    Burcham, Michael S.; Daprato, Rebecca C.

    2016-01-01

    This document presents the design details for an Interim Measure (IM) Work Plan (IMWP) for the Mobile Launch Platform/Vehicle Assembly Building (MLPV) Area, located at the John F. Kennedy Space Center (KSC), Florida. The MLPV Area has been designated Solid Waste Management Unit Number 056 (SWMU 056) under KSC's Resource Conservation and Recovery Act (RCRA) Corrective Action Program. This report was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B and NNK12CA13B, project control number ENV1642. The Advanced Data Package (ADP) presentation covering the elements of this IMWP report received KSC Remediation Team (KSCRT) approval at the December 2015 Team Meeting; the meeting minutes are included in Appendix A.

  3. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA.

    Science.gov (United States)

    Sun, Xiao; Crittenden, John C; Li, Feng; Lu, Zhongming; Dou, Xiaolin

    2018-05-01

    Urban expansion can lead to land use changes and, hence, threatens the ecosystems. Understanding the effects of urbanization on ecosystem services (ESs) can provide scientific guidance for land use planning and the protection of ESs. We established a framework to assess the spatial distributions of ESs based on land use changes in the Atlanta Metropolitan area (AMA) from 1985 to 2012. A new comprehensive ecosystem service (CES) index was developed to reflect the comprehensive level of ESs. Associated with the influential factors, we simulated the business as usual scenario in 2030. Four alternative scenarios, including more compact growth (MCG), riparian vegetation buffer (RVB), soil conservation (SC), and combined development (CD) scenarios were developed to explore the optimal land use strategies which can enhance the ESs. The results showed that forest and wetland had the greatest decreases, while low and high intensity built-up lands had the greatest increases. The values of CES and most of ESs decreased significantly due to the sprawling expansion of built-up land. The scenario analysis revealed that the CD scenario performs best in CES value, while it performs the worst in food supply. Compared with the RVB and SC scenarios, MCG scenario is a more optimal land use strategy to enhance the ESs without at the expense of food supply. To integrate multiple ESs into land use planning and decision making, corresponding land management policies and ecological engineering measures should be implemented to enhance: (1) the water yield and water purification in urban core counties, (2) the carbon storage, habitat quality, and recreational opportunity in counties around the core area, and (3) the soil conservation and food supply in surrounding suburban counties. The land use strategies and ecological engineering measures in this study can provide references for enhancing the ESs in the AMA and other metropolitan areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Assessment on the Expansion of Basic Sanitation Infrastructure. In the Metropolitan Area of Belo Horizonte - 2000/2010

    Directory of Open Access Journals (Sweden)

    Grazielle Anjos Carvalho

    2014-05-01

    Full Text Available The Metropolitan Area of Belo Horizonte is consisted of 34 municipalities, however approximately 79,68% of its population is concentrated at the conurbation zone with 19 municipalities. This zone presented different expansion axis (North, South, West throughout the time. This article intends to assess the investments made in basic sanitation infrastructure (access to water supply, sewage collection network and garbage collection service within the period from the years 2000 to 2010. For this purpose, land cover maps for these years were created to identify the new urban expansion axis. Maps of the census sectors of both years were also made with the percentage of households attended by the basic sanitation services infrastructure, as well as the population density and average income of the householder. Considering the results, we have observed that the investments in basic sanitation infrastructure in the last ten years were not sufficient, given the fact that the region with the largest population of Minas Gerais still has precarious conditions regarding the access to water supply and sewage networks. The least of the problems, but still a problem, is the garbage collection services, given the fact that to collect, the investment is low but it is important to highlight that the data do not bring information about the treatment and disposal of the garbage or sewage, they only inform us were those types of residue are collected.

  5. Diversification of Orientia tsutsugamushi genotypes by intragenic recombination and their potential expansion in endemic areas.

    Directory of Open Access Journals (Sweden)

    Gwanghun Kim

    2017-03-01

    Full Text Available Scrub typhus is a mite-borne febrile disease caused by O. tsutsugamushi infection. Recently, emergence of scrub typhus has attracted considerable attention in several endemic countries in Asia and the western Pacific. In addition, the antigenic diversity of the intracellular pathogen has been a serious obstacle for developing effective diagnostics and vaccine.To understand the evolutionary pathway of genotypic diversification of O. tsutsugamushi and the environmental factors associated with the epidemiological features of scrub typhus, we analyzed sequence data, including spatiotemporal information, of the tsa56 gene encoding a major outer membrane protein responsible for antigenic variation. A total of 324 tsa56 sequences covering more than 85% of its open reading frame were analyzed and classified into 17 genotypes based on phylogenetic relationship. Extensive sequence analysis of tsa56 genes using diverse informatics tools revealed multiple intragenic recombination events, as well as a substantially higher mutation rate than other house-keeping genes. This suggests that genetic diversification occurred via frequent point mutations and subsequent genetic recombination. Interestingly, more diverse bacterial genotypes and dominant vector species prevail in Taiwan compared to other endemic regions. Furthermore, the co-presence of identical and sub-identical clones of tsa56 gene in geographically distant areas implies potential spread of O. tsutsugamushi genotypes.Fluctuation and diversification of vector species harboring O. tsutsugamushi in local endemic areas may facilitate genetic recombination among diverse genotypes. Therefore, careful monitoring of dominant vector species, as well as the prevalence of O. tsutsugamushi genotypes may be advisable to enable proper anticipation of epidemiological changes of scrub typhus.

  6. Adsorption of ionic surfactants at microscopic air-water interfaces using the micropipette interfacial area-expansion method

    DEFF Research Database (Denmark)

    Kinoshita, Koji; Parra, Elisa; Needham, David

    2017-01-01

    The dynamic adsorption of ionic surfactants at air-water interfaces have been less-well studied than that of the simpler non-ionics since experimental limitations on dynamic surface tension (DST) measurements create inconsistencies in their kinetic analysis. Using our newly designed "Micropipette...... interfacial area-expansion method", we have measured and evaluated both equilibrium and dynamic adsorption of a well-known anionic surfactant, sodium dodecyl sulphate (SDS), in the absence or presence of 100mM NaCl. Our focus was to determine if and to what extent the inclusion of a new correction parameter...... for the "ideal ionic activity", A±i, can renormalize both equilibrium and dynamic surface tension measurements and provide better estimates of the diffusion coefficient of ionic surfactants in aqueous media obtained from electroneutral models, namely extended Frumkin isotherm and Ward-Tordai adsorption models...

  7. Thermal compression modulus of polarized neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.

    1990-05-01

    We applied the equation of state for pure polarized neutron matter at finite temperature, calculated previously, to calculate the compression modulus. The compression modulus of pure neutron matter at zero temperature is very large and reflects the stiffness of the equation of state. It has a little temperature dependence. Introducing the spin excess parameter in the equation of state calculations is important because it has a significant effect on the compression modulus. (author). 25 refs, 2 tabs

  8. Indo-Pacific Warm Pool Area Expansion, Modoki Activity, and Tropical Cold-Point Tropopause Temperature Variations

    Science.gov (United States)

    Xie, Fei; Li, Jianping; Tian, Wenshou; Li, Yanjie; Feng, Juan

    2014-01-01

    The tropical cold-point tropopause temperature (CPTT), a potentially important indicator of global climate change, is of particular importance for understanding changes in stratospheric water vapor levels. Since the 1980s, the tropical CPTT has shown not only interannual variations, but also a decreasing trend. However, the factors controlling the variations in the tropical CPTT since the 1980s remain elusive. The present study reveals that the continuous expansion of the area of the Indo-Pacific warm pool (IPWP) since the 1980s represents an increase in the total heat energy of the IPWP available to heat the tropospheric air, which is likely to expand as a result. This process lifts the tropical cold-point tropopause height (CPTH) and leads to the observed long-term cooling trend of the tropical CPTT. In addition, our analysis shows that Modoki activity is an important factor in modulating the interannual variations of the tropical CPTT through significant effects on overshooting convection. PMID:24686481

  9. Multi area and multistage expansion-planning of electricity supply with sustainable energy development criteria: a multi objective model

    Energy Technology Data Exchange (ETDEWEB)

    Unsihuay-Vila, Clodomiro; Marangon-Lima, J.W.; Souza, A.C Zambroni de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], emails: clodomirounsihuayvila @gmail.com, marangon@unifei.edu.br, zambroni@unifei.edu.br; Perez-Arriaga, I.J. [Universidad Pontificia Comillas, Madrid (Spain)], email: ipa@mit.edu

    2010-07-01

    A novel multi objective, multi area and multistage model to long-term expansion-planning of integrated generation and transmission corridors incorporating sustainable energy developing is presented in this paper. The proposed MESEDES model is a multi-regional multi-objective and 'bottom-up' energy model which considers the electricity generation/transmission value-chain, i.e., power generation alternatives including renewable, nuclear and traditional thermal generation along with transmission corridors. The model decides the optimal location and timing of the electricity generation/transmission abroad the multistage planning horizon. The MESEDES model considers three objectives belonging to sustainable energy development criteria such as: a) the minimization of investments and operation costs of : power generation, transmission corridors, energy efficiency (demand side management (DSM) programs) considering CO2 capture technologies; b) minimization of Life Cycle Greenhouse Gas Emissions (LC GHG); c) maximization of the diversification of electricity generation mix. The proposed model consider aspects of the carbon abatement policy under the CDM - Clean Development Mechanism or European Union Greenhouse Gas Emission Trading Scheme. A case study is used to illustrate the proposed framework. (author)

  10. A new framework for modeling urban land expansion in peri-urban area by combining multi-source datasets and data assimilation

    Science.gov (United States)

    Zhang, Z.; Xiao, R.; Li, X.

    2015-12-01

    Peri-urban area is a new type region under the impacts of both rural Industrialization and the radiation of metropolitan during rapid urbanization. Due to its complex natural and social characteristics and unique development patterns, many problems such as environmental pollution and land use waste emerged, which became an urgent issue to be addressed. Study area in this paper covers three typical peri-urban districts (Pudong, Fengxian and Jinshan), which around the Shanghai inner city. By coupling cellular automata and multi-agent system model as the basic tools, this research focus on modelling the urban land expansion and driving mechanism in peri-urban area. The big data is aslo combined with the Bayesian maximum entropy method (BME) for spatiotemporal prediction of multi-source data, which expand the dataset of urban expansion models. Data assimilation method is used to optimize the parameters of the coupling model and minimize the uncertainty of observations, improving the precision of future simulation in peri-urban area. By setting quantitative parameters, the coupling model can effectively improve the simulation of the process of urban land expansion under different policies and management schemes, in order to provide scientificimplications for new urbanization strategy. In this research, we precise the urban land expansion simulation and prediction for peri-urban area, expand the scopes and selections of data acquisition measurements and methods, develop the new applications of the data assimilation method in geographical science, provide a new idea for understanding the inherent rules of urban land expansion, and give theoretical and practical support for the peri-urban area in urban planning and decision making.

  11. Tissue Expansion Using Hyaluronic Acid Filler for Single-Stage Ear Reconstruction: A Novel Concept for Difficult Areas.

    Science.gov (United States)

    Inbal, Amir; Lemelman, Benjamin T; Millet, Eran; Greensmith, Andrew

    2017-10-16

    Auricular reconstruction is one of the most challenging procedures in plastic surgery. An adequate skin envelope is essential for cartilage framework coverage, yet few good options exist without additional surgery. We propose a novel method for minimally invasive tissue expansion, using hyaluronic acid (HA) filler to allow for single-stage ear reconstruction. To introduce the novel concept of HA filler for tissue expansion in ear reconstruction, and as an alternative to traditional expansion techniques. Macrolane is a large particle HA gel developed for large volume restoration. Expansion of the non-hair-bearing mastoid skin was performed in our clinic weekly or every other week. Final expansion was completed one week prior to reconstructive surgery. Tissue from one patient's expanded pocket was sent for histological analysis. Ten patients underwent single-stage auricular reconstruction with preoperative expansion. Injection sessions ranged from 7 to 13 (mean, 9.7). Mean injected volume per session was 2.03 mL per patient, for an average total of 19.8 mL (range, 14.5-30 mL). There were no major complications. One minor complication required removal of exposed wire from the antihelix in the office. Hematoxylin and eosin stain revealed similar histology to that seen with traditional expanders. This novel expansion technique using serial HA injections allowed for optimized skin coverage in single-stage ear reconstruction. The concept of tissue expansion using HA filler is a new frontier for research that may be applicable to other arenas of reconstruction. 4. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  12. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China.

    Science.gov (United States)

    Yin, Jie; Yin, Zhane; Zhong, Haidong; Xu, Shiyuan; Hu, Xiaomeng; Wang, Jun; Wu, Jianping

    2011-06-01

    This study explored the spatio-temporal dynamics and evolution of land use/cover changes and urban expansion in Shanghai metropolitan area, China, during the transitional economy period (1979-2009) using multi-temporal satellite images and geographic information systems (GIS). A maximum likelihood supervised classification algorithm was employed to extract information from four landsat images, with the post-classification change detection technique and GIS-based spatial analysis methods used to detect land-use and land-cover (LULC) changes. The overall Kappa indices of land use/cover change maps ranged from 0.79 to 0.89. Results indicated that urbanization has accelerated at an unprecedented scale and rate during the study period, leading to a considerable reduction in the area of farmland and green land. Findings further revealed that water bodies and bare land increased, obviously due to large-scale coastal development after 2000. The direction of urban expansion was along a north-south axis from 1979 to 2000, but after 2000 this growth changed to spread from both the existing urban area and along transport routes in all directions. Urban expansion and subsequent LULC changes in Shanghai have largely been driven by policy reform, population growth, and economic development. Rapid urban expansion through clearing of vegetation has led to a wide range of eco-environmental degradation.

  13. 75 FR 11511 - Rogue River-Siskiyou National Forest; Mt. Ashland Ski Area Expansion, Jackson County, OR

    Science.gov (United States)

    2010-03-11

    ... Court of Appeals found it necessary to understand the type of habitat the Pacific fisher requires for... Appeals for the Ninth Circuit in CV-05-03004-PA, to conditionally authorize expansion of the Mt. Ashland... Alternative 6. The Forest Service received twenty-eight notices of appeal to the ROD. In December 2004, the...

  14. Using data logging to measure Young’s modulus

    Science.gov (United States)

    Richardson, David

    2018-03-01

    Historically the Young’s modulus of a material is measured by increasing the applied force to a wire and measuring the extension. The cross sectional area and original length allow this to be plotted as a graph of stress versus strain. This article describes how data logging sensors can be used to measure how the force changes with extension, allowing a strain versus stress graph to be plotted into the region of plastic deformation.

  15. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  16. [Multi-scenario simulation and prediction of ecosystem services as affected by urban expansion: A case study in coastal area of Tianjin, North China].

    Science.gov (United States)

    Huang, Huan-Chun; Yun, Ying-Xia; Miao, Zhan-Tang; Hao, Cui; Li, Hong-yuan

    2013-03-01

    Based on the modified Logistic-CA model, and taking the coastal area of Tianjin as a case, this paper simulated the spatial evolution patterns of ecosystem services as affected by the urban expansion in 2011-2020 under the scenarios of historical extrapolation, endogenous development, and exogenous development. Overall, the total ecosystem services of the study area under the three scenarios were generally the same, and the functional region with the lowest level ecosystem services had the identical spatial pattern. However, the spatial evolution patterns of the ecosystem services of the study area under the three scenarios had a great difference. The functional regions with lower-level ecosystem services grew in a cross-shaped pattern, with the Tanggu downtown as a center, and finally formed a full connectivity area along the Haihe River and coastal zone.

  17. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  18. Structural relaxation monitored by instantaneous shear modulus

    DEFF Research Database (Denmark)

    Olsen, Niels Boye; Dyre, Jeppe; Christensen, Tage Emil

    1998-01-01

    time definition based on a recently proposed expression for the relaxation time, where G [infinity] reflects the fictive temperature. All parameters entering the reduced time were determined from independent measurements of the frequency-dependent shear modulus of the equilibrium liquid....

  19. Thickness dependence of nanofilm elastic modulus

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.

    2009-01-01

    Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1

  20. Effect of time of sintering of a castable with andalusite aggregates in the rupture modulus and elastic modulus

    International Nuclear Information System (INIS)

    Oliveira, M.R.; Garcia, G.C.R.; Claudinei, S.; Ribeiro, S.

    2011-01-01

    The studied castable contain andalusite aggregates, and when sintered in temperatures above 1280 deg C, transformed into mullite improving the properties of concrete due to its low expansion and thermal conductivity, creep resistance and thermal shock. The refractory was homogenized in a mixer with 5.5% m/m of water and poured into a metal mold resulting in prismatic bars. After curing for 48 hours, were sintered at 1450 ° C for 0 h, 1 h, 2.5 h and 10 h with heating and cooling rates of 2 ° C / min. The results of elastic modules were, respectively, in GPa: 25.75±1.75, 37.79±0.36, 39.03±1.97 and 54.47±4.01, and rupture, MPa: 8.40±0.78, 11.94±0.68, 10.91±0.91 and 11,34±1.16, showing the increase in elastic modulus for longer times and for times exceeding one hour, no significant changes in results of the modulus of rupture , stabilizing the change of this refractory's properties after the first hour of sintering. (author)

  1. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan

    DEFF Research Database (Denmark)

    Kraemer, Roland; Prishchepov, Alexander; Müller, Daniel

    2015-01-01

    of Northern Kazakhstan. Further, we assessed the potential of currently idle cropland for re-cultivation. We reconstructed the cropland extent before and after the Virgin Lands Campaign using archival maps, and we mapped the agricultural land cover in the late Soviet and post-Soviet period using multi...... until 1990, as well as cropland contraction after 1990, occurred mainly in areas that were less favorable for agriculture. Cropland re-cultivation after 2000 was occurring on lands with relatively favorable agro-environmental conditions in comparison to remaining idle croplands, albeit with much lower...... agro-environmental endowment compared to stable croplands from 1990 to 2010. In sum, we found that cropland production potentials of the currently uncultivated areas are much lower than commonly believed, and further cropland expansion is only possible at the expense of marginal lands. Our results...

  2. Fibonacci difference sequence spaces for modulus functions

    Directory of Open Access Journals (Sweden)

    Kuldip Raj

    2015-05-01

    Full Text Available In the present paper we introduce Fibonacci difference sequence spaces l(F, Ƒ, p, u and  l_∞(F, Ƒ, p, u by using a sequence of modulus functions and a new band matrix F. We also make an effort to study some inclusion relations, topological and geometric properties of these spaces. Furthermore, the alpha, beta, gamma duals and matrix transformation of the space l(F, Ƒ, p, u are determined.

  3. Effect of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel

    Energy Technology Data Exchange (ETDEWEB)

    Larrard, T. de, E-mail: delarrard@lmt.ens-cachan.f [LMT-ENS Cachan, CNRS/UPMC/PRES UniverSud Paris (France); Colliat, J.B.; Benboudjema, F. [LMT-ENS Cachan, CNRS/UPMC/PRES UniverSud Paris (France); Torrenti, J.M. [Universite Paris-Est, LCPC (France); Nahas, G. [IRSN/DSR/SAMS/BAGS, Fontenay-aux-Roses (France)

    2010-12-15

    This study aims at investigating the influence of the Young modulus variability on the mechanical behaviour of a nuclear containment vessel in case of a loss of cooling agent accident and under the assumption of an elastic behaviour. To achieve this investigation, the Monte-Carlo Method is carried out thanks to a middleware which encapsulates the different components (random field generation, FE simulations) and enables calculations parallelisation. The main goal is to quantify the uncertainty propagation by comparing the maximal values of outputs of interest (orthoradial stress and Mazars equivalent strain) for each realisation of the considered random field with the ones obtained from a reference calculation taking into account uniform field (equal to the expected value of the random field). The Young modulus is supposed to be accurately represented by a weakly homogeneous random field and realisations are provided through its truncated Karhunen-Loeve expansion. This study reveals that the expected value for the maximal equivalent strain in the structure is more important when considering the Young modulus spatial variability than the value obtained from a deterministic approach with a uniform Young modulus field. The influence of the correlation length is investigated too. Finally it is shown that there is no correlation between the maximal values location of equivalent strain and the ones where the Young modulus extreme values are observed for each realisation.

  4. The elastic modulus of alumina-zirconia composite using through transmission ultrasonics

    International Nuclear Information System (INIS)

    Tan, K.S.; Hing, P.

    1996-01-01

    The elastic modulus of unstabilized Al 2 O 3 -ZrO 2 composites is determined from ultrasonic velocities and density measurements. The dynamic elastic modulus and the density of the green unstabilized Al 2 O 3 -ZrO 2 follow the rule of mixture. However, the elastic modulus and density of the sintered Al 2 O 3 -ZrO 2 do not follow the rule of mixture. The elastic modulus and diametrical compressive fracture stress of the Al 2 O 3 can be enhanced by (1) a high green (before sintering) compacting pressure and (2) addition of about 3wt% unstabilized ZrO 2 at a sintering time of two hours at 1550 degC. The ZrO 2 is found to improve the bulk density of the composite by a reduction in the porosity. This improves the elastic modulus and the diametrical compressive fracture stress. The thermal expansion on cooling with > 25wt% ZrO 2 in the Al 2 O 3 matrix has also been established. (author)

  5. Turismo rural y expansion urbanística en areas de interior. Análisis socioespacial de riesgos

    Directory of Open Access Journals (Sweden)

    Domínguez Gómez, José Andrés

    2015-04-01

    Full Text Available Rural tourism is generally recognized as a booster for sustainable development of inland areas, but two researchactions would be necessary in advance: a local diagnosis of touristic processes and a risk assessment for those processes in affected areas. This article concerns the sociological and spatial risk analysis of urban sprawl in rural areas. As a case study, 29 municipalities in the southwest of the Iberian Peninsula (formed as a “comarca”, North of Huelva province are considered. Urban sprawl has been identified by specific literature as a threat for sustainable development in touristic areas, in coastal zones and in rural areas too. Based on the results of previous diagnosis, and the literature on socioenvironmental risks and impacts of residential tourism, two specific risk indicators are selected and analysed, in relation to local touristic models.El turismo rural es reconocido en Europa como un factor de desarrollo sostenible para las áreas de interior, secularmente deprimidas. Su éxito como tal va a depender de un diagnóstico a tiempo de sus procesos y de la evaluación de los riesgos que afectan a las áreas en las que aquellos se manifiesten. Este trabajo se centra en el análisis sociológico y espacial de los riesgos que la expansión urbanística en áreas de interior puede suponer para su desarrollo sostenible por medio del turismo rural. Como estudio de caso, se toman 29 municipios del suroeste de la península ibérica, conformados como comarca en el borde norte de la provincia de Huelva. A partir de los resultados de diagnósticos previos, y de la literatura sobre riesgos e impactos socioambientales del turismo residencial, se seleccionan dos indicadores de riesgo y se analiza su comportamiento en los modelos turístico-rurales existentes en la zona.

  6. Calculation of wear (f.i. wear modulus) in the plastic cup of a hip joint prosthesis

    NARCIS (Netherlands)

    Ligterink, D.J.

    1975-01-01

    The wear equation is applied to the wear process in a hip joint prosthesis and a wear modulus is defined. The sliding distance, wear modulus, wear volume, wear area, contact angle and the maximum normal stress were calculated and the theoretical calculations applied to test results. During the wear

  7. From Forgotten Area to Platform of Expansion. Central America in the Cartographic Representations and English Naval Projects (1680-1742

    Directory of Open Access Journals (Sweden)

    Guadalupe Pinzón Ríos

    2018-05-01

    Full Text Available The aim of this article is to analyze how the English became interested in Central America and planned to use it as a platform to extend their naval activities from the Atlantic to the Pacific. They revealed their intentions in their accounts of their voyages and in their maps. Those accounts and maps became instruments of power to justify their advances, and by means of them, they tried to make their presence permanent. Is important to analyze this process because the English used this method again in other areas.

  8. Thermal expansion

    International Nuclear Information System (INIS)

    Yun, Y.

    2015-01-01

    Thermal expansion of fuel pellet is an important property which limits the lifetime of the fuels in reactors, because it affects both the pellet and cladding mechanical interaction and the gap conductivity. By fitting a number of available measured data, recommended equations have been presented and successfully used to estimate thermal expansion coefficient of the nuclear fuel pellet. However, due to large scatter of the measured data, non-consensus data have been omitted in formulating the equations. Also, the equation is strongly governed by the lack of appropriate experimental data. For those reasons, it is important to develop theoretical methodologies to better describe thermal expansion behaviour of nuclear fuel. In particular, first-principles and molecular dynamics simulations have been certainly contributed to predict reliable thermal expansion without fitting the measured data. Furthermore, the two theoretical techniques have improved on understanding the change of fuel dimension by describing the atomic-scale processes associated with lattice expansion in the fuels. (author)

  9. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  10. Surface Area Expansion of Electrodes with Grass-like Nanostructures to Enhance Electricity Generation in Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Noori, Jafar Safaa

    2012-01-01

    Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass-like nan......Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass...... of plain silicium showed a maximum power density of 86.0 mW/m2. Further expanding the surface area of carbon paper electrodes with gold nanoparticles resulted in a maximum stable power density of 346.9 mW/m2 which is 2.9 times higher than that achieved with conventional carbon paper. These results show...

  11. Asphalt mix characterization using dynamic modulus and APA testing.

    Science.gov (United States)

    2005-11-01

    final report summarizes two research efforts related to asphalt mix characterization: dynamic modulus and Asphalt Pavement Analyzer testing. One phase of the research consisted of a laboratory-based evaluation of dynamic modulus of Oregon dense-grade...

  12. Historical Transition of Eco-Structure in a Tidal Flat Caused by Expansion of Sewerage Treatment Area

    Directory of Open Access Journals (Sweden)

    Hideki Tatsumoto

    2004-01-01

    Full Text Available An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.

  13. Historical transition of eco-structure in a tidal flat caused by expansion of sewerage treatment area.

    Science.gov (United States)

    Tatsumoto, Hideki; Ishii, Yuichi; Machida, Motoi; Taki, Kazuo

    2004-05-11

    An artificial tidal flat was prepared for the mitigation tool on coastal environment. However, it is considered that most of the flat was not restored to the sufficient amenities for aquatic living things, migratory birds, etc. because none of the ecological mechanisms were understood or planned for. It is therefore investigated in this paper that historical transition factors in ecosystem structure are selected and traced with the diffusion of a public sewerage system, and with environmental factors such as water quality, sediment condition, and aquatic producers in the Yatsu Tidal Flat. As a result, it can be defined that the tidal flat, just like a lagoon, was formed artificially with reclamation and development of its circumference at the first step of transition; the water quality and sediment condition gradually became brackish water and muddy sediment conditions, interactively. The ecosystem pyramid forming orderly layers according to trophic level appeared as a high-bio-production potential in its tidal flat. In the second step, i.e., in recent years, the characteristics of water quality and sediment conditions evolved into a foreshore tidal flat, namely, conditions in the flat observed were that the progression of water included a high concentration of chloride ion as seawater and sediment conditions became sandy. Because of that, the inflowing fresh water and organic mater from the land area decreased with the improvement of the public sewerage system. The ecosystem pyramid was distorted into a chaos pyramid, with inversion of Ulva spp.

  14. Multiphase composites with extremal bulk modulus

    DEFF Research Database (Denmark)

    Gibiansky, L. V.; Sigmund, Ole

    2000-01-01

    are described. Most of our new results are related to the two-dimensional problem. A numerical topology optimization procedure that solves the inverse homogenization problem is adopted and used to look for two-dimensional three-phase composites with a maximal effective bulk modulus. For the combination...... isotropic three-dimensional three-phase composites with cylindrical inclusions of arbitrary cross-sections (plane strain problem) or transversely isotropic thin plates (plane stress or bending of plates problems). (C) 2000 Elsevier Science Ltd. All rights reserved....

  15. Young Modulus of Crystalline Polyethylene from ab Initio Molecular Dynamics

    NARCIS (Netherlands)

    Hageman, J.C.L.; Meier, Robert J.; Heinemann, M.; Groot, R.A. de

    1997-01-01

    The Young modulus for crystalline polyethylene is calculated using ab initio molecular dynamics based on density functional theory in the local density approximation (DFT-LDA). This modulus, which can be seen as the ultimate value for the Young modulus of polyethylene fibers, is found to be 334 GPa.

  16. Dynamic modulus of nanosilica modified porous asphalt

    Science.gov (United States)

    Arshad, A. K.; Masri, K. A.; Ahmad, J.; Samsudin, M. S.

    2017-11-01

    Porous asphalt (PA) is a flexible pavement layer with high interconnected air void contents and constructed using open-graded aggregates. Due to high temperature environment and increased traffic volume in Malaysia, PA may have deficiencies particularly in rutting and stiffness of the mix. A possible way to improve these deficiencies is to improve the asphalt binder used. Binder is normally modified using polymer materials to improve its properties. However, nanotechnology presently is being gradually used for asphalt modification. Nanosilica (NS), a byproduct of rice husk and palm oil fuel ash is used as additive in this study. The aim of this study is to enhance the rutting resistance and stiffness performance of PA using NS. This study focused on the performance of PA in terms of dynamic modulus with the addition of NS modified binder to produce better and more durable PA. From the result of Dynamic SPT Test, it shows that the addition of NS was capable in enhancing the stiffness and rutting resistance of PA. The addition of NS also increase the dynamic modulus value of PA by 50%.

  17. The instantaneous shear modulus in the shoving model

    DEFF Research Database (Denmark)

    Dyre, J. C.; Wang, W. H.

    2012-01-01

    We point out that the instantaneous shear modulus G∞ of the shoving model for the non-Arrhenius temperature dependence of viscous liquids’ relaxation time is the experimentally accessible highfrequency plateau modulus, not the idealized instantaneous affine shear modulus that cannot be measured....... Data for a large selection of metallic glasses are compared to three different versions of the shoving model. The original shear-modulus based version shows a slight correlation to the Poisson ratio, which is eliminated by the energy-landscape formulation of the model in which the bulk modulus plays...

  18. A Study on Accelerated Thermal Aging of High Modulus Carbon/Epoxy Composite Material

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Composite materials have been used increasingly for various space applications due to the favorable characteristic of high modulus to density ratio and potential for near-zero coefficient of thermal expansion. In composite system, depending on the orientation of fibers, strength and stiffness can be changed so that the optimum structure can be accomplished. This is because the coefficient of thermal expansion (CTE of carbon fibers is negative. For spacecraft and orbiting space structure, which are thermally cycled by moving through the earth' shadow for at least 5 years, it is necessary to investigate the change of properties of the material over time. In this study, thermal aging of epoxy matrix/high modulus carbon fiber composite materials are accelerated to predict the long term creep property. Specimens are tested at various temperatures of 100~140°C with dynamic mechanical analysis to obtain creep compliances that are functions of time and temperature. Using Time Temperature Superposition method, creep compliance curves at each temperature are shifted to the reference temperature by shift factor and a master curve is generated at the reference temperature. This information is useful to predict the long term thermal aging of high modulus composite material for spacecraft application.

  19. Expansion dynamics

    International Nuclear Information System (INIS)

    Knoll, J.

    1985-10-01

    A quantum dynamical model is suggested which describes the expansion and disassembly phase of highly excited compounds formed in energetic heavy-ion collisions. First applications in two space and one time dimensional model world are discussed and qualitatively compared to standard freeze-out concepts. (orig.)

  20. expansion method

    Indian Academy of Sciences (India)

    of a system under investigation is to model the system in terms of some ... The organization of the paper is as follows: In §2, a brief account of the (G /G)- expansion ...... It is interesting to note that from the general results, one can easily recover.

  1. Separation of attractors in 1-modulus quantum corrected special geometry

    CERN Document Server

    Bellucci, S; Marrani, A; Shcherbakov, A

    2008-01-01

    We study the solutions to the N=2, d=4 Attractor Equations in a dyonic, extremal, static, spherically symmetric and asymptotically flat black hole background, in the simplest case of perturbative quantum corrected cubic Special Kahler geometry consistent with continuous axion-shift symmetry, namely in the 1-modulus Special Kahler geometry described (in a suitable special symplectic coordinate) by the holomorphic Kahler gauge-invariant prepotential F=t^3+i*lambda, with lambda real. By performing computations in the ``magnetic'' charge configuration, we find evidence for interesting phenomena (absent in the classical limit of vanishing lambda). Namely, for a certain range of the quantum parameter lambda we find a ``splitting'' of attractors, i.e. the existence of multiple solutions to the Attractor Equations for fixed supporting charge configuration. This corresponds to the existence of ``area codes'' in the radial evolution of the scalar t, determined by the various disconnected regions of the moduli space, wh...

  2. In vivo performance of a reduced-modulus bone cement

    Science.gov (United States)

    Forehand, Brett Ramsey

    Total joint replacement has become one of the most common procedures in the area of orthopedics and is often the solution in patients with diseased or injured hip joints. Component loosening is a significant problem and is primarily caused by bone resorption at the bone-cement interface in cemented implants. It is our hypothesis that localized shear stresses are responsible for the resorption. It was previously shown analytically that local stresses at the interface could be reduced by using a cement of lower modulus. A new reduced modulus cement, polybutyl methylmethacrylate (PBMMA), was developed to test the hypothesis. PBMMA was formulated to exist as polybutyl methacrylate filler in a polymethyl methacrylate matrix. The success of PBMMA cement is based largely on the fact that the polybutyl component of the cement will be in the rubbery state at body temperature. In vitro characterization of the cement was undertaken previously and demonstrated a modulus of approximately one-eighth that of conventional bone cement, polymethyl methacrylate (PMMA) and increased fracture toughness. The purpose of this experiment was to perform an in vivo comparison of the two cements. A sheep model was selected. Total hip arthroplasty was performed on 50 ewes using either PBMMA or PMMA. Radiographs were taken at 6 month intervals. At one year, the contralateral femur of each sheep was implanted so that each animal served as its own control, and the animals were sacrificed. The stiffness of the bone-cement interface of the femoral component within the femur was assessed by applying a torque to the femoral component and demonstrated a significant difference in loosening between the cements when the specimens were tested in external rotation (p sheep had a greater amount of loosening for each subject, 59% versus 4% for standard PMMA. A radiographic analysis demonstrated more signs of loosening in the PMMA series of subjects. A brief histological examination showed similar bony

  3. arXiv A Simple No-Scale Model of Modulus Fixing and Inflation

    CERN Document Server

    Ellis, John; Romano, Antonio Enea; Zapata, Oscar

    We construct a no-scale model of inflation with a single modulus whose real and imaginary parts are fixed by simple power-law corrections to the no-scale K{\\" a}hler potential. Assuming an uplift of the minimum of the effective potential, the model yields a suitable number of e-folds of expansion and values of the tilt in the scalar cosmological density perturbations and of the ratio of tensor and scalar perturbations that are compatible with measurements of the cosmic microwave background radiation.

  4. Temperature dependence of Young's modulus of silica refractories

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Černý, Martin; Pabst, W.; Esposito, L.; Zanelli, C.; Hamáček, J.; Kutzendorfer, J.

    2015-01-01

    Roč. 41, č. 1 (2015), s. 1129-1138 ISSN 0272-8842 Institutional support: RVO:67985891 Keywords : mechanical properties * elastic modulus (Young's modulus ) * SiO2 * Silica brick materials (cristobalite, tridymite) Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015

  5. On Young's modulus of multi-walled carbon nanotubes

    Indian Academy of Sciences (India)

    WINTEC

    load transfer in nanocomposites. In the present work, CNT/Al ... calculations. The theoretical modulus of the graphene sheet is supposed to be 1060 GPa (Harris 2004). The reason why multi-walled nanotubes have a modulus > 1060 GPa (that of graphene sheet) is currently not understood. However, in the present paper, ...

  6. Determination of elastic modulus in nickel alloy from ultrasonic ...

    Indian Academy of Sciences (India)

    als scientists, and solid-state theorists; they connect to tech- nological, structural economics and safety, to various mate- rials phenomena and to their fundamental interatomic forces. (Ledbetter 1983). In any material which is a multiphase alloy, the elastic modulus is determined by the modulus of the indi- vidual phases and ...

  7. Young’s modulus of multi-layer microcantilevers

    Directory of Open Access Journals (Sweden)

    Zhikang Deng

    2017-12-01

    Full Text Available A theoretical model for calculating the Young’s modulus of multi-layer microcantilevers with a coating is proposed, and validated by a three-dimensional (3D finite element (FE model using ANSYS parametric design language (APDL and atomic force microscopy (AFM characterization. Compared with typical theoretical models (Rayleigh-Ritz model, Euler-Bernoulli (E-B beam model and spring mass model, the proposed theoretical model can obtain Young’s modulus of multi-layer microcantilevers more precisely. Also, the influences of coating’s geometric dimensions on Young’s modulus and resonant frequency of microcantilevers are discussed. The thickness of coating has a great influence on Young’s modulus and resonant frequency of multi-layer microcantilevers, and the coating should be considered to calculate Young’s modulus more precisely, especially when fairly thicker coating is employed.

  8. The Effect of Annealing on the Elastic Modulus of Orthodontic Wires

    Science.gov (United States)

    Higginbottom, Kyle

    Introduction: Nickel Titanium orthodontic wires are currently used in orthodontic treatment due to their heat activated properties and their delivery of constant force. The objective of this study was to determine the effect of annealing on the elastic modulus of Nickel Titanium, Stainless Steel and Beta-titanium (TMA) wires. Different points along the wire were tested in order to determine how far from the annealed ends the elastic modulus of the wires was affected. Methods: Eighty (80) orthodontic wires consisting of 4 equal groups (SS/TMA/Classic NitinolRTM/Super Elastic NitinolRTM) were used as the specimens for this study. All wires were measured and marked at 5mm measurements, and cut into 33.00mm sections. The wires were heated with a butane torch until the first 13.00mm of the wires were red hot. Load deflection tests using an InstronRTM universal testing machine were run at 5mm distances from the end of the wire that had been annealed. The change in elastic modulus was then determined. Results: There was a significant difference (F = 533.001, p = 0.0005) in the change in elastic modulus for the four distances. There was also a significant difference (F = 57.571, p = 0.0005) in the change in elastic modulus for the four wire types. There was a significant interaction (F = 19.601, p = 0.005) between wire type and distance, however this interaction negated the differences between the wires. Conclusion: 1) There are significant differences in the changes in elastic modulus between the areas of the wires within the annealed section and those areas 5mm and 10mm away from the annealed section. The change in elastic modulus within the annealed section was significantly greater at 8 mm than it was at 13mm, and this was significantly greater than 18mm and 23mm (5mm and 10mm beyond the annealed section). However, there was no statistical difference in the change in elastic modulus between 5mm and 10mm away from the annealed section (18mm and 23mm respectively). 2

  9. Temperature dependence of bulk modulus and second-order elastic constants

    International Nuclear Information System (INIS)

    Singh, P.P.; Kumar, Munish

    2004-01-01

    A simple theoretical model is developed to investigate the temperature dependence of the bulk modulus and second order elastic constants. The method is based on the two different approaches viz. (i) the theory of thermal expansivity formulated by Suzuki, based on the Mie-Gruneisen equation of state, (ii) the theory of high-pressure-high-temperature equation of state formulated by Kumar, based on thermodynamic analysis. The results obtained for a number of crystals viz. NaCl, KCl, MgO and (Mg, Fe) 2 SiO 4 are discussed and compared with the experimental data. It is concluded that the Kumar formulation is far better that the Suzuki theory of thermal expansivity

  10. Influence of the Testing Gage Length on the Strength, Young's Modulus and Weibull Modulus of Carbon Fibres and Glass Fibres

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Pardini

    2002-10-01

    Full Text Available Carbon fibres and glass fibres are reinforcements for advanced composites and the fiber strength is the most influential factor on the strength of the composites. They are essentially brittle and fail with very little reduction in cross section. Composites made with these fibres are characterized by a high strength/density ratio and their properties are intrisically related to their microstructure, i.e., amount and orientation of the fibres, surface treatment, among other factors. Processing parameters have an important role in the fibre mechanical behaviour (strength and modulus. Cracks, voids and impurities in the case of glass fibres and fibrillar misalignments in the case of carbon fibres are created during processing. Such inhomogeneities give rise to an appreciable scatter in properties. The most used statistical tool that deals with this characteristic variability in properties is the Weibull distribution. The present work investigates the influence of the testing gage length on the strength, Young's modulus and Weibull modulus of carbon fibres and glass fibres. The Young's modulus is calculated by two methods: (i ASTM D 3379M, and (ii interaction between testing equipment/specimen The first method resulted in a Young modulus of 183 GPa for carbon fibre, and 76 GPa for glass fibre. The second method gave a Young modulus of 250 GPa for carbon fibre and 50 GPa for glass fibre. These differences revelead differences on how the interaction specimen/testing machine can interfere in the Young modulus calculations. Weibull modulus can be a tool to evaluate the fibre's homogeneity in terms of properties and it is a good quality control parameter during processing. In the range of specimen gage length tested the Weibull modulus for carbon fibre is ~ 3.30 and for glass fibres is ~ 5.65, which indicates that for the batch of fibres tested, the glass fibre is more uniform in properties.

  11. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance

    Science.gov (United States)

    2017-09-01

    To evaluate the compaction of unbound geomaterials under unsaturated conditions and replace the conventional methods with a practical modulus-based specification using LWD, this study examined three different LWDs, the Zorn ZFG 3000 LWD, Dynatest 303...

  12. Estimate of K-functionals and modulus of smoothness constructed ...

    Indian Academy of Sciences (India)

    2016-08-26

    functional and a modulus of smoothness for the Dunkl transform on Rd. Author Affiliations. M El Hamma1 R Daher1. Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco. Dates.

  13. Frequency-dependent complex modulus of the uterus: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, Miklos Z [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Hobson, Maritza A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Varghese, Tomy [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States); Harter, Josephine [Department of Surgical Pathology, University of Wisconsin, Madison, WI 53706 (United States); Kliewer, Mark A [Department of Radiology, University of Wisconsin, Madison, WI 53706 (United States); Hartenbach, Ellen M [Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI 53706 (United States); Zagzebski, James A [Department of Medical Physics, University of Wisconsin, Madison, WI 53706 (United States)

    2006-08-07

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa.

  14. Frequency-dependent complex modulus of the uterus: preliminary results

    International Nuclear Information System (INIS)

    Kiss, Miklos Z; Hobson, Maritza A; Varghese, Tomy; Harter, Josephine; Kliewer, Mark A; Hartenbach, Ellen M; Zagzebski, James A

    2006-01-01

    The frequency-dependent complex moduli of human uterine tissue have been characterized. Quantification of the modulus is required for developing uterine ultrasound elastography as a viable imaging modality for diagnosing and monitoring causes for abnormal uterine bleeding and enlargement, as well assessing the integrity of uterine and cervical tissue. The complex modulus was measured in samples from hysterectomies of 24 patients ranging in age from 31 to 79 years. Measurements were done under small compressions of either 1 or 2%, at low pre-compression values (either 1 or 2%), and over a frequency range of 0.1-100 Hz. Modulus values of cervical tissue monotonically increased from approximately 30-90 kPa over the frequency range. Normal uterine tissue possessed modulus values over the same range, while leiomyomas, or uterine fibroids, exhibited values ranging from approximately 60-220 kPa

  15. Arithmetic convergent sequence space defined by modulus function

    Directory of Open Access Journals (Sweden)

    Taja Yaying

    2019-10-01

    Full Text Available The aim of this article is to introduce the sequence spaces $AC(f$ and $AS(f$ using arithmetic convergence and modulus function, and study algebraic and topological properties of this space, and certain inclusion results.

  16. Resilient Modulus Characterization of Alaskan Granular Base Materials

    Science.gov (United States)

    2010-08-01

    Resilient modulus (MR) of base course material is an important material input for : pavement design. In Alaska, due to distinctiveness of local climate, material source, : fines content and groundwater level, resilient properties of D-1 granular base...

  17. Low expansion and high gain Nd laser glasses

    International Nuclear Information System (INIS)

    Izumitani, Tetsuro; Peng, B.

    1995-01-01

    Due to the relationship between Judd-Ofelt intensity parameter and covalency, new laser glasses have been developed which have low expansion coefficients (85--91 x 10 -7 /cm C, 0--70 C) and high emission cross sections. They have good chemical properties, high Young's modulus and high thermal conductivities. These glasses are suitable for the National Ignition Facility

  18. Non-toxic invert analog glass compositions of high modulus

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi are described. They and a specific modulus of at least 110 million inches consist essentially of, in mols, 15 to 40% SiO2, 6 to 15% Li2O, 24 to 45% of at least two bivalent oxides selected from the group consisting of Ca, NzO, MgO and CuO; 13 to 39% of at least two trivalent oxides selected from the group consisting of Al2O3, Fe2O3, B2O3, La2O3, and Y2O3 and up to 15% of one or more tetravelent oxides selected from the group consisting of ZrO2, TiO2 and CeO2. The high modulus, low density glass compositions contain no toxic elements. The composition, glass density, Young's modulus, and specific modulus for 28 representative glasses are presented. The fiber modulus of five glasses are given.

  19. Determination of elastic modulus of ceramics using ultrasonic testing

    Science.gov (United States)

    Sasmita, Firmansyah; Wibisono, Gatot; Judawisastra, Hermawan; Priambodo, Toni Agung

    2018-04-01

    Elastic modulus is important material property on structural ceramics application. However, bending test as a common method for determining this property require particular specimen preparation. Furthermore, elastic modulus of ceramics could vary because it depends on porosity content. For structural ceramics industry, such as ceramic tiles, this property is very important. This drives the development of new method to improve effectivity or verification method as well. In this research, ultrasonic testing was conducted to determine elastic modulus of soda lime glass and ceramic tiles. The experiment parameter was frequency of probe (1, 2, 4 MHz). Characterization of density and porosity were also done for analysis. Results from ultrasonic testing were compared with elastic modulus resulted from bending test. Elastic modulus of soda-lime glass based on ultrasonic testing showed excellent result with error 2.69% for 2 MHz probe relative to bending test result. Testing on red and white ceramic tiles were still contained error up to 41% and 158%, respectively. The results for red ceramic tile showed trend that 1 MHz probe gave better accuracy in determining elastic modulus. However, testing on white ceramic tile showed different trend. It was due to the presence of porosity and near field effect.

  20. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  1. Variable modulus cellular structures using pneumatic artificial muscles

    Science.gov (United States)

    Pontecorvo, Michael E.; Niemiec, Robert J.; Gandhi, Farhan S.

    2014-04-01

    This paper presents a novel variable modulus cellular structure based on a hexagonal unit cell with pneumatic artificial muscle (PAM) inclusions. The cell considered is pin-jointed, loaded in the horizontal direction, with three PAMs (one vertical PAM and two horizontal PAMs) oriented in an "H" configuration between the vertices of the cell. A method for calculation of the hexagonal cell modulus is introduced, as is an expression for the balance of tensile forces between the horizontal and vertical PAMs. An aluminum hexagonal unit cell is fabricated and simulation of the hexagonal cell with PAM inclusions is then compared to experimental measurement of the unit cell modulus in the horizontal direction with all three muscles pressurized to the same value over a pressure range up to 758 kPa. A change in cell modulus by a factor of 1.33 and a corresponding change in cell angle of 0.41° are demonstrated experimentally. A design study via simulation predicts that differential pressurization of the PAMs up to 2068 kPa can change the cell modulus in the horizontal direction by a factor of 6.83 with a change in cell angle of only 2.75°. Both experiment and simulation show that this concept provides a way to decouple the length change of a PAM from the change in modulus to create a structural unit cell whose in-plane modulus in a given direction can be tuned based on the orientation of PAMs within the cell and the pressure supplied to the individual muscles.

  2. Determination of Young's Modulus of Graphene by Raman Spectroscopy

    Science.gov (United States)

    Lee, Jae-Ung; Yoon, Duhee; Cheong, Hyeonsik

    2012-02-01

    The mechanical properties of graphene are interesting research subjects because its Young's modulus and strength are extremely high. Values of ˜1 TPa for the Young's modulus have been reported [Lee et al. Science, 321, 385 (2008), Koenig et al. Nat. Nanotech. 6, 543 (2011)]. We made a graphene sample on a SiO2/Si substrate with closed-bottom holes by mechanical exfoliation. A pressure difference across the graphene membrane was applied by putting the sample in a vacuum chamber. This pressure difference makes the graphene membrane bulge upward like a balloon. By measuring the shifts of the Raman G and 2D bands, we estimated the amount of strain on the graphene membrane. By comparing the strain estimated from the Raman measurements with numerical simulations based on the finite element method, we obtained the Young's modulus of graphene.

  3. Temperature, Frequency and Young’s Modulus of a Wineglass

    Directory of Open Access Journals (Sweden)

    Amitta Miller

    2015-01-01

    Full Text Available A crystal soda-lime wineglass, heated to temperatures ranging from 25 °C to 150 °C, was tapped and the frequency recorded. It was shown that the relative change in the frequency at different temperatures can be used to determine the effect of temperature on Young’s Modulus of the glass. This simple method of tapping a wineglass is proposed as an effective way of determining the relative effect of temperature on Young’ Modulus of glass.

  4. Effective Elastic Modulus of Structured Adhesives: From Biology to Biomimetics

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-06-01

    Full Text Available Micro- and nano-hierarchical structures (lamellae, setae, branches, and spatulae on the toe pads of many animals play key roles for generating strong but reversible adhesion for locomotion. The hierarchical structure possesses significantly reduced, effective elastic modulus (Eeff, as compared to the inherent elastic modulus (Einh of the corresponding biological material (and therefore contributes to a better compliance with the counterpart surface. Learning from nature, three types of hierarchical structures (namely self-similar pillar structure, lamella–pillar hybrid structure, and porous structure have been developed and investigated.

  5. Connecting Jacobi elliptic functions with different modulus parameters

    Indian Academy of Sciences (India)

    found in the literature do not involve any change in the modulus parameter m. For ... Here, the right-hand side contains the sum of two terms with arguments separated ...... able thing is that, it is precisely these sums for which Landen formulas, mentioned above ... ematical sciences (Springer-Verlag, New York, 1989) vol. 80.

  6. Device to measure elastic modulus of superconducting windings

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    This device was made to measure elastic modulus of the Po dipole superconducting coils. More elaborated devices, but based on the same concept, were later used to measure the apparent elastic moduli of the LHC superconducting magnet coils. See also 7903547X, 7901386.

  7. Estimate of K-functionals and modulus of smoothness constructed ...

    Indian Academy of Sciences (India)

    ... and -functionals. The main result of the paper is the proof of the equivalence theorem for a -functional and a modulus of smoothness for the Dunkl transform on R d . Author Affiliations. M El Hamma1 R Daher1. Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco ...

  8. Effect of bulk modulus on performance of a hydrostatic transmission ...

    Indian Academy of Sciences (India)

    an induction motor, a fixed or variable displacement motor, and all required ... oped a linear relation between oil bulk modulus and pressure for a HST system. ..... Piotrowska A 2003 The control of the rotational speed of hydraulic engine in ...

  9. Binding Energy and Compression Modulus of Infinite Nuclear Matter ...

    African Journals Online (AJOL)

    ... MeV at the normal nuclear matter saturation density consistent with the best available density-dependent potentials derived from the G-matrix approach. The results of the incompressibility modulus, k∞ is in excellent agreement with the results of other workers. Journal of the Nigerian Association of Mathematical Physics, ...

  10. Modulus of smoothness and theorems concerning approximation on compact groups

    Directory of Open Access Journals (Sweden)

    H. Vaezi

    2003-01-01

    Full Text Available We consider the generalized shift operator defined by (Shuf(g=∫Gf(tut−1gdt on a compact group G, and by using this operator, we define “spherical” modulus of smoothness. So, we prove Stechkin and Jackson-type theorems.

  11. Elastic Modulus at High Frequency of Polymerically Stabilized Suspensions

    NARCIS (Netherlands)

    Nommensen, P.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.

    2000-01-01

    The elastic moduli of polymerically stabilized suspensions consisting of colloidal silica particles coated with endgrafted PDMS (Mn = 80 000) in heptane, were measured as a function of concentration. And the elastic modulus at high frequency G'.. was quantitatively described by model calculations

  12. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    International Nuclear Information System (INIS)

    Gaihede, Michael; Liao Donghua; Gregersen, Hans

    2007-01-01

    The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between membrane tension and change of the surface area relative to the undeformed surface area. A middle ear model determined the tension-strain relationship in vivo based on data from experimental pressure-volume deformations of the human tympanic membrane system. The areal modulus was determined in both a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m -1 , respectively) compared to the younger group (mean = 1.066 and 1.206 kN m -1 , respectively), though not significantly (2p = 0.10 and 0.11, respectively). Based on the model the areal modulus was established describing the summated elastic properties of the tympanic membrane system. Future model improvements include exact determination of the tympanic membrane area accounting for its shape via 3D finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus

  13. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    Energy Technology Data Exchange (ETDEWEB)

    Gaihede, Michael [Department of Otolaryngology, Head and Neck Surgery, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Liao Donghua [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Gregersen, Hans [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark)

    2007-02-07

    The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between membrane tension and change of the surface area relative to the undeformed surface area. A middle ear model determined the tension-strain relationship in vivo based on data from experimental pressure-volume deformations of the human tympanic membrane system. The areal modulus was determined in both a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m{sup -1}, respectively) compared to the younger group (mean = 1.066 and 1.206 kN m{sup -1}, respectively), though not significantly (2p = 0.10 and 0.11, respectively). Based on the model the areal modulus was established describing the summated elastic properties of the tympanic membrane system. Future model improvements include exact determination of the tympanic membrane area accounting for its shape via 3D finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus.

  14. Determining the complex modulus of alginate irreversible hydrocolloid dental material.

    Science.gov (United States)

    King, Shalinie; See, Howard; Thomas, Graham; Swain, Michael

    2008-11-01

    The aim of the study is to investigate the visco-elastic response of an alginate irreversible hydrocolloid dental impression material during setting. A novel squeeze film Micro-Fourier Rheometer (MFR, GBC Scientific Equipment, Australia) was used to determine the complex modulus of an alginate irreversible hydrocolloid dental impression material (Algident, ISO 1563 Class A Type 1, Dentalfarm Australia Pty. Ltd.) during setting after mixing. Data was collected every 30s for 10 min in one study and every 10 min for a total of 60 min in another study. A high level of repeatability was observed. The results indicate that the MFR is capable of recording the complex shear modulus of alginate irreversible hydrocolloid for 60 min from the start of mixing and to simultaneously report the changing visco-elastic parameters at all frequencies between 1 Hz and 100 Hz. The storage modulus shows a dramatic increase to 370% of its starting value after 6 min and then reduces to 55% after 60 min. The loss modulus increases to a maximum of 175% of its starting value after 10 min and then reduces to 94% after 60 min. The MFR enables the changes in the complex modulus through the complete setting process to be followed. It is anticipated this approach may provide a better method to compare the visco-elastic properties of impression materials and assist with identification of optimum types for different clinical requirements. The high stiffness of the instrument and the use of band-limited pseudo-random noise as the input signal are the main advantages of this technique over conventional rheometers for determining the changes in alginate visco-elasticity.

  15. Thermal expansion of fibre-reinforced composites

    International Nuclear Information System (INIS)

    Schneider, B.

    1991-07-01

    The integral thermal expansion and the coefficient of thermal expansion (CTE) of carbon and Kevlar fibre-reinforced composites were measured with high accuracy from 5 K to room temperature. For this, a laser dilatometer and a sophisticated measuring procedure were used. CTE dependence on the orientation angle ω of angle-ply laminates was determined for samples with 5 different fibre alignments (UD 0deg, +/-30deg, +/-45deg, +/-60deg and UD 90deg). A high variability of the CTE with the orientation angle was shown. At angles of approximately +/-30deg even negative CTEs were found. With suitable reinforcing fibres being selected, their absolute values rose up to 30-100% of the positive CTEs of metals. Hence, composites of this type would be suitable as compensating materials in metal constructions where little thermal expansion is desired. To check the lamination theory, theoretical computations of the CTE- ω -dependence were compared with the measured values. An excellent agreement was found. Using the lamination theory, predictions about the expansion behaviour of angle-ply laminates can be made now, if the thermal and mechanical properties of the unidirectional (UD) laminate are known. Furthermore, it is possible to carry out simulation computations aimed at investigating the influence of a single parameter of the UD-laminate (e.g. shear modulus) on the expansion of the angle-ply laminate. (orig.) [de

  16. Observations on the colonization of a young polder area in the Netherlands with special reference to the clonal expansion of Phragmites australis

    NARCIS (Netherlands)

    Clevering, O.A.; Van der Toorn, J.

    2000-01-01

    In 1968, the polder Zuidelijk Flevoland was reclaimed in the Netherlands. Observations on species succession were made during a period of seven years in an area later known as the nature reserve Oostvaardersplassen. Directly after reclamation, a large number of plant species were recruited. Here,

  17. Modulus stabilization in a non-flat warped braneworld scenario

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Indrani [S.N. Bose National Centre for Basic Sciences, Department of Astrophysics and Cosmology, Kolkata (India); SenGupta, Soumitra [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)

    2017-05-15

    The stability of the modular field in a warped brane world scenario has been a subject of interest for a long time. Goldberger and Wise (GW) proposed a mechanism to achieve this by invoking a massive scalar field in the bulk space-time neglecting the back-reaction. In this work, we examine the possibility of stabilizing the modulus without bringing about any external scalar field. We show that instead of flat 3-branes as considered in Randall-Sundrum (RS) warped braneworld model, if one considers a more generalized version of warped geometry with de Sitter 3-brane, then the brane vacuum energy automatically leads to a modulus potential with a metastable minimum. Our result further reveals that in this scenario the gauge hierarchy problem can also be resolved for an appropriate choice of the brane's cosmological constant. (orig.)

  18. Young's Modulus of Single-Crystal Fullerene C Nanotubes

    Directory of Open Access Journals (Sweden)

    Tokushi Kizuka

    2012-01-01

    Full Text Available We performed bending tests on single-crystal nanotubes composed of fullerene C70 molecules by in situ transmission electron microscopy with measurements of loading forces by an optical deflection method. The nanotubes with the outer diameters of 270–470 nm were bent using simple-beam and cantilever-beam loading by the piezomanipulation of silicon nanotips. Young's modulus of the nanotubes increased from 61 GPa to 110 GPa as the outer diameter decreased from 470 nm to 270 nm. Young's modulus was estimated to be 66% of that of single-crystal C60 nanotubes of the same outer diameter.

  19. Mechanical Researches on Young's Modulus of SCS Nanostructures

    Directory of Open Access Journals (Sweden)

    Qinhua Jin

    2009-01-01

    Full Text Available Nanostructures of SingleCrystalSilicon (SCS with superior electrical, mechanical, thermal, and optical properties are emerging in the development of novel nanodevices. Mechanical properties especially Young's modulus are essential in developing and utilizing such nanodevices. In this paper, experimental researches including bending tests, resonance tests, and tensile tests on Young' s modulus of nanoscaled SCS are reviewed, and their results are compared. It was found that the values of E measured by different testing methods cannot match to each other. As the differences cannot be explained as experimental errors, it should be understood by taking surface effect into account. With a simplified model, we qualitatively explained the difference in E value measured by tensile test and by resonance test for Si nanobeams.

  20. Effect of uncertainty parameters on graphene sheets Young's modulus prediction

    International Nuclear Information System (INIS)

    Sahlaoui, Habib; Sidhom Habib; Guedri, Mohamed

    2013-01-01

    Software based on molecular structural mechanics approach (MSMA) and using finite element method (FEM) has been developed to predict the Young's modulus of graphene sheets. Obtained results have been compared to results available in the literature and good agreement has been shown when the same values of uncertainty parameters are used. A sensibility of the models to their uncertainty parameters has been investigated using a stochastic finite element method (SFEM). The different values of the used uncertainty parameters, such as molecular mechanics force field constants k_r and k_θ, thickness (t) of a graphene sheet and length ( L_B) of a carbon carbon bonds, have been collected from the literature. Strong sensibilities of 91% to the thickness and of 21% to the stretching force (k_r) have been shown. The results justify the great difference between Young's modulus predicted values of the graphene sheets and their large disagreement with experimental results.

  1. High modulus invert analog glass compositions containing beryllia

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1974-01-01

    Glass compositions having a Young's modulus of at least 15 million psi and a specific modulus of at least 110 million inches consisting essentially of, in mols, 10-45% SiO2, 2-15% Li2O, 3-34% BeO, 12-36% of at least one bivalent oxide selected from the group consisting of CaO, ZnO, MgO and CuO, 10-39% of at least one trivalent oxide selected from the group consisting of Al2O3, B2O3, La2O3, Y2O3 and the mixed rare earth oxides, the total number of said bivalent and trivalent oxides being at least three, and up to 10% of a tetravalent oxide selected from the group consisting of ZrO2, TiO2 and CeO2.

  2. Multigene Genetic Programming for Estimation of Elastic Modulus of Concrete

    Directory of Open Access Journals (Sweden)

    Alireza Mohammadi Bayazidi

    2014-01-01

    Full Text Available This paper presents a new multigene genetic programming (MGGP approach for estimation of elastic modulus of concrete. The MGGP technique models the elastic modulus behavior by integrating the capabilities of standard genetic programming and classical regression. The main aim is to derive precise relationships between the tangent elastic moduli of normal and high strength concrete and the corresponding compressive strength values. Another important contribution of this study is to develop a generalized prediction model for the elastic moduli of both normal and high strength concrete. Numerous concrete compressive strength test results are obtained from the literature to develop the models. A comprehensive comparative study is conducted to verify the performance of the models. The proposed models perform superior to the existing traditional models, as well as those derived using other powerful soft computing tools.

  3. Charged string solutions with dilaton and modulus fields

    CERN Document Server

    Cvetic, M

    1994-01-01

    We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of $D=4$ heterotic string theory with scale-dependent dilaton $\\p$ and modulus $\\vp$ fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function $f(\\p,\\vp)$ in the gauge field kinetic term $f(\\p,\\vp) F^2_{\\m\

  4. Determination of dynamic Young’s modulus of vulnerable speleothems

    Czech Academy of Sciences Publication Activity Database

    Konečný, Pavel; Lednická, Markéta; Souček, Kamil; Staš, Lubomír; Kubina, Lukáš; Gribovszki, K.

    2015-01-01

    Roč. 20, č. 2 (2015), s. 156-163 ISSN 1335-1788 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : dynamic Young´s modulus * speleothem * bulk density * X-Ray Computed Tomography Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.390, year: 2015 http://actamont.tuke.sk/pdf/2015/n2/10Konecny.pdf

  5. A maximum modulus theorem for the Oseen problem

    Czech Academy of Sciences Publication Activity Database

    Kračmar, S.; Medková, Dagmar; Nečasová, Šárka; Varnhorn, W.

    2013-01-01

    Roč. 192, č. 6 (2013), s. 1059-1076 ISSN 0373-3114 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : Oseen problem * maximum modulus theorem * Oseen potentials Subject RIV: BA - General Mathematics Impact factor: 0.909, year: 2013 http://link.springer.com/article/10.1007%2Fs10231-012-0258-x

  6. Young's modulus of elasticity of Schlemm's canal endothelial cells.

    Science.gov (United States)

    Zeng, Dehong; Juzkiw, Taras; Read, A Thomas; Chan, Darren W-H; Glucksberg, Matthew R; Ethier, C Ross; Johnson, Mark

    2010-02-01

    Schlemm's canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limits on the flow resistance that this layer can generate in the eye. However, little is known about the biomechanical properties of SC endothelial cells. Our goal in this study was to estimate the effective Young's modulus of elasticity of normal SC cells. To do so, we combined magnetic pulling cytometry of isolated cultured human SC cells with finite element modeling of the mechanical response of the cell to traction forces applied by adherent beads. Preliminary work showed that the immersion angles of beads attached to the SC cells had a major influence on bead response; therefore, we also measured bead immersion angle by confocal microscopy, using an empirical technique to correct for axial distortion of the confocal images. Our results showed that the upper bound for the effective Young's modulus of elasticity of the cultured SC cells examined in this study, in central, non-nuclear regions, ranged between 1,007 and 3,053 Pa, which is similar to, although somewhat larger than values that have been measured for other endothelial cell types. We compared these values to estimates of the modulus of primate SC cells in vivo, based on images of these cells under pressure loading, and found good agreement at low intraocular pressure (8-15 mm Hg). However, increasing intraocular pressure (22-30 mm Hg) appeared to cause a significant increase in the modulus of these cells. These moduli can be used to estimate the extent to which SC cells deform in response to the pressure drop across the inner wall endothelium and thereby estimate the extent to which they can generate outflow resistance.

  7. Estimation of Bulk modulus and microhardness of tetrahedral semiconductors

    International Nuclear Information System (INIS)

    Gorai, Sanjay Kumar

    2012-01-01

    A general empirical formula was found for calculating of bulk modulus (B) and microhardness (H) from electronegativity and principal quantum number of II-VI, III-V semiconductors. Constant C1, appearing the in the expression of bulk modulus and constants C2 and C3, appearing in the expression of microhardness and the exponent M have following values respectively The numerical values of C1,C2, C3 and M are respectively 206.6, 8.234, 1.291, -1.10 for II-VI 72.4, 31.87, 7.592, -0.95 for III-V semiconductors. Both electro-negativity and principal quantum number can effectively reflect on the chemical bonding behaviour of constituent atoms in these semiconductors. The calculated values of bulk modulus and microhardness are in good agreement with the reported values in the literature. Present study helps in designing novel semiconductor materials, and to further explore the mechanical properties of these semiconductors.

  8. Elastic modulus of tree frog adhesive toe pads.

    Science.gov (United States)

    Barnes, W Jon P; Goodwyn, Pablo J Perez; Nokhbatolfoghahai, Mohsen; Gorb, Stanislav N

    2011-10-01

    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5-15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4-25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs.

  9. Structure and Young modulus of age hardening elinvar 45NKhT

    International Nuclear Information System (INIS)

    Baraz, V.R.; Strizhak, V.A.; Tsykin, D.N.

    1996-01-01

    The influence of quenching and ageing on structural features and Young modulus of precipitation hardening elinvar alloy 45 NKhT is under study. It is shown that the quenched alloy possesses a decreased elastic modulus which value drops with a quenching temperature increase. The ally ageing results in restoration of elastic modulus. The temperature range of Young modulus stability is shown to be independent of heat treatment conditions. The anomalies of elastic modulus in quenched alloy are conditioned by structural and magnetoelastic factors. The mechanisms of continuous and discontinuous precipitation mechanism has no effect on efficiency of Young modulus restoration. 13 refs., 6 figs

  10. Relationship Between Cell Compatibility and Elastic Modulus of Silicone Rubber/Organoclay Nanobiocomposites

    Science.gov (United States)

    Hosseini, Motahare Sadat; Tazzoli-Shadpour, Mohammad; Amjadi, Issa; Haghighipour, Nooshin; Shokrgozar, Mohammad Ali; Ghafourian Boroujerdnia, Mehri

    2012-01-01

    Background Substrates in medical science are hydrophilic polymers undergoing volume expansion when exposed to culture medium that influenced on cell attachment. Although crosslinking by chemical agents could reduce water uptake and promote mechanical properties, these networks would release crosslinking agents. In order to overcome this weakness, silicone rubber is used and reinforced by nanoclay. Objectives Attempts have been made to prepare nanocomposites based on medical grade HTV silicone rubber (SR) and organo-modified montmorillonite (OMMT) nanoclay with varying amounts of clay compositions. Materials and Methods Incorporation of nanocilica platelets into SR matrix was carried out via melt mixing process taking advantage of a Brabender internal mixer. The tensile elastic modulus of nanocomposites was measured by performing tensile tests on the samples. Produced polydimetylsiloxane (PDMS) composites with different flexibilities and crosslink densities were employed as substrates to investigate biocompatibility, cell compaction, and differential behaviors. Results The results presented here revealed successful nanocomposite formation with SR and OMMT, resulting in strong PDMS-based materials. The results showed that viability, proliferation, and spreading of cells are governed by elastic modulus and stiffness of samples. Furthermore, adipose derived stem cells (ADSCs) cultured on PDMS and corresponding nanocomposites could retain differentiation potential of osteocytes in response to soluble factors, indicating that inclusion of OMMT would not prevent osteogenic differentiation. Moreover, better spread out and proliferation of cells was observed in nanocomposite samples. Conclusions Considering cell behavior and mechanical properties of nanobiocomposites it could be concluded that silicone rubber substrate filled by nanoclay are a good choice for further experiments in tissue engineering and medical regeneration due to its cell compatibility and differentiation

  11. Negative thermal expansion materials

    International Nuclear Information System (INIS)

    Evans, J.S.O.

    1997-01-01

    The recent discovery of negative thermal expansion over an unprecedented temperature range in ZrW 2 O 8 (which contracts continuously on warming from below 2 K to above 1000 K) has stimulated considerable interest in this unusual phenomenon. Negative and low thermal expansion materials have a number of important potential uses in ceramic, optical and electronic applications. We have now found negative thermal expansion in a large new family of materials with the general formula A 2 (MO 4 ) 3 . Chemical substitution dramatically influences the thermal expansion properties of these materials allowing the production of ceramics with negative, positive or zero coefficients of thermal expansion, with the potential to control other important materials properties such as refractive index and dielectric constant. The mechanism of negative thermal expansion and the phase transitions exhibited by this important new class of low-expansion materials will be discussed. (orig.)

  12. Determination of resilient modulus values for typical plastic soils in Wisconsin.

    Science.gov (United States)

    2011-09-01

    "The objectives of this research are to establish a resilient modulus test results database and to develop : correlations for estimating the resilient modulus of Wisconsin fine-grained soils from basic soil properties. A : laboratory testing program ...

  13. Standardizing lightweight deflectometer modulus measurements for compaction quality assurance : research summary.

    Science.gov (United States)

    2017-09-01

    The mechanistic-empirical pavement design method requires the elastic resilient modulus as the key input for characterization of geomaterials. Current density-based QA procedures do not measure resilient modulus. Additionally, the density-based metho...

  14. Expansive cements for the manufacture of the concrete protective bandages

    Science.gov (United States)

    Yakymechko, Yaroslav; Voloshynets, Vladyslav

    2017-12-01

    One of the promising directions of the use of expansive cements is making the protective bandages for the maintenance of pipelines. Bandages expansive application of the compositions of the pipeline reinforce the damaged area and reduce stress due to compressive stress in the cylindrical area. Such requirements are best suited for expansive compositions obtained from portland cement and modified quicklime. The article presents the results of expansive cements based on quick lime in order to implement protective bandages pipelines.

  15. Low modulus Ti–Nb–Hf alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    González, M., E-mail: Marta.Gonzalez.Colominas@upc.edu [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Peña, J. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Materials Science, Elisava Escola Superior de Disseny i Enginyeria de Barcelona, La Rambla 30-32, 08002 Barcelona (Spain); Gil, F.J.; Manero, J.M. [Department of Materials Science and Metallurgy, Universitat Politècnica de Catalunya (UPC), Avda. Diagonal 647, 08028 Barcelona (Spain); Ciber-BBN (Spain)

    2014-09-01

    β-Type titanium alloys with a low elastic modulus are a potential strategy to reduce stress shielding effect and to enhance bone remodeling in implants used to substitute failed hard tissue. For biomaterial application, investigation on the mechanical behavior, the corrosion resistance and the cell response is required. The new Ti25Nb16Hf alloy was studied before and after 95% cold rolling (95% C.R.). The mechanical properties were determined by tensile testing and its corrosion behavior was analyzed by potentiostatic equipment in Hank's solution at 37 °C. The cell response was studied by means of cytotoxicity evaluation, cell adhesion and proliferation measurements. The stress–strain curves showed the lowest elastic modulus (42 GPa) in the cold worked alloy and high tensile strength, similar to that of Ti6Al4V. The new alloy exhibited better corrosion resistance in terms of open circuit potential (E{sub OCP}), but was similar in terms of corrosion current density (i{sub CORR}) compared to Ti grade II. Cytotoxicity studies revealed that the chemical composition of the alloy does not induce cytotoxic activity. Cell studies in the new alloy showed a lower adhesion and a higher proliferation compared to Ti grade II presenting, therefore, mechanical features similar to those of human cortical bone and, simultaneously, a good cell response. - Highlights: • Presents low elastic modulus and high strength and elastic deformability. • Exhibits good biocompatibility in terms of cytotoxicity and cell response. • Corrosion resistance of this alloy is good, similar to that of Ti grade II. • Potential candidate for implants used to substitute failed hard tissue.

  16. Mechanical Components from Highly Recoverable, Low Apparent Modulus Materials

    Science.gov (United States)

    Padula, Santo, II (Inventor); Noebe, Ronald D. (Inventor); Stanford, Malcolm K. (Inventor); DellaCorte, Christopher (Inventor)

    2015-01-01

    A material for use as a mechanical component is formed of a superelastic intermetallic material having a low apparent modulus and a high hardness. The superelastic intermetallic material is conditioned to be dimensionally stable, devoid of any shape memory effect and have a stable superelastic response without irrecoverable deformation while exhibiting strains of at least 3%. The method of conditioning the superelastic intermetallic material is described. Another embodiment relates to lightweight materials known as ordered intermetallics that perform well in sliding wear applications using conventional liquid lubricants and are therefore suitable for resilient, high performance mechanical components such as gears and bearings.

  17. Simple Backdoors on RSA Modulus by Using RSA Vulnerability

    Science.gov (United States)

    Sun, Hung-Min; Wu, Mu-En; Yang, Cheng-Ta

    This investigation proposes two methods for embedding backdoors in the RSA modulus N=pq rather than in the public exponent e. This strategy not only permits manufacturers to embed backdoors in an RSA system, but also allows users to choose any desired public exponent, such as e=216+1, to ensure efficient encryption. This work utilizes lattice attack and exhaustive attack to embed backdoors in two proposed methods, called RSASBLT and RSASBES, respectively. Both approaches involve straightforward steps, making their running time roughly the same as that of normal RSA key-generation time, implying that no one can detect the backdoor by observing time imparity.

  18. Resonant frequency and elastic modulus measurements on hardened cement pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1982-12-01

    A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)

  19. Maximisation of the ratio of microhardness to the Young's modulus of Ti-12Mo-13Nb alloy through microstructure changes.

    Science.gov (United States)

    Gabriel, Sinara B; de Almeida, Luiz H; Nunes, Carlos A; Dille, Jean; Soares, Glória A

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti-12Mo-13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000°C for 24h, water quenching, cold forging to reduce 80% of the area, and ageing at 500°C for 24h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240±100 nm length) and massive particles of 200-500 nm size. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Low-modulus PMMA bone cement modified with castor oil.

    Science.gov (United States)

    López, Alejandro; Hoess, Andreas; Thersleff, Thomas; Ott, Marjam; Engqvist, Håkan; Persson, Cecilia

    2011-01-01

    Some of the current clinical and biomechanical data suggest that vertebroplasty causes the development of adjacent vertebral fractures shortly after augmentation. These findings have been attributed to high injection volumes as well as high Young's moduli of PMMA bone cements compared to that of the osteoporotic cancellous bone. The aim of this study was to evaluate the use of castor oil as a plasticizer for PMMA bone cements. The Young's modulus, yield strength, maximum polymerization temperature, doughing time, setting time and the complex viscosity curves during curing, were determined. The cytotoxicity of the materials extracts was assessed on cells of an osteoblast-like cell line. The addition of up to 12 wt% castor oil decreased yield strength from 88 to 15 MPa, Young's modulus from 1500 to 446 MPa and maximum polymerization temperature from 41.3 to 25.6°C, without affecting the setting time. However, castor oil seemed to interfere with the polymerization reaction, giving a negative effect on cell viability in a worst-case scenario.

  1. Parasitic and fungal infections in synanthropic rodents in an area of urban expansion, Aracaju, Sergipe State, Brazil - doi: 10.4025/actascibiolsci.v36i1.19760

    Directory of Open Access Journals (Sweden)

    Adriana Oliveira Guimarães

    2013-09-01

    Full Text Available This study analysed the prevalence of parasitic and fungal infections in rodents in an area of urban expansion, Aracaju, Brazil. Traps were placed in the area from December 2011 to January 2013. Blood samples, faeces and hair were collected from the animals. We collected a total of 47 rodents; 44 were Rattus rattus, and 3 were Mus musculus. Parasitological evaluation revealed the cestode Hymenolepis diminuta infection in both rodent species. The nematodes Aspiculuris tetraptera and Syphacia obvelata were found in M. musculus, and the commensal Entamoeba coli was found in R. rattus. We observed that 69.2% of the R. rattus and 33.3% of the M. musculus were infected with the haemoparasite Babesia sp. The differential leukocyte count revealed normal (72.3%, neutrophilic (15.9% and lymphocytic (11.4% profiles. The evaluation showed the following species of fungi in the rodents: Aspergillus sp. (77.1%, Penicillium sp. (28.6%, Cladosporium sp. (14.3%, Mucor sp. (14.3%, Curvularia sp. (8.6%, Acremonium sp. (8.6%, Chrysosporium sp. (2.9%, Syncephalostrum sp. (2.9%, Alternaria sp. (2.9%, Trichophyton sp. (2.9% and Scopulariopsis sp. (2.9%. The parasites and fungi found in rodents are potentially zoonotic, and the presence of these household animals demonstrates their potential role as reservoirs and disseminators of fungal and parasitic infections.

  2. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  3. The Evaluation of the Initial Shear Modulus of Selected Cohesive Soils

    Science.gov (United States)

    Gabryś, Katarzyna; Szymański, Alojzy

    2015-06-01

    The paper concerns the evaluation of the initial stiffness of selected cohesive soils based on laboratory tests. The research materials used in this study were clayey soils taken from the area of the road embankment No. WD-18, on the 464th km of the S2 express-way, Konotopa-Airport route, Warsaw. The initial stiffness is represented here by the shear modulus (Gmax) determined during resonant column tests. In the article, a number of literature empirical formulas for defining initial value of the shear modulus of soils being examined were adopted from the literature in order to analyze the data set. However, a large discrepancy between laboratory test results and the values of Gmax calculated from empirical relationships resulted in the rejection of these proposals. They are inaccurate and do not allow for an exact evaluation of soil stiffness for selected cohesive soils. Hence, the authors proposed their own empirical formula that enables the evaluation of the test soils' Gmax in an easy and uncomplicated way. This unique formula describes mathematically the effect of certain soil parameters, namely mean effective stress ( p') and void ratio (e), on the initial soil stiffness.

  4. Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network

    Science.gov (United States)

    Ocak, Ibrahim; Seker, Sadi Evren

    2012-11-01

    The modulus of elasticity of intact rock ( E i) is an important rock property that is used as an input parameter in the design stage of engineering projects such as dams, slopes, foundations, tunnel constructions and mining excavations. However, it is sometimes difficult to determine the modulus of elasticity in laboratory tests because high-quality cores are required. For this reason, various methods for predicting E i have been popular research topics in recently published literature. In this study, the relationships between the uniaxial compressive strength, unit weight ( γ) and E i for different types of rocks were analyzed, employing an artificial neural network and 195 data obtained from laboratory tests carried out on cores obtained from drilling holes within the area of three metro lines in Istanbul, Turkey. Software was developed in Java language using Weka class libraries for the study. To determine the prediction capacity of the proposed technique, the root-mean-square error and the root relative squared error indices were calculated as 0.191 and 92.587, respectively. Both coefficients indicate that the prediction capacity of the study is high for practical use.

  5. Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe-PbS thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jennifer E [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Case, Eldon D., E-mail: casee@egr.msu.edu [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Khabir, Kristen N; Stewart, Ryan C [Chemical Engineering and Materials Science Department, Michigan State University, East Lansing, MI 48824 (United States); Wu, Chun-I; Hogan, Timothy P [Electrical and Computer Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Timm, Edward J [Mechanical Engineering Department, Michigan State University, East Lansing, MI 48824 (United States); Girard, Steven N; Kanatzidis, Mercouri G [Department of Chemistry, Northwestern University, Evanston, IL (United States)

    2010-06-15

    Two-phase PbTe-PbS materials, in which PbS is a nanostructured phase, are promising thermoelectric materials for the direct conversion of heat energy into electricity. In this study, a Vickers indentation mean hardness of 1.18 {+-} 0.09 GPa was measured for hot pressed specimens Pb{sub 0.95}Sn{sub 0.05}Te-PbS 8% while the mean hardness of cast specimens was 0.68 {+-} 0.07 GPa. The mean fracture toughness of the not pressed specimens was estimated as 0.35 {+-} 0.04 MPa m{sup 1/2} via Vickers indentation. Resonant Ultrasound Spectroscopy (RUS) measurements on hot pressed specimens gave mean values of Young's modulus, shear modulus and Poisson's ratio of 53.1 GPa, 21.4 GPa and 0.245, respectively while for the cast specimens the Young's and shear moduli were about 10% lower than for the hot pressed, with a mean value of Poisson's ratio of 0.245. The differences between the hardness and elastic moduli values for the cast and hot pressed specimens are discussed.

  6. Modifying the dissolved-in-water type natural gas field simulation model based on the distribution of estimated Young's modulus for the Kujukuri region, Japan

    Directory of Open Access Journals (Sweden)

    T. Nakagawa

    2015-11-01

    Full Text Available A simulation model, which covers the part of Southern-Kanto natural gas field in Chiba prefecture, was developed to perform studies and make predictions of land subsidence. However, because large differences between simulated and measured subsidence occurred in the northern modeled area of the gas field, the model was modified with an estimated Young's modulus distribution. This distribution was estimated by the yield value distribution and the correlation of yield value with Young's modulus. Consequently, the simulated subsidence in the north area was improved to some extent.

  7. Convergence of mayer expansions

    International Nuclear Information System (INIS)

    Brydges, D.C.

    1986-01-01

    The tree graph bound of Battle and Federbush is extended and used to provide a simple criterion for the convergence of (iterated) Mayer expansions. As an application estimates on the radius of convergence of the Mayer expansion for the two-dimensional Yukawa gas (nonstable interaction) are obtained

  8. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    International Nuclear Information System (INIS)

    Won, Yoonjin; Gao, Yuan; Kenny, Thomas W; Goodson, Kenneth E; Guzman de Villoria, Roberto; Wardle, Brian L; Xiang, Rong; Maruyama, Shigeo

    2015-01-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications. (paper)

  9. Nonhomogeneous morphology and the elastic modulus of aligned carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Guzman de Villoria, Roberto; Wardle, Brian L.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Goodson, Kenneth E.

    2015-11-01

    Carbon nanotube (CNT) arrays offer the potential to develop nanostructured materials that leverage their outstanding physical properties. Vertically aligned carbon nanotubes (VACNTs), also named CNT forests, CNT arrays, or CNT turfs, can provide high heat conductivity and sufficient mechanical compliance to accommodate thermal expansion mismatch for use as thermal interface materials (TIMs). This paper reports measurements of the in-plane moduli of vertically aligned, single-walled CNT (SWCNT) and multi-walled CNT (MWCNT) films. The mechanical response of these films is related to the nonhomogeneous morphology of the grown nanotubes, such as entangled nanotubes of a top crust layer, aligned CNTs in the middle region, and CNTs in the bottom layer. To investigate how the entanglements govern the overall mechanical moduli of CNT films, we remove the crust layer consisting of CNT entanglements by etching the CNT films from the top. A microfabricated cantilever technique shows that crust removal reduces the resulting moduli of the etched SWCNT films by as much as 40%, whereas the moduli of the etched MWCNT films do not change significantly, suggesting a minimal crust effect on the film modulus for thick MWCNT films (>90 μm). This improved understanding will allow us to engineer the mechanical moduli of CNT films for TIMs or packaging applications.

  10. Size dependent elastic modulus and mechanical resilience of dental enamel.

    Science.gov (United States)

    O'Brien, Simona; Shaw, Jeremy; Zhao, Xiaoli; Abbott, Paul V; Munroe, Paul; Xu, Jiang; Habibi, Daryoush; Xie, Zonghan

    2014-03-21

    Human tooth enamel exhibits a unique microstructure able to sustain repeated mechanical loading during dental function. Although notable advances have been made towards understanding the mechanical characteristics of enamel, challenges remain in the testing and interpretation of its mechanical properties. For example, enamel was often tested under dry conditions, significantly different from its native environment. In addition, constant load, rather than indentation depth, has been used when mapping the mechanical properties of enamel. In this work, tooth specimens are prepared under hydrated conditions and their stiffnesses are measured by depth control across the thickness of enamel. Crystal arrangement is postulated, among other factors, to be responsible for the size dependent indentation modulus of enamel. Supported by a simple structure model, effective crystal orientation angle is calculated and found to facilitate shear sliding in enamel under mechanical contact. In doing so, the stress build-up is eased and structural integrity is maintained. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Young’s modulus of [111] germanium nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Maksud, M.; Palapati, N. K. R.; Subramanian, A., E-mail: asubramanian@vcu.edu [Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Yoo, J. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Harris, C. T. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  12. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    Science.gov (United States)

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  13. Shrub expansion in SW Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Halfdan

    Arctic regions have experienced higher temperatures in recent decades, and the warming trend is projected to continue in the coming years. Arctic ecosystems are considered to be particularly vulnerable to climate change. Expansion of shrubs has been observed widely in tundra areas across the Arctic......, and has a range of ecosystem effects where it occurs. Shrub expansion has to a large extend been attributed to increasing temperatures over the past century, while grazing and human disturbance have received less attention. Alnus viridis ssp. crispa is a common arctic species that contributes...... to increasing shrub cover. Despite this, there is only limited experimental evidence that growth of the species responds to warming. Plant populations in fragmented and isolated locations could face problems adapting to a warming climate due to limited genetic variation and restricted migration from southern...

  14. Effects of creep and oxidation on reduced modulus in high-temperature nanoindentation

    International Nuclear Information System (INIS)

    Li, Yan; Fang, Xufei; Lu, Siyuan; Yu, Qingmin; Hou, Guohui; Feng, Xue

    2016-01-01

    Nanoindentation tests were performed on single crystal Ni-based superalloy at temperatures ranging from 20 °C to 800 °C in inert environment. Load-displacement curves at temperatures higher than 500 °C exhibit obvious creep inferred by increasing displacements at load-holding segments. Load-displacement curves obtained at 800 °C also display negative unloading stiffness. Examination of the microstructure beneath the indented area using Transmission Electron Microscope (TEM) reveals abundant dislocation piling up as well as oxide formation on the substrate. A method considering the creep effect is proposed to calculate the reduced modulus. In addition, a dimensionless ratio relating indentation depth and oxide film thickness is introduced to explain the oxidation effect on the mechanical properties derived from the load-displacement curves.

  15. Study of pressure-volume relationships and higher derivatives of bulk modulus based on generalized equations of state

    International Nuclear Information System (INIS)

    Kushwah, S.S.; Shrivastava, H.C.; Singh, K.S.

    2007-01-01

    We have generalized the pressure-volume (P-V) relationships using simple polynomial and logarithmic expansions so as to make them consistent with the infinite pressure extrapolation according to the model of Stacey. The formulations are used to evaluate P-V relationships and pressure derivatives of bulk modulus upto third order (K', K'' and K''') for the earth core material taking input parameters based on the seismological data. The results based on the equations of state (EOS) generalized in the present study are found to yield good agreement with the Stacey EOS. The generalized logarithmic EOS due to Poirier and Tarantola deviates substantially from the seismic values for P, K and K'. The generalized Rydberg EOS gives almost identical results with the Birch-Murnaghan third-order EOS. Both of them yield deviations from the seismic data, which are in opposite direction as compared to those found from the generalized Poirier-Tarantola logarithmic EOS

  16. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  17. Effective elastic modulus of isolated gecko setal arrays.

    Science.gov (United States)

    Autumn, K; Majidi, C; Groff, R E; Dittmore, A; Fearing, R

    2006-09-01

    Conventional pressure sensitive adhesives (PSAs) are fabricated from soft viscoelastic materials that satisfy Dahlquist's criterion for tack with a Young's modulus (E) of 100 kPa or less at room temperature and 1 Hz. In contrast, the adhesive on the toes of geckos is made of beta-keratin, a stiff material with E at least four orders of magnitude greater than the upper limit of Dahlquist's criterion. Therefore, one would not expect a beta-keratin structure to function as a PSA by deforming readily to make intimate molecular contact with a variety of surface profiles. However, since the gecko adhesive is a microstructure in the form of an array of millions of high aspect ratio shafts (setae), the effective elastic modulus (E(eff)) is much lower than E of bulk beta-keratin. In the first test of the E(eff) of a gecko setal adhesive, we measured the forces resulting from deformation of isolated arrays of tokay gecko (Gekko gecko) setae during vertical compression, and during tangential compression at angles of +45 degrees and -45 degrees . We tested the hypothesis that E(eff) of gecko setae falls within Dahlquist's criterion for tack, and evaluated the validity of a model of setae as cantilever beams. Highly linear forces of deformation under all compression conditions support the cantilever model. E(eff) of setal arrays during vertical and +45 degrees compression (along the natural path of drag of the setae) were 83+/-4.0 kPa and 86+/-4.4 kPa (means +/- s.e.m.), respectively. Consistent with the predictions of the cantilever model, setae became significantly stiffer when compressed against the natural path of drag: E(eff) during -45 degrees compression was 110+/-4.7 kPa. Unlike synthetic PSAs, setal arrays act as Hookean elastic solids; setal arrays function as a bed of springs with a directional stiffness, assisting alignment of the adhesive spatular tips with the contact surface during shear loading.

  18. Fuel Thermal Expansion (FTHEXP)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1978-07-01

    A model is presented which deals with dimensional changes in LWR fuel pellets caused by changes in temperature. It is capable of dealing with any combination of UO 2 and PuO 2 in solid, liquid or mixed phase states, and includes expansion due to the solid-liquid phase change. The function FTHEXP models fuel thermal expansion as a function of temperature, fraction of PuO 2 , and the fraction of fuel which is molten

  19. Impedance and modulus spectroscopic study of nano hydroxyapatite

    Science.gov (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  20. Low elastic modulus titanium–nickel scaffolds for bone implants

    International Nuclear Information System (INIS)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property

  1. Application of diffusion barriers to high modulus fibers

    Science.gov (United States)

    Veltri, R. D.; Douglas, F. C.; Paradis, E. L.; Galasso, F. S.

    1977-01-01

    Barrier layers were coated onto high-modulus fibers, and nickel and titanium layers were overcoated as simulated matrix materials. The objective was to coat the high-strength fibers with unreactive selected materials without degrading the fibers. The fibers were tungsten, niobium, and single-crystal sapphire, while the materials used as barrier coating layers were Al2O3, Y2O3, TiC, ZrC, WC with 14% Co, and HfO2. An ion-plating technique was used to coat the fibers. The fibers were subjected to high-temperature heat treatments to evaluate the effectiveness of the barrier layer in preventing fiber-metal interactions. Results indicate that Al2O3, Y2O3, and HfO2 can be used as barrier layers to minimize the nickel-tungsten interaction. Further investigation, including thermal cycling tests at 1090 C, revealed that HfO2 is probably the best of the three.

  2. Regional variation in wood modulus of elasticity (stiffness) and modulus of rupture (strength) of planted loblolly pine in the United States

    Science.gov (United States)

    Antony Finto; Lewis Jordan; Laurence R. Schimleck; Alexander Clark; Ray A. Souter; Richard F. Daniels

    2011-01-01

    Modulus of elasticity (MOE), modulus of rupture (MOR), and specific gravity (SG) are important properties for determining the end-use and value of a piece of lumber. This study addressed the variation in MOE, MOR, and SG with physiographic region, tree height, and wood type. Properties were measured from two static bending samples (dimensions 25.4 mm × 25.4 mm × 406.4...

  3. A molecular dynamics study on Young's modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber.

    Science.gov (United States)

    Chawla, Raj; Sharma, Sumit

    2018-03-18

    Styrene-butadiene rubber is a copolymer widely used in making car tires and has excellent abrasion resistance. The Young's modulus and tribology of pure styrene butadiene rubber (SBR) polymer and carbon nanotube reinforced polymer composites have been investigated using molecular dynamics simulations. The mechanism of enhanced tribology properties using carbon nanotube has been studied and discussed. The obtained Young's modulus shows the enhancement in mechanical properties of SBR polymer when carbon nanotubes are used as reinforcement. The concentration, temperature and velocity profiles, radial distribution function, frictional stresses, and cohesive energy density are calculated and analyzed in detail. The Young's modulus of SBR matrix increases about 29.16% in the presence of the 5% CNT. The atom movement velocity and average cohesive energy density in the friction area of pure SBR matrix was found to be more than that of the CNT/SBR composite. Graphical abstract Initial and final conditions of (a) pure SBR matrix and (b) CNT/SBR matrix subjected toshear loading and frictional stresses of top Fe layers of both pure SBR and CNT/SBR composite.

  4. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent

    Science.gov (United States)

    An, Suyeong; Kim, Byoungsoo; Lee, Jonghwi

    2017-07-01

    Porous materials with surprisingly diverse structures have been utilized in nature for many functional purposes. However, the structures and applications of porous man-made polymer materials have been limited by the use of processing techniques involving foaming agents. Herein, we demonstrate for the first time the outstanding hardness and modulus properties of an elastomer that originate from the novel processing approach applied. Polyurethane films of 100-μm thickness with biomimetic ordered porous structures were prepared using directional melt crystallization of a solvent and exhibited hardness and modulus values that were 6.8 and 4.3 times higher than those of the random pore structure, respectively. These values surpass the theoretical prediction of the typical model for porous materials, which works reasonably well for random pores but not for directional pores. Both the ordered and random pore structures exhibited similar porosities and pore sizes, which decreased with increasing solution concentration. This unexpectedly significant improvement of the hardness and modulus could open up new application areas for porous polymeric materials using this relatively novel processing technique.

  5. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  6. The variation in elastic modulus throughout the compression of foam materials

    International Nuclear Information System (INIS)

    Sun, Yongle; Amirrasouli, B.; Razavi, S.B.; Li, Q.M.; Lowe, T.; Withers, P.J.

    2016-01-01

    We present a comprehensive experimental study of the variation in apparent unloading elastic modulus of polymer (largely elastic), aluminium (largely plastic) and fibre-reinforced cement (quasi-brittle) closed-cell foams throughout uniaxial compression. The results show a characteristic “zero-yield-stress” response and thereafter a rapid increase in unloading modulus during the supposedly “elastic” regime of the compressive stress–strain curve. The unloading modulus then falls with strain due to the localised cell-wall yielding or failure in the pre-collapse stage and the progressive cell crushing in the plateau stage, before rising sharply during the densification stage which is associated with global cell crushing and foam compaction. A finite element model based on the actual 3D cell structure of the aluminium foam imaged by X-ray computed tomography (CT) predicts an approximately linear fall of elastic modulus from zero strain until a band of collapsed cells forms. It shows that the subsequent gradual decrease in modulus is caused by the progressive collapse of cells. The elastic modulus rises sharply after the densification initiation strain has been reached. However, the elastic modulus is still well below that of the constituent material even when the “fully” dense state is approached. This work highlights the fact that the unloading elastic modulus varies throughout compression and challenges the idea that a constant elastic modulus can be applied in a homogenised foam model. It is suggested that the most representative value of elastic modulus may be obtained by extrapolating the measured unloading modulus to zero strain.

  7. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  8. Accelerating the loop expansion

    International Nuclear Information System (INIS)

    Ingermanson, R.

    1986-01-01

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi 4 theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs

  9. Virial Expansion Bounds

    Science.gov (United States)

    Tate, Stephen James

    2013-10-01

    In the 1960s, the technique of using cluster expansion bounds in order to achieve bounds on the virial expansion was developed by Lebowitz and Penrose (J. Math. Phys. 5:841, 1964) and Ruelle (Statistical Mechanics: Rigorous Results. Benjamin, Elmsford, 1969). This technique is generalised to more recent cluster expansion bounds by Poghosyan and Ueltschi (J. Math. Phys. 50:053509, 2009), which are related to the work of Procacci (J. Stat. Phys. 129:171, 2007) and the tree-graph identity, detailed by Brydges (Phénomènes Critiques, Systèmes Aléatoires, Théories de Jauge. Les Houches 1984, pp. 129-183, 1986). The bounds achieved by Lebowitz and Penrose can also be sharpened by doing the actual optimisation and achieving expressions in terms of the Lambert W-function. The different bound from the cluster expansion shows some improvements for bounds on the convergence of the virial expansion in the case of positive potentials, which are allowed to have a hard core.

  10. Conformal expansions and renormalons

    Energy Technology Data Exchange (ETDEWEB)

    Rathsman, J.

    2000-02-07

    The coefficients in perturbative expansions in gauge theories are factorially increasing, predominantly due to renormalons. This type of factorial increase is not expected in conformal theories. In QCD conformal relations between observables can be defined in the presence of a perturbative infrared fixed-point. Using the Banks-Zaks expansion the authors study the effect of the large-order behavior of the perturbative series on the conformal coefficients. The authors find that in general these coefficients become factorially increasing. However, when the factorial behavior genuinely originates in a renormalon integral, as implied by a postulated skeleton expansion, it does not affect the conformal coefficients. As a consequence, the conformal coefficients will indeed be free of renormalon divergence, in accordance with previous observations concerning the smallness of these coefficients for specific observables. The authors further show that the correspondence of the BLM method with the skeleton expansion implies a unique scale-setting procedure. The BLM coefficients can be interpreted as the conformal coefficients in the series relating the fixed-point value of the observable with that of the skeleton effective charge. Through the skeleton expansion the relevance of renormalon-free conformal coefficients extends to real-world QCD.

  11. Mapping Brazilian Cropland Expansion, 2000-2013

    Science.gov (United States)

    Zalles, V.; Hansen, M.; Potapov, P.

    2016-12-01

    Brazil is one of the world's leading producers and exporters of agricultural goods. Despite undergoing significant increases in its cropland area in the last decades, it remains one of the countries with the most potential for further agricultural expansion. Most notably, the expansion in production areas of commodity crops such as soybean, corn, and sugarcane has become the leading cause of land cover conversion in Brazil. Natural land covers, such as the Amazon and Cerrado forests, have been negatively affected by this agricultural expansion, causing carbon emissions, biodiversity loss, altered water cycles, and many other disturbances to ecosystem services. Monitoring of change in cropland area extent can provide relevant information to decision makers seeking to understand and manage land cover change drivers and their impacts. In this study, the freely-available Landsat archive was leveraged to produce a large-scale, methodologically consistent map of cropland cover at 30 m. resolution for the entire Brazilian territory in the year 2000. Additionally, we mapped cropland expansion from 2000 to 2013, and used statistical sampling techniques to accurately estimate cropland area per Brazilian state. Using the Global Forest Change product produced by Hansen et al. (2013), we can disaggregate forest cover loss due to cropland expansion by year, revealing spatiotemporal trends that could advance our understanding of the drivers of forest loss.

  12. Organização do espaço urbano e expansão do calazar The organization of urban areas and expansion of kala-azar

    Directory of Open Access Journals (Sweden)

    Eduarda Ângela Pessoa Cesse

    2001-08-01

    Full Text Available OBJETIVOS: verificar determinados processos que estão relacionados com a ocupação do espaço urbano e que contribuem para a ocorrência e expansão do calazar em um município de médio porte com acentuado fluxo migratório e em expansão econômica. MÉTODOS: trata-se de um estudo epidemiológico, de corte transversal, no qual se realizou a investigação domiciliar dos casos registrados em 8 bairros e respectivos setores censitários, no município de Petrolina, Pernambuco, no período de 1992 a 1997. Está subsidiado por elementos da pesquisa laboratorial, considerando o transmissor e o reservatório. Utilizamos o modelo explicativo da determinação social do processo saúde-doença a esta situação endêmica-epidêmica. RESULTADOS: observa-se uma concentração de casos de calazar na periferia da zona urbana do município de Petrolina, em áreas de invasão e expansão, onde o saneamento básico é precário, há a presença de animais e do vetor no peridomicílio e a população apresenta um baixo grau de instrução. O sexo masculino e a faixa etária de 0-4 anos são os mais acometidos. CONCLUSÕES: os achados sugerem o estabelecimento de um novo padrão epidemiológico para o calazar em Petrolina, onde a ocorrência dessa endemia se dá em um espaço altamente modificado pela população. Tal situação caracteriza um processo de ruralização das áreas periurbanas endêmicas nas grandes cidades.OBJECTIVES: the aim of this study was to verify certain processes that are related to the occupation of urban areas and which contribute to the occurrence and expansion of kala-azar in a medium-sized town undergoing economic growth with a high influx of migrants. METHODS: the study is an epidemiological cross-section, in which house-to-house investigation was conducted concerning cases registered in 8 districts and their respective census areas, all in the municipality of Petrolina, Pernambuco state, Brazil, from 1992 to 1997. The study was

  13. Thermal expansion data

    International Nuclear Information System (INIS)

    Taylor, D.

    1984-01-01

    This paper gives regression data for a modified second order polynomial fitted to the expansion data of, and percentage expansions for dioxides with (a) the fluorite and antifluorite structure: AmO 2 , BkO 2 , CeO 2 , CmO 2 , HfO 2 , Li 2 O, NpO 2 , PrO 2 , PuO 2 , ThO 2 , UO 2 , ZrO 2 , and (b) the rutile structure: CrO 2 , GeO 2 , IrO 2 , MnO 2 , NbO 2 , PbO 2 , SiO 2 , SnO 2 , TeO 2 , TiO 2 and VO 2 . Reduced expansion curves for the dioxides showed only partial grouping into iso-electronic series for the fluorite structures and showed that the 'law of corresponding states' did not apply to the rutile structures. (author)

  14. Estimation of the Young’s modulus of cellulose Iß by MM3 and quantum mechanics

    Science.gov (United States)

    Young’s modulus provides a measure of the resistance to deformation of an elastic material. In this study, modulus estimations for models of cellulose Iß relied on calculations performed with molecular mechanics (MM) and quantum mechanics (QM) programs. MM computations used the second generation emp...

  15. Particle size dependence of the Young's modulus of filled polymers: 1. Preliminary experiments

    NARCIS (Netherlands)

    Vollenberg, P.H.T.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  16. Determination of young's modulus of PZT-influence of cantilever orientation

    NARCIS (Netherlands)

    Nazeer, H.; Woldering, L.A.; Abelmann, Leon; Elwenspoek, Michael Curt

    Calculation of the resonance frequency of cantilevers fabricated from an elastically anisotropic material requires the use of an effective Young’s modulus. In this paper a technique to determine the appropriate effective Young’s modulus for arbitrary cantilever geometries is introduced. This

  17. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    DEFF Research Database (Denmark)

    Maia, Lino; Azenha, Miguel; Geiker, Mette

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently...

  18. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    Science.gov (United States)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  19. A simple model for calculating the bulk modulus of the mixed ionic ...

    Indian Academy of Sciences (India)

    thermophysical properties, viz., bulk modulus, molecular force constant, reststrahlen fre- quency and Debye temperature using the three-body potential model. The calculated bulk modulus, from the TBPM model, for the pure end members (NH4Cl and NH4Br) are in agreement with the experimental values, as shown in ...

  20. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  1. Laboratory Performance Evaluation of High Modulus Asphalt Concrete Modified with Different Additives

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available The objective of this study is to evaluate comprehensive performance of high modulus asphalt concrete (HMAC and propose common values for establishing evaluation system. Three gradations with different modifiers were conducted to study the high and low temperature performance, shearing behavior, and water stability. The laboratory tests for HMAC included static and dynamic modulus tests, rutting test, uniaxial penetration test, bending test, and immersion Marshall test. Dynamic modulus test results showed that modifier can improve the static modulus and the improvements were remarkable at higher temperature. Moreover, modulus of HMAC-20 was better than those of HMAC-16 and HMAC-25. The results of performance test indicated that HMAC has good performance to resist high temperature rutting, and the resistances of the HMAC-20 and HMAC-25 against rutting were better than that of HMAC-16. Then, the common values of dynamic stability were recommended. Furthermore, common values of HMAC performance were established based on pavement performance tests.

  2. Bisphosphonate treatment affects trabecular bone apparent modulus through micro-architecture rather than matrix properties

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    and trabecular architecture independently. Conventional histomorphometry and microdamage data were obtained from the second and third lumbar vertebrae of the same dogs [Bone 28 (2001) 524]. Bisphosphonate treatment resulted in an increased apparent Young's modulus, decreased bone turnover, increased calcified...... matrix density, and increased microdamage. We could not detect any change in the effective Young's modulus of the calcified matrix in the bisphosphonate treated groups. The observed increase in apparent Young's modulus was due to increased bone mass and altered trabecular architecture rather than changes...... in the calcified matrix modulus. We hypothesize that the expected increase in the Young's modulus of the calcified matrix due to the increased calcified matrix density was counteracted by the accumulation of microdamage. Udgivelsesdato: 2004 May...

  3. E-modulus evolution and its relation to solids formation of pastes from commercial cements

    International Nuclear Information System (INIS)

    Maia, Lino; Azenha, Miguel; Geiker, Mette; Figueiras, Joaquim

    2012-01-01

    Models for early age E-modulus evolution of cement pastes are available in the literature, but their validation is limited. This paper provides correlated measurements of early age evolution of E-modulus and hydration of pastes from five commercial cements differing in limestone content. A recently developed methodology allowed continuous monitoring of E-modulus from the time of casting. The methodology is a variant of classic resonant frequency methods, which are based on determination of the first resonant frequency of a composite beam containing the material. The hydration kinetics — and thus the rate of formation of solids — was determined using chemical shrinkage measurements. For the cements studied similar relationships between E-modulus and chemical shrinkage were observed for comparable water-to-binder ratio. For commercial cements it is suggested to model the E-modulus evolution based on the amount of binder reacted, instead of the degree of hydration.

  4. A Prediction Method of Tensile Young's Modulus of Concrete at Early Age

    Directory of Open Access Journals (Sweden)

    Isamu Yoshitake

    2012-01-01

    Full Text Available Knowledge of the tensile Young's modulus of concrete at early ages is important for estimating the risk of cracking due to restrained shrinkage and thermal contraction. However, most often, the tensile modulus is considered equal to the compressive modulus and is estimated empirically based on the measurements of compressive strength. To evaluate the validity of this approach, the tensile Young's moduli of 6 concrete and mortar mixtures are measured using a direct tension test. The results show that the tensile moduli are approximately 1.0–1.3-times larger than the compressive moduli within the material's first week of age. To enable a direct estimation of the tensile modulus of concrete, a simple three-phase composite model is developed based on random distributions of coarse aggregate, mortar, and air void phases. The model predictions show good agreement with experimental measurements of tensile modulus at early age.

  5. Proposal of Design Formulae for Equivalent Elasticity of Masonry Structures Made with Bricks of Low Modulus

    Directory of Open Access Journals (Sweden)

    Muhammad Ridwan

    2017-01-01

    Full Text Available Bricks of low elastic modulus are occasionally used in some developing countries, such as Indonesia and India. Most of the previous research efforts focused on masonry structures built with bricks of considerably high elastic modulus. The objective of this study is to quantify the equivalent elastic modulus of lower-stiffness masonry structures, when the mortar has a higher modulus of elasticity than the bricks, by employing finite element (FE simulations and adopting the homogenization technique. The reported numerical simulations adopted the two-dimensional representative volume elements (RVEs using quadrilateral elements with four nodes. The equivalent elastic moduli of composite elements with various bricks and mortar were quantified. The numerically estimated equivalent elastic moduli from the FE simulations were verified using previously established test data. Hence, a new simplified formula for the calculation of the equivalent modulus of elasticity of such masonry structures is proposed in the present study.

  6. Assessment of Characteristic Function Modulus of Vibroacoustic Signal Given a Limit State Parameter of Diagnosed Equipment

    Science.gov (United States)

    Kostyukov, V. N.; Naumenko, A. P.; Kudryavtseva, I. S.

    2018-01-01

    Improvement of distinguishing criteria, determining defects of machinery and mechanisms, by vibroacoustic signals is a recent problem for technical diagnostics. The work objective is assessment of instantaneous values by methods of statistical decision making theory and risk of regulatory values of characteristic function modulus. The modulus of the characteristic function is determined given a fixed parameter of the characteristic function. It is possible to determine the limits of the modulus, which correspond to different machine’s condition. The data of the modulus values are used as diagnostic features in the vibration diagnostics and monitoring systems. Using such static decision-making methods as: minimum number of wrong decisions, maximum likelihood, minimax, Neumann-Pearson characteristic function modulus limits are determined, separating conditions of a diagnosed object.

  7. Low-temperature thermal expansion

    International Nuclear Information System (INIS)

    Collings, E.W.

    1986-01-01

    This chapter discusses the thermal expansion of insulators and metals. Harmonicity and anharmonicity in thermal expansion are examined. The electronic, magnetic, an other contributions to low temperature thermal expansion are analyzed. The thermodynamics of the Debye isotropic continuum, the lattice-dynamical approach, and the thermal expansion of metals are discussed. Relative linear expansion at low temperatures is reviewed and further calculations of the electronic thermal expansion coefficient are given. Thermal expansions are given for Cu, Al and Ti. Phenomenologic thermodynamic relationships are also discussed

  8. The study of stiffness modulus values for AC-WC pavement

    Science.gov (United States)

    Lubis, AS; Muis, Z. A.; Iskandar, T. D.

    2018-02-01

    One of the parameters of the asphalt mixture in order for the strength and durability to be achieved as required is the stress-and-strain showing the stiffness of a material. Stiffness modulus is a very necessary factor that will affect the performance of asphalt pavements. If the stiffness modulus value decreases there will be a cause of aging asphalt pavement crack easily when receiving a heavy load. The high stiffness modulus asphalt concrete causes more stiff and resistant to bending. The stiffness modulus value of an asphalt mixture material can be obtained from the theoretical (indirect methods) and laboratory test results (direct methods). For the indirect methods used Brown & Brunton method, and Shell Bitumen method; while for the direct methods used the UMATTA tool. This study aims to determine stiffness modulus values for AC-WC pavement. The tests were conducted in laboratory that used 3 methods, i.e. Brown & Brunton Method, Shell Bitumen Method and Marshall Test as a substitute tool for the UMATTA tool. Hotmix asphalt made from type AC-WC with pen 60/70 using a mixture of optimum bitumen content was 5.84% with a standard temperature variation was 60°C and several variations of temperature that were 30, 40, 50, 70 and 80°C. The stiffness modulus value results obtained from Brown & Brunton Method, Shell Bitumen Method and Marshall Test which were 1374,93 Mpa, 235,45 Mpa dan 254,96 Mpa. The stiffness modulus value decreases with increasing temperature of the concrete asphalt. The stiffness modulus value from the Bitumen Shell method and the Marshall Test has a relatively similar value.The stiffness modulus value from the Brown & Brunton method is greater than the Bitumen Shell method and the Marshall Test, but can not measure the stiffness modulus value at temperature above 80°C.

  9. Lace expansion for dummies

    NARCIS (Netherlands)

    Bolthausen, Erwin; Van Der Hofstad, Remco; Kozma, Gady

    2018-01-01

    We show Green's function asymptotic upper bound for the two-point function of weakly self-Avoiding walk in d >4, revisiting a classic problem. Our proof relies on Banach algebras to analyse the lace-expansion fixed point equation and is simpler than previous approaches in that it avoids Fourier

  10. OPEC future capacity expansions

    International Nuclear Information System (INIS)

    Sandrea, I.

    2005-01-01

    This conference presentation examined OPEC future capacity expansions including highlights from 2000-2004 from the supply perspective and actions by OPEC; OPEC spare capacity in 2005/2006; medium-term capacity expansion and investments; long-term scenarios, challenges and opportunities; and upstream policies in member countries. Highlights from the supply perspective included worst than expected non-OPEC supply response; non-OPEC supply affected by a number of accidents and strikes; geopolitical tensions; and higher than expected demand for OPEC crude. OPEC's actions included closer relationship with other producers and consumers; capacity expansions in 2004 and 2005/2006; and OPEC kept the market well supplied with crude in 2004. The presentation also provided data using graphical charts on OPEC net capacity additions until 2005/2006; OPEC production versus spare capacity from 2003 to 2005; OPEC production and capacity to 2010; and change in required OPEC production from 2005-2020. Medium term expansion to 2010 includes over 60 projects. Medium-term risks such as project execution, financing, costs, demand, reserves, depletion, integration of Iraq, and geopolitical tensions were also discussed. The presentation concluded that in the long term, large uncertainties remain; the peak of world supply is not imminent; and continued and enhanced cooperation is essential to market stability. tabs., figs

  11. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  12. Adaptive and non-adaptive data hiding methods for grayscale images based on modulus function

    Directory of Open Access Journals (Sweden)

    Najme Maleki

    2014-07-01

    Full Text Available This paper presents two adaptive and non-adaptive data hiding methods for grayscale images based on modulus function. Our adaptive scheme is based on the concept of human vision sensitivity, so the pixels in edge areas than to smooth areas can tolerate much more changes without making visible distortion for human eyes. In our adaptive scheme, the average differencing value of four neighborhood pixels into a block via a threshold secret key determines whether current block is located in edge or smooth area. Pixels in the edge areas are embedded by Q-bit of secret data with a larger value of Q than that of pixels placed in smooth areas. Also in this scholar, we represent one non-adaptive data hiding algorithm. Our non-adaptive scheme, via an error reduction procedure, produces a high visual quality for stego-image. The proposed schemes present several advantages. 1-of aspects the embedding capacity and visual quality of stego-image are scalable. In other words, the embedding rate as well as the image quality can be scaled for practical applications 2-the high embedding capacity with minimal visual distortion can be achieved, 3-our methods require little memory space for secret data embedding and extracting phases, 4-secret keys have used to protect of the embedded secret data. Thus, level of security is high, 5-the problem of overflow or underflow does not occur. Experimental results indicated that the proposed adaptive scheme significantly is superior to the currently existing scheme, in terms of stego-image visual quality, embedding capacity and level of security and also our non-adaptive method is better than other non-adaptive methods, in view of stego-image quality. Results show which our adaptive algorithm can resist against the RS steganalysis attack.

  13. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong; Ngan, Alfonso H W; Tang, Bin; Wang, Anxun

    2012-01-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  14. On the common modulus attack into the LUC4,6 cryptosystem

    Science.gov (United States)

    Wong, Tze Jin; Said, Mohd Rushdan Md; Othman, Mohamed; Koo, Lee Feng

    2015-05-01

    The LUC4,6 cryptosystem is a system analogy with RSA cryptosystem and extended from LUC and LUC3 cryptosystems. The process of encryption and decryption are derived from the fourth order linear recurrence sequence and based on Lucas function. This paper reports an investigation into the common modulus attack on the LUC4,6 cryptosystem. In general, the common modulus attack will be succeeded if the sender sends the plaintext to two users used same RSA-modulus and both of encryption keys of them are relatively prime to each other. However, based on the characteristics of high order Lucas sequence, the LUC4,6 cryptosystem is unattackable

  15. Young's modulus of individual ZnO nanowires

    International Nuclear Information System (INIS)

    Jiang, Dayong; Tian, Chunguang; Liu, Qingfei; Zhao, Man; Qin, Jieming; Hou, Jianhua; Gao, Shang; Liang, Qingcheng; Zhao, Jianxun

    2014-01-01

    We used a contact-mode atomic force microscopy (AFM) to study the mechanical properties of an individual ZnO nanowire in the open air. It is noteworthy that the Young's modulus can be determined by an AFM tip compressing a single nanowire on a rigid substrate, which can bring more repeatability and accuracy for the measurements. In particular, the calculated radial Young's modulus of ZnO nanowires is consistent with the data of ZnO bulks and thin films. We also present the Young's modulus with different diameters, and all these are discussed deeply

  16. Reliable measurement of elastic modulus of cells by nanoindentation in an atomic force microscope

    KAUST Repository

    Zhou, Zhoulong

    2012-04-01

    The elastic modulus of an oral cancer cell line UM1 is investigated by nanoindentation in an atomic force microscope with a flat-ended tip. The commonly used Hertzian method gives apparent elastic modulus which increases with the loading rate, indicating strong effects of viscoelasticity. On the contrary, a rate-jump method developed for viscoelastic materials gives elastic modulus values which are independent of the rate-jump magnitude. The results show that the rate-jump method can be used as a standard protocol for measuring elastic stiffness of living cells, since the measured values are intrinsic properties of the cells. © 2011 Elsevier Ltd.

  17. Expansion at Olympic Dam

    International Nuclear Information System (INIS)

    Lewis, C.

    1997-01-01

    The Olympic Dam orebody is the 6th largest copper and the single largest uranium orebody in the world. Mine production commenced in June 1988, at an annual production rate of around 45,000 tonnes of copper and 1,000 tonnes of uranium. Western Mining Corporation announced in 1996 a proposed $1.25 billion expansion of the Olympic Dam operation to raise the annual production capacity of the mine to 200,000 tonnes of copper, approximately 3,700 tonnes of uranium, 75,000 ounces of gold and 950,000 ounces of silver by 2001. Further optimisation work has identified a faster track expansion route, with an increase in the capital cost to $1.487 billion but improved investment outcome, a new target completion date of end 1999, and a new uranium output of 4,600 tonnes per annum from that date

  18. Financing electricity expansion

    International Nuclear Information System (INIS)

    Hyman, L.S.

    1994-01-01

    Expansion of electricity supply is associated with economic development. The installation and enlargement of power systems in developing countries entails a huge financial burden, however. Energy consumers in such countries must pay not only for supplies but for the cost of raising the capital for expansion on the international markets. Estimates are presented for the capital expenditure for electricity supply over the period 1990 to 2020 for the major world regions, using approximations for the cost of plant and capital and for the returns earned. These data lead to the conclusion that the five regions with the lowest per capita incomes are those which will need the major part of the capital expenditure and the highest percentage of external finance. (6 tables) (UK)

  19. Bigravity from gradient expansion

    International Nuclear Information System (INIS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-01-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  20. Expansion of magnetic clouds

    International Nuclear Information System (INIS)

    Suess, S.T.

    1987-01-01

    Magnetic clouds are a carefully defined subclass of all interplanetary signatures of coronal mass ejections whose geometry is thought to be that of a cylinder embedded in a plane. It has been found that the total magnetic pressure inside the clouds is higher than the ion pressure outside, and that the clouds are expanding at 1 AU at about half the local Alfven speed. The geometry of the clouds is such that even though the magnetic pressure inside is larger than the total pressure outside, expansion will not occur because the pressure is balanced by magnetic tension - the pinch effect. The evidence for expansion of clouds at 1 AU is nevertheless quite strong so another reason for its existence must be found. It is demonstrated that the observations can be reproduced by taking into account the effects of geometrical distortion of the low plasma beta clouds as they move away from the Sun

  1. On the Convergence of the Virial Expansion

    NARCIS (Netherlands)

    Ramawadh, S.D.

    2015-01-01

    The virial expansion appears in statistical mechanics, an area where physics and mathematics intersect. Throughout this thesis we will mostly ignore the physics and mainly focus on the mathematical aspects. This is a deliberate choice, made for two reasons. Firstly, there are several books that

  2. IKEA's International Expansion

    OpenAIRE

    Harapiak, Clayton

    2013-01-01

    This case concerns a global retailing firm that is dealing with strategic management and marketing issues. Applying a scenario of international expansion, this case provides a thorough analysis of the current business environment for IKEA. Utilizing a variety of methods (e.g. SWOT, PESTLE, McKinsey Matrix) the overall objective is to provide students with the opportunity to apply their research skills and knowledge regarding a highly competitive industry to develop strategic marketing strateg...

  3. Symmetric eikonal expansion

    International Nuclear Information System (INIS)

    Matsuki, Takayuki

    1976-01-01

    Symmetric eikonal expansion for the scattering amplitude is formulated for nonrelativistic and relativistic potential scatterings and also for the quantum field theory. The first approximations coincide with those of Levy and Sucher. The obtained scattering amplitudes are time reversal invariant for all cases and are crossing symmetric for the quantum field theory in each order of approximation. The improved eikonal phase introduced by Levy and Sucher is also derived from the different approximation scheme from the above. (auth.)

  4. Series expansions without diagrams

    International Nuclear Information System (INIS)

    Bhanot, G.; Creutz, M.; Horvath, I.; Lacki, J.; Weckel, J.

    1994-01-01

    We discuss the use of recursive enumeration schemes to obtain low- and high-temperature series expansions for discrete statistical systems. Using linear combinations of generalized helical lattices, the method is competitive with diagrammatic approaches and is easily generalizable. We illustrate the approach using Ising and Potts models. We present low-temperature series results in up to five dimensions and high-temperature series in three dimensions. The method is general and can be applied to any discrete model

  5. Resilient modulus for unbound granular materials and subgrade soils in Egypt

    Directory of Open Access Journals (Sweden)

    Mousa Rabah

    2017-01-01

    Full Text Available Mechanistic Empirical (ME pavement design methods started to gain attention especially the last couple of years in Egypt and the Middle East. One of the challenges facing the spread of these methods in Egypt is lack of advanced properties of local soil and asphalt, which are needed as input data in ME design. Resilient modulus (Mr for example is an important engineering property that expresses the elastic behavior of soil/unbound granular materials (UGMs under cyclic traffic loading for ME design. In order to overcome the scarcity of the resilient modulus data for soil/UGMs in Egypt, a comprehensive laboratory testing program was conducted to measure resilient modulus of typical UGMs and subgrade soils typically used in pavement construction in Egypt. The factors that affect the resilient modulus of soil/UGMs were reviewed, studied and discussed. Finally, the prediction accuracy of the most well-known Mr Prediction models for the locally investigated materials was investigated.

  6. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings.

    Directory of Open Access Journals (Sweden)

    Brian Chin Wing Kot

    Full Text Available Standardization on Shear wave ultrasound elastography (SWUE technical settings will not only ensure that the results are accurate, but also detect any differences over time that may be attributed to true physiological changes. The present study evaluated the variations of elastic modulus of muscle and tendon using SWUE when different technical aspects were altered. The results of this study indicated that variations of elastic modulus of muscle and tendon were found when different transducer's pressure and region of interest (ROI's size were applied. No significant differences in elastic modulus of the rectus femoris muscle and patellar tendon were found with different acquisition times of the SWUE sonogram. The SWUE on the muscle and tendon should be performed with the lightest transducer's pressure, a shorter acquisition time for the SWUE sonogram, while measuring the mean elastic modulus regardless the ROI's size.

  7. Short cellulosic fiber/starch acetate composites — micromechanical modeling of Young’s modulus

    DEFF Research Database (Denmark)

    Madsen, Bo; Joffe, Roberts; Peltola, Heidi

    2011-01-01

    This study is presented to predict the Young’s modulus of injection-molded short cellulosic fiber/plasticized starch acetate composites with variable fiber and plasticizer content. A modified rule of mixtures model is applied where the effect of porosity is included, and where the fiber weight...... (density and Young’s modulus). The measured Young’s modulus of the composites varies in the range 1.1—8.3 GPa, and this is well predicted by the model calculations. A property diagram is presented to be used for the tailor-making of composites with Young’s modulus in the range 0.2—10 GPa....

  8. Failure Modes of a Unidirectional Ultra-High-Modulus Carbon-Fiber/Carbon-Matrix Composite

    National Research Council Canada - National Science Library

    Zaldivar, R

    1998-01-01

    The objective of this study was to observe the effects of various microstructural features on the in situ, room-temperature tensile fracture behavior of an ultra-high-modulus, unidirectional carbon/carbon (C/C...

  9. Young's modulus of defective graphene sheet from intrinsic thermal vibrations

    International Nuclear Information System (INIS)

    Thomas, Siby; Mrudul, M S; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to establish a relation between thermally excited ripples and Young's modulus of defective graphene sheet within a range of temperatures. The presence of the out-of-plane intrinsic ripples stabilizes the graphene membranes and the mechanical stability is analyzed by means of thermal mean square vibration amplitude in the long wavelength regime. We observed that the presence of vacancy and Stone-Wales (SW) defects reduces the Young's modulus of graphene sheets. Graphene sheet with vacancy defects possess superior Young's modulus to that of a sheet with Stone-Wales defects. The obtained room temperature Young's modulus of pristine and defective graphene sheet is ∼ 1 TPa, which is comparable to the results of earlier experimental and atomistic simulation studies. (paper)

  10. Wind Diffusivity Current, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  11. Wind Stress, METOP ASCAT, 0.25 degrees, Global, Near Real Time, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes near real time wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  12. Variation of the Young's modulus with plastic strain applying to elastoplastic software

    International Nuclear Information System (INIS)

    Morestin, F.; Boivin, M.

    1993-01-01

    Work hardening of steel involves modifications of the elastic properties of the material, for instance, an increase of its yield stress. It may be also the cause of an appreciable decrease of the Young's modulus. This property decreases as plastic strain increases. Experiments with a microcomputer controlled tensile test machine indicated that diminution could reach more than 10% of the initial value, after only 5% of plastic strain. In spite of this fact, lots of elastoplastic softwares don't combine the decrease of the Young's modulus with plastification though it may involve obvious differences among results. As an application we have developed a software which computes the deformation of steel sheet in press forming, after springback. This software takes into account the decrease of the Young's modulus and its results are very close to experimental values. Quite arbitrarily, we noticed a recovery of the Young's modulus of plastified specimens after few days but not for all steels tested. (author)

  13. Young's Modulus of Wurtzite and Zinc Blende InP Nanowires.

    Science.gov (United States)

    Dunaevskiy, Mikhail; Geydt, Pavel; Lähderanta, Erkki; Alekseev, Prokhor; Haggrén, Tuomas; Kakko, Joona-Pekko; Jiang, Hua; Lipsanen, Harri

    2017-06-14

    The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E [0001] = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E [0001] = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E [111] = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E [111] = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.

  14. Design values of resilient modulus of stabilized and non-stabilized base.

    Science.gov (United States)

    2010-10-01

    The primary objective of this research study is to determine design value ranges for typical base materials, as allowed by LADOTD specifications, through laboratory tests with respect to resilient modulus and other parameters used by pavement design ...

  15. The creep compliance, the relaxation modulus and the complex compliance of linear viscoelastic, homogeneous, isotropic materials

    International Nuclear Information System (INIS)

    Wong, P.K.

    1989-01-01

    This paper reports on a study to obtain the creep compliance, the relaxation modulus and the complex compliance derived from the concept of mechanical resistance for the constitutive equation of a class of linear viscoelastic, homogeneous, isotropic materials

  16. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying; Lai, Yun; Zhang, Zhao-Qing

    2011-01-01

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse

  17. Hardness and Elastic Modulus of Titanium Nitride Coatings Prepared by Pirac Method

    Science.gov (United States)

    Wu, Siyuan; Wu, Shoujun; Zhang, Guoyun; Zhang, Weiguo

    In the present work, hardness and elastic modulus of a titanium nitride coatings prepared on Ti6Al4V by powder immersion reaction-assisted coating (PIRAC) are tested and comparatively studied with a physical vapor deposition (PVD) TiN coating. Surface hardness of the PIRAC coatings is about 11GPa, much lower than that of PVD coating of 22GPa. The hardness distribution profile from surface to substrate of the PVD coatings is steeply decreased from ˜22GPa to ˜4.5GPa of the Ti6Al4V substrate. The PIRAC coatings show a gradually decreasing hardness distribution profile. Elastic modulus of the PVD coating is about 426GPa. The PIRAC coatings show adjustable elastic modulus. Elastic modulus of the PIRAC coatings prepared at 750∘C for 24h and that at 800∘C for 8h is about 234 and 293GPa, respectively.

  18. Wind Stress, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality wind stress data in zonal, meridional, modulus, and wind stress curl sets. This data begins with wind velocity...

  19. The dimensional stability and elastic modulus of cemented simulant Winfrith reactor (SGHWR) sludge

    International Nuclear Information System (INIS)

    Holland, T.R.; Lee, D.J.

    1985-12-01

    Dimensional changes and elastic modulus have been monitored on cemented simulant sludge stored in various environments. Specimens prepared using a blended cement show no serious detrimental effects during sealed storage, underwater storage or freeze/thaw cycling. (author)

  20. Maximisation of the ratio of microhardness to the Young's modulus of Ti–12Mo–13Nb alloy through microstructure changes

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Sinara B., E-mail: sinara@metalmat.ufrj.br [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil); Centro Universitário de Volta Redonda, Volta Redonda, RJ (Brazil); Almeida, Luiz H. de [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil); Nunes, Carlos A. [Universidade de São Paulo, Departamento de Engenharia de Materiais, C.P. 116, Lorena, SP 12.600-970 (Brazil); Dille, Jean [Université Libre de Bruxelles, Chemical and Materials Department, Av. F. Roosevelt 50, C. P. 194/03, Brussels (Belgium); Soares, Glória A. [Universidade Federal do Rio de Janeiro, Departamento de Engenharia Metalúrgica e de Materiais, C.P. 68505, Rio de Janeiro, RJ 21945-970 (Brazil)

    2013-08-01

    Alloys for orthopaedic and dentistry applications require high mechanical strength and a low Young's modulus to avoid stress shielding. Metastable β titanium alloys appear to fulfil these requirements. This study investigated the correlation of phases precipitated in a Ti–12Mo–13Nb alloy with changes in hardness and the Young's modulus. The alloy was produced by arc melting under an argon atmosphere, after which, it was heat treated and cold forged. Two different routes of heat treatment were employed. Phase transformations were studied by employing X-ray diffraction and transmission electron microscopy. Property characterisation was based on Vickers microhardness tests and Young's modulus measurements. The highest ratio of microhardness to the Young's modulus was obtained using thermomechanical treatment, which consists of heating at 1000 °C for 24 h, water quenching, cold forging to reduce 80% of the area, and ageing at 500 °C for 24 h, where the final microstructure consisted of an α phase dispersed in a β matrix. The α phase appeared in two different forms: as fine lamellas (with 240 ± 100 nm length) and massive particles of 200–500 nm size. - Highlights: • The work presents microstructure change and properties of Ti–12Mo–13Nb alloy. • The better condition was achieved by the α phase distributed in the β matrix. • The values obtained were higher than of the Ti–6Al–4V alloy and cp Ti.

  1. Shear elastic modulus of magnetic gels with random distribution of magnetizable particles

    Science.gov (United States)

    Iskakova, L. Yu; Zubarev, A. Yu

    2017-04-01

    Magnetic gels present new type of composite materials with rich set of uniquie physical properties, which find active applications in many industrial and bio-medical technologies. We present results of mathematically strict theoretical study of elastic modulus of these systems with randomly distributed magnetizable particles in an elastic medium. The results show that an external magnetic field can pronouncedly increase the shear modulus of these composites.

  2. Young's modulus of a copper-stabilized niobium-titanium superconductive wire

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Moulder, J.C.; Austin, M.W.

    1980-01-01

    Young's modulus was determined for a 0.6-mm-dia niobium-titanium superconductive wire. Two methods were used: continuous-wave-resonance and laser-pulse-excitation. Young's moduli were also determined for the components - copper and Nb-Ti - in both wire and bulk forms. Some mechanical-deformation effects on Young's modulus were also measured. From the component' elastic moduli, that of the composite was predicted accurately by a simple rule-of-mixtures relationship

  3. A two-crown finite element technique for the determination of tearing modulus

    International Nuclear Information System (INIS)

    Suo, X.Z.; Combescure, A.

    1989-01-01

    The importance of approach to the subject of crack instability for the design of structures containing cracks has increased considerably over the last few years. The tearing modulus theory recently enunciated by Paris and co-workers has emerged as one of the leading criterions for stable crack growth and for instability, and the estimation of T termed Tearing modulus in the theory has since been extensively investigated theoretically as well as experimentally. Analytical methods exist for calculating the tearing modulus of various crack configurations in simple-shaped structures under certain loading conditions. However, for arbitrary structures under general loading, more sophisticated calculation techniques are required. Extending the virtual crack extension method introduced independently by Hellen and Parks, a new numerical approach for calculating the tearing modulus is presented hereafter and put in a form suitable for the instability analysis of structures containing one single crack or several interacting cracks. As it is well-known that the calculation of the energy release rate in elasticity by the virtual crack extension method is related to a stiffness derivative to which only a small region around the crack tip has a contribution, the technique described in the paper shows that it would be reasonable to evaluate the tearing modulus, or rather, the second derivative of potential energy with respect to the crack length, by means of two stiffness derivative calculations in two crowns around the crack tip. In particular, when one crown is strictly included in another one, computation is largely curtailed at this point with some saving of computer time, but a very accurate value of tearing modulus is obtained. As an interesting consequence, an another expression of the tearing modulus is carried out. In Section 4: the classical tearing modulus is proved to be precisely equivalent to a line integral which is independent of integration path. Numerical example

  4. Shear modulus and damping ratio of natural rubber containing carbon nanotubes

    Science.gov (United States)

    Ismail, R.; Ibrahim, A.; Rusop, M.; Adnan, A.

    2018-05-01

    This paper presents the results of an investigation into the potential application of Natural rubber (NR) containing Carbon Nanotubes (CNTs) by measuring its shear modulus and damping ratio. Four different types of rubber specimens which fabricated with different MWCNT loadings: 0 wt% (pure natural rubber), 1 wt%, 3 wt%, and 5 wt%. It is observed that the shear modulus and damping ratio of CNTs filled rubber composites are remarkably higher than that of raw rubber indicating the inherent reinforcing potential of CNTs.

  5. Young modulus and internal friction of a fiber-reinforced composite

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Lei, M.; Austin, M.W.

    1986-01-01

    By a kilohertz-frequency resonance method we determined the Young modulus and internal friction of a uniaxially fiber-reinforced composite. The composite comprised glass fibers in an epoxy-resin matrix. We studied three fiber contents: 0, 41, and 49 vol %. The Young modulus fit a linear rule of mixture. The internal friction fit a classical free-damped-oscillator model where one assumes a linear rule of mixture for three quantities: mass, force constant, and mechanical-resistance constant

  6. Effect of single-particle magnetostriction on the shear modulus of compliant magnetoactive elastomers

    Science.gov (United States)

    Kalita, Viktor M.; Snarskii, Andrei A.; Shamonin, Mikhail; Zorinets, Denis

    2017-03-01

    The influence of an external magnetic field on the static shear strain and the effective shear modulus of a magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016), 10.1103/PhysRevE.93.062503]. The planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk (platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions, induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown that model calculations of the effective shear modulus correspond to a phenomenological definition of effective elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations has been estimated using the method of Padé approximants, which predicts that both the absolute and relative changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing concentration of filler particles.

  7. Expansions for Coulomb wave functions

    NARCIS (Netherlands)

    Boersma, J.

    1969-01-01

    In this paper we derive a number of expansions for Whittaker functions, regular and irregular Coulomb wave functions. The main result consists of a new expansion for the irregular Coulomb wave functions of orders zero and one in terms of regular Coulomb wave functions. The latter expansions are

  8. Geometrical modulus of a casting and its influence on solidification process

    Directory of Open Access Journals (Sweden)

    F. Havlicek

    2011-10-01

    Full Text Available Object: The work analyses the importance of the known criterion for evaluating the controlled solidification of castings, so called geometrical modulus defined by N. Chvorinov as the first one. Geometrical modulus influences the solidification process. The modulus has such specificity that during the process of casting formation it is not a constant but its initial value decreases with the solidification progress because the remaining melt volume can decrease faster than its cooling surface.Methodology: The modulus is determined by a simple calculation from the ratio of the casting volume after pouring the metal in the mould to the cooled mould surface. The solidified metal volume and the cooled surface too are changed during solidification. That calculation is much more complicated. Results were checked up experimentally by measuring the temperatures in the cross-section of heavy steel castings during cooling them.Results: The given experimental results have completed the original theoretical calculations by Chvorinov and recent researches done with use of numerical calculations. The contribution explains how the geometrical modulus together with the thermal process in the casting causes the higher solidification rate in the axial part of the casting cross-section and shortening of solidification time. Practical implications: Change of the geometrical modulus negatively affects the casting internal quality. Melt feeding by capillary filtration in the dendritic network in the casting central part decreases and in such a way the shrinkage porosity volume increases. State of stress character in the casting is changed too and it increases.

  9. Modular correction method of bending elastic modulus based on sliding behavior of contact point

    International Nuclear Information System (INIS)

    Ma, Zhichao; Zhao, Hongwei; Zhang, Qixun; Liu, Changyi

    2015-01-01

    During the three-point bending test, the sliding behavior of the contact point between the specimen and supports was observed, the sliding behavior was verified to affect the measurements of both deflection and span length, which directly affect the calculation of the bending elastic modulus. Based on the Hertz formula to calculate the elastic contact deformation and the theoretical calculation of the sliding behavior of the contact point, a theoretical model to precisely describe the deflection and span length as a function of bending load was established. Moreover, a modular correction method of bending elastic modulus was proposed, via the comparison between the corrected elastic modulus of three materials (H63 copper–zinc alloy, AZ31B magnesium alloy and 2026 aluminum alloy) and the standard modulus obtained from standard uniaxial tensile tests, the universal feasibility of the proposed correction method was verified. Also, the ratio of corrected to raw elastic modulus presented a monotonically decreasing tendency as the raw elastic modulus of materials increased. (technical note)

  10. Developing the elastic modulus measurement of asphalt concrete using the compressive strength test

    Science.gov (United States)

    Setiawan, Arief; Suparma, Latif Budi; Mulyono, Agus Taufik

    2017-11-01

    Elastic modulus is a fundamental property of an asphalt mixture. An analytical method of the elastic modulus is needed to determine the thickness of flexible pavement. It has a role as one of the input values on a stress-strain analysis in the finite element method. The aim of this study was to develop the measurement of the elastic modulus by using compressive strength testing. This research used a set of specimen mold tool and Delta Dimensi software to record strain changes occurring in the proving ring of compression machine and the specimens. The elastic modulus of the five types of aggregate gradation and 2 types of asphalt were measured at optimum asphalt content. Asphalt Cement 60/70 and Elastomer Modified Asphalt (EMA) were used as a binder. Manufacturing success indicators of the specimens used void-in-the-mix (VIM) 3-5 % criteria. The success rate of the specimen manufacturing was more than 76%. Thus, the procedure and the compressive strength test equipment could be used for the measurement of the elastic modulus. The aggregate gradation and asphalt types significantly affected the elastic modulus of the asphalt concrete.

  11. Young modulus variation of a brickwork masonry element submitted to high temperatures

    Directory of Open Access Journals (Sweden)

    Maciá, M. E.

    2013-03-01

    Full Text Available In order to understand the thermal behavior of the masonry elements submitted to high temperatures we need to know the variation of their thermal properties with regard to the temperature. Submitted to high temperatures clay brick masonry presents thermomechanical effects (as the variation of Young's modulus, the thermal expansion of the unit and the mortar, spalling, losses of resistance … as well as variation of the properties of the material as result of its degradation. In this article the variation of the module of elasticity of the unit and the mortar is described with regard to high temperatures according to the state of the knowledge. In this article is also exposed the results obtained from the experimental program carried out on elements of clay brick masonry submitted to high temperatures in order to observe the variation of Young's module related to temperature.

    La definición del comportamiento térmico de los elementos de fábrica sometidos a la acción del fuego requiere del conocimiento de la variación de sus propiedades termomecánicas con respecto a la temperatura. Ante las altas temperaturas la fábrica cerámica presenta efectos termomecánicos, como la variación del módulo de Young entre otros, así como la variación de las propiedades del material debidas a la degradación del mismo. En este artículo se describe la variación del módulo de elasticidad de la pieza y el mortero con respecto a altas temperaturas según el estado del conocimiento y se exponen los resultados obtenidos del programa experimental llevado a cabo sobre elementos de fábrica sometidos a altas temperaturas con el fin de observar la variación del módulo de Young con respecto a la temperatura.

  12. Origami structures for tunable thermal expansion

    Science.gov (United States)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  13. Radial expansion and multifragmentation

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  14. Rethinking expansive learning

    DEFF Research Database (Denmark)

    Kolbæk, Ditte; Lundh Snis, Ulrika

    Abstract: This paper analyses an online community of master’s students taking a course in ICT and organisational learning. The students initiated and facilitated an educational design for organisational learning called Proactive Review in the organisation where they are employed. By using an online...... discussion forum on Google groups, they created new ways of reflecting and learning. We used netnography to select qualitative postings from the online community and expansive learning concepts for data analysis. The findings show how students changed practices of organisational learning...

  15. Load regulating expansion fixture

    International Nuclear Information System (INIS)

    Wagner, L.M.; Strum, M.J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located there between. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig

  16. Thermal expansion of granite rocks

    International Nuclear Information System (INIS)

    Stephansson, O.

    1978-04-01

    The thermal expansion of rocks is strongly controlled by the thermal expansion of the minerals. The theoretical thermal expansion of the Stripa Granite is gound to be 21 . 10 -6 [deg C] -1 at 25 deg C and 38 . 10 -6 [deg C] -1 at 400 deg C. The difference in expansion for the rock forming minerals causes micro cracking at heating. The expansion due to micro cracks is found to be of the same order as the mineral expansion. Most of the micro cracks will close at pressures of the order of 10 - 20 MPa. The thermal expansion of a rock mass including the effect of joints is determined in the pilot heater test in the Stripa Mine

  17. Provincial hydro expansions

    Energy Technology Data Exchange (ETDEWEB)

    Froschauer, K J

    1993-01-01

    A study of the development of five provincial hydroelectric utilities in Canada indicates that power companies and the state invited manufacturers to use hydroelectricity and natural resources in order to diversify provincial economies. These hydro expansions also show that utilities and government designed hydro projects to serve continental requirements; serving both objectives became problematic. It is argued that when the Canadian state and firms such as utilities use hydro expansions to serve both continentalism and industrialization, then at best they foster dependent industrialization and staple processing. At worst, they overbuild the infrastructure to generate provincial surplus energy for continental, rather than national, integration. Hydro developments became subject to state intervention in Canada mainly through the failures of private utilities to provide power for the less-lucrative industrial markets within provincial subregions. Although the state and utilities invited foreign firms to manufacture hydro equipment within the provinces and others to use electricity to diversify production beyond resource processing, such a diversification did not occur. Since 1962, ca 80% of industrial energy was used to semi-process wood-derived products, chemicals, and metals. The idea for a national power network became undermined by interprovincial political-economic factors and since 1963, the federal national/continential power policy prevailed. 187 refs., 6 figs., 52 tabs.

  18. Measuring of tube expansion

    International Nuclear Information System (INIS)

    Vogeleer, J. P.

    1985-01-01

    The expansion of the primary tubes or sleeves of the steam generator of a nuclear reactor plant are measured while the tubes or sleeves are being expanded. A primary tube or sleeve is expanded by high pressure of water which flows through a channel in an expander body. The water is supplied through an elongated conductor and is introduced through a connector on the shank connected to the conductor at its outer end. A wire extends through the mandrel and through the conductor to the end of the connector. At its inner end the wire is connected to a tapered pin which is subject to counteracting forces produced by the pressure of the water. The force on the side where the wire is connected to the conductor is smaller than on the opposite side. The tapered pin is moved in the direction of the higher force and extrudes the wire outwardly of the conductor. The tapered surface of the tapered pin engages transverse captive plungers which are maintained in engagement with the expanding tube or sleeve as they are moved outwardly by the tapered pin. The wire and the connector extend out of the generator and, at its outer end, the wire is connected to an indicator which measures the extent to which the wire is moved by the tapered pin, thus measuring the expansion of the tube or sleeve as it progresses

  19. A bilinear elastic constitutive model applied for midpalatal suture behavior during rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Larissa Carvalho Trojan Serpe

    Full Text Available Introduction : This study aims to evaluate the influence of the biomechanical behavior of the midpalatal suture (MPS during the rapid maxillary expansion (RME when modeled by the Finite Element Method. Methods Four simulation alternatives are discussed and, for each analysis, the suture is considered as a functional unit with a different mechanical behavior: (i without MPS elements, (ii MPS with Young's modulus (E equal to 1 MPa, (ii MPS with E equal to 0.01 MPa and (iv MPS with bilinear elastic behavior. Results The stress analysis showed that, when MPS is not considered in the model, stress peaks are reduced in magnitude and their distribution is restricted to a smaller area when compared to the model with the inclusion of MPS (E=1 MPa. The increased suture stiffness also has a direct influence on MPS displacements after 30 expander activations. Conclusion The consideration of the MPS in RME computer models influences greatly the calculated displacements between the suture bone ends, even as the stress levels in maxillary structures. Furthermore, as proposed for the described model, the elastic bilinear behavior assigned to MPS allows coherent prediction of stresses and displacements results, being a good representation for this suture overall behavior.

  20. Change and anisotropy of elastic modulus in sheet metals due to plastic deformation

    Science.gov (United States)

    Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.

  1. Resilient modulus prediction of soft low-plasticity Piedmont residual soil using dynamic cone penetrometer

    Directory of Open Access Journals (Sweden)

    S. Hamed Mousavi

    2018-04-01

    Full Text Available Dynamic cone penetrometer (DCP has been used for decades to estimate the shear strength and stiffness properties of the subgrade soils. There are several empirical correlations in the literature to predict the resilient modulus values at only a specific stress state from DCP data, corresponding to the predefined thicknesses of pavement layers (a 50 mm asphalt wearing course, a 100 mm asphalt binder course and a 200 mm aggregate base course. In this study, field-measured DCP data were utilized to estimate the resilient modulus of low-plasticity subgrade Piedmont residual soil. Piedmont residual soils are in-place weathered soils from igneous and metamorphic rocks, as opposed to transported or compacted soils. Hence the existing empirical correlations might not be applicable for these soils. An experimental program was conducted incorporating field DCP and laboratory resilient modulus tests on “undisturbed” soil specimens. The DCP tests were carried out at various locations in four test sections to evaluate subgrade stiffness variation laterally and with depth. Laboratory resilient modulus test results were analyzed in the context of the mechanistic-empirical pavement design guide (MEPDG recommended universal constitutive model. A new approach for predicting the resilient modulus from DCP by estimating MEPDG constitutive model coefficients (k1, k2 and k3 was developed through statistical analyses. The new model is capable of not only taking into account the in situ soil condition on the basis of field measurements, but also representing the resilient modulus at any stress state which addresses a limitation with existing empirical DCP models and its applicability for a specific case. Validation of the model is demonstrated by using data that were not used for model development, as well as data reported in the literature. Keywords: Dynamic cone penetrometer (DCP, Resilient modulus, Mechanistic-empirical pavement design guide (MEPDG, Residual

  2. Cropland expansion in Brazil, 2000 to 2014

    Science.gov (United States)

    Zalles, V.; Hansen, M.; Potapov, P.; Stehman, S. V.; Tyukavina, A.; Pickens, A. H.; Okpa, C.; Aguilar, R.; John, N.; Chavez, S.

    2017-12-01

    Brazil has become a global leader in the production of commodity row crops such as soybean, sugarcane, cotton, and corn. Here, we employ 30m spatial resolution Landsat data to estimate cropland extent in the year 2000 and its subsequent expansion through 2014. A probability-based sample of reference data allows us to report unbiased estimates of national, biome, and state-scale area of crop expansion with associated uncertainties. We find an increase in Brazilian cropland extent from 26.0 Mha in 2000 to 46.1 Mha in 2014. The cropland frontier states of Maranhao, Tocantins, Piaui, Bahia (MATOPIBA), Mato Grosso, Mato Grosso do Sul, and Para all more than doubled in cropland extent. The states of Goias, Minas Gerais and Sao Paulo experienced >50% increases. The vast majority of expansion, 79%, occurred on repurposed pasture lands, and 20% from the conversion of natural vegetation. Area of converted Cerrado savannas was nearly 2.5 times that of Amazon forests, and accounted for over half of new cropland in MATOPIBA. Spatio-temporal dynamics of cropland expansion are reflected in market conditions, land use policies, and other factors. Continued extensification of cropland is a viable option across Brazil with attendant benefits for and challenges to development.

  3. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  4. Identity Expansion and Transcendence

    Directory of Open Access Journals (Sweden)

    William Sims Bainbridge

    2014-05-01

    Full Text Available Emerging developments in communications and computing technology may transform the nature of human identity, in the process rendering obsolete the traditional philosophical and scientific frameworks for understanding the nature of individuals and groups.  Progress toward an evaluation of this possibility and an appropriate conceptual basis for analyzing it may be derived from two very different but ultimately connected social movements that promote this radical change. One is the governmentally supported exploration of Converging Technologies, based in the unification of nanoscience, biology, information science and cognitive science (NBIC. The other is the Transhumanist movement, which has been criticized as excessively radical yet is primarily conducted as a dignified intellectual discussion within a new school of philosophy about human enhancement.  Together, NBIC and Transhumanism suggest the immense transformative power of today’s technologies, through which individuals may explore multiple identities by means of online avatars, semi-autonomous intelligent agents, and other identity expansions.

  5. Section modulus is the optimum geometric predictor for stress fractures and medial tibial stress syndrome in both male and female athletes.

    Science.gov (United States)

    Franklyn, Melanie; Oakes, Barry; Field, Bruce; Wells, Peter; Morgan, David

    2008-06-01

    Various tibial dimensions and geometric parameters have been linked to stress fractures in athletes and military recruits, but many mechanical parameters have still not been investigated. Sedentary people, athletes with medial tibial stress syndrome, and athletes with stress fractures have smaller tibial geometric dimensions and parameters than do uninjured athletes. Cohort study; Level of evidence, 3. Using a total of 88 subjects, male and female patients with either a tibial stress fracture or medial tibial stress syndrome were compared with both uninjured aerobically active controls and uninjured sedentary controls. Tibial scout radiographs and cross-sectional computed tomography images of all subjects were scanned at the junction of the midthird and distal third of the tibia. Tibial dimensions were measured directly from the films; other parameters were calculated numerically. Uninjured exercising men have a greater tibial cortical cross-sectional area than do their sedentary and injured counterparts, resulting in a greater value of some other cross-sectional geometric parameters, particularly the section modulus. However, for women, the cross-sectional areas are either not different or only marginally different, and there are few tibial dimensions or geometric parameters that distinguish the uninjured exercisers from the sedentary and injured subjects. In women, the main difference between the groups was the distribution of cortical bone about the centroid as a result of the different values of section modulus. Last, medial tibial stress syndrome subjects had smaller tibial cross-sectional dimensions than did their uninjured exercising counterparts, suggesting that medial tibial stress syndrome is not just a soft-tissue injury but also a bony injury. The results show that in men, the cross-sectional area and the section modulus are the key parameters in the tibia to distinguish exercise and injury status, whereas for women, it is the section modulus only.

  6. Characterization of multilayer nitride coatings by electron microscopy and modulus mapping

    International Nuclear Information System (INIS)

    Pemmasani, Sai Pramod; Rajulapati, Koteswararao V.; Ramakrishna, M.; Valleti, Krishna; Gundakaram, Ravi C.; Joshi, Shrikant V.

    2013-01-01

    This paper discusses multi-scale characterization of physical vapour deposited multilayer nitride coatings using a combination of electron microscopy and modulus mapping. Multilayer coatings with a triple layer structure based on TiAlN and nanocomposite nitrides with a nano-multilayered architecture were deposited by Cathodic arc deposition and detailed microstructural studies were carried out employing Energy Dispersive Spectroscopy, Electron Backscattered Diffraction, Focused Ion Beam and Cross sectional Transmission Electron Microscopy in order to identify the different phases and to study microstructural features of the various layers formed as a result of the deposition process. Modulus mapping was also performed to study the effect of varying composition on the moduli of the nano-multilayers within the triple layer coating by using a Scanning Probe Microscopy based technique. To the best of our knowledge, this is the first attempt on modulus mapping of cathodic arc deposited nitride multilayer coatings. This work demonstrates the application of Scanning Probe Microscopy based modulus mapping and electron microscopy for the study of coating properties and their relation to composition and microstructure. - Highlights: • Microstructure of a triple layer nitride coating studied at multiple length scales. • Phases identified by EDS, EBSD and SAED (TEM). • Nanolayered, nanocomposite structure of the coating studied using FIB and TEM. • Modulus mapping identified moduli variation even in a nani-multilayer architecture

  7. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nohyu; Yang, Seung Yong [School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2016-02-15

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method.

  8. Determining the Gaussian Modulus and Edge Properties of 2D Materials: From Graphene to Lipid Bilayers

    Science.gov (United States)

    Zelisko, Matthew; Ahmadpoor, Fatemeh; Gao, Huajian; Sharma, Pradeep

    2017-08-01

    The dominant deformation behavior of two-dimensional materials (bending) is primarily governed by just two parameters: bending rigidity and the Gaussian modulus. These properties also set the energy scale for various important physical and biological processes such as pore formation, cell fission and generally, any event accompanied by a topological change. Unlike the bending rigidity, the Gaussian modulus is, however, notoriously difficult to evaluate via either experiments or atomistic simulations. In this Letter, recognizing that the Gaussian modulus and edge tension play a nontrivial role in the fluctuations of a 2D material edge, we derive closed-form expressions for edge fluctuations. Combined with atomistic simulations, we use the developed approach to extract the Gaussian modulus and edge tension at finite temperatures for both graphene and various types of lipid bilayers. Our results possibly provide the first reliable estimate of this elusive property at finite temperatures and appear to suggest that earlier estimates must be revised. In particular, we show that, if previously estimated properties are employed, the graphene-free edge will exhibit unstable behavior at room temperature. Remarkably, in the case of graphene, we show that the Gaussian modulus and edge tension even change sign at finite temperatures.

  9. Ultrasound estimation and FE analysis of elastic modulus of Kelvin foam

    International Nuclear Information System (INIS)

    Kim, Nohyu; Yang, Seung Yong

    2016-01-01

    The elastic modulus of a 3D-printed Kelvin foam plate is investigated by measuring the acoustic wave velocity of 1 MHz ultrasound. An isotropic tetrakaidecahedron foam with 3 mm unit cell is designed and printed layer upon layer to fabricate a Kelvin foam plate of 14 mm thickness with a 3D CAD/printer using ABS plastic. The Kelvin foam plate is completely filled with paraffin wax for impedance matching, so that the acoustic wave may propagate through the porous foam plate. The acoustic wave velocity of the foam plate is measured using the time-of-flight (TOF) method and is used to calculate the elastic modulus of the Kelvin foam plate based on acousto-elasticity. Finite element method (FEM) and micromechanics is applied to the Kelvin foam plate to calculate the theoretical elastic modulus using a non-isotropic tetrakaidecahedron model. The predicted elastic modulus of the Kelvin foam plate from FEM and micromechanics model is similar, which is only 3-4% of the bulk material. The experimental value of the elastic modulus from the ultrasonic method is approximately twice as that of the numerical and theoretical methods because of the flexural deformation of the cell edges neglected in the ultrasonic method

  10. Minimization of complementary energy to predict shear modulus of laminates with intralaminar cracks

    International Nuclear Information System (INIS)

    Giannadakis, K; Varna, J

    2012-01-01

    The most common damage mode and the one examined in this work is the formation of intralaminar cracks in layers of laminates. These cracks can occur when the composite structure is subjected to mechanical and/or thermal loading and eventually lead to degradation of thermo-elastic properties. In the present work, the shear modulus reduction due to cracking is studied. Mathematical models exist in literature for the simple case of cross-ply laminates. The in-plane shear modulus of a damaged laminate is only considered in a few studies. In the current work, the shear modulus reduction in cross-plies will be analysed based on the principle of minimization of complementary energy. Hashin investigated the in-plane shear modulus reduction of cross-ply laminates with cracks in inside 90-layer using this variational approach and assuming that the in-plane shear stress in layers does not depend on the thickness coordinate. In the present study, a more detailed and accurate approach for stress estimation is followed using shape functions for this dependence with parameters obtained by minimization. The results for complementary energy are then compared with the respective from literature and finally an expression for shear modulus degradation is derived.

  11. Thermal expansion of beryllium oxide

    International Nuclear Information System (INIS)

    Solodukhin, A.V.; Kruzhalov, A.V.; Mazurenko, V.G.; Maslov, V.A.; Medvedev, V.A.; Polupanova, T.I.

    1987-01-01

    Precise measurements of temperature dependence of the coefficient of linear expansion in the 22-320 K temperature range on beryllium oxide monocrystals are conducted. A model of thermal expansion is suggested; the range of temperature dependence minimum of the coefficient of thermal expansion is well described within the frames of this model. The results of the experiment may be used for investigation of thermal stresses in crystals

  12. Expansion of Tubular with Elastomers in Multilateral Wells

    Directory of Open Access Journals (Sweden)

    Md Velden

    2013-06-01

    Full Text Available The use of solid expandable tubular technology during the last decade has focused on solving many challenges in well drilling and delivery including zonal isolation, deep drilling, conservation of hole sizes, etc. not only as pioneered solution but also providing cost effective and long lasting solutions. Concurrently, the technology was extended for construction of multilateral in typical wells. The process of horizontal tubular expansion is similar to the vertical expansion of expandable tubular in down-hole environment with the addition of uniformly distributed force due to its weight. The expansion is targeted to increase its diameter such that post expansion characteristics remain within allowable limits. In this study a typical expandable tubular of 57.15 mm outer diameter and 6.35 mm wall thickness was used with two different elastomer seals of 5 and 7 mm thickness placed at equal spacing of 200 mm. The developed stress contours during expansion process clearly showed the high stress areas in the vicinity of expansion region which lies around the mandrel. These high stresses may result in excessive wear of the mandrel. It was also found out that the drawing force increases as the mandrel angle, expansion ratio, and friction coefficient increases. A mandrel angle of 20o  requires minimum expansion force and can be considered as an optimum geometrical parameter to lower the power required for expansion.

  13. 216-B-3 expansion ponds closure plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.

  14. 216-B-3 expansion ponds closure plan

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steam condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA

  15. Evaluating elastic modulus and strength of hard coatings by relative method

    International Nuclear Information System (INIS)

    Bao, Y.W.; Zhou, Y.C.; Bu, X.X.; Qiu, Y.

    2007-01-01

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method

  16. Consequence of reduced necrotic bone elastic modulus in a Perthes' hip

    DEFF Research Database (Denmark)

    Salmingo, Remel A.; Skytte, Tina Lercke; Mikkelsen, Lars Pilgaard

    Introduction Perthes is a destructive hip joint disorder characterized as a malformation of the femoral head which affects young children. Several studies have shown the change of mechanical properties of the femoral head in Perthes’ disease. However, the consequence of the changes in bone...... mechanical properties in a Perthes’ hip is not well established. Due to the material differences, changes in bone mechanical properties might lead to localization of stress and deformation. Thus, the objective of this study was to investigate the effects of reduced elastic modulus of necrotic bone...... weight) was applied on the top of the femoral head. The distal part of the femur was fixed. The same Poisson’s ratio 0.3 was set for the femoral and necrotic bone. The elastic modulus (E) of femoral bone was 500 MPa. To investigate the effects of reduced elastic modulus, the necrotic bone E was reduced...

  17. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    International Nuclear Information System (INIS)

    You, J.H.; Hoeschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated

  18. Determination of elastic modulus and residual stress of plasma-sprayed tungsten coating on steel substrate

    Science.gov (United States)

    You, J. H.; Höschen, T.; Lindig, S.

    2006-01-01

    Plasma-sprayed tungsten, which is a candidate material for the first wall armour, shows a porous, heterogeneous microstructure. Due to its characteristic morphology, the properties are significantly different from those of its dense bulk material. Measurements of the elastic modulus of this coating have not been reported in the literature. In this work Young's modulus of highly porous plasma-sprayed tungsten coatings deposited on steel (F82H) substrates was measured. For the fabrication of the coating system the vacuum plasma-spray process was applied. Measurements were performed by means of three-point and four-point bending tests. The obtained modulus values ranged from 53 to 57 GPa. These values could be confirmed by the test result of a detached coating strip, which was 54 GPa. The applied methods produced consistent results regardless of testing configurations and specimen sizes. The errors were less than 1%. Residual stress of the coating was also estimated.

  19. Evaluating elastic modulus and strength of hard coatings by relative method

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Y.W. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); China Building Materials Academy, Beijing 100024 (China)], E-mail: ywbao@imr.ac.cn; Zhou, Y.C. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Bu, X.X. [China Building Materials Academy, Beijing 100024 (China); Qiu, Y. [China Building Materials Academy, Beijing 100024 (China)

    2007-06-15

    A simple approach named relative method is developed for determining the elastic modulus and strength of hard coatings. Analytical relationship among the moduli of the film, the substrate, and the film/substrate system was derived based on bending model, from which the elastic modulus of the coating can be determined uniquely via the measured moduli of the samples before and after coating. Furthermore, the relationship between the strength of the films and the bending strength of the coated sample is derived, thus both the modulus and the strength of coating can be evaluated via traditional tests on coated samples. Mathematic expressions of those calculations were derived, respectively for rectangular beam samples with three types of coating configurations: single face coating, sandwich coating and around coating. Experimental results using various brittle coatings demonstrated the validity and convenience of this method.

  20. Use of the laboratory tests of soil modulus in modelling pile behaviour

    Science.gov (United States)

    Dyka, Ireneusz

    2012-10-01

    This article deals with the question of theoretical description of behaviour of a single pile rested in a layered soil medium. Particular attention is paid to soil modulus which is used in calculation method for pile load-settlement curve. A brief analysis of the results obtained by laboratory tests to assess soil modulus and its nonlinear variability has been presented. The results of tests have been used in triaxial apparatus and resonant column/torsional shear device. There have also been presented the results of load-settlement calculation for a single pile under axial load with implementation of different models of soil modulus degradation. On this basis, possibilities of using particular kinds of laboratory tests in calculation procedure of foundation settlement have been presented as well as further developments of them.

  1. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...

  2. The effect of gamma ray irradiation on PAN-based intermediate modulus carbon fibers

    International Nuclear Information System (INIS)

    Li, Bin; Feng, Yi; Qian, Gang; Zhang, Jingcheng; Zhuang, Zhong; Wang, Xianping

    2013-01-01

    Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were conducted on PAN-based intermediate modulus carbon fibers to investigate the structure and surface hydrophilicity of the carbon fibers before and after gamma irradiation. Two methods were used to determine Young’s modulus of the carbon fibers. The results show that gamma ray irradiation improved the degree of graphitization and introduced compressive stress into carbon fiber surface. Gamma ray also improved the carbon fiber surface hydrophilicity through increasing the value of O/C and enhancing the quantity of oxygen functional groups on carbon fibers. No distinct morphology change was observed after gamma ray irradiation. The Young’s modulus of the fibers increased with increasing irradiation dose

  3. Using the ultrasound and instrumented indentation techniques to measure the elastic modulus of engineering materials

    International Nuclear Information System (INIS)

    Meza, J. M.; Franco, E. E.; Farias, M. C. M.; Buiochi, F.; Souza, R. M.; Cruz, J.

    2008-01-01

    Currently, the acoustic and nano indentation techniques are two of the most used techniques for materials elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nano indentation technique are also reviewed. an experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nano indentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained. (Author) 29 refs

  4. 3-D FDTD simulation of shear waves for evaluation of complex modulus imaging.

    Science.gov (United States)

    Orescanin, Marko; Wang, Yue; Insana, Michael

    2011-02-01

    The Navier equation describing shear wave propagation in 3-D viscoelastic media is solved numerically with a finite differences time domain (FDTD) method. Solutions are formed in terms of transverse scatterer velocity waves and then verified via comparison to measured wave fields in heterogeneous hydrogel phantoms. The numerical algorithm is used as a tool to study the effects on complex shear modulus estimation from wave propagation in heterogeneous viscoelastic media. We used an algebraic Helmholtz inversion (AHI) technique to solve for the complex shear modulus from simulated and experimental velocity data acquired in 2-D and 3-D. Although 3-D velocity estimates are required in general, there are object geometries for which 2-D inversions provide accurate estimations of the material properties. Through simulations and experiments, we explored artifacts generated in elastic and dynamic-viscous shear modulus images related to the shear wavelength and average viscosity.

  5. A Regev-Type Fully Homomorphic Encryption Scheme Using Modulus Switching

    Science.gov (United States)

    Chen, Zhigang; Wang, Jian; Song, Xinxia

    2014-01-01

    A critical challenge in a fully homomorphic encryption (FHE) scheme is to manage noise. Modulus switching technique is currently the most efficient noise management technique. When using the modulus switching technique to design and implement a FHE scheme, how to choose concrete parameters is an important step, but to our best knowledge, this step has drawn very little attention to the existing FHE researches in the literature. The contributions of this paper are twofold. On one hand, we propose a function of the lower bound of dimension value in the switching techniques depending on the LWE specific security levels. On the other hand, as a case study, we modify the Brakerski FHE scheme (in Crypto 2012) by using the modulus switching technique. We recommend concrete parameter values of our proposed scheme and provide security analysis. Our result shows that the modified FHE scheme is more efficient than the original Brakerski scheme in the same security level. PMID:25093212

  6. Influence of dynamic dislocation drag on amplitude dependences of damping decrement and modulus defect in lead

    International Nuclear Information System (INIS)

    Soifer, Y.M.; Golosovskii, M.A.; Kobelev, N.P.

    1981-01-01

    A study was made of the amplitude dependences of the damping decrement and the modulus defect in lead at low temperatures at frequencies of 100 kHz and 5 MHz. It was shown that in pure lead at high frequencies a change in the amplitude dependences of the damping decrement and the modulus defect under the superconducting transition is due mainly to the change in the losses caused by the dynamic drag of dislocations whereas in measurements at low frequencies the influence of the superconducting transition is due to the change in the conditions of dislocation unpinning from point defects. The influence of the dynamic dislocation drag on the amplitude dependences of the damping decrement and the modulus defect is calculated and a method is presented for experimental estimation of the contribution of dynamic effects to the amplitude-dependent internal friction

  7. Chromium effect on the Young modulus and thermoelastic coefficient of elinvars

    International Nuclear Information System (INIS)

    Sazykina, A.V.; Khomenko, O.A.

    1976-01-01

    The effect was studied of thermal and thermal-mechanical treatment upon the elastic modules and its temperature coefficient in iron-nickel Elinvars with different chromium contents (from 0 to 6.7%). It has been shown that doping with chromium results in an increase in the modulus of elasticity of Elinvars after hardening. The elastic modulus of alloys containing no chromium increases after a cold plastic deformation (drawing), whereas that of chromous Elinvars decreases upon such a treatment. It has been established that the elastic modulus of hardened and cold drawn after hardening Elinvars increases upon ageing. An increase in chromium content in iron-nickel Elinvars reduces the effect of the temperature of ageing upon the thermoelastic coefficient during the usual heat treatment and the thermalmechanical treatment and lowers its sensitivity to the influence of an external magnetic field [ru

  8. Effects of SBS Configuration on Performance of High Modulus Bitumen Based on Dynamic Mechanical Analysis

    Directory of Open Access Journals (Sweden)

    Ming Liang

    2016-07-01

    Full Text Available High modulus bitumens modified by polystyrene-block-polybutadiene-block-polystyrene (SBS with different molecular structure were investigated on dynamic shear rheometer and fluorescence microscopy to evaluate viscoelastic properties and morphology of binders. The results shows that storage modulus (G’ is obviously less than loss modulus (G”, which means viscous behaviour of bitumen is dominant, and anti-rutting factor (G* ⁄ sin δ is markedly enhanced by star SBS than by linear SBS. The morphology indicated that star SBS improved the softening point more obviously, tending to form a cross-linked network in bitumen. As for linear SBS, it is dispersed in bitumen in the form of globules and enhances the ductility of binder.

  9. Increasing Accuracy of Tissue Shear Modulus Reconstruction Using Ultrasonic Strain Tensor Measurement

    Science.gov (United States)

    Sumi, C.

    Previously, we developed three displacement vector measurement methods, i.e., the multidimensional cross-spectrum phase gradient method (MCSPGM), the multidimensional autocorrelation method (MAM), and the multidimensional Doppler method (MDM). To increase the accuracies and stabilities of lateral and elevational displacement measurements, we also developed spatially variant, displacement component-dependent regularization. In particular, the regularization of only the lateral/elevational displacements is advantageous for the lateral unmodulated case. The demonstrated measurements of the displacement vector distributions in experiments using an inhomogeneous shear modulus agar phantom confirm that displacement-component-dependent regularization enables more stable shear modulus reconstruction. In this report, we also review our developed lateral modulation methods that use Parabolic functions, Hanning windows, and Gaussian functions in the apodization function and the optimized apodization function that realizes the designed point spread function (PSF). The modulations significantly increase the accuracy of the strain tensor measurement and shear modulus reconstruction (demonstrated using an agar phantom).

  10. Theoretical modeling developed to evaluate the hardness and reduced modulus for the C/a-Si composite film using nanoindentation tests

    International Nuclear Information System (INIS)

    Han, C.-F.; Lin, J.-F.; Chung, C.-K.; Wu, B.-H.

    2008-01-01

    A general mechanical model, which is composed of the mechanical models employed to describe the contact behaviors and deformations arising in all layers (including the substrate), is successfully developed in the present study for multilayer specimens in order to evaluate the contact projected area by a theoretical model, and thus the hardness and reduced modulus, using nanoindentation tests. The governing differential equations for the depth solutions of the indenter tip formed at all layers of the specimen under their contact load are developed individually. The influence of the material properties of the substrate on a multilayer specimen's hardness and reduced modulus at various indentation depths can thus be evaluated. Transition and pop-in occurred at depths near, but still before, the C (top layer)/a-Si (buffer layer) interface and the a-Si/Si (substrate) interface, respectively. Using the present analysis, the depths corresponding to the transition and pop-in behaviors can be predicted effectively

  11. Diagnostic procedure on brake pad assembly based on Young's modulus estimation

    International Nuclear Information System (INIS)

    Chiariotti, P; Santolini, C; Tomasini, E P; Martarelli, M

    2013-01-01

    Quality control of brake pads is an important issue, since the pad is a key component of the braking system. Typical damage of a brake pad assembly is the pad–backing plate detachment that affects and modifies the mechanical properties of the whole system. The most sensitive parameter to the damage is the effective Young's modulus, since the damage induces a decrease of the pad assembly stiffness and therefore of its effective Young's modulus: indeed its variation could be used for diagnostic purposes. The effective Young's modulus can be estimated from the first bending resonance frequency identified from the frequency response function measured on the pad assembly. Two kinds of excitation methods, i.e. conventional impulse excitation and magnetic actuation, will be presented and two different measurement sensors, e.g. laser Doppler vibrometer and microphone, analyzed. The robustness of the effective Young's modulus as a diagnostic feature will be demonstrated in comparison to the first bending resonance frequency, which is more sensitive to geometrical dimensions. Variability in the sample dimension, in fact, will induce a variation of the resonance frequency which could be mistaken for damage. The diagnostic approach has been applied to a set of undamaged and damaged pad assemblies showing good performance in terms of damage identification. The environmental temperature can be an important interfering input for the diagnostic procedure, since it influences the effective Young's modulus of the assembly. For that reason, a test at different temperatures in the range between 15 °C and 30 °C has been performed, evidencing that damage identification technique is efficient at any temperature. The robustness of the Young's modulus as a diagnostic feature with respect to damping is also presented. (paper)

  12. A Research on Low Modulus Distributed Fiber Optical Sensor for Pavement Material Strain Monitoring.

    Science.gov (United States)

    Meng, Lingjian; Wang, Linbing; Hou, Yue; Yan, Guannan

    2017-10-19

    The accumulated irreversible deformation in pavement under repeated vehicle loadings will cause fatigue failure of asphalt concrete. It is necessary to monitor the mechanical response of pavement under load by using sensors. Previous studies have limitations in modulus accommodation between the sensor and asphalt pavement, and it is difficult to achieve the distributed monitoring goal. To solve these problems, a new type of low modulus distributed optical fiber sensor (DOFS) for asphalt pavement strain monitoring is fabricated. Laboratory experiments have proved the applicability and accuracy of the newly-designed sensor. This paper presents the results of the development.

  13. The Near-IR TRGB Magnitude and Distance Modulus to NGC 185

    Directory of Open Access Journals (Sweden)

    Y.-J. Sohn

    2008-09-01

    Full Text Available We determined values of distance modulus to nearby dwarf galaxy NGC 185 from the Tip of Red-Giant Branch (TRGB method. Apparent magnitudes of the TRGB are estimated from the near-infrared JHK luminosity functions (LFs of the resolved giant branch stars. Theoretical absolute magnitudes of the TRGB in near-infrared bands have been extracted from the Yonsei-Yale isochrones. The observed apparent and theoretical absolute magnitudes of the TRGB provide values of distance modulus to NGC 185 as (m - M.

  14. Elastic Modulus Measurement of ORNL ATF FeCrAl Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Zachary T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    Elastic modulus and Poisson’s ratio for a number of wrought FeCrAl alloys, intended for accident tolerant fuel cladding application, are determined via resonant ultrasonic spectroscopy. The results are reported as a function of temperature from room temperature to 850°C. The wrought alloys were in the fully annealed and unirradiated state. The elastic modulus for the wrought FeCrAl alloys is at least twice that of Zr-based alloys over the temperature range of this study. The Poisson’s ratio of the alloys was 0.28 on average and increased very slightly with increasing temperature.

  15. Back-analysing rock mass modulus from monitoring data of two tunnels in Sydney, Australia

    Directory of Open Access Journals (Sweden)

    Robert Bertuzzi

    2017-10-01

    Full Text Available This paper presents two case studies where the rock mass modulus and in situ stress are estimated from the monitoring data obtained during the construction of underground excavations in Sydney, Australia. The case studies comprise the widening of existing twin road tunnels within Hawkesbury sandstone and the excavation of a large cavern within Ashfield shale. While back-analysis from detailed systematic monitoring has been previously published, this paper presents a relatively simple methodology to derive rock mass modulus and in situ stress from the relatively simple displacement data routinely recorded during tunnelling.

  16. Modelling of the Elasticity Modulus for Rock Using Genetic Expression Programming

    Directory of Open Access Journals (Sweden)

    Umit Atici

    2016-01-01

    Full Text Available In rock engineering projects, statically determined parameters are more reflective of actual load conditions than dynamic parameters. This study reports a new and efficient approach to the formulation of the static modulus of elasticity Es applying gene expression programming (GEP with nondestructive testing (NDT methods. The results obtained using GEP are compared with the results of multivariable linear regression analysis (MRA, univariate nonlinear regression analysis (URA, and the dynamic elasticity modulus (Ed. The GEP model was found to produce the most accurate calculation of Es. The proposed approach is a simple, nondestructive, and practical way to determine Es for anisotropic and heterogeneous rocks.

  17. Territorial expansion and primary state formation.

    Science.gov (United States)

    Spencer, Charles S

    2010-04-20

    A major research problem in anthropology is the origin of the state and its bureaucratic form of governance. Of particular importance for evaluating theories of state origins are cases of primary state formation, whereby a first-generation state evolves without contact with any preexisting states. A general model of this process, the territorial-expansion model, is presented and assessed with archaeological data from six areas where primary states emerged in antiquity: Mesoamerica, Peru, Egypt, Mesopotamia, the Indus Valley, and China. In each case, the evidence shows a close correspondence in time between the first appearance of state institutions and the earliest expansion of the state's political-economic control to regions lying more than a day's round-trip from the capital. Although additional research will add detail and clarity to the empirical record, the results to date are consistent with the territorial-expansion model, which argues that the success of such long-distance expansion not only demanded the bureaucratization of central authority but also helped provide the resources necessary to underwrite this administrative transformation.

  18. Future urban land expansion and implications for global croplands.

    Science.gov (United States)

    Bren d'Amour, Christopher; Reitsma, Femke; Baiocchi, Giovanni; Barthel, Stephan; Güneralp, Burak; Erb, Karl-Heinz; Haberl, Helmut; Creutzig, Felix; Seto, Karen C

    2017-08-22

    Urban expansion often occurs on croplands. However, there is little scientific understanding of how global patterns of future urban expansion will affect the world's cultivated areas. Here, we combine spatially explicit projections of urban expansion with datasets on global croplands and crop yields. Our results show that urban expansion will result in a 1.8-2.4% loss of global croplands by 2030, with substantial regional disparities. About 80% of global cropland loss from urban expansion will take place in Asia and Africa. In both Asia and Africa, much of the cropland that will be lost is more than twice as productive as national averages. Asia will experience the highest absolute loss in cropland, whereas African countries will experience the highest percentage loss of cropland. Globally, the croplands that are likely to be lost were responsible for 3-4% of worldwide crop production in 2000. Urban expansion is expected to take place on cropland that is 1.77 times more productive than the global average. The loss of cropland is likely to be accompanied by other sustainability risks and threatens livelihoods, with diverging characteristics for different megaurban regions. Governance of urban area expansion thus emerges as a key area for securing livelihoods in the agrarian economies of the Global South.

  19. Renormalization group and Mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-02-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U(1) lattice gauge theory by Goepfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear sigma-model, and elsewhere. (orig.)

  20. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  1. Renormalization group and mayer expansions

    International Nuclear Information System (INIS)

    Mack, G.

    1984-01-01

    Mayer expansions promise to become a powerful tool in exact renormalization group calculations. Iterated Mayer expansions were sucessfully used in the rigorous analysis of 3-dimensional U (1) lattice gauge theory by Gopfert and the author, and it is hoped that they will also be useful in the 2-dimensional nonlinear σ-model, and elsewhere

  2. On summation of perturbation expansions

    International Nuclear Information System (INIS)

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  3. Small compression modulus of the flux line lattice and large density fluctuations at high fields may explain peak effect

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1976-01-01

    The elastic properties of the flux line lattice in Type II superconductors as calculated from the Ginsburg-Landau theory are discussed. They are non-local on a length scale much larger than the flux line distance and divergent at Hsub(c2). The compression modulus may become much smaller than its long-wavelength limit, B 2 /4π, and if the deformation is not homogeneous, at Hsub(c2) the modulus vanishes as (Hsub(c2) - B) 2 . At arbitrary induction the compression modulus of strain waves with wavelengths of several flux line distances is of the order of the (small) shear modulus. (author)

  4. 2 filler on the dielectric permittivity and electrical modulus of PMMA

    Indian Academy of Sciences (India)

    The real and imaginary part of the dielectric permittivity decreased with the increase in frequency but increased with temperature. The electrical conductivity measurement showed a plateau-like behaviour in the low-frequency region and dispersion in the high-frequency region. The frequency-dependent electrical modulus ...

  5. Size-dependent effective Young’s modulus of silicon nitride cantilevers

    NARCIS (Netherlands)

    Babaei Gavan, K.; Westra, H.J.R.; Van der Drift, E.W.J.M.; Venstra, W.J.; Van der Zant, H.S.J.

    2009-01-01

    The effective Young’s modulus of silicon nitride cantilevers is determined for thicknesses in the range of 20–684 nm by measuring resonance frequencies from thermal noise spectra. A significant deviation from the bulk value is observed for cantilevers thinner than 150 nm. To explain the observations

  6. Shear Modulus of Sintered 'House of Cards'-Like Assemblies of Crystals

    NARCIS (Netherlands)

    Schaink, H.M.; Malssen, van K.

    2007-01-01

    A cell model of a 'house of cards'-like assembly of crystals is used for the study of the evolution of the shear modulus during sintering. The crystals are assumed to have a lozenge shape. The cell model takes different crystal-crystal contacts into account. The force needed to separate two sintered

  7. The bulk modulus of cubic spinel selenides: an experimental and theoretical study

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, Leif; Olsen, J.S.

    2009-01-01

    It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation...

  8. Speed of sound reflects Young's modulus as assessed by microstructural finite element analysis

    NARCIS (Netherlands)

    Bergh, van den J.P.W.; Lenthe, van G.H.; Hermus, A.R.M.M.; Corstens, F.H.M.; Smals, A.G.H.; Huiskes, H.W.J.

    2000-01-01

    We analyzed the ability of the quantitative ultrasound (QUS) parameter, speed of sound (SOS), and bone mineral density (BMD), as measured by dual-energy X-ray absorptiometry (DXA), to predict Young's modulus, as assessed by microstructural finite element analysis (muFEA) from microcomputed

  9. Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Woldering, L.A.; Abelmann, Leon; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    2011-01-01

    We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show

  10. Investigation of statistical relationship between dynamic modulus and thermal strength of asphalt concrete

    International Nuclear Information System (INIS)

    Qadir, A.; Gular, M.

    2011-01-01

    Dynamic modulus is a performance indicator for asphalt concrete and is used to qualify asphalt mixtures based on stress-strain characteristics under repeated loading. Moreover, the low temperature cracking of asphalt concrete mixes are measured in terms of fracture strength and fracture temperature. Dynamic modulus test was selected as one of the simple performance tests in the AASHTO 2002 guidelines to rate mixtures according to permanent deformation performance. However, AASHTO 2002 guidelines is silent in relating dynamic modulus values to low temperature cracking, probably because of weak correlations reported between these two properties. The present study investigates the relation between these two properties under the influence of aggregate type and mix gradation. Mixtures were prepared with two types of aggregate and gradations, while maintaining the binder type and air voids constant. The mixtures were later tested for dynamic modulus and fracture strength using thermal stress restrained specimen test (TSRST). Results indicate that there exists a fair correlation between the thermal fracture strength and stiffness at a selected test temperature and frequency level. These correlations are highly dependent upon the type of aggregate and mix gradation. (author)

  11. A summary of modulus of elasticity and knot size surveys for laminating grades of lumber

    Science.gov (United States)

    R. W. Wolfe; R. C. Moody

    1981-01-01

    A summary of modulus of elasticity (MOE) and knot data is presented for grades of lumber commonly used to manufacture glued-laminated (glulam) timber by the laminating Industry. Tabulated values represent 30 different studies covering a time span of over 16 years. Statistical estimates of average and near-maximum knot sizes as well as mean and coefficient of variation...

  12. Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi

    2005-01-01

    In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at M GUT amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m 3/2 /M Pl ) α/2 M GUT where α = m 3/2 /[M 0 ln (M Pl /m 3/2 )] for M 0 denoting the modulus-mediated contribution to the gaugino mass at M GUT . The minimal KKLT set-up predicts α = 1. As a consequence, for α = O(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α = 2

  13. High modulus asphalt (EME) technology transfer to South Africa and Australia: shared experiences

    CSIR Research Space (South Africa)

    Denneman, E

    2015-08-01

    Full Text Available The paper describes experiences with the implementation of French enrobés à module élevé (EME) (high modulus asphalt) technology in South Africa and Australia. Tentative performance specifications for EME mixes were set in the two countries based...

  14. Estimates of the integral modulus of continuity of functions with rarely changing Fourier coefficients

    International Nuclear Information System (INIS)

    Telyakovskii, S A

    2002-01-01

    The functions under consideration are those satisfying the condition Δa i =Δb i =0 for all i≠n j , where {n j } is a lacunary sequence. An asymptotic estimate of the rate of decrease of the modulus of continuity in the L-metric of such functions in terms of their Fourier coefficients is obtained

  15. Young's modulus and residual stress of GeSbTe phase-change thin films

    NARCIS (Netherlands)

    Nazeer, H.; Bhaskaran, Harish; Woldering, L.A.; Abelmann, Leon

    2015-01-01

    The mechanical properties of phase change materials alter when the phase is transformed. In this paper, we report on experiments that determine the change in crucial parameters such as Young's modulus and residual stress for two of the most widely employed compositions of phase change films,

  16. Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres

    Science.gov (United States)

    Kushi, Takuto; Sato, Kazuhisa; Unemoto, Atsushi; Hashimoto, Shinichi; Amezawa, Koji; Kawada, Tatsuya

    2011-10-01

    Mechanical properties such as Young's modulus, shear modulus, Poisson's ratio and internal friction of conventional electrolyte materials for solid oxide fuel cells, Zr0.85Y0.15 O1.93 (YSZ), Zr0.82Sc0.18O1.91 (ScSZ), Zr0.81Sc0.18Ce0.01O2-δ (ScCeSZ), Ce0.9Gd0.1O2-δ (GDC), La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC), La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM), were evaluated by a resonance method at temperatures from room temperature to 1273 K in various oxygen partial pressures. The Young's modulus of GDC gradually decreased with increasing temperature in oxidizing conditions. The Young's moduli of the series of zirconia and lanthanum gallate based materials drastically decreased in an intermediate temperature range and increased slightly with increasing temperature at higher temperatures. The Young's modulus of GDC considerably decreased above 823 K in reducing atmospheres in response to the change of oxygen nonstoichiometry. However, temperature dependences of the Young's moduli of ScCeSZ and LSGMC in reducing atmospheres did not show any significant differences with those in oxidizing atmospheres.

  17. Diameter effect on stress-wave evaluation of modulus of elasticity of logs

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Brian K. Brashaw; John Punches; John R. Erickson; John W. Forsman; Roy E. Pellerin

    2004-01-01

    Recent studies on nondestructive evaluation (NDE) of logs have shown that a longitudinal stress-wave method can be used to nondestructively evaluate the modulus of elasticity (MOE) of logs. A strong relationship has been found between stress-wave MOE and static MOE of logs, but a significant deviation was observed between stress-wave and static values. The objective of...

  18. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage

    DEFF Research Database (Denmark)

    Day, J; Ding, Ming; van der Linden, JC

    2001-01-01

    determined using a combination of finite element models and mechanical testing. The bone tissue modulus was reduced by 60% in the medial condyle of the cases with cartilage damage compared to the control specimens. Neither the presence of cartilage damage nor the anatomic site (medial vs. lateral) affected...

  19. Influence of the cementitious paste composition on the E-modulus and heat of hydration evolutions

    International Nuclear Information System (INIS)

    Maia, Lino; Azenha, Miguel; Faria, Rui; Figueiras, Joaquim

    2011-01-01

    E-modulus and heat of hydration are features of cement-based materials that follow a rapid rate of change at early ages. This paper analyses the influence of the composition of cementitious pastes on these features by using two methods: (i) a novel technique for continuously monitoring the E-modulus of cement-based materials, based on evaluating the first resonant frequency of a composite beam containing the material under testing, and (ii) an isothermal calorimeter to determine the released heat of hydration. Seventeen mixes are tested, encompassing pastes with five w/c ratios, as well as different contents of limestone filler, fly ash, silica fume and metakaolin. The results permit the comparison of the E-modulus and heat of hydration sensitivities to mix composition changes, and to check possible relations between these features. This work also helps to establish the technique (i) as a non-destructive method for monitoring the E-modulus evolution in cement-based materials since casting.

  20. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic

    NARCIS (Netherlands)

    Siavikis, G.; Behr, M.; van der Zel, J.M.; Feilzer, A.J.; Rosentritt, M.

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of

  1. Noninvasive Vascular Displacement Estimation for Relative Elastic Modulus Reconstruction in Transversal Imaging Planes

    Directory of Open Access Journals (Sweden)

    Chris L. de Korte

    2013-03-01

    Full Text Available Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding.

  2. Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus

    DEFF Research Database (Denmark)

    Peng, R.D.; Zhou, H.W.; Wang, H.W.

    2012-01-01

    ” algorithm was developed in the ABAQUS Scripting Interface. In the computational studies, it was observed that the elastic modulus increases with the increasing the aspect ratio of nanoparticles. The thickness and properties of effective interface layers and the shape and degree of particles clustering have...

  3. MODULUS OF ELASTICITY AND HARDNESS OF COMPRESSION AND OPPOSITE WOOD CELL WALLS OF MASSON PINE

    Directory of Open Access Journals (Sweden)

    Yanhui Huang,

    2012-05-01

    Full Text Available Compression wood is commonly found in Masson pine. To evaluate the mechanical properties of the cell wall of Masson pine compression and opposite wood, nanoindentation was used. The results showed that the average values of hardness and cell wall modulus of elasticity of opposite wood were slightly higher than those of compression wood. With increasing age of the annual ring, the modulus of elasticity showed a negative correlation with microfibril angle, but a weak correlation was observed for hardness. In opposite and compression wood from the same annual ring, the differences in average values of modulus of elasticity and hardness were small. These slight differences were explained by the change of microfibril angle (MFA, the press-in mode of nanoindentation, and the special structure of compression wood. The mechanical properties were almost the same for early, transition, and late wood in a mature annual ring of opposite wood. It can therefore be inferred that the average modulus of elasticity (MOE and hardness of the cell walls in a mature annual ring were not being affected by cell wall thickness.

  4. Characterizing bulk modulus of fine-grained subgrade soils under large capacity construction equipment

    CSIR Research Space (South Africa)

    Anochie-Boateng, Joseph

    2011-07-01

    Full Text Available laboratory testing program were used to determine bulk modulus at varying hydrostatic stress states, and moisture states chosen at optimum moisture content, 3% below and 3% above the optimum. The test results are analyzed, and used to develop regression...

  5. Effect of stress level on static young's modulus of certain structural materials

    Energy Technology Data Exchange (ETDEWEB)

    Vojtenko, A.F.; Skripnik, Yu.D.; Solov' eva, N.G.; Nadezhdin, G.N. (AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1982-11-01

    Certain steels, titanium and aluminium alloys have been studied for their dynamic and static Young moduli. It is shown that a stress rise in materials to the level of microplastic strain realization results in a significant reduction of the static modulus of elasticity in the materials studied.

  6. Detail of photo 7903109 stack of superconducting cables in the modulus measuring device

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.

  7. Effect of stress level on static young's modulus of certain structural materials

    International Nuclear Information System (INIS)

    Vojtenko, A.F.; Skripnik, Yu.D.; Solov'eva, N.G.; Nadezhdin, G.N.

    1982-01-01

    Certain steels, titanium and aluminium alloys have been studied for their dynamic and static Young moduli. It is shown that a stress rise in materials to the level of microplastic strain realization results in a significant reduction of the static modulus of elasticity in the materials studied

  8. Use of an ultrasonic device for the determination of elastic modulus of dentin.

    Science.gov (United States)

    Miyazaki, Masashi; Inage, Hirohiko; Onose, Hideo

    2002-03-01

    The mechanical properties of dentin substrate are one of the important factors in determining bond strength of dentin bonding systems. The purpose of this study was to determine the elastic modulus of dentin substrate with the use of an ultrasonic device. The dentin disks of about 1 mm thickness were obtaining from freshly extracted human third molars, and the dentin disk was shaped in a rectangular form with a line diamond point. The size and weight of each specimen was measured to calculate the density of the specimen. The ultrasonic equipment employed in this study was composed of a Pulser-Receiver (Model 5900PR, Panametrics), transducers (V155, V156, Panametrics) and an oscilloscope. The measured two-way transit time through the dentin disk was divided by two to account for the down-and-back travel path, and then multiplied by the velocity of sound in the test material. Measuring the longitudinal and share wave sound velocity determine elastic modulus. The mean elastic modulus of horizontally sectioned specimens was 21.8 GPa and 18.5 GPa for the vertically sectioned specimens, and a significant difference was found between the two groups. The ultrasonic method used in this study shows considerable promise for determination of the elastic modulus of the tooth substrate.

  9. Determining shear modulus of thin wood composite materials using a cantilever beam vibration method

    Science.gov (United States)

    Cheng Guan; Houjiang Zhang; John F. Hunt; Haicheng Yan

    2016-01-01

    Shear modulus (G) of thin wood composite materials is one of several important indicators that characterizes mechanical properties. However, there is not an easy method to obtain this value. This study presents the use of a newly developed cantilever beam free vibration test apparatus to detect in-plane G of thin wood composite...

  10. Estimating Young’s Modulus of Single-Walled Zirconia Nanotubes Using Nonlinear Finite Element Modeling

    Directory of Open Access Journals (Sweden)

    Ibrahim Dauda Muhammad

    2015-01-01

    Full Text Available The single-walled zirconia nanotube is structurally modeled and its Young’s modulus is valued by using the finite element approach. The nanotube was assumed to be a frame-like structure with bonds between atoms regarded as beam elements. The properties of the beam required for input into the finite element analysis were computed by connecting energy equivalence between molecular and continuum mechanics. Simulation was conducted by applying axial tensile strain on one end of the nanotube while the other end was fixed and the corresponding reaction force recorded to compute Young’s modulus. It was found out that Young’s modulus of zirconia nanotubes is significantly affected by some geometrical parameters such as chirality, diameter, thickness, and length. The obtained values of Young’s modulus for a certain range of diameters are in agreement with what was obtained in the few experiments that have been conducted so far. This study was conducted on the cubic phase of zirconia having armchair and zigzag configuration. The optimal diameter and thickness were obtained, which will assist in designing and fabricating bulk nanostructured components containing zirconia nanotubes for various applications.

  11. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  12. Stiffness modulus and creep properties of the coconut shell in an ...

    African Journals Online (AJOL)

    Coconut shell (CS) is an agricultural waste engineered into a road construction material. This study was conducted to evaluate the stiffness modulus and dynamic creep properties of the asphaltic concrete containing CS as an aggregate replacement. A mixture design incorporating the bitumen penetration grade 60/70 was ...

  13. The influence of resin flexural modulus on the magnitude of ceramic strengthening.

    LENUS (Irish Health Repository)

    Fleming, Garry J P

    2012-07-01

    The aim was to determine the magnitude of ceramic resin-strengthening with resin-based materials with varying flexural moduli using a regression technique to assess the theoretical strengthening at a \\'zero\\' resin-coating thickness. The hypothesis tested was that experimentally, increasing resin flexural modulus results in increased resin-strengthening observed at a theoretical \\'zero\\' resin-coating thickness.

  14. Finite element determination of tearing modulus for application to industrial cases

    International Nuclear Information System (INIS)

    Charras, T.; Combescure, A.

    1984-12-01

    The Tearing modulus, coming from a derivative of J with respect to crack-length is difficult to compute, specially in 3D, where computation costs are important. This paper presents a method to determine this value without doing two complete computations with two cracks lengths

  15. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance

    Directory of Open Access Journals (Sweden)

    Birm-June Kim

    2013-09-01

    Full Text Available The effect of individual and combined talc and glass fibers (GFs on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  16. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance.

    Science.gov (United States)

    Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin

    2013-09-17

    The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites.

  17. Effect of bulk modulus on deformation of the brain under rotational accelerations

    Science.gov (United States)

    Ganpule, S.; Daphalapurkar, N. P.; Cetingul, M. P.; Ramesh, K. T.

    2018-01-01

    Traumatic brain injury such as that developed as a consequence of blast is a complex injury with a broad range of symptoms and disabilities. Computational models of brain biomechanics hold promise for illuminating the mechanics of traumatic brain injury and for developing preventive devices. However, reliable material parameters are needed for models to be predictive. Unfortunately, the properties of human brain tissue are difficult to measure, and the bulk modulus of brain tissue in particular is not well characterized. Thus, a wide range of bulk modulus values are used in computational models of brain biomechanics, spanning up to three orders of magnitude in the differences between values. However, the sensitivity of these variations on computational predictions is not known. In this work, we study the sensitivity of a 3D computational human head model to various bulk modulus values. A subject-specific human head model was constructed from T1-weighted MRI images at 2-mm3 voxel resolution. Diffusion tensor imaging provided data on spatial distribution and orientation of axonal fiber bundles for modeling white matter anisotropy. Non-injurious, full-field brain deformations in a human volunteer were used to assess the simulated predictions. The comparison suggests that a bulk modulus value on the order of GPa gives the best agreement with experimentally measured in vivo deformations in the human brain. Further, simulations of injurious loading suggest that bulk modulus values on the order of GPa provide the closest match with the clinical findings in terms of predicated injured regions and extent of injury.

  18. Effects of Bone Young’s Modulus on Finite Element Analysis in the Lateral Ankle Biomechanics

    Directory of Open Access Journals (Sweden)

    W. X. Niu

    2013-01-01

    Full Text Available Finite element analysis (FEA is a powerful tool in biomechanics. The mechanical properties of biological tissue used in FEA modeling are mainly from experimental data, which vary greatly and are sometimes uncertain. The purpose of this study was to research how Young’s modulus affects the computations of a foot-ankle FEA model. A computer simulation and an in-vitro experiment were carried out to investigate the effects of incremental Young’s modulus of bone on the stress and strain outcomes in the computational simulation. A precise 3-dimensional finite element model was constructed based on an in-vitro specimen of human foot and ankle. Young’s moduli were assigned as four levels of 7.3, 14.6, 21.9 and 29.2 GPa respectively. The proximal tibia and fibula were completely limited to six degrees of freedom, and the ankle was loaded to inversion 10° and 20° through the calcaneus. Six cadaveric foot-ankle specimens were loaded as same as the finite element model, and strain was measured at two positions of the distal fibula. The bone stress was less affected by assignment of Young’s modulus. With increasing of Young’s modulus, the bone strain decreased linearly. Young’s modulus of 29.2 GPa was advisable to get the satisfactory surface strain results. In the future study, more ideal model should be constructed to represent the nonlinearity, anisotropy and inhomogeneity, as the same time to provide reasonable outputs of the interested parameters.

  19. Ultimate load capacities of expansion anchor bolts

    International Nuclear Information System (INIS)

    Czarnecki, R.M.; Manrique, M.A.; Samaddar, S.K.

    1993-01-01

    A summary of available experimental expansion anchor bolt test data is presented. These data were collected as part of programs by the nuclear industry to address generic issues related to verification of seismic adequacy of equipment in nuclear power plants. Some of the data presented are suitable for use in seismic probabilistic risk assessments. For example, mean values of ultimate strength, along with their standard deviation and coefficients of variation, for a range of most typical expansion anchor bolt sizes are presented. Effects of interaction between shear and tension, edge distance, spacing, and cracking of the concrete are presented in a manner that is more suitable for use in deterministic evaluations. Related industry programs to derive anchor bolt capacities are briefly discussed. Recommendations for areas of further investigation are also presented

  20. 6th International Symposium on Thermal Expansion

    CERN Document Server

    1978-01-01

    This 6th International Symposium on Thermal Expansion, the first outside the USA, was held on August 29-31, 1977 at the Gull Harbour Resort on Hecla Island, Manitoba, Canada. Symposium Chairman was Ian D. Peggs, Atomic Energy of Canada Limited, and our continuing sponsor was CINDAS/Purdue University. We made considerable efforts to broaden the base this year to include more users of expansion data but with little success. We were successful, however, in establishing a session on liquids, an area which is receiving more attention as a logical extension to the high-speed thermophysical property measurements on materials at temperatures close to their melting points. The Symposium had good international representation but the overall attendance was, disappointingly, relatively low. Neverthe­ less, this enhanced the informal atmosphere throughout the meeting with a resultant frank exchange of information and ideas which all attendees appreciated. A totally new item this year was the presentation of a bursary to ...

  1. Plasma expansion: fundamentals and applications

    International Nuclear Information System (INIS)

    Engeln, R; Mazouffre, S; Vankan, P; Bakker, I; Schram, D C

    2002-01-01

    The study of plasma expansion is interesting from a fundamental point of view as well as from a more applied point of view. We here give a short overview of the way properties like density, velocity and temperature behave in an expanding thermal plasma. Experimental data show that the basic phenomena of plasma expansion are to some extent similar to those of the expansion of a hot neutral gas. From the application point of view, we present first results on the use of an expanding thermal plasma in the plasma-activated catalysis of ammonia, from N 2 -H 2 mixtures

  2. Granular model, percolation-resistivity, ESR and elastic modulus of carbonaceous materials application to the babassu endocarp heat treated up to 22000C

    International Nuclear Information System (INIS)

    Emmerich, F.G.

    1987-01-01

    A microscopic model (granular model) is presented to study heat treated carbons. A granular structure is defined in the carbon matrix, composed of turbostratic graphite-like microcrystallites, cross-linkings and micropores. A general expression is developed to calculate the volume fraction X of the conducting phase of the granular structure as a function of structural parameters obtained from X-ray diffraction small angle X-ray scattering. The granular model and the percolation theory are used to explain the electrical resistivity behaviour with the heat treatment temperature (HTT), where X is the fundamental parameter. An electron spin resonance (ESR) study of the low and high HTT ranges is presented, including the transition range (700-1300 0 C). The elucitation of the spin center nature in this range and the liking with the two adjacent ranges has been pursued. An expression to calculate the elastic modulus (Young's modulus), based on the microscopic granular model with the fundamental participation of the cross-linkings, is derived to account for the behavior of the modulus with the HTT. The granular model with the expression of X, the percolation-resistivity theory, the ESR study, and the expression of the elastic modulus are applied to the babassu endocarp carbon heat treated up to 2200 0 C. This material can be classified as a tipical non-graphitic carbon, being useful to search the validity of the model and the proposed expressions. It is observed that the theoretical expressions describe with reasonable accuracy the respective experimental behaviours. The measurements of physical and chemical parameters of the babassu endocarp treated up to 2200 0 C area also included. (author) [pt

  3. Integrating agricultural expansion into conservation biogeography: conflicts and priorities

    Directory of Open Access Journals (Sweden)

    Ricardo Dobrovolski

    2014-06-01

    Full Text Available Increasing food production without compromising biodiversity is one of the great challenges for humanity. The aims of my thesis were to define spatial priorities for biodiversity conservation and to evaluate conservation conflicts considering agricultural expansion in the 21st century. I also tested the effect of globalizing conservation efforts on both food production and biodiversity conservation. I found spatial conflicts between biodiversity conservation and agricultural expansion. However, incorporating agricultural expansion data into the spatial prioritization process can significantly alleviate conservation conflicts, by reducing spatial correlation between the areas under high impact of agriculture and the priority areas for conservation. Moreover, developing conservation blueprints at the global scale, instead of the usual approach based on national boundaries, can benefit both food production and biodiversity. Based on these findings I conclude that the incorporation of agricultural expansion as a key component for defining global conservation strategies should be added to the list of solutions for our cultivated planet.

  4. 14 CFR 139.309 - Safety areas.

    Science.gov (United States)

    2010-01-01

    ... construction, reconstruction, or expansion began if construction, reconstruction, or significant expansion of... grading or storm sewers to prevent water accumulation. (3) Each safety area must be capable under dry...

  5. Seasonal hydroclimatic impacts of Sun Corridor expansion

    International Nuclear Information System (INIS)

    Georgescu, M; Mahalov, A; Moustaoui, M

    2012-01-01

    Conversion of natural to urban land forms imparts influence on local and regional hydroclimate via modification of the surface energy and water balance, and consideration of such effects due to rapidly expanding megapolitan areas is necessary in light of the growing global share of urban inhabitants. Based on a suite of ensemble-based, multi-year simulations using the Weather Research and Forecasting (WRF) model, we quantify seasonally varying hydroclimatic impacts of the most rapidly expanding megapolitan area in the US: Arizona’s Sun Corridor, centered upon the Greater Phoenix metropolitan area. Using a scenario-based urban expansion approach that accounts for the full range of Sun Corridor growth uncertainty through 2050, we show that built environment induced warming for the maximum development scenario is greatest during the summer season (regionally averaged warming over AZ exceeds 1 °C). Warming remains significant during the spring and fall seasons (regionally averaged warming over AZ approaches 0.9 °C during both seasons), and is least during the winter season (regionally averaged warming over AZ of 0.5 °C). Impacts from a minimum expansion scenario are reduced, with regionally averaged warming ranging between 0.1 and 0.3 °C for all seasons except winter, when no warming impacts are diagnosed. Integration of highly reflective cool roofs within the built environment, increasingly recognized as a cost-effective option intended to offset the warming influence of urban complexes, reduces urban-induced warming considerably. However, impacts on the hydrologic cycle are aggravated via enhanced evapotranspiration reduction, leading to a 4% total accumulated precipitation decrease relative to the non-adaptive maximum expansion scenario. Our results highlight potentially unintended consequences of this adaptation approach within rapidly expanding megapolitan areas, and emphasize the need for undeniably sustainable development paths that account for

  6. Degradation of rocks, through cracking caused by differential thermal expansion, in relation to nuclear waste repositories

    International Nuclear Information System (INIS)

    McLaren, J.R.; Davidge, R.W.; Titchell, I.; Sincock, K.; Bromley, A.

    1982-01-01

    Heating to temperatures up to 500 0 C gives a reduction in Young's modulus and increases in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anistropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined. 6 figures, 2 tables

  7. Warp drive with zero expansion

    Energy Technology Data Exchange (ETDEWEB)

    Natario, Jose [Department of Mathematics, Instituto Superior Tecnico (Portugal)

    2002-03-21

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding the space behind it. We show that this contraction/expansion is but a marginal consequence of the choice made by Alcubierre and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp-drive spacetimes are also discussed.

  8. Expansion lyre-shaped tube

    International Nuclear Information System (INIS)

    Andro, Jean.

    1973-01-01

    The invention relates the expansion lyre-shaped tube portions formed in dudgeoned tubular bundles between two bottom plates. An expansion lyre comprises at least two sets of tubes of unequal lengths coplanar and symmetrical with respect to the main tube axis, with connecting portions between the tubes forming said sets. The invention applies to apparatus such as heat exchangers, heaters, superheaters or breeders [fr

  9. Estimates of expansion time scales

    International Nuclear Information System (INIS)

    Jones, E.M.

    1979-01-01

    Monte Carlo simulations of the expansion of a spacefaring civilization show that descendants of that civilization should be found near virtually every useful star in the Galaxy in a time much less than the current age of the Galaxy. Only extreme assumptions about local population growth rates, emigration rates, or ship ranges can slow or halt an expansion. The apparent absence of extraterrestrials from the solar system suggests that no such civilization has arisen in the Galaxy. 1 figure

  10. Strategic Complexity and Global Expansion

    DEFF Research Database (Denmark)

    Oladottir, Asta Dis; Hobdari, Bersant; Papanastassiou, Marina

    2012-01-01

    The purpose of this paper is to analyse the determinants of global expansion strategies of newcomer Multinational Corporations (MNCs) by focusing on Iceland, Israel and Ireland. We argue that newcomer MNCs from small open economies pursue complex global expansion strategies (CGES). We distinguish....... The empirical evidence suggests that newcomer MNCs move away from simplistic dualities in the formulation of their strategic choices towards more complex options as a means of maintaining and enhancing their global competitiveness....

  11. Range expansion of heterogeneous populations.

    Science.gov (United States)

    Reiter, Matthias; Rulands, Steffen; Frey, Erwin

    2014-04-11

    Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.

  12. Particle size dependence of the Young's modulus of filled polymers: 2. Annealing and solid-state nuclear magnetic resonance experiments

    NARCIS (Netherlands)

    Vollenberg, P.H.T.; Haan, de J.W.; Ven, van de L.J.M.; Heikens, D.

    1989-01-01

    Experimental results are reported from which it appears that in the case of polymer filled with silane-treated glass beads the Young's modulus is, in accordance with present theory, independent of the particle size of the filler. However, if pure glass beads are used as filler, the Young's modulus

  13. A meta-analysis of global urban land expansion.

    Science.gov (United States)

    Seto, Karen C; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K

    2011-01-01

    The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km(2) from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km(2) and 12,568,000 km(2), with an estimate of 1,527,000 km(2) more likely.

  14. Abandonment and expansion of arable land in Europe

    NARCIS (Netherlands)

    Hatna, E.; Bakker, M.M.

    2011-01-01

    Abandonment of arable land is often assumed to happen mostly in marginal areas where the conditions for arable cultivation are relatively unfavorable, whereas arable expansion is expected to occur mostly in areas with favorable conditions. This assumption, used in many land-use change forecasts, was

  15. Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures

    International Nuclear Information System (INIS)

    Davidson, M.; Bastian, S.; Markley, F.

    1992-04-01

    Understanding the short term elastic properties, (i.e. the instantaneous modulus) of Kapton is essential in determining the loss of prestress during storage and operation of SSC dipole magnets. The magnet prestress contributes directly to the coil response to the Lorentz forces during ramping. The instantaneous modulus is important in extrapolating short term stress relaxation data to longer times. Most theoretical fits assume a time independent component and a time dependent component. The former may be represented by the Kapton modulus near zero K where all relaxation processes have been ''frozen'' out. Modulus measurements at 77K and 4.2K may point to a correct value for the near zero K modulus. Three companion papers presented at this conference will be: ''Stress Relaxation in SSC 50 mm Dipole Coils'' ''Temperature Dependence of the Viscoelastic Properties of SSC Coil Insulation (Kapton)'' ''Theoretical Methods for Creep and Stress Relaxation Studies of SSC Coil.''

  16. Fatigue testing of wood composites for aerogenerator blades. Pt. 11: Assessment of fatigue damage accumulation using a fatigue modulus approach

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, C L; Ansell, M P [Bath Univ. (United Kingdom)

    1996-12-31

    Stress-strain hysteresis loops have been captured during fatigue tests performed at R=10 (compression-compression) and R=0.1 (tension-tension) on Khaya epoxy wood composites. A fatigue modulus approach, proposed by Hwang and Han in 1989, has been applied to the data and a relationship established between the initial change in fatigue modulus and fatigue life. By following changes in fatigue modulus during the first 100 test cycles it is possible to predict the life of the sample allowing rapid evaluation of the fatigue performance of wood composites. Fatigue modulus values have also been calculated for hysteresis loops captured during complex load - time history tests. Similar trends in change in fatigue modulus suggest that this approach could be used in complex loading conditions to evaluate fatigue damage accumulation and predict fatigue life. (Author)

  17. Poisson's ratio and Young's modulus of lipid bilayers in different phases

    Directory of Open Access Journals (Sweden)

    Tayebeh eJadidi

    2014-04-01

    Full Text Available A general computational method is introduced to estimate the Poisson's ratio for membranes with small thickness.In this method, the Poisson's ratio is calculated by utilizing a rescaling of inter-particle distancesin one lateral direction under periodic boundary conditions. As an example for the coarse grained lipid model introduced by Lenz and Schmid, we calculate the Poisson's ratio in the gel, fluid, and interdigitated phases. Having the Poisson's ratio, enable us to obtain the Young's modulus for the membranes in different phases. The approach may be applied to other membranes such as graphene and tethered membranes in orderto predict the temperature dependence of its Poisson's ratio and Young's modulus.

  18. Determining the Young's modulus of a cellular titanium implant by FEM simulation

    Science.gov (United States)

    Loginov, Yu. N.; Golodnov, A. I.; Stepanov, S. I.; Kovalev, E. Yu.

    2017-12-01

    The role of additive manufacturing is noted for the construction of titanium medical implants. The purpose of the study is to determine the Young's modulus of cellular titanium implants, which is based on calculations performed by finite element analysis. A honeycomb structure from intersecting cylinder surfaces is offered for the implant made of the Ti-6Al-4V alloy. Boundary conditions are stated for the loading of the implant structure. It is demonstrated that the Young's modulus can be reduced more than three times comparing to a solid titanium alloy. Zones of strain and stress localization located near the abutment of the cylindrical surfaces. Recommendations for the further improvement of the implant architecture are generated.

  19. Young’s Modulus and Poisson’s Ratio of Monolayer Graphyne

    Directory of Open Access Journals (Sweden)

    H. Rouhi

    2013-09-01

    Full Text Available Despite its numerous potential applications, two-dimensional monolayer graphyne, a novel form of carbon allotropes with sp and sp2 carbon atoms, has received little attention so far, perhaps as a result of its unknown properties. Especially, determination of the exact values of its elastic properties can pave the way for future studies on this nanostructure. Hence, this article describes a density functional theory (DFT investigation into elastic properties of graphyne including surface Young’s modulus and Poisson’s ratio. The DFT analyses are performed within the framework of generalized gradient approximation (GGA, and the Perdew–Burke–Ernzerhof (PBE exchange correlation is adopted. This study indicates that the elastic modulus of graphyne is approximately half of that of graphene due to its lower number of bonds.

  20. In situ determination of a rock mass modulus using a high resolution tiltmeter

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, B.; Husein Malkawi, A.I. [University of Jordan, Amman (Jordan); Blum, P.A. [Universite Pierre et Marie Curie, 75 - Paris (France)

    1996-04-01

    A very sensitive, compact tiltmeter made of melted silica, developed for the measurement of small deformations of various civil engineering structures, was described. The instrument is capable of giving a continuous record and was used to establish a new approach to directly evaluating the in situ average elastic rock mass modulus. Such information is important in decision making during the design stages of large civil engineering works, such as dams, nuclear plant facilities, and underground structures. Five tiltmeters were installed on the facades of the Louvre in Paris to study the deformation induced by internal structural work and by the impact of the Paris metro traffic movement. The data was used to determine displacement using the Boussinesq equation. Results were consistent with typical elastic rock-mass modulus for the rock found in the museum`s foundations. 13 refs., 1 tab., 10 figs.

  1. Printing Three-Dimensional Heterogeneities in the Elastic Modulus of an Elastomeric Matrix.

    Science.gov (United States)

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K

    2016-05-04

    We present a rapid and controllable method to create microscale heterogeneities in the 3D stiffness of a soft material by printing patterns with a ferrofluid ink. An ink droplet moved through a liquid polydimethylsiloxane (PDMS) volume using an externally applied magnetic field sheds clusters of magnetic nanoparticles (MNPs) in its wake. By varying the field spatiotemporally, a well-defined three-dimensional curvilinear feature is printed that contains MNP clusters. Subsequent cross-linking of the PDMS preserves the feature in place after the magnetic field is removed. Since the ferrofluid ink interferes with the cross-linking of PDMS, a 3D print containing ink density variations leads to corresponding spatial deviations in the elastic modulus of the matrix. The modulus is mapped in the experiments with atomic force microscopy. This rapid method to print 3D heterogeneities in soft matter promises the ability to mimic mechanical variations that occur in natural biomaterials.

  2. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    Science.gov (United States)

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies––from thermal solar to automotive waste heat recovery systems––whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  3. Evaluation of time-accelerated irradiation method of elastomer by modulus-ultimate elongation profile

    International Nuclear Information System (INIS)

    Ito, Masayuki; Oka, Toshitaka; Hama, Yosimasa

    2009-01-01

    'Generalized modulus-ultimate elongation profile' was induced from the relationship between the modulus and the ultimate elongation of an elastomer that was quantitatively added crosslinking and scission. This profile can be used to evaluate the time-accelerated irradiation methods of ethylene-propylene-diene elastomer. The irradiation under low dose rate (0.33 kGy/h) at room temperature was the reference condition. The short-time irradiation condition was 4.2 kGy/h in 0.5 MPa oxygen at room temperature and 5.0 kGy/h in air at 70 o C. The former tended to bring about the higher ratio of scission than the reference condition; the latter tended to bring about the higher ratio of crosslinking.

  4. Influence of seed layer moduli on finite element method-based modulus backcalculation result

    CSIR Research Space (South Africa)

    Matsui, K

    2006-01-01

    Full Text Available ) Static backcalculation E1 0 200 400 600 800 1000 1200 10 50 - 11 00 11 00 - 11 50 11 50 - 12 00 12 00 - 12 50 12 50 - 13 00 13 00 - 13 50 13 50 - 14 00 Layer modulus (MPa) Fr e qu e n c y E2 0 200 400... 600 800 1000 1200 10 0 - 12 0 12 0 - 14 0 14 0 - 16 0 16 0 - 18 0 18 0 - 20 0 20 0 - 22 0 22 0 - 24 0 Layer modulus (MPa) Fr e qu e n c y E3 0 200 400 600 800 1000 1200 70 - 80 80 - 90 90 - 10 0...

  5. Young's modulus and fracture toughness of silicon nitride ceramics at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Rouxel, T. [Rennes Univ. (France). Lab. de Recherche en Mecanique Applicee

    2002-07-01

    The temperature dependencies of Young's modulus (E) and fracture toughness (K{sub 1c}) of several silicon nitride-based monolithic and composite materials, are reviewed. A transition range is observed between 1130 and 1180 C on the E(T) curves, which is systematically 150 to 200 C above the T{sub g} of oxynitride glasses of composition close to that of the intergranular glassy pockets. It is thus supposed that this transition reflects the behaviour of the interfacial glassy films. The higher the glassy phase content, the higher is the temperature sensitivity. The presence of SiC particles greatly attenuates the sensitivity. Thus, Young's modulus decreases more slowly with temperature and fracture toughness changes little up to 1300 C. The K{sub 1c} (T) curves exhibit four different stages which are discussed and interpreted on the basis of a theoretical model. (orig.)

  6. The information exchange between moduluses in the system of module programming of the computation complexes

    International Nuclear Information System (INIS)

    Zinin, A.I.; Kolesov, V.E.; Nevinitsa, A.I.

    1975-01-01

    The report contains description of the method of construction of computer programs complexes for computation purposes for M-220 computers using the ALGOL-60 code for programming. The complex is organised on the modulus system principle and can include substantial number of modulus programs. The information exchange between separate moduli is done by means of special interpreting program and the information unit exchanged is a specially arranged file of data. For addressing to the interpreting program in the ALGOL-60 frameworks small number of specially created procedure-codes is used. The method proposed gives possibilities to program separate moduli of the complex independently and to expand the complex if necessary. In this case separate moduli or groups of moduli depending on the method of segmentation of the general problem solved by the complex will be of the independent interest and could be used out of the complex as traditional programs. (author)

  7. Size effect of the elastic modulus of rectangular nanobeams: Surface elasticity effect

    International Nuclear Information System (INIS)

    Yao Hai-Yan; Fan Wen-Liang; Yun Guo-Hong

    2013-01-01

    The size-dependent elastic property of rectangular nanobeams (nanowires or nanoplates) induced by the surface elasticity effect is investigated by using a developed modified core-shell model. The effect of surface elasticity on the elastic modulus of nanobeams can be characterized by two surface related parameters, i.e., inhomogeneous degree constant and surface layer thickness. The analytical results show that the elastic modulus of the rectangular nanobeam exhibits a distinct size effect when its characteristic size reduces below 100 nm. It is also found that the theoretical results calculated by a modified core-shell model have more obvious advantages than those by other models (core-shell model and core-surface model) by comparing them with relevant experimental measurements and computational results, especially when the dimensions of nanostructures reduce to a few tens of nanometers. (condensed matter: structural, mechanical, and thermal properties)

  8. High modulus rare earth and beryllium containing silicate glass compositions. [for glass reinforcing fibers

    Science.gov (United States)

    Bacon, J. F. (Inventor)

    1976-01-01

    Glass compositions having a Young's modulus of at least 16 million psi and a specific modulus of at least 110 million inches consisting essentially of approximately, by weight, 20 to 43% SiO2, 8 to 21% Al2O3, 4 to 10% BeO, 27 to 58% of at least one oxide selected from a first group consisting of Y2O3, La2O3, Nd2O3, Ce2O3, Ce2O3, and the mixed rare earth oxides, and 3 to 12% of at least one oxide selected from a second group consisting of MgO, ZrO2, ZnO and CaO are described. The molar ratio of BeO to the total content of the first group oxides is from 1.0 to 3.0.

  9. Dielectric and modulus studies of polycrystalline BaZrO3 ceramic

    Science.gov (United States)

    Saini, Deepash S.; Singh, Sunder; Kumar, Anil; Bhattacharya, D.

    2018-05-01

    In the present work, dielectric and modulus studies of polycrystalline BaZrO3 ceramic, prepared by modified combustion method followed by conventional sintering, are investigated over the frequency range of 100 Hz to 106 Hz at different temperatures from 250 to 500 °C in air. The high value of dielectric constant (ɛ' ˜ 103) of BaZrO3 at high temperature and low frequency can be attributed to the Maxwell-Wagner polarization mechanism as well as to the thermally activated mechanism of charge carriers. Electric modulus reveal two type relaxations in the 250 °C to 800 °C temperature region as studied at different frequencies over 100 Hz to 106 Hz in air.

  10. Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

    Directory of Open Access Journals (Sweden)

    Holmes Amey J

    2005-07-01

    Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.

  11. Temperature, Frequency, and Young’s Modulus of an Aluminum Tuning Fork

    Directory of Open Access Journals (Sweden)

    Zachery L. Greer

    2011-01-01

    Full Text Available The frequency produced by a standard C (523.3 Hz aluminum alloy tuning fork when struck at temperatures ranging from 29 ̊C to 300 ̊C was studied. It was found that frequency decreased with increasing temperature with an inverse exponential relationship. The frequency was used to calculate Young’s Modulus for aluminum, with the results being in close agreement with published values.

  12. Young`s modulus of ceramic matrix composites with polysiloxane based matrix at elevated temperatures

    Czech Academy of Sciences Publication Activity Database

    Černý, Martin; Glogar, Petr

    2004-01-01

    Roč. 39, č. 6 (2004), s. 2239-2242 ISSN 0022-2461 R&D Projects: GA ČR GA106/02/0177; GA ČR GP106/02/P025 Institutional research plan: CEZ:AV0Z3046908 Keywords : composite material * Young `s modulus * high temperature Subject RIV: JI - Composite Materials Impact factor: 0.864, year: 2004

  13. Convergence analysis of modulus-based matrix splitting iterative methods for implicit complementarity problems.

    Science.gov (United States)

    Wang, An; Cao, Yang; Shi, Quan

    2018-01-01

    In this paper, we demonstrate a complete version of the convergence theory of the modulus-based matrix splitting iteration methods for solving a class of implicit complementarity problems proposed by Hong and Li (Numer. Linear Algebra Appl. 23:629-641, 2016). New convergence conditions are presented when the system matrix is a positive-definite matrix and an [Formula: see text]-matrix, respectively.

  14. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing

    2016-11-15

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  15. Determination of Rock Mass Modulus Using the Plate Loading Method at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Finley, R.E.; George, J.T.; Riggins, M.

    1999-01-01

    A suite of plate loading tests has recently been conducted by Sandia National Laboratories at the Exploratory Studies Facility at Yucca Mountain, Nevada. Fielding of these in situ tests as well as other approaches undertaken for the determination of rock mass modulus are described. The various methodologies are evaluated and their data compared. Calculation by existing empirical methods and numerical modeling are compared to each other as well as to field data

  16. Implicit implementation and consistent tangent modulus of a viscoplastic model for polymers

    OpenAIRE

    ACHOUR, Nadia; CHATZIGEORGIOU, George; MERAGHNI, Fodil; CHEMISKY, Yves; FITOUSSI, Joseph

    2015-01-01

    In this work, the phenomenological viscoplastic DSGZ model (Duan et al., 2001 [13]), developed for glassy or semi-crystalline polymers, is numerically implemented in a three-dimensional framework, following an implicit formulation. The computational methodology is based on the radial return mapping algorithm. This implicit formulation leads to the definition of the consistent tangent modulus which permits the implementation in incremental micromechanical scale transition analysis. The extende...

  17. An autonomic self-healing organogel with a photo-mediated modulus

    KAUST Repository

    Xiong, Yubing; Chen, Zhijun; Wang, Hong; Ackermann, Lisa Maria; Klapper, Markus; Butt, Hans Jü rgen; Wu, Si

    2016-01-01

    A new method is described for fabricating autonomic, self-healing, deformable organogels. We combined imidazolium-based poly(ionic liquid) (PIL) and azobenzene-grafted poly(carboxylic acid) (PAA-Azo) in N,N-dimethyl formamide. Further, complexing PIL with unirradiated (trans) or irradiated (cis) PAA-Azo tuned the elastic modulus of the organogel. © 2016 The Royal Society of Chemistry.

  18. Determination of elastic modulus for hollow spherical shells via resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200092 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-04-15

    Highlights: • The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method. • The simulated results demonstrate that the natural frequencies of a hollow sphere are more strongly dependent on Young’s modulus than Poisson's ratio. • The Young’s moduli of polymer capsules with an sub-millimeter inner radius are measured accurately with an uncertainty of ∼10%. - Abstract: The elastic property of a capsule is one of the essential parameters both in engineering applications and scientific understanding of material nature in inertial confinement fusion (ICF) experiments. The axisymmetric frequency equation of an isotropic hollow two-layer sphere is deduced by three dimension elasticity theory and global matrix method, and a combined resonant ultrasound spectroscopy(RUS), which consists of a piezoelectric-based resonant ultrasound spectroscopy(PZT-RUS) and a laser-based resonant ultrasound spectroscopy(LRUS), is developed for determining the elastic modulus of capsule. To understand the behavior of natural frequencies varying with elastic properties, the dependence of natural frequencies on Young’s modulus and Poisson’s ratio are calculated numerically. Some representative polymer capsules are measured using PZT-RUS and LRUS. Based on the theoretical and experimental results, the Young’s moduli of these capsules are measured accurately with an uncertainty of ∼10%.

  19. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    International Nuclear Information System (INIS)

    Passeri, D.; Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A.; Tamburri, E.; Lucci, M.; Davoli, I.; Berezina, S.

    2009-01-01

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  20. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Passeri, D., E-mail: daniele.passeri@uniroma1.it [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Bettucci, A.; Biagioni, A.; Rossi, M.; Alippi, A. [Dipartimento di Energetica, Universita di Roma ' La Sapienza' , Via A. Scarpa 16, 00161 Roma (Italy); Tamburri, E. [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Lucci, M.; Davoli, I. [Dipartimento di Fisica, Universita di Roma ' Tor Vergata' , Via della Ricerca Scientifica, 00133 Roma (Italy); Berezina, S. [Department of Physics, University of Zilina, 01026, Univerzitna 1 Zilina (Slovakia)

    2009-11-15

    We propose a nanoindentation technique based on atomic force microscopy (AFM) that allows one to deduce both indentation modulus and hardness of viscoelastic materials from the force versus penetration depth dependence, obtained by recording the AFM cantilever deflection as a function of the sample vertical displacement when the tip is pressed against (loading phase) and then removed from (unloading phase) the surface of the sample. Reliable quantitative measurements of both indentation modulus and hardness of the investigated sample are obtained by calibrating the technique through a set of different polymeric samples, used as reference materials, whose mechanical properties have been previously determined by standard indentation tests. By analyzing the dependence of the cantilever deflection versus time, the proposed technique allows one to evaluate and correct the effect of viscoelastic properties of the investigated materials, by adapting a post-experiment data processing procedure well-established for standard depth sensing indentation tests. The technique is described in the case of the measurement of indentation modulus and hardness of a thin film of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate), deposited by chronoamperometry on an indium tin oxide (ITO) substrate.

  1. The effect of compressive stress on the Young's modulus of unirradiated and irradiated nuclear graphites

    International Nuclear Information System (INIS)

    Oku, T.; Usui, T.; Ero, M.; Fukuda, Y.

    1977-01-01

    The Young's moduli of unirradiated and high temperature (800 to 1000 0 C) irradiated graphites for HTGR were measured by the ultrasonic method in the direction of applied compressive stress during and after stressing. The Young's moduli of all the tested graphites decreased with increasing compressive stress both during and after stressing. In order to investigate the reason for the decrease in Young's modulus by applying compressive stress, the mercury pore diameter distributions of a part of the unirradiated and irradiated specimens were measured. The change in pore distribution is believed to be associated with structural changes produced by irradiation and compressive stressing. The residual strain, after removing the compressive stress, showed a good correlation with the decrease in Young's modulus caused by the compressive stress. The decrease in Young's modulus by applying compressive stress was considered to be due to the increase in the mobile dislocation density and the growth or formation of cracks. The results suggest, however, that the mechanism giving the larger contribution depends on the brand of graphite, and in anisotropic graphite it depends on the direction of applied stress and the irradiation conditions. (author)

  2. Compressive Strength and Modulus of Elasticity of Concrete with Cubed Waste Tire Rubbers as Coarse Aggregates

    Science.gov (United States)

    Haryanto, Y.; Hermanto, N. I. S.; Pamudji, G.; Wardana, K. P.

    2017-11-01

    One feasible solution to overcome the issue of tire disposal waste is the use of waste tire rubber to replace aggregate in concrete. We have conducted an experimental investigation on the effect of rubber tire waste aggregate in cuboid form on the compressive strength and modulus of elasticity of concrete. The test was performed on 72 cylindrical specimens with the height of 300 mm and diameter of 150 mm. We found that the workability of concrete with waste tire rubber aggregate has increased. The concrete density with waste tire rubber aggregate was decreased, and so was the compressive strength. The decrease of compressive strength is up to 64.34%. If the content of waste tire rubber aggregate is more than 40%, then the resulting concrete cannot be categorized as structural concrete. The modulus of elasticity decreased to 59.77%. The theoretical equation developed to determine the modulus of elasticity of concrete with rubber tire waste aggregate has an accuracy of 84.27%.

  3. Nano-fillers to tune Young’s modulus of silicone matrix

    International Nuclear Information System (INIS)

    Xia Lijin; Xu Zhonghua; Sun Leming; Caveney, Patrick M.; Zhang Mingjun

    2013-01-01

    In this study, we investigated nanoparticles, nanofibers, and nanoclays for their filler effects on tuning the Young’s modulus of silicone matrix, a material with broad in vivo applications. Nano-fillers with different shapes, sizes, and surface properties were added into silicone matrix, and then their filler effects were evaluated through experimental studies. It was found that spherical nanoparticles could clearly improve Young’s modulus of the silicone matrix, while nanoclays and carbon nanofibers had limited effects. Smaller spherical nanoparticles were better in performance compared to larger nanoparticles. In addition, enhanced distribution of the nanoparticles in the matrix has been observed to improve the filler effect. In order to minimize toxicity of the nanoparticles for in vivo applications, spherical nanoparticles coated with amine, acid, or hydroxide groups were also investigated, but they were found only to diminish the filler effect of nanoparticles. This study demonstrated that spherical nanoparticles could serve as fillers to tune Young’s modulus of silicone matrix for potential applications in medicine.

  4. Fast, High Resolution, and Wide Modulus Range Nanomechanical Mapping with Bimodal Tapping Mode.

    Science.gov (United States)

    Kocun, Marta; Labuda, Aleksander; Meinhold, Waiman; Revenko, Irène; Proksch, Roger

    2017-10-24

    Tapping mode atomic force microscopy (AFM), also known as amplitude modulated (AM) or AC mode, is a proven, reliable, and gentle imaging mode with widespread applications. Over the several decades that tapping mode has been in use, quantification of tip-sample mechanical properties such as stiffness has remained elusive. Bimodal tapping mode keeps the advantages of single-frequency tapping mode while extending the technique by driving and measuring an additional resonant mode of the cantilever. The simultaneously measured observables of this additional resonance provide the additional information necessary to extract quantitative nanomechanical information about the tip-sample mechanics. Specifically, driving the higher cantilever resonance in a frequency modulated (FM) mode allows direct measurement of the tip-sample interaction stiffness and, with appropriate modeling, the set point-independent local elastic modulus. Here we discuss the advantages of bimodal tapping, coined AM-FM imaging, for modulus mapping. Results are presented for samples over a wide modulus range, from a compliant gel (∼100 MPa) to stiff materials (∼100 GPa), with the same type of cantilever. We also show high-resolution (subnanometer) stiffness mapping of individual molecules in semicrystalline polymers and of DNA in fluid. Combined with the ability to remain quantitative even at line scan rates of nearly 40 Hz, the results demonstrate the versatility of AM-FM imaging for nanomechanical characterization in a wide range of applications.

  5. Sensitive determination of the Young's modulus of thin films by polymeric microcantilevers

    DEFF Research Database (Denmark)

    Colombi, Paolo; Bergese, Paolo; Bontempi, Elza

    2013-01-01

    A method for the highly sensitive determination of the Young's modulus of TiO2 thin films exploiting the resonant frequency shift of a SU-8 polymer microcantilever (MC) is presented. Amorphous TiO2 films with different thickness ranging from 10 to 125 nm were grown at low temperature (90 °C......) with subnanometer thickness resolution on SU-8 MC arrays by means of atomic layer deposition. The resonant frequencies of the MCs were measured before and after coating and the elastic moduli of the films were determined by a theoretical model developed for this purpose. The Young's modulus of thicker TiO2 films...... (>75 nm) was estimated to be about 110 GPa, this value being consistent with the value of amorphous TiO2. On the other hand we observed a marked decrease of the Young's modulus for TiO2 films with a thickness below 50 nm. This behavior was found not to be related to a decrease of the film mass density...

  6. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    Science.gov (United States)

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  7. Enhancement and prediction of modulus of elasticity of palm kernel shell concrete

    International Nuclear Information System (INIS)

    Alengaram, U. Johnson; Mahmud, Hilmi; Jumaat, Mohd Zamin

    2011-01-01

    Research highlights: → Micro-pores of size 16-24 μm were found on the outer surface of palm kernel shell. → Infilling of pores by mineral admixtures was evident. → Sand content influenced both modulus of elasticity and compressive strength. → Proposed equation predicts modulus of elasticity within ±1.5 kN/mm 2 of test results. -- Abstract: This paper presents results of an investigation conducted to enhance and predict the modulus of elasticity (MOE) of palm kernel shell concrete (PKSC). Scanning electron microscopic (SEM) analysis on palm kernel shell (PKS) was conducted. Further, the effect of varying sand and PKS contents and mineral admixtures (silica fume and fly ash) on compressive strength and MOE was investigated. The variables include water-to-binder (w/b) and sand-to-cement (s/c) ratios. Nine concrete mixes were prepared, and tests on static and dynamic moduli of elasticity and compressive strength were conducted. The SEM result showed presence of large number of micro-pores on PKS. The mineral admixtures uniformly filled the micro-pores on the outer surface of PKS. Further, the increase in sand content coupled with reduction in PKS content enhanced the compressive strength and static MOE: The highest MOE recorded in this investigation, 11 kN/mm 2 , was twice that previously published. Moreover, the proposed equation based on CEB/FIP code formula appears to predict the MOE close to the experimental values.

  8. Observations of borehole deformation modulus values before and after extensive heating of a granitic rock mass

    International Nuclear Information System (INIS)

    Patrick, W.C.; Yow, J.L.; Caxelrod, M.C.

    1985-01-01

    An extensive campaign of in situ deformation modulus measurements was recently completed using a standard NX borehole jack. These results were obtained in a granite intrusive where spent nuclear-fuel assemblies and electrical heaters had raised the rock temperatures 10 0 C to 40 0 C above ambient. We present an analysis of temperature effects based on 41 preheat and 63 post-heat measurements in three boreholes. Using analysis of covariance statistical techniques, we found that the deformation modulus is affected by heat, loading direction, and position within the borehole. The analysis also uncovered a significant interaction between the effects of heating and loading direction. We used 123 measurements from the same boreholes to evaluate the ''Draft Standard Guide for Estimating the In Situ Modulus of Rock Masses Using the NX-Borehole Jack'' which was recently proposed by Heuze. In particular, we examined the criterion for screening measurements in those cases where contact between the jack platen and the borehole wall was incomplete. We found that the proposed screen appears to operate randomly on the data and is therefore ineffective

  9. Can reliable values of Young's modulus be deduced from Fisher's (1971) spinning lens measurements?

    Science.gov (United States)

    Burd, H J; Wilde, G S; Judge, S J

    2006-04-01

    The current textbook view of the causes of presbyopia rests very largely on a series of experiments reported by R.F. Fisher some three decades ago, and in particular on the values of lens Young's modulus inferred from the deformation caused by spinning excised lenses about their optical axis (Fisher 1971) We studied the extent to which inferred values of Young's modulus are influenced by assumptions inherent in the mathematical procedures used by Fisher to interpret the test and we investigated several alternative interpretation methods. The results suggest that modelling assumptions inherent in Fisher's original method may have led to systematic errors in the determination of the Young's modulus of the cortex and nucleus. Fisher's conclusion that the cortex is stiffer than the nucleus, particularly in middle age, may be an artefact associated with these systematic errors. Moreover, none of the models we explored are able to account for Fisher's claim that the removal of the capsule has only a modest effect on the deformations induced in the spinning lens.

  10. Flexural strength and modulus of elasticity of different types of resin-based composites.

    Science.gov (United States)

    Rodrigues Junior, Sinval Adalberto; Zanchi, Cesar Henrique; Carvalho, Rodrigo Varella de; Demarco, Flávio Fernando

    2007-01-01

    The aim of the study was to test whether the filler composition of resin composites influences their flexural strength and modulus of elasticity. Flexural strength and modulus of elasticity were obtained through a three-point bending test. Twelve bar shaped specimens of 5 commercially available composites--Supreme (3M/ESPE), a universal nanofilled composite; Esthet-X (Dentsply), Z-250 (3M/ESPE), Charisma (Heraeus Kulzer), universal hybrid composites; and Helio Fill (Vigodent), a microfine composite--were confectioned according to the ISO 4049/2000 specifications. The test was performed after a 7-days storage time using a universal test machine with a crosshead speed of 1 mm/min. The filler weight content was determined by the ashing technique. The data obtained on the mechanical properties were submitted to ANOVA and Tukey test (p elasticity results were observed among the universal hybrid composites. The nanofilled composite presented intermediary results. Within the limitations of this in vitro study, it could be concluded that the filler content significantly interfered in the flexural strength and modulus of elasticity of the composites tested.

  11. Influence of grain size distribution on dynamic shear modulus of sands

    Directory of Open Access Journals (Sweden)

    Dyka Ireneusz

    2017-11-01

    Full Text Available The paper presents the results of laboratory tests, that verify the correlation between the grain-size characteristics of non-cohesive soils and the value of the dynamic shear modulus. The problem is a continuation of the research performed at the Institute of Soil Mechanics and Rock Mechanics in Karlsruhe, by T. Wichtmann and T. Triantafyllidis, who derived the extension of the applicability of the Hardin’s equation describing the explicite dependence between the grain size distribution of sands and the values of dynamic shear modulus. For this purpose, piezo-ceramic bender elements generating elastic waves were used to investigate the mechanical properties of the specimens with artificially generated particle distribution. The obtained results confirmed the hypothesis that grain size distribution of non-cohesive soils has a significant influence on the dynamic shear modulus, but at the same time they have shown that obtaining unambiguous results from bender element tests is a difficult task in practical applications.

  12. Evaluation of linear polymerization shrinkage, flexural strength and modulus of elasticity of dental composites

    Directory of Open Access Journals (Sweden)

    Gabriela Queiroz de Melo Monteiro

    2010-03-01

    Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of 7 dental composites (Filtek Z350™, Filtek Z250™/3M ESPE; Grandio™, Polofil Supra™/VOCO; TPH Spectrum™, TPH3™, Esthet-X™/Denstply were measured. For the measurement of LPS, composites were applied to a cylindrical metallic mold and polymerized (n = 8. The gap formed at the resin/mold interface was observed using scanning electron microscopy (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. TPH Spectrum presented significantly higher LPS values (29.45 µm. Grandio had significantly higher mean values for FS (141.07 MPa and ME (13.91 GPa. The relationship between modulus of elasticity and polymerization shrinkage is the main challenge for maintenance of the adhesive interface, thus composites presenting high shrinkage values, associated with a high modulus of elasticity tend to disrupt the adhesive interface under polymerization.

  13. The Relationship between Trabecular Bone Structure Modeling Methods and the Elastic Modulus as Calculated by FEM

    Directory of Open Access Journals (Sweden)

    Tomasz Topoliński

    2012-01-01

    Full Text Available Trabecular bone cores were collected from the femoral head at the time of surgery (hip arthroplasty. Investigated were 42 specimens, from patients with osteoporosis and coxarthrosis. The cores were scanned used computer microtomography (microCT system at an isotropic spatial resolution of 36 microns. Image stacks were converted to finite element models via a bone voxel-to-element algorithm. The apparent modulus was calculated based on the assumptions that for the elastic properties, E=10 MPa and ν=0.3. The compressive deformation as calculated by finite elements (FE analysis was 0.8%. The models were coarsened to effectively change the resolution or voxel size (from 72 microns to 288 microns or from 72 microns to 1080 microns. The aim of our study is to determine how an increase in the distance between scans changes the elastic properties as calculated by FE models. We tried to find a border value voxel size at which the module values were possible to calculate. As the voxel size increased, the mean voxel volume increased and the FEA-derived apparent modulus decreased. The slope of voxel size versus modulus relationship correlated with several architectural indices of trabecular bone.

  14. A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii.

    Science.gov (United States)

    Akagi, Ryota; Shikiba, Tomofumi; Tanaka, Jun; Takahashi, Hideyuki

    2016-08-01

    We investigated the effect of a 6-week resistance training program on the shear modulus of the triceps brachii (TB). Twenty-three young men were randomly assigned to either the training (n = 13) or control group (n = 10). Before and after conducting the resistance training program, the shear modulus of the long head of the TB was measured at the point 70% along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus using shear wave ultrasound elastography. Muscle thickness of the long head of the TB was also determined at the same site by ultrasonography used during both tests. A resistance exercise was performed 3 days a week for 6 weeks using a dumbbell mass-adjusted to 80% of the 1-repetition maximum (1RM). The training effect on the muscle thickness and 1RM was significant. Nevertheless, the muscle shear modulus was not significantly changed after the training program. From the perspective of muscle mechanical properties, the present results indicate that significant adaptation must occur to make the TB more resistant to subsequent damaging bouts during the 6-week training program to target the TB.

  15. Current expansion of the Elliot Lake mines

    International Nuclear Information System (INIS)

    Stenning, G.

    1982-06-01

    The Elliot Lake mines are located in northern Ontario, on the north shore of Lake Huron. Mining operations in this area started in the mid-1950's and were curtailed during the 1960's. Starting in 1973 Rio Algom's Quirke mine and Denison, the only producers remaining in the area, started to make plans to expand. Increasing production to 30,000 tpd (milled) requires the reopening of the Panel and Stanleigh Mines of the Rio Algom group and the Stanrock-CanMet area at Denison. The first phase of the expansion was preceded by extensive public hearings. Mine production increases, improvement to the facilities at the reopened mines, and the effects on community facilities are described in this paper

  16. Thai gas expansion plans

    International Nuclear Information System (INIS)

    Hayes, D.

    2001-01-01

    Demand for natural gas in Thailand is increasing significantly as the Electricity Generating Authority of Thailand and the independent private power producers (IPPs) switch from oil to gas to fire their power stations in line with Government policy to reduce oil imports and use more gas from the Gulf of Thailand. The Petroleum Authority of Thailand (PTT) has the sole right to buy and sell natural gas and other petroleum products in Thailand. According to PTT, the surge in demand for natural gas in the first half of 2001 was matched by a fall in demand for refined oil products. The PTT has received Government approval to convert to a limited company ready for listing on the Thai Stock Exchange. This is expected to further increase gas consumption. Details of gas sales to power generation and other industrial sectors by PTT and Unocal, Thailand's largest producer, are given. PTT operations include work to extend its gas pipeline transmission system. A number of new pipeline schemes are planned, including one across southern Thailand to transfer offshore gas from the Joint Development Area gas field owned by Thailand and Malaysia. This has encountered protests over the proposed plant and pipeline route

  17. EUB Decision 2006-112 : Suncor Energy Inc. application for expansion of an oil sands mine (North Steepbank mine extension) and a bitumen upgrading facility (Voyageur Upgrader) in the Fort McMurray area

    International Nuclear Information System (INIS)

    2006-01-01

    Suncor Energy Inc. filed 2 applications to the Alberta Energy and Utilities Board for their proposed North Steepbank Mine Extension and Voyageur Upgrading Facility in the Fort McMurray area. This document provided an outline to the board of the location of the proposed projects, along with technical details concerning sulphur recovery, coke gasification, and by-product storage and use. The applications shared a common environmental impact assessment report, which presented details of tailings management programs; environmental effects to air, terrestrial resources, surface water, and groundwater; potential health effects to human populations; and traditional land use and ecological knowledge of the lands in the areas of the proposed upgrades. The social and economic effects of the projects were considered by the board, as well as the efforts of Suncor to engage with public consultation processes. It was noted that the projects are expected to provide $7.1 billion in federal taxes paid over the life of the project, in addition to $3.6 billion in provincial taxes and a further $23 million in municipal taxes. Details of several interventions filed by various First Nations groups were presented. It was noted that the Oil Sands Environmental Coalition (OSEC) has filed interventions stating concerns over consultation practices; cumulative effects; environmental monitoring; water usage; reclamation policies; and socio-economic issues. Various other groups have expressed concerns over the impacts of rapid development in the region and the subsequent strains on public infrastructure, housing and community resources. While the project is expected to provide employment, the current labour shortage in the region means that further development will be a disadvantage rather than a benefit to the communities in the region. Although a number of conditions were placed on Suncor before full acceptance of the project could be given, the board concluded that the Voyageur project was

  18. On genus expansion of superpolynomials

    Energy Technology Data Exchange (ETDEWEB)

    Mironov, Andrei, E-mail: mironov@itep.ru [Lebedev Physics Institute, Moscow 119991 (Russian Federation); ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Morozov, Alexei, E-mail: morozov@itep.ru [ITEP, Moscow 117218 (Russian Federation); National Research Nuclear University MEPhI, Moscow 115409 (Russian Federation); Sleptsov, Alexei, E-mail: sleptsov@itep.ru [ITEP, Moscow 117218 (Russian Federation); Laboratory of Quantum Topology, Chelyabinsk State University, Chelyabinsk 454001 (Russian Federation); KdVI, University of Amsterdam (Netherlands); Smirnov, Andrey, E-mail: asmirnov@math.columbia.edu [ITEP, Moscow 117218 (Russian Federation); Columbia University, Department of Mathematics, New York (United States)

    2014-12-15

    Recently it was shown that the (Ooguri–Vafa) generating function of HOMFLY polynomials is the Hurwitz partition function, i.e. that the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and expansion through Vassiliev invariants explicitly demonstrate this phenomenon. In the present paper we claim that the superpolynomials are not functions of such a type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are β-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev and genus expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials. However, even for the thin knots the beta-deformation is non-innocent: already in the simplest examples it seems inconsistent with the positivity of colored superpolynomials in non-(anti)symmetric representations, which also happens in I. Cherednik's (DAHA-based) approach to the torus knots.

  19. [Calculation of soil water erosion modulus based on RUSLE and its assessment under support of artificial neural network].

    Science.gov (United States)

    Li, Yuhuan; Wang, Jing; Zhang, Jixian

    2006-06-01

    With Hengshan County of Shanxi Province in the North Loess Plateau as an example, and by using ETM + and remote sensing data and RUSLE module, this paper quantitatively derived the soil and water loss in loess hilly region based on "3S" technology, and assessed the derivation results under the support of artificial neural network. The results showed that the annual average erosion modulus of Hengshan County was 103.23 t x hm(-2), and the gross erosion loss per year was 4. 38 x 10(7) t. The erosion was increased from northwest to southeast, and varied significantly with topographic position. A slight erosion or no erosion happened in walled basin, flat-headed mountain ridges and sandy area, which always suffered from dropping erosion, while strip erosion often happened on the upslope of mountain ridge and mountaintop flat. Moderate rill erosion always occurred on the middle and down slope of mountain ridge and mountaintop flat, and weighty rushing erosion occurred on the steep ravine and brink. The RUSLE model and artificial neural network technique were feasible and could be propagandized for drainage areas control and preserved practice.

  20. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  1. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  2. Regulation of gas infrastructure expansion

    International Nuclear Information System (INIS)

    De Joode, J.

    2012-01-01

    The topic of this dissertation is the regulation of gas infrastructure expansion in the European Union (EU). While the gas market has been liberalised, the gas infrastructure has largely remained in the regulated domain. However, not necessarily all gas infrastructure facilities - such as gas storage facilities, LNG import terminals and certain gas transmission pipelines - need to be regulated, as there may be scope for competition. In practice, the choice of regulation of gas infrastructure expansion varies among different types of gas infrastructure facilities and across EU Member States. Based on a review of economic literature and on a series of in-depth case studies, this study explains these differences in choices of regulation from differences in policy objectives, differences in local circumstances and differences in the intrinsic characteristics of the infrastructure projects. An important conclusion is that there is potential for a larger role for competition in gas infrastructure expansion.

  3. A year of expansion

    International Nuclear Information System (INIS)

    1959-01-01

    The activities of the Agency are directed towards the generation of nuclear power and the applications of nuclear radiation as well as to ensure that the atomic energy throughout the world to which the Agency lends its assistance, does not constitute a hazard to health and safety or a threat to security and peace. Therefore the Agency's annual report points out that the production and use of radioisotopes and the eventual generation of economic nuclear power, under safe and secure conditions, continue to be the main objectives of most of the Agency's work. The primary role of the Agency is that of assistance, guidance and coordination. Such assistance can take various forms, one of the most important being the provision of experts and equipment to help particular projects. Again, valuable assistance can be given by an exchange of information, so that all countries, with varying degrees of development, may enjoy the benefits of the latest advances in research and technology. In some cases, the international body itself can give an impetus to research and technical development and fill the gaps in existing knowledge. Furthermore, it can help in laying the foundations of development by arranging the training of technical personnel. And above all, it can render substantial assistance by arranging and co-ordinating the supply of nuclear materials and equipment in a manner that would best meet the needs of all Member States and reduce the chances of retarded or unbalanced development in particular areas. The scope of the Agency has continued to expand including not only the establishment of health and safety standards and the evolution of international conventions and safeguards procedures but also and exchange of scientific and technical information among all nations. The Agency has sent out several teams of experts to different areas to make preliminary surveys of conditions and needs. By June 1959, 62 requests for technical assistance had been received by the Agency

  4. The Role of the Process and Design Variables in Improving the Performance of Heat Exchanger Tube Expansion

    Directory of Open Access Journals (Sweden)

    Changwan Han

    2018-05-01

    Full Text Available In the expansion process of a fin-tube heat exchanger, the process variables and shape of the expansion ball affect the deformation of the tube’s inner grooves, the adhesion, and the expansion force. These factors influence the efficiency of heat transfer and the lifetime of the expansion equipment. Therefore, this study analyzed the influential variables of the tube expansion process as well as the expansion ball design through experiments and simulations. A new method was proposed to determine the severity of adhesion in the tube’s inner grooves using the expansion force rate. Expansion experiments with Al tubes show that the expansion force decreases when using a lubricant with high viscosity and when the lubricant remains on the expansion ball for a longer duration. Finite element analysis was also performed to examine the expansion of Cu tubes, which showed that the expansion force was higher when using expansion ball shapes that have higher contact area between the ball and tube surface. The radius of curvature of the expansion ball also influenced the expansion force. However, increasing the ratio of the radial force to the expansion force increased the deformation of the tube’s inner grooves.

  5. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    Science.gov (United States)

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  7. Multiple pathways of commodity crop expansion in tropical forest landscapes

    International Nuclear Information System (INIS)

    Meyfroidt, Patrick; Lambin, Eric F; Carlson, Kimberly M; Fagan, Matthew E; DeFries, Ruth S; Gutiérrez-Vélez, Victor H; Macedo, Marcia N; Curran, Lisa M; Dyer, George A; Gibbs, Holly K; Morton, Douglas C; Robiglio, Valentina

    2014-01-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  8. The loop expansion as a divergent-power-series expansion

    International Nuclear Information System (INIS)

    Murai, N.

    1981-01-01

    The loop expansion should be divergent, possibly an asymptotic one, in the Euclidean path integral formulation. This consideration is important in applications of the symmetric and mass-independent renormalization. The [1,1] Pade approximant is calculated in a PHI 4 model. Its classical vacua may be not truely stable for nonzero coupling constant. (author)

  9. Cosmological expansion and local physics

    International Nuclear Information System (INIS)

    Faraoni, Valerio; Jacques, Audrey

    2007-01-01

    The interplay between cosmological expansion and local attraction in a gravitationally bound system is revisited in various regimes. First, weakly gravitating Newtonian systems are considered, followed by various exact solutions describing a relativistic central object embedded in a Friedmann universe. It is shown that the 'all or nothing' behavior recently discovered (i.e., weakly coupled systems are comoving while strongly coupled ones resist the cosmic expansion) is limited to the de Sitter background. New exact solutions are presented which describe black holes perfectly comoving with a generic Friedmann universe. The possibility of violating cosmic censorship for a black hole approaching the big rip is also discussed

  10. Temperature expansions for magnetic systems

    International Nuclear Information System (INIS)

    Cangemi, D.; Dunne, G.

    1996-01-01

    We derive finite temperature expansions for relativistic fermion systems in the presence of background magnetic fields, and with nonzero chemical potential. We use the imaginary-time formalism for the finite temperature effects, the proper-time method for the background field effects, and zeta function regularization for developing the expansions. We emphasize the essential difference between even and odd dimensions, focusing on 2+1 and 3+1 dimensions. We concentrate on the high temperature limit, but we also discuss the T=0 limit with nonzero chemical potential. Copyright copyright 1996 Academic Press, Inc

  11. Breaking the Link between Environmental Degradation and Oil Palm Expansion: A Method for Enabling Sustainable Oil Palm Expansion

    Science.gov (United States)

    Smit, Hans Harmen; Meijaard, Erik; van der Laan, Carina; Mantel, Stephan; Budiman, Arif; Verweij, Pita

    2013-01-01

    Land degradation is a global concern. In tropical areas it primarily concerns the conversion of forest into non-forest lands and the associated losses of environmental services. Defining such degradation is not straightforward hampering effective reduction in degradation and use of already degraded lands for more productive purposes. To facilitate the processes of avoided degradation and land rehabilitation, we have developed a methodology in which we have used international environmental and social sustainability standards to determine the suitability of lands for sustainable agricultural expansion. The method was developed and tested in one of the frontiers of agricultural expansion, West Kalimantan province in Indonesia. The focus was on oil palm expansion, which is considered as a major driver for deforestation in tropical regions globally. The results suggest that substantial changes in current land-use planning are necessary for most new plantations to comply with international sustainability standards. Through visualizing options for sustainable expansion with our methodology, we demonstrate that the link between oil palm expansion and degradation can be broken. Application of the methodology with criteria and thresholds similar to ours could help the Indonesian government and the industry to achieve its pro-growth, pro-job, pro-poor and pro-environment development goals. For sustainable agricultural production, context specific guidance has to be developed in areas suitable for expansion. Our methodology can serve as a template for designing such commodity and country specific tools and deliver such guidance. PMID:24039700

  12. Bearing-Mounting Concept Accommodates Thermal Expansion

    Science.gov (United States)

    Nespodzany, Robert; Davis, Toren S.

    1995-01-01

    Pins or splines allow radial expansion without slippage. Design concept for mounting rotary bearing accommodates differential thermal expansion between bearing and any structure(s) to which bearing connected. Prevents buildup of thermal stresses by allowing thermal expansion to occur freely but accommodating expansion in such way not to introduce looseness. Pin-in-slot configuration also maintains concentricity.

  13. Energy expansion planning by considering electrical and thermal expansion simultaneously

    International Nuclear Information System (INIS)

    Abbasi, Ali Reza; Seifi, Ali Reza

    2014-01-01

    Highlights: • This paper focused on the expansion planning optimization of energy systems. • Employing two form of energy: the expansion of electrical and thermal energies. • The main objective is to minimize the costs. • A new Modified Honey Bee Mating Optimization (MHBMO) algorithm is applied. - Abstract: This study focused on the expansion planning optimization of energy systems employing two forms of energy: the expansion of electrical and thermal energies simultaneously. The main objective of this investigation is confirming network adequacy by adding new equipment to the network, over a given planning horizon. The main objective of the energy expansion planning (EEP) is to minimize the real energy loss, voltage deviation and the total cost of installation equipments. Since the objectives are different and incommensurable, it is difficult to solve the problem by the conventional approaches that may optimize a single objective. So, the meta-heuristic algorithm is applied to this problem. Here, Honey Bee Mating Optimization algorithm (HBMO) as a new evolutionary optimization algorithm is utilized. In order to improve the total ability of HBMO for the global search and exploration, a new modification process is suggested such a way that the algorithm will search the total search space globally. Also, regarding the uncertainties of the new complicated energy systems, in this paper for the first time, the EEP problem is investigated in a stochastic environment by the use of probabilistic load flow technique based on Point Estimate Method (PEM). In order to evaluate the feasibility and effectiveness of the proposed algorithm, two modified test systems are used as case studies

  14. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete.

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-03-22

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete.

  15. Design of the Elastic Modulus of Nanoparticles-Containing PVA/PVAc Films by the Response Surface Method

    Science.gov (United States)

    Jelinska, N.; Kalnins, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    By the surface response method, a regression equation is constructed, and the tensile elastic modulus of films made from polyvinyl alcohol/polyvinyl acetate (PVA/PVAc) blends filled with montmorillonite clay and microcrystalline cellulose nanoparticles is investigated. It is established that the introduction of the nanoparticles improves the mechanical properties of the blends in tension considerably: their strength and elastic modulus increase with content of the particles. Using the regression equation, the optimum composition of nanoparticlefilled PVA/PVAc blends with the highest value of elastic modulus is found.

  16. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete

    Science.gov (United States)

    Jurowski, Krystian; Grzeszczyk, Stefania

    2018-01-01

    In this paper, the relationship between the static and dynamic elastic modulus of concrete and the relationship between the static elastic modulus and compressive strength of concrete have been formulated. These relationships are based on investigations of different types of concrete and take into account the type and amount of aggregate and binder used. The dynamic elastic modulus of concrete was tested using impulse excitation of vibration and the modal analysis method. This method could be used as a non-destructive way of estimating the compressive strength of concrete. PMID:29565830

  17. The Thermal Expansion Of Feldspars

    Science.gov (United States)

    Hovis, G. L.; Medford, A.; Conlon, M.

    2009-12-01

    Hovis and others (1) investigated the thermal expansion of natural and synthetic AlSi3 feldspars and demonstrated that the coefficient of thermal expansion (α) decreases significantly, and linearly, with increasing room-temperature volume (VRT). In all such feldspars, therefore, chemical expansion limits thermal expansion. The scope of this work now has been broadened to include plagioclase and Ba-K feldspar crystalline solutions. X-ray powder diffraction data have been collected between room temperature and 925 °C on six plagioclase specimens ranging in composition from anorthite to oligoclase. When combined with thermal expansion data for albite (2,3,4) a steep linear trend of α as a function of VRT emerges, reflecting how small changes in composition dramatically affect expansion behavior. The thermal expansion data for five synthetic Ba-K feldspars ranging in composition from 20 to 100 mole percent celsian, combined with data for pure K-feldspar (3,4), show α-VRT relationships similar in nature to the plagioclase series, but with a slope and intercept different from the latter. Taken as a group all Al2Si2 feldspars, including anorthite and celsian from the present study along with Sr- (5) and Pb-feldspar (6) from other workers, show very limited thermal expansion that, unlike AlSi3 feldspars, has little dependence on the divalent-ion (or M-) site occupant. This apparently is due to the necessitated alternation of Al and Si in the tetrahedral sites of these minerals (7), which in turn locks the tetrahedral framework and makes the M-site occupant nearly irrelevant to expansion behavior. Indeed, in feldspar series with coupled chemical substitution it is the change away from a 1:1 Al:Si ratio that gives feldspars greater freedom to expand. Overall, the relationships among α, chemical composition, and room-temperature volume provide useful predictive tools for estimating feldspar thermal expansion and give insight into the controls of expansion behavior in

  18. Rapid maxillary expansion in contemporary orthodontic literature

    Directory of Open Access Journals (Sweden)

    Sabrina Mutinelli

    2016-01-01

    Full Text Available We have reviewed our retrospective research about rapid maxillary expansion performed in the early mixed dentition to summarize the results of different studies regarding maxillary dental arch width variation and crowding improvement in light of contemporary literature. The aim is to define the effects of treatments followed until the end of dental arch growth. In all studies, a Haas expander anchored to the deciduous dentition was used. The samples consisted of treated patients with and without a lateral crossbite and homogeneous untreated individuals as controls. Two additional control groups of adolescents and adults in dental Class 1 were also compared. As a result of the analysis, rapid maxillary expansion with anchorage to the deciduous dentition was found to be effective in increasing transverse width in intermolar and intercanine areas, and the change was preserved until the full permanent dentition stage. When performed before maxillary lateral incisors have fully erupted, this procedure allows for a rapid increase in the arch length in the anterior area and consequently, in the space available for permanent incisors with a stable reduction in crowding over time.

  19. Thermal expansion properties of Bi-2212 in Ag or an Ag-alloy matrix

    International Nuclear Information System (INIS)

    Tenbrink, J.; Krauth, H.

    1994-01-01

    The thermal expansion properties of polycrystalline Bi 2 Sr 2 Ca 1 Cu 2 O 8+x melt-processed bulk specimens, and Bi 2 Sr 2 Ca 1 Cu 2 O 8+x monocore as well as multifilamentary round wires in Ag or Ag-alloy matrix have been investigated over the temperature range from -150 to 800 degrees C. Although the thermal expansion of Bi 2 Sr 2 Ca 1 Cu 2 O 8+x is distinctly lower compared with Ag, the thermal expansion properties of the Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or AgNiMg-alloy composite conductors are essentially governed by the matrix material. The thermal expansion of the encountered oxide-dispersion-strengthened AgNiMg alloys is only slightly lower compared with that of pure Ag. Therefore the thermal expansion of all investigated Bi 2 Sr 2 Ca 1 Cu 2 O 8+x -Ag or Ag-alloy composite wires was found to be close to that of pure Ag. The reason for this striking behaviour is shown to be related to a surprisingly low elastic modulus of the polycrystalline Bi-2212 wire cores of the order of 10 to a maximum 40 GPa. (author)

  20. Crude oil pipeline expansion summary

    International Nuclear Information System (INIS)

    2005-02-01

    The Canadian Association of Petroleum Producers has been working with producers to address issues associated with the development of new pipeline capacity from western Canada. This document presents an assessment of the need for additional oil pipeline capacity given the changing mix of crude oil types and forecasted supply growth. It is of particular interest to crude oil producers and contributes to current available information for market participants. While detailed, the underlying analysis does not account for all the factors that may come into play when individual market participants make choices about which expansions they may support. The key focus is on the importance of timely expansion. It was emphasized that if pipeline expansions lags the crude supply growth, then the consequences would be both significant and unacceptable. Obstacles to timely expansion are also discussed. The report reviews the production and supply forecasts, the existing crude oil pipeline infrastructure, opportunities for new market development, requirements for new pipeline capacity and tolling options for pipeline development. tabs., figs., 1 appendix

  1. Asymptotic Expansions - Methods and Applications

    International Nuclear Information System (INIS)

    Harlander, R.

    1999-01-01

    Different viewpoints on the asymptotic expansion of Feynman diagrams are reviewed. The relations between the field theoretic and diagrammatic approaches are sketched. The focus is on problems with large masses or large external momenta. Several recent applications also for other limiting cases are touched upon. Finally, the pros and cons of the different approaches are briefly discussed. (author)

  2. Model of clinker capacity expansion

    CSIR Research Space (South Africa)

    Stylianides, T

    1998-10-01

    Full Text Available This paper describes a model which has been applied in practice to determine an optimal plan for clinker capacity expansion. The problem was formulated as an integer linear program aiming to determine the optimal number, size and location of kilns...

  3. The bootstrap and edgeworth expansion

    CERN Document Server

    Hall, Peter

    1992-01-01

    This monograph addresses two quite different topics, in the belief that each can shed light on the other. Firstly, it lays the foundation for a particular view of the bootstrap. Secondly, it gives an account of Edgeworth expansion. Chapter 1 is about the bootstrap, witih almost no mention of Edgeworth expansion; Chapter 2 is about Edgeworth expansion, with scarcely a word about the bootstrap; and Chapters 3 and 4 bring these two themes together, using Edgeworth expansion to explore and develop the properites of the bootstrap. The book is aimed a a graduate level audience who has some exposure to the methods of theoretical statistics. However, technical details are delayed until the last chapter (entitled "Details of Mathematical Rogour"), and so a mathematically able reader without knowledge of the rigorous theory of probability will have no trouble understanding the first four-fifths of the book. The book simultaneously fills two gaps in the literature; it provides a very readable graduate level account of t...

  4. On Fourier re-expansions

    OpenAIRE

    Liflyand, E.

    2012-01-01

    We study an extension to Fourier transforms of the old problem on absolute convergence of the re-expansion in the sine (cosine) Fourier series of an absolutely convergent cosine (sine) Fourier series. The results are obtained by revealing certain relations between the Fourier transforms and their Hilbert transforms.

  5. On persistently positively expansive maps

    Directory of Open Access Journals (Sweden)

    Alexander Arbieto

    2010-06-01

    Full Text Available In this paper, we prove that any C¹-persistently positively expansive map is expanding. This improves a result due to Sakai (Sakai 2004.Neste artigo, mostramos que todo mapa C¹-persistentemente positivamente expansivo e expansor. Isto melhora um resultado devido a Sakai (Sakai 2004.

  6. The Young's Modulus, Fracture Stress, and Fracture Strain of Gellan Hydrogels Filled with Whey Protein Microparticles.

    Science.gov (United States)

    Lam, Cherry Wing Yu; Ikeda, Shinya

    2017-05-01

    Texture modifying abilities of whey protein microparticles are expected to be dependent on pH during heat-induced aggregation of whey protein in the microparticulation process. Therefore, whey protein microparticles were prepared at either pH 5.5 or 6.8 and their effects on small and large deformation properties of gellan gels containing whey protein microparticles as fillers were investigated. The majority of whey protein microparticles had diameters around 2 μm. Atomic force microscopy images showed that whey protein microparticles prepared at pH 6.8 partially collapsed and flatted by air-drying, while those prepared at pH 5.5 did not. The Young's modulus of filled gels adjusted to pH 5.5 decreased by the addition of whey protein microparticles, while those of filled gels adjusted to pH 6.8 increased with increasing volume fraction of filler particles. These results suggest that filler particles were weakly bonded to gel matrices at pH 5.5 but strongly at pH 6.8. Whey protein microparticles prepared at pH 5.5 showed more enhanced increases in the Young's modulus than those prepared at pH 6.8 at volume fractions between 0.2 and 0.4, indicating that microparticles prepared at pH 5.5 were mechanically stronger. The fracture stress of filled gels showed trends somewhat similar to those of the Young's modulus, while their fracture strains decreased by the addition of whey protein microparticles in all examined conditions, indicating that the primary effect of these filler particles was to enhance the brittleness of filled gels. © 2017 Institute of Food Technologists®.

  7. Simultaneous estimation of Poisson's ratio and Young's modulus using a single indentation: a finite element study

    International Nuclear Information System (INIS)

    Zheng, Y P; Choi, A P C; Ling, H Y; Huang, Y P

    2009-01-01

    Indentation is commonly used to determine the mechanical properties of different kinds of biological tissues and engineering materials. With the force–deformation data obtained from an indentation test, Young's modulus of the tissue can be calculated using a linear elastic indentation model with a known Poisson's ratio. A novel method for simultaneous estimation of Young's modulus and Poisson's ratio of the tissue using a single indentation was proposed in this study. Finite element (FE) analysis using 3D models was first used to establish the relationship between Poisson's ratio and the deformation-dependent indentation stiffness for different aspect ratios (indentor radius/tissue original thickness) in the indentation test. From the FE results, it was found that the deformation-dependent indentation stiffness linearly increased with the deformation. Poisson's ratio could be extracted based on the deformation-dependent indentation stiffness obtained from the force–deformation data. Young's modulus was then further calculated with the estimated Poisson's ratio. The feasibility of this method was demonstrated in virtue of using the indentation models with different material properties in the FE analysis. The numerical results showed that the percentage errors of the estimated Poisson's ratios and the corresponding Young's moduli ranged from −1.7% to −3.2% and 3.0% to 7.2%, respectively, with the aspect ratio (indentor radius/tissue thickness) larger than 1. It is expected that this novel method can be potentially used for quantitative assessment of various kinds of engineering materials and biological tissues, such as articular cartilage

  8. Calculating tissue shear modulus and pressure by 2D log-elastographic methods

    International Nuclear Information System (INIS)

    McLaughlin, Joyce R; Zhang, Ning; Manduca, Armando

    2010-01-01

    Shear modulus imaging, often called elastography, enables detection and characterization of tissue abnormalities. In this paper the data are two displacement components obtained from successive MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ . u which is present in the plane strain model cannot be measured and is unreliably computed from measured data and can be shown to be an order one quantity in the units kPa. So here we present a 2D log-elastographic inverse algorithm that (1) simultaneously reconstructs the shear modulus, μ, and p, which together satisfy a first-order partial differential equation system, with the goal of imaging μ; (2) controls potential exponential growth in the numerical error and (3) reliably reconstructs the quantity p in the inverse algorithm as compared to the same quantity computed with a forward algorithm. This work generalizes the log-elastographic algorithm in Lin et al (2009 Inverse Problems 25) which uses one displacement component, is derived assuming that the component satisfies the wave equation and is tested on synthetic data computed with the wave equation model. The 2D log-elastographic algorithm is tested on 2D synthetic data and 2D in vivo data from Mayo Clinic. We also exhibit examples to show that the 2D log-elastographic algorithm improves the quality of the recovered images as compared to the log-elastographic and direct inversion algorithms

  9. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  10. Direct measurement of elastic modulus of Nb 3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    Science.gov (United States)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-10-01

    Young's modulus of Nb3Sn filaments in Nb3Sn/Cu superconducting composite wire was investigated in detail. Nb3Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb3Sn/Nb barrier and bronze. Then, Nb3Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb3Sn filament modulus. The ratio of Nb3Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb3Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values.

  11. Direct measurement of elastic modulus of Nb3Sn using extracted filaments from superconducting composite wire and resin impregnation method

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Hashimoto, M.; Tanaka, M.; Sugano, M.; Ochiai, S.; Miyashita, K.

    2006-01-01

    Young's modulus of Nb 3 Sn filaments in Nb 3 Sn/Cu superconducting composite wire was investigated in detail. Nb 3 Sn filaments were first extracted from composite wire. Nitric acid and hydrofluoric acid were used to remove copper stabilizer, Nb 3 Sn/Nb barrier and bronze. Then, Nb 3 Sn filaments were impregnated with epoxy resin to form simple filament bundle composite rods. A large difference in Young's moduli of filaments and epoxy resin enhance the accuracy of the measurement of Nb 3 Sn filament modulus. The ratio of Nb 3 Sn to Nb in filaments and the number of filaments in the fiber bundle composite rods were used in the final calculation of the Young's modulus of Nb 3 Sn. The obtained modulus of 127 GPa was the lower bound of the already reported values

  12. Wind Diffusivity Current, QuikSCAT SeaWinds, 0.25 degrees, Global, Science Quality, Modulus

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes science quality Ekman current (in zonal, meridional, and modulus sets) and Ekman upwelling data. This data begins with wind velocity...

  13. Anisotropic surface strain in single crystalline cobalt nanowires and its impact on the diameter-dependent Young's modulus

    KAUST Repository

    Huang, Xiaohu; Li, Guanghai; Kong, Lingbing; Huang, Yizhong; Wu, Tao

    2013-01-01

    Understanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young's modulus of single-crystalline Co

  14. Natural asphalt modified binders used for high stiffness modulus asphalt concrete

    Science.gov (United States)

    Bilski, Marcin; Słowik, Mieczysław

    2018-05-01

    This paper presents a set of test results supporting the possibility of replacing, in Polish climate conditions, hard road 20/30 penetration grade bitumen used in the binder course and/or base course made of high stiffness modulus asphalt concrete with binders comprising of 35/50 or 50/70 penetration grade bitumens and additives in the form of natural Gilsonite or Trinidad Epuré asphalts. For the purpose of comparing the properties of the discussed asphalt binders, values of the Performance Grade have been determined according to the American Superpave system criteria.

  15. On the Space of Functions with Growths Tempered by a Modulus of Continuity and Its Applications

    Directory of Open Access Journals (Sweden)

    Józef Banaś

    2013-01-01

    Full Text Available We are going to study the space of real functions defined on a bounded metric space and having growths tempered by a modulus of continuity. We prove also a sufficient condition for the relative compactness in the mentioned function space. Using that condition and the classical Schauder fixed point theorem, we show the existence theorem for some quadratic integral equations of Fredholm type in the space of functions satisfying the Hölder condition. An example illustrating the mentioned existence result is also included.

  16. Floating liquid bridge tensile behavior: Electric-field-induced Young's modulus measurements

    Science.gov (United States)

    Teschke, Omar; Mendez Soares, David; Valente Filho, Juracyr Ferraz

    2013-12-01

    A floating bridge is formed spontaneously when high voltage is applied to polar fluids in two capillary tubes that were in contact and then separated. This bridge bends under its own weight, and its bending profile was used to calculate its Young's modulus. For electric field intensities of ˜106 V/m, water bridges exhibit viscoelastic behavior, with Young's moduli of ˜24 MPa; dimethylsulfoxide (DMSO) bridges exhibited Young's moduli of ˜60 kPa. The scheme devised to measure the voltage drop across the water bridge for high voltages applied between the electrodes shows that the bulk water resistance decreases with increasing voltage.

  17. Optimization of flexible substrate by gradient elastic modulus design for performance improvement of flexible electronic devices

    Science.gov (United States)

    Xia, Minggang; Liang, Chunping; Hu, Ruixue; Cheng, Zhaofang; Liu, Shiru; Zhang, Shengli

    2018-05-01

    It is imperative and highly desirable to buffer the stress in flexible electronic devices. In this study, we designed and fabricated lamellate poly(dimethylsiloxane) (PDMS) samples with gradient elastic moduli, motivated by the protection of the pomelo pulp by its skin, followed by the measurements of their elastic moduli. We demonstrated that the electrical and fatigue performances of a Ag-nanowire thin film device on the PDMS substrate with a gradient elastic modulus are significantly better than those of a device on a substrate with a monolayer PDMS. This study provides a robust scheme to effectively protect flexible electronic devices.

  18. Lateral Earth Pressure at Rest and Shear Modulus Measurements on Hanford Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.; Jenks, Jeromy WJ; Boeringa, Gregory K.; Bauman, Nathan N.; Guzman, Anthony D.; Arduino, P.; Keller, P. J.

    2010-09-30

    This report describes the equipment, techniques, and results of lateral earth pressure at rest and shear modulus measurements on kaolin clay as well as two chemical sludge simulants. The testing was performed in support of the problem of hydrogen gas retention and release encountered in the double- shell tanks (DSTs) at the Hanford Site near Richland, Washington. Wastes from single-shell tanks (SSTs) are being transferred to double-shell tanks (DSTs) for safety reasons (some SSTs are leaking or are in danger of leaking), but the available DST space is limited.

  19. Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density

    KAUST Repository

    Wu, Ying

    2011-09-02

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.

  20. Design of a 5.8 GHz Multi-Modulus Prescaler

    OpenAIRE

    Myklebust, Vidar

    2006-01-01

    A 64-modulus prescaler operating at 5.8 GHz has been designed in a 0.18 μm CMOS process. The prescaler uses a four-phase high-speed ÷4 circuit at the input, composed of two identical cascaded ÷2 circuits implemented in pseudo-NMOS. The high-speed divider is followed by a two-bits phase switching stage, which together with the input divider forms a ÷4/5/6/7 circuit. The phase switching stage is mostly implemented in complementary CMOS. After this follows four identical ÷2/3 cells with local fe...

  1. Assessment of longitudinal modulus of elasticity in structural elements of Pinus Caribaea timber beams

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2012-05-01

    Full Text Available The current standard NBR 7190/1997 (Project of Timber Structures makes no reference to tests for determining the stiffness and strength in parts of structural lumber; restricting the analysis to bodies-of-tests with small dimensions and without defects. This paper presents an alternative method to determine the longitudinal modulus of elasticity in timber beams, based on the Finite Element Method, as well as the Inverse Analysis Method with an optimization technique. Results show that the methodology proposed by the Brazilian standard can also be applied to pieces of structural dimensions.

  2. Measurement of the Young's modulus of thin or flexible specimen with digital-image correlation method

    Science.gov (United States)

    Xu, Lianyun; Hou, Zhende; Qin, Yuwen

    2002-05-01

    Because some composite material, thin film material, and biomaterial, are very thin and some of them are flexible, the classical methods for measuring their Young's moduli, by mounting extensometers on specimens, are not available. A bi-image method based on image correlation for measuring Young's moduli is developed in this paper. The measuring precision achieved is one order enhanced with general digital image correlation or called single image method. By this way, the Young's modulus of a SS301 stainless steel thin tape, with thickness 0.067mm, is measured, and the moduli of polyester fiber films, a kind of flexible sheet with thickness 0.25 mm, are also measured.

  3. Application of tearing modulus stability concepts to nuclear piping. Final report

    International Nuclear Information System (INIS)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK

  4. Application of tearing modulus stability concepts to nuclear piping. Final report. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Cotter, K.H.; Chang, H.Y.; Zahoor, A.

    1982-02-01

    The recently developed tearing modulus stability concept was successfully applied to several boiling water reactor (BWR) and pressurized water reactor (PWR) piping systems. Circumferentially oriented through-the-thickness cracks were postulated at numerous locations in each system. For each location, the simplified tearing stability methods developed in USNRC Report NUREG/CR-0838 were used to determine crack stability. The J-T diagram was used to present the results of the computations. The piping systems considered included Type 304 stainless steel as well as A106 carbon steel materials. These systems were analyzed using the piping analysis computer code MINK.

  5. Phase-only asymmetric optical cryptosystem based on random modulus decomposition

    Science.gov (United States)

    Xu, Hongfeng; Xu, Wenhui; Wang, Shuaihua; Wu, Shaofan

    2018-06-01

    We propose a phase-only asymmetric optical cryptosystem based on random modulus decomposition (RMD). The cryptosystem is presented for effectively improving the capacity to resist various attacks, including the attack of iterative algorithms. On the one hand, RMD and phase encoding are combined to remove the constraints that can be used in the attacking process. On the other hand, the security keys (geometrical parameters) introduced by Fresnel transform can increase the key variety and enlarge the key space simultaneously. Numerical simulation results demonstrate the strong feasibility, security and robustness of the proposed cryptosystem. This cryptosystem will open up many new opportunities in the application fields of optical encryption and authentication.

  6. Fractionally Spaced Constant Modulus Equalizer with Recognition Capability for Digital Array Radar

    Directory of Open Access Journals (Sweden)

    Feng Wang

    2017-01-01

    Full Text Available Fractionally spaced blind equalizer (BE based on constant modulus criteria is exploited to compensate for the channel-to-channel mismatch in a digital array radar. We apply the technique of recognition to improve the stability and reliability of the BE. The surveillance of the calibration signal and the convergence property of BE are both implemented with recognition description words. BE with cognitive capability is appropriate for the equalization of a digital array radar with thousands of channels and hundreds of working frequencies, where reliability becomes the most concerned indicator. The improvement of performance in the accidental scenarios is tested via numerical simulations with the cost of increased computational complexity.

  7. Determination of Reliability Index and Weibull Modulus as a Measure of Hypereutectic Silumins Survival

    OpenAIRE

    J. Szymszal; J. Piątkowski; J. Przondziono

    2007-01-01

    The first part of the study describes the methods used to determine Weibull modulus and the related reliability index of hypereutectic silumins containing about 17% Si, assigned for manufacture of high-duty castings to be used in automotive applications and aviation. The second part of the study discusses the importance of chemical composition, including the additions of 3% Cu, 1,5% Ni and 1,5% Mg, while in the third part attention was focussed on the effect of process history, including moul...

  8. High Frequency Acoustic Microscopy for the Determination of Porosity and Young's Modulus in High Burnup Uranium Dioxide Nuclear Fuel

    Science.gov (United States)

    Marchetti, Mara; Laux, Didier; Cappia, Fabiola; Laurie, M.; Van Uffelen, P.; Rondinella, V. V.; Wiss, T.; Despaux, G.

    2016-06-01

    During irradiation UO2 nuclear fuel experiences the development of a non-uniform distribution of porosity which contributes to establish varying mechanical properties along the radius of the pellet. Radial variations of both porosity and elastic properties in high burnup UO2 pellet can be investigated via high frequency acoustic microscopy. For this purpose ultrasound waves are generated by a piezoelectric transducer and focused on the sample, after having travelled through a coupling liquid. The elastic properties of the material are related to the velocity of the generated Rayleigh surface wave (VR). A UO2 pellet with a burnup of 67 GWd/tU was characterized using the acoustic microscope installed in the hot cells of the JRC-ITU at a 90 MHz frequency, with methanol as coupling liquid. VR was measured at different radial positions. A good agreement was found, when comparing the porosity values obtained via acoustic microscopy with those determined using SEM image analysis, especially in the areas close to the centre. In addition, Young's modulus was calculated and its radial profile was correlated to the corresponding burnup profile and to the hardness radial profile data obtained by Vickers micro-indentation.

  9. Uniaxial Negative Thermal Expansion and Mechanical Properties of a Zinc-Formate Framework

    Directory of Open Access Journals (Sweden)

    Hongqiang Gao

    2017-02-01

    Full Text Available The thermal expansion behavior of a metal-formate framework, Zn(HCOO2·2(H2O (1, has been systematically studied via variable temperature single-crystal X-ray diffraction. Our results demonstrate that this formate exhibits significant negative thermal expansion (NTE, −26(2 MK−1 along its c-axis. Detailed structural analyses reveal that the large NTE response is attributed to the ‘hinge-strut’ like framework motion. In addition, the fundamental mechanical properties of framework 1 have been explored via nanoindentation experiments. The measured elastic modulus and hardness properties on the (00-2/(100/(110 facets are 35.5/35.0/27.1 and 2.04/1.83/0.47 GPa, respectively. The stiffness and hardness anisotropy can be correlated well with the underlying framework structure, like its thermoelastic behavior.

  10. 76 FR 52543 - European Larch Canker; Expansion of Regulated Areas

    Science.gov (United States)

    2011-08-23

    ...-2011-0029, Regulatory Analysis and Development, PPD, APHIS, Station 3A-03.8, 4700 River Road Unit 118... Road Unit 26, Riverdale, MD 20737; (301) 734-0917. SUPPLEMENTARY INFORMATION: Background European larch... kill mature and immature species of the genus Larix (larch) and Pseudolarix (Golden larch). In parts of...

  11. 76 FR 81359 - European Larch Canker; Expansion of Regulated Areas

    Science.gov (United States)

    2011-12-28

    ... Program Manager, Emergency and Domestic Programs, PPQ, APHIS, 4700 River Road, Unit 26, Riverdale, MD... willkommi (Dasycypha), is a serious plant disease caused by a fungus that can kill mature and immature...

  12. Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Yu, H.; Sun, C.; Zhang, W.W.; Lei, S.Y.; Huang, K.A.

    2013-01-01

    Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus

  13. Data Qualification and Data Summary Report: Intact Rock Properties Data on Poisson's Ratio and Young's Modulus

    International Nuclear Information System (INIS)

    Cikanek, E.M.; Safley, L.E.; Grant, T.A.

    2003-01-01

    This report reviews all potentially available Yucca Mountain Project (YMP) data in the Technical Data Management System and compiles all relevant qualified data, including data qualified by this report, on elastic properties, Poisson's ratio and Young's modulus, into a single summary Data Tracking Number (DTN) MO0304DQRIRPPR.002. Since DTN MO0304DQRIRPPR.002 was compiled from both qualified and unqualified sources, this report qualifies the DTN in accordance with AP-SIII.2Q. This report also summarizes the individual test results in MO0304DQRIRPPR.002 and provides summary values using descriptive statistics for Poisson's ratio and Young's modulus in a Reference Information Base Data Item. This report found that test conditions such as temperature, saturation, and sample size could influence test results. The largest influence, however, is the lithologic variation within the tuffs themselves. Even though the summary DTN divided the results by lithostratigrahic units within each formation, there was still substantial variation in elastic properties within individual units. This variation was attributed primarily to the presence or absence of lithophysae, fractures, alteration, pumice fragments, and other lithic clasts within the test specimens as well as changes in porosity within the units. As a secondary cause, substantial variations can also be attributed to test conditions such as the type of test (static or dynamic), size of the test specimen, degree of saturation, temperature, and strain rate conditions. This variation is characteristic of the tuffs and the testing methods, and should be considered when using the data summarized in this report

  14. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part II: Resonant Frequency – Young's Modulus

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B

    2012-01-01

    In this paper, we compare the values of the resonant frequency f 0 of free decaying oscillations computed according to the parametric OMI method (Optimization in Multiple Intervals) and nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. The analysis is carried out for free decaying signals embedded in an experimental noise recorded for metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the Agrez' method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the Yoshida-Magalas (YM) and (YM C ) methods developed by the authors are carefully compared for the resonant frequency f 0 = 1.12345 Hz and the logarithmic decrement, δ = 0.0005. Precise estimation of the resonant frequency (Youngs' modulus ∼ f 0 2 ) for real experimental conditions, i.e., for exponentially damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various computing methods are analyzed as a function of the sampling frequency used to digitize free decaying oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant frequency (i.e. Young's modulus) in materials science is emphasized.

  15. Temperature Effects on Adhesive Bond Strengths and Modulus for Commonly Used Spacecraft Structural Adhesives

    Science.gov (United States)

    Ojeda, Cassandra E.; Oakes, Eric J.; Hill, Jennifer R.; Aldi, Dominic; Forsberg, Gustaf A.

    2011-01-01

    A study was performed to observe how changes in temperature and substrate material affected the strength and modulus of an adhesive bondline. Seven different adhesives commonly used in aerospace bonded structures were tested. Aluminum, titanium and Invar adherends were cleaned and primed, then bonded using the manufacturer's recommendations. Following surface preparation, the coupons were bonded with the adhesives. The single lap shear coupons were then pull tested per ASTM D 1002 Standard Test Method for Apparent Shear Strength of Single- Lap-Joint over a temperature range from -150 deg C up to +150 deg C. The ultimate strength was calculated and the resulting data were converted into B-basis design allowables. Average and Bbasis results were compared. Results obtained using aluminum adherends are reported. The effects of using different adherend materials and temperature were also studied and will be reported in a subsequent paper. Dynamic Mechanical Analysis (DMA) was used to study variations in adhesive modulus with temperature. This work resulted in a highly useful database for comparing adhesive performance over a wide range of temperatures, and has facilitated selection of the appropriate adhesive for spacecraft structure applications.

  16. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications.

    Science.gov (United States)

    Liu, Yong; Li, Kaiyang; Luo, Tao; Song, Min; Wu, Hong; Xiao, Jian; Tan, Yanni; Cheng, Ming; Chen, Bing; Niu, Xinrui; Hu, Rong; Li, Xiaohui; Tang, Huiping

    2015-11-01

    In this work, powder metallurgical (PM) Ti-Mg alloys were prepared using combined techniques of mechanical alloying and spark plasma sintering. The alloys mainly consist of super saturations of Mg in Ti matrix, and some laminar structured Ti- and Mg-rich phases. The PM Ti-Mg alloys contain a homogeneous mixtures of nanocrystalline Mg and Ti phases. The novel microstructures result in unconventional mechanical and biological properties. It has been shown that the PM Ti-Mg alloys have a much lower compression modulus (36-50GPa) compared to other Ti alloys, but still remain a very high compressive strength (1500-1800MPa). In addition, the PM Ti-Mg alloys show good biocompatibility and bioactivity. Mg can dissolve in the simulated body fluids, and induce the formation of the calcium phosphate layer. The compression modulus of PM Ti-Mg alloys decreases with the amount of Mg, while the bioactivity increases. Although the corrosion resistance of Ti-Mg alloys decreases with the content of Mg, the alloys still show good stability in simulated body fluid under electrochemical conditions. The indirect and direct cytotoxicity results show that PM Ti-Mg alloys have a good biocompatibility to NIH-3T3 cells. Therefore, the PM Ti-Mg alloys are promising candidates in biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Low modulus and bioactive Ti/α-TCP/Ti-mesh composite prepared by spark plasma sintering.

    Science.gov (United States)

    Guo, Yu; Tan, Yanni; Liu, Yong; Liu, Shifeng; Zhou, Rui; Tang, Hanchun

    2017-11-01

    A titanium mesh scaffold composite filled with Ti/α-TCP particles was prepared by spark plasma sintering (SPS). The microstructures and interfacial reactions of the composites were investigated by scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The compressive strength and elastic modulus were also measured. In vitro bioactivity and biocompatibility was evaluated by using simulated body fluid and cells culture, respectively. After high temperature sintering, Ti oxides, Ti x P y and CaTiO 3 were formed. The formation of Ti oxides and Ti x P y were resulted from the diffusion of O and P elements from α-TCP to Ti. CaTiO 3 was the reaction product of Ti and α-TCP. The composite of 70Ti/α-TCP incorporated with Ti mesh showed a high compressive strength of 589MPa and a low compressive modulus of 30GPa. The bioactivity test showed the formation of a thick apatite layer on the composite and well-spread cells attachment. A good combination of mechanical properties and bioactivity indicated a high potential application of Ti/α-TCP/Ti-mesh composite for orthopedic implants. Copyright © 2017. Published by Elsevier B.V.

  18. Measurement of ultimate tensile strength and Young modulus in LYSO scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Scalise, Lorenzo, E-mail: l.scalise@univpm.it [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Rinaldi, Daniele [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia (Italy); Davi, Fabrizio [Dipartimento di Architettura Costruzioni e Strutture, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Paone, Nicola [Dipartimento di Meccanica, Universita Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2011-10-21

    Scintillating crystals are employed in high energy physics, in medical imaging, diagnostic and security. Two mechanical properties of lutetium-yttrium oxyorthosilicate cerium-doped Lu{sub 2(1-x)}Y{sub 2x}SiO{sub 5}:Ce with x=0.1 (LYSO) crystals have been measured: the ultimate tensile stress ({sigma}{sub UTS}) and the Young elastic modulus (E). Measurements are made by means of a 4-points loading device and the experimental results account for an elastic-brittle stress-strain relation, which depends heavily on the specimen preparation and the material defects. {sigma}{sub UTS} along the [0 1 0] tensile direction ranges within 68.14 and 115.61 MPa, which, in the lowest case, is more than twice with respect to those measured for PbWO{sub 4} (PWO), exhibiting a marked difference between the annealed and the not-annealed samples. The mean elastic modulus (E), along the same direction, is E=1.80x10{sup 11} ({+-}2.15x10{sup 10}) N/m{sup 2}, with lower dispersion respect to UTS data. This type of analysis and study can be included into quality control procedures of crystals, based on samples taken out of production; such procedures can be established for industrial processing of crystals aimed to the high energy physics (calorimeters) and medical imaging (PET, etc.) applications.

  19. Patch Similarity Modulus and Difference Curvature Based Fourth-Order Partial Differential Equation for Image Denoising

    Directory of Open Access Journals (Sweden)

    Yunjiao Bai

    2015-01-01

    Full Text Available The traditional fourth-order nonlinear diffusion denoising model suffers the isolated speckles and the loss of fine details in the processed image. For this reason, a new fourth-order partial differential equation based on the patch similarity modulus and the difference curvature is proposed for image denoising. First, based on the intensity similarity of neighbor pixels, this paper presents a new edge indicator called patch similarity modulus, which is strongly robust to noise. Furthermore, the difference curvature which can effectively distinguish between edges and noise is incorporated into the denoising algorithm to determine the diffusion process by adaptively adjusting the size of the diffusion coefficient. The experimental results show that the proposed algorithm can not only preserve edges and texture details, but also avoid isolated speckles and staircase effect while filtering out noise. And the proposed algorithm has a better performance for the images with abundant details. Additionally, the subjective visual quality and objective evaluation index of the denoised image obtained by the proposed algorithm are higher than the ones from the related methods.

  20. Supersonic shear imaging provides a reliable measurement of resting muscle shear elastic modulus

    International Nuclear Information System (INIS)

    Lacourpaille, Lilian; Hug, François; Bouillard, Killian; Nordez, Antoine; Hogrel, Jean-Yves

    2012-01-01

    The aim of the present study was to assess the reliability of shear elastic modulus measurements performed using supersonic shear imaging (SSI) in nine resting muscles (i.e. gastrocnemius medialis, tibialis anterior, vastus lateralis, rectus femoris, triceps brachii, biceps brachii, brachioradialis, adductor pollicis obliquus and abductor digiti minimi) of different architectures and typologies. Thirty healthy subjects were randomly assigned to the intra-session reliability (n = 20), inter-day reliability (n = 21) and the inter-observer reliability (n = 16) experiments. Muscle shear elastic modulus ranged from 2.99 (gastrocnemius medialis) to 4.50 kPa (adductor digiti minimi and tibialis anterior). On the whole, very good reliability was observed, with a coefficient of variation (CV) ranging from 4.6% to 8%, except for the inter-operator reliability of adductor pollicis obliquus (CV = 11.5%). The intraclass correlation coefficients were good (0.871 ± 0.045 for the intra-session reliability, 0.815 ± 0.065 for the inter-day reliability and 0.709 ± 0.141 for the inter-observer reliability). Both the reliability and the ease of use of SSI make it a potentially interesting technique that would be of benefit to fundamental, applied and clinical research projects that need an accurate assessment of muscle mechanical properties. (note)

  1. Influence of wood moisture content on the modulus of elasticity in compression parallel to the grain

    Directory of Open Access Journals (Sweden)

    Diogo Aparecido Lopes Silva

    2012-04-01

    Full Text Available Brazilian Standard ABNT NBR7190:1997 for timber structures design, adopts a first degree equation to describe the influence of wood moisture content. Periodically, when necessary, the referred standard is revised in order to analyze inconsistencies and to adopt considerations according new realities verified. So, the present paper aims to examine the adequacy of its equation which corrects to 12% of moisture the values of rigidity properties obtained on experimental tests. To quantify the moisture influence on modulus of elasticity, it was applied tests of compression parallel to the grain for six specimens of different strength classes, considering nominal moisture of 12; 20; 25; 30%. As results, modulus of elasticity in the moisture range 25-30% showed statistically equivalents, and was obtained a first degree equation to correlate the studied variables which leads to statically equivalent estimations when compared with results by ABNT NBR7190:1997 equation. However, it was indicated to maintain the current expression for the next text of the referred document review, without prejudice to statistical significance of the estimates.

  2. Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses

    Science.gov (United States)

    Dhankhar, Sunil; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Punia, R.; Kishore, N.

    2016-09-01

    The ac conductivity of zinc modified tellurium based quaternary glasses having composition 60 TeO2-10 B2O3-(30 - x) Bi2O3-x ZnO; x = 10, 15, 20, 25 and 30 has been investigated in the frequency range 10-1-105 Hz and in temperature range 483-593 K. Frequency and temperature dependent ac conductivity found to obey Jonscher power law modified by Almond-West. DC conductivity, crossover frequency and frequency exponent have been estimated from the fitting of the experimental data of conductivity with Jonscher power law modified by Almond-West. The ac conductivity and its frequency exponent have been analyzed by various theoretical models. In presently studied glasses ac conduction takes place via tunneling of overlapping large polaron tunneling. Activation energy is found to be increased with increase in zinc content and dc conduction takes place via variable range hopping proposed by Mott with some modification suggested by Punia et al. The value of the stretched exponent ( β) obtained by fitting of M^' ' }} reveals the presence of non-Debye type relaxation. Scaling spectra of ac conductivity and electric modulus collapse into a single master curve for all compositions and temperatures, reveals the presence of composition and temperature independent conduction and relaxation process in these glasses. Activation energy of conduction ( W) and electric modulus ( E R ) are nearly equal, indicating that polaron have to overcome the same energy barrier during conduction as well as relaxation processes.

  3. Internal friction and Young's modulus measurements in Zr-2.5Nb alloy doped with hydrogen

    International Nuclear Information System (INIS)

    Ritchie, I.G.; Pan, Z.-L.

    1992-01-01

    The presence of hydrides is an important factor in assessing the potential for delayed hydride cracking in Zr-2.5Nb alloys, and consequently, the terminal solid solubility (TSS) of hydrogen in the material is an important parameter. In pure zirconium doped with hydrogen, the TSS is marked by a dissolution peak of internal friction on heating and a truncated precipitation peak associated with hydride nucleation on cooling. These phenomena occur only at low frequencies and are accompanied in torsion pendulum studies by autotwisting of the sample (or zero-point drift) that stops abruptly at the TSS. Neither the dissolution/precipitation peaks nor the autotwisting phenomena are observed in Zr-2.5Nb. However, the TSS is also marked by an abrupt change in the slope of Young's modulus as a function of temperature. This phenomenon is observed regardless of the frequency (in the range 1 Hz to 120 kHz) and in both pure zirconium and Zr-2.5Nb alloys. The reasons for the absence of the dissolution/precipitation peak in Zr-2.5Nb alloys are discussed and the use of Young's modulus changes to investigate the TSS of hydrogen and the hysteresis between heat-up and cool-down TSS curves is demonstrated. (author)

  4. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  5. Crack arrest within teeth at the dentinoenamel junction caused by elastic modulus mismatch.

    Science.gov (United States)

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Klocke, Arndt; Schneider, Gerold A

    2010-05-01

    Enamel and dentin compose the crowns of human teeth. They are joined at the dentinoenamel junction (DEJ) which is a very strong and well-bonded interface unlikely to fail within healthy teeth despite the formation of multiple cracks within enamel during a lifetime of exposure to masticatory forces. These cracks commonly are arrested when reaching the DEJ. The phenomenon of crack arrest at the DEJ is described in many publications but there is little consensus on the underlying cause and mechanism. Explanations range from the DEJ having a larger toughness than both enamel and dentin up to the assumption that not the DEJ itself causes crack arrest but the so-called mantle dentin, a thin material layer close to the DEJ that is somewhat softer than the bulk dentin. In this study we conducted 3-point bending experiments with bending bars consisting of the DEJ and surrounding enamel and dentin to investigate crack propagation and arrest within the DEJ region. Calculated stress intensities around crack tips were found to be highly influenced by the elastic modulus mismatch between enamel and dentin and hence, the phenomenon of crack arrest at the DEJ could be explained accordingly via this elastic modulus mismatch. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus

    Science.gov (United States)

    Zhang, Zuhua; Wang, Hao

    2016-08-01

    The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.

  7. Assessment of dynamic modulus of high density polypropylene waste fiber reinforcement in asphalt concrete

    Directory of Open Access Journals (Sweden)

    Hassan S. OTUOZE

    2015-12-01

    Full Text Available Traditional asphalt tests like Hveem and Marshall tests are at best mere characterization than effective test of pavement field performance because of complex viscoelastic behavior of asphalt. Mechanical properties otherwise called simple performance tests (SPT are performance criteria of asphalt. Dynamic modulus among other SPT’s like permanent deformation, fatigue cracking, thermal cracking, moisture susceptibility, shear and friction properties; determines stress-strain to time-temperature relationships that imparts on strength, service life and durability. The test followed the recommendations of NCHRP 1-37a (2004 and mixes were prepared using 0, 0.5, 1.0 and 1.5% HDPP contents. The parameters tested for dynamic modulus, /E*/, are stiffness, recoverable strain (ε, and phase angle (ξ. Time – temperature superposition (TTS called master curve was fitted using sigmoidal curve to interpolate the parameters beyond measured data set so as to observe the viscoelastic behavior outside the physical properties. The performance of 0.5% HDPP asphalt is better enhanced than the conventional asphalt to improve upon strength, service and durability.

  8. Equivalent Young's modulus of composite resin for simulation of stress during dental restoration.

    Science.gov (United States)

    Park, Jung-Hoon; Choi, Nak-Sam

    2017-02-01

    For shrinkage stress simulation in dental restoration, the elastic properties of composite resins should be acquired beforehand. This study proposes a formula to measure the equivalent Young's modulus of a composite resin through a calculation scheme of the shrinkage stress in dental restoration. Two types of composite resins remarkably different in the polymerization shrinkage strain were used for experimental verification: the methacrylate-type (Clearfil AP-X) and the silorane-type (Filtek P90). The linear shrinkage strains of the composite resins were gained through the bonded disk method. A formula to calculate the equivalent Young's moduli of composite resin was derived on the basis of the restored ring substrate. Equivalent Young's moduli were measured for the two types of composite resins through the formula. Those values were applied as input to a finite element analysis (FEA) for validation of the calculated shrinkage stress. Both of the measured moduli through the formula were appropriate for stress simulation of dental restoration in that the shrinkage stresses calculated by the FEA were in good agreement within 3.5% with the experimental values. The concept of equivalent Young's modulus so measured could be applied for stress simulation of 2D and 3D dental restoration. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Design and demonstration of an intracortical probe technology with tunable modulus.

    Science.gov (United States)

    Simon, Dustin M; Charkhkar, Hamid; St John, Conan; Rajendran, Sakthi; Kang, Tong; Reit, Radu; Arreaga-Salas, David; McHail, Daniel G; Knaack, Gretchen L; Sloan, Andrew; Grasse, Dane; Dumas, Theodore C; Rennaker, Robert L; Pancrazio, Joseph J; Voit, Walter E

    2017-01-01

    Intracortical probe technology, consisting of arrays of microelectrodes, offers a means of recording the bioelectrical activity from neural tissue. A major limitation of existing intracortical probe technology pertains to limited lifetime of 6 months to a year of recording after implantation. A major contributor to device failure is widely believed to be the interfacial mechanical mismatch of conventional stiff intracortical devices and the surrounding brain tissue. We describe the design, development, and demonstration of a novel functional intracortical probe technology that has a tunable Young's modulus from ∼2 GPa to ∼50 MPa. This technology leverages advances in dynamically softening materials, specifically thiol-ene/acrylate thermoset polymers, which exhibit minimal swelling of memory polymer-based multichannel intracortical probe can be fabricated, that the mechanical properties are stable for at least 2 months and that the device is capable of single unit recordings for durations up to 77 days in vivo. This novel technology, which is amenable to processes suitable for manufacturing via standard semiconductor fabrication techniques, offers the capability of softening in vivo to reduce the tissue-device modulus mismatch to ultimately improve long term viability of neural recordings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 159-168, 2017. © 2016 Wiley Periodicals, Inc.

  10. Reinforced concrete bridges: effects due to corrosion and concrete young modulus variation

    Directory of Open Access Journals (Sweden)

    P. T. C. Mendes

    Full Text Available Most of the Brazilian bridges of federal road network are made of reinforced concrete and are more than 30 years old, with little information about the mechanical properties of their constitutive materials. Along the service life of these bridges much modification occurred on vehicles load and geometry and in design standard. Many of them show signs of concrete and steel deterioration and their stability conditions are unknown. With the aim of contributing to the structural evaluation of reinforced concrete bridges it was decided to analyze the stresses in reinforced concrete bridge sections to verify the effects due to reinforcement corrosion and variation of the concrete Young modulus on the stress distribution regarding several load patterns and cracking effects in a representative bridge of the Brazilian road network with different longitudinal reinforcement taxes and two concrete Young modulus, Ec and 0.5Ec, and with different percentage of reinforcement corrosion. The analysis considered two finite element models: frame and shell elements as well as solid elements. The results indicate that these variation effects are more significant in reinforcement bars than in concrete.

  11. Exponential Expansion in Evolutionary Economics

    DEFF Research Database (Denmark)

    Frederiksen, Peter; Jagtfelt, Tue

    2013-01-01

    This article attempts to solve current problems of conceptual fragmentation within the field of evolutionary economics. One of the problems, as noted by a number of observers, is that the field suffers from an assemblage of fragmented and scattered concepts (Boschma and Martin 2010). A solution...... to this problem is proposed in the form of a model of exponential expansion. The model outlines the overall structure and function of the economy as exponential expansion. The pictographic model describes four axiomatic concepts and their exponential nature. The interactive, directional, emerging and expanding...... concepts are described in detail. Taken together it provides the rudimentary aspects of an economic system within an analytical perspective. It is argued that the main dynamic processes of the evolutionary perspective can be reduced to these four concepts. The model and concepts are evaluated in the light...

  12. Production expansion continues to accelerate

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Saudi Arabian Oil Co. (Saudi Aramco) is continuing its accelerated Crude Oil Expansion Program initiated in 1989 that aims at achieving a 10 million bpd productive capacity by 1995. In addition to major engineering, construction and renovation work related to production expansion, Saudi Aramco drilling and workover operations have been markedly expanded. Since January 1991, rig activity has doubled. As an indication of aging of Saudi production, projects include modernizing current injection water treatment facilities, installing a new seawater injection plant on the Persian Gulf, installing dewatering facilities in a number of locations and installing a pilot gas lift project. In addition, equipment orders indicate the new discoveries south of Riyadh may also need the assistance of water injection from inception of production

  13. RELIABILITY OF LENTICULAR EXPANSION COMPENSATORS

    Directory of Open Access Journals (Sweden)

    Gabriel BURLACU,

    2011-11-01

    Full Text Available Axial lenticular compensators are made to take over the longitudinal heat expansion, shock , vibration and noise, made elastic connections for piping systems. In order to have a long life for installations it is necessary that all elements, including lenticular compensators, have a good reliability. This desire can be did by technology of manufactoring and assembly of compensators, the material for lenses and by maintenance.of compensator

  14. Is China ready for its nuclear expansion?

    International Nuclear Information System (INIS)

    Zhou, Yun; Rengifo, Christhian; Hinze, Jonathan; Chen, Peipei

    2011-01-01

    China's rapid pace of nuclear energy growth is unique, and its impact on the global nuclear market as both a customer and potential future supplier is already tremendous and will continue to expand. It is crucial to understand this energy policy development and its impact on various global areas. Unfortunately, there is relatively limited English-language information available about China's nuclear power industry and its current development. This paper aims to provide a comprehensive assessment of the Chinese nuclear energy program and policy, reviewing its past, present, likely future developments, as well as to consider potential challenges that deserve further attention. This paper will explore reasons that have caused the existing industry, describe China's nuclear bureaucracy and decision making process to understand how different stakeholders play a role in China's nuclear energy development. This study concludes that China's existing nuclear program and industry, in combination with its current stable economic and political environment, provides a sound foundation for the planned nuclear expansion. However, challenges which are crucial to the success of the nuclear expansion will need to be addressed. (author)

  15. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa).

    Science.gov (United States)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong-Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  16. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    Energy Technology Data Exchange (ETDEWEB)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  17. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    International Nuclear Information System (INIS)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  18. A Power Series Expansion and Its Applications

    Science.gov (United States)

    Chen, Hongwei

    2006-01-01

    Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.

  19. Comparison of Elastic Modulus and Compressive Strength of Ariadent and Harvard Polycarboxylate Cement and Vitremer Resin Modified Glass Ionomer

    Directory of Open Access Journals (Sweden)

    Ahmadian Khoshemehr Leila

    2009-09-01

    Full Text Available Background: Luting agents are used to attach indirect restoration into or on the tooth. Poor mechanical properties of cement may be a cause of fracture of this layer and lead to caries and restoration removal. The purpose of this study was to compare the elastic modulus and compressive strength of Ariadent (A Poly and Harvard polycarboxylate (H Poly cements and Vitremer resin modified glass ionomer (RGl.Materials & Methods: In this experimental study 15 specimens were prepared form each experimental cement in Laboratory of Tehran Oil Refining Company. The cylindrical specimens were compressed in Instron machine after 24 hours. Elastic modulus and compressive strength were calculated from stress/strain curve of each specimen. One way ANOVA and Tukey tests were used for statistical analysis and P values<0.05 were considered to be statistically significant.Results: The mean elastic modulus and mean compressive strength were 2.2 GPa and 87.8MPa in H poly, 2.4 GPa and 56.5 MPa in A Poly, and 0.8GPa and 105.6 MPa in RGI, respectively. Statistical analysis showed that compressive strength and elastic modulus of both polycarboxylate cements were significantly different from hybrid ionomer (P<0.05, but the difference between elastic modulus of two types of polycarboxilate cements was not statistically significant. Compressive strength of two polycarboxilate cements were significantly different (P<0.05. Conclusion: An ideal lutting agent must have the best mechanical properties. Between the tested luttins RGl cement had the lowest elastic modulus and the highest compressive strength, but the A poly cement had the highest elastic modulus and the lowest compressive strength. Therefore none of them was the best.

  20. THE EXPANSION OF THE RITZ-CARLTON® ON FOREIGN MARKETS

    OpenAIRE

    Mihai-Răzvan DOBAI

    2016-01-01

    The spreading of globalization drives the companies’ pursuit to expand on foreign markets for various reasons. In this paper it will be analysed the expansion on non-US markets of the Ritz-Carlton®, a hotel company with tradition, being known for its services quality. The analysis takes into consideration the opening year of the hotels in the Latin American, European, Middle Eastern, Central and South Asian and AsiaPacific market, trying to correlate the expansion on certain areas and l...

  1. A Two-Step Methodology to Study the Influence of Aggregation/Agglomeration of Nanoparticles on Young's Modulus of Polymer Nanocomposites

    Science.gov (United States)

    Ma, Xinyue; Zare, Yasser; Rhee, Kyong Yop

    2017-12-01

    A two-step technique based on micromechanical models is suggested to determine the influence of aggregated/agglomerated nanoparticles on Young's modulus of polymer nanocomposites. The nanocomposite is assumed to include nanoparticle aggregation/agglomeration and effective matrix phases. This method is examined for different samples, and the effects of important parameters on the modulus are investigated. Moreover, the highest and the lowest levels of predicted modulus are calculated based on the current methodology. The suggested technique can correctly predict Young's modulus for the samples assuming the aggregation/agglomeration of nanoparticles. Additionally, the aggregation/agglomeration of nanoparticles decreases Young's modulus of polymer nanocomposites. It is demonstrated that the high modulus of nanoparticles is not sufficient to obtain a high modulus in nanocomposites, and the surface chemistry of components should be adjusted to prevent aggregation/agglomeration and to disperse nano-sized particles in the polymer matrix.

  2. DISRUPTING SHOCKS IN POSTWAR GLOBAL ECONOMIC EXPANSION

    Directory of Open Access Journals (Sweden)

    Dumitru FILIPEANU

    2016-06-01

    Full Text Available The coherence of the global economic system, created by its upswing in the first postwar decades, started to crumble in the ’70s. The destabilizing shocks affected the entire world, but in an uneven manner, in different geographical areas and at different times, being felt most acutely, with devastating economic and social effects, in Third World countries. Although the developed countries were affected as well, they always had means to combat or to diminish the adverse effects of the crises, leading to "gentler" consequences. This paper focuses on four main aspects in postwar global economic expansion, namely: the ’70s – the international monetary crisis and the oil shocks; the foreign debt crisis; the Latin American debt crisis, the Asian financial crises and the current global crisis.

  3. Breeding bird response to juniper woodland expansion

    Science.gov (United States)

    Rosenstock, Steven S.; van Riper, Charles

    2001-01-01

    In recent times, pinyon (Pinus spp.)-juniper (Juniperus spp.) woodlands have expanded into large portions of the Southwest historically occupied by grassland vegetation. From 1997-1998, we studied responses of breeding birds to one-seed juniper (J. monosperma) woodland expansion at 2 grassland study areas in northern Arizona. We sampled breeding birds in 3 successional stages along a grassland-woodland gradient: un-invaded grassland, grassland undergoing early stages of juniper establishment, and developing woodland. Species composition varied greatly among successional stages and was most different between endpoints of the gradient. Ground-nesting grassland species predominated in uninvaded grassland but declined dramatically as tree density increased. Tree- and cavity-nesting species increased with tree density and were most abundant in developing woodland. Restoration of juniper-invaded grasslands will benefit grassland-obligate birds and other wildlife.

  4. Effects of emergency department expansion on emergency department patient flow.

    Science.gov (United States)

    Mumma, Bryn E; McCue, James Y; Li, Chin-Shang; Holmes, James F

    2014-05-01

    Emergency department (ED) crowding is an increasing problem associated with adverse patient outcomes. ED expansion is one method advocated to reduce ED crowding. The objective of this analysis was to determine the effect of ED expansion on measures of ED crowding. This was a retrospective study using administrative data from two 11-month periods before and after the expansion of an ED from 33 to 53 adult beds in an academic medical center. ED volume, staffing, and hospital admission and occupancy data were obtained either from the electronic health record (EHR) or from administrative records. The primary outcome was the rate of patients who left without being treated (LWBT), and the secondary outcome was total ED boarding time for admitted patients. A multivariable robust linear regression model was used to determine whether ED expansion was associated with the outcome measures. The mean (±SD) daily adult volume was 128 (±14) patients before expansion and 145 (±17) patients after. The percentage of patients who LWBT was unchanged: 9.0% before expansion versus 8.3% after expansion (difference = 0.6%, 95% confidence interval [CI] = -0.16% to 1.4%). Total ED boarding time increased from 160 to 180 hours/day (difference = 20 hours, 95% CI = 8 to 32 hours). After daily ED volume, low-acuity area volume, daily wait time, daily boarding hours, and nurse staffing were adjusted for, the percentage of patients who LWBT was not independently associated with ED expansion (p = 0.053). After ED admissions, ED intensive care unit (ICU) admissions, elective surgical admissions, hospital occupancy rate, ICU occupancy rate, and number of operational ICU beds were adjusted for, the increase in ED boarding hours was independently associated with the ED expansion (p = 0.005). An increase in ED bed capacity was associated with no significant change in the percentage of patients who LWBT, but had an unintended consequence of an increase in ED boarding hours. ED expansion alone does

  5. 2015 Plan. Project 1: methodology and planning process of the Brazilian electric sector expansion

    International Nuclear Information System (INIS)

    1993-10-01

    The Planning Process of Brazilian Electric Sector Expansion, their normative aspects, instruments, main agents and the planning cycles are described. The methodology of expansion planning is shown, with the interactions of several study areas, electric power market and the used computer models. The forecasts of methodology evolution is also presented. (C.G.C.)

  6. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  7. Impact of agricultural expansion on water footprint in the Amazon under climate change scenarios

    NARCIS (Netherlands)

    Miguel Ayala, Laura; Eupen, van Michiel; Zhang, Guoping; Pérez-Soba, Marta; Martorano, Lucieta G.; Lisboa, Leila S.; Beltrao, Norma E.

    2016-01-01

    Agricultural expansion and intensification are main drivers of land-use change in Brazil. Soybean is the major crop under expansion in the area. Soybean production involves large amounts of water and fertiliser that act as sources of contamination with potentially negative impacts on adjacent

  8. Expansion due to the anaerobic corrosion of iron

    Energy Technology Data Exchange (ETDEWEB)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H. [Serco Assurance, Culham Science Centre (United Kingdom)

    2006-12-15

    . Initially, three cells were set up: two contained alternate carbon steel and copper discs, and the third, a control cell, consisted of alternate stainless steel and copper discs. A slight contraction of the control cell was observed but no expansion was measured in the carbon steel-copper cells. Analytical measurements showed that the corrosion products were magnetite and hydrogen, indicating that anaerobic corrosion was occurring. In a second series of experiments, one experiment was carried out in which carbon steel was replaced with cast iron and in a further experiment air was allowed to enter the test chamber. No expansion was detected in either of these additional experiments. However, expansion was detected when a separate stack of copper and steel washers was corroded in ambient atmospheric conditions under very small compressive loads, and subjected to a wet-dry cycle, demonstrating that the experimental technique was capable of detecting corrosion-induced expansion if it were occurring. In parallel with the stress cell experiments, coupons of mild steel and cast iron were corroded in anoxic, artificial groundwater at 50 deg C and 80 deg C for several months. The coupons were examined using atomic force microscopy (AFM) to determine the mechanical properties and the structure of the corrosion product films, and X-ray photoelectron spectroscopy (XPS) to identify the chemical composition of the film. The report presents Young's modulus, thickness and hardness data for the oxides, which were much more compliant than the magnetite films formed at high temperatures, probably because of their high water content. The report considers the application of the results to assessing the performance of the SKB canister in a repository situation.

  9. Expansion due to the anaerobic corrosion of iron

    International Nuclear Information System (INIS)

    Smart, N.R.; Rance, A.P.; Fennell, P.A.H.

    2006-12-01

    , three cells were set up: two contained alternate carbon steel and copper discs, and the third, a control cell, consisted of alternate stainless steel and copper discs. A slight contraction of the control cell was observed but no expansion was measured in the carbon steel-copper cells. Analytical measurements showed that the corrosion products were magnetite and hydrogen, indicating that anaerobic corrosion was occurring. In a second series of experiments, one experiment was carried out in which carbon steel was replaced with cast iron and in a further experiment air was allowed to enter the test chamber. No expansion was detected in either of these additional experiments. However, expansion was detected when a separate stack of copper and steel washers was corroded in ambient atmospheric conditions under very small compressive loads, and subjected to a wet-dry cycle, demonstrating that the experimental technique was capable of detecting corrosion-induced expansion if it were occurring. In parallel with the stress cell experiments, coupons of mild steel and cast iron were corroded in anoxic, artificial groundwater at 50 deg C and 80 deg C for several months. The coupons were examined using atomic force microscopy (AFM) to determine the mechanical properties and the structure of the corrosion product films, and X-ray photoelectron spectroscopy (XPS) to identify the chemical composition of the film. The report presents Young's modulus, thickness and hardness data for the oxides, which were much more compliant than the magnetite films formed at high temperatures, probably because of their high water content. The report considers the application of the results to assessing the performance of the SKB canister in a repository situation

  10. Strain expansion-reduction approach

    Science.gov (United States)

    Baqersad, Javad; Bharadwaj, Kedar

    2018-02-01

    Validating numerical models are one of the main aspects of engineering design. However, correlating million degrees of freedom of numerical models to the few degrees of freedom of test models is challenging. Reduction/expansion approaches have been traditionally used to match these degrees of freedom. However, the conventional reduction/expansion approaches are only limited to displacement, velocity or acceleration data. While in many cases only strain data are accessible (e.g. when a structure is monitored using strain-gages), the conventional approaches are not capable of expanding strain data. To bridge this gap, the current paper outlines a reduction/expansion technique to reduce/expand strain data. In the proposed approach, strain mode shapes of a structure are extracted using the finite element method or the digital image correlation technique. The strain mode shapes are used to generate a transformation matrix that can expand the limited set of measurement data. The proposed approach can be used to correlate experimental and analytical strain data. Furthermore, the proposed technique can be used to expand real-time operating data for structural health monitoring (SHM). In order to verify the accuracy of the approach, the proposed technique was used to expand the limited set of real-time operating data in a numerical model of a cantilever beam subjected to various types of excitations. The proposed technique was also applied to expand real-time operating data measured using a few strain gages mounted to an aluminum beam. It was shown that the proposed approach can effectively expand the strain data at limited locations to accurately predict the strain at locations where no sensors were placed.

  11. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  12. Cathode plasma expansion in diode with explosive emission

    International Nuclear Information System (INIS)

    Zuo Yinghong; Fan Ruyu; Wang Jianguo; Zhu Jinhui

    2012-01-01

    The evolution characteristics of the cathode plasma in a planar diode with explosive emission were analyzed. Be- sides the axial expansion which can reduce the effective anode-cathode gap, the radial expansion of the cathode plasma which can affect the effective emitting area was also taken into account. According to the Child-Langmuir law and the experimental data of current and voltage with a electron vacuum diode under four-pulse mode, the dynamics of the cathode plasma was investigated, on the assumption that the radial speeds of the cathode plasma was approximately equal to the axial speed. The results show that the radial and axial expansion speeds of the cathode plasma are 0.9-2.8 cm/μs. (authors)

  13. LOSS FACTOR AND DYNAMIC YOUNG MODULUS DETERMINATION FOR COMPOSITE SANDWICH BARS REINFORCED WITH STEEL FABRIC

    Directory of Open Access Journals (Sweden)

    Cosmin-Mihai MIRIŢOIU

    2015-05-01

    Full Text Available In this paper I have build some composite sandwich bars. For these bars I have determined the dynamic response by recording their free vibrations. These bars have the core made of polypropylene honeycomb with upper and lower layers reinforced with steel wire mesh. For these bars I have determined the the eigenfrequency of the first eigenmode in this way: the bar was embedded at one end and free at the other where there was placed an accelerometer at 10 mm distance from the edge and I applied an initial force at the free end. I have determined the eigenfrequency because I will use its values for the loss factor and dynamic Young modulus determination.

  14. IMPACT OF THERMAL FATIGUE ON YOUNG’S MODULUS OF EPOXY ADHESIVES

    Directory of Open Access Journals (Sweden)

    Mariusz Kłonica

    2015-11-01

    Full Text Available The following paper presents a comparative analysis of two epoxy-based adhesives: Hysol 9466 and Hysol 3421, prior to and after thermal shock testing. The tests focused on determining Young’s modulus. Epoxy-based materials are among the most widespread adhesive materials used as universal structural adhesives. The prepared epoxy samples (Hysol 9466 and Hysol 3421 were subjected to thermal shock cycling tests, according to a specified programme, in a thermal shock testing chamber, at a temperature range –40 °C to +60 °C and in the number of 200 cycles. Conclusions from the tests are presented at the final stage of the paper.

  15. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study

    DEFF Research Database (Denmark)

    Holst, Karen; Liebgott, Hervé; Wilhjelm, Jens E.

    2013-01-01

    Shock absorption is the most important function of the human heel pad. However, changes in heel pad elasticity, as seen in e.g. long-distance runners, diabetes patients, and victims of Falanga torture are affecting this function, often in a painful manner. Assessment of heel pad elasticity...... is usually based on one or a few strain measurements obtained by an external load-deformation system. The aim of this study was to develop a technique for quantitative measurements of heel pad elastic modulus based on several internal strain measures from within the heel pad by use of ultrasound images. Nine...... heel phantoms were manufactured featuring a combination of three heel pad stiffnesses and three heel pad thicknesses to model the normal human variation. Each phantom was tested in an indentation system comprising a 7MHz linear array ultrasound transducer, working as the indentor, and a connected load...

  16. Study on modal characteristics of perforated shell using effective Young's modulus

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Yu, Seon Oh

    2011-01-01

    Research highlights: → The effective Young's modulus of perforated shell is proposed for modal analysis. → The penetration pattern is almost negligible for effective elastic constants. → The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  17. Study on modal characteristics of perforated shell using effective Young's modulus

    Energy Technology Data Exchange (ETDEWEB)

    Jhung, Myung Jo, E-mail: mjj@kins.re.kr [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Yu, Seon Oh [Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338 (Korea, Republic of)

    2011-06-15

    Research highlights: > The effective Young's modulus of perforated shell is proposed for modal analysis. > The penetration pattern is almost negligible for effective elastic constants. > The frequency of perforated shell decreases significantly due to the hole effect. - Abstract: For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with effective material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the effective material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

  18. Microstructure, electrical conductivity and modulus spectra of CdI{sub 2} doped nanocomposite-electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Ranadip [Department of Engineering Sciences and Humanities, Siliguri Institute of Technology, Darjeeeling 734009, West Bengal (India); Department of Mechanical Engineering, Jadavpur University, Jadavpur, Kolkata 700032 (India); Roy, Debasish [Department of Mechanical Engineering, Jadavpur University, Jadavpur, Kolkata 700032 (India); Bhattacharya, Sanjib, E-mail: sanjib_ssp@yahoo.co.in [Department of Engineering Sciences and Humanities, Siliguri Institute of Technology, Darjeeeling 734009, West Bengal (India)

    2017-02-15

    Ionic conductivity and dielectric behavior of Ag{sub 2}O–CdI{sub 2}–CdO nanocomposite system have been studied. X-ray diffraction has been carried out to obtain the crystallite sizes and the growth of CdO dispersed in glass-matrices. Total conductivity of them shows thermally activated nature. It is observed that total conductivity decreases and corresponding activation energy for conduction follows opposite behavior. The high-frequency ac conductivity may correspond to a nonrandom, correlated and sub-diffusive motion of Ag{sup +} ions. Conductivity relaxation time is found to increase. The nature of scaling of the conductivity as well as modulus spectra indicates that the electrical relaxation of Ag{sup +} is temperature independent but depends upon composition.

  19. High bulk modulus of ionic liquid and effects on performance of hydraulic system.

    Science.gov (United States)

    Kambic, Milan; Kalb, Roland; Tasner, Tadej; Lovrec, Darko

    2014-01-01

    Over recent years ionic liquids have gained in importance, causing a growing number of scientists and engineers to investigate possible applications for these liquids because of their unique physical and chemical properties. Their outstanding advantages such as nonflammable liquid within a broad liquid range, high thermal, mechanical, and chemical stabilities, low solubility for gases, attractive tribological properties (lubrication), and very low compressibility, and so forth, make them more interesting for applications in mechanical engineering, offering great potential for new innovative processes, and also as a novel hydraulic fluid. This paper focuses on the outstanding compressibility properties of ionic liquid EMIM-EtSO4, a very important physical chemically property when IL is used as a hydraulic fluid. This very low compressibility (respectively, very high Bulk modulus), compared to the classical hydraulic mineral oils or the non-flammable HFDU type of hydraulic fluids, opens up new possibilities regarding its usage within hydraulic systems with increased dynamics, respectively, systems' dynamic responses.

  20. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de