WorldWideScience

Sample records for area effluent treatment

  1. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  2. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2010-03-12

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  3. Request for modification of 200 Area effluent treatment facility final delisting

    Energy Technology Data Exchange (ETDEWEB)

    BOWMAN, R.C.

    1998-11-19

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

  4. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  5. Treatment of industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Cahey, A.G.

    1977-01-01

    The textbook is designed for students of water resources technology and as a guide for water quality engineers and those concerned with industrial effluents. The authors come from water authorities, industry and the academic world. Among the subjects considered are microbes and effluent treatments; legal aspects of pollution; analytical techniques; bio-oxidation; physical treatment; biological and ecological aspects of waste treatment; biological treatment of coke-oven liquors; water tracing.

  6. State waste discharge permit application for the 200 Area Effluent Treatment Facility and the State-Approved Land Disposal Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Application is being made for a permit pursuant to Chapter 173--216 of the Washington Administrative Code (WAC), to discharge treated waste water and cooling tower blowdown from the 200 Area Effluent Treatment Facility (ETF) to land at the State-Approved Land Disposal Site (SALDS). The ETF is located in the 200 East Area and the SALDS is located north of the 200 West Area. The ETF is an industrial waste water treatment plant that will initially receive waste water from the following two sources, both located in the 200 Area on the Hanford Site: (1) the Liquid Effluent Retention Facility (LERF) and (2) the 242-A Evaporator. The waste water discharged from these two facilities is process condensate (PC), a by-product of the concentration of waste from DSTs that is performed in the 242-A Evaporator. Because the ETF is designed as a flexible treatment system, other aqueous waste streams generated at the Hanford Site may be considered for treatment at the ETF. The origin of the waste currently contained in the DSTs is explained in Section 2.0. An overview of the concentration of these waste in the 242-A Evaporator is provided in Section 3.0. Section 4.0 describes the LERF, a storage facility for process condensate. Attachment A responds to Section B of the permit application and provides an overview of the processes that generated the wastes, storage of the wastes in double-shell tanks (DST), preliminary treatment in the 242-A Evaporator, and storage at the LERF. Attachment B addresses waste water treatment at the ETF (under construction) and the addition of cooling tower blowdown to the treated waste water prior to disposal at SALDS. Attachment C describes treated waste water disposal at the proposed SALDS.

  7. Removal of heavy metals from tannery effluents of Ambur industrial area, Tamilnadu by Arthrospira (Spirulina) platensis.

    Science.gov (United States)

    Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G

    2015-06-01

    The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.

  8. Halonitromethanes formation in wastewater treatment plant effluents.

    Science.gov (United States)

    Song, Hocheol; Addison, Jesse W; Hu, Jia; Karanfil, Tanju

    2010-03-01

    Halonitromethanes (HNMs) constitute one class of emerging disinfection by-products with high potential health risks. This study investigated the formation and occurrence of HNMs under different disinfection scenarios and the presence of their precursors in municipal wastewater treatment plant (WWTPs) effluents. Formation potential tests performed on WWTP effluents revealed that HNM formation occurred in the order of ozonation-chlorination > ozonation-chloramination > chlorination > chloramination. Ozonation alone did not produce any HNM. Municipal WWTP effluents contained some reactive HNM precursors, possibly the by-products of biological treatment processes and/or some moiety of industry or household origin. No effects of nitrate on the formation of HNMs were observed in this study, and nitrification in WWTPs appears to remove appreciable portion of HNM precursors, especially those reactive to chlorine. UV disinfection using low pressure lamps in municipal WWTPs had negligible impact on HNM formation potential. HNM concentrations in the effluents of selected WWTPs were either non-detectable or less than minimum reporting level, except for one WWTP that gave trichloronitromethane concentrations in the range of 0.9-1.5 microg L(-1). No HNMs were observed in the effluents disinfected with UV radiation. Therefore, it appears the typical wastewater disinfection processes involving chlorination or UV treatment in WWTPs do not produce significant amounts of HNMs.

  9. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  10. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    Energy Technology Data Exchange (ETDEWEB)

    HALGREN DL

    2008-07-30

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

  11. 300 Area Treated Effluent Disposal Facility (TEDF) Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    CAMPBELL, L.R.

    1999-01-15

    This document establishes the technical basis in support of emergency planning activities for the 300 Area Treated Effluent Disposal Facility. The technical basis for project-specific Emergency Action Levels and Emergency Planning Zone is demonstrated.

  12. Soil aquifer treatment using advanced primary effluent

    KAUST Repository

    Sharma, Saroj K.

    2011-08-01

    Soil aquifer treatment (SAT) using primary effluent (PE) is an attractive option for wastewater treatment and reuse in many developing countries with no or minimal wastewater treatment. One of the main limitations of SAT of PE is rapid clogging of the infiltration basin due to high suspended solid concentrations. Some pre-treatment of PE before infiltration is likely to reduce this limitation, improve performance of SAT and help to implement this technology effectively. The effects of three pre-treatment options namely sedimentation (SED), coagulation (COAG) and horizontal roughing filtration (HRF) on SAT were analyzed by conducting laboratory-scale batch and soil column experiments. The sedimentation and coagulation pre-treatments led to less head loss development and reduction of clogging effect. The head loss development in soil column using PE + COAG and PE + SED was reduced by 85 and 72%, respectively, compared to PE alone without any pretreatment. The overall dissolved organic carbon (DOC) removal of pre-treatments and soil column collectively were 34, 44, 51 and 43.5% for PE without any pre-treatment, PE + SED, PE+ COAG and PE + HRF, respectively. Coagulation pre-treatment of PE was found to be the most effective option in terms of suspended solids, DOC and nitrogen removal. Sedimentation pre-treatment of PE could be attractive where land is relatively less expensive for the construction of sedimentation basins. © IWA Publishing 2011.

  13. A Comparison of Electromagnetic Induction Mapping to Measurements of Maximum Effluent Flow Depth for Assessing Flow Paths in Vegetative Treatment Areas

    Science.gov (United States)

    Vegetative treatment systems (VTSs) are one type of control structure that has shown potential to control runoff from open feedlots. To achieve maximum performance, sheet-flow over the width of the vegetative treatment area (VTA) is required. Tools, such as maps of flow paths through the VTA, are ne...

  14. Direct nanofiltration of wastewater treatment plant effluent

    NARCIS (Netherlands)

    Schrader, Guillo Alexander

    2006-01-01

    Membrane technology, especially nanofiltration, is seen as a suitable technology to polish WWTP effluent to EU WFD standards and consequently produce an effluent quality suitable for agricultural or (in)direct potable usage. The objective of this study was to assess the potential of direct nanofiltr

  15. Integrated treatment of farm effluents in New Zealand's dairy operations.

    Science.gov (United States)

    Bolan, N S; Laurenson, S; Luo, J; Sukias, J

    2009-11-01

    Maintaining growth through intensification in the New Zealand dairy industry is a challenge for various reasons, in particular sustainably managing the large volumes of effluent. Dairy farm effluents have traditionally been treated using two-pond systems that are effective in the removal of carbon and suspended solids, however limited in their ability to remove nutrients. In the past these nutrient-rich two-pond treated effluents were disposed of in surface waters. Current environmental concerns associated with the direct discharge of these effluents to surface waters has prompted in developing technologies to either minimise the nutrient content of the effluent or apply effluents to land. Here, we discuss various approaches and methods of treatment that enable producers to sustainably manage farm effluents, including advanced pond treatment systems, stripping techniques to reduce nutrient concentration, land application strategies involving nutrient budgeting models to minimise environmental degradation and enhance fodder quality. We also discuss alternative uses of farm effluents to produce energy and animal feed.

  16. [Detoxification of textile industry effluents by photocatalytic treatment].

    Science.gov (United States)

    Gebrati, L; Idrissi, L Loukili; Mountassir, Y; Nejmeddine, A

    2010-05-01

    In Morocco the textile industry, representing 31% of all Moroccan industries, is accompanied by high water consumption and important wastewater discharges rejected without any treatment. The focus of this study was to characterize the effluent from the textile industry, to test separately the effect of UV light and TiO2 catalyst and to determine the optimum conditions (pH, concentration and reaction time) in photocatalytic treatment to reduce chemical oxygen demand (COD) and colour. The biodegradability of the effluent was also studied using a toxicity test before and after treatment. After 90 min of reaction time at pH 4 and with 1.5 g F' of TiO2 catalyst, the photocatalytic treatment reached a global removal rate of 53% for COD and 89% for discoloration of the effluent. The relation BOD5/COD increased from around 0 to 0.3. The effluent became accessible to a biological treatment. The toxicity was studied by the Daphnia magna test over 24 hours. The results have shown the important toxicity of these effluents, which are rich in organic matter and other chemical compounds. After treatment by photocatalytic oxidation, the CI50 24 increased from 3.8% to 22.8%. This reduction of toxicity is related to the reduction of COD (53%) and colour (89%). Photocatalytic treatment has been shown to have an environmental benefit and, in combination with a secondary biological treatment, can be important for a significant reduction in the pollution of textile effluents.

  17. Electrocoagulation for the treatment of textile industry effluent--a review.

    Science.gov (United States)

    Khandegar, V; Saroha, Anil K

    2013-10-15

    Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent.

  18. Assessment of wastewater treatment plant effluent effects on fish reproduction

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  19. Phosphorus leaching in soils amended with piggery effluent or lime residues from effluent treatment.

    Science.gov (United States)

    Weaver, D M; Ritchie, G S

    1994-01-01

    Phosphorus (P) in wastes from piggeries may contribute to the eutrophication of waterways if not disposed of appropriately. Phosphorus leaching, from three soils with different P sorption characteristics (two with low P retention and one with moderate P retention) when treated with piggery effluent (with or without struvite), was investigated using batch and leaching experiments. The leaching of P retained in soil from the application of struvite effluent was determined. In addition, P leaching from lime residues (resulting from the treatment of piggery effluent with lime to remove P) was determined in comparison to superphosphate when applied to the same three soils. Most P was leached from sandy soils with low P retention when effluent with or without struvite was applied. More than 100% of the filterable P applied in struvite effluent was leached in sandy soils with low P retention. Solid, inorganic forms of P (struvite) became soluble and potentially leachable at pHdissolution if there were sufficient sorption sites. In sandy soils with low P retention, more than 39% of the total filterable P applied in recycled effluent (without struvite) was leached. Soil P increased mainly in surface layers after treatment with effluent. Sandy soils pre-treated with struvite effluent leached 40% of the P retained in the previous application. Phosphorus decreased in surface layers and increased at depth in the soil with moderate P retention after leaching the struvite effluent pre-treated soil with water. The soils capacity to adsorb P and the soil pH were the major soil properties that affected the rate and amount of P leaching, whereas the important characteristics of the effluent were pH, P concentration and the forms of P in the effluent. Phosphorus losses from soils amended with hydrated lime and lime kiln dust residues were much lower than losses from soils amended with superphosphate. Up to 92% of the P applied as superphosphate was leached from sandy soils with low P

  20. Performance evaluation of effluent treatment plant for automobile industry

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Farid [Department of Applied Science and Humanities, PDM College of Engineering, Bahadurgarh (Haryana) (India); Pandey, Yashwant K. [School of Energy and Environmental Studies, Devi Ahilya Vishwavidyalaya, Indore (India); Kumar, P.; Pandey, Priyanka [Department of Environmental Science, Post Graduate College Ghazipur (IN

    2013-07-01

    The automobile industry’s wastewater not only contains high levels of suspended and total solids such as oil, grease, dyestuff, chromium, phosphate in washing products, and coloring, at various stages of manufacturing but also, a significant amount of dissolved organics, resulting in high BOD or COD loads. The study reveals the performance, evaluation and operational aspects of effluent treatment plant and its treatability, rather than the contamination status of the real property. The Results revealed that the treated effluent shows most of the parameters are within permissible limits of Central Pollution Control Board (CPCB), India and based on the site visits, discussion with operation peoples, evaluation of process design, treatment system, existing effluent discharge, results of sample analyzed and found that effluent treatment plant of automobile industry are under performance satisfactory.

  1. The Potential of Extended Aeration System for Sago Effluent Treatment

    Directory of Open Access Journals (Sweden)

    Wahi A. Rashid

    2010-01-01

    Full Text Available Problem statement: Sago effluent contains large amount of organic material which has a potential to cause water pollution. In order to reduce this problem, an experiment was conducted to remove organic material from sago effluent using lab scale of Extended Aeration (EA system. Approach: The EA system consisted of the combination of physical and biological treatment unit. For Physical Treatment Unit (PTU, the sago effluent was filtered using 710 µm mesh size filter. For Biological Treatment Unit (BTU, the effluent were mixed and aerated with activated sago sludge for 48 h. The treatment efficiency with respect to Biological Oxygen Demand (BOD, Chemical Oxygen Demand (COD and Total Suspended Solid (TSS removal were evaluated and compared with regulatory requirement by Department of Environment, Malaysia. Results: The result showed, the EA system could reduce BOD, COD and TSS up to 84, 87.8 and 73% respectively, however it did not comply with the regulatory requirement. Conclusion: This study suggested the EA system have potential to be apply on sago effluent, however it should be integrated with additional treatment unit to achieve the effluent quality standard.

  2. Electrochemical treatment of textile dyes and dyehouse effluents

    Energy Technology Data Exchange (ETDEWEB)

    Chatzisymeon, Efthalia [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Xekoukoulotakis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Coz, Alberto [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Kalogerakis, Nicolas [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece); Mantzavinos, Dionissios [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania (Greece)]. E-mail: mantzavi@mred.tuc.gr

    2006-09-21

    The electrochemical oxidation of textile effluents over a titanium-tantalum-platinum-iridium anode was investigated. Batch experiments were conducted in a flow-through electrolytic cell with internal recirculation at current intensities of 5, 10, 14 and 20 A, NaCl concentrations of 0.5, 1, 2 and 4% and recirculation rates of 0.81 and 0.65 L/s using a highly colored, synthetic effluent containing 16 textile dyes at a total concentration of 361 mg/L and chemical oxygen demand (COD) of 281 mg/L. Moreover, an actual dyehouse effluent containing residual dyes as well as various inorganic and organic compounds with a COD of 404 mg/L was tested. In most cases, quantitative effluent decolorization was achieved after 10-15 min of treatment and this required low energy consumption; conversely, the extent of mineralization varied between 30 and 90% after 180 min depending on the operating conditions and the type of effluent. In general, treatment performance improved with increasing current intensity and salinity and decreasing solution pH. However, the use of electrolytes not containing chloride (e.g. FeSO{sub 4} or Na{sub 2}SO{sub 4}) suppressed degradation. Although the acute toxicity of the actual effluent to marine bacteria Vibrio fischeri was weak, it increased sharply following treatment, thus suggesting the formation of persistent toxic by-products.

  3. Demasculinization of male fish by wastewater treatment plant effluent.

    Science.gov (United States)

    Vajda, Alan M; Barber, Larry B; Gray, James L; Lopez, Elena M; Bolden, Ashley M; Schoenfuss, Heiko L; Norris, David O

    2011-06-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17β-estradiol, estrone, estriol, and 17α-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent.

  4. Demasculinization of male fish by wastewater treatment plant effluent

    Science.gov (United States)

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  5. Salmonella in effluent from sewage treatment plants, wastepipe of butcher's shops and surface water in Walcheren.

    Science.gov (United States)

    Kampelmacher, E H; van Noorle Jansen, L M

    1976-07-01

    In the frame of the "Walcheren-project" in which the epidemiology of salmonellosis is studied in a certain area, effluent from sewage treatment plants, wastepipe's of butcher's shops and surface waters, which receive the effluent were studied for the presence of salmonellae. From 160 samples of effluent 150 (94%) contained salmonellae. The most common serotype was S. typhi murium (35%) followed by S. panama and S. infantis. 14 butcher's shops' wastepipes were sampled 54 times. 14 (26%) times salmonellae were found, but only twice was the type isolated from the butcher's shop the same as found in the effluent on the same day. With regard to the presence of salmonellae in surface waters receiving effluent it was shown that from the immediate vicinity of the plant to 250 m downstream from the site of drainage of effluent the number of salmonellae per 100 ml remains almost constant. After 1.5-4 kilometers Salmonella could not be isolated from any of the samples examined. The results underline the hypothesis that salmonellae multiply in the sewage system and/or plant. The spread of samonellae by effluent seems to be limited to the plant itself and of the nearest vicinity. Proposals are brought forward to interupt contamination cycles by decontamination measures.

  6. Treatment of effluents from uranium oxide production.

    Science.gov (United States)

    Ladeira, A C Q; Gonçalves, J S; Morais, C A

    2011-01-01

    The nuclear fuel cycle comprises a series of industrial processes which involve the production of electricity from uranium in nuclear power reactors. In Brazil the conversion of uranium hexafluoride (UF6) into uranium dioxide (UO2) takes place in Resende (RJ) at the Nuclear Fuel Factory (FCN). The process generates liquid effluents with significant concentrations of uranium, which might be treated before being discharged into the environment. This study investigates the recovery of uranium from three distinct liquid effluents: one with a high carbonate content and the other with an elevated fluoride concentration. This paper also presents a study on carbonate removal from an effluent that consists of a water-methanol solution generated during the filtration of the yellow cake (ammonium uranyl tricarbonate). The results showed that: (1) the uranium from the carbonated solution can be recovered through the ion exchange technique using the strong base anionic resin IRA 910-U, as the carbonate has been removed as CO2 after heating; (2) the most suitable technique to recover uranium from the fluoride solution is its precipitation as (NH4)2UO4F2 (ammonium fluorouranate peroxide), (3) the solution free of carbonate can be added to the fluoride solution and the uranium from the final solution can be recovered by precipitation as ammonium fluorouranate peroxide as well; (4) the carbonate from the water-methanol solution can be recovered as calcium carbonate through the addition of calcium chloride, or it can be recovered as ammonium sulphate through the addition of sulphuric acid. The ammonium sulphate product can be used as a fertilizer.

  7. Characteristics of liquid effluents and treatment systems; Caracteristicas dos efluentes liquidos e sistemas de tratamento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This chapter gives an overview on the liquid effluents characteristics and the treatment systems, approaching the following subjects: the hydrological cycle; physical, chemical and biological characteristics of the liquid effluents; biological, chemical and physical characteristics; records on industrial effluents; treatment processes of industrial effluents.

  8. Tannery Effluent Treatment by Yeast Species Isolates from Watermelon

    Directory of Open Access Journals (Sweden)

    Stanley Irobekhian Reuben Okoduwa

    2017-02-01

    Full Text Available The quest for an effective alternative means for effluent treatment is a major concern of the modern-day scientist. Fungi have been attracting a growing interest for the biological treatment of industrial wastewater. In this study, Saccharomycescerevisiae and Torulasporadelbrueckii were isolated from spoiled watermelon and inoculated into different concentrations of effluent. The inoculants were incubated for 21-days to monitor the performance of the isolates by measurement of biochemical oxygen demand (BOD, chemical oxygen demand (COD, nitrates, conductivity, phosphates, sulphates and turbidity. The results showed that Saccharomycescerevisiae had the highest percentage decrease of 98.1%, 83.0%, 60.7%, 60.5%, and 54.2% for turbidity, sulphates, BOD, phosphates and COD, respectively, of the tannery effluent. Torulasporadelbrueckii showed the highest percentage decrease of 92.9%, 90.6%, and 61.9% for sulphates, COD, and phosphates, respectively, while the syndicate showed the highest percentage reduction of 87.4% and 70.2% for nitrate and total dissolve solid (TDS, respectively. The least percentage decrease was displayed by syndicate organisms at 51.2%, 48.1% and 40.3% for BOD, COD and conductivity, respectively. The study revealed that Saccharomycescerevisiae and Torulasporadelbrueckii could be used in the biological treatment of tannery-effluent. Hence, it was concluded that the use of these organisms could contribute to minimizing the adverse environmental risks and health-hazards associated with the disposal of untreated tannery-effluents.

  9. Treatment of milk industry effluent by dissolved air flotation

    Directory of Open Access Journals (Sweden)

    H. J .B. Couto

    2004-01-01

    Full Text Available In this work, the application of the flotation technique by dissolved air (FAD to the treatment of milk industry effluent (milky effluent is analyzed. Initially, batch studies were carried out in a column built of acrylic with an external diameter of 2.5 cm and 50 cm in height. Afterwards, the performance of a flotation tank with a 5.5 L capacity in the treatment of the milky effluent was addressed. In continuous mode of operation, separation efficiencies up to 90% were obtained for the experiments carried out at a saturation pressure of 4 atm and having a ratio of feed flow rate (Qa to saturated liquid flow rate equal to 1. The separation efficiency for flocculated milk was estimated from the overall mass balance for the flotation tank. Separation efficiencies obtained agreed very well with the experimental results collected for Qa/Q Ls ratios lower than 1.

  10. ADVANCED TREATMENT OF SAHEBGHARANIEH SECONDARY EFFLUENT BY OZONATION

    Directory of Open Access Journals (Sweden)

    F. Vaezi

    2000-08-01

    Full Text Available Chemical oxidation is one of the most suitable treatment methods for reducing organic pollutants and the number of pathogens remaining in secondary effluents. Ozone is the most powerful oxidizing agent commonly used because of it's many advantages over chlorination. In this study the efficiency of ozonation in advanced wastewater treatment of Sahebgharanieh Plant has been determined. Ozone generation has been performed by irradiation of compressed air with 4 special UV lamps. The total output of these lamps was determined to be 0.74 mg ozone per minute at established conditions. Considering 3 periods of ozonation of effluent samples (30, 60 and 120 min and ozone transfer coefficient of 95%, the concentrations of applied ozone for wastewater treatment were specified to be 10.5, 21 and 42 mg/l, respectively. Ozonation of secondary effluents at these periods has resulted in 17, 24 and 30 percent reduction in average COD and about 20, 18 and 32 percent decrease in BOD5. It is believed that the 2 percent increase observed in BOD after 30 minutes is caused by changing some amount of COD to BOD5 by applied ozone. According to the prescribed reduction values it could be concluded that the final effluent of a typical treatment plant would become better qualified for water reuse in irrigation. But it should be declared that the effluent might not be completely disinfected irrespective of about 99.0% decrease determined in MPN of total coliforms. Also it must be noted that this degree of disinfection was accomplished only for 62.5% of samples. Ozonation of effluent samples has caused an increase in pH value which was at least 0.4 of a pH unit.

  11. Performance evaluation of Effluent Treatment Plant of Dairy Industry

    Directory of Open Access Journals (Sweden)

    Pratiksinh Chavda

    2014-09-01

    Full Text Available Dairy industry is among the most polluting of the food industries in regard to its large water consumption. Dairy is one of the major industries causing water pollution. Considering the increased milk demand, the dairy industry in India is expected to grow rapidly and have the waste generation and related environmental problems are also assumed increased importance. Poorly treated wastewater with high level of pollutants caused by poor design, operation or treatment systems creates major environmental problems when discharged to the surface land or water. Various operations in a dairy industry may include pasteurization, cream, cheese, milk powder etc. Considering the above stated implications an attempt has been made in the present project to evaluate one of the Effluent Treatment Plant for dairy waste. Samples are collected from three points; Collection tank (CT, primary clarifier (PC and Secondary clarifier (SC to evaluate the performance of Effluent Treatment Plant. Parameters analyzed for evaluation of performance of Effluent Treatment Plant are pH, TDS, TSS, COD, and BOD at 200C The pH, TDS, TSS, COD and BOD removal efficiency of Effluent Treatment Plant were 26.14 %, 33.30 %, 93.85 %, 94.19 % and 98.19 % respectively.

  12. Cassava starch effluent treatment with concomitant SCP production.

    Science.gov (United States)

    Manilal, V B; Narayanan, C S; Balagopalan, C

    1991-03-01

    Yeasts and yeast-like organisms were chosen for the aerobic treatment of cassava starch factory effluent. A mixed culture of Candida utills and Endomycopsis fibuliger efficiently and rapidly utilized both starch and free sugars. After 28 h fermentation the protein content of the biomass was 22% (w/w), which remained unchanged during the remainder of the fermentation (60 h). This treatment removed 94% of the COD and 91% of the BOD.

  13. Application of ozone based treatments of secondary effluents.

    Science.gov (United States)

    Tripathi, Smriti; Pathak, Vinita; Tripathi, Devendra Mani; Tripathi, B D

    2011-02-01

    The present work was aimed at studying the efficiency of ozone in oxidation processes, coliform inactivation and Disinfection Byproducts (DBPs) formation, associated with the potential of ozone to increase the Biodegradable Dissolved Organic Carbon (BDOC) in secondary effluent with applied ozone doses of 5.0, 10.0 and 15.0 mg/L for contact times of 2, 5 and 10 min. The wastewater used in this work was collected from the Bhagwanpur Sewage Treatment Plant, Varanasi, India. Results of this experiment showed that 10 mg O(3)/L O(3) for 5 min exposure was found most suitable dose for highest degradation of COD, TOC, UV(254), color, turbidity and total nitrogen parameters. The inactivation range of microbial biomass range was found in between 95% and 98%. Experiment revealed the fact that aldehydes and carboxylic acid formation were significantly related with the ozone dose and exposure time and ozone might enhance the treatment efficiency of secondary effluent treatment.

  14. Effect of Earthworms on Distillery Effluent Treatment through Vermifiltration

    OpenAIRE

    Nirmala Natarajan; N. Kannadasan

    2015-01-01

    Distillery is an important sub-unit of sugar production industry. Distillery wastewater generated from different stages of sugar and ethanol production contains huge amount of pollutants that are very harmful to the environment if released without proper treatment. The present paper describes the application of vermiculture based wastewater technology with the primary objective of converting liquid effluent into eco-friendly safe water. Vermifiltration of wastewater using waste ea...

  15. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    Science.gov (United States)

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  16. Readiness plan, Hanford 300 Area Treated Effluent Disposal Facility: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Storm, S.J.

    1994-11-08

    The 300 Area Treated Effluent Disposal Facility (TEDF) is designed for the collection, treatment, and eventual disposal of liquid waste from the 300 Area Process Sewer (PS) system. The PS currently discharges water to the 300 Area Process Trenches. Facilities supported total 54 buildings, including site laboratories, inactive buildings, and support facilities. Effluent discharges to the process sewer from within these facilities include heating, ventilation, and air conditioning systems, heat exchangers, floor drains, sinks, and process equipment. The wastewaters go through treatment processes that include iron coprecipitation, ion exchange and ultraviolet oxidation. The iron coprecipitation process is designed to remove general heavy metals. A series of gravity filters then complete the clarification process by removing suspended solids. Following the iron coprecipitation process is the ion exchange process, where a specific resin is utilized for the removal of mercury. The final main unit operation is the ultraviolet destruction process, which uses high power ultraviolet light and hydrogen peroxide to destroy organic molecules. The objective of this readiness plan is to provide the method by which line management will prepare for a Readiness Assessment (RA) of the TEDF. The self-assessment and RA will assess safety, health, environmental compliance and management readiness of the TEDF. This assessment will provide assurances to both WHC and DOE that the facility is ready to start-up and begin operation.

  17. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    Science.gov (United States)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  18. Functional design criteria for Project W-252, Phase II Liquid Effluent Treatment and Disposal: Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, C.E.

    1994-11-10

    This document provides the functional design criteria required for the Phase 2 Liquid Effluent Treatment and Disposal Project, Project W-252. Project W-252 shall provide new facilities and existing facility modifications required to implement Best Available Technology/All Known, Available, and Reasonable Methods of Prevention, Control, and Treatment (BAT/AKART) for the 200 East Phase II Liquid Effluent Streams. The project will also provide a 200 East Area Phase II Effluent Collection System (PTECS) for connection to a disposal system for relevant effluent streams to which BAT/AKART has been applied. Liquid wastestreams generated in the 200 East Area are currently discharged to the soil column. Included in these wastestreams are cooling water, steam condensate, raw water, and sanitary wastewaters. It is the policy of the DOE that the use of soil columns to treat and retain radionuclides and nonradioactive contaminants be discontinued at the earliest practical time in favor of wastewater treatment and waste minimization. In 1989, the DOE entered into an interagency agreement with Ecology and EPA. This agreement is referred to as the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). Project W-252 is one of the projects required to achieve the milestones set forth in the Tri-Party Agreement. One of the milestones requires BAT/AKART implementation for Phase II streams by October 1997. This Functional Design Criteria (FDC) document provides the technical baseline required to initiate Project W-252 to meet the Tri-Party Agreement milestone for the application of BAT/AKART to the Phase II effluents.

  19. Toxicity Evaluation of Wastewater Treatment Plant Effluents Using Daphnia magna

    Directory of Open Access Journals (Sweden)

    H Movahedian, B Bina, GH Asghari

    2005-04-01

    Full Text Available Toxicity evaluation is an important parameter in wastewater quality monitoring as it provides the complete response of test organisms to all compounds in wastewater. The water flea Daphnia magna straus is the most commonly used zooplankton in toxicological tests. The objective of this study was to evaluate the acute toxicity of effluents from different units of Isfahan Wastewater Treatment Plant (IWTP. The samples were taken from four different physical and biological units. The acute toxicity tests were determined using Daphnia magna. The immobility of Daphnia was determined after 48h. Toxicity results showed that 48h-LC50 and ATU values for raw wastewater were 30% (v/v and 3.33, respectively. It was also found that LC50 values after 48 h for preliminary, primary, and secondary effluents were 32%, 52% and 85% (v/v, respectively. The ATU values for these effluents were 3.1, 1.9, and 1.8, correspondingly. The efficiency levels of preliminary, primary, and secondary units for removal of toxicity were found as 6%, 38.9% and 8%, in that order. Overall, the present investigation indicated that toxicity removal by up to 50% might be achieved in IWPT. Based on the obtained results and regarding the improvement of water quality standards, coupled with public expectations in Iran, it is necessary to consider more stringent water quality policies for regular monitoring and toxicity assessment.

  20. [Epidemiological studies on salmonella in a particular area ("Walcheren Project"). III. The incidence of salmonella in man, insects, gulls as well as foods scrapings from butcher's blocks, effluents of sewage treatment plants and drains from butcher's shops (author's transl)].

    Science.gov (United States)

    Edel, W; Van Schothorst, M; Van Leusden, F M; Kampelmacher, E H

    1977-03-15

    In continuation of previous studies, various materials (meat and meat products, insects, gull droppings, scrapings from butcher's blocks, effluents of sewage treatment plants, drains from butcher's shops and faeces of patients) were examined again at the same time for the presence of Salmonella in a relatively small are (Walcheren) over a period of three months. As was also the case in previous studies, S. typhi murium (27.5 per cent), S. panama (22.2 per cent) and S. brandenburg (9.2 per cent) were the three serotypes most frequently isolated. The three most frequently isolated phage types of S. typhi murium were II 505 (62.1 per cent), II 502 (5.3 per cent) and I 650 (4.2 per cent). The serotypes and phage types were present in nearly all the materials studied which again emphasizes the fact that there are contamination cycles of Salmonella. These studies showed that the route of contamination divides in the butcher's shop. Salmonella ogranisms carried with the meat frome the slaughter-house find their way into the drains on the one hand, and, by meat and meat products, to consumers on the other. Moreover, the high degree of contamination of effluents is not in accordance with the small number of cases of salmonellosis.

  1. Treatment efficiency of effluent prawn culture by wetland with floating aquatic macrophytes arranged in series

    Directory of Open Access Journals (Sweden)

    MNP Henares

    Full Text Available The efficiency of a series of wetland colonized with Eichhornia crassipes and Salvinia molesta to treat the effluent of a giant river prawn (Macrobrachium rosenbergii broodstock pond was evaluated in this study. The experimental design was completely randomized and was performed in 9 rectangular tanks (1.6 m3 with three treatments (constructed wetlands and three replicates. The treatment types included: a wetland colonized with E. crassipes and S. molesta (EcSm arranged sequentially, a wetland with E. crassipes only (Ec and a wetland with S. molesta only (Sm. The means of suspended particulate material (SPM, total inorganic nitrogen (TIN, total Kjeldahl nitrogen (TKN, P-orthophosphate (PO4-P and total phosphorus (TP of the treated effluents were compared using ANOVA followed by Tukey's test (P<0.05. The effluent treated in Ec and EcSm wetlands exhibited lower SPM concentrations. The Ec wetland reduced TIN, TKN, PO4-P and TP by 46.0, 43.7, 44.4 and 43.6%, respectively. In the EcSm wetland, the reduction of TIN (23.0%, TKN (33.7% and PO4-P (26.7% was similar to the Sm wetland (19.8% TIN, 30.9% TKN and 23.8% PO4-P. The Ec wetland was more efficient in treating pond effluent due likely to the higher root surface of E. crassipes, which forms an extensive area favorable to retention and adsorption of debris and absorption of nutrients.

  2. Effect of Earthworms on Distillery Effluent Treatment through Vermifiltration

    Directory of Open Access Journals (Sweden)

    Nirmala Natarajan

    2015-12-01

    Full Text Available Distillery is an important sub-unit of sugar production industry. Distillery wastewater generated from different stages of sugar and ethanol production contains huge amount of pollutants that are very harmful to the environment if released without proper treatment. The present paper describes the application of vermiculture based wastewater technology with the primary objective of converting liquid effluent into eco-friendly safe water. Vermifiltration of wastewater using waste eater earthworms is a newly conceived novel technology. The BOD, COD, TSS and TDS decreased by 90%, 94%, 88% and 82% respectively through vermifiltration.

  3. Testing for Nuclear Thermal Propulsion Systems: Identification of Technologies for Effluent Treatment in Test Facilities Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a comprehensive understanding of requirements for a facility that could safely conduct effluent treatment for a Nuclear Thermal Propulsion (NTP) rocket...

  4. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS

    Science.gov (United States)

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  5. Recycling of dyehouse effluents by biological and chemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Krull, R.; Doepkens, E. [Inst. of Biochemical Engineering, Technical Univ. of Braunschweig, Braunschweig (Germany)

    2003-07-01

    The introduction of the production integrated environmental protection by closing raw material cycles is shown exemplary for the textile finishing industry. Colored process water with a high content of dissolved organic dyes has always been a non-trivial problem for the sewage engineering sector. The recycling of process water of textile mills is often hindered by remaining color of water-soluable azo dyes after conventional wastewater treatment. Rising costs of emitted wastewater, lawful limits and restricted availability of water makes it of great interest to introduce sophisticated techniques helping to purify dye effluents and to recycle process water. A combined biological and chemical process of purification and recycling of residual dyehouse split flows into the production was developed, investigated and installed by a textile finishing company which produces 330,000 m{sup 3} colored wastewater effluents per year. The process contains anaerobic dye-cleavage, aerobic mineralization of cleavage-products and the decolorization and partial oxidation of traces of dyeresiduals by advanced oxidation. (orig.)

  6. Treatment of dairy effluents by electrocoagulation using aluminium electrodes.

    Science.gov (United States)

    Tchamango, Serge; Nanseu-Njiki, Charles P; Ngameni, Emmanuel; Hadjiev, Dimiter; Darchen, André

    2010-01-15

    This work sets out to examine the efficiency of an electrolytic treatment: electrocoagulation, applied to dairy effluents. The experiments were carried out using a soluble aluminium anode on artificial wastewater derived from solutions of milk powder. The flocks generated during this treatment were separated by filtration. The analysis of the filtrates showed that the chemical oxygen demand (COD) was reduced by up to 61% while the removal of phosphorus, nitrogen contents, and turbidity were 89, 81 and 100%, respectively. An analogous treatment applied to phosphate and lactose solutions revealed that lactose was not eliminated, a fact that could account for the rather poor lowering of the COD. Compared to the chemical coagulation treatment with aluminium sulphate, the efficiency of the electrocoagulation technique was almost identical. However the wastewaters treated by electrocoagulation differed by the fact that they exhibited a lower conductivity and a neutral pH value (by contrast to the acid nature of the solution treated by the chemical coagulation). This result (low conductivity, neutral pH) tends to show that it may be possible to recycle the treated water for some industrial uses. Moreover, the electrocoagulation process uses fewer reagents: the mass of the aluminium anode dissolved during the treatment is lower compared to the quantity of the aluminium salt used in chemical coagulation. These two observations clearly show that the electrocoagulation technique is more performing.

  7. Treatment efficiency of effluent prawn culture by wetland with floating aquatic macrophytes arranged in series.

    Science.gov (United States)

    Henares, M N P; Camargo, A F M

    2014-11-01

    The efficiency of a series of wetland colonized with Eichhornia crassipes and Salvinia molesta to treat the effluent of a giant river prawn (Macrobrachium rosenbergii) broodstock pond was evaluated in this study. The experimental design was completely randomized and was performed in 9 rectangular tanks (1.6 m3) with three treatments (constructed wetlands) and three replicates. The treatment types included: a wetland colonized with E. crassipes and S. molesta (EcSm) arranged sequentially, a wetland with E. crassipes only (Ec) and a wetland with S. molesta only (Sm). The means of suspended particulate material (SPM), total inorganic nitrogen (TIN), total Kjeldahl nitrogen (TKN), P-orthophosphate (PO4-P) and total phosphorus (TP) of the treated effluents were compared using ANOVA followed by Tukey's test (Pwetlands exhibited lower SPM concentrations. The Ec wetland reduced TIN, TKN, PO4-P and TP by 46.0, 43.7, 44.4 and 43.6%, respectively. In the EcSm wetland, the reduction of TIN (23.0%), TKN (33.7%) and PO4-P (26.7%) was similar to the Sm wetland (19.8% TIN, 30.9% TKN and 23.8% PO4-P). The Ec wetland was more efficient in treating pond effluent due likely to the higher root surface of E. crassipes, which forms an extensive area favorable to retention and adsorption of debris and absorption of nutrients.

  8. Palm oil mill effluent treatment using coconut shell – based activated carbon: Adsorption equilibrium and isotherm

    Directory of Open Access Journals (Sweden)

    Kaman Sherlynna Parveen Deshon

    2017-01-01

    Full Text Available The current ponding system applied for palm oil mill effluent (POME treatment often struggle to comply with the POME discharge limit, thus it has become a major environmental concern. Batch adsorption study was conducted for reducing the Chemical Oxygen Demand (COD, Total Suspended Solids (TSS and Color of pre-treated POME using coconut shell-based activated carbon (CS-AC. The CS-AC showed BET surface area of 744.118 m2/g, with pore volume of 04359cm3/g. The adsorption uptake was studied at various contact time and POME initial concentration. The CS-AC exhibited good ability with average percentage removal of 70% for COD, TSS and Color. The adsorption uptake increased over time and attained equilibrium in 30 hours. The equilibrium data were analyzed using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. Based on the coefficient regression and sum of squared errors, the Langmuir isotherm described the adsorption of COD satisfactorily, while best described the TSS and Color adsorption; giving the highest adsorption capacity of 10.215 mg/g, 1.435 mg/g, and 63.291 PtCo/g respectively. The CS-AC was shown to be a promising adsorbent for treating POME and was able to comply with the Environmental Quality Act (EQA discharge limit. The outcome of treated effluent using CS-AC was shown to be cleaner than the industrial biologically treated effluent, achieved within shorter treatment time.

  9. Electro-coagulation applied to the treatment of industrial effluents; Electrocoagulation appliquee en traitement des effluents industriels

    Energy Technology Data Exchange (ETDEWEB)

    Laplace, C.; Leboucher, G.; Coste, M. [Anjou Recherche, Vivendi Water, 78 - Maisons-Laffitte (France)

    2001-07-01

    The electro-coagulation is a water treatment technic in electrolysis cell with double anode. In substitution to the coagulant reagent often used in water de-pollution, it realizes also the coloring decomposition, the DCO abatement and sometimes improving the sludges processing. The technic presents meanwhile some limitations as its poor treatment capacity and the necessity of a high effluent conductivity. An example of application shows that this technic is economically competitive. (A.L.B.)

  10. Assessment of the Impact of Industrial Effluents on Groundwater Quality in Okhla Industrial Area, New Delhi, India

    Directory of Open Access Journals (Sweden)

    Wequar Ahmad Siddiqui

    2009-01-01

    Full Text Available In the present study physicochemical parameters like pH, hardness, TDS, chloride, sulphate, nitrate, fluoride, DO, COD and conductivity of some important heavy metals such as iron, cobalt, cadmium, lead, mercury, chromium, selenium and arsenic were first analyzed in effluent water of Okhla industrial area phase-II and then groundwater of near by areas. Obtained values of effluent water were compared with ISI standard for effluent water discharge and groundwater values were compared with ISI and WHO drinking water standards. The result shows that discharge of untreated effluents by the industries is leading to contamination of groundwater of the surrounding areas. Lead, mercury, fluoride, TDS, sulphate was above the desirable limit in effluent water (ISI standard for effluent water discharge. Subsequent analysis of groundwater of nearby areas was rated as unacceptable for drinking because of presence of fluoride in all the samples above the desirable limit. Lead, mercury, cadmium, chloride was also detected in many samples.

  11. BIO-DEINKING OF ONP AND ITS EFFLUENT TREATMENT BY WHITE ROT FUNGUS

    Institute of Scientific and Technical Information of China (English)

    Lu Lin; Chunsheng Pang; Deqing Zhao; Liping Jiang

    2004-01-01

    Deinking of secondary fiber of ONP and effluent treatment with white rot fungus were studied in this paper. Results showed that white rot fungus exerted significant effect on deinking of ONP and CODcr decrease and degradation of pollutants of deinking effluent.

  12. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)

    2013-11-01

    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  13. Closure report for CAU 93: Area 6 steam cleaning effluent ponds, Nevada Test Site. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The Steam Cleaning Effluent Ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site. The SCEPs are evaporation basins formerly used for the disposal of untreated liquid effluent discharged from steam cleaning activities associated with Buildings 6-623 and 6-800. This closure report documents the strategy and analytical results that support the clean closure or closure in place of each of the components within CAU 93. In addition, the report documents all deviations from the approved closure plan and provides rationale for all deviations.

  14. Treatment of Alkaline Stripped Effluent in Aerated Constructed Wetlands: Feasibility Evaluation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Keli He

    2016-09-01

    Full Text Available Ammonium stripping has gained increasing interest for nitrogen recovery in anaerobically digested effluents. However, the stripped effluents often still do not meet discharge standards, having high pH and residual pollutants. Constructed wetlands (CWs are an easy to operate ecosystem and have a long history of application in treatment of wastewaters with extreme pH, such as acid mine drainage. However, knowledge of the mechanistic details involved in the use of CWs to treat high alkaline drainage, such as stripped effluent, is insufficient. This study explored the feasibility and effectiveness of using three sub-surface horizontal flow CWs to treat high alkaline stripped effluent (pH > 10. Two intensification strategies—intermittent aeration and effluent recirculation—were evaluated to enhance nitrogen depuration performance. The results show that the treatment of alkaline stripped effluent is feasible due to the high buffering capacity of the wetlands. Effluent recirculation combined with intermittent artificial aeration improves nitrogen removal, with 71% total nitrogen (TN removal. Ammonia volatilization from the surface of the wetlands in high alkaline conditions only contributed to 3% of the total removed ammonium. The microbial abundance and activity had significant diversity for the various enhancement strategies used in the constructed wetland systems. Anammox is an important process for nitrogen removal in CWs treating alkaline stripped effluent, and possible enhancements of this process should be investigated further.

  15. Photo-Electrochemical Treatment of Reactive Dyes in Wastewater and Reuse of the Effluent: Method Optimization

    Directory of Open Access Journals (Sweden)

    Mireia Sala

    2014-11-01

    Full Text Available In this work, the efficiency of a photo-electrochemical method to remove color in textile dyeing effluents is discussed. The decolorization of a synthetic effluent containing a bi-functional reactive dye was carried out by applying an electrochemical treatment at different intensities (2 A, 5 A and 10 A, followed by ultraviolet irradiation. The combination of both treatments was optimized. The final percentage of effluent decolorization, the reduction of halogenated organic volatile compound and the total organic carbon removal were the determinant factors in the selection of the best treatment conditions. The optimized method was applied to the treatment of nine simulated dyeing effluents prepared with different reactive dyes in order to compare the behavior of mono, bi, and tri-reactive dyes. Finally, the nine treated effluents were reused in new dyeing processes and the color differences (DECMC (2:1 with respect to a reference were evaluated. The influence of the effluent organic matter removal on the color differences was also studied. The reuse of the treated effluents provides satisfactory dyeing results, and an important reduction in water consumption and salt discharge is achieved.

  16. Effect of exposure to wastewater treatment plant effluent on fathead minnow reproduction

    Data.gov (United States)

    U.S. Environmental Protection Agency — Adult fathead minnows were exposed to dilutions of a historically estrogenic wastewater treatment plant effluent in a 21-d reproduction study. This dataset is...

  17. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza-Ticlo, D.; Tiwari, R.; Sah, A.K.; Raghukumar, C.

    Paper and pulp mills, textile and dye-making industries and alcohol distilleries release highly colored effluents that are relatively difficult to decolorize by chemical and physical treatments. White-rot basidiomycetous fungi that produce lignin...

  18. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  19. Influent pathogenic bacteria may go straight into effluent in full scale wastewater treatment plants

    DEFF Research Database (Denmark)

    Kristensen, Jannie Munk; Nierychlo, Marta; Albertsen, Mads

    Incoming microorganisms to wastewater treatment plants (WWTPs) are usually considered to be adsorbed onto the activated sludge flocs, consumed by protozoan or to just die off. Analyses of the effluent generally show a very high degree of reduction of pathogens supporting this assumption. Thus......, it is assumed that the bacteria present in the effluent comprise primarily of those bacteria that thrive/grow in the plants. However, standard techniques for detecting bacteria in the effluent, particularly pathogens, are based on culture-dependent methods, which may give erroneous results by underestimating...... in influent, process tank and effluent in the 14 WWTPs showed that the microbial communities in incoming wastewater were very similar across the plants. The same was observed for communities in the activated sludge in the process tanks. In contrast, the effluent community was in some WWTPs very similar...

  20. Occurrence of disinfection byproducts in United States wastewater treatment plant effluents

    KAUST Repository

    Krasner, Stuart W.

    2009-11-01

    Effluents from wastewater treatment plants (WWTPs) contain disinfection byproducts (DBPs) of health concern when the water is utilized downstream as a potable water supply. The pattern of DBP formation was strongly affected by whether or not the WWTP achieved good nitrification. Chlorine addition to poorly nitrified effluents formed low levels of halogenated DBPs, except for (in some cases) dihalogenated acetic acids, but often substantial amounts of N-nitrosodimethyamine (NDMA). Chlorination of well-nitrified effluent typically resulted in substantial formation of halogenated DBPs but much less NDMA. For example, on a median basis after chlorine addition, the well-nitrified effluents had 57 μg/L of trihalomethanes [THMs] and 3 ng/L of NDMA, while the poorly nitrified effluents had 2 μg/L of THMs and 11 ng/L of NDMA. DBPs with amino acid precursors (haloacetonitriles, haloacetaldehydes) formed at substantial levels after chlorination of well-nitrified effluent. The formation of halogenated DBPs but not that of NDMA correlated with the formation of THMs in WWTP effluents disinfected with free chlorine. However, THM formation did not correlate with the formation of other DBPs in effluents disinfected with chloramines. Because of the relatively high levels of bromide in treated wastewater, bromine incorporation was observed in various classes of DBPs. © 2009 American Chemical Society.

  1. Paper and board mill effluent treatment with the combined biological-coagulation-filtration pilot scale reactor.

    Science.gov (United States)

    Afzal, Muhammad; Shabir, Ghulam; Hussain, Irshad; Khalid, Zafar M

    2008-10-01

    Pilot scale reactor based on combined biological-coagulation-filtration treatments was designed and evaluated for the treatment of effluent from a paper and board mill. Biological treatment by fed batch reactor (FBR) followed by coagulation and sand filtration (SF) resulted in a total COD and BOD reduction of 93% and 96.5%, respectively. A significant reduction in both COD (90%) and BOD (92%) was also observed by sequencing batch reactor (SBR) process followed by coagulation and filtration. Untreated effluent was found to be toxic, whereas the treated effluents by either of the above two processes were found to be non-toxic when exposed to the fish for 72h. The resultant effluent from FBR-coagulation-sand filtration system meets National Environmental Quality Standards (NEQS) of Pakistan and can be discharged into the environment without any risks.

  2. Sequential anaerobic and aerobic treatment of pulp and paper mill effluent in pilot scale bioreactor.

    Science.gov (United States)

    Singh, Pratibha

    2007-01-01

    In the present study sequential anaerobic and aerobic treatment in two step bioreactor was performed for removal of colour in the pulp and paper mill effluent. In anaerobic treatment, colour 50%, lignin 62%, COD 29%, absordable organic halides (AOX) 25% and phenol 29% were reduced in eight days. The anaerobically treated effluent was separately applied in bioreactor in presence of fungal strain, Paecilomyces sp., and bacterial strain, Microbrevis luteum. Data of study indicated reduction in colour 80%, AOX 74%, lignin 81%, COD 93% and phenol 76 per cent by Paecilomyces sp. where as Microbrevis luteum showed removal in colour 59%, lignin 71%, COD 86%, AOX 84% and phenol 88% by day third when 7 days anaerobically treated effluent was further treated by aerobic microorganisms. Change in pH of the effluent and increase in biomass of microorganism's substantiated results of the study, which was concomitant to the treatment method.

  3. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds

    Science.gov (United States)

    Barber, L.B.; Lee, K.E.; Swackhamer, D.L.; Schoenfuss, H.L.

    2007-01-01

    On-site, continuous-flow experiments were conducted during August and October 2002 at a major metropolitan wastewater treatment plant (WWTP) to determine if effluent exposure induced endocrine disruption as manifested in the reproductive competence of sexually mature male fathead minnows (Pimephales promelas). The fathead minnows were exposed in parallel experiments to WWTP effluent and WWTP effluent treated with XAD8 macroreticular resin to remove the hydrophobic-neutral fraction which contained steroidal hormones, alkylphenolethoxylates (APEs), and other potential endocrine disrupting compounds (EDCs). The effluent composition varied on a temporal scale and the continuous-flow experiments captured the range of chemical variability that occurred during normal WWTP operations. Exposure to WWTP effluent resulted in vitellogenin induction in male fathead minnows, with greater response in October than in August. Concentrations of ammonia, APEs, 17??-estradiol, and other EDCs also were greater in October than in August, reflecting a change in effluent composition. In the October experiment, XAD8 treatment significantly reduced vitellogenin induction in the male fathead minnows relative to the untreated effluent, whereas in August, XAD8 treatment had little effect. During both experiments, XAD8 treatment removed greater than 90% of the APEs. Exposure of fish to a mixture of APEs similar in composition and concentration to the WWTP effluent, but prepared in groundwater and conducted at a separate facility, elicited vitellogenin induction during both experiments. There was a positive relation between vitellogenin induction and hepatosomatic index (HSI), but not gonadosomatic index (GSI), secondary sexual characteristics index (SSCI), or reproductive competency. In contrast to expectations, the GSI and SSCI increased in males exposed to WWTP effluent compared to groundwater controls. The GSI, SSCI, and reproductive competency were positively affected by XAD8 treatment of

  4. Passive secondary biological treatment systems reduce estrogens in dairy shed effluent.

    Science.gov (United States)

    Gadd, Jennifer B; Northcott, Grant L; Tremblay, Louis A

    2010-10-01

    Steroid estrogens are found at high concentrations in untreated dairy shed effluents. Reduction of estrogenic activity and steroid estrogen concentrations was assessed in two systems used to treat dairy shed effluents: the two-pond system and the advanced pond system. Both include anaerobic and aerobic treatment stages. Samples of effluent were collected from the systems and analyzed for free estrogens, conjugated estrogens and total estrogenic activity using E-Screen assay. Both systems showed increases of up to 8000% in aqueous free estrogens and estrogenic activity after anaerobic treatment, followed by decreases after aerobic treatment (36-83%). The complete systems decreased total steroid estrogen concentrations by 50-100% and estrogen activity by 62-100%, with little difference between systems. Removal rates were lower in winter for both systems. Final effluents from the advanced pond system contained total estrogens at <15-1400 ng/L and estrogenic activity at 3.2-43 ng/L. Final effluent from the two-pond system contained total estrogens at <15-300 ng/L and estrogenic activity at 3.3-25 ng/L. At times the final effluent EEQs exceeded guideline values for protection of freshwater fish and suggest further treatment may be required.

  5. Alkaline hydrothermal synthesis of homogeneous titania microspheres with urchin-like nanoarchitectures for dye effluent treatments

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin-Ming, E-mail: msewjm@zju.edu.cn [State Key Laboratory of Silicon Materials, Zhejiang University, ZheDa Road 38, Hangzhou 310027 (China); Song, Xiao-Mei [State Key Laboratory of Silicon Materials, Zhejiang University, ZheDa Road 38, Hangzhou 310027 (China); Yan, Mi, E-mail: mse_yanmi@zju.edu.cn [Department of Materials Science and Engineering, Zhejiang University, ZheDa Road 38, Hangzhou 310027 (China)

    2011-10-30

    Highlights: {yields} Alkali-hydrothermal treatments of a remnant of Ti-H{sub 2}O{sub 2} reaction achieve titania microspheres. {yields} Inhibited heterogeneous nucleation and low supersaturation contribute to the uniform size. {yields} Radially aligned anatase nanowires construct the microspheres. {yields} The microspheres possess a BET surface area of 45.4 m{sup 2}/g. {yields} The microspheres exhibit a high activity to assist photodegradation of rhodamine B in water. - Abstract: The heterogeneous photocatalysis technique to treat dye effluents demands micrometer-sized titania aggregates with one-dimensional nanostructures, which possess high photocatalytic activity and at the same time facilitate the catalyst-recovery from a slurry system. In this study, the solution remained after interactions between metallic Ti and hydrogen peroxide was subjected to an alkaline hydrothermal treatment. Microspheres with extremely uniform sizes of ca. 2 {mu}m in diameter were achieved after a subsequent proton exchange followed by calcination in air. The microspheres were urchin-like aggregates of radially assembled nanowires, which consisted of chain-like anatase single crystallites with an average diameter of 20-25 nm. The homogeneous microspheres calcinated at 600 {sup o}C possessed a surface area of 45.4 m{sup 2}/g and exhibited an excellent activity to assist photodegradation of rhodamine B in water, which is significantly higher than that of P25 titania nanoparticles. Because of the much easier recovery of the photocatalyst, the homogeneous microspheres synthesized herein may find practical applications in efficient photocatalytic treatments of dye effluents.

  6. Health effects in fish of long-term exposure to effluents from wastewater treatment works

    OpenAIRE

    Thorpe, KL; Gross-Sorokin, M; Johnson, I.; Brighty, G; Tyler, CR; Jobling, S

    2005-01-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured conce...

  7. Treatment of dyehouse effluents with a carbon based adsorbent using anodic oxidation regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.W.; Roberts, E.P.L.; Garforth, A.A. [Dept. of Chemical Engineering, UMIST, Manchester (United Kingdom); Dryfe, R.A.W. [Dept. of Chemistry, UMIST, Manchester (United Kingdom)

    2003-07-01

    Adsorption is an attractive route for the removal of coloured, toxic and non-biodegradable organics from wastewater as very low discharge standards can be achieved. This paper reports on the use of a novel carbon based material, Nyex100, as an adsorbent material for the treatment of dyehouse effluent. The adsorbent has low porosity and high electrical conductivity and these factors have allowed the adsorbent to be electrochemically regenerated. This work has demonstrated that the adsorbent can be cycled through the process of adsorption and regeneration a number of times with little drop in adsorptive capacity. However regeneration appears to modify the preference for organic species adsorption. Electrochemical regeneration can be rapidly achieved (15 - 20 minutes) using low current densities (<20 mA cm{sup -2}). However, the low adsorptive capacity of the adsorbent, because of its small surface area, mean that large quantities of adsorbent would need to be cycled within the process to treat the effluent volume generated in even small dyehouses. Thus it is believed that operating the process in this mode limits the practical application of this technology. (orig.)

  8. Dynamics of steroid estrogen daily concentrations in hospital effluent and connected waste water treatment plant.

    Science.gov (United States)

    Avberšek, Miha; Sömen, Jernej; Heath, Ester

    2011-08-01

    Hospital effluent and connected waste water treatment plant (WWTP) influent and effluent were sampled daily to determine the levels and inter-day variations of three naturally occurring steroid estrogens: estrone, 17β-estradiol, estriol, and synthetic 17α-ethinylestradiol. After solid phase extraction, interferences were removed with a silica gel clean-up step and the samples analysed using gas chromatography with mass selective detection (GC-MSD). The determined inter-day concentrations in hospital effluent were between 8.6 to 31.3 ng L(-1) for estrone, hospital effluent, WWTP influent and WWTP effluent, respectively. Interestingly, the estrone: 17β-estradiol:estriol ratio in the hospital effluent (1:0.1:9.4) is comparable to that found in the urine of pregnant women (1:0.3:20) indicating the most likely source of steroid estrogens. In WWTP influent the ratio was similar to that found in the non-pregnant population. Our result recognise estriol as being one of the most important steroid estrogens, accounting for up to 92% of the total EEQ present in hospital samples and 37% and 46% in WWTP influent and effluent samples, respectively. The study reveals how concentrations of steroid estrogens vary on a daily basis and concludes that careful sampling strategies must be adopted when making a risk assessment. In addition, the low potency steroid estrogens that contribute towards overall estrogenicity of the sample, e.g. estriol, should be incorporated into environmental monitoring programs.

  9. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    Science.gov (United States)

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated.

  10. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and...

  11. Desalination of mixed tannery effluent with membrane bioreactor and reverse osmosis treatment.

    Science.gov (United States)

    Scholz, W G; Rougé, P; Bódalo, A; Leitz, U

    2005-11-01

    A limiting factor for the reuse and recycling of treated tannery wastewater for irrigation and other uses is the high salt content, which persists even after conventional treatment. Reverse osmosis (RO) membrane treatment has been shown to significantly reduce the salt contents of tannery effluents. However, the high organic content of tannery effluent leads to rapid scaling and biofouling of RO membranes with a consequent reduction in flux rates and performance. Membrane bioreactors (MBR) have been shown to be highly effective in the removal of organic pollutants and suspended solids from tannery effluent. This research investigated the use of a combined MBR and RO treatment process to treat tannery effluents to an acceptable level for irrigation purposes. The MBR was operated at 17-20 h retention time, at a F/M ratio of 0.52 kg COD x kg SS(-1) x day(-1) and a volumetric loading rate of 3.28 kg COD x m(-3) x day(-1). This treatment reduced the COD, BOD, and ammonia concentrations of the effluent by 90-100%. The MBR was shown to be an excellent pretreatment prior to RO technology, due to the high removal efficiency of organic compounds and suspended solids, with average concentrations of 344 mg x L(-1) COD and 20 mg x L(-1) BOD achieved in the permeate. RO treatment reduced the salt content of the MBR permeate by up to 97.1%. The results of the research demonstrated that the MBR system developed was appropriate for the treatment of tannery effluents and, in combination with the RO treatment, reduced the salt content to acceptable levels for irrigation. The MBR pretreatment reduced bio-fouling and scaling of subsequent RO treatment and improved the overall performance of the RO unit. It is believed that this is the first investigation of a combined MBR and RO treatment for tannery effluents. This research provided data for an outline design of a full-scale MBR and RO plant with a treatment capacity of 5000 m3 per day for mixed tannery effluents.

  12. STUDY ON THE DECHLORINTION MECHANISMS DURING ANAEROBIC TREATMENT OF PULP BLEACHERY EFFLUENTS

    Institute of Scientific and Technical Information of China (English)

    Yuancai Chen; Xiuqiong Guan; Huaiyu Zhan; Zhonghao Chen; Shiyu Fu

    2004-01-01

    Anaerobic treatment could effectively degrade organic chlorine. Reductive dechlorination mechanisms were confirmed through GC-MS analysis during anaerobic treatment of pulp bleachery effluents, the influence of sulfide biologically produced and pH on the dechlorination revealed that nucleophilic substitution and alkaline hydrolysis were also nonbiological mechanisms.

  13. Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    Science.gov (United States)

    Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi; Lindh, Markus V.; Pinhassi, Jarone; Conley, Daniel J.; Kritzberg, Emma S.

    2016-08-01

    The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.

  14. Dragon Fruit Foliage Plant-Based Coagulant for Treatment of Concentrated Latex Effluent: Comparison of Treatment with Ferric Sulfate

    Directory of Open Access Journals (Sweden)

    Juferi Idris

    2013-01-01

    Full Text Available The effectiveness of dragon fruit foliage as a natural coagulant for treatment of concentrated latex effluent was investigated and compared with ferric sulfate, a chemical coagulant. Dragon fruit is a round and often red-colored fruit with scales-like texture and is native to south American countries which is also cultivated and heavily marketed in southeast Asian countries. Its foliage represents a part of its overall plant system. Latex effluent is one of the main byproduct from rubber processing factories in Malaysia. Three main parameters investigated were chemical oxygen demand (COD, suspended solids (SS, and turbidity of effluent. Coagulation experiments using jar test were performed with a flocculation system where the effects of latex effluent pH as well as coagulation dosage on coagulation effectiveness were examined. The highest recorded COD, SS, and turbidity removal percentages for foliage were observed for effluent pH 10 at 94.7, 88.9, and 99.7%, respectively. It is concluded that the foliage showed tremendous potential as a natural coagulant for water treatment purposes. The foliage could be used in the pretreatment stage of Malaysian latex effluent prior to secondary treatment.

  15. Fungal Biosorption, An Innovative Treatment for the Decolourisation and Detoxification of Textile Effluents

    Directory of Open Access Journals (Sweden)

    Antonella Pannocchia

    2010-08-01

    Full Text Available Textile effluents are among the most difficult-to-treat wastewaters, due to their considerable amount of recalcitrant and toxic substances. Fungal biosorption is viewed as a valuable additional treatment for removing pollutants from textile wastewaters. In this study the efficiency of Cunninghamella elegans biomass in terms of contaminants, COD and toxicity reduction was tested against textile effluents sampled in different points of wastewater treatment plants. The results showed that C. elegans is a promising candidate for the decolourisation and detoxification of textile wastewaters and its versatility makes it very competitive compared with conventional sorbents adopted in industrial processes.

  16. Treatment of textile effluent in a developed phytoreactor with immobilized bacterial augmentation and subsequent toxicity studies on Etheostoma olmstedi fish

    Energy Technology Data Exchange (ETDEWEB)

    Watharkar, Anuprita D. [Department of Biotechnology, Shivaji University, Kolhapur (India); Khandare, Rahul V. [School of Life Sciences, North Maharashtra University, Jalgaon (India); Waghmare, Pankajkumar R.; Jagadale, Ashwini D.; Govindwar, Sanjay P. [Department of Biochemistry, Shivaji University, Kolhapur (India); Jadhav, Jyoti P., E-mail: jpj_biochem@unishivaji.ac.in [Department of Biotechnology, Shivaji University, Kolhapur (India); Department of Biochemistry, Shivaji University, Kolhapur (India)

    2015-02-11

    Graphical abstract: - Highlights: • A phytoreactor was developed and augmented with immobilized bacteria. • This consortium showed enhanced treatment than the individual species. • Oxido-reductases from P. crinitum and B. pumilus could decolorize the effluent. • Characterization of effluent samples endorsed the efficacy of consortial strategy. • Toxicity studies revealed the less toxic nature of the consortium treated effluent. - Abstract: A static hydroponic bioreactor using nursery grown plants of Pogonatherum crinitum along with immobilized Bacillus pumilus cells was developed for the treatment of textile wastewater. Independent reactors with plants and immobilized cells were also kept for performance and efficacy evaluation. The effluent samples characterized before and after their treatment showed that the plant–bacterial consortium reactor was more efficient than those of individual plant and bacterium reactors. COD, BOD, ADMI, conductivity, turbidity, TDS and TSS of the textile effluent was found to be reduced by 78, 70, 93, 4, 90, 13 and 70% respectively within 12 d by the consortial set. HPTLC analysis revealed the transformation of the textile effluent to new products. The phytotoxicity study on Phaeseolus mungo and Sorghum vulgare seeds showed reduced toxicity of treated effluents. The animal toxicity study performed on Etheostoma olmstedi fishes showed the toxic nature of untreated effluent giving extreme stress to fishes leading to death. Histology of fish gills exposed to treated effluent was found to be less affected. The oxidative stress related enzymes like superoxide dismutase and catalase were found to show decreased activities and less lipid peroxidation in fishes exposed to treated effluent.

  17. Groundwater monitoring plan for the Hanford Site 200 Area Treated Effluent Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    DB Barnett

    2000-05-17

    Seven years of groundwater monitoring at the 200 Area Treated Effluent Disposal Facility (TEDF) have shown that the uppermost aquifer beneath the facility is unaffected by TEDF effluent. Effluent discharges have been well below permitted and expected volumes. Groundwater mounding from TEDF operations predicted by various models has not been observed, and waterlevels in TEDF wells have continued declining with the dissipation of the nearby B Pond System groundwater mound. Analytical results for constituents with enforcement limits indicate that concentrations of all these are below Practical Quantitation Limits, and some have produced no detections. Likewise, other constituents on the permit-required list have produced results that are mostly below sitewide background. Comprehensive geochemical analyses of groundwater from TEDF wells has shown that most constituents are below background levels as calculated by two Hanford Site-wide studies. Additionally, major ion proportions and anomalously low tritium activities suggest that groundwater in the aquifer beneath the TEDF has been sequestered from influences of adjoining portions of the aquifer and any discharge activities. This inference is supported by recent hydrogeologic investigations which indicate an extremely slow rate of groundwater movement beneath the TEDF. Detailed evaluation of TEDF-area hydrogeology and groundwater geochemistry indicate that additional points of compliance for groundwater monitoring would be ineffective for this facility, and would produce ambiguous results. Therefore, the current groundwater monitoring well network is retained for continued monitoring. A quarterly frequency of sampling and analysis is continued for all three TEDF wells. The constituents list is refined to include only those parameters key to discerning subtle changes in groundwater chemistry, those useful in detecting general groundwater quality changes from upgradient sources, or those retained for comparison with end

  18. Treatment of a textile effluent from dyeing with cochineal extracts using Trametes versicolor fungus.

    Science.gov (United States)

    Arroyo-Figueroa, Gabriela; Ruiz-Aguilar, Graciela M L; López-Martínez, Leticia; González-Sánchez, Guillermo; Cuevas-Rodríguez, Germán; Rodríguez-Vázquez, Refugio

    2011-05-05

    Trametes versicolor (Tv) fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1) of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3). High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04) for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively) was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU) compared with the final treatment (47.73 TU) in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.

  19. Treatment of a Textile Effluent from Dyeing with Cochineal Extracts Using Trametes versicolor Fungus

    Directory of Open Access Journals (Sweden)

    Gabriela Arroyo-Figueroa

    2011-01-01

    Full Text Available Trametes versicolor (Tv fungus can degrade synthetic dyes that contain azo groups, anthraquinone, triphenylmethane polymers, and heterocyclic groups. However, no references have been found related to the degradation of natural dyes, such as the carminic acid that is contained in the cochineal extract. Experiments to determine the decolorization of the effluent used in the cotton dyeing process with cochineal extract by means of Tv fungus were done. Treatments to determine decolorization in the presence or absence of Kirk's medium, glucose, and fungus, with an addition of 50% (v v-1 of nonsterilized effluent were performed. Physicochemical characterization was performed at the start and end of the treatment. Degradation kinetics were determined. A direct relationship was found between the dry weight of fungi, pH, and the decolorization system, with higher decolorization at lower pH levels (pH ~4.3. High decolorization (81% ± 0.09; 88% ± 0.17; and 99% ± 0.04 for three of the eight treatments (Kirk's medium without glucose, Kirk's medium with glucose, and without medium with glucose, respectively was found. Toxicity tests determined an increase in the initial effluent toxicity (7.33 TU compared with the final treatment (47.73 TU in a period of 11 days. For this system, a degradation sequence of the carminic acid structure present in the effluent by the Tv fungus is suggested, in which it is seen that metabolites still containing aromatic structures are generated.

  20. Characterisation of aerobic bio treatment of meat plant effluent.

    Science.gov (United States)

    Thayalakumaran, N; Bhamidimarri, R; Bickers, P O

    2003-01-01

    Primary treated meat processing plant effluent was characterised for the calibration of the ASM 2 model. The total COD of the wastewater was 500-2,000 mg L(-1). The wastewater contained 15-18% of RBCOD. RBCOD of the meat processing wastewater was from short chain fatty acids (SCFA). Acetic and iso-valeric acids contributed 50% of the total SCFA COD. The inert soluble and particulate COD fractions were each 4%. The COD exerted by carbohydrate was 5% of the total COD. Fat and protein contributed 51% and 44% of the total COD of the wastewater respectively. The average concentrations of ammonia, total phosphorus, total suspended solids and alkalinity were 75 mg L(-1), 34 mg L(-1), 450 mg L(-1) and 275 mg L(-1) CaCO3 respectively. Maximum specific growth rates of heterotrophs and autotrophs were between 1.2-2.5 day(-1) and 0.65-0.8 day(-1). The heterotrophs yield coefficient was 0.63 on a COD basis.

  1. Identification of organic compounds and ecotoxicological assessment of sewage treatment plants (STP) effluents.

    Science.gov (United States)

    Aguayo, Sonia; Muñoz, M Jesús; de la Torre, Ana; Roset, Jaime; de la Peña, Eduardo; Carballo, Matilde

    2004-07-26

    An integrated approach combining chemistry and biological methods was conducted to assess the toxicity of seven sewage treatment plant effluents. Solid phase concentration procedures were applied to facilitate the study of organic micro pollutants. A chemical analysis was performed by GC/MS. Organic fraction toxicity was determined by using bioassays such as Daphnia magna and Chlorella vulgaris tests and sub-lethal effects were also evaluated by using Salmonella typhimurium Test (mutagenicity), recombinant yeast screen (estrogenicity), and Oryzias latipes embryo-larval test. More than 49 compounds were detected in the organic fraction due to the various inputs of each effluents. The most frequently detected compounds in the effluents were bisphenol A (BPA), octylphenol (OP), 1,2-benzenedicarboxylic acid, bis(2-ethylhexyl) ester (DEHP) and 1,2-benzenedicarboxylic acid, bis(methylpropyl) ester (DBP). Biological assays showed toxicity effects on D. magna tests in all samples, whereas toxicity on C. vulgaris or S. typhimurium tests were not observed. Estrogenicity and teratogenicity were observed in several samples. The cause-effect relationship could not be established given the high chemical complexity of the effluents and the lack of information available on 70% of the detected compounds subsequent to reviewing various data bases. Nevertheless, due to the high chemical variability revealed by STP effluents, bioassay sets may provide a very useful amount of information for detecting potential toxicity risks.

  2. Ecotoxicological and chemical characterization of selected treatment process effluents of municipal sewage treatment plant.

    Science.gov (United States)

    Wang, Chunxia; Wang, Yi; Kiefer, F; Yediler, A; Wang, Zijian; Kettrup, A

    2003-10-01

    The triolein-containing semipermeable membrane devices (SPMDs) were deployed for 4 weeks in a sewage treatment plant in Beijing, China, to sample and concentrate priority hydrophobic organic pollutants in a sewage treatment process. The chemical analyses and ecotoxicities of the residuals of SPMDs dialysate were examined. The data from the chemical analyses by gas chromatography-mass spectrometry selected ion monitoring mode indicated the lower removal for polychlorinated biphenyls (PCB) congeners and polycyclic aromatic hydrocarbons (PAHs) coincided with the persistence of them in the environment. The acute toxicity examined by bioluminescence test with Vibrio fischeri revealed approximately only 20% decrease in the overall toxicity of the influent after the activate sludge treatment process. The ethoxy resorufin-O-deethylase (EROD) induction with a micro-EROD assay in vitro using H4-IIE rat hepatoma cell cultures demonstrated the presence of persistent organics in influent and sequency effluents. Results obtained suggested that integration of the SPMD technique and chemical analyses and bioassay might be a valuable approach for the risk assessment of hydrophobic organic pollutants in water ecosystem. It revealed the necessity for organic pollutants monitoring and ecotoxicities examining of sewage treatment plants.

  3. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.

    Science.gov (United States)

    Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf

    2015-09-15

    Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.

  4. A comparative study on the membrane based palm oil mill effluent (POME) treatment plant.

    Science.gov (United States)

    Ahmad, A L; Chong, M F; Bhatia, S

    2009-11-15

    The discharge of palm oil mill effluent (POME) causes serious pollution problems and the membrane based POME treatment is suggested as a solution. Three different designs, namely Design A, B and C distinguished by their different types and orientations of membrane system are proposed. The results at optimum condition proved that the quality of the recovered water for all the designs met the effluent discharge standards imposed by the Department of Environment (DOE). The economic analysis at the optimum condition shows that the total treatment cost for Design A was the highest (RM 115.11/m(3)), followed by Design B (RM 23.64/m(3)) and Design C (RM 7.03/m(3)). In this study, the membrane system operated at high operating pressure with low membrane unit cost is preferable. Design C is chosen as the optimal design for the membrane based POME treatment system based on the lowest total treatment cost.

  5. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent.

    Science.gov (United States)

    Mason, Sherri A; Garneau, Danielle; Sutton, Rebecca; Chu, Yvonne; Ehmann, Karyn; Barnes, Jason; Fink, Parker; Papazissimos, Daniel; Rogers, Darrin L

    2016-11-01

    Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge.

  6. Closure plan for CAU No. 93: Area 6 steam cleaning effluent ponds, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The steam cleaning effluent ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site (NTS). Nevada Operations Office operates the NTS and has entered into a trilateral agreement with the State of Nevada and the Defense Special Weapons Agency (DSWA). The trilateral agreement provides a framework for identifying, characterizing, remediating, and closing environmental sites on the NTS and associated bombing ranges. The SCEP waste unit consists of: two steam cleaning effluent ponds; layout pad and associated grease trap; Building 6-623 steam cleaning pad; test pad; Building 6-623 grease trap; Building 6-800 steam cleaning pad; Building 6-800 separator; Building 6-621 sump; and the concrete asbestos piping connecting these components to both SCEPs. Clean closure is the recommended closure strategy for the majority of the components within this CAU. Four components of the unit (Building 6-621 Sump, Test Pad Grease Trap, Building 6-623 Steam Cleaning Pad, and North SCEP pipeline) are recommended to be closed in place. This closure plan provides the strategy and backup information necessary to support the clean closure of each of the individual components within CAU 93. Analytical data generated during the characterization field work and earlier sampling events indicates the majority of CAU 93 soil and infrastructure is non-hazardous (i.e., impacted primarily with petroleum hydrocarbons).

  7. Biological hazard evaluation of a pharmaceutical effluent before and after a photo-Fenton treatment.

    Science.gov (United States)

    Novoa-Luna, Karen Adriana; Mendoza-Zepeda, Arisbeht; Natividad, Reyna; Romero, Rubi; Galar-Martínez, Marcela; Gómez-Oliván, Leobardo Manuel

    2016-11-01

    The aim of this study was to evaluate the biological hazard of a pharmaceutical effluent before and after treatment. For the former, the determined 96h-LC50 value was 1.2%. The photo-Fenton treatment catalyzed with an iron-pillared clay reduced this parameter by 341.7%. Statistically significant increases with respect to the control group (Pphoto-Fenton process decreases the presence of PCT, oxidative stress, genotoxic damage and LC50 in Hyalella azteca.

  8. Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France).

    Science.gov (United States)

    Rabiet, M; Brissaud, F; Seidel, J L; Pistre, S; Elbaz-Poulichet, F

    2009-05-01

    Anthropogenic gadolinium (Gd), used as a contrast agent in magnetic resonance imaging, may enter rivers and groundwaters with the effluents of wastewater treatment plant (WWTP). Such contaminations, which are mainly found in densely populated areas with highly developed medical systems, induce positive gadolinium anomalies in waters. This study reports on the occurrence of positive Gd anomaly in wastewaters, surface and groundwaters in a slightly populated Mediterranean watershed. Water samples have been collected along the Hérault River, in its tributaries, in wells and springs supplying drinking water and in WWTP effluents during two sampling campaigns in February and July 2003. Systematically pronounced positive gadolinium anomalies (Gd/Gd( *)) were observed in WWTP effluents with values reaching 306. These observations have shown that Gd/Gd( *) can also be found in wastewater drained from rural communities, not equipped with MRI facilities. Positive gadolinium anomalies were detected in two tributaries of the Hérault River and in some wells supplying drinking water, corresponding to an excess of anthropogenic Gd in water up to 15.4pM. A monthly monitoring on one well has confirmed the persistence of gadolinium anomalies all along the year, suggesting a continual wastewater contamination on this site. A spatial monitoring on one tributary showed that wastewater contribution modifies completely the normalized REE pattern of river water, resulting in a decrease of REE amount correlated to the Gd anomaly appearance.

  9. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    Science.gov (United States)

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  10. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  11. Treatment and utilization of septic tank effluent using vertical-flow constructed wetlands and vegetable hydroponics.

    Science.gov (United States)

    Cui, Li-Hua; Luo, Shi-Ming; Zhu, Xi-Zhen; Liu, Ying-Hu

    2003-01-01

    Vertical flow constructed wetlands is a typical ecological sanitation system for sewage treatment. The removal rates for COD, BOD5, SS, TN, and TP were 60%, 80%, 74%, 49% and 79%, respectively, when septic tank effluent was treated by vertical flow filter. So the concentration of COD and BOD5 in the treated effluent could meet the quality standard for irrigation water. After that the treated effluent was used for hydroponic cultivation of water spinach and romaine lettuce, the removal efficiencies of the whole system for COD, BOD5, SS, TN and TP were 71.4%, 97.5%, 96.9%, 86.3%, and 87.4%, respectively. And it could meet the integrated wastewater discharge standard for secondary biological treatment plant. It was found that using treated effluent for hydroponic cultivation of vegetables could reduce the nitrate content in vegetables. The removal rates for total bacteria and coliform index by using vertical flow bed system with cinder substrate were 80%-90% and 85%-96%, respectively.

  12. Submerged aerated bio-filter (SAB)--a post treatment option for UASB effluent treating sewage.

    Science.gov (United States)

    Sudhir, Padigala; Gaur, Rubia Zahid; Khan, Abid Ali; Kazmi, A A; Mehrotra, Indu

    2013-07-01

    This paper presents exploratory results of the performance of submerged aerated bio-filter (SAB-1.5 L) for the post treatment of UASB effluent treating sewage in order to bring the effluent quality in compliance with discharge standards. The study was carried out in three stages with varied dissolved oxygen (DO) levels of 0 to 2.0, 2.0 to 4.0, 4.0 to 6.0 and > 6.0 mg/L. The hydraulic retention time (HRT) and hydraulic loading rate (HLR) were maintained 0.67 h & 0.1 m3/ m2 x h respectively in all stage of study. The performance in terms of BOD removal efficiency was increased with increase in DO levels. Results revealed that the average BOD and SS removal efficiencies in phases 3 and 4 were 51.3 and 59.5% and 58.8 and 67.5% respectively. Significant ammonical nitrogen (NH4-N) removal of 60% was observed in phase 4. The BOD and SS in phases 3 and 4 were reduced to well below the effluent disposal standards. The SAB at DO ≥ 4 mg/L can be considered a viable alternative for the post treatment of effluent from UASB treating domestic wastewater.

  13. Evaluation of wastewater effluents for soil aquifer treatment in South Korea.

    Science.gov (United States)

    Cha, W; Choi, H; Kim, J; Kim, I S

    2004-01-01

    Soil batch and column experiments were performed to characterize the wastewater effluents from seven different wastewater treatment plants in the Jonnam province, South Korea, with the purpose of evaluating the effluents for possible application of a soil aquifer treatment (SAT) in Korea. Batch experiments were conducted to measure the biodegradable dissolved organic carbon (BDOC) while 1 m soil columns, for simulating SAT, were employed to further analyze dissolved organic carbon (DOC) removal. The soils were collected from a river bottom in Jonnam. The BDOC fractions and the residual DOC concentrations for the effluents ranged from 19.3 to 59.9% and from 1.0 to 7.5 mg/L, respectively, depending on the reaction time. Applying the tentative criteria based on the data obtained for the BDOC and residual DOC, three effluents, from Gwangju, Hwasoon, and Jangsung, were found to be the most suitable for SAT applications. It was also concluded that the site characteristics should be also considered with regard to the retention time when evaluating the feasibility of SAT application in a certain region.

  14. Plant and soil modifications by continuous surface effluent application

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Levien, R. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. of Solos; Mohrdieck, F.G.; Rodrigues, N.R. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao; Flores, A.I.P.

    1993-12-31

    In order to study the effects on soil and plants of the liquid effluent generated by a the Integrated Liquid Effluent Treatment System of a large Brazilian petrochemical complex, a field study was conducted in four areas which received the effluent and compared to control sites. This work presents some results of this study. 12 refs., 1 fig., 3 tabs.

  15. Uptake of three antibiotics and an anti-epileptic drug by wheat plants spray irrigated with wastewater treatment plant effluent

    Science.gov (United States)

    With rising demands on water supplies necessitating water reuse, wastewater treatment plant (WWTP) effluent is often used to irrigate agricultural lands. Emerging contaminants, like pharmaceuticals and personal care products (PPCPs), are frequently found in effluent due to limited removal during WWT...

  16. Biological Treatment of Textile Effluent Using Candida zeylanoides and Saccharomyces cerevisiae Isolated from Soil

    Directory of Open Access Journals (Sweden)

    O. P. Abioye

    2014-01-01

    Full Text Available This study evaluates the efficacy of yeasts isolated from soil in the treatment of textile wastewater. Two yeast species were isolated from soil; they were identified as Candida zeylanoides and Saccharomyces cerevisiae. The yeasts were inoculated into flask containing effluent and incubated for 15 days. Saccharomyces cerevisiae showed the most significant treatment capacity with a 66% reduction in BOD; this was followed closely by Candida zeylanoides with 57.3% reduction in BOD and a consortium of the two species showed the least remediation potential of 36.9%. The use of Saccharomyces cerevisiae and Candida zeylanoides in treatment of textile wastewater will help to limit the adverse environmental and health implications associated with disposal of untreated effluent into water bodies.

  17. Westinghouse Hanford Company effluent discharges and solid waste management report for calendar year 1989: 200/600 Areas

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.J.; P' Pool, R.K.; Thomas, S.P.

    1990-05-01

    This report presents calendar year 1989 radiological and nonradiological effluent discharge data from facilities in the 200 Areas and the 600 Area of the Hanford Site. Both summary and detailed effluent data are presented. In addition, radioactive and nonradioactive solid waste storage and disposal data for calendar year 1989 are furnished. Where appropriate, comparisons to previous years are made. The intent of the report is to demonstrate compliance of Westinghouse Hanford Company-operated facilities with administrative control values for radioactive constituents and applicable guidelines and standards (including Federal permit limits) for nonradioactive constituents. 11 refs., 20 tabs.

  18. Global hepatic gene expression in rainbow trout exposed to sewage effluents: A comparison of different sewage treatment technologies

    Energy Technology Data Exchange (ETDEWEB)

    Cuklev, Filip, E-mail: filip.cuklev@neuro.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Gunnarsson, Lina, E-mail: lina.gunnarsson@fysiologi.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Cvijovic, Marija, E-mail: marija.cvijovic@chalmers.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Goeteborg (Sweden); Kristiansson, Erik, E-mail: erik.kristiansson@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Goeteborg (Sweden); Rutgersson, Carolin [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden); Bjoerlenius, Berndt, E-mail: berndtb@kth.se [Stockholm Water Company, Vaermdoevaegen 23, SE-131 55 Stockholm (Sweden); Larsson, D.G. Joakim, E-mail: joakim.larsson@fysiologi.gu.se [Institute of Neuroscience and Physiology, Department of Physiology, The Sahlgrenska Academy at the University of Gothenburg, Box 434, SE-405 30 Goeteborg (Sweden)

    2012-06-15

    Effluents from sewage treatment plants contain a mixture of micropollutants with the potential of harming aquatic organisms. Thus, addition of advanced treatment techniques to complement existing conventional methods has been proposed. Some of the advanced techniques could, however, potentially produce additional compounds affecting exposed organisms by unknown modes of action. In the present study the aim was to improve our understanding of how exposure to different sewage effluents affects fish. This was achieved by explorative microarray and quantitative PCR analyses of hepatic gene expression, as well as relative organ sizes of rainbow trout exposed to different sewage effluents (conventionally treated, granular activated carbon, ozonation (5 or 15 mg/L), 5 mg/L ozone plus a moving bed biofilm reactor, or UV-light treatment in combination with hydrogen peroxide). Exposure to the conventionally treated effluent caused a significant increase in liver and heart somatic indexes, an effect removed by all other treatments. Genes connected to xenobiotic metabolism, including cytochrome p450 1A, were differentially expressed in the fish exposed to the conventionally treated effluents, though only effluent treatment with granular activated carbon or ozone at 15 mg/L completely removed this response. The mRNA expression of heat shock protein 70 kDa was induced in all three groups exposed to ozone-treated effluents, suggesting some form of added stress in these fish. The induction of estrogen-responsive genes in the fish exposed to the conventionally treated effluent was effectively reduced by all investigated advanced treatment technologies, although the moving bed biofilm reactor was least efficient. Taken together, granular activated carbon showed the highest potential of reducing responses in fish induced by exposure to sewage effluents. - Highlights: Black-Right-Pointing-Pointer Livers of trout exposed to different sewage effluents were analysed by microarray. Black

  19. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents.

    Science.gov (United States)

    Prieto-Rodríguez, L; Oller, I; Klamerth, N; Agüera, A; Rodríguez, E M; Malato, S

    2013-03-15

    Conventional municipal wastewater treatment plants are not able to entirely degrade some organic pollutants that end up in the environment. Within this group of contaminants, Emerging Contaminants are mostly unregulated compounds that may be candidates for future regulation. In this work, different advanced technologies: solar heterogeneous photocatalysis with TiO(2), solar photo-Fenton and ozonation, are studied as tertiary treatments for the remediation of micropollutants present in real municipal wastewater treatment plants effluents at pilot plant scale. Contaminants elimination was followed by Liquid Chromatography/Quadrupole ion trap Mass Spectrometry analysis after a pre-concentration 100:1 by automatic solid phase extraction. 66 target micropollutants were identified and quantified. 16 of those contaminants at initial concentrations over 1000 ng L(-1), made up over 88% of the initial total effluent pollutant load. The order of micropollutants elimination efficiency under the experimental conditions evaluated was solar photo-Fenton > ozonation > solar heterogeneous photocatalysis with TiO(2). Toxicity analyses by Vibrio fischeri and respirometric tests showed no significant changes in the effluent toxicity after the three tertiary treatments application. Solar photo-Fenton and ozonation treatments were also compared from an economical point of view.

  20. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    Science.gov (United States)

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  1. [Advanced Treatment of Effluent from Industrial Park Wastewater Treatment Plant by Ferrous Ion Activated Sodium Persulfate].

    Science.gov (United States)

    Zhu, Song-mei; Zhou, Zhen; Gu, Ling-yun; Jiang, Hai-tao; Ren, Jia-min; Wang, Luo-chun

    2016-01-15

    Fe(II) activated sodium persulfate (PS) technology was used for advanced treatment of effluent from industrial park wastewater treatment plant. Separate and combined effects of PS/COD, Fe(II)/PS and pH on COD and TOC removal were analyzed by the response surface methodology. Variations of organic substances before and after Fe(II)-PS oxidation were characterized by UV-Vis spectrometry, gel chromatography and three-dimensional fluorescence. PS/COD and Fe(II)/PS had significant effect on COD removal, while all the three factors had significant effect on TOC removal. The combined effect of PS/COD and pH had significant effect on COD removal. COD and TOC removal efficiencies reached 50.7% and 60.6% under optimized conditions of PS/COD 3.47, Fe(II)/PS 3.32 and pH 6.5. Fe(II)-PS oxidation converted macromolecular organic substances to small ones, and reduced contents of protein-, humic- and fulvic-like substances.

  2. Identification and treatment of lithium as the primary toxicant in a groundwater treatment facility effluent

    Energy Technology Data Exchange (ETDEWEB)

    Kszos, L.A. [Oak Ridge National Lab., TN (United States); Crow, K.R. [Oak Ridge Y-12 Plant, TN (United States)

    1996-10-01

    {sup 6}Li is used in manufacturing nuclear weapons, shielding, and reactor control rods. Li compounds have been used at DOE facilities and Li-contaminated waste has historically been land disposed. Seep water from burial grounds near Y-12 contain small amounts of chlorinated hydrocarbons, traces of PCBs, and 10-19 mg/L Li. Seep treatment consists of oil-water separation, filtration, air stripping, and carbon adsorption. Routine biomonitoring tests using fathead minnows and {ital Ceriodaphnia}{ital dubia} are conducted. Evaluation of suspected contaminants revealed that toxicity was most likely due to Li. Laboratory tests showed that 1 mg Li/L reduced the survival of both species; 0.5 mg Li/L reduced {ital Ceriodaphnia} reproduction and minnow growth. However, the toxicity was greatly reduced in presence of sodium (up to 4 mg Li/L, Na can fully negate the toxic effect of Li). Because of the low Na level discharged from the treatment facility, Li removal from the ground water was desired. SuperLig{reg_sign} columns were used (Li-selective organic macrocycle bonded to silica gel). Bench-scale tests showed that the material was very effective for removing Li from the effluent, reducing the toxicity.

  3. Waste characterization for the F/H Effluent Treatment Facility in support of waste certification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.F.

    1994-10-17

    The Waste Acceptance Criteria (WAC) procedures define the rules concerning packages of solid Low Level Waste (LLW) that are sent to the E-area vaults (EAV). The WACs tabulate the quantities of 22 radionuclides that require manifesting in waste packages destined for each type of vault. These quantities are called the Package Administrative Criteria (PAC). If a waste package exceeds the PAC for any radionuclide in a given vault, then specific permission is needed to send to that vault. To avoid reporting insignificant quantities of the 22 listed radionuclides, the WAC defines the Minimum Reportable Quantity (MRQ) of each radionuclide as 1/1000th of the PAC. If a waste package contains less than the MRQ of a particular radionuclide, then the package`s manifest will list that radionuclide as zero. At least one radionuclide has to be reported, even if all are below the MRQ. The WAC requires that the waste no be ``hazardous`` as defined by SCDHEC/EPA regulations and also lists several miscellaneous physical/chemical requirements for the packages. This report evaluates the solid wastes generated within the F/H Effluent Treatment Facility (ETF) for potential impacts on waste certification.

  4. Distinguishing phosphate from fertilizers and wastewater treatment plant effluents in Western Canada using oxygen isotope measurements

    Science.gov (United States)

    Fau, Veronique; Nightingale, Michael; Tamburini, Frederica; Mayer, Bernhard

    2014-05-01

    The successful application of oxygen isotope ratios as a tracer for phosphate in aquatic ecosystems requires that different sources of phosphate are isotopically distinct. The objective of this study was to determine whether the oxygen isotope ratios of phosphate from fertilizers and effluents from wastewater treatment plants in Western Canada are isotopically distinct. Therefore, we carried out oxygen isotope analyses on phosphate in effluent from five different wastewater treatment plants (WWTP) in the Bow River watershed of Alberta, Canada. Samples were collected directly from the final effluent (post-UV) in Banff and Canmore upstream of Calgary, and from effluents of Calgary's WWTPs at Bonnybrook, Fish Creek and Pine Creek. We also carried out oxygen isotope analyses on a variety of phosphate-containing fertilizers that are widely used in Western Canada. Historically, most of the phosphate contained in manufactured fertilizers sold in Alberta came from two distinct deposits: 1) a weathered Pliocene igneous carbonatite located in eastern Canada, and 2) the Permian Phosphoria Formation in the western USA. Phosphate (PO43-) contained in the water or the fertilizer was concentrated and quantitatively converted to pure silver phosphate (Ag3PO4). The silver phosphate was then reduced with carbon in an oxygen free environment using a TC/EA pyrolysis reactor linked to a mass spectrometer where 18O/16O ratios of CO were measured in continuous flow mode. Preparation of samples for δ18OPO4 analyses was conducted using the Magnesium Induced Coprecipitation (MAGIC) method. Expected oxygen isotope ratios for phosphate in equilibrium with water (δ18Oeq) were calculated using the Longinelli and Nuti equation: T (° C) = 111.4 - 4.3 (δ18Oeq - δ18Owater). Measured δ18O values of phosphate for fertilizer samples varied from 8 to 25 oÈ®n average, fertilizer samples of sedimentary origin had higher δ18O values (15.8) than those of igneous origin (11.5). Phosphate isotopic

  5. Design improvement and performance evaluation of solar photocatalytic reactor for industrial effluent treatment.

    Science.gov (United States)

    Nair, Ranjith G; Bharadwaj, P J; Samdarshi, S K

    2016-12-01

    This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent.

  6. High efficient treatment of citric acid effluent by Chlorella vulgaris and potential biomass utilization.

    Science.gov (United States)

    Li, Changling; Yang, Hailin; Xia, Xiaole; Li, Yuji; Chen, Luping; Zhang, Meng; Zhang, Ling; Wang, Wu

    2013-01-01

    The efficiency of treating citric acid effluent by green algae Chlorella was investigated. With the highest growth rate, Chlorella vulgaris C9-JN2010 that could efficiently remove nutrients in the citric acid effluent was selected for scale-up batch experiments under the optimal conditions, where its maximum biomass was 1.04 g l(-1) and removal efficiencies of nutrients (nitrogen, phosphorus, total organic carbon, chemical oxygen demand and biochemical oxygen demand) were above 90.0%. Algal lipid and protein contents were around 340.0 and 500.0 mg · g(-1) of the harvested biomass, respectively. Proportions of polyunsaturated fatty acids in the lipids and eight kinds of essential amino acids in algal protein were 74.0% and 40.0%, respectively. Three major fatty acids were hexadecanoic acid, eicosapentaenoic acid and docosadienoic acid. This specific effluent treatment process could be proposed as a dual-beneficial approach, which converts nutrients in the high strength citric acid effluent into profitable byproducts and reduces the contaminations.

  7. Factors affecting treatment of palm oil mill effluent using enzyme from Aspergillus niger ATCC 6275

    Directory of Open Access Journals (Sweden)

    Chantaphaso, S.

    2001-11-01

    Full Text Available Powdered enzyme was produced by freeze-drying the enzyme solution extracted from 3 days culture of Aspergillus niger ATCC 6275 on palm cake with the addition of 0.2% glucose and 2% urea. The product yield was 38% by weight. The half-life of the enzyme was 9 months keeping at 4ºC. The enzyme was tested with decanter effluent with different characteristics from two palm oil mills. The decanter effluent possessing high suspended solid (SS and low oil (9.5 g/l content was selected for studying the factors affecting the separation of SS and oil as bulking solid. Results indicated that the effluent must contain oil not less than 15 g/l so that the bulking solid would occur from the reaction of the enzyme (with xylanase activity of 200 U/ ml after incubation at 40ºC for 6 h. Minimum concentrations of the enzyme from A. niger ATCC 6275 and commercial xylanase (Meicellase were 200 and 600 U/ml, respectively. The optimum pH was 4.5. Treatment of palm oil mill effluent by the enzyme from A. niger ATCC 6275 for 3 h under the optimum conditions resulted in 78% separation of suspended solids with oil & grease removal of 95% and COD reduction of 35%.

  8. Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance.

    Science.gov (United States)

    Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie

    2015-06-01

    The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents.

  9. Enumeration and characterization of antimicrobial-resistant Escherichia coli bacteria in effluent from municipal, hospital, and secondary treatment facility sources.

    Science.gov (United States)

    Galvin, Sandra; Boyle, Fiona; Hickey, Paul; Vellinga, Akke; Morris, Dearbháile; Cormican, Martin

    2010-07-01

    We describe a modification of the most probable number (MPN) method for rapid enumeration of antimicrobial-resistant Escherichia coli bacteria in aqueous environmental samples. E. coli (total and antimicrobial-resistant) bacteria were enumerated in effluent samples from a hospital (n = 17) and municipal sewers upstream (n = 5) and downstream (n = 5) from the hospital, effluent samples from throughout the treatment process (n = 4), and treated effluent samples (n = 13). Effluent downstream from the hospital contained a higher proportion of antimicrobial-resistant E. coli than that upstream from the hospital. Wastewater treatment reduced the numbers of E. coli bacteria (total and antimicrobial resistant); however, antimicrobial-resistant E. coli was not eliminated, and E. coli resistant to cefotaxime (including extended-spectrum beta-lactamase [ESBL] producers), ciprofloxacin, and cefoxitin was present in treated effluent samples.

  10. [Treatment of coloured industrial effluents with Pleurotus spp].

    Science.gov (United States)

    Rodríguez, Suyén; Fernández, Maikel; Bermúdez, Rosa C; Morris, Humberto

    2003-12-01

    The decolouration of fermentation residues (vinasse) and liquid extract of coffee pulp by the mushroom Pleurotus ostreatus was studied in addition to laccase activity. The fungus was inhibited in both residues when they remained undiluted. In submerged cultivation on wastewaters a good production of biomass (14.8 g/l for vinasse and 5.4 g/l for extract of coffee pulp) and also laccase activity (14.1 U/ml for vinasse and 3.0 U/ml for extract of coffee pulp) up to the 10 days of fermentation was observed, being significantly greater in the culture with vinasse. It was shown that treatment with this mushroom reduces both the chemical oxygen demand and the colour, contributing to their biological treatment.

  11. Performance evaluation of Effluent Treatment Plant of Dairy Industry

    OpenAIRE

    Pratiksinh Chavda; Apurva Rana

    2014-01-01

    Dairy industry is among the most polluting of the food industries in regard to its large water consumption. Dairy is one of the major industries causing water pollution. Considering the increased milk demand, the dairy industry in India is expected to grow rapidly and have the waste generation and related environmental problems are also assumed increased importance. Poorly treated wastewater with high level of pollutants caused by poor design, operation or treatment systems cr...

  12. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Mehrdad Ebrahimi

    2015-12-01

    Full Text Available Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  13. Treatment of effluent of psiculture with aquatic eichornia crassipes floating

    Directory of Open Access Journals (Sweden)

    Gilberto José Hussar

    Full Text Available Having in view to evaluate the performance of watery wine lagoons, on water treatment of draining off on pisciculture tank, was installed an experiment on three boxes of cement-asbestos, being one utilized as equalization tank and the others two cultivated with floating aquatic macrophytas known as watery wine (Eichornia crassipes. The removals of Chemical Demand of Oxygen (CDO, Total Nitrogen (N, Nitrate (NO3, Ammoniac Nitrogen (NH3, Total Phosphorus (P, Muddy (M, Color and pH had been surveyed in the period of evaluation. The average removal presented the following values: 77.7% to CDO; 76.9% to N; 79.5% to NO3; 82.9% to NH3; 95.4% to P and 92.1% to M. The gotten results could conclude that the performance of the system had a satisfatory reduction of the following parameters, when compared to other works, as: CDO, NO3, NH3 and M. To N and P the removal by the system was superior in relation to other researches related to waste treatment of domestic drain, pig culture and pisciculture. About the pH in the treatment system, the same behaved on a way very favorable in relation with the nitrification and denitrification.

  14. Valorisation of Moringaoleifera waste: treatment and reuse of textile dye effluents

    OpenAIRE

    Vilaseca Vallvé, M. Mercedes; López Grimau, Víctor; Gutiérrez Bouzán, María Carmen

    2015-01-01

    This work is focused on the valorisation of an agricultural waste as natural coagulant to treat wastewater from the textile industry. In this paper, the waste of Moringaoleifera oil extraction is used as coagulant to remove five reactive dyes from synthetic textile effluents. Moringaoleifera shows better results for dye removal than conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high...

  15. A review on economical treatment of wastewaters and effluents by adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Mall, I.D.; Upadhyay, S.N.; Sharma, Y.C. [University of Roorkee, Roorkee (India). Dept. of Chemical Engineering

    1996-12-31

    The review gives an overview of the application of non-conventional materials for treatment of wastewater and industrial effluents. Based on the findings, it is concluded that the easily available and economical materials can serve as alternates to the more costly activated carbon/activated charcoal, including sphagnum peat, sawdust, volcanic ashes, clays, coal fly ash, coal and other materials. 157 refs., 2 figs., 3 tabs.

  16. Large area radiation source for water and wastewater treatment

    Science.gov (United States)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  17. Aerobic effluent treatment with lower electric power consumption. Survey of results from questionnaire sent out to Swedish pulp and paper mills with biological effluent treatment plants; Aerob rening med laegre elfoerbrukning. Sammanstaellning av enkaetsvar fraan svenska skogsindustrier med biologisk rening

    Energy Technology Data Exchange (ETDEWEB)

    Sivard, Aasa; Simon, Olle

    2010-12-15

    A survey of the energy situation at 23 Swedish pulp and paper mills with aerobic effluent treatment plants has been performed. The electricity consumption for aeration equipment is about 80 % of the total electricity consumption. Proposed measures to increase energy efficiency are regular measurements of energy consumption, better control of the oxygen level in some mills and evaluation of measures to use the heat in process effluent before and after biological treatment

  18. Combined biological and chemical assessment of estrogenic activities in wastewater treatment plant effluents.

    Science.gov (United States)

    Aerni, Hans-Rudolf; Kobler, Bernd; Rutishauser, Barbara V; Wettstein, Felix E; Fischer, René; Giger, Walter; Hungerbühler, Andreas; Marazuela, M Dolores; Peter, Armin; Schönenberger, René; Vögeli, A Christiane; Suter, Marc J-F; Eggen, Rik I L

    2004-02-01

    Five wastewater treatment plant effluents were analyzed for known endocrine disrupters and estrogenicity. Estrogenicity was determined by using the yeast estrogen screen (YES) and by measuring the blood plasma vitellogenin (VTG) concentrations in exposed male rainbow trout (Oncorhynchus mykiss). While all wastewater treatment plant effluents contained measurable concentrations of estrogens and gave a positive response with the YES, only at two sites did the male fish have significantly increased VTG blood plasma concentrations after the exposure, compared to pre-exposure concentrations. Estrone (E1) concentrations ranged up to 51 ng L(-1), estradiol (E2) up to 6 ng L(-1), and ethinylestradiol (EE2) up to 2 ng L(-1) in the 90 samples analyzed. Alkylphenols, alkylphenolmonoethoxylates and alkylphenoldiethoxylates, even though found at microg L(-1) concentrations in effluents from wastewater treatment plants with a significant industrial content, did not contribute much to the overall estrogenicity of the samples taken due to their low relative potency. Expected estrogenicities were calculated from the chemical data for each sample by using the principle of concentration additivity and relative potencies of the various chemicals as determined with the yeast estrogen screen. Measured and calculated estradiol equivalents gave the same order of magnitude and correlated rather well (R(2)=0.6).

  19. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    Science.gov (United States)

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  20. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    Science.gov (United States)

    Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, fecal coliform is the only microbial indicator, raising concerns about the potential for pathogen t...

  1. Treatment of colored effluents with lignin-degrading enzymes: An emerging role of marine-derived fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; DeSouza-Ticlo, D.; Verma, A.K.

    laccase, manganese-peroxidase and lignin peroxidases are useful in the treatment of colored industrial effluents and other xenobiotics. Free mycelia, mycelial pellets, immobilized fungi or their lignin-degrading enzymes fromterrestrial fungi have been...

  2. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    Science.gov (United States)

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated.

  3. Enhanced performance of a submerged membrane bioreactor with powdered activated carbon addition for municipal secondary effluent treatment.

    Science.gov (United States)

    Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng

    2011-09-15

    The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent.

  4. Peat wetland as a natural filter of effluents from adjacent industrial areas

    Directory of Open Access Journals (Sweden)

    József DEZSO

    2015-12-01

    Full Text Available The main objective of the project is the study of a peat wetland functioning as recipient of effluents from former and present-day industrial activities. The investigation was focused on heavy metal contaminations and their probable mobilization or fixation. The studied peatbog is a typical Eastern European wetland, located in Hungary on the border between medium mountains (Bakony Mountains and a Neogene basin (the Sárrét, an area under nature conservation. Watercourses and prevailing air currents can transport contaminants from industrial areas to the wetland. At first the basic parameters of surface waters and subsurface conditions (soils, groundwater were investigated. These parameters (EC, Cl are possible indicators of contamination. Subsequently, the amounts of heavy metals (Cd, Pb extracted by solution in two steps (HCl, CaCl2 were measured using atomic absorption spectroscopy (AAS. The extracted values indicate what amounts of which elements could be mobilized by human impact and/or production of humic acids, which occasionally emerges during the remediation works. The total heavy metal concentrations in the samples were investigated by X-ray fluorescence method. Based on the investigation, the peatbog is claimed to function as a natural filter.

  5. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation.

    Science.gov (United States)

    Rodrigues, Carmen S D; Madeira, Luis M; Boaventura, Rui A R

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD(5) and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  6. Using sorbent waste materials to enhance treatment of micro-point source effluents by constructed wetlands

    Science.gov (United States)

    Green, Verity; Surridge, Ben; Quinton, John; Matthews, Mike

    2014-05-01

    Sorbent materials are widely used in environmental settings as a means of enhancing pollution remediation. A key area of environmental concern is that of water pollution, including the need to treat micro-point sources of wastewater pollution, such as from caravan sites or visitor centres. Constructed wetlands (CWs) represent one means for effective treatment of wastewater from small wastewater producers, in part because they are believed to be economically viable and environmentally sustainable. Constructed wetlands have the potential to remove a range of pollutants found in wastewater, including nitrogen (N), phosphorus (P), biochemical oxygen demand (BOD) and carbon (C), whilst also reducing the total suspended solids (TSS) concentration in effluents. However, there remain particular challenges for P and N removal from wastewater in CWs, as well as the sometimes limited BOD removal within these treatment systems, particularly for micro-point sources of wastewater. It has been hypothesised that the amendment of CWs with sorbent materials can enhance their potential to treat wastewater, particularly through enhancing the removal of N and P. This paper focuses on data from batch and mesocosm studies that were conducted to identify and assess sorbent materials suitable for use within CWs. The aim in using sorbent material was to enhance the combined removal of phosphate (PO4-P) and ammonium (NH4-N). The key selection criteria for the sorbent materials were that they possess effective PO4-P, NH4-N or combined pollutant removal, come from low cost and sustainable sources, have potential for reuse, for example as a fertiliser or soil conditioner, and show limited potential for re-release of adsorbed nutrients. The sorbent materials selected for testing were alum sludge from water treatment works, ochre derived from minewater treatment, biochar derived from various feedstocks, plasterboard and zeolite. The performance of the individual sorbents was assessed through

  7. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  8. Advanced treatment of effluents from an industrial park wastewater treatment plant by ferrous ion activated persulfate oxidation process.

    Science.gov (United States)

    Zhu, Songmei; Zhou, Zhen; Jiang, Haitao; Ye, Jianfeng; Ren, Jiamin; Gu, Lingyun; Wang, Luochun

    The advanced oxidation technology, ferrous ion (Fe(II)) activated persulfate (PS) producing sulfate radicals, was used for the advanced treatment of effluent from an integrated wastewater treatment plant in a papermaking industrial park. Separate and interactive effects of PS dosage, Fe(II)/PS ratio and initial pH on chemical oxygen demand (COD) removal were analyzed by the response surface methodology (RSM). The results showed that Fe(II)-PS system was effective in COD removal from the secondary effluent. PS dosage was the most dominant factor with positive influence on COD removal, followed by initial pH value. The optimum conditions with COD removal of 54.4% were obtained at PS/COD of 2.2, initial pH of 6.47 and Fe(II)/PS of 1.89. UV-visible spectrum analysis showed that after RSM optimization, Fe(II)-PS system effectively degraded large organic molecules into small ones, and decreased humification degree of the effluent. Three-dimensional fluorescence analysis demonstrated that aromatic protein and fulvic substances were fully decomposed by the Fe(II)-PS treatment.

  9. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents.

    Science.gov (United States)

    Samhaber, Wolfgang M; Nguyen, Minh Tan

    2014-01-01

    Nanofiltration (NF) is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m(3) treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable.

  10. Optimal policies for activated sludge treatment systems with multi effluent stream generation

    Directory of Open Access Journals (Sweden)

    Gouveia R.

    2000-01-01

    Full Text Available Most industrial processes generate liquid waste, which requires treatment prior to disposal. These processes are divided into sectors that generate effluents with time dependent characteristics. Each sector sends the effluent to wastewater treatment plants through pumping-stations. In general, activated sludge is the most suitable treatment and consists of equalization, aeration and settling tanks. During the treatment, there is an increase in the mass of microorganisms, which needs to be removed. Sludge removal represents the major operating costs for wastewater treatment plants. The objective of this work is to propose an optimization model to minimize sludge generation using a superstructure in which the streams from pumping-stations can be sent to the equalization tank. In addition, the aeration tank is divided into cells that can be fed in series and parallel. The model relies on mass balances, kinetic equations, and the resulting Nonlinear Programming problem generates the best operational strategy for the system feed streams with a high substrate removal. Reductions of up to 30 % can be achieved with the proposed strategy maintened BOD efficiency removal upper than 98 %.

  11. Pre-treatment and membrane ultrafiltration using treated palm oil mill effluent (POME

    Directory of Open Access Journals (Sweden)

    Wong Pui Wah

    2002-11-01

    Full Text Available Treatment of palm oil mill effluent (POME has always been a topic of research in Malaysia. This effluent that is extremely rich in organic content needs to be properly treated to minimize environmental hazards before it is released into watercourses. The common practice for treating POME in Malaysia involves a combination of aerobic and anaerobic methods. The purpose of tertiary treatment is to allow the treated water to be reused in the mill operations for other purposes such as feed water. The proposed treatment will also ensure the industry to meet a more stringent discharge standard in terms of the BOD, COD and nitrogen values. In this study membrane ultrafiltration is used as the tertiary treatment method. Before the actual membrane operation was conducted, the samples were pre-treated using three separate method namely filtration, centrifugation and coagulation. It was found that the combination of filtrationultrafiltration treatment POME produced the best-treated sample quality in terms of pollutant contents elimination, namely % BOD, % COD and % nitrogen removal.

  12. Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

    Directory of Open Access Journals (Sweden)

    Wolfgang M. Samhaber

    2014-04-01

    Full Text Available Nanofiltration (NF is a capable method for the separation of dyes, which can support and even improve the applicability of photocatalysis in effluent-treatment processes. The membrane process usually will need a special pre-treatment to avoid precipitation and fouling on the membrane surface. Conceptually NF can be applied in the pre-treatment prior to the catalytic reactor or in connection with the reactor to separate the liquid phase from the reaction system and to recycle finely suspended catalysts and/or organic compounds. When concerning such reaction systems on a bigger scale, cost figures will prove the usefulness of those concepts. Different applications of photocatalysis on the lab-scale have been published in recent years. Membrane technology is used almost in all those processes and an overview will be given of those recently published systems that have been reported to be potentially useful for a further scale-up. NF membranes are mostly used for the more sophisticated separation step of these processes and the additional costs of the NF treatment, without any associated equipments, will be described and illustrated. The total specific costs of industrial NF treatment processes in usefully adjusted and designed plants range from 1 to 6 US$/m3 treated effluent. Combination concepts will have a good precondition for further development and upscaling, if the NF costs discussed here in detail will be, together with the costs of photocatalysis, economically acceptable.

  13. Heavy metal (Zn and Cu) complexation and molecular size distribution in wastewater treatment plant effluent.

    Science.gov (United States)

    Chaminda, G G T; Nakajima, F; Furumai, H

    2008-01-01

    The size distributions of zinc and copper species in the effluent of a wastewater treatment plant were determined by a combination of ultrafiltration and chelating disk cartridge fractionation. The results showed that 75-87% of total Zn and 84-86% of total Cu were strongly complexed or particle-bound in the final effluents. It was also found that the major part of Cu was bound to ligands in the < 500 Da fraction while the trend for Zn was not so clear and exhibited significant seasonal variability. Labile Cu and Zn were detected not only in the smallest fraction (< 500 Da) but also in the larger fractions. It meant that the labile species in the effluent were not equivalent to free metal ions. Conditional stability constants and ligand concentrations were also determined from the measured metal concentrations by square wave anodic stripping voltammetry. Existence of two types of ligand for each metal was inferred from the experimental data. Conditional stability constant obtained for the stronger type Ligand of Zn was higher than that of Cu, although the estimated Ligand concentrations were almost similar.

  14. Treatment of dairy effluent model solutions by nanofiltration and reverse osmosis

    Directory of Open Access Journals (Sweden)

    I. Kyrychuk

    2015-05-01

    Full Text Available Introduction. Dairy industry generates a large amount of wastewaters that have high concentrations and contain milk components. Membrane processes have been shown to be convenient for wastewater treatment recovering milk components present in wastewaters and producing treated water. Materials and methods. The experiments were carried out in an unstirred batch sell using nanofiltration membranes OPMN-P (ZAO STC “Vladipor”, Russian Federation and reverse osmosis membranes NanoRo, ZAO (“RM Nanotech”, Russian Federation. The model solutions of dairy effluents –diluted skim and whole milk were used. Results. The nanofiltration and reverse osmosis membranes showed the same permeate flux during the concentration of model solutions of dairy effluents. The reason of this was likely membrane fouling with feed components. The fouling indexes indicated the fouling factor that was higher for RO. The higher permeate quality was obtainedwith RO membranes. The NF permeate containing up to 0.4 g/L of lactose and 0.75 g/L of mineral salts can be discharged or after finishing trеatment (e.g. RO or other can be reused. The obtained NF and RO retentate corresponds to milk in composition and can be used for non-food applications or as feed supplement for animals. Conclusions.The studied RO and NF membranes can be used for concentration of dairy effluents at low pressure. They showed better performance and separation characteristics comparing with data of other membranes available in the literature.

  15. Treatment of Pulp Mill D-Stage Bleaching Effluent Using a Pilot-Scale Electrocoagulation System.

    Science.gov (United States)

    Perng, Yuan-Shing; Wang, Eugene I-Chen

    2016-03-01

    A pilot-scale study was conducted using electrocoagulation technology to treat chlorine dioxide bleaching-stage effluent of a local pulp mill, with the purpose of evaluating the treatment performance. The operating variables were the current density (0 ~ 133.3 A/m(2)) and hydraulic retention time (HRT, 6.5 ~ 16.25 minutes). Water quality indicators investigated were the conductivity, suspended solids (SS), chemical oxygen demand (COD), true color, and hardness. The results showed that electrocoagulation technology can be used to treat D-stage bleaching effluent for water reuse. Under the operating conditions studied, the removal of conductivity and COD always increased with increases in either the current density or HRT. The highest removals obtained at 133.3 A/m(2) and an HRT of 16.25 minutes for conductivity, SS, COD, true color, and hardness were respectively 44.2, 98.5, 75.0, 85.9, and 36.9% with aluminum electrodes. Iron electrodes were not applicable to the D-stage effluent due to formation of dark-colored ferric complexes.

  16. Biological treatment of paper pulp effluents: the application of ligninolytic white rot-fungi

    Energy Technology Data Exchange (ETDEWEB)

    Martin, C; Fajardo, S.; Manzanares, P.

    1996-07-01

    Biological treatments using white-rot fungi, based in their ability to degrade lignin, can constitute an interesting approach to remove colour and toxic compounds usually contained in paper pulp effluents due to the presence of recalcitrant lignin derived molecules. In this work, strains A-137 and A-136 (IJFM collection, CIB-CSIC, Madrid) of Trameles versicolor, a ligninolytic white-rot fungus that have been frequently reported in relation to degradation of lignin, have been used for decolorisation studies of the straw alkaline-pulping effluent from SAICA factory (Zaragoza, Spain). From results obtained it can be concluded that decolorisation percentages about 80% can be obtained in 4-6 days (for maximum initial colour effluent between 12,000 and 15,000 CU) and total phenolics content can be reduced in about 90%. Mn-dependent peroxidase (about 20 IU/I) and high values of laccase activities (up to 700 IU/I) were produced, what may be of great interest to set up ligninolytic enzymes production processes for industrial uses. (Author) 19 refs.

  17. Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents.

    Science.gov (United States)

    Zhong, Wenjue; Wang, Donghong; Xu, Xiaowei

    2012-05-30

    Phenols pose a risk to the environment and to human health. Phenols found in rivers mainly originate from sewage treatment plants (STPs). In this paper, analytical procedures, based on deconvolution technology and retention time locking technology, were investigated to simultaneously identify and determine the concentrations of fifty different phenols in sewage water and effluents. Seventeen different phenols were found in sewage and five - including two regulated phenols (phenol and 2,4,6-trichlorophenol) and three un-regulated phenols (2-chlorophenol, 2,5-dichlorophenol and 2,4-dichloro-3-ethyl-6-nitrophenol) - were identified in effluents of five STPs. A number of processes undertaken in five STPs were also investigated. These processes can be used to remove phenols at efficiency levels of between 88.95% and 99.97%. Among the processes tested, a combination of anaerobic/anoxic/oxic (A(2)/O), continuous microfiltration (CMF), ozone oxidation (O(3)), and chlorination, appeared to be the best option for the removal of key phenols. Among the five phenols identified in effluents, 2,5-dichlorophenol (1.89 μg/L) and 2,4-dichloro-3-ethyl-6-nitrophenol (22.6 μg/L) pose the greatest ecological risk to receiving waters.

  18. Treatment of an automobile effluent from heavy metals contamination by an eco-friendly montmorillonite

    Directory of Open Access Journals (Sweden)

    Kovo G. Akpomie

    2015-11-01

    Full Text Available Unmodified montmorillonite clay was utilized as a low cost adsorbent for the removal of heavy metals from a contaminated automobile effluent. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy were used to characterize the adsorbent. Batch sorption experiments were performed at an optimum effluent pH of 6.5, adsorbent dose of 0.1 g, particle size of 100 μm and equilibrium contact time of 180 min. Thermodynamic analysis was also conducted. Equilibrium data were analyzed by the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich models. A heterogeneous surface of the adsorbent was indicated by the Freundlich model. The Langmuir maximum adsorption capacity of the montmorillonite for metals was found in the following order: Zn (5.7 mg/g > Cu (1.58 mg/g > Mn (0.59 mg/g > Cd (0.33 mg/g > Pb (0.10 mg/g ≡ Ni (0.10 mg/g. This was directly related to the concentration of the metal ions in solution. The pseudo-first order, pseudo-second order, intraparticle diffusion and liquid film diffusion models were applied for kinetic analysis. The mechanism of sorption was found to be dominated by the film diffusion mechanism. The results of this study revealed the potential of the montmorillonite for treatment of heavy metal contaminated effluents.

  19. Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the River Elbe, Germany.

    Science.gov (United States)

    Ahrens, Lutz; Felizeter, Sebastian; Sturm, Renate; Xie, Zhiyong; Ebinghaus, Ralf

    2009-09-01

    Polyfluorinated compounds (PFCs) were investigated in waste water treatment plant (WWTP) effluents and surface waters of the River Elbe from samples collected in 2007. Concentrations of various PFCs, including C(4)-C(8) perfluorinated sulfonates (PFSAs), C(6) and C(8) perfluorinated sulfinates, 6:2 fluorotelomer sulfonate, C(5)-C(13) perfluorinated carboxylic acids (PFCAs), C(4) and C(8) perfluoroalkyl sulfonamides and 6:2, 8:2 and 10:2 unsaturated fluorotelomercarboxylic acids were quantified. Sum PFC concentrations of the river water ranged from 7.6 to 26.4ngL(-1), whereas sum PFC concentrations of WWTP effluents were approximately 5-10 times higher (30.5-266.3ngL(-1)), indicating that WWTPs are potential sources of PFCs in the marine environment. PFC patterns of different WWTP effluents varied depending on the origin of the waste water, whereas the profile of PFC composition in the river water was relatively constant. In both kinds of water samples, perfluorooctanoic acid (PFOA) was the major PFC, whereas perfluorobutane sulfonate (PFBS) was the predominant PFSA.

  20. Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection.

    Science.gov (United States)

    Chamorro, Soledad; Vergara, Juan P; Jarpa, Mayra; Hernandez, Victor; Becerra, Jose; Vidal, Gladys

    2016-10-14

    Stigmasterol is a phytosterol contained in Kraft mill effluent that is able to increase over 100% after aerobic biological treatment. This compound can act as an endocrine disrupter as its structure is similar to that of cholesterol. The aim of this study was to evaluate the removal of stigmasterol from Kraft mill effluents treated by a moving bed biofilm reactor (MBBR) with steroidal metabolite detection. The MBBR was operated for 145 days, with a hydraulic retention time of 2 days. Stigmasterol and steroidal metabolites were detected by gas chromatography with a flame ionization detector during MBBR operation. The results show that the MBBR removed 87.4% of biological oxygen demand (BOD5), 61.5% of chemical oxygen demand (COD), 24.5% of phenol and 31.5% of lignin, expressed in average values. The MBBR system successfully removed 100% of the stigmasterol contained in the influent (33 µg L(-1)) after 5 weeks of operation. In that case, the organic load rate was 0.343 kg COD m(-3) d(-1). Furthermore, different steroidal compounds (e.g., testosterone propionate, stigmast-4-en-3-one, 5α-pregnan-12-one-20α-hydroxy, 5α-pregnane-3,11,20-trione and 3α-hydroxy-5α-androstane-11,17-dione were detected in the Kraft mill effluent as potential products of phytosterol biotransformation.

  1. Assembly, start and operation of an activated sludge reactor for the industrial effluents treatment: physico chemical and biological parameters

    Directory of Open Access Journals (Sweden)

    Márcia Regina Assalin

    2008-05-01

    Full Text Available Although of the immense available bibliography regarding the activated sludge process, little it is found in relation to the basic procedure to be adopted to implant, to activate and to monitor a reactor of activated sludge in laboratory scales. This article describes the assembly, departure and operation of an activated sludge system, operating in continuous process, at a laboratory scale, to study effluents treatments, using as example, Kraft E1 pulp mill effluent. Factors as biodegradability of the effluent to be treated, stationary state of the reactor, conventional operation parameters as physical chemistry and biological parameters are presented.

  2. Treatment of turtle aquaculture effluent by an improved multi-soil-layer system.

    Science.gov (United States)

    Song, Ying; Huang, Yu-ting; Ji, Hong-fang; Nie, Xin-jun; Zhang, Zhi-yuan; Ge, Chuan; Luo, An-cheng; Chen, Xin

    2015-02-01

    Concentrated turtle aquaculture effluent poses an environmental threat to water bodies, and therefore needs to be treated prior to disposal. This study was conducted to assess the effect of multi-soil-layer (MSL) systems treating turtle aquaculture effluent with adding different amounts of sludge. Four MSL systems were constructed with dry weight ratios of sludge with 0%, 5%, 10%, and 20% (MSL 1, MSL 2, MSL 3, and MSL 4, respectively). The turtle aquaculture effluent had an average chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N) and total nitrogen (TN) concentration of 288.4, 213.4, and 252.0 mg/L, respectively. The COD/TN (C/N) ratio was 1.2. The results showed that the four MSL systems could effectively treat the COD, NH4(+)-N, and TN, and MSL 4 showed significantly improved NH4(+)-N removal efficiency, suggesting the potential of sludge addition to improve the turtle aquaculture effluent treatment. The average COD, TN, and NH4(+)-N removal efficiencies of MSL 4 were 70.3%, 66.5%, and 72.7%, respectively. To further interpret the contribution of microorganisms to the removal, the microbial community compositions and diversities of the four MSL systems were measured. Comparisons of the denaturing gradient gel electrophoresis (DGGE) profiles revealed that the amount of nitrifying bacteria and diversity in MSL 4 were higher than those in the other three systems. We concluded that adding 20% of sludge improved the NH4(+)-N removal and stability of the system for nitrification, due to the enrichment of the nitrifying bacteria in MSL 4.

  3. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    Science.gov (United States)

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.

  4. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  5. A review on Advanced Oxidation Processes for the treatment of Textile effluent

    Directory of Open Access Journals (Sweden)

    *Rafia Azmat

    2016-06-01

    Full Text Available Dyes are those synthetic and natural compounds which applied in form of aqueous based solutions with many additives to strong attachment of dye molecule with a fabric for persistence the colour on it while pigments are usually insoluble. There are various methods of dye all over the world for dye fabrications. Dyes fabrication processes require thousands liters of water for coloring materials which need very small amount of it and remaining water discharged as a dye waste water and become hazardous to ecology. As an effluent from textile and printing industries having remaining dyes and several additives it become one of the central sources with severe pollution complications worldwide and hard to treat by conventional Chemical/Biological processes. This complex nature of dye wastewater can be converted into less harmless/useful by products along with conventional biological treatment, chemical treatment or set of chemical treatments like Advanced Oxidation processes are used. This paper reviews various Advanced Oxidation processes (AOPs like Hydrogen peroxide, ozonation, ultra violet radiations, alone or in combinations for the treatment of textile effluent and their efficiency regarding detoxification and color removal. The current review describes the efficiency of various advanced oxidation processes in which hydroxyl radical was generated for color removal dye bath.

  6. Caustic Hydrogen Peroxide Treatment of Effluent from Cassava Processing Industry: Prospects and Limitations

    Directory of Open Access Journals (Sweden)

    Olayinka Omotosho

    2015-04-01

    Full Text Available Cassava has been described as a major part of diet in most African countries. Its processing usually requires the release of polluted effluent which has been found to be toxic, carcinogenic as well as mutagenic to some extent. In this study, the treatment process comprised of a combination of peroxide oxidation at caustic range and filtration which ensured that the key pollutant, Cyanide was converted to cyanate. Metal and other non-metal pollutants were filtered off with the aid of a graded sand filter after undergoing hydroxide formation and precipitation. Results from the study shows that an optimum dosage of 0.3mg/l was adequate for Cyanide destruction and hydroxide precipitation reactions. A comparison of the effluent from the treatment process with FEPA standards for waste water discharge shows that most of the pollutant parameters were within acceptable limits after the treatment with the exception of PO4 and BOD5. However when compared with Canadian Water Quality Guidelines for Irrigation the only parameter outstanding was the BOD5. As a result of the inadequacy of the process in handling the phosphate and biological load content of the wastewater, It is proposed that an additional treatment method such as sorption using activated carbon or use of a combined baffle flocculation and aeration techniques will be appropriate if the water is to be discharged safely into water courses or even for irrigation purposes.

  7. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of Indian Creek, Johnson County, Kansas, June 2004 through June 2013

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Foster, Guy M.; Poulton, Barry C.; Paxson, Chelsea R.; Harris, Theodore D.

    2014-01-01

    Indian Creek is one of the most urban drainage basins in Johnson County, Kansas, and environmental and biological conditions of the creek are affected by contaminants from point and other urban sources. The Johnson County Douglas L. Smith Middle Basin (hereafter referred to as the “Middle Basin”) and Tomahawk Creek Wastewater Treatment Facilities (WWTFs) discharge to Indian Creek. In summer 2010, upgrades were completed to increase capacity and include biological nutrient removal at the Middle Basin facility. There have been no recent infrastructure changes at the Tomahawk Creek facility; however, during 2009, chemically enhanced primary treatment was added to the treatment process for better process settling before disinfection and discharge with the added effect of enhanced phosphorus removal. The U.S. Geological Survey, in cooperation with Johnson County Wastewater, assessed the effects of wastewater effluent on environmental and biological conditions of Indian Creek by comparing two upstream sites to four sites located downstream from the WWTFs using data collected during June 2004 through June 2013. Environmental conditions were evaluated using previously and newly collected discrete and continuous data and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This study improves the understanding of the effects of wastewater effluent on stream-water and streambed sediment quality, biological community composition, and ecosystem function in urban areas. After the addition of biological nutrient removal to the Middle Basin WWTF in 2010, annual mean total nitrogen concentrations in effluent decreased by 46 percent, but still exceeded the National Pollutant Discharge Elimination System (NPDES) wastewater effluent permit concentration goal of 8.0 milligrams per liter (mg/L); however, the NPDES wastewater effluent permit total phosphorus concentration goal of 1.5 mg/L or less was

  8. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations.

    Science.gov (United States)

    Prieto-Rodriguez, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Li Puma, G; Malato, S

    2012-04-15

    The optimal photocatalyst concentration for industrial wastewater treatment in current photoreactor designs is several hundreds of milligrams per liter. However, the elimination of emerging contaminants (ECs), which are present at extremely low concentrations in waste water treatment plants (WWTP) effluents might be accomplished at much lower catalyst (TiO(2)) concentrations. One of the main drawbacks of reducing catalyst loading below the optimum is the loss of useful photons which instead are transmitted through the TiO(2) suspension without being absorbed by the catalyst. Accordingly, in this work, laboratory and solar pilot-scale experiments were performed with real WWTP effluents to evaluate the kinetics of photocatalytic degradation of 52 emerging contaminants under realistic (ppb) concentrations. The analysis of the samples was accomplished by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS). In view of the results, low concentrations of TiO(2) of the order of tens of milligrams per liter were found to be insufficient for the degradation of the ECs in photoreactors with a short light-path length (29 cm). However, it was established that solar reactors of diameters of several hundreds of millimetres could be used for the efficient removal of ECs from WWTP effluents. The results presented show a general methodology for selecting the most efficient reactor diameter on the basis of the desired catalyst concentration.

  9. Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment.

    Science.gov (United States)

    Badia-Fabregat, Marina; Lucas, Daniel; Pereira, Maria Alcina; Alves, Madalena; Pennanen, Taina; Fritze, Hannu; Rodríguez-Mozaz, Sara; Barceló, Damià; Vicent, Teresa; Caminal, Glòria

    2016-03-01

    Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.

  10. Characterization of effluent from food processing industries and stillage treatment trial with Eichhornia crassipes (Mart. and Panicum maximum (Jacq.

    Directory of Open Access Journals (Sweden)

    N.A. Noukeu

    2016-12-01

    Full Text Available In this study, effluents from 11 food processing industries from various sectors were characterized through analysis of physical and chemical parameters. In general, effluents pHs are between 4.07 and 7.63. Lead (Pb2+ and cadmium (Cd+ concentrations range from 0.083 to 1.025 mg/l and 0.052–0.158 mg/l respectively. The biodegradability of the effluent is very low. The principal component analysis (PCA grouped industries according to their organic matter levels; thus, stillage, livestock, molasses and sugar refinery effluents show some similarities, as well as confectionery, oil mill, dairy and brewery effluents. Forms of nitrogen measured show low levels of nitrites (NO2−, high levels of nitrates (NO3−, ammonium (NH4+ and Kjeldahl nitrogen (TKN. Among these effluents, a treatment trial with Eichhornia crassipes and Panicum maximum was applied to stillage effluent from Fermencam distillery. The results show that Panicum maximum and Eichhornia crassipes reduce pollutant loads of Fermencam's wastewater.

  11. Palm Oil Mill Effluent Treatment Through Combined Process Adsorption and Membrane Filtration

    Directory of Open Access Journals (Sweden)

    Muhammad Said

    2016-08-01

    Full Text Available The growth in palm oil production also leads to an Increase in the production of palm oil mill effluent (POME. Nowadays, POME was treated using an open lagoon but this method is ineffectiveness in complying with the standards for water disposal. Therefore, efficient and cohesive treatment system is highly desired to ensure the final discharge of the treated water meets the effluent discharge standards. Initially, the POME was treated through adsorption, followed by UF membranes roomates were intended to reduce COD, TSS and turbidity up to 88%, 99%, and 98%, while the final treatment of RO membranes can reduce BOD, COD and color up to 92%, 98% and 99%. To determine the optimum condition of the RO membrane, response surface methodology (RSM was used. The results showed there was correlation between all key variables. POME concentration, trans-membrane pressure, pH and time would give significant effects in reducing the parameters in POME treatment with the optimum condition of 15.77% for POME concentration, 3.73 for pH, 0.5 bar trans-membrane pressure and 5 hours for filtration time. To predict COD removal, the results were analyzed by applying the artificial neural network (ANN to derive a mathematical model.

  12. Effect of Saline Aquaculture Effluent on Salt-Tolerant Jerusalem Artichoke (Helianthus tuberosus L.) in a Semi-Arid Coastal Area of China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Geng-Mao; LIU Zhao-Pu; CHEN Ming-Da; KOU Wei-Feng

    2006-01-01

    An experiment with six treatments: CK1 (rainfed), CK2 (irrigated with freshwater), and 4 treatments of saline aquaculture effluent blended with brackish groundwater at different ratios of 1:1, 1:2, 1:3, and 1:4 (v/v) was carried out during 2004 to assess the effect of saline aquaculture effluent on plant growth and soil properties in the Laizhou region, Shandong Province, China and to determine an optimal salinity threshold for aquaculture effluent. Cumulative evapotranspiration for the saline aquaculture effluent irrigation and non-irrigation treatments was lower than that for the freshwater irrigation treatment. Soil electrical conductivity was higher with respect to saline aquaculture effluent irrigation treatment compared to that with respect to non-irrigation or freshwater irrigation treatment. For Jerusalem artichoke (Helianthus tuberosus L.), in comparison to the freshwater treatment, plant height and aboveground biomass for the 1:3 and 1:4 treatments were constrained, whereas stem width and root biomass were enhanced. Concomitantly,higher tuber yield was obtained for the 1:3 and 1:4 treatments compared to that for CK1 and 1:1 treatments. Nitrogen and phosphorus were higher in tubers of the 1:4 treatment. This study demonstrated that saline aquaculture effluent could be used successfully to irrigate Jerusalem artichoke with higher tuber yield and nutrient removal

  13. Facility effluent monitoring plan for K area spent fuel storage basin

    Energy Technology Data Exchange (ETDEWEB)

    Hunacek, G.S., Westinghouse Hanford

    1996-08-01

    A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400. 1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in WHC-EP-0438-1, A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the second revision to the original annual report. Long-range integrity ofthe effluent monitoring systenu shall be ensured with updates of this report whenever a new process or oper&ion introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated at a minimwn of every three years.

  14. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment.

  15. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr., W. W.; Hancher, C. W.; Patton, B. D.; Shumate, II, S. E.

    1979-01-01

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods are presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. However, a strong case is made for the use of biological processes for removing nitrates and heavy metals fron nuclear fuel cycle effluents. The estimated costs for these methods are as low as, or lower than, those for alternate processes. In addition, the resulting disposal products - nitrogen gas, CO/sub 2/, and heavy metals incorporated into microorganisms - are much more ecologically desirable than the end products of other waste treatment methods.

  16. Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment

    Institute of Scientific and Technical Information of China (English)

    Aneesh Pasricha; Sant Lal Jangra; Nahar Singh; Neeraj Dilbaghi; K. N. Sood; Kanupriya Arora; Renu Pasricha

    2012-01-01

    Nano silver (Agn) is employed as an active antimicrobial agent,but the environmental impact of Agn released from commercial products is unknown.The quantity of nanomaterial released from consumer products during use should be determined to assess the environmental risks of advancement of nanotechnology.This work investigated the amount of silver released from three different types of fabric into water during washing.Three different types of fabric were loaded with chemically synthesized Ag nanoparticles and washed repeatedly under simulated washing conditions.Variable leaching rates among fabric types suggest that the manufacturing process may control the release of silver reaching the waste water treatment plants.In an attempt to recover the Agn for reutilizatlon and to save it from polluting water,the effluents from the wash were efficiently treated with bacterial strains.This treatment was based on biosorption and was very efficient for the elimination of silver nanoparticles in the wash water.The process ensured the recovery of the Agn leached into the effluent for reutilization,thus preventing environmental repercussions.

  17. Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment.

    Science.gov (United States)

    Pasricha, Aneesh; Jangra, Sant Lal; Singh, Nahar; Dilbaghi, Neeraj; Sood, K N; Arora, Kanupriya; Pasricha, Renu

    2012-01-01

    Nano silver (Ag(n)) is employed as an active antimicrobial agent, but the environmental impact of Ag(n) released from commercial products is unknown. The quantity of nanomaterial released from consumer products during use should be determined to assess the environmental risks of advancement of nanotechnology. This work investigated the amount of silver released from three different types of fabric into water during washing. Three different types of fabric were loaded with chemically synthesized Ag nanoparticles and washed repeatedly under simulated washing conditions. Variable leaching rates among fabric types suggest that the manufacturing process may control the release of silver reaching the waste water treatment plants. In an attempt to recover the Ag(n) for reutilization and to save it from polluting water, the effluents from the wash were efficiently treated with bacterial strains. This treatment was based on biosorption and was very efficient for the elimination of silver nanoparticles in the wash water. The process ensured the recovery of the Ag(n) leached into the effluent for reutilization, thus preventing environmental repercussions.

  18. POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS - SLIDES

    Science.gov (United States)

    Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...

  19. Occurrence of triclosan in the tropical rivers receiving the effluents from the hospital wastewater treatment plant.

    Science.gov (United States)

    Yang, Gordon C C; Tsai, Hsin-Jen; Chang, Fu-Kuei

    2015-03-01

    The objective of this study was to determine the occurrence of triclosan in the tropical rivers where received the effluents from a hospital wastewater treatment plant (HWWTP) in southern Taiwan. Three and ten sampling sites were selected at the Jiaosu River (S0-S2) and Dian-Bao River (S3-S12), respectively. The samples of the HWWTP influent, effluent and receiving river water and sediment were collected and analyzed using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/ MS). Results showed that the triclosan level in surface water of the Jiaosu River and Dian-Bao River ranged from 3 to 68 ng/L and ranged from triclosan to the neighboring river. The mean value of triclosan concentration in the downstream surface water of the Jiaosu River (S1 20.2 ng/L) was approximately three times higher than that of the background level (S0 6.0 ng/L) (p = 0.011). The concentrations of triclosan in two surface water samples were over the predicted no effect concentration (PNEC) of 50 ng/L for algae. In addition, significant seasonal differences of triclosan in surface water of Jiaosu River (p = 0.020) and the HWWTP effluents (p = 0.302) were also observed. The concentrations of triclosan in sediments of these two rivers seemed stable. On average, triclosan was detected in 86 % of the sediment samples with a range from Triclosan in surface water and sediments of the tropical rivers might be rapidly photolyzed due to plenty of sunshine. It is worth to further investigate the occurrence and fate of triclosan photoproduct in the aquatic environment of the tropics.

  20. Comparison of zinc complexation properties of dissolved organic matter from surface waters and wastewater treatment plant effluents

    Institute of Scientific and Technical Information of China (English)

    CHENG Tao

    2005-01-01

    Unlike natural organic matter(NOM), wastewater organic matter(WWOM) from wastewater treatment plant effluents has not been extensively studied with respect to complexation reactions with heavy metals such as copper or zinc. In this study, organic matter from surface waters and a wastewater treatment plant effluent were concentrated by reverse osmosis(RO) method. The samples were treated in the laboratory to remove trace metals and major cations. The zinc complexing properties of both NOM and the WWOM were studied by square wave anodic stripping voltammetry(SWASV). Experimental data were compared to predictions using the Windermere Humic Aqueous Model(WHAM) Version VI. We found that the zinc binding of WWOM was much stronger than that of NOM and not well predicted by WHAM. This suggests that in natural water bodies that receive wastewater treatment plant effluents the ratio of WWOM to NOM must be taken into account in order to accurately predict free zinc activities.

  1. Areas permitted for irrigation, storage, evaporation, and disposal of treated sewage effluent in the upper Carson River Basin, Nevada and California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of areas permitted for irrigation, storage, evaporation, and disposal of treated sewage effluent in the Upper Carson River Basin, California...

  2. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Sampa, M.H. de E-mail: mhosampa@ipen.br; Rela, Paulo Roberto; Las Casas, Alexandre; Nunes Mori, Manoel; Lopes Duarte, Celina

    2004-10-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood 'pinus'. If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  3. Facility effluent monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the facility effluent monitoring programs and provides an evaluation of effluent monitoring data. These evaluations are useful in assessing the effectiveness of effluent treatment and control systems, as well as management practices.

  4. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    Science.gov (United States)

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity.

  5. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona.

    Science.gov (United States)

    Kitajima, Masaaki; Haramoto, Eiji; Iker, Brandon C; Gerba, Charles P

    2014-06-15

    We investigated the occurrence of Cryptosporidium, Giardia, and Cyclospora at two wastewater treatment plants (WWTPs) in Arizona over a 12-month period, from August 2011 to July 2012. Influent and effluent wastewater samples were collected monthly, and protozoan (oo)cysts were concentrated using an electronegative filter, followed by the detection of protozoa using fluorescent microscopy (Cryptosporidium oocysts and Giardia cysts) and PCR-based methods (Cryptosporidium spp., Giardia intestinalis, and Cyclospora cayetanensis). The concentration of Giardia cysts in the influent was always higher than that of Cryptosporidium oocysts (mean concentration of 4.8-6.4×10(3) versus 7.4×10(1)-1.0×10(2)(oo)cysts/l) with no clear seasonality, and log10 reduction of Giardia cysts was significantly higher than that of Cryptosporidium oocysts for both WWTPs (PGiardia cysts at the WWTP utilizing activated sludge was significantly higher than the other WWTP using trickling filter (P=0.014), while no statistically significant difference between the two WWTPs was observed for the log10 reduction of Cryptosporidium oocysts (P=0.207). Phylogenetic analysis revealed that G. intestinalis strains identified in wastewater belonged to two assemblages, AII and B, which are potentially infectious to humans. C. cayetanensis was also detected from both influent and effluent using a newly developed quantitative PCR, with the highest influent concentration of 1.2×10(4)copies/l. Our results demonstrated that these protozoan pathogens are prevalent in the study area and that efficacy of the conventional wastewater treatment processes at physically removing (oo)cysts is limited.

  6. Enhancing treatment efficiency of swine wastewater by effluent recirculation in vertical-flow constructed wetland

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Livestock wastewater has been a major contributor to Chinese cultural eutrophication of surface waters. Constructed wetlands are under study as a best management practice to treat wastewater from dairy and swine operations, but the removal efficiency of pollutants is relatively low. Enhancing the treatment efficiency of livestock wastewater by effluent recirculation was investigated in a pilot-scale vertical-flow constructed wetland. The wetland system was composed of downflow and upflow stages, on which narrow-leafPhragmites communis and common reed Phragmites Typhia are planted, respectively; each stage has a dimension of4 m2 (2 m × 2 m). Wastewater from facultative pond was fed into the system intermittently at a flow rate of 0.4 m3/d. Recirculation rates of 0, 25%, 50%, 100% and 150% were adopted to evaluate the effect of the recirculation rate on pollutants removal. It shows that with effluent recirculation the average removal efficiencies of NH4-N, biological oxygen demand (BOD5) and suspended solids(SS)obviously increase to 61.7%, 81.3%, and 77.1%, respectively, in comparison with the values of 35.6%, 50.2%, and 49.3% without effluent recirculation. But the improvement of TP removal is slight, only from 42.3% to 48.9%. The variations of NH4-N, dissolved oxygen(DO) and oxidation-reduction potential(ORP) of inflow and outflow reveal that the adoption of effluent recirculation is beneficial to the formation of oxide environment in wetland. The exponential relationships with excellent correlation coefficients (R2 >0.93)are found between the removal rates of NH4-N and BOD5 and the recirculation rates. With recirculation the pH value of the outflow decreases as the alkalinity is consumed by gradually enhanced nitrification process. When recirculation rate is kept constant 100%, the ambient temperature appears to affect NH4-N removal, but does not have significant influence on BOD5 removal.

  7. Concentrations and Toxic Equivalency of Polychlorinated Biphenyls in Polish Wastewater Treatment Plant Effluents.

    Science.gov (United States)

    Urbaniak, Magdalena; Kiedrzyńska, Edyta

    2015-10-01

    Wastewater treatment plants (WWTPs) are widely recognized as important sources of toxic contaminants such as polychlorinated biphenyls (PCBs). An example is given in the present paper, where concentrations of 12 dioxin-like PCBs (dl-PCBs) congeners were investigated in effluents from 14 WWTPs of different sizes, using gas chromatography tandem-mass spectrometry. The results obtained demonstrate that the smallest WWTPs are characterized by the highest total dl-PCB concentration of 102.69 pg/L, roughly twice those of medium-size and large WWTPs, i.e. 41.14 and 48.29 pg/L, respectively. In all cases, the concentrations obtained were generated mostly by increased contributions of PCB-77, PCB-105 and PCB-118 which constituted 48 %-59 % of the mean dl-PCB concentration. The results also reveal a predominance of mono-ortho over non-ortho PCBs. All three types of WWTP effluent were found to have similar toxic equivalency (TEQ) values, ranging from 0.31 for large to 0.37 pg TEQ/L for medium WWTPs.

  8. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter, and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents.

  9. Treatment of colored and real industrial effluents through electrocoagulation using solar energy.

    Science.gov (United States)

    Pirkarami, Azam; Olya, Mohammad Ebrahim; Tabibian, Sahar

    2013-01-01

    This study was undertaken to investigate the removal of Acid Orange 2 (sodium 4-[(2E)-2-(2-oxonaphthalen-1-ylidene) hydrazinyl] benzenesulfonate) and Reactive Blue 19 (2-Anthracenesulfonicacid,1-amino-9,10-dihydro-9,10-dioxo-4-[[3-[[2-(sulfooxy) ethyl] sulfonyl] phenyl] amino]-,sodium salt (1:2)) from synthesized and real effluents through electrocoagulation using solar cells for the purpose of improving economic efficiency of the process. The impact of a number of key operating parameters was explored including current density, anode type, temperature, pH, and electrolyte concentration. The current density of 45 Am(-2) proved to be the optimum level for both dyes. The same optimum alternatives were found for the other parameters in both cases: iron anode, a temperature level of 25°C, a pH of 7, and an electrolyte concentration of 15 mg L(-1). Both effluent samples were subjected to COD (chemical oxygen demand) and TOC (total organic carbon) tests. Cost analysis was performed for the treatment process.

  10. Treatment of Effluent from a Factory of Paints Using Solar Photo-Fenton Process

    Directory of Open Access Journals (Sweden)

    Alam Gustavo Trovó

    2013-01-01

    Full Text Available We evaluated the use of Fenton reactions induced by solar radiation in the treatment of effluent from a factory of paints for buildings, after prior removal of the suspended solids. The increase of H2O2 concentration from 100 to 2500 mg L−1 for a [Fe2+] = 105 mg L−1 contributed to the reduction of DOC, COD, and toxicity. Our best results were achieved using 1600 mg L−1 H2O2, with 90% of DOC and COD removal and a complete removal of the toxicity with respect to Artemia salina. Additionally, through increasing Fe2+ concentration from 15 to 45 mg L−1, the DOC removal rate increased 11 times, remaining almost constant in the range above 45 until 105 mg L−1. Under our best experimental conditions, 80% of DOC removal was achieved after an accumulated dose of 130 kJ m−2 of UVA radiation (82±17 min of solar irradiation under an average UVA irradiance of 34.1±7.3 W m−2, while 40% of DOC removal was reached after 150 min under only thermal Fenton reactions. The results suggest the effectiveness of implementation of solar photo-Fenton process in the decontamination and detoxification of effluents from factories of paints for buildings.

  11. Treatment of fatliquoring effluent from a tannery using membrane separation process: experimental and modeling.

    Science.gov (United States)

    Prabhavathy, C; De, Sirshendu

    2010-04-15

    Treatment of fatliquoring effluent generated from a tannery, using a hybrid separation process involving gravity settling, two step coagulation, nanofiltration and reverse osmosis is presented in this study. The optimum dose of coagulation, i.e., 0.5% (w/v) of ferrous sulfate followed by 0.15% (w/v) calcium oxide resulted in reduction of chemical oxygen demand from 13,688 to 4921 mg/l. Low pressure nanofiltration of the supernatant was carried out in the range of 828-1242 kPa. Chemical oxygen demand of the nanofiltration permeate varied from about 1300-2700 mg/l depending upon the operating conditions. To bring the chemical oxygen demand value less than the allowable permissible limit in India (250 mg/l), nanofiltration permeate was subjected to reverse osmosis (operating pressure range from 1313 to 1724 kPa). The final treated effluent, i.e., reverse osmosis permeate had chemical oxygen demand values in the range of 117-174 mg/l. The membrane filtration experiments included flow in laminar, laminar with turbulent promoter and turbulent flow regimes. Using a combination of osmotic pressure and solution diffusion model for both nanofiltration and reverse osmosis, three transport coefficients, namely, the effective osmotic coefficient, solute diffusivity and solute permeability through the membrane were obtained by comparing the permeate flux and permeate concentrations using the model calculated values and the experimental data. The calculated data agreed closely with the experimental values.

  12. Application of grafted polysaccharides for treatment of coal washery effluent - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, N.C. [Indian School of Mines, Dhanbad (India)

    2002-07-01

    Four new generation graft copolymers of polyacrylamide (PAM) grafted on the backbone of polysaccharides, namely starch, amylopectin, sodium alginate and carboxymethyl cellulose have been tested for their performance as flocculant in the treatment of coal washery effluent. For this purpose standard jar test and column settling test were carried on the effluent collected from a semi-coking coal washery plant. The performance of the graft copolymers was compared against the commercial flocculant Nalco-8873 that was being used in the plant. The study reveals that all the graft copolymers, in general, possess good flocculation quality. In the jar test starch based graft copolymers performed on a par with the commercial flocculant. In the column settling test, amylopectin-g-PAM performed much better than Nalco-8873 in terms of supernatant turbidity. As to the settling velocity, though performance of Nalco 8873 was somewhat close to the graft copolymer amylopectin-g-PAM, the latter had an edge over the former exhibiting more or less constant high performance over a wide range of dosage. 3 refs., 4 figs., 1 tab.

  13. Leachability and physical stability of solidified and stabilized pyrite cinder sludge from dye effluent treatment

    Directory of Open Access Journals (Sweden)

    Kerkez Đurđa V.

    2015-01-01

    Full Text Available This work is concerned with exploring the possibilities of using solidification/stabilization (S/S treatment for toxic sludge generated in dye effluent treatment, when pyrite cinder is used as catalytic iron source in the modified heterogeneous Fenton process. S/S treatment was performed by using different clay materials (kaolin, bentonite and native clay from the territory of Vojvodina and fly ash in order to immobilize toxic metals and arsenic presented in sludge. For the evaluation of the extraction potential of toxic metals and the effectiveness of the S/S treatment applied, four single-step leaching tests were performed. Leaching test results indicated that all applied S/S treatments were effective in immobilizing toxic metals and arsenic presented in sludge. X-ray diffraction analysis confirmed the formation of pozzolanic products, and compressive strength measurement proved the treatment efficacy. It can be concluded that the S/S technique has significant potential for solving the problem of hazardous industrial waste and its safe disposal. [Projekat Ministarstva nauke Republike Srbije, br. III43005 i br. TR37004

  14. Probabilistic analysis of risks to US drinking water intakes from 1,4-dioxane in domestic wastewater treatment plant effluents.

    Science.gov (United States)

    Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas

    2013-10-01

    The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use.

  15. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  16. Use of a greasy effluent floater treatment station from the slaughterhouse for biosurfactant production.

    Science.gov (United States)

    Borges, Wesley da Silva; Cardoso, Vicelma Luiz; de Resende, Miriam Maria

    2012-01-01

    Most commercially available surfactants are produced from petroleum. However, increasing concerns about the environment have stimulated the search for biosurfactant production. This work examines biosurfactant production from the greasy effluent floater treatment station from the slaughterhouse of poultry and pigs. The biosurfactant production was evaluated using two strains of Pseudomonas aeruginosa [American Type Culture Collection (ATCC) 9027 and 10145] in a kinetic study to determine which strain produces a higher rhamnolipid concentration, which is characterized by the rhamnose concentration. The strain of P. aeruginosa was selected via a central composite design based on the following variables: fat concentration, nitrogen concentration, added ammonium nitrate (AN), and brewery residual yeast (BRY). The preliminary results show that the P. aeruginosa strain ATCC 10145 produced biosurfactant more efficiently than ATCC 9027. After optimizing the variables that were studied, the best fat, BRY, and AN concentrations (in g/L) were found to be 12, 15, and 0, respectively.

  17. Treatment of effluents of poultry slaughterhouse with aluminum salts and natural polyelectrolytes.

    Science.gov (United States)

    Ikeda, E; Rodrigues, D G; Nozaki, J

    2002-08-01

    A mixture of aluminum salts and natural polyelectrolytes, extracted from the cactus Opuntia ficus indica, has been used for cleaning of wastewater from poultry slaughterhouse. The aggregation and settling properties of colloids and complex organics such as oil, grease, fats, proteins, and suspended solids, was increased if compared with conventional methods of wastewater treatment using only aluminum or iron sulfate. A mixture of aluminum salt in a concentration range of 300 to 600 mg l(-1) and natural polyelectrolytes of 0.6 to 0.8 mg l(-1) was used for flocculation and coagulation. The combination of coagulant and natural polyelectrolytes was able to remove chemical oxygen demand (86%), oil and grease (93%), turbidity (89%), and suspended solids (93%). Methanization activity was also investigated for the effluents in natura.

  18. Application of heterogeneous catalytic ozonation as a tertiary treatment of effluent of biologically treated tannery wastewater.

    Science.gov (United States)

    Huang, Guangdao; Pan, Feng; Fan, Guofeng; Liu, Guoguang

    2016-07-02

    The present study employed a Mn-Cu/Al2O3 heterogeneous catalytic ozonation process for tertiary treatment of actual tannery wastewater, focusing on its feasibility in that application. The primary factors affecting the removal efficiency of organic pollutants were investigated, including catalyst dosage, ozone dosage, and initial pH value. The experimental results showed that the addition of a Mn-Cu/Al2O3 catalyst improved the removal efficiency of chemical oxygen demand (COD) during ozonation, which initiated a 29.3% increase for COD removal, compared to ozonation alone after 60 min. The optimum pH, catalyst dosage, and ozone dosage were determined to be 7.0, 2.0 g/L, and 0.3 g/h, respectively. Under these conditions, following 60 min of reaction, the COD removal efficiency and the concentration in effluent were 88%, and 17 mg/L, respectively. In addition, the presence of tert-butanol (a well known hydroxyl radical scavenger) strongly inhibited COD removal via Mn-Cu/Al2O3 catalytic ozonation, indicating that the Mn-Cu/Al2O3 catalytic ozonation process follows a hydroxyl radical (OH·) reaction mechanism. The Mn-Cu/Al2O3 catalyst exhibited good stability and reusability. Finally, the kinetic analysis revealed that the apparent reaction rate constant of COD removal with the Mn-Cu/Al2O3 catalytic ozonation system (0.0328 min(-1)) was 2.3 times that of an ozonation system alone (0.0141 min(-1)). These results demonstrated that the catalytic ozonation using Mn-Cu/Al2O3 is an effective and promising process for tertiary treatment of tannery effluent in biological systems.

  19. Fuzzy logic based risk assessment of effluents from waste-water treatment plants.

    Science.gov (United States)

    Cabanillas, Julián; Ginebreda, Antoni; Guillén, Daniel; Martínez, Elena; Barceló, Damià; Moragas, Lucas; Robusté, Jordi; Darbra, Rosa Ma

    2012-11-15

    This paper presents a new methodology to assess the risk of water effluents from waste-water treatment plants (WWTPs) based on fuzzy logic, a well-known theory to deal with uncertainty, especially in the environmental field where data are often lacking. The method has been tested using the effluent's pollution data coming from 22 waste-water treatment plants (WWTPs) located in Catalonia (NE Spain). Thirty-eight pollutants were analyzed along three campaigns performed yearly from 2008 to 2010. Whereas 9 compounds have been detected in more than 70% of the samples analyzed, 7 compounds have been found at levels equal or higher than the river Environmental Quality Standards set by the Water Framework Directive. Upon combination of both criteria (presence and concentration), compounds of greatest environmental concern in the WWTP studied are nickel, the herbicide diuron, and the endocrine disruptors nonyl and octylphenol. It is remarkable the low variability of the pollutant concentration just differing for the case of nickel and zinc. These low values of exposure together with other pollutants' characteristics provide a medium or low risk assessment for all the WWTPs. The results of this new method have been compared with COMMPS procedure, a solid method developed in the context of the Water Framework Directive, and they show that the fuzzy model is more conservative than COMMPS. This is due to different reasons: the fuzzy model takes into account the persistence of chemical compounds whereas COMMPS does not; the fuzzy model includes the weights provided by an expert group inquired in previous works and also considers the uncertainty of the environmental data, avoiding the crisp values and offering a range of overlapping between the different fuzzy sets. However, the results even if being more conservative with fuzzy logic, are in good agreement with a solid methodology such as the COMMPS procedure.

  20. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.

    Science.gov (United States)

    Johnson, Andrew C; Jürgens, Monika D; Lawlor, Alan J; Cisowska, Iwona; Williams, Richard J

    2014-10-01

    Differential filtration was used to measure silver (>2 nm) entering and leaving nine sewage treatment plants (STPs). The mean concentration of colloidal (2-450 nm) silver, which includes nanosilver, was found to be 12 ng L(-1) in the influent and 6 ng L(-1) in the effluent. For particulate silver (>450 nm) the mean values were 3.3 μg L(-1) for influent and 0.08 μg L(-1) for effluent. Thus, removal was around 50% and 98% for colloidal and particulate silver respectively. There was no significant difference in performance between the different types of STP investigated (three examples each of activated sludge, biological filter and biological filter with tertiary treatment located across England, UK). In addition, treated sewage sludge samples (biosolids) were taken from several STPs to measure the total silver likely to be discharged to soils. Total silver was 3-14 mg kg(-1) DW in the sludge (median 3.6), which if the sludge were added at the recommended rate to soil, would add 11 μg kg(-1) yr(-1) to the top 20 cm soil layer. Predicted concentrations using the LF2000-WQX model for all the rivers of England and Wales for nanosilver were typically in the 0-1 ng L(-1) range but levels up to 4 ng L(-1) are possible in a high discharge and low flow scenario. Predicted concentrations for the total particulate forms were mostly below 50 ng L(-1) except for a high discharge and low flow scenario where concentrations could reach 135 ng L(-1).

  1. Application of Non-Thermal Plasma to the Treatment of Effluent Discharged Into River Choumlou in Bafoussam, West Cameroon

    Directory of Open Access Journals (Sweden)

    Estella T. Njoyim

    2016-07-01

    Full Text Available Most rivers in urban areas of developing countries are the of effluents discharged from industries. This is the case of River Choumlou (in Bafoussam-West Region, Cameroon which receives all discharges from “Brasseries du Cameroun”, Bafoussam branch. The objective of this work was to determine the level of organic contaminants in water samples and to treat the polluted samples using the non-thermal gliding arc plasma. Nonthermal plasma consists of charged particles, radicals and excited molecules. The aim was to show the interest of such a process for cleaning up of surface waters (real effluent and to cope with the protection of our environment. Due to the fact that pollution of streams and rivers from the discharge of sewage and industrial wastes poses a major problem to the environment, the researchers were particularly interested in investigating the oxidizing and acidifying properties of non-thermal plasma on polluted surface water. Samples were collected upstream and downstream from the brewery’s effluent outlet. Samples taken at the point R1 (downstream were first analyzed by volumetric and instrumental methods in order to determine the organoleptic, physico-chemical and organic parameters. These samples were then exposed to the gliding discharge in humid air for a time period of between 3-30 minutes. After 30 minutes of exposure, a decrease in turbidity (24.09%, BOD5 (44.93% and COD (48.92% were observed resulting in transparency apparition; with a decrease in pH (7.9 to 3 due to the formation of acidifying species in solution. These results reflect a considerable reduction in the pollution load of the water collected at R1. This work shows that the effectiveness of the Gliding Arc in wastewater treatment is attributed to the oxidizing power of the hydroxyl radical and acidifying power of the nitrogen monoxide radical formed in the plasma. Despite the low rate of reduction of COD and BOD5 in 30 min, it can be said that the plasma

  2. Appraisal of potential for injection-well recharge of the Hueco bolson with treated sewage effluent : preliminary study at the northeast El Paso area, Texas

    Science.gov (United States)

    Garza, Sergio; Weeks, Edwin P.; White, Donald E.

    1980-01-01

    The U.S. Geological Survey, in cooperation with the City of El Paso and the Texas Department of Water Resources, made a preliminary study of specific factors related to recharging the Hueco bolson in the northeast El Paso area with treated sewage effluent. The city is interested in the location and spacing of injection wells relative to (1) maintaining the injected effluent in the aquifer for a predetermined amount of time (residence time) before it is pumped out, (2) recovery by pumping of as much of the injected effluent as possible, and (3) the long-term effects of injection on water-level declines.

  3. Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment

    Institute of Scientific and Technical Information of China (English)

    Liang-liang WEI; Qing-liang ZHAO; Shuang XUE; Ting JIA

    2008-01-01

    This paper focused on the removal and transformation of the dissolved organic matter (DOM) in secondary effluent during the granular activated carbon (GAC) treatment. Using XAD-8/XAD-4 resins, DOM was fractionated into five classes:hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Subsequently, the water quality parameters of dissolved organic carbon (DOC), absorbance of ultraviolet light at 254 nm (UV-254), specific ultraviolet light absorbance (SUVA) and trihalomethane formation potential (THMFP) were analyzed for the unfractionated and fractionated water samples. The results showed that the order of the DOC removal with respect to DOM fractions was observed to be HPI>HPO-A>HPO-N>TPI-A>TPI-N. During the GAC treatment, the THMFP of the unfractionated water samples decreased from 397.4 μg/L to 176.5 μg/L, resulting in a removal efficiency of 55.6%. The removal order of the trihalomethanes (THMs) precursor was as follows: HPO-A>TPI-A>TPI-N>HPO-N>HPI. By the GAC treatment, the specific THMFP of HPO-A, TPI-A, TPI-N and the original unfractionated water samples had a noticeable decrease, while that of HPO-N and HPI showed a converse trend. The Fourier transform infrared (FTIR) results showed that the hydroxide groups, carboxylic acids, aliphatie C-H were significantly reduced by GAC treatment.

  4. Effluents quaity of woolen industrial units and efficiency of wastewater treatment plant at Jorbir, Bikaner, Rajasthan (India

    Directory of Open Access Journals (Sweden)

    Rajendra Singh

    2014-03-01

    Full Text Available Bikaner is one of the largest woolen scouring processing and industrial hub of the Asia. There are large no. Of woolen scouring and dying units in this city. However there are certain rules and regulations regarding the effluents expulsion and pollution control standards provided by national and international laws. The present work is an attempt for assessment of effluent and pollution parameters followed by woolen units as well as the efficiency of city waste water treatment plant. However subject is significantly related with public health , but the result s shows a poor performance and unawareness of state government.

  5. Occurrence of Cryptosporidium oocysts and Giardia cysts in effluent from sewage treatment plant from eastern Poland.

    Science.gov (United States)

    Sroka, Jacek; Stojecki, Krzysztof; Zdybel, Jolanta; Karamon, Jacek; Cencek, Tomasz; Dutkiewicz, Jacek

    2013-01-01

    Cryptosporidium spp. and Giardia lamblia (synonyms: Giardia duodenalis, Giardia intestinalis) are emerging protozoa causing disease in humans and animals worldwide. These parasites can pose a serious threat to immunocompromised people, for whom the symptoms are more severe and may include abdominal pain, watery diarrhoea, nausea, headaches, malaise, and fever. One of the sources of these parasites can be treated wastewater from wastewater treatment plants (WTPs). Samples of treated wastewater (effluent), each of 10 L volume, were collected from 13 municipal WTPs located in eastern Poland. Cryptosporidium oocysts and Giardia cysts were separated by the immunomagnetic method. The presence and/or concentration of protozoan (oo)cysts in effluent samples were determined by direct immunofluorescent microscopy, nested PCR and Real Time PCR. Viability of (oo)cysts was determined by double-staining with the use of Live/Dead BacLight kit (Invitrogen). Cryptosporidium spp. oocysts were detected in 8 WTPs (61.5%) and Giardia spp. cysts in 11 WTPs (84.6%) by microscopic analysis. Both pathogens were detected in samples from 7 WTPs. Median concentrations of Cryptosporidium and Giardia (oo)cysts in 13 examined samples were 2.2/L and 6.6/L, respectively, while mean concentrations were 28.5/L and 113.6/L, respectively. In positive samples, Cryptosporidium oocysts concentrations ranged from 0.4 - 154.1 oocysts per litre, and Giardia cysts concentrations ranged from 0.7 - 660 cysts per litre. By nested PCR, Giardia DNA was detected in 4 samples of the 13 examined, (30.8%) while Cryptosporidium DNA was never detected. In Real Time PCR, positive results for Giardia were obtained in 5 samples (38.5%) and in none of the samples for Cryptosporidium, with the exception of one equivocal result. Viable (oo)cysts of Cryptosporidium and Giardia were detected in 3 out of 4 samples examined, in the ranges of 12.5 - 60% and 50 - 100% of total (oo)cysts, respectively. In view of our preliminary

  6. Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection.

    Science.gov (United States)

    Klamerth, Nikolaus; Malato, Sixto; Agüera, Ana; Fernández-Alba, Amadeo; Mailhot, Gilles

    2012-03-06

    The goal of this paper was to develop a modified photo-Fenton treatment able to degrade micro pollutants in municipal wastewater treatment plant (MWTP) effluents at a neutral pH with minimal iron and H(2)O(2) concentrations. Complexation of Fe by ethylenediamine-N,N'-disuccinic acid (EDDS) leads to stabilization and solubilization of Fe at natural pH. Photo-Fenton experiments were performed in a pilot compound parabolic collector (CPC) solar plant. Samples were treated with solid phase extraction (SPE) and analyzed by HPLC-Qtrap-MS. The rapid degradation of contaminants within the first minutes of illumination and the low detrimental impact on degradation of bicarbonates present in the water suggested that radical species other than HO(•) are responsible for the efficiency of such photo-Fenton process. Disinfection of MWTP effluents by the same process showed promising results, although disinfection was not complete.

  7. Mercury in ground water, septage, leach-field effluent, and soils in residential areas, New Jersey coastal plain

    Science.gov (United States)

    Barringer, J.L.; Szabo, Z.; Schneider, D.; Atkinson, W.D.; Gallagher, R.A.

    2006-01-01

    Water samples were collected from domestic wells at an unsewered residential area in Gloucester County, New Jersey where mercury (Hg) concentrations in well water were known to exceed the USEPA maximum contaminant level (MCL) of 2000 ng/L. This residential area (the CSL site) is representative of more than 70 such areas in southern New Jersey where about 600 domestic wells, sampled previously by State and county agencies, yielded water containing Hg at concentrations that exceed the MCL. Recent studies indicate that background concentrations of Hg in water from this unconfined sand and gravel aquifer system are iron concentrations indicate that reductive dissolution of iron hydroxides in soils may release Hg to the percolating effluent. ?? 2005 Elsevier B.V. All rights reserved.

  8. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements.

    Science.gov (United States)

    Platikanov, S; Rodriguez-Mozaz, S; Huerta, B; Barceló, D; Cros, J; Batle, M; Poch, G; Tauler, R

    2014-07-01

    Chemometric techniques like Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS) are used to explore, analyze and model relationships among different water quality parameters in wastewater treatment plants (WWTP). Different data sets generated by laboratory analysis and by an automatic multi-parametric monitoring system with a new designed optical device have been investigated for temporal variations on water quality parameters measured in the water influent and effluent of a WWTP over different time scales. The obtained results allowed the discovery of the more important relationships among the monitored parameters and of their cyclic dependence on time (daily, monthly and annual cycles) and on different plant management procedures. This study intended also the modeling and prediction of concentrations of several water components and parameters, especially relevant for water quality assessment, such as Dissolved Organic Matter (DOM), Total Organic Carbon (TOC) nitrate, detergent, and phenol concentrations. PLS models were built to correlate target concentrations of these constituents with UV spectra measured in samples collected at (1) laboratory conditions (in synthetic water mixtures); and at (2) WWTP conditions (in real water samples from the plant). Using synthetic water mixtures, specific wavelengths were selected with the aim to establish simple and reliable prediction models, which gave good relative predictions with errors of around 3-4% for nitrates, detergent and phenols concentrations and of around 15% for the DOM in external validation. In the case of nitrate and TOC concentrations modeling in real water samples from the effluent of the WWTP using the reduced spectral data set, results were also promising with low prediction errors (less than 20%).

  9. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, Jr, W W; Hancher, C W; Patton, B D; Shumate, II, S E

    1980-01-01

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods will be presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. The fluidized-bed biological denitrification process is an environmentally acceptable and economically sound method for the disposal of nonreusable sources of nitrate effluents. A very high denitrification rate can be obtained in a FBR as the result of a high concentration of denitrification bacteria in the bioreactor and the stagewise operation resulting from plug flow in the reactor. The overall denitrification rate in an FBR ranges from 20- to 100-fold greater than that observed for an STR bioreactor. It has been shown that the system can be operated using Ca/sup 2 +/, Na/sup +/, or NH/sub 4//sup +/ cations at nitrate concentrations up to 1 g/liter without inhibition. Biological sorption of uranium and other radionuclides (particularly the actinides) from dilute aqueous waste streams shows considerable promise as a means of recovering these valuable resources and reducing the environmental impact, however, further development efforts are required.

  10. Dissolved Organic Nitrogen Inputs from Wastewater Treatment Plant Effluents Increase Responses of Planktonic Metabolic Rates to Warming.

    Science.gov (United States)

    Vaquer-Sunyer, Raquel; Conley, Daniel J; Muthusamy, Saraladevi; Lindh, Markus V; Pinhassi, Jarone; Kritzberg, Emma S

    2015-10-06

    Increased anthropogenic pressures on coastal marine ecosystems in the last century are threatening their biodiversity and functioning. Global warming and increases in nutrient loadings are two major stressors affecting these systems. Global warming is expected to increase both atmospheric and water temperatures and increase precipitation and terrestrial runoff, further increasing organic matter and nutrient inputs to coastal areas. Dissolved organic nitrogen (DON) concentrations frequently exceed those of dissolved inorganic nitrogen in aquatic systems. Many components of the DON pool have been shown to supply nitrogen nutrition to phytoplankton and bacteria. Predictions of how global warming and eutrophication will affect metabolic rates and dissolved oxygen dynamics in the future are needed to elucidate their impacts on biodiversity and ecosystem functioning. Here, we experimentally determine the effects of simultaneous DON additions and warming on planktonic community metabolism in the Baltic Sea, the largest coastal area suffering from eutrophication-driven hypoxia. Both bacterioplankton community composition and metabolic rates changed in relation to temperature. DON additions from wastewater treatment plant effluents significantly increased the activation energies for community respiration and gross primary production. Activation energies for community respiration were higher than those for gross primary production. Results support the prediction that warming of the Baltic Sea will enhance planktonic respiration rates faster than it will for planktonic primary production. Higher increases in respiration rates than in production may lead to the depletion of the oxygen pool, further aggravating hypoxia in the Baltic Sea.

  11. Electrochemical treatment of olive mill wastewater: Treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools

    Institute of Scientific and Technical Information of China (English)

    Chokri Belaid; Moncef Khadraoui; Salma Mseddi; Monem Kallel; Boubaker Elleuch; Jean Francois Fauvarque

    2013-01-01

    Problems related with industrials effluents can be divided in two parts:(1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes.This investigation deals with these two aspects,an electrochemical treatment method of an olive mill wastewater (OMW) under pla ttmized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination.The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution.Indeed,87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation.Moreover,55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced.On the other hand,UV-Visible spectrophotometry,Gaz chromatography/mass spectrometry,cyclic voltammetry and 13C Nuclear Magnetic Resonance (NMR)showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW.It was concluded that electrochemical oxidation in a modified Gaignard reactor is a promising process for the destruction of all phenolic compounds present in OMW.Among the monitoring analytical tools applied,cyclic voltammetry and 13C NMR are among the techniques that are introduced for the first time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance.

  12. Ecological health assessments based on whole effluent toxicity tests and the index of biological integrity in temperate streams influenced by wastewater treatment plant effluents.

    Science.gov (United States)

    Ra, Jin Sung; Kim, Sang Don; Chang, Nam Ik; An, Kwang-Guk

    2007-09-01

    Whole effluent toxicity (WET) tests and ecosystem health assessments, based on test guidelines of U.S. Environmental Protection Agency (U.S. EPA) and index of biological integrity (IBI), were conducted on various streams located in Youngsan River watershed, Korea. The WET tests showed that about 33 and 82% of wastewater treatment plants (WWTPs) exhibited significant toxicity to Daphnia magna and Selenastrum capricornutum, respectively. Small WWTPs with low discharge volumes contributed less than 1% to the total stream toxicity. Fish community compositions and trophic guild analysis showed that the diversity index was greater in the control than in impacted streams, and the proportion of omnivore species was less in the control. Also, ecosystem health assessments, based on the IBI, showed distinct differences between the control and impacted sites of WWTPs. Model values of the IBI, based on 12 stream data sets, averaged 28, which is judged as a fair to poor condition according to the U.S. EPA criteria. The mean IBI in the control sites was 42, indicating good stream condition, whereas the impacted sites was scored 21, indicating poor condition. Overall, WET tests and ecosystem health assessments suggested the WWTP effluents had evident toxic effects on the biota, and impacted the species compositions and trophic guilds, resulting in degradation of the stream ecosystem health.

  13. Impact of Shrimp Farm Effluent on Water Quality in Coastal Areas of the World Heritage-Listed Ha Long Bay

    Directory of Open Access Journals (Sweden)

    Thuyet D. Bui

    2012-01-01

    Full Text Available Problem statement: Shrimp farming has rapidly developed in coastal areas of the World Heritage-listed Ha Long Bay since the last decade. Effluent discharged from shrimp farms with high levels of nutrient waste may cause eutrophication in receiving waterways. Therefore, assessing water quality at tidal creeks receiving shrimp farm effluent in coastal areas of Ha Long Bay supports environmental protection and decision making for sustainable development of the region. Approach: Water samples were collected at 3 different locations for spatial assessment: inside sections of creeks directly receiving farm effluent (IEC, from main creeks adjacent to points of effluent discharge outside concentrated shrimp farms (OEC and a few kilometers away from shrimp farm (ASF. Samples were taken on 3 occasions for temporal assessment. Parameters related to nutrient waste from shrimp farms, including: Total Ammonia Nitrogen (TAN, Nitrite-Nitrogen (NO2-N, Nitrate-Nitrogen (NO3-N, Total Phosphorus (TP, Dissolved Orthophosphate (PO4-P, Biochemical Oxygen Demand (BOD, Chemical Oxygen Demand (COD, Total Suspended Solid (TSS, Chlorophyll-a (Chl-a, Temperature, Salinity, pH and Dissolved Oxygen (DO were determined using standard methods. Results: There were statistically significant differences in the concentrations of TAN, NO2-N, NO3-N, TP, PO4-P, BOD, COD and Chl-a among IEC, OEC, ASF and the levels of these parameters increased after shrimp crops, especially after the main shrimp crop of the season in North Vietnam. The concentrations of TAN, NO3-N, TP, BOD, COD, Chl-a, TSS at IEC sites were higher than recommended for protecting aquatic ecosystems. Principal Component Analysis (PCA efficiently summarized patterns of co-variation in water quality parameters among locations and study times. Conclusion/Recommendations: The findings of this study indicate that greater awareness of the environmental impacts of shrimp farms is required if this industry is to be sustainable

  14. Palm oil mill effluent treatment and utilization to ensure the sustainability of palm oil industries.

    Science.gov (United States)

    Hasanudin, U; Sugiharto, R; Haryanto, A; Setiadi, T; Fujie, K

    2015-01-01

    The purpose of this study was to evaluate the current condition of palm oil mill effluent (POME) treatment and utilization and to propose alternative scenarios to improve the sustainability of palm oil industries. The research was conducted through field survey at some palm oil mills in Indonesia, in which different waste management systems were used. Laboratory experiment was also carried out using a 5 m(3) pilot-scale wet anaerobic digester. Currently, POME is treated through anaerobic digestion without or with methane capture followed by utilization of treated POME as liquid fertilizer or further treatment (aerobic process) to fulfill the wastewater quality standard. A methane capturing system was estimated to successfully produce renewable energy of about 25.4-40.7 kWh/ton of fresh fruit bunches (FFBs) and reduce greenhouse gas (GHG) emissions by about 109.41-175.35 kgCO2e/tonFFB (CO2e: carbon dioxide equivalent). Utilization of treated POME as liquid fertilizer increased FFB production by about 13%. A palm oil mill with 45 ton FFB/hour capacity has potential to generate about 0.95-1.52 MW of electricity. Coupling the POME-based biogas digester and anaerobic co-composting of empty fruit bunches (EFBs) is capable of adding another 0.93 MW. The utilization of POME and EFB not only increases the added value of POME and EFB by producing renewable energy, compost, and liquid fertilizer, but also lowers environmental burden.

  15. Purification ability and carbon dioxide flux from surface flow constructed wetlands treating sewage treatment plant effluent.

    Science.gov (United States)

    Wu, Haiming; Lin, Li; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Liu, Hai

    2016-11-01

    In this study, a two-year experiment was carried out to investigate variation of carbon dioxide (CO2) flux from free water surface constructed wetlands (FWS CW) systems treating sewage treatment plant effluent, and treatment performance was also evaluated. The better 74.6-76.6% COD, 92.7-94.4% NH4(+)-N, 60.1-84.7% TN and 49.3-70.7% TP removal efficiencies were achieved in planted CW systems compared with unplanted systems. The planted CW was a net CO2 sink, while the unplanted CW was a net CO2 source in the entire study period. An obvious annual and seasonal variability of CO2 fluxes from different wetland systems was also presented with the average CO2 flux ranging from -592.83mgm(-2)h(-1) to 553.91mgm(-2)h(-1) during 2012-2013. In addition, the net exchange of CO2 between CW systems and the atmosphere was significantly affected by air temperature, and the presence of plants also had the significant effect on total CO2 emissions.

  16. Baseline study of methane emission from anaerobic ponds of palm oil mill effluent treatment.

    Science.gov (United States)

    Yacob, Shahrakbah; Ali Hassan, Mohd; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2006-07-31

    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.

  17. Treatment of bio-digester effluent by electrocoagulation using iron electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mayank; Ponselvan, F. Infant Anto; Malviya, Jodha Ram [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Srivastava, Vimal Chandra, E-mail: vimalcsr@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Mall, Indra Deo, E-mail: id_mall2000@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2009-06-15

    The present paper deals with chemical oxygen demand (COD) reduction of a bio-digester effluent (BDE) in a batch electrocoagulation (EC) reactor using iron electrode. A central composite (CC) experimental design has been employed to evaluate the individual and interactive effects of four independent parameters on the COD removal efficiency. The parameters studied are current density (j): 44.65-223.25 A/m{sup 2}; initial pH (pH{sub 0}): 2-8; inter-electrode distance (g): 1-3 cm and electrolysis time (t): 30-150 min. The results have been analyzed using Pareto analysis of variance (ANOVA). Analysis showed a high coefficient of determination value (R{sup 2} = 0.8547) and satisfactory prediction for second-order regression model. Graphical response surface and contour plots have been used to locate the optimum values of studied parameters. Maximum COD and color reduction of 50.5% and 95.2%, respectively, was observed at optimum conditions. Present study shows that EC technique can be employed in distilleries to reduce the pollution load before treatment in aerobic treatment plants to meet the discharge standards.

  18. Optimization of Electrochemical Treatment Process Conditions for Distillery Effluent Using Response Surface Methodology.

    Science.gov (United States)

    Arulmathi, P; Elangovan, G; Begum, A Farjana

    2015-01-01

    Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD) and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD). The results showed that electrochemical treatment process effectively removed the COD (89.5%) and color (95.1%) of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm(2), electrolysis time of 103.27 min, and electrolyte (NaCl) concentration of 1.67 g/L, respectively.

  19. Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition.

    Science.gov (United States)

    Liu, Zhan-Guang; Zhou, Xue-Fei; Zhang, Ya-Lei; Zhu, Hong-Guang

    2012-01-01

    The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700m(3) chicken-manure continuous stirred tank reactor (CSTR). A 12.3L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35±1°C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5kg-COD/m(3)d over a hydraulic retention time of 1.5d, a maximum volumetric biogas production rate of 1.2m(3)/m(3)d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250mg/L) at an influent pH of 8.5-9.

  20. Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant

    Science.gov (United States)

    Li, Na; Hu, Yi; Lu, Yong-Ze; Zeng, Raymond J.; Sheng, Guo-Ping

    2016-05-01

    To meet the high quality standard of receiving water, the coagulation process using polyferric chloride (PFC) was used to further improve the water quality of effluent from wastewater treatment plants. Uniform design (UD) coupled with response surface methodology (RSM) was adopted to assess the effects of the main influence factors: coagulant dosage, pH and basicity, on the removal of total organic carbon (TOC), NH4+-N and PO43--P. A desirability function approach was used to effectively optimize the coagulation process for the comprehensive removal of TOC, NH4+-N and PO43--P to upgrade the effluent quality in practical application. The optimized operating conditions were: dosage 28 mg/L, pH 8.5 and basicity 0.001. The corresponding removal efficiencies for TOC, NH4+-N and PO43--P were 77.2%, 94.6% and 20.8%, respectively. More importantly, the effluent quality could upgrade to surface water Class V of China through coagulation under optimal region. In addition, grey relational analysis (GRA) prioritized these three factors as: pH > basicity > dosage (for TOC), basicity > dosage > pH (for NH4+-N), pH > dosage > basicity (for PO43--P), which would help identify the most important factor to control the treatment efficiency of various effluent quality indexes by PFC coagulation.

  1. Combined anaerobic digestion and photocatalytic treatment of distillery effluent in fluidized bed reactors focusing on energy conservation.

    Science.gov (United States)

    Apollo, Seth; Aoyi, Ochieng

    2016-09-01

    Anaerobic digestion (AD) can remove substantial amount of organic load when applied in treating distillery effluent but it is ineffective in colour reduction. Conversely, photodegradation is effective in colour reduction but has high energy requirement. A study on the synergy of a combined AD and ultra violet (UV) photodegradation treatment of distillery effluent was carried out in fluidized bed reactors to evaluate pollution reduction and energy utilization efficiencies. The combined process improved colour removal from 41% to 85% compared to that of AD employed as a stand-alone process. An overall corresponding total organic carbon (TOC) reduction of 83% was achieved. The bioenergy production by the AD step was 14.2 kJ/g total organic carbon (TOC) biodegraded while UV lamp energy consumption was 0.9 kJ/mg TOC, corresponding to up to 100% colour removal. Electrical energy per order analysis for the photodegradation process showed that the bioenergy produced was 20% of that required by the UV lamp to photodegrade 1 m(3) of undiluted pre-AD treated effluent up to 75% colour reduction. It was concluded that a combined AD-UV system for treatment of distillery effluent is effective in organic load removal and can be operated at a reduced cost.

  2. Alternatives for biodigester effluent treatment: economic impact; Impacto economico de um sistema de tratamento dos efluentes de biodigestores

    Energy Technology Data Exchange (ETDEWEB)

    Miele, Marcelo; Kunz, Airton; Correa, Juliano Corulli; Steinmetz, Ricardo [EMBRAPA Suinos e Aves, Concordia, SC (Brazil)], email: marcelo@cnpsa.embrapa.br; Bortoli, Marcelo [Universidade Federal de Santa Catarina, (UFSC), Florianopolis, SC (Brazil)

    2011-07-01

    The aim of this study was to present a prospective economic impact assessment of a biodigester liquid effluent treatment system. This system developed by Embrapa Swine and Poultry is composed by a N removal module and a P one, which can be attached to a biodigester, technology widely diffused in Brazil. Biodigesters do not remove nutrients (NPK) with high pollution potential of water resources and demanding high effluent transport costs. The analysis was based on Net Present Value (NPV) technique, using prototype performance information, market prices and wastewater analysis. The N module reduces more than ten times the surface needed to spread effluents. The P module attains the standard for discharge in water resources and makes this element available as fertilizer. The system has a significant impact on swine production costs, what can be reduced in farms which produces its own energy from manure. High effluent distribution costs also turn treatment more attractive. The study concludes that this is a promising technology which has to be validated. Financial support is needed to implement a real scale prototype to validate it. (author)

  3. Screening and evaluation of polymers as flocculation aids for the treatment of aquacultural effluents

    Science.gov (United States)

    Ebeling, J.M.; Rishel, K.L.; Sibrell, P.L.

    2005-01-01

    As environmental regulations become more stringent, environmentally sound waste management and disposal are becoming increasingly more important in all aquaculture operations. One of the primary water quality parameters of concern is the suspended solids concentration in the discharged effluent. For example, EPA initially considered the establishment of numerical limitations for only one single pollutant: total suspended solids (TSS). For recirculation systems, the proposed TSS limitations would have applied to solids polishing or secondary solids removal technology. The new rules and regulations from EPA (August 23, 2004) require only qualitative TSS limits, in the form of solids control best management practices (BMP), allowing individual regional and site specific conditions to be addressed by existing state or regional programs through NPDES permits. In recirculation systems, microscreen filters are commonly used to remove the suspended solids from the process water. Further concentration of suspended solids from the backwash water of the microscreen filter could significantly reduce quantity of discharge water. And in some cases, the backwash water from microscreen filters needs to be further concentrated to minimize storage volume during over wintering for land disposal or other final disposal options. In addition, this may be required to meet local, state, and regional discharge water quality. The objective of this research was an initial screening of several commercially available polymers routinely used as coagulation-flocculation aids in the drinking and wastewater treatment industry and determination of their effectiveness for the treatment of aquaculture wastewater. Based on the results of the initial screening, a further evaluation of six polymers was conducted to estimate the optimum polymer dosage for flocculation of aquaculture microscreen effluent and overall solids removal efficiency. Results of these evaluations show TSS removal was close to 99

  4. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  5. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.

    Science.gov (United States)

    Comett-Ambriz, I; Gonzalez-Martinez, S; Wilderer, P

    2003-01-01

    Anaerobic reactor biowaste effluent was treated with biofilm and activated sludge sequencing batch reactors to compare the performance of both systems. The treatment targets were organic carbon removal and nitrification. The pilot plant was operated in two phases. During the first phase, it was operated like a Moving Bed Biofilm Reactor (MBBR) with the Natrix media, with a specific surface area of 210 m2/m3. The MBBR was operated under Sequencing Batch Reactor (SBR) modality with three 8-hour cycles per day over 70 days. During the second phase of the experiment, the pilot plant was operated over 79 days as a SBR. In both phases the influent was fed to the reactor at a flow rate corresponding to a Hydraulic Retention Time (HRT) of 4 days. Both systems presented a good carbon removal for this specific wastewater. The Chemical Oxygen Demand (COD) total removal was 53% for MBBR and 55% for SBR. MBBR offered a higher dissolved COD removal (40%) than SBR (30%). The limited COD removal achieved is in agreement with the high COD to BOD5 ratio (1/3) of the influent wastewater. In both systems a complete nitrification was obtained. The different efficiencies in both systems are related to the different biomass concentrations.

  6. THE USE OF BIOREACTORS COUPLED WITH MEMBRANES FOR THE TREATMENT OF EFFLUENTS

    Directory of Open Access Journals (Sweden)

    Bergamasco R.

    1997-01-01

    Full Text Available The objectives of this paper are to verify the viability of operating a bioreactor coupled with a membrane, and to analyze the global mechanisms witch need to be considered in the bioreactional concept in the separation by membrane. In order to meet the proposed objectives, a culture with a synthetic substratum (ethanol was utilized. A mineral membrane with the following characteristics was used: a pore diameter of 0.2 m m, 19 channels of a 4 mm diameter, a width of 0.85 m, a filtering surface area of 0.2 m2, a pressure of 2 bar and a tangential velocity of 2 m/s. The experiments consisted of modifying the residence time of the substratum within the reactor. The following measurements were taken: chemical oxygen demand (COD, concentration of biomass and filtered flow. The results show a treated effluent of good quality, indicating that the time of hydraulic residence time influences the efficiency of the system and is influenced by the restriction of the filtered flow by a fast fouling of the membrane

  7. New trends on liquid effluent treatments: coprecipitation, adsorption, filtration, photo-catalysis, a complementary association of innovative tools

    Energy Technology Data Exchange (ETDEWEB)

    Barre, Yves [CEA, DEN, MAR, DTCD, SPDE, Laboratoire des Procedes Avances de Decontamination, 30207 Bagnols sur Ceze (France); Pacary, Vincent [CEA, DEN, MAR, DRCP, SCPS, LCSE, 30207 Bagnols sur Ceze (France); Schrive, Luc [CEA, DEN, MAR, DTCD, SPDE, Laboratoire des Fluides Supercritiques et Membranes, 30207 Bagnols sur Ceze (France); Guibal, Eric [Ecole des Mines d' Ales, Centre de Recherche LGEI, 6 avenue de Clavieres, 30319 Ales Cedex (France)

    2009-06-15

    The ever increasing pressure to reduce the release of radioactive and other toxic substances into environment requires constant improvement/upgrading of processes and technologies for treatment and conditioning of liquid radioactive wastes. The extensive research is carried out on various processes including ion exchange, sorption, coprecipitation, membrane separation and photo-catalytic degradation of organics substances. A judicious combination of the processes is being pursued to meet the end objectives of improved decontamination and waste volume reduction. In a previous study, an elaborated model is proposed to predict the radioactive strontium decontamination factor of nuclear waste solutions which can be realized by using a coprecipitation process with barium sulphate. Simulations of the coprecipitation of strontium ions with barium sulphate have been performed in continuous and semibatch reactors. Thanks to these simulations, laws of the treatment efficiency variation as a function of several process parameters (mean residence time, stirring speed, concentration) have been determined and experimentally verified. This study leads to the determination of optimal treatment conditions. Three apparatus (recycling apparatus, fluidized bed and reactor/settling tank) providing these optimal conditions have been successfully tested and offered significant outlooks for the reduction of the residual sludge volume. Since the development of new ceramic membranes with large filtration area and their long term use verification in conventional water purification fields, these membrane processes have been adopted by the nuclear industry as a viable alternative treatment method for liquid radioactive wastes. Ion exchange is one of the most common and effective treatment methods for liquid radioactive. Spent ion exchange resins are considered to be problematic waste that requires precautions during its immobilization to meet the acceptance criteria for disposal. Efforts to

  8. Factorial design of a solar photocatalytic process to treatment of wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Francisco, Adriana Ribeiro; Paterniani, Jose Euclides Stipp [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: adriana.francisco@agr.unicamp.br; Kuwakino, Adriana Yuri [Universidade Estadual de Campinas (CESET/UNICAMP), Limeira, SP (Brazil). Centro Superior de Educacao Tecnologica

    2008-07-01

    Advanced treatments are attributed to improving the quality of various types of waste such as the sanitary wastewater. The heterogeneous photocatalysis is an alternative that allows to improve the effluents conditions. This is possible because many chemical compounds of environmental concern can be degraded using UV radiation on a semiconductor. However, to enable the efficiency of the process photocatalytic is necessary to conduct a study of optimization to establish favorable conditions between selected variables. The aim of this work was a reactor solar photocatalytic optimization using factorial design 2{sup k}, depending on variables: mass (TiO{sub 2}), time (min) and flow of air (L min{sup -1}), using as analytical response the removal of color. The experiment was conducted at the Faculty of Agricultural Engineering (FEAGRI) and it was used the sanitary wastewater of there. The results indicated that there were significant efficiency using combinations mass = 1000 mg L{sup -1}, time = 360 min and flow of air = 5 L min{sup -1}. In the calculations of factorial design, the time showed a marked positive effect of 7.76, while the flow of air, when in excess, had an inhibitor behavior, even getting positive effect. (author)

  9. Electrochemical treatment of rice grain-based distillery effluent: chemical oxygen demand and colour removal.

    Science.gov (United States)

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar

    2014-01-01

    The electrochemical (EC) treatment of rice grain-based distillery wastewater was carried out in a 1.5 dm3 electrolytic batch reactor using aluminium plate electrodes. With the four-plate configurations, a current density (j) of 89.3 A/m2 and pH 8 was found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 93% and 87%, respectively. The chemical dissolution of aluminium was strongly influenced by initial pH (pHi). At higher pHi (pH 9.5) anode consumption decreased while energy consumption increased. At the optimal current density 89.3 A/m2, the aluminium electrode consumption was 16.855 g/dm3 wastewater and energy consumption was 31.4 Wh/dm3 achieving a maximum COD removal of 87%. The settling and filterability characteristics ofelectrochemically treated sludge were also analysed at different pH. It was noted that treated slurry at pHi 9.5 gave best settling characteristic, which decreased with increase in pH. EC-treated effluent at pHi 8 had provided best filterability. Characteristics of scum and residues are also analysed at different pH.

  10. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass

    Directory of Open Access Journals (Sweden)

    Joy O. Iwuagwu

    2014-01-01

    Full Text Available Palm oil mill effluent (POME is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the fermentation was carried out at 150 rpm, 28 ± 2°C using an inoculum size of 1 mL of 106 cells. Yeasts were isolated from POME, dump site, and palm wine. The POME had chemical oxygen demand (COD 114.8 gL−1, total solid 76 gL−1, total suspended solid (TSS 44 gL−1 and total lipid 35.80 gL−1. Raw POME supported accumulation of 4.42 gL−1 dry yeast with amino acid content comparable or superior to the FAO/WHO standard for feed use SCP. Peak COD reduction (83% was achieved with highest biomass accumulation in 96 h using Saccharomyces sp L31. POME can be used as carbon source with little or no supplementation to achieve waste-to-value by producing feed grade yeast with reduction in pollution potential.

  11. Performance comparison between mesophilic and thermophilic anaerobic reactors for treatment of palm oil mill effluent.

    Science.gov (United States)

    Jeong, Joo-Young; Son, Sung-Min; Pyon, Jun-Hyeon; Park, Joo-Yang

    2014-08-01

    The anaerobic digestion of palm oil mill effluent (POME) was carried out under mesophilic (37°C) and thermophilic (55°C) conditions without long-time POME storage in order to compare the performance of each condition in the field of Sumatra Island, Indonesia. The anaerobic treatment system was composed of anaerobic hybrid reactor and anaerobic baffled filter. Raw POME was pretreated by screw decanter to reduce suspended solids and residual oil. The total COD removal rate of 90-95% was achieved in both conditions at the OLR of 15kg[COD]/m(3)/d. The COD removal in thermophilic conditions was slightly better, however the biogas production was much higher than that in the mesophilic one at high OLR. The organic contents in pretreated POME were highly biodegradable in mesophilic under the lower OLRs. The biogas production was 13.5-20.0l/d at the 15kg[COD]/m(3)/d OLR, and the average content of carbon dioxide was 5-35% in both conditions.

  12. Paraben resistance in bacteria from sewage treatment plant effluents in India.

    Science.gov (United States)

    Selvaraj, Krishna Kumar; Sivakumar, Senthilkumari; Sampath, Srimurali; Shanmugam, Govindaraj; Sundaresan, Umamaheswari; Ramaswamy, Babu Rajendran

    2013-01-01

    Parabens, the antimicrobial preservatives used in cosmetics, food and pharmaceuticals, are often detected in the aquatic environment. Generally, sewage treatment plants (STPs) receive community sewage containing parabens, which are ultimately released into streams/rivers. In this study, bacteria in STP effluents were evaluated for their resistance to parabens. The susceptibility was in the order of Staphylococcus aureus > Bacillus sp. >Escherichia coli > Pseudomonas aeruginosa. Gram-negative bacteria showed less susceptibility than their control and Gram-positive bacteria. Further, the bacteria were more sensitive towards butyl and ethyl parabens. Interestingly, the strains showed resistance to ≥5 mg of parabens, which is equivalent to or higher than reported environmental concentrations. The increase in paraben chain length did not enhance the susceptibility in all cases and it was understood that the activity may differ for each bacterium in the environment. This is the first profile on paraben resistance in common pathogens of Indian STPs. Paraben resistance may be developed due to continuous exposure even at sub-inhibitory and/or chronic levels in the environment and this resistance may be transferred to other pathogenic bacteria in receiving waters. Thus the study demonstrates the effectiveness of the disc diffusion method in environmental bacterial resistance assessment and addresses the risk involved in the use of parabens.

  13. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    Science.gov (United States)

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  14. Sequential in situ hydrotalcite precipitation and biological denitrification for the treatment of high-nitrate industrial effluent.

    Science.gov (United States)

    Cheng, Ka Yu; Kaksonen, Anna H; Douglas, Grant B

    2014-11-01

    A sequential process using hydrotalcite precipitation and biological denitrification was evaluated for the treatment of a magnesium nitrate (Mg(NO3)2)-rich effluent (17,000mgNO3(-)-N/L, 13,100mgMg/L) generated from an industrial nickel-mining process. The hydrotalcite precipitation removed 41% of the nitrate (7000mgNO3(-)-N/L) as an interlayer anion with an approximate formula of Mg5Al2(OH)14(NO3)2·6H2O. The resultant solute chemistry was a Na-NO3-Cl type with low trace element concentrations. The partially treated effluent was continuously fed (hydraulic retention time of 24h) into a biological fluidised bed reactor (FBR) with sodium acetate as a carbon source for 33days (1:1 v/v dilution). The FBR enabled >70% nitrate removal and a maximal NOx (nitrate+nitrite) removal rate of 97mg NOx-N/Lh under alkaline conditions (pH 9.3). Overall, this sequential process reduced the nitrate concentration of the industrial effluent by >90% and thus represents an efficient method to treat Mg(NO3)2-rich effluents on an industrial scale.

  15. Evaluation of radioecological impact of the effluents from the mineral treatment unit on Antas Reservoir - Caldas - MG

    Energy Technology Data Exchange (ETDEWEB)

    Ronqui, Leilane B.; Gomes, Heliana A.; Nascimento, Marcos Roberto Lopes [Comissao Nacional de Energia Nuclear (CNEN), Pocos de Caldas, MG (Brazil). Laboratorio]. E-mail: leilanebio@yahoo.com.br; hgomes@cnen.gov.br; pmarcos@cnen.gov.br; Seleghim, Mirna H.R. [Sao Carlos Univ., SP (Brazil). Faculdade de Biologia. Dept. de Ecologia e Biologia Evolutiva]. E-mail: mirnaiqsc@usp.br

    2005-07-01

    The Antas Reservoir (AR) is an aquatic body that was built in 1982 for supplying of the Mineral Treatment Unit - Brazilian Nuclear Industries (UTM/INB), an uranium mining and processing facility. Currently the reservoir receives the treated effluents from pit mine (PM) and the sterile piles. This study was conducted in order to survey the possible environmental impact caused by this nuclear installation on the AR (points 041 and 014S). During the period of eight months, these two water bodies (points 041, 014 and PM) were evaluated through the physical chemical variables as well as radiological and microbiological variables. According to the results obtained it was verified that this nuclear installation discharged effluents into the AR outside the standards established by the current regulation for manganese (3.13 mg.L{sup -1}) and fluoride (7.12 mg.L{sup -1}) in class 3 water. Such results agreed with the biological analysis, since the P041 that receives the treated effluent from the PM presented the smallest diversity and biomass of protozooplanktonic organisms, indicating a possible environmental impact in this ecosystem due to the discharge of effluent by this mining company. (author)

  16. Adding silver and copper to hydrogen peroxide and peracetic acid in the disinfection of an advanced primary treatment effluent.

    Science.gov (United States)

    Orta De Velásquez, M T; Yáñez-Noguez, I; Jiménez-Cisneros, B; Luna Pabello, V M

    2008-11-01

    This paper evaluates the efficacy of hydrogen peroxide (HP) and peracetic acid (PAA) in the disinfection of an Advanced Primary Treatment (APT) effluent, and how said disinfection capacities can be enhanced by combining the oxidants with copper (Cu2+) and silver (Ag). The treatment sequence consisted of APT (adding chemicals to water to remove suspended solids by coagulation and flocculation), followed by disinfection with various doses of HP, HP+Cu2+, HP+Ag, PAA and PAA+Ag. Microbiological quality was determined by monitoring concentrations of fecal coliforms (FC), pathogenic bacteria (PB) and helminth eggs (HE) throughout the sequence. The results revealed that APT effluent still contains very high levels of bacteria as the treatment only removes 1-2 log of FC and PB, but the reduction in the number of viable helminth eggs was 83%. Subsequent disinfection stages demonstrated that both HP+Cu2+ and HP+Ag have a marked disinfection capacity for bacteria (3.9 and 3.4 log-inactivation, respectively). Peracetic acid on its own was already extremely efficient at disinfecting for bacteria, and the effect was enhanced when combining PAA with silver (PAA+Ag). The best result for HE removal was achieved by combining PAA with silver (PAA+Ag) at doses of 20 + 2.0 mg l(-1), respectively. The study concluded that the PAA+Ag and HP+Ag combinations were good alternatives for APT effluent disinfection, because the disinfected effluents met the standards in NOM-001-SEMARNAT-1996, Mexico's regulation governing the microbiological quality required in treated wastewater destined for unrestricted reuse in agricultural irrigation (< or =1 helminths per litre). Combining either of these disinfection treatments with a primary method such as APT, therefore, offers an effective and practical way of reducing the health risks normally associated with the reuse of wastewaters.

  17. Comparison the Effect of Disinfection of Yasuj Sewage Effluent with UV/Paa/Naocl Combined Treatment : A Pilot Plant Study

    Directory of Open Access Journals (Sweden)

    SA Sadat

    2008-12-01

    Full Text Available ABSTRACT: Introduction & objective: Disinfection of effluent swage treatment plant, is one of the the most important stage of treatment effluent that has been done with purpose of water sources protection or water reuse.Chlorine compounds are the most common disinfectants that have been ever used for this idea.Todays,with attention to the production of dangerous by-products,that can cause by using chlorine compounds in water, other disinfections such as H2o2,paa and uv ,o3 combinations of two or three of them has been stated for replacing items. This study designed to compare the disinfection efficiency of combinations of three common disinfectants mentioned above in pilot plant study. Materials & Methods: This is an empirical study that was done on sewage effluent of Yasuj wastewater treatment plant in 1387. During sample operations, through 5 months, each 10 days, two sample sets with different concentrations of each disinfectant compound were experimented on determining total coliforms(TC, fecal coliforms(FC, fecal streptococci(FS according to standard methods for waste water experiments. Reseived data was analysed by SPSS software and ANOVA, statistical test. Results: This study indicates that combined methods Paa/Naocl/UV, Paa/UV, Naocl/UV, in order from left to right, has the most efficiency in decreasing total coliforms and Paa/Naocl/UV have the most efficiency and UV the least efficiency and Paa/UV, Naocl/UV have the same efficiency in decreasing fecal coliforms. all the combined disinifection methods that have been used in this research most times completely eliminate fecal streptococci from swage of Yasouj wastewater treatment plant. Conclusion:The result indicate that combined uses of Paa, Naocl, with UV for disinfection sewage effluent make an intensive effect on disinfectant materials over each other and consequently increasing efficiency of this method in deactivation total coliforms, fecal coliforms, fecal streptococci .

  18. Solar photocatalysis of a recalcitrant coloured effluent from a wastewater treatment plant.

    Science.gov (United States)

    Vilar, Vítor J P; Gomes, Ana I E; Ramos, Vanessa M; Maldonado, Manuel I; Boaventura, Rui A R

    2009-05-01

    A photocatalytic study of a coloured effluent from a wastewater treatment plant was carried out in a pilot plant using compound parabolic collectors (CPC) in order to find out the best conditions for colour removal, since the discharge limit for this parameter is not achieved after conventional wastewater treatment. The interaction between ultraviolet natural radiation and TiO(2) strongly enhanced the colour degradation rate. Different TiO(2) concentrations were tested and the optimum concentration achieved was 200 mg L(-1). The use of peroxydisulfate (S(2)O(8)(2-)) as an additional electron scavenger gave a noticeable effect on colour and dissolved organic carbon (DOC) removal due to the formation of additional powerful oxidant species (OH and SO(4) (-)). However, hydrogen peroxide (H(2)O(2)) as additional oxidant was more efficient on colour degradation than S(2)O(8)(2-). The amount of energy necessary for the same colour removal (C/C(0) < 0.1) was 6, 14 and 80 kJ(UV) L(-1), respectively, for the following systems using sunlight: 200 mg L(-1) TiO(2) + 5 mM H(2)O(2), 200 mg L(-1) TiO(2) + 2 mM S(2)O(8)(2-) and 200 mg L(-1) TiO(2). The first-order kinetic constants (0.487, 0.207 and 0.053 L kJ(-1)) and initial degradation rates (32.1, 10.0 and 2.2 mg kJ(-1)) showed the same behaviour.

  19. Baseline study of methane emission from open digesting tanks of palm oil mill effluent treatment.

    Science.gov (United States)

    Yacob, Shahrakbah; Hassan, Mohd Ali; Shirai, Yoshihito; Wakisaka, Minato; Subash, Sunderaj

    2005-06-01

    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.

  20. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity.

    Science.gov (United States)

    Patel, Tallika L; Patel, Bhargav C; Kadam, Avinash A; Tipre, Devayani R; Dave, Shailesh R

    2015-01-01

    The present study was aimed towards the effective bio-treatment of actual industrial effluent containing as high as 42,000 mg/L COD (chemical oxygen demand), >28,000 ADMI (American Dye Manufacturers Institute) color value and four heavy metals using indigenous developed bacterial consortium TSR. Mineral salt medium supplemented with as low as 0.02% (w/v) yeast extract and glucose was found to remove 70% ADMI, 69% COD and >99% sorption of heavy metals in 24 h from the effluent by consortium TSR. The biodegradation of effluent was monitored by UV-vis light, HPLC (high performance liquid chromatography), HPTLC (high performance thin layer chromotography) and FTIR (Fourier transform infrared spectroscopy) and showed significant differences in spectra of untreated and treated effluent, confirming degradation of the effluent. Induction of intracellular azoreductase (107%) and NADH-DCIP reductase (128%) in addition to extracellular laccase (489%) indicates the vital role of the consortium TSR in the degradation process. Toxicity study of the effluent using Allium cepa by single cell gel electrophoresis showed detoxification of the effluent. Ninety per cent germination of plant seeds, Triticum aestivum and Phaseolus mungo, was achieved after treatment by consortium TSR in contrast to only 20% and 30% germination of the respective plants in case of untreated effluent.

  1. Field study of moving bed biofilm reactor technology for post-treatment of wastewater lagoon effluent at 1 degree C.

    Science.gov (United States)

    Almomani, Fares A; Delatolla, Robert; Ormeci, Banu

    2014-08-01

    The goal of this study was to investigate the potential use ofmoving bed biofilm reactor (MBBR) systems as ammonia removal post-treatment units for wastewater (WW) treatment lagoons that demonstrate large temperature changes throughout their operational year (1 - 20 degrees C). The study was carried out over a six-month period using laboratory-scale MBBR reactors fed with incoming effluent from a full-scale lagoon. The study shows that significant average ammonia removal rates of 0.26 and 0.11 kgN/m . d were achieved at 20 degrees C and 1C. The increase in the ammonia removal rates with increasing temperature from 1 degrees C to 20 degrees C showed a strong correlation to an applied temperature correction coefficient model. No significant accumulation of effluent nitrite was observed at 1 degrees C or after being fed with synthetic wastewater (SWW); indicating that cold temperatures and transitions from real WW to SWW did not stress the nitrifiers. Furthermore, the study demonstrates that changes in temperature or changes from real WW to SWW do not affect the mass of biofilm attached per MBBR carrier. Hence, based on the results of this study, it is concluded that MBBR is a promising technology for post-treatment ammonia removal of WW lagoon effluent.

  2. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.

    Science.gov (United States)

    Bonvin, Florence; Jost, Livia; Randin, Lea; Bonvin, Emmanuel; Kohn, Tamar

    2016-03-01

    In an effort to mitigate the discharge of micropollutants to surface waters, adsorption of micropollutants onto powdered activated carbon (PAC) after conventional wastewater treatment has been identified as a promising technology for enhanced removal of pharmaceuticals and pesticides from wastewater. We investigated the effectiveness of super-fine powdered activated carbon, SPAC, (ca. 1 μm mean particle diameter) in comparison to regular-sized PAC (17-37 μm mean diameter) for the optimization of micropollutant removal from wastewater. Adsorption isotherms and batch kinetic experiments were performed for 10 representative micropollutants (bezafibrate, benzotriazole, carbamazepine, diclofenac, gabapentin, mecoprop, metoprolol, ofloxacin, sulfamethoxazole and trimethoprim) onto three commercial PACs and their super-fine variants in carbonate buffer and in wastewater effluent. SPAC showed substantially faster adsorption kinetics of all micropollutants than conventional PAC, regardless of the micropollutant adsorption affinity and the solution matrix. The total adsorptive capacities of SPAC were similar to those of PAC for two of the three tested carbon materials, in all tested waters. However, in effluent wastewater, the presence of effluent organic matter adversely affected micropollutant removal, resulting in lower removal efficiencies especially for micropollutants with low affinity for adsorbent particles in comparison to pure water. In comparison to PAC, SPAC application resulted in up to two-fold enhanced dissolved organic carbon (DOC) removal from effluent wastewater. The more efficient adsorption process using SPAC translates into a reduction of contact time and contact tank size as well as reduced carbon dosing for a targeted micropollutant removal. In the tested effluent wastewater (5 mg/L DOC), the necessary dose to achieve 80% average removal of indicator micropollutants (benzotriazole, diclofenac, carbamazepine, mecoprop and sulfamethoxazole) ranged

  3. Toxicity Identification and Evaluation for the Effluent from Wastewater Treatment Plant in Industrial Complex using D.magna

    Science.gov (United States)

    Lee, S.; Keum, H.; Chun Sang, H.

    2015-12-01

    In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government

  4. Treatment of shrimp effluent by sedimentation and oyster filtration using Crassostrea gigas and C. rhizophorae

    Directory of Open Access Journals (Sweden)

    Roberto Ramos

    2009-06-01

    Full Text Available Efficiency in removing particulate matter from Litopenaeus vannamei shrimp culture effluent was assessed in laboratory scale employing sedimentation and oysters Crassostrea gigas and C. rhizophorae filtration processes. Cylindroconical tanks (100 L were used in duplicate for sedimentation and 50-L in triplicate for oyster filtration. Fifteen oysters of each species weighing 76-80 g were stocked in each of the filtration treatment experimental units (biomass of 1065 - 1174 g oyster per unit. The control treatment was a tank similar to those used in the filtration treatment but with empty oyster shells. Hydraulic retention time of the effluent was of 6 hours in each treatment. First, effluent went through sedimentation, and then the supernatant went through the filtration tanks. Temperature, pH, dissolved oxygen, salinity, turbidity, total suspended solids, total volatile solids, chlorophyll a and BOD5 were evaluated. During sedimentation and filtration, temperature, pH, salinity and dissolved oxygen concentration remained stable. Sedimentation removed 18, 5.6, 27.5, 45.40 and 23.2% of turbidity, total suspended solids, total volatile solids, chlorophyll a and BOD5, respectively. Chlorophyll a and BOD5 after sedimentation presented significant difference (PEm escala laboratorial, foi comparada a eficiência de remoção de material particulado presente no efluente do cultivo de camarão branco Litopenaeus vannamei, mediante o processo de sedimentação e filtração com ostra nativa Crassostrea rhizophorae e com ostra do pacifico Crassostrea gigas. No processo de sedimentação foram empregados tanques cilindro cônico, em duplicata, de cor preta com 100 L de capacidade total. Para o processo de filtração foram empregados tanques cilindro cônicos, em triplicata, de cor preta de 50 L de volume total. No tratamento de filtração cada unidade experimental foi estocada com 15 indivíduos de ostras de ambas as espécies, com peso médio entre 76

  5. Design of polyelectrolyte multilayer membranes for ion rejection and wastewater effluent treatment

    Science.gov (United States)

    Sanyal, Oishi

    Polyelectrolyte multilayer (PEM) membranes present a special class of nanostructured membranes which have potential applications in a variety of water treatment operations. These membranes are fabricated by the layer-by-layer (LbL) assembly of alternately charged polyelectrolytes on commercial membrane surfaces. A large variety of polyelectrolytes and their varied deposition conditions (pH, number of bilayers etc.) allow very fine tuning of the membrane performance in terms of permeability and rejection. The first part of this thesis is about the application of PEM membranes to the removal of perchlorate ion from water. Being a monovalent ion, it is most effectively removed by a reverse osmosis (RO) membrane. However, these membranes inherently have very low fluxes which lead to high pressure requirements. In our work, we modified the surface of a nanofiltration (NF) membrane by the LbL assembly of oppositely charged polyelectrolytes. The appropriate tuning of the LbL conditions led to the development of a membrane with significantly higher flux than RO membranes but with equivalent perchlorate rejection. This was one of the best trade-offs offered by PEM membranes for monovalent ion rejection as has been reported in literature so far. While PEM membranes have mostly shown great potential in ion-rejection studies, they have seldom been tested for real wastewater effluents. The second part of this thesis, therefore, deals with evaluating the applicability of PEM membranes to treating an electrocoagulation (EC)-treated high strength wastewater. Two types of very commonly used polyelectrolyte combinations were tried out -- one of which was an ionically crosslinked system and the other one was covalently crosslinked. Both the types of PEM membranes showed a high level of COD reduction from the feed stream with higher fluxes than commercial RO membranes. One major challenge in using membranes for wastewater treatment is their fouling propensity. Like many other

  6. Comparative study on the treatment of raw and biologically treated textile effluents through submerged nanofiltration.

    Science.gov (United States)

    Chen, Qing; Yang, Ying; Zhou, Mengsi; Liu, Meihong; Yu, Sanchuan; Gao, Congjie

    2015-03-02

    Raw and biologically treated textile effluents were submerged filtrated using lab-fabricated hollow fiber nanofiltration membrane with a molecular weight cut-off of about 650 g/mol. Permeate flux, chemical oxygen demand (COD) reduction, color removal, membrane fouling, and cleaning were investigated and compared by varying the trans-membrane pressure (TMP) and volume concentrating factor (VCF). It was found that both raw and biologically treated textile effluents could be efficiently treated through submerged nanofiltration. The increase of TMP resulted in a decline in water permeability, COD reduction, color removal, and flux recovery ratio, while the increase of VCF resulted in both increased COD reduction and color removal. Under the TMP of 0.4 bar and VCF of 5.0, fluxes of 1.96 and 2.59 l/m(2)h, COD reductions of 95.7 and 94.2%, color removals of 99.0, and 97.3% and flux recovery ratios of 91.1 and 92.9% could be obtained in filtration of raw and biologically treated effluents, respectively. After filtration, the COD and color contents of the raw effluent declined sharply from 1780 to 325 mg/l and 1.200 to 0.060 Abs/cm, respectively, while for the biologically treated effluent, they decreased from 780 to 180 mg/l and 0.370 to 0.045 Abs/cm, respectively.

  7. Treatment of IGCC power station effluents by physico-chemical and advanced oxidation processes.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; Sanmartín, I; García-Peña, F; Coca, P

    2009-03-01

    The aim of this work was to improve the quality of aqueous effluents coming from the Gasification Unit in an Integrated Gasification Combined Cycle (IGCC) Thermoelectric Power Station, with the purpose of fulfilling the future more demanding normative. To this end, an integral wastewater treatment including coagulation, flocculation, neutralization, photocatalytic oxidation, and ion-exchange has been studied. A final scheme has been proposed to remove pollutants. All the parameters of the treated wastewater are below pouring specifications. In the first stage, the wastewater was treated with CaCl2 (optimal dose=11 g CaCl2/g F-) as coagulant and a commercial anionic polyelectrolyte (optimal dose=0.02 g/g F-) as flocculant to remove fluoride ions (99%) and suspended solids (92%). The water was then neutralized, improving the degree of transmission of ultraviolet light, allowing the faster photo-degradation of pollutants. The photochemical study included different systems (H2O2, UV/H2O2, Fenton, Fenton-like, UV/Fenton, UV/Fenton-like and UV/H2O2/O2). In the Fenton-like system, the influence of two parameters (initial concentration of H2O2 and amount of Cu(II)) on the degradation of cyanide and formate (taken as the reference of the process) was studied. Experimental results were fit using neural networks (NNs). Results showed that the photocatalytic process was effective for total cyanide destruction after 60 min, while 180 min was needed to remove 80% of formates. However, a more simple system with UV/H2O2/O2 yields similar results and is preferred for industrial application due to fewer complications. Finally, an ion-exchange process with Amberlite IRA-420 was proposed to remove the excess of chlorides added as a consequence of the initial coagulation process.

  8. In vivo and In vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern.

    Science.gov (United States)

    Arini, Adeline; Cavallin, Jenna E; Berninger, Jason P; Marfil-Vega, Ruth; Mills, Marc; Villeneuve, Daniel L; Basu, Niladri

    2016-04-01

    Wastewater treatment plant (WWTP) effluents contain potentially neuroactive chemicals though few methods are available to screen for the presence of such agents. Here, two parallel approaches (in vivo and in vitro) were used to assess WWTP exposure-related changes to neurochemistry. First, fathead minnows (FHM, Pimephales promelas) were caged for four days along a WWTP discharge zone into the Maumee River (Ohio, USA). Grab water samples were collected and extracts obtained for the detection of alkylphenols, bisphenol A (BPA) and steroid hormones. Second, the extracts were then used as a source of in vitro exposure to brain tissues from FHM and four additional species relevant to the Great Lakes ecosystem (rainbow trout (RT), river otter (RO), bald eagle (BE) and human (HU)). The ability of the wastewater (in vivo) or extracts (in vitro) to interact with enzymes (monoamine oxidase (MAO) and glutamine synthetase (GS)) and receptors (dopamine (D2) and N-methyl-D-aspartate receptor (NMDA)) involved in dopamine and glutamate-dependent neurotransmission were examined on brain homogenates. In vivo exposure of FHM led to significant decreases of NMDA receptor binding in females (24-42%), and increases of MAO activity in males (2.8- to 3.2-fold). In vitro, alkylphenol-targeted extracts significantly inhibited D2 (66% in FHM) and NMDA (24-54% in HU and RT) receptor binding, and induced MAO activity in RT, RO, and BE brains. Steroid hormone-targeted extracts inhibited GS activity in all species except FHM. BPA-targeted extracts caused a MAO inhibition in FHM, RT and BE brains. Using both in vivo and in vitro approaches, this study shows that WWTP effluents contain agents that can interact with neurochemicals important in reproduction and other neurological functions. Additional work is needed to better resolve in vitro to in vivo extrapolations (IVIVE) as well as cross-species differences.

  9. Treatment of textile effluent by chemical (Fenton's Reagent) and biological (sequencing batch reactor) oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Carmen S.D. [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Madeira, Luis M. [LEPAE - Laboratory for Process, Environmental and Energy Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Boaventura, Rui A.R., E-mail: bventura@fe.up.pt [LSRE - Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal)

    2009-12-30

    The removal of organic compounds and colour from a synthetic effluent simulating a cotton dyeing wastewater was evaluated by using a combined process of Fenton's Reagent oxidation and biological degradation in a sequencing batch reactor (SBR). The experimental design methodology was first applied to the chemical oxidation process in order to determine the values of temperature, ferrous ion concentration and hydrogen peroxide concentration that maximize dissolved organic carbon (DOC) and colour removals and increase the effluent's biodegradability. Additional studies on the biological oxidation (SBR) of the raw and previously submitted to Fenton's oxidation effluent had been performed during 15 cycles (i.e., up to steady-state conditions), each one with the duration of 11.5 h; Fenton's oxidation was performed either in conditions that maximize the colour removal or the increase in the biodegradability. The obtained results allowed concluding that the combination of the two treatment processes provides much better removals of DOC, BOD{sub 5} and colour than the biological or chemical treatment alone. Moreover, the removal of organic matter in the integrated process is particularly effective when Fenton's pre-oxidation is carried out under conditions that promote the maximum increase in wastewater biodegradability.

  10. Influence of bentonite in polymer membranes for effective treatment of car wash effluent to protect the ecosystem.

    Science.gov (United States)

    Kiran, S Aditya; Arthanareeswaran, G; Thuyavan, Y Lukka; Ismail, A F

    2015-11-01

    In this study, modified polyethersulfone (PES) and cellulose acetate (CA) membranes were used in the treatment of car wash effluent using ultrafiltration. Hydrophilic sulfonated poly ether ether ketone (SPEEK) and bentonite as nanoclay were used as additives for the PES and CA membrane modification. Performances of modified membranes were compared with commercial PES membrane with 10kDa molecular weight cut off (MWCO). The influencing parameters like stirrer speed (250-750rpm) and transmembrane pressure (100-600kPa) (TMP) were varied and their effects were studied as a function of flux. In the treatment of car wash effluent, a higher permeate flux of 52.3L/m(2)h was obtained for modified CA membrane at TMP of 400kPa and stirrer speed of 750rpm. In comparison with modified PES membrane and commercial PES membrane, modified CA membranes showed better performance in terms of flux and flux recovery ratio. The highest COD removal (60%) was obtained for modified CA membrane and a lowest COD removal (47%) was observed for commercial PES membrane. The modified membranes were better at removing COD, turbidity and maintained more stable flux than commercial PES membrane, suggesting they will provide better economic performance in car wash effluent reclamation.

  11. Rapid, single-step most-probable-number method for enumerating fecal coliforms in effluents from sewage treatment plants

    Science.gov (United States)

    Munoz, E. F.; Silverman, M. P.

    1979-01-01

    A single-step most-probable-number method for determining the number of fecal coliform bacteria present in sewage treatment plant effluents is discussed. A single growth medium based on that of Reasoner et al. (1976) and consisting of 5.0 gr. proteose peptone, 3.0 gr. yeast extract, 10.0 gr. lactose, 7.5 gr. NaCl, 0.2 gr. sodium lauryl sulfate, and 0.1 gr. sodium desoxycholate per liter is used. The pH is adjusted to 6.5, and samples are incubated at 44.5 deg C. Bacterial growth is detected either by measuring the increase with time in the electrical impedance ratio between the innoculated sample vial and an uninnoculated reference vial or by visual examination for turbidity. Results obtained by the single-step method for chlorinated and unchlorinated effluent samples are in excellent agreement with those obtained by the standard method. It is suggested that in automated treatment plants impedance ratio data could be automatically matched by computer programs with the appropriate dilution factors and most probable number tables already in the computer memory, with the corresponding result displayed as fecal coliforms per 100 ml of effluent.

  12. Characterization of an acidification and equalization tank (AET operating as a primary treatment of swine liquid effluent

    Directory of Open Access Journals (Sweden)

    Fabrício Motteran

    2013-06-01

    Full Text Available This work evaluated the potential of the acidification equalization tank (AET used as a primary treatment unit, treating the hog farming wastewater. The treatment system consisted of a degritter with a triangular-notch weir, for measuring the flow, a static sieve, and an acidification and equalization tank (AET, an anaerobic baffled reactor (ABR, an upflow anaerobic sludge blanket (UASB reactor, a settling tank, a greenhouse for fertirrigation and two infiltration ponds. The AET had a net capacity of 8,000 liters, internally covered with asphalt blanket, worked based on surface loading rates application. The unit operated continuously, with its flow varying from 0.1 to 10 L s-1. To determine the efficiency, the following parameters were measured: pH; COD; BOD; volatile and fixed solids; settleable solids; total, intermediate and partial alkalinity and total acidity. The COD removal varied from 5 to 20%. The average pH was 7.3 and the total, intermediate and partial alkalinity in the effluent, were 1919, 846, 1197 mg L-1, respectively. The total acidity in the effluent was 34 mg L-1. The influent and effluent total BOD and oil & grease concentrations were 3436 and 3443 mg L-1, and 415 and 668 mg L-1, respectively. It was found that the AET worked properly concerning the acidification, equalization and sedimentation processes, confirming low cost of implementation and easy operation, when compared to other traditional decanters.

  13. Selection of a bioassay battery to assess toxicity in the affluents and effluents of three water-treatment plants

    Directory of Open Access Journals (Sweden)

    Paola Bohórquez-Echeverry

    2012-08-01

    Full Text Available The assessment of water quality includes the analysis of both physical-chemical and microbiological parameters. However,none of these evaluates the biological effect that can be generated in ecosystems or humans. In order to define the most suitable organismsto evaluate the toxicity in the affluent and effluent of three drinking-water treatment plants, five acute toxicity bioassays were used,incorporating three taxonomic groups of the food chain. Materials and methods. The bioassays used were Daphnia magna and Hydraattenuata as animal models, Lactuca sativa and Pseudokirchneriella subcapitata as plant models, and Photobacterium leioghnathi asbacterial model. To meet this objective, selection criteria of the organisms evaluated and cluster analysis were used to identify the mostsensitive in the affluent and effluent of each plant. Results. All organisms are potentially useful in the assessment of water quality bymeeting four essential requirements and 17 desirable requirements equivalent to 100% acceptability, except P. leioghnathi which doesnot meet two essential requirements that are the IC50 for the toxic reference and the confidence interval. The animal, plant and bacterialmodels showed different levels of sensitivity at the entrance and exit of the water treatment systems. Conclusions. H. attenuata, P.subcapitata and P. leioghnathi were the most effective organisms in detecting toxicity levels in the affluents and D. magna, P. subcapitataand P. leioghnathi in the effluents.

  14. Quantitative real-time PCR of enteric viruses in influent and effluent samples from wastewater treatment plants in Italy.

    Science.gov (United States)

    La Rosa, Giuseppina; Pourshaban, Manoochehr; Iaconelli, Marcello; Muscillo, Michele

    2010-01-01

    The prevalence of enteric viruses in wastewater, the efficacy of wastewater treatments in eliminating such viruses, and potential health risks from their release into the environment or by recycling of treated wastewaters, are very important issues in environmental microbiology. In this study we performed a quantitative TaqMan real-time PCR (polymerase chain reaction) analysis of enteric viruses on samples of influents and effluents from 5 wastewater treatment plants in and around Rome. Three epidemiologically important, waterborne enteric viruses were analyzed: adenoviruses, enteroviruses and noroviruses (GI and GII) and compared to classical bacterial indicators of fecal contamination. The concentration of adenoviruses was the highest, in both raw and treated waters. Mean values in influents were ranked as follows: adenovirus > norovirus GI > norovirus GII > enterovirus. In effluents, the ranking was: adenovirus > norovirus GI > enterovirus > norovirus GII. Removal efficiencies ranged from 35% (enterovirus) to 78% (norovirus GI), while removal efficiency for bacterial indicators was up to 99%. Since molecular quantification does not necessarily indicate an actual threat to human health, we proceeded to evaluate the infectivity of enterovirus particles in treated effluents through integrated cell culture and real-time PCR. Infectivity assays detected live virions in treated water, pointing to potential public health risks through the release of these viruses into the environment. A better understanding of viral presence and resistance to sewage purification processes have the potential of contributing to the effective management of risks linked to the recycling of treated wastewater, and its discharge into the environment.

  15. Reagent dyes in textile effluents: new eliminating treatments; Colorantes reactivos en los efluentes textiles: nuevos tratamientos para su eliminacion

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, M. C.; Crespi, M. [Institut d' Investigacio Textil i Cooperacion Industrial de Tarrasa (Spain)

    1999-07-01

    Textile effluents containing reagent dyes are the most difficult to decolour, Among the techniques described for eliminating them from textile waste waters, chemical coagulation is the most commonly employed, followed by ozonization. Adsorption by active carbon is also employed, either by putting carbon powder in the biological reactor or using it as a tertiary treatment, having the effluent pass through columns of granulated active carbon. However, this technique is expensive and is only justified when the treated water is partially recycled. Ultra-infiltration and nanofiltration are allowed in countries where it is permitted to discharge the concentrate directly into the sea or when it is cost-effective to incinerate it. The remaining technologies are still at the research stage in pilot plants. They include electrochemical techniques that provide excellent results and have a promising future in industry. (Author) 41 refs.

  16. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction.

    Science.gov (United States)

    Cavallin, Jenna E; Jensen, Kathleen M; Kahl, Michael D; Villeneuve, Daniel L; Lee, Kathy E; Schroeder, Anthony L; Mayasich, Joe; Eid, Evan P; Nelson, Krysta R; Milsk, Rebecca Y; Blackwell, Brett R; Berninger, Jason P; LaLone, Carlie A; Blanksma, Chad; Jicha, Terri; Elonen, Colleen; Johnson, Rodney; Ankley, Gerald T

    2016-03-01

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.

  17. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    Science.gov (United States)

    Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Villeneuve, Daniel L.; Lee, Kathy E.; Schroeder, Anthony L.; Mayasich, Joe; Eid, Evan P.; Nelson, Krysta R.; Milsk, Rebecca Y.; Blackwell, Brett R.; Berninger, Jason P.; LaLone, Carlie A.; Blanskma, Chad; Jicha, Terri M.; Elonen, Colleen M.; Johnson, Rodney C.; Ankley, Gerald T.

    2016-01-01

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.

  18. Biological treatment of anaerobically digested palm oil mill effluent (POME) using a Lab-Scale Sequencing Batch Reactor (SBR).

    Science.gov (United States)

    Chan, Yi Jing; Chong, Mei Fong; Law, Chung Lim

    2010-08-01

    The production of highly polluting palm oil mill effluent (POME) has resulted in serious environmental hazards. While anaerobic digestion is widely accepted as an effective method for the treatment of POME, anaerobic treatment of POME alone has difficulty meeting discharge limits due to the high organic strength of POME. Hence, subsequent post-treatment following aerobic treatment is vital to meet the discharge limits. The objective of the present study is to investigate the aerobic treatment of anaerobically digested POME by using a sequencing batch reactor (SBR). The SBR performance was assessed by measuring Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD) and Total Suspended Solids (TSS) removal as well as Sludge Volume Index (SVI). The operating pH and dissolved oxygen concentrations were found to be 8.25-9.14 and 1.5-6.4 mg/L, respectively, throughout the experiment. The experimental results demonstrate that MLVSS, OLR and sludge loading rate (SLR) play a significant role in the organic removal efficiency of SBR systems and therefore, further investigation on these parameters was conducted to attain optimum SBR performance. Maximum COD (95-96%), BOD (97-98%) and TSS (98-99%) removal efficiencies were achieved at optimum OLR, SLR and MLVSS concentration ranges of 1.8-4.2 kg COD/m(3)day, 2.5-4.6 kg TSS/m(3)day and 22,000-25,000 mg/L, respectively. The effluent quality remained stable and complied with the discharge limit. At the same time, the sludge showed good settling properties with average SVI of 65. It is envisaged that the SBR process could complement the anaerobic treatment to produce final treated effluent which meets the discharge limit.

  19. Upgrade of three municipal wastewater treatment lagoons using a high surface area media

    Institute of Scientific and Technical Information of China (English)

    John WANC; Peng JINt; Paul L. BISHOP; Fuzhi LI

    2012-01-01

    Abstract Lagoon-based municipal wastewater treatment plants (WWTPs) are facing difficulties meeting the needs of rapid population growth as well as the more stringent requirements of discharge permits. Three municipal WWTPs were modified using a high surface area media with upgraded fine-bubble aeration systems. Performance data collected showed very promising results in terms of five-day biochemical oxygen demand (BOD5), ammonia (NH3) and total suspended solids (TSS) removal. Two-year average ammonia effluents were 4.1 mg. L-1 for Columbia WWTP, 4 mg. L-1 for Larchmont WWTP and 2.1 mg. L-1 for Laurelville WWTE respectively. Two- year average BOD5 effluents were 6.8, 4.9 and 2.7 mg.Ll, and TSS effluents were 15.0, 9.6 and 7.5 mg.L-L The systems also showed low fecal coliform (FC) levels in their effluents.

  20. Controlled decomposition and oxidation: A treatment method for gaseous process effluents

    Science.gov (United States)

    Mckinley, Roger J. B., Sr.

    1990-01-01

    The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.

  1. Preservation of natural aquatic ecosystems by application of bottom coal ash based bioreactor for in situ treatment of anthropogenic effluents

    Science.gov (United States)

    Anker, Y.; Nisnevitch, M.; Tal, M.; Cahan, R.; Michael, E.

    2012-12-01

    One consequence of global climate change is recharge decrease at sub tropical and Mediterranean regions to both the surface and the ground fresh water resources. As a general rule, when water source quantity is reduced, the level of salination, as well as chemical and biological pollutants, tends to increase. The situation is more severe whenever the drainage basin is (a) heavily populated from urban, industrial and agricultural areas, (b) has wide areas of thin or non soil cover and (c) has a karstic structure and morphology. These latter conditions are typical to many regions around the Middle East; whereas pollution hazard to Mid Eastern streams is greater than to those in more humid regions owing to their relative small size and poor dilution capacity. The consequence of this ongoing and increasing anthropogenic pollution is endangerment of natural aquatic habitats and due to decrease in fresh water supply availability also to human sustainability. The ecological impact may involve transition of ephemeral (Wadi) streams into intermittent ones with the accompanied biodiversity change or extinction once the pollution is extreme. The impact on indigenous human communities might be as severe owing to drinking water quality decrease and the consequent decrease id quantity as well as damage to dryland farming. In setting of operations applied to the Yarkon Taninim watershed (central Israel) management, a pilot biofilter facility for sustainable preservation and rehabilitation of natural fluvial ecosystems was tested. This biofilter is planned to operate through low impact concept assimilating natural treatment processes occurring during runoff recharge through a porous flow media. The facility is constructed out of several grain sizes of bottom coal ash aggregate, which was found to be a better microbial mats growing stratum, compared to common natural aggregates such as tuff and lime pebbles (and also has an EPA directive for wastewater treatment). The biofilter is

  2. High COD wastewater treatment in an aerobic SBR: treatment of effluent from a small farm goat's cheese dairy.

    Science.gov (United States)

    Torrijos, M; Sousbie, P h; Moletta, R; Delgenes, J P

    2004-01-01

    In France, small goat's cheese dairies using traditional craft methods often have no profitable solution for dealing with the whey byproduct of their cheesemaking activity: it is usually mixed with the cleaning wastewater which, in the absence of other possibilities, is then discharged directly into the environment. The volume of such wastewater is small but it has a high COD of around 12-15 g/L. An aerobic SBR was proposed as a method for treating the mixture of wastewater and whey and the first installation was set up on a farm with 170 goats. Its operations were monitored for 7.5 months, particularly in order to measure any excess volume of sludge and to check that such excess remained within acceptable limits, given the high COD of the effluent requiring treatment. The results obtained show that the treated wastewater was of excellent quality, well within the most rigorous discharge norms. With this type of wastewater, excess sludge was produced in only very low amounts with 0.2 g of SS/g of COD. Moreover, the sludge proved to be quick settling which made it possible to: i) maintain a high level of SS in the reactor (up to 15 g/L); ii) withdraw sludge with concentrations reaching 30 g/L after 2 hours of settling. This resulted in a low volume of excess sludge (less than 5% of treated volume), making such aerobic biological treatment in an SBR competitive when compared to the straightforward spreading of all the wastewater.

  3. Comparison of contaminants of emerging concern removal, discharge, and water quality hazards among centralized and on-site wastewater treatment system effluents receiving common wastewater influent.

    Science.gov (United States)

    Du, Bowen; Price, Amy E; Scott, W Casan; Kristofco, Lauren A; Ramirez, Alejandro J; Chambliss, C Kevin; Yelderman, Joe C; Brooks, Bryan W

    2014-01-01

    A comparative understanding of effluent quality of decentralized on-site wastewater treatment systems, particularly for contaminants of emerging concern (CECs), remains less understood than effluent quality from centralized municipal wastewater treatment plants. Using a novel experimental facility with common influent wastewater, effluent water quality from a decentralized advanced aerobic treatment system (ATS) and a typical septic treatment system (STS) coupled to a subsurface flow constructed wetland (WET) were compared to effluent from a centralized municipal treatment plant (MTP). The STS did not include soil treatment, which may represent a system not functioning properly. Occurrence and discharge of a range of CECs were examined using isotope dilution liquid chromatography-tandem mass spectrometry during fall and winter seasons. Conventional parameters, including total suspended solids, carbonaceous biochemical oxygen demand and nutrients were also evaluated from each treatment system. Water quality of these effluents was further examined using a therapeutic hazard modeling approach. Of 19 CECs targeted for study, the benzodiazepine pharmaceutical diazepam was the only CEC not detected in all wastewater influent and effluent samples over two sampling seasons. Diphenhydramine, codeine, diltiazem, atenolol, and diclofenac exhibited significant (ptreatment systems was generally not influenced by season. However, significant differences (pwater quality indicators were observed among the various treatment technologies. For example, removal of most CECs by ATS was generally comparable to MTP. Lowest removal of most CECs was observed for STS; however, removal was improved when coupling the STS to a WET. Across the treatment systems examined, the majority of pharmaceuticals observed in on-site and municipal effluent discharges were predicted to potentially present therapeutic hazards to fish.

  4. Pollution control technologies for the treatment of palm oil mill effluent (POME) through end-of-pipe processes.

    Science.gov (United States)

    Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina

    2010-07-01

    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances.

  5. Uptake of Three Antibiotics and an Antiepileptic Drug by Wheat Crops Spray Irrigated with Wastewater Treatment Plant Effluent.

    Science.gov (United States)

    Franklin, Alison M; Williams, Clinton F; Andrews, Danielle M; Woodward, Emily E; Watson, John E

    2016-03-01

    With rising demands on water supplies necessitating water reuse, wastewater treatment plant (WWTP) effluent is often used to irrigate agricultural lands. Emerging contaminants, like pharmaceuticals and personal care products (PPCPs), are frequently found in effluent due to limited removal during WWTP processes. Concern has arisen about the environmental fate of PPCPs, especially regarding plant uptake. The aim of this study was to analyze uptake of sulfamethoxazole, trimethoprim, ofloxacin, and carbamazepine in wheat ( L.) plants that were spray-irrigated with WWTP effluent. Wheat was collected before and during harvest, and plants were divided into grain and straw. Subsamples were rinsed with methanol to remove compounds adhering to surfaces. All plant tissues underwent liquid-solid extraction, solid-phase extraction cleanup, and liquid chromatography-tandem mass spectrometry analysis. Residues of each compound were present on most plant surfaces. Ofloxacin was found throughout the plant, with higher concentrations in the straw (10.2 ± 7.05 ng g) and lower concentrations in the grain (2.28 ± 0.89 ng g). Trimethoprim was found only on grain or straw surfaces, whereas carbamazepine and sulfamethoxazole were concentrated within the grain (1.88 ± 2.11 and 0.64 ± 0.37 ng g, respectively). These findings demonstrate that PPCPs can be taken up into wheat plants and adhere to plant surfaces when WWTP effluent is spray-irrigated. The presence of PPCPs within and on the surfaces of plants used as food sources raises the question of potential health risks for humans and animals.

  6. Comparing quality of the wastewater treatment plant effluent in Lia industrial zone (Qazvin with Iranian environmental protection standards (2015

    Directory of Open Access Journals (Sweden)

    MM. Emamjomeh

    2016-12-01

    Full Text Available Background: In order to prevent water pollution, protect public health, and reuse of the treated wastewater; controlling on quality of the wastewater treatment plant effluent has been considered a necessary. Objective: To compare the quality of wastewater treatment plant effluent in Lia industrial zone with Iranian environmental protection standards. Methods: This cross-sectional study was performed in one of the industrial zones in Qazvin (Lia. Samples were collected from wastewater treatment plant from May to September 2015 and analyzed in the laboratory. Chemical oxygen demand (COD parameters were determined twice per week when the pH values were daily measured by pH meter. Sampling was carried out weekly to determine other important operational parameters including biochemical oxygen demand (BOD, total suspended solids (TSS, total coliform (TC and fecal coliform (FC. Sampling and experiments were done according to the latest standard methods. The data were analyzed with SPSS 16 software (T-Test a single group. Findings: The average of BOD, COD, TSS, FC, TC in effluent were achieved to 73.3±13.2, 156.2±42, and 76.43±50.8 mg/L 1.1×103,1.1×103 MPN/100 ml respectively. The total average of removal efficiencies for BOD, COD and TSS were calculated 92.41%, 92.75%, and 87.46%, respectively. Conclusion: The results obtained that the wastewater treatment plant systems can be used as an efficient system for reduction of common pollutants by providing the Iranian standards for irrigating when the most important such as BOD, COD, TSS and PH are considered. The quality of the treated wastewater was found to be within the permissible Iranian standards for irrigating. However, it is important to keep in mind that reduce microbial contamination within standards is needed to be considered.

  7. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  8. An Assessment of the Model of Concentration Addition for Predicting the Estrogenic Activity of Chemical Mixtures in Wastewater Treatment Works Effluents

    OpenAIRE

    Thorpe, Karen L.; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R.

    2005-01-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured conce...

  9. Analysis of bacteria, parasites, and heavy metals in lettuce (Lactuca sativa) and rocket salad (Eruca sativa L.) irrigated with treated effluent from a biological wastewater treatment plant.

    Science.gov (United States)

    Nikaido, Meire; Tonani, Karina A A; Julião, Fabiana C; Trevilato, Tânia M B; Takayanagui, Angela M M; Sanches, Sérgio M; Domingo, José L; Segura-Muñoz, Susana I

    2010-06-01

    This study aimed to evaluate the viability of using treated residuary water from the Biological Wastewater Treatment Plant of Ribeirão Preto to grow vegetables, through the characterization and quantification of parasites, coliforms, and heavy metals. Three equal cultivation areas were prepared. The first was irrigated with treated/chlorinated (0.2 mg L(-1)) wastewater, the second one with treated wastewater without chlorination, and the third site with potable water, which was the control group. The presence of Hymenolepis nana, Enterobius vermicularis, nematode larvae, and Entamoeba coli was verified in lettuce (Lactuca sativa) samples. Although nematode larvae were observed in rocket salad (Eruca sativa L.), no significant differences were found between the number of parasites and type of irrigation water used. No significant differences were found between the number of fecal coliforms in vegetables and the different types of irrigation. However, the vegetables irrigated with treated effluent without chlorination showed higher levels of fecal coliforms. The risk of pathogens is reduced with bleach addition to the treated effluent at 0.2 mg/L. Concentration of heavy metals in vegetables does not mean significant risks to human health, according with the parameters recommended by the World Health Organization.

  10. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation?

    Science.gov (United States)

    Filipovic, Marko; Berger, Urs

    2015-06-01

    Wastewater treatment plants (WWTP) have been suggested to be one of the major pathways of perfluoroalkyl acids (PFAAs) from the technosphere to the aquatic environment. The origin of PFAAs in WWTP influents is either from current primary emissions or a result of recirculation of PFAAs that have been residing and transported in the environment for several years or decades. Environmental recirculation can then occur when PFAAs from the environment enter the wastewater stream in, e.g., tap water. In this study 13 PFAAs and perfluorooctane sulfonamide were analyzed in tap water as well as WWTP influent, effluent and sludge from three Swedish cities: Bromma (in the metropolitan area of Stockholm), Bollebygd and Umeå. A mass balance of the WWTPs was assembled for each PFAA. Positive mass balances were observed for PFHxA and PFOA in all WWTPs, indicating the presence of precursor compounds in the technosphere. With regard to environmental recirculation, tap water was an important source of PFAAs to the Bromma WWTP influent, contributing >40% for each quantified sulfonic acid and up to 30% for the carboxylic acids. The PFAAs in tap water from Bollebygd and Umeå did not contribute significantly to the PFAA load in the WWTP influents. Our results show that in order to estimate current primary emissions from the technosphere, it may be necessary to correct the PFAA emission rates in WWTP effluents for PFAAs present in tap water, especially in the case of elevated levels in tap water.

  11. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river.

    Science.gov (United States)

    Xu, Jian; Xu, Yan; Wang, Hongmei; Guo, Changsheng; Qiu, Huiyun; He, Yan; Zhang, Yuan; Li, Xiaochen; Meng, Wei

    2015-01-01

    The extensive use of antibiotics has caused the contamination of both antibiotics and antibiotic resistance genes (ARGs) in the environment. In this study, the abundance and distribution of antibiotics and ARGs from a sewage treatment plant (STP) and its effluent-receiving river in Beijing China were characterized. Three classes of antibiotics including tetracycline, sulfonamide and quinolone were quantified by LC-MS/MS. In the secondary effluent they were detected at 195, 2001 and 3866 ng L(-1), respectively, which were higher than in the receiving river water. A total of 13 ARGs (6 tet genes: tetA, tetB, tetE, tetW, tetM and tetZ, 3 sulfonamide genes: sul1, sul2 and sul3, and 4 quinolone genes: gryA, parC, qnrC and qnrD) were determined by quantitative PCR. For all ARGs, sulfonamide resistance genes were present at relatively high concentrations in all samples, with the highest ARG concentration above 10(-1). ARGs remained relatively stable along each sewage treatment process. The abundances of detected ARGs from the STP were also higher than its receiving river. Bivariate correlation analysis showed that relative tet gene copies (tetB/16S-rRNA and tetW/16S-rRNA) were strongly correlated with the concentrations of tetracycline residues (r(2)>0.8, presistance gene (qnrC/16S-rRNA) and the concentrations of enrofloxacin (ENR) was also determined. The difference of ARGs levels in the raw influent and secondary effluent suggested that the STP treatment process may induce to increase the abundance of resistance genes. The results showed that the sewage was an important repository of the resistance genes, which need to be effectively treated before discharge into the natural water body.

  12. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis).

    Science.gov (United States)

    Vajda, Alan M; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S; Barber, Larry B

    2015-05-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L(-1) . Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall.

  13. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    Science.gov (United States)

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  14. MBBR Process for Paper Industry Effluent Treatment%采用MBBR工艺处理造纸废水

    Institute of Scientific and Technical Information of China (English)

    崔延龄

    2011-01-01

    介绍了采用移动床生物膜反应器(MBBR)法处理造纸废水的工艺原理和特点,列举了MBBR工艺在造纸工业的应用情况,指出了采用MBBR工艺处理造纸废水时应注意的几个问题.%MBBR has been used in paper industry effluent treatment widely in other countries. The article introduces MBBR process characteristic and its application in paper industry.

  15. Cross-flow filtration with different ceramic membranes for polishing wastewater treatment plant effluent

    DEFF Research Database (Denmark)

    Farsi, Ali; Hammer Jensen, Sofie; Roslev, Peter

    are harmful for aquatic organism. A possible strategy to avoid this is to polish the effluent by membrane processes. Different ceramic membranes were studied to test their ability to remove inorganic and organic compounds from the effluent. Hence, various active layers such as mesoporous TiO2 (average nominal...... pore size is 15 nm), mesoporous γ-alumina (5 nm), microporous TiO2 (1nm) and microporous hybrid silica (... spectroscopy, respectively. The type and the molecular size of removed organic compounds were determined using pH, full spectrum UV and size exclusion HPLC. Inorganic N-compound rejections were calculated by N-autoanalyzer. The retention of humic like substances measured by UV254 (Fig.1) decreased almost...

  16. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor.

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m(3) of biogas per m(3) of POME which was utilized for electricity generation.

  17. Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents.

    Science.gov (United States)

    Álvarez, M S; Moscoso, F; Rodríguez, A; Sanromán, M A; Deive, F J

    2013-10-01

    In this work, a novel remediation strategy consisting of a sequential biological and physical process is proposed to remove dyes from a textile polluted effluent. The decolorization ability of Anoxybacillus flavithermus in an aqueous effluent containing two representative textile finishing dyes (Reactive Black 5 and Acid Black 48, as di-azo and antraquinone class, respectively) was proved. The decolorization efficiency for a mixture of both dyes reached almost 60% in less than 12h, which points out the suitability of the selected microorganism. In a sequential stage, an aqueous biphasic system consisting of non-ionic surfactants and a potassium-based organic salt, acting as the salting out agent, was investigated. The phase segregation potential of the selected salts was evaluated in the light of different thermodynamic models, and remediation levels higher than 99% were reached.

  18. Functional design criteria for project W-252, phase II liquid effluent treatment and disposal. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hatch, C.E.

    1995-05-01

    This document is the Functional Design Criteria for Project W-252. Project W-252 provides the scope to provide BAT/AKART (best available technology...) to 200 Liquid Effluent Phase II streams (B-Plant). This revision (Rev. 2) incorporates a major descoping of the project. The descoping was done to reflect a combination of budget cutting measures allowed by a less stringent regulatory posture toward the Phase II streams

  19. Application of Doehlert matrix to determine the optimal conditions of electrochemical treatment of tannery effluents

    Energy Technology Data Exchange (ETDEWEB)

    Hammami, Samiha [Laboratoire de Chimie Analytique et Electrochimie, Departement de Chimie, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar (Tunisia)], E-mail: samiha.hammami@laposte.net; Ouejhani, Ali [Laboratoire de Chimie Analytique et Electrochimie, Departement de Chimie, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar (Tunisia); Bellakhal, Nizar [Laboratoire de Chimie Analytique et Electrochimie, Departement de Chimie, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar (Tunisia); Departement de Chimie et de Biologie Appliquees, Institut National des Sciences Appliquees et de Technologie (INSAT), B.P. No676, 1080 Tunis Cedex (Tunisia); Dachraoui, Mohamed [Laboratoire de Chimie Analytique et Electrochimie, Departement de Chimie, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar (Tunisia)

    2009-04-15

    The oxidation of organic and inorganic pollutants present in tannery effluents has been realised by electrochemical way. The influence of the electrochemical reactor parameters was carried out by the use of Doehlert matrix. The obtained results have shown that the current intensity and the electrolysis time were the main influent parameters on the removal ratio of chemical oxygen demand (COD), total organic carbon (TOC), electrochemical oxidation of trivalent chromium and sulphite ions.

  20. Effect of pyrolysis temperature on polycyclic aromatic hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper mill effluent treatment plant sludge.

    Science.gov (United States)

    Devi, Parmila; Saroha, Anil K

    2015-09-01

    The polycyclic aromatic hydrocarbons (PAHs) toxicity and sorption behaviour of biochars prepared from pyrolysis of paper mill effluent treatment plant (ETP) sludge in temperature range 200-700 °C was studied. The sorption behaviour was found to depend on the degree of carbonization where the fractions of carbonized and uncarbonized organic content in the biochar act as an adsorption media and partition media, respectively. The sorption and partition fractions were quantified by isotherm separation method and isotherm parameters were correlated with biochar properties (aromaticity, polarity, surface area, pore volume and ash content). The risk assessment for the 16 priority EPA PAHs present in the biochar matrix was performed and it was found that the concentrations of the PAHs in the biochar were within the permissible limits prescribed by US EPA (except BC400 and BC500 for high molecular weight PAHs).

  1. Estonian waterworks treatment plants: clearance of residues, discharge of effluents and efficiency of removal of radium from drinking water.

    Science.gov (United States)

    Trotti, F; Caldognetto, E; Forte, M; Nuccetelli, C; Risica, S; Rusconi, R

    2013-12-01

    Considerable levels of radium were detected in a certain fraction of the Estonian drinking water supply network. Some of these waterworks have treatment systems for the removal of (mainly) iron and manganese from drinking water. Three of these waterworks and another one equipped with a radium removal pilot plant were examined, and a specific study was conducted in order to assess the environmental compatibility of effluents and residues produced in the plants. (226)Ra and (228)Ra activity concentrations were analysed in both liquid (backwash water) and solid (sand filter and sediment) materials to evaluate their compliance, from the radiological point of view, with current Estonian legislation and international technical documents that propose reference levels for radium in effluents and residues. Also with regard to water treatment by-products, a preliminary analysis was done of possible consequences of the transposition of the European Basic Safety Standards Draft into Estonian law. Radium removal efficiency was also tested in the same plants. Iron and manganese treatment plants turned out to be scarcely effective, whilst the radium mitigation pilot plant showed a promising performance.

  2. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    Science.gov (United States)

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased.

  3. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds.

    Science.gov (United States)

    Ben-shalom, Miriam; Shandalov, Semion; Brenner, Asher; Oron, Gideon

    2014-01-01

    Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.

  4. Recovery and Treatment of Effluent Containing NHD%含NHD废水的回收处理

    Institute of Scientific and Technical Information of China (English)

    夏水林; 赵浩; 李大治

    2013-01-01

    对NHD溶液污染的原因进行了分析,提出了防止污染可采取的措施,重点介绍了含NHD废水的回收工艺.多年来的实际应用情况表明:含NHD废水回收装置对污染严重的NHD溶液和过滤器反冲洗含NHD废水的回收有较理想的效果,且装置流程简单、操作方便、投资少、回收率高,经济和环保效益明显.%An analysis is made of the causes for NHD solution pollution,feasible measures are proposed for prevention of pollution,and points of importance are given for the process of recovery of effluent containing NHD.Its actual use for several years shows that the recovery plant for effluent containing NHD gives ideal results for heavily polluted NHD solution and effluent containing NHD for backwashing of the filter.The plant has a simple flowsheet,is convenient to operate,low in investment,high in recovery,and economic and environmental effect is evident.

  5. Impact of microfiltration treatment of secondary wastewater effluent on biofouling of reverse osmosis membranes.

    Science.gov (United States)

    Herzberg, Moshe; Berry, David; Raskin, Lutgarde

    2010-01-01

    The effects of microfiltration (MF) as pretreatment for reverse osmosis (RO) on biofouling of RO membranes were analyzed with secondary wastewater effluents. MF pretreatment reduced permeate flux decline two- to three-fold, while increasing salt rejection. Additionally, the oxygen uptake rate (OUR) in the biofouling layer of the RO membrane was higher for an RO system that received pretreated secondary wastewater effluent compared to a control RO system that received untreated secondary effluent, likely due to the removal of inert particulate/colloidal matter during MF. A higher cell viability in the RO biofilm was observed close to the membrane surface irrespective of pretreatment, which is consistent with the biofilm-enhanced concentration polarization effect. Bacterial 16S rRNA gene clone library analysis revealed dominant biofilm communities of Proteobacteria and Bacteroidetes under all conditions. The Cramer-von Mises test statistic showed that MF pretreatment did not significantly change the bacterial community structure of RO membrane biofilms, though it affected bacterial community structure of non-membrane-associated biofilms (collected from the feed tank wall). The finding that the biofilm community developed on the RO membrane was not influenced by MF pretreatment may imply that RO membranes select for a conserved biofilm community.

  6. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  7. TREATMENT OF GASEOUS EFFLUENTS ISSUED FROM RECYCLING – A REVIEW OF THE CURRENT PRACTICES AND PROSPECTIVE IMPROVEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Paviet-Hartmann; William Kerlin; Steven Bakhtiar

    2010-11-01

    The objectives of gaseous waste management for the recycling of nuclear used fuel is to reduce by best practical means (ALARA) and below regulatory limits, the quantity of activity discharged to the environment. The industrial PUREX process recovers the fissile material U(VI) and Pu(IV) to re-use them for the fabrication of new fuel elements e.g. recycling plutonium as a Mixed Oxide (MOX) fuel or recycling uranium for new enrichment for Pressurized Water Reactor (PWR). Meanwhile the separation of the waste (activation and fission product) is performed as a function of their pollution in order to store and avoid any potential danger and release towards the biosphere. Raffinate, that remains after the extraction step and which contains mostly all fission products and minor actinides is vitrified, the glass package being stored temporarily at the recycling plant site. Hulls and end pieces coming from PWR recycled fuel are compacted by means of a press leading to a volume reduced to 1/5th of initial volume. An organic waste treatment step will recycle the solvent, mainly tri-butyl phosphate (TBP) and some of its hydrolysis and radiolytic degradation products such as dibutyl phosphate (HDPB) and monobutyl phosphate (H2MBP). Although most scientific and technological development work focused on high level waste streams, a considerable effort is still under way in the area of intermediate and low level waste management. Current industrial practices for the treatment of gaseous effluents focusing essentially on Iodine-129 and Krypton-85 will be reviewed along with the development of novel technologies to extract, condition, and store these fission products. As an example, the current industrial practice is to discharge Kr-85, a radioactive gas, entirely to the atmosphere after dilution, but for the large recycling facilities envisioned in the near future, several techniques such as 1) cryogenic distillation and selective absorption in solvents, 2) adsorption on activated

  8. Electrolytic treatment applied to the industrial effluent containing persistent wastes monitored by Bartha respirometric assays

    Directory of Open Access Journals (Sweden)

    Gisela Régis

    2005-03-01

    Full Text Available The effluent of a rubber chemical antioxidant and antiozonant producer industry, with high content of organic material was subjected to electrolytic process. To evaluate the speed of stabilization of the eletroctrolyzed effluents, and to evaluate the biodegradation the respirometric test of Bartha and Pramer was used. The monitoring of the biodegradation of the effluent, after different periods of electrolysis show that the ideal time of electrolysis was 10 and 25 min. It was concluded that the eletrolytic process was viable to diminish the adaptation time of the microorganism to the effluent and consequently increased the biodegradation of effluent.O efluente de uma indústria produtora de antioxidante e antiozonante para borracha, caracterizado por alta concentração de matéria orgânica e aminas aromáticas que são poluentes e tóxicos, foi tratado através do processo eletrolítico de forma a melhorar as condições para a biodegradabilidade de seus resíduos persistentes. A avaliação da velocidade de estabilização dos efluentes eletrolisados e não eletrolisado, em meio líquido, biodegradação, sob a ação de bactérias, foi utilizado o respirômetro de Bartha and Pramer. A aferição da biodegradabilidade dos efluentes, após os diferentes tempos de eletrólise, permitiu determinar o tempo ótimo de exposição à eletrólise. Os tempos de eletrólise que permitiram uma maior degradação da matéria orgânica foram de 10 min e 25 min. Pode-se concluir que o tratamento eletrolítico é um método viável para a diminuição do tempo de adaptação dos microrganismos ao efluente e conseqüentemente acelerar a biodegradação do efluente da indústria química.

  9. Removal of the organic content from a bleached kraft pulp mill effluent by a treatment with silica-alginate-fungi biocomposites.

    Science.gov (United States)

    Duarte, Katia; Justino, Celine I L; Pereira, Ruth; Panteleitchouk, Teresa S L; Freitas, Ana C; Rocha-Santos, Teresa A P; Duarte, Armando C

    2013-01-01

    This study attempts a treatment strategy of a bleached kraft pulp mill effluent with Rhizopus oryzae or Pleurotus sajor caju encapsulated on silica-alginate (biocomposite of silica-alginate-fungi, with the purpose of reducing its potential impact in the environment. Active (alive) or inactive (death by sterilization) Rhizopus oryzae or Pleurotus sajor caju was encapsulated in alginate beads. Five beads containing active and inactive fungus were placed in a mold and filled with silica hydrogel (biocomposites). The biocomposites were added to batch reactors containing the bleached kraft pulp mill effluent. The treatment of bleached kraft pulp mill effluent by active and inactive biocomposites was performed throughout 29 days at 28°C. The efficiency of treatment was evaluated by measuring the removal of organic compounds, chemical oxygen demand and the relative absorbance ratio over time. Both fungi species showed potential for removal of organic compounds, colour and chemical oxygen demand. Maximum values of reduction in terms of colour (56%), chemical oxygen demand (65%) and organic compounds (72-79%) were attained after 29 days of treatment of bleached kraft pulp mill effluent by active Rhizopus oryzae biocomposites. The immobilization of fungi, the need for low fungal biomass, and the possibility of reutlization of the biocomposites clearly demonstrate the industrial and environmental interest in bleached kraft pulp mill effluent treatment by silica-alginate-fungi biocomposites.

  10. Treatment of cosmetic effluent in different configurations of ceramic UF membrane based bioreactor: Toxicity evaluation of the untreated and treated wastewater using catfish (Heteropneustes fossilis).

    Science.gov (United States)

    Banerjee, Priya; Dey, Tanmoy Kumar; Sarkar, Sandeep; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja

    2016-03-01

    Extensive usage of pharmaceutical and personal care products (PPCPs) and their discharge through domestic sewage have been recently recognized as a new generation environmental concern which deserves more scientific attention over the classical environmental pollutants. The major issues of this type of effluent addressed in this study were its colour, triclosan and anionic surfactant (SDS) content. Samples of cosmetic effluent were collected from different beauty treatment salons and spas in and around Kolkata, India and treated in bioreactors containing a bacterial consortium isolated from activated sludge samples collected from a common effluent treatment plant. Members of the consortium were isolated and identified as Klebsiella sp., Pseudomonas sp., Salmonella sp. and Comamonas sp. The biotreated effluent was subjected to ultrafiltration (UF) involving indigenously prepared ceramic membranes in both side-stream and submerged mode. Analysis of the MBR treated effluent revealed 99.22%, 98.56% and 99.74% removal of colour, triclosan and surfactant respectively. Investigation of probable acute and chronic cyto-genotoxic potential of the untreated and treated effluents along with their possible participation in triggering oxidative stress was carried out with Heteropneustes fossilis (Bloch). Comet formation recorded in both liver and gill cells and micronucleus count in peripheral erythrocytes of individuals exposed to untreated effluent increased with duration of exposure and was significantly higher than those treated with UF permeates which in turn neared control levels. Results of this study revealed successful application of the isolated bacterial consortium in MBR process for efficient detoxification of cosmetic effluent thereby conferring the same suitable for discharge and/or reuse.

  11. Behavior of metals, pathogen parasites, and indicator bacteria in sewage effluents during biological treatment by activated sludge.

    Science.gov (United States)

    Tonani, K A A; Julião, F C; Trevilato, T M B; Takayanagui, A M M; Bocio, Ana; Domingo, Jose L; Segura-Muñoz, Susana I

    2011-11-01

    The purpose of this study was to evaluate the behavior of metals, pathogen parasites, and indicator bacteria in sewage effluents during biological treatment by activated sludge in a wastewater treatment plant in Ribeirão Preto (WTP-RP), Sao Paulo, Brazil. The evaluation was done during a period of 1 year. Results showed that metal concentrations in treated effluents decreased, reaching concentrations according to those established by national regulations. The activated sludge process at the WTP-RP promoted a partial removal of parasites considered as possible indicators according to the WHO guidelines. Reduction factors varied between 18.2% and 100% for agents such as Endolimax nana, Entamoeba coli, Entamoeba hystolitica, Giardia sp., Ancylostoma sp., Ascaris sp., Fasciola hepatica, and Strongyloides stercoralis. A removal was also observed in total and fecal coliforms quantification. The present study represents an initial evaluation of the chemical and microbiological removal capacity of the WTP-RP. The results should be of interest for the authorities responsible for the environmental health at municipal, regional, national, and international levels.

  12. Water treatments in semi-closed cooling circuits and their impact on the quality of effluents discharged by CERN

    CERN Document Server

    Santos Leite Cima Gomes, J; Kleiner, S

    2008-01-01

    The main goal of this study is to assess the impact of the discharges of the semi-closed water cooling circuits of CERN (European Center for Nuclear Research) on the overall quality of CERN's effluents, taking as guidelines the international legislation supported on the knowledge of the water systems of CERN. In order to reach this goal, a thorough analysis of the functioning of the semi-closed water cooling systems of CERN's particle accelerators was done, as well as, an analysis of the treatment that is done to prevent the proliferation of bacteria such as Legionella. The products used in these water treatments, as well as their impact, were also researched. In addition, a study of the applicable regulation to CERN's effluent was done. This study considered not only the regulation of France and Switzerland (CERN's host states) but also the international regulation from the European community, Portugal Germany, Spain, U.S. and Canada, having in view a better understanding of the limit values of the parameter...

  13. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  14. A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents.

    Science.gov (United States)

    Jordan, Mark A; Welsh, David T; John, Richard; Catterall, Kylie; Teasdale, Peter R

    2013-02-01

    Representative and fast monitoring of wastewater influent and effluent biochemical oxygen demand (BOD) is an elusive goal for the wastewater industry and regulatory bodies alike. The present study describes a suitable assay, which incorporates activated sludge as the biocatalyst and ferricyanide as the terminal electron acceptor for respiration. A number of different sludges and sludge treatments were investigated, primarily to improve the sensitivity of the assay. A limit of detection (LOD) (2.1 mg BOD₅ L⁻¹) very similar to that of the standard 5-day BOD₅ method was achieved in 4 h using raw influent sludge that had been cultured overnight as the biocatalyst. Reducing the microbial concentration was the most effective means to improve sensitivity and reduce the contribution of the sludge's endogenous respiration to total ferricyanide-mediated (FM) respiration. A strong and highly significant relationship was found (n = 33; R = 0.96; p BOD₅ and FM-BOD equivalent values for a diverse range of samples including wastewater treatment plant (WWTP) influent and treated effluent, as well as several grey water samples. The activated sludge FM-BOD assay presented here is an exceptional surrogate method to the standard BOD₅ assay, providing representative, same-day BOD analysis of WWTP samples with a comparable detection limit, a 4-fold greater analytical range and much faster analysis time. The industry appeal of such an assay is tremendous given that ~90% of all BOD₅ analysis is dedicated to measurement of WWTP samples, for which this assay is specifically designed.

  15. Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production.

    Science.gov (United States)

    Kim, Ga-Yeong; Yun, Yeo-Myeong; Shin, Hang-Sik; Kim, Hee-Sik; Han, Jong-In

    2015-11-01

    In this study, a microalgae-based technology was employed to treat wastewater and produce biodiesel at the same time. A local isolate Scenedesmus sp. was found to be a well suited species, particularly for an effluent from anaerobic digester (AD) containing low carbon but high nutrients (NH3-N=273mgL(-1), total P=58.75mgL(-1)). This algae-based treatment was quite effective: nutrient removal efficiencies were over 99.19% for nitrogen and 98.01% for phosphorus. Regarding the biodiesel production, FAME contents of Scenedesmus sp. were found to be relatively low (8.74% (w/w)), but overall FAME productivity was comparatively high (0.03gL(-1)d(-1)) due to its high biomass productivity (0.37gL(-1)d(-1)). FAMEs were satisfactory to the several standards for the biodiesel quality. The Scenedesmus-based technology may serve as a promising option for the treatment of nutrient-rich wastewater and especially so for the AD effluent.

  16. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO{sub 2} concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Prieto-Rodriguez, L.; Miralles-Cuevas, S. [Plataforma Solar de Almeria-CIEMAT, Carretera de Senes Km 4, 04200 (Tabernas, Almeria) (Spain); Oller, I. [Plataforma Solar de Almeria-CIEMAT, Carretera de Senes Km 4, 04200 (Tabernas, Almeria) (Spain); CIESOL, Joint Centre of the University of Almeria-CIEMAT, 04120 Almeria (Spain); Agueera, A. [Pesticide Residue Research Group, University of Almeria, 04120 Almeria (Spain); CIESOL, Joint Centre of the University of Almeria-CIEMAT, 04120 Almeria (Spain); Puma, G. Li [Photocatalysis and Photoreaction Engineering, Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU (United Kingdom); Malato, S., E-mail: sixto.malato@psa.es [Plataforma Solar de Almeria-CIEMAT, Carretera de Senes Km 4, 04200 (Tabernas, Almeria) (Spain); CIESOL, Joint Centre of the University of Almeria-CIEMAT, 04120 Almeria (Spain)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Low TiO{sub 2} concentration suitable for removal of contaminants in WWTP effluents. Black-Right-Pointing-Pointer The low concentration of TiO{sub 2} limits the reaction rate due to the loss of photons. Black-Right-Pointing-Pointer Contaminant degradation >85% is possible after a certain reaction time. Black-Right-Pointing-Pointer New developments in CPC photoreactors with as large an O.D. are necessary. - Abstract: The optimal photocatalyst concentration for industrial wastewater treatment in current photoreactor designs is several hundreds of milligrams per liter. However, the elimination of emerging contaminants (ECs), which are present at extremely low concentrations in waste water treatment plants (WWTP) effluents might be accomplished at much lower catalyst (TiO{sub 2}) concentrations. One of the main drawbacks of reducing catalyst loading below the optimum is the loss of useful photons which instead are transmitted through the TiO{sub 2} suspension without being absorbed by the catalyst. Accordingly, in this work, laboratory and solar pilot-scale experiments were performed with real WWTP effluents to evaluate the kinetics of photocatalytic degradation of 52 emerging contaminants under realistic (ppb) concentrations. The analysis of the samples was accomplished by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS). In view of the results, low concentrations of TiO{sub 2} of the order of tens of milligrams per liter were found to be insufficient for the degradation of the ECs in photoreactors with a short light-path length (29 cm). However, it was established that solar reactors of diameters of several hundreds of millimetres could be used for the efficient removal of ECs from WWTP effluents. The results presented show a general methodology for selecting the most efficient reactor diameter on the basis of the desired catalyst concentration.

  17. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  18. Formulation and preparation on Hanford Waste Treatment Plan direct feed low activity waste effluent management facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  19. Photocatalytic degradation of industrial pulp and paper mill effluent using synthesized magnetic Fe2O3-TiO2: Treatment efficiency and characterizations of reused photocatalyst.

    Science.gov (United States)

    Subramonian, Wennie; Wu, Ta Yeong; Chai, Siang-Piao

    2017-02-01

    In this work, heterogeneous photocatalysis was used to treat pulp and paper mill effluent (PPME). Magnetically retrievable Fe2O3-TiO2 was fabricated by employing a solvent-free mechanochemical process under ambient conditions. Findings elucidated the successful incorporation of Fe2O3 into the TiO2 lattice. Fe2O3-TiO2 was found to be an irregular and slightly agglomerated surface morphology. In comparison to commercial P25, Fe2O3-TiO2 exhibited higher ferromagnetism and better catalyst properties with improvements in surface area (58.40 m(2)/g), pore volume (0.29 cm(3)/g), pore size (18.52 nm), and band gap (2.95 eV). Besides, reusability study revealed that Fe2O3-TiO2 was chemically stable and could be reused successively (five cycles) without significant changes in its photoactivity and intrinsic properties. Additionally, this study demonstrated the potential recovery of Fe2O3-TiO2 from an aqueous suspension by using an applied magnetic field or sedimentation. Interactive effects of photocatalytic conditions (initial effluent pH, Fe2O3-TiO2 dosage, and air flow-rate), reaction mechanism, and the presence of chemical oxidants (H2O2, BrO3(-), and HOCl) during the treatment process of PPME were also investigated. Under optimal conditions (initial effluent pH = 3.88, [Fe2O3-TiO2] = 1.3 g/L, and air flow-rate = 2.28 L/min), the treatment efficiency of Fe2O3-TiO2 was 98.5% higher than the P25. Based on Langmuir-Hinshelwood kinetic model, apparent rate constants of Fe2O3-TiO2 and P25 were 9.2 × 10(-3) and 2.7 × 10(-3) min(-1), respectively. The present study revealed not only the potential of using magnetic Fe2O3-TiO2 in PPME treatment but also demonstrated high reusability and easy separation of Fe2O3-TiO2 from the wastewater.

  20. Effect of Hydraulic Loading Rate on the Efficiency of Effluent Treatment in a Recirculating Puffer Aquaculture System Coupled with Constructed Wetlands

    Institute of Scientific and Technical Information of China (English)

    XU Jiabo; SHI Yonghai; ZHANG Genyu; LIU Jianzhong; ZHU Yazhu

    2014-01-01

    Constructed wetlands (CWs) were integrated into an indoor recirculating aquaculture system of obscure puffer (Takifugu obscurus) for effluent treatment. The effect of hydraulic loading rate (HLR) on the efficiency of effluent treatment by CWs was ex-amined for over a month. The CWs were operated under brackish conditions (salinity 7.4-7.6) at 3 different HLRs (0.762, 0.633, and 0.458 m d-1) 3 times, 10 days each. Overall, the CWs exhibited high efficiency in removal of total ammonium nitrogen (by 81.03-92.81%) and nitrite nitrogen (by 99.40%-99.68%). The efficiency of CWs in removal of total ammonium nitrogen, nitrate nitrogen, total Kjeldahl nitrogen, total phosphorous, and total suspended solids (TSS) increased with the decrease of HLR. The CWs operated at the 3 HLRs in a decreasing trend proves to be effective, providing a useful method for effluent treatment in commercial puffer aquaculture systems.

  1. A New Method for Effluent Treatment System Design%一种新的废水处理系统设计方法

    Institute of Scientific and Technical Information of China (English)

    李保红; 樊希山; 姚平经

    2002-01-01

    This paper mainly discusses the design of distributed effluent treatment systems with single contaminant. A new method is put forward and four basic rules are provided. The key point of the method is that global optimality is obtained by guaranteeing the optimality of each step taken in the design. Costs per unit mass of removed contaminant are used as a scale to choose the next combination of an effluent stream and a treatment process. The remaining problem is updated after each choice. As for multiple contaminants, a two-stage method is adopted. At the first stage, the sub-networks for each contaminant are designed by the method mentioned above;at the second stage, the sub-networks are merged together in a new way. Overall, the paper presents a simple but practical framework for the effluent treatment system design.

  2. Hydrogeology and Migration of Septic-Tank Effluent in the Surficial Aquifer System in the Northern Midlands Area, Palm Beach County, Florida

    Science.gov (United States)

    Miller, Wesley L.

    1992-01-01

    The northern Midlands area in Palm Beach County is an area of expected residential growth, but its flat topography, poor drainage, and near-surface marl layers retard rainfall infiltration and cause frequent flooding. Public water supplies and sewer services are not planned for the area, thus, residents must rely on domestic wells and septic tanks. The water table in the northern Midlands area is seldom more than 5 feet below land surface, and regional ground-water flows are east, southwest, and south from the north-central part of the area where ground-water levels are highest. Ground-water quality in the western part of the area and in the Loxahatchee Slough is greatly influenced by residual seawater emplaced during the Pleistocene Epoch. Chloride and dissolved-solids concentrations of ground water in the surficial aquifer system in these areas often exceed secondary drinking-water standards. Residual seawater has been more effectively flushed from the more permeable sediments elsewhere in the eastern and southwestern parts of the study area. Test at three septic-tank sites showed traces of effluent in ground water (38-92 feet from the septic tank outlets) and that near-surface marl layers greatly impede the downward migration of the effluent in the surficial aquifer system throughout the northern midlands.

  3. Preliminary Study on Treatment of Palm Oil Mill Effluent (POME by Sand Filtration-DBD Plasma System

    Directory of Open Access Journals (Sweden)

    Ariadi Hazmi

    2016-02-01

    Full Text Available In the palm oil industry, open ponding, aerobic and anaerobic digestion, physicochemical treatment and membrane filtration are generally applied as conventional treatments of palm oil mill effluent (POME. In this study, a sand filtration-dielectric barrier discharge (DBD system was investigated as an alternative process for treating POME. This system can reduce land usage, processing time and costs compared to conventional systems. The removal efficiency of chemical oxygen demand (COD, biological oxygen demand (BOD5, and oil-grease in relation to the applied voltage were studied. Furthermore, the pH and temperature profiles were investigated. The obtained results indicate that the removal efficiency of COD, BOD5, and oil-grease increased with an increase of the applied voltage. The electrical energy consumption needed is about 10.56 kWh/L of POME.

  4. Adsorption studies on treatment of textile dyeing industrial effluent by flyash

    Energy Technology Data Exchange (ETDEWEB)

    Rao, V.V.B.; Rao, S.R.M. [Osmania University, Hyderabad (India). College of Technology

    2006-02-01

    Textile effluents are highly toxic as they contain a large number of metal complex dyes. The high concentration of such dyes causes many water borne diseases and increases the BOD of the receiving waters. On the other hand, flyash is a major pollutant generated in coal-based thermal power plants and has potentiality for use as an adsorbent. In the present work, adsorption studies were made in treating the dye solutions of methylene blue and Congo red textile dyes by using flyash. Effects of quantity of adsorbent, time of contact, initial effluent concentration, pH and temperature have been investigated experimentally and the results were compared with those obtained by using activated carbon. The first-order adsorption rate constants were determined and found decreasing with temperature. The results obtained were fitted by Langmuir model since monolayer formation observed. Also, Langmuir adsorption isotherm parameters were estimated from the experimental data obtained for both methylene blue and Congo red dyes using both the adsorbents.

  5. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    Science.gov (United States)

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively.

  6. Treatment of complex Remazol dye effluent using sawdust- and coal-based activated carbons.

    Science.gov (United States)

    Vijayaraghavan, K; Won, Sung Wook; Yun, Yeoung-Sang

    2009-08-15

    A complex Remazol dye effluent, comprised of four reactive dyes and auxiliary chemicals, was decolorized using SPS-200 (sawdust-based) and SPC-100 (coal-based) activated carbons. A detailed characterization revealed that the pore diameter of the activated carbon played an important role in dye adsorption. The solution pH had no significant effect on the adsorption capacity in the pH range of 2-10.7. According to the Langmuir model, the maximum uptakes of SPS-200 were 415.4, 510.3, 368.5 and 453.0 mg g(-1) for Reactive Black 5 (RB5), Reactive Orange 16 (RO16), Remazol Brilliant Blue R (RBBR) and Remazol Brilliant Violet 5R (RBV), respectively. Conversely, those of SPC-100 were slightly lower, at 150.8, 197.4, 178.3 and 201.1 mg g(-1) for RB5, RO16, RBBR and RBV, respectively. In the case of Remazol effluent, SPS-200 exhibited a decolorization efficiency of 100% under unadjusted pH conditions at 10.7, compared to that of 52% for SPC-100.

  7. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.

    Science.gov (United States)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2008-05-01

    Pulp mill effluent was treated by different advanced oxidation processes (AOPs) consisting of UV, UV/H2O2, TiO2-assisted photo-catalysis (UV/TiO2) and UV/H2O2/TiO2 in lab-scale reactors for total organic carbon (TOC) and toxicity removals. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC and toxicity removals were investigated. Almost every method resulted in some degree of TOC and toxicity removal from the pulp mill effluent. However, the TiO2-assisted photo-catalysis (UV/TiO2) resulted in the highest TOC and toxicity removals under alkaline conditions when compared with the other AOPs tested. Approximately, 79.6% TOC and 94% toxicity removals were obtained by the TiO2-assisted photo-catalysis (UV/TiO2) with a titanium dioxide concentration of 0.75gl(-1) at pH 11 within 60min.

  8. Enhanced Biodegradability of Aerobic Sludge by Bioaugmentation for Pulping Effluent Treatment

    Directory of Open Access Journals (Sweden)

    Honglei Chen

    2014-02-01

    Full Text Available To demonstrate the feasibility of bioaugmentation in enhancement of the biodegradation of pulping effluent, aerobic sludge was intensified with superior mixed flora. The differences between intensified aerobic activated sludge and original sludge were compared. The results showed that the chemical oxygen demand (COD of pulping effluent treated with the intensified sludge dropped to a much lower level compared with the original sludge, which indicated that the biodegradability of sludge was enhanced by bioaugmentation. The growth kinetics of the sludges were established. The growth rate Vmax of the intensified sludge was elevated from 7.8×10-3 to 7.1×10-3, while the saturation constant Ks decreased from 0.33 to 0.21 after bioaugmentation. In addition, the degradation kinetics showed that the equation coefficient of sludge increased from 4.6×10-3 to 6.4×10-3, confirming the intensification of biodegradation as a result of bioaugmentation.

  9. Anaerobic Treatment of Palm Oil Mill Effluent in Pilot-Scale Anaerobic EGSB Reactor

    Science.gov (United States)

    Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Li, Xu-Dong

    2015-01-01

    Large volumes of untreated palm oil mill effluent (POME) pose threat to aquatic environment due to the presence of very high organic content. The present investigation involved two pilot-scale anaerobic expanded granular sludge bed (EGSB) reactors, continuously operated for 1 year to treat POME. Setting HRT at 9.8 d, the anaerobic EGSB reactors reduced COD from 71179 mg/L to 12341 mg/L and recycled half of sludge by a dissolved air flotation (DAF). The average effluent COD was 3587 mg/L with the consistent COD removal efficiency of 94.89%. Adding cationic polymer (PAM) dose of 30 mg/L to DAF unit and recycling its half of sludge caused granulation of anaerobic sludge. Bacilli and small coccid bacteria were the dominant microbial species of the reactor. The reactor produced 27.65 m3 of biogas per m3 of POME which was utilized for electricity generation. PMID:26167485

  10. Impact of effluent organic matter on low-pressure membrane fouling in tertiary treatment

    KAUST Repository

    Ayache, C.

    2013-05-01

    This study aims at comparing low-pressure membrane fouling obtained with two different secondary effluents at bench and pilot-scale based on the determination of two fouling indices: the total fouling index (TFI) and the hydraulically irreversible fouling index (HIFI). The main objective was to investigate if simpler and less costly bench-scale experimentation can substitute for pilot-scale trials when assessing the fouling potential of secondary effluent in large scale membrane filtration plants producing recycled water. Absolute values for specific flux and total fouling index for the bench-scale system were higher than those determined from pilot-scale, nevertheless a statistically significant correlation (r2 = 0.63, α = 0.1) was obtained for the total fouling index at both scales. On the contrary no such correlation was found for the hydraulically irreversible fouling index. Advanced water characterization tools such as excitation-emission matrix fluorescence spectroscopy (EEM) and liquid chromatography with organic carbon detection (LC-OCD) were used for the characterization of foulants. On the basis of statistical analysis, biopolymers and humic substances were found to be the major contribution to total fouling (r2 = 0.95 and r2 = 0.88, respectively). Adsorption of the low molecular weight neutral compounds to the membrane was attributed to hydraulically irreversible fouling (r2 = 0.67). © 2013 Elsevier Ltd.

  11. Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-07-30

    Coagulation, magnetic ion exchange resin (MIEX) and biological activated carbon (BAC) were examined at lab scale as standalone, and sequential pre-treatments for controlling the organic fouling of a microfiltration membrane by biologically treated secondary effluent (BTSE) using a multi-cycle approach. MIEX gave slightly greater enhancement in flux than coagulation due to greater removal of high molecular weight (MW) humic substances, although it was unable to remove high MW biopolymers. BAC treatment was considerably more effective for improving the flux than coagulation or MIEX. This was due to the biodegradation of biopolymers and/or their adsorption by the biofilm, and adsorption of humic substances by the activated carbon, as indicated by size exclusion chromatography. Coagulation or MIEX followed by BAC treatment further reduced the problematic foulants and significantly improved the flux performance. The unified membrane fouling index showed that the reduction of membrane fouling by standalone BAC treatment was 42%. This improved to 65%, 70%, and 93% for alum, ferric chloride and MIEX pre-treatment, respectively, when followed by BAC treatment. This study showed the potential of sequential MIEX and BAC pre-treatment for controlling organic fouling and thus enhancing the performance of microfiltration in the reclamation of BTSE.

  12. Genotoxicity of swine effluents.

    Science.gov (United States)

    Techio, V H; Stolberg, J; Kunz, A; Zanin, E; Perdomo, C C

    2011-01-01

    This study aimed at the investigation of genotoxic effects of swine effluents from different stages of a treatment system for swine wastes through bioassay of stamen hairs and micronuclei in Tradescantia (clone BNL 4430). No significant differences (p≥0.05) regarding the genic mutations were found in the bioassay of stamen hairs, independently of the effluent analysed. For the genotoxicity test with micronuclei, the plants exposed to raw wastes, to sludge, and to effluent of the biodigester have presented higher rates of chromosomal damages (micronuclei), with significant differences in relation to the control group and other effluent of the waste treatment system (p≤0.05). The association between the chemical parameters and the genotoxicity data have shown that the variables COD and TKN have presented significant correlation (p≤0.05) with the number of mutagenic events in the tetrads.

  13. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  14. Pilot-scale comparison of thermophilic aerobic suspended carrier biofilm process and activated sludge process in pulp and paper mill effluent treatment.

    Science.gov (United States)

    Suvilampi, J E; Rintala, J A

    2004-01-01

    Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13+/-5 h and 16+/-6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7+/-0.9 and 2.2+/-1.0 kg CODfilt m(-3)d(-1). Temperatures varied between 46 to 60 degrees C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m(-3)d(-1). Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89+/-2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35 degrees C and 55 degrees C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.

  15. Effect of application rates and media types on nitrogen and surfactant removal in trickling filters applied to the post-treatment of effluents from UASB reactors

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, P. G. S. de; Taveres, F. v. F.; Chernicharo, C. A. I.

    2009-07-01

    Tricking filters are a very promising alternative for the post treatment of effluents from UASB reactors treating domestic sewage,especially in developing countries. Although a fair amount of information is already available regarding organic mater removal in this combined system, very little is known in relation to nitrogen and surfactant removal in trickling filters post-UASB reactors. Therefore, the purpose of this study was to evaluate and compare the effect evaluate and compare the effect of different application rates and packing media types on trickling filters applied to the post-treatment of effluents from UASB reactors, regarding the removal of ammonia nitrogen and surfactants. (Author)

  16. Treatment of a simulated phenolic effluent by heterogeneous catalytic ozonation using Pt/Al2O3.

    Science.gov (United States)

    Fajardo, Ana S; Martins, Rui C; Quinta-Ferreira, Rosa M

    2013-01-01

    Non-catalytic and catalytic ozonation over Pt/Al2O3 were considered in the treatment of a synthetic effluent composed of six phenolic acids usually present in olive mill wastewaters. In both processes the medium pH affected the rate of ozone decomposition and the formation of hydroxyl radicals. The optimum values were achieved for the catalytic system under pH 7 with 93.0 and 47.7%, respectively, of total phenol content and chemical oxygen demand (COD) removal, after 120 minutes of reaction. For pH 3, the catalytic ozonation followed a free radical pathway perceived by the presence of radical scavengers. No significant structural differences were observed between the fresh and used solid catalyst in X-ray diffraction analysis. Aluminium leaching behaviour was also evaluated at the end of each experiment. Moreover, a sequence of feed-batch trials involving the catalyst reutilization exhibited almost constant activity during the operation time. Eco-toxicological tests were performed for both processes, revealing that the treated effluent still presents some ecological impact, although it is lower than that for the raw wastewater.

  17. Combined electrocoagulation and TiO{sub 2} photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries

    Energy Technology Data Exchange (ETDEWEB)

    Boroski, Marcela; Rodrigues, Angela Claudia; Garcia, Juliana Carla; Sampaio, Luiz Carlos; Nozaki, Jorge [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil); Hioka, Noboru [Departamento de Quimica, Universidade Estadual de Maringa, Avenida Colombo 5790, Maringa-PR 87020-900 (Brazil)], E-mail: nhioka2@yahoo.com.br

    2009-02-15

    The treated wastewater consists of refractory materials and high organic content of hydrolyzed peptone residues from pharmaceutical factory. The combination of electrocoagulation (EC) followed by heterogeneous photocatalysis (TiO{sub 2}) conditions was maximized. The EC: iron cathode/anode (12.50 cm x 2.50 cm x 0.10 cm), current density 763 A m{sup -2}, 90 min and initial pH 6.0. As EC consequence, the majority of the dissolved organic and suspended material was removed (about 91% and 86% of the turbidity and chemical oxygen demand (COD), respectively). After EC, refractory residues still remained in the effluent. The subsequent photocatalysis: UV/TiO{sub 2}/H{sub 2}O{sub 2} (mercury lamps), pH 3.0, 4 h irradiation, 0.25 g L{sup -1} TiO{sub 2} and 10 mmol L{sup -1} H{sub 2}O{sub 2} shows high levels of inorganic and organic compounds eliminations. The obtained COD values: 1753 mg L{sup -1} for the sample from the factory, 160 mg L{sup -1} after EC and 50 mg L{sup -1} after EC/photocatalyzed effluents pointed out that the combined treatment stresses this water purification.

  18. Advanced monitoring and supervision of biological treatment of complex dairy effluents in a full-scale plant.

    Science.gov (United States)

    Carrasco, Eugenio F; Omil, Francisco; Garrido, Juan M; Arrojo, Belén; Méndez, Ramón

    2004-01-01

    The operation of a wastewater treatment plant treating effluents from a dairy laboratory was monitored by an advanced system. This plant comprises a 12 m(3) anaerobic filter (AF) reactor and a 28 m(3) sequential batch reactor (SBR) coupled in series and is equipped with the following on-line measurement devices: biogas flow meter, feed and recycling flow meters, temperature sensor, dissolved oxygen analyzer, and redox meter. Other parameters such as chemical oxygen demand (COD), volatile fatty acids (VFA), etc. were determined off-line. The plant has been in operation for 634 days, the influent flow rate being 6-8 m(3)/d. COD concentration of the influent ranged between 8 and 12 kg COD/m(3), resulting in COD values in the effluent around 50-200 mg/L. The behavior of the system was studied using the set of measurements collected by the data acquisition program especially developed for this purpose. Monitoring of variables such as anaerobic reactor temperature permitted the detection and prevention of several failures such as temperature shocks in the AF reactor. Besides, off-line measurements such as the alkalinity or the VFA content, together with the on-line measurements, provided immediate information about the state of the plant and the detection of several anomalies, such as organic overloads in the SBR, allowing the implementation of several fast control actions.

  19. Determination of 19 volatile organic compounds in wastewater effluents from different treatments by purge and trap followed by gas-chromatography coupled to mass spectrometry.

    Science.gov (United States)

    Barco-Bonilla, Nieves; Plaza-Bolaños, Patricia; Fernández-Moreno, José Luis; Romero-González, Roberto; Frenich, Antonia Garrido; Vidal, José Luis Martínez

    2011-07-01

    A rapid and simple methodology based on purge and trap with gas-chromatography coupled to triple quadrupole mass spectrometry has been developed for the analysis of 19 volatile organic compounds (VOCs) in wastewater (WW) effluents from four different treatments. The determination was carried out in the raw WW effluents, which were not submitted to any pre-treatment (e.g., filtration). A matrix effect study was also performed, concluding that solvent calibration was adequate to quantify VOCs in WW effluent samples containing a variety of suspended particulate matter. Adequate validation parameters were obtained with recovery values in the range 73-124% and precision values lower than 24%. Limits of quantification were established at 0.1 μg L(-1) for all VOCs. The proposed method was applied to the analysis of WW samples, detecting chloroform and toluene at concentrations ranging from 0.1 to 4.80 μg L(-1).

  20. Utilization of ultraviolet radiation in effluent disinfestation of domestic waste treatment systems; Utilizacao da radiacao ultravioleta na desinfeccao de efluentes de sistemas de tratamento de esgotos domesticos

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, P.R.R. [Companhia de Tecnologia de Saneamento Ambiental, Sao Paulo, SP (Brazil); Andrade e Silva, L.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1995-12-31

    Ultraviolet radiation disinfection of Upflow Anaerobic Sludge Biodigestor (UASB) and UASB with aerated lagoon pos-treatment effluents is possible to be reached utilizing a single low pressure mercury lamp arc (15 W nominal power) in a shell tube flow through reactor (1.2 L useful volume). Fecal coliforms, total coliforms and colifages were used as microbiological parameters. For fecal coliforms, about 3 logarithmic units (log. un.) was removed from UASB with aerated lagoon pos-treatment effluent and 4 log. un. from UASB effluent with 7 and 30 seconds of hydraulic retention time, respectively. Good empirical correlations were obtained between microbiological parameters and hydraulic retention times. (author). 4 refs, 1 fig, 3 tabs.

  1. MICROFILTRATION AS ADVANCED TREATMENT PROCESS FOR AN EFFLUENT OF BEEF CATTLE

    Directory of Open Access Journals (Sweden)

    Tiago Osório da Silva

    2011-12-01

    Full Text Available This work aimed to clarify an effluent of a cattle slaughter industry by means of polmeric membranes ofmicrofiltration (porosity of 0.4 μm with the purpose of removing its turbidity, COD, total suspended solids,volatile solids, inorganic phosphorus and ammonia nitrogen. And also the characteristics of the flow behaviorand transmembrane pressure, and permeate temperature for this wastewater. It was noted that the efficiencyregarding the removal of physical-chemical parameters was 98%, for Turbidity; 97%, for TSS; 97%, for VSS; 92%, for COD; 9%, for N-NH4- and 49%, for P-PO4 3-. Frequency operation of 35 Hz presented the highest permeate flux (18 L.h-1.m-2, lowest temperature and transmembrane pressure. Result showed that tangentialfiltration process is satisfactory in terms of macromolecules and turbidity removal.

  2. Treatment of Textile Dye Effluent Using a Self-made Positively Charged Nanofiltration Membrane

    Institute of Scientific and Technical Information of China (English)

    HUANG Ruihua; YANG Bingchao; ZHENG Dongsheng; CHEN Guohua; GAO Congjie

    2012-01-01

    A self-made positively charged nanofiltration (NF) membrane was used to treat textile dye effluent to generate water for reuse,and the factors affecting nanofiltration process such as operating pressure,feed flow and membrane cleaning were investigated.With an applied pressure of 1.0 MPa and a feed flow of 40 L/h,this NF membrane has a removal of 93.3% for CODcr and a reduction of approximately 51.0% in TDS,salinity and conductivity achieving the chroma removal of 100%.The permeate obtained through this membrane is suitable for recycling.Moreover,the membrane could be reused after being cleaned with 1% NaOH solution.

  3. Photocatalytic treatment of IGCC power station effluents in a UV-pilot plant.

    Science.gov (United States)

    Durán, A; Monteagudo, J M; San Martín, I; Sánchez-Romero, R

    2009-08-15

    The aim of this work is to improve the quality of water effluents coming from an Integrated Gasification Combined Cycle (IGCC) power station to meet with future environmental legislation. This study has been made using an homogeneous photocatalytic oxidation process (UV/Fe(II)/H(2)O(2)) in a pilot plant. The efficiency of the process was determined from the analysis of the following parameters: cyanides, formates and TOC content. In the first stage, a factorial experimental design allowed to determine the influence of operation variables (initial concentration of H(2)O(2) and Fe(II), pH and temperature) on the degradation kinetics. pH was always kept in a value >9.5 during cyanides destruction to avoid gaseous HCN formation and lowered later to enhance formates degradation. Experimental kinetic constants were fitted using neural networks (NNs). Under the optimum conditions ([H(2)O(2)]=1700 ppm, [Fe(II)]=2 ppm, pH 2 after cyanides destruction, and T=30 degrees C), it is possible to degrade 100% of cyanides in 15 min and 76% of formates in 120 min. The use of an homogeneous process with UV light can offer an economical and practical alternative to heterogeneous photocatalysis for the destruction of environmental pollutants present in thermoelectric power stations effluents, since it can treat very high flowrates using a lower H(2)O(2) concentration. Furthermore, it does not require additional operations to recover the solid catalyst and regenerate it due to deactivation as occurs in heterogeneous catalysis.

  4. Research on Phthalic Acid Esters Removal and Its Health Risk Evaluation by Combined Process for Secondary Effluent of Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Simin Li

    2013-01-01

    Full Text Available This paper analyses the treatment effect of the “coagulation-sedimentation-O3-biological sand filtration-GAC” combined process on phthalic acid esters in secondary effluent of municipal wastewater treatment plant and meanwhile evaluate its health risk. The results indicated that when the concentrations of DBP and DiOP in secondary effluent were at range of 0.41 mg/L–0.814 mg/L and 0.23 mg/L–0.36 mg/L, the average total removal rates of DBP and DiOP were 85.10% and 68.11%, and the average concentration of DBP and DiOP in effluent were 0.089 mg/L and 0.091 mg/L, respectively. The quality of the effluent met the requirement of the ornamental scenic environment water in The Quality of Urban Wastewater Recycling and Scenic Environment Water (GB/T 18921-2002, and the health risks of DBP and DiOP in effluent were at range of 1.99 × 10−12 –2.15 × 10−12/a and 1.48 × 10−11 –1.85 × 10−11/a, respectively, which is lower than the acceptable maximum risk level: 1.0 × 10−6.

  5. Method for treatment of a surface area of steel

    NARCIS (Netherlands)

    Bhowmik, S.; Aaldert, P.J.

    2009-01-01

    The invention relates to a method for treatment of a surface area of steel by polishing said surface area and performing a plasma treatment of said surface area wherein the plasma treatment is performed at at least atmospheric conditions and wherein the plasma treatment is carried out at a power of

  6. Influence of stocking density on the vermicomposting of an effluent treatment plant sludge amended with cow dung.

    Science.gov (United States)

    Yadav, Anoop; Garg, V K

    2016-07-01

    This paper reports the effect of earthworm population density on the vermicomposting of effluent treatment plant sludge of a bakery industry. Four waste mixtures containing 0, 10, 20, and 30 % sludge along with cow dung with five different worm population densities were established for 14 weeks under controlled moisture and temperature conditions. The results showed that average worm biomass, growth and cocoon production were lesser at higher population densities. Sexual maturity was attained in 3rd to 5th week in all waste mixtures. Worm growth was inversely related to worm population density in the waste mixture. Results also indicated that lower worm population is favorable to worm biomass production. On the other hand, mineralization and stabilization of the waste mixtures were more at higher worm populations.

  7. Fate of antibiotics during wastewater treatment and antibiotic distribution in the effluent-receiving waters of the Yellow Sea, northern China.

    Science.gov (United States)

    Zhang, Hanmin; Liu, Pengxiao; Feng, Yujie; Yang, Fenglin

    2013-08-15

    Antibiotics including three β-lactams, two fluoroquinolones and two macrolides, which were the top seven most prescribed antibiotics in Dalian, China, were selected to investigate their occurrence in six municipal wastewater treatment plants (WWTPs) and their distribution in the effluent-receiving waters of the Yellow Sea. Four WWTPs employing different treatment technologies were selected to explore the mechanism of antibiotics elimination during wastewater treatment. Results showed that fluoroquinolones and macrolides were dominant species in both WWTPs effluents and the surveyed coastal waters. Biodegradation was the main pathway for β-lactams removal, however, primary treatment performed better than biological treatment for fluoroquinolones removal. Concentrations of macrolides increased dramatically after the biological treatment, which was probably due to the release of macrolides enclosed in feces particles. In the surveyed coastal waters, reduction of antibiotic concentration with distance was observed. Potential environmental risk caused by the occurrence of these antibiotics should be evaluated in future work.

  8. An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents.

    Science.gov (United States)

    Thorpe, Karen L; Gross-Sorokin, Melanie; Johnson, Ian; Brighty, Geoff; Tyler, Charles R

    2006-04-01

    The effects of simple mixtures of chemicals, with similar mechanisms of action, can be predicted using the concentration addition model (CA). The ability of this model to predict the estrogenic effects of more complex mixtures such as effluent discharges, however, has yet to be established. Effluents from 43 U.K. wastewater treatment works were analyzed for the presence of the principal estrogenic chemical contaminants, estradiol, estrone, ethinylestradiol, and nonylphenol. The measured concentrations were used to predict the estrogenic activity of each effluent, employing the model of CA, based on the relative potencies of the individual chemicals in an in vitro recombinant yeast estrogen screen (rYES) and a short-term (14-day) in vivo rainbow trout vitellogenin induction assay. Based on the measured concentrations of the four chemicals in the effluents and their relative potencies in each assay, the calculated in vitro and in vivo responses compared well and ranged between 3.5 and 87 ng/L of estradiol equivalents (E2 EQ) for the different effluents. In the rYES, however, the measured E2 EQ concentrations in the effluents ranged between 0.65 and 43 ng E2 EQ/L, and they varied against those predicted by the CA model. Deviations in the estimation of the estrogenic potency of the effluents by the CA model, compared with the measured responses in the rYES, are likely to have resulted from inaccuracies associated with the measurement of the chemicals in the extracts derived from the complex effluents. Such deviations could also result as a consequence of interactions between chemicals present in the extracts that disrupted the activation of the estrogen response elements in the rYES. E2 EQ concentrations derived from the vitellogenic response in fathead minnows exposed to a series of effluent dilutions were highly comparable with the E2 EQ concentrations derived from assessments of the estrogenic potency of these dilutions in the rYES. Together these data support the

  9. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent.

    Science.gov (United States)

    Katsoyiannis, Ioannis A; Gkotsis, Petros; Castellana, Massimo; Cartechini, Fabricio; Zouboulis, Anastasios I

    2017-04-01

    The operation and efficiency of a modern, high-tech industrial full-scale water treatment plant was investigated in the present study. The treated water was used for the supply of the boilers, producing steam to feed the steam turbine of the power station. The inlet water was the effluent of municipal wastewater treatment plant of the city of Bari (Italy). The treatment stages comprised (1) coagulation, using ferric chloride, (2) lime softening, (3) powdered activated carbon, all dosed in a sedimentation tank. The treated water was thereafter subjected to dual-media filtration, followed by ultra-filtration (UF). The outlet of UF was subsequently treated by reverse osmosis (RO) and finally by ion exchange (IX). The inlet water had total organic carbon (TOC) concentration 10-12 mg/L, turbidity 10-15 NTU and conductivity 3500-4500 μS/cm. The final demineralized water had TOC less than 0.2 mg/L, turbidity less than 0.1 NTU and conductivity 0.055-0.070 μS/cm. Organic matter fractionation showed that most of the final DOC concentration consisted of low molecular weight neutral compounds, while other compounds such as humic acids or building blocks were completely removed. It is notable that this plant was operating under "Zero Liquid Discharge" conditions, implementing treatment of any generated liquid waste.

  10. Fungal bio-treatment of spruce wood with Trametes versicolor for pitch control: Influence on extractive contents, pulping process parameters, paper quality and effluent toxicity

    NARCIS (Netherlands)

    Beek, van T.A.; Kuster, B.; Claassen, F.W.; Tienvieri, T.; Bertaud, F.; Lennon, G.; Petit-Concil, M.; Sierra-Alvarez, R.

    2007-01-01

    Lipophilic low molar-mass constituents in wood chips for the paper industry result in low quality pulp, pitch deposition, and effluent toxicity. New biotechnological solutions such as fungal pre-treatment of wood chips can reduce pitch problems. This laboratory-scale study focuses on the potential a

  11. Comparing removal efficiency and reaction rates of organic micro-pollutants during ozonation from different municipal waste water treatment plants effluents in Sweden

    DEFF Research Database (Denmark)

    El-taliawy, Haitham; Ekblad, Maja; Nilsson, Filip;

    2015-01-01

    The Removal of about 50 micro-pollutants from 7 waste water treatment plant effluents –in Sweden- was tested on pilot scale. Different ozone doses and two different pilots with different reactor sizes and retention times were tested. Ozone reaction rates depended on DOC concentration in the water...

  12. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, R., E-mail: sridhar36k@yahoo.co.in [Department of Chemical Engineering, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Sivakumar, V., E-mail: drvsivakumar@yahoo.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India); Prince Immanuel, V., E-mail: princeimmanuel79@yahoo.com [Department of Chemical Engineering, Erode Sengunthar Engineering College, Thudupathi, Erode 638057, TN (India); Prakash Maran, J., E-mail: prakashmaran@gmail.com [Department of Food Technology, Kongu Engineering College, Perundurai, Erode 638052, TN (India)

    2011-02-28

    The experiments were carried out in an electrocoagulation reactor with aluminum as sacrificial electrodes. The influence of electrolysis time, current density, pH, NaCl concentration, rotational speed of the stirrer and electrode distance on reduction of color, COD and BOD were studied in detail. From the experimental results, 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance were found to be optimum for maximum reduction of color, COD and BOD. The reduction of color, COD and BOD under the optimum condition were found to be 94%, 90% and 87% respectively. The electrode energy consumption was calculated and found to be varied from 10.1 to 12.9 kWh/m{sup 3} depending on the operating conditions. Under optimal operating condition such as 15 mA/cm{sup 2} current density, pH of 7, 1 g/l NaCl, 100 rpm, 28 deg, C temperature and 3 cm electrode distance, the operating cost was found to be 1.56 US $/m{sup 3}. The experimental results proved that the electrocoagulation is a suitable method for treating bleaching plant effluents for reuse.

  13. Determination of alcohol sulfates in wastewater treatment plant influents and effluents by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Fernández-Ramos, C; Ballesteros, O; Blanc, R; Zafra-Gómez, A; Jiménez-Díaz, I; Navalón, A; Vílchez, J L

    2012-08-30

    In the present paper, we developed an accurate method for the analysis of alcohol sulfates (AS) in wastewater samples from wastewater treatment plant (WWTP) influents and effluents. Although many methodologies have been published in the literature concerning the study of anionic surfactants in environmental samples, at present, the number of analytical methodologies that focus in the determination of AS by gas chromatography in the different environmental compartments is limited. The reason for this is that gas chromatography-mass spectrometry (GC-MS) technique requires a previous hydrolysis reaction followed by derivatization reactions. In the present work, we proposed a new procedure in which the hydrolysis and derivatization reactions take place in one single step and AS are directly converted to trimethylsilyl derivatives. The main factors affecting solid-phase extraction (SPE), hydrolysis/derivatization and GC-MS procedures were accurately optimised. Quantification of the target compounds was performed by using GC-MS in selected ion monitoring (SIM) mode. The limits of detection (LOD) obtained ranged from 0.2 to 0.3 μg L(-1), and limits of quantification (LOQ) from 0.5 to 1.0 μg L(-1), while inter- and intra-day variability was under 5%. A recovery assay was also carried out. Recovery rates for homologues in spiked samples ranged from 96 to 103%. The proposed method was successfully applied for the determination of anionic surfactants in wastewater samples from one WWTP located in Granada (Spain). Concentration levels for the homologues up to 39.4 μg L(-1) in influent and up to 8.1 μg L(-1) in effluent wastewater samples.

  14. Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and hospital wastewaters in the freshwater mussel Elliptio complanata

    Institute of Scientific and Technical Information of China (English)

    Francois Gagné; Chantale André; Marlène Fortier; Michel Fournier

    2012-01-01

    Municipal wastewaters are major sources of pollution for the aquatic biota.The purpose of this study was to determine the levels of some pharmaceutical products and the immunotoxic potential of a municipal wastewater aeration lagoon for the treatment of the domestic wastewaters of a small town with wastewater inputs from a 400-bed hospital complex.Endemic mussels were collected,caged and placed in the final aeration lagoon and at sites 1 km upstream and 1 km downstream of the effluent outfall in the receiving river for a period of 14 days.The results showed that the final aeration lagoon contained high levels of total coliforms,conductivity and low dissolved oxygen (2.9 mg/L) as well as detectable amounts of trimethoprim,carbamazepine,gemfibrozil,and norfloxacin at concentrations exceeding 50 ng/L.The lagoon effluent was indeed toxic to the mussel specimens,as evidenced by the appearance of mortality after 14 days (10% mortality),decreased mussel weight-to-shell-length ratio and loss of hemocyte viability.The number of adhering hemocytes,phagocytic activity,total nitrite levels and arachidonic cyclooxygenase activity were significantly higher in mussels placed in the final aeration lagoon.A multivariate analysis also revealed that water pH,conductivity,total coliforms and dissolved oxygen were the endpoints most closely linked with phagocytic activity,the amount of adhering hemocytes and loss of hemocyte viability.In conclusion,exposure of mussels to treated aerated lagoon wastewater is deleterious to freshwater mussels where the immune system is compromised.

  15. A Study on Membrane Bioreactor for Water Reuse from the Effluent of Industrial Town Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Majid Hosseinzadeh

    2014-03-01

    Full Text Available Background: Considering the toxic effects of heavy metals and microbial pathogens in industrial wastewaters, it is necessary to treat metal and microbial contaminated wastewater prior to disposal in the environment. The purpose of this study is to assess the removal of heavy metals pollution and microbial contamination from a mixture of municipal and industrial wastewater using membrane bioreactor. Methods: A pilot study with a continuous stream was conducted using a 32-L-activated sludge with a flat sheet membrane. Actual wastewater from industrial wastewater treatment plant was used in this study. Membrane bioreactor was operated with a constant flow rate of 4 L/hr and chemical oxygen demand, suspended solids concentration, six heavy metals concentration, and total coliform amounts were recorded during the operation. Results: High COD, suspended solids, heavy metals, and microbial contamination removal was measured during the experiment. The average removal percentages obtained by the MBR system were 81% for Al, 53% for Fe, 94% for Pb, 91% for Cu, 59% for Ni, and 49% for Cr which indicated the presence of Cu, Ni, and Cr in both soluble and particle forms in mixed liquor while Al, Fe, and Pb were mainly in particulate form. Also, coliforms in the majority of the samples were <140 MPN/100mL that showed that more than 99.9% of total coliform was removed in MBR effluent. Conclusion: The Membrane Biological Reactor (MBR showed a good performance to remove heavy metals and microbial matters as well as COD and suspended solids. The effluent quality was suitable for reusing purposes.

  16. Treatment of anaerobic digested effluent in biochar-packed vertical flow constructed wetland columns: Role of media and tidal operation.

    Science.gov (United States)

    Kizito, Simon; Lv, Tao; Wu, Shubiao; Ajmal, Zeeshan; Luo, Hongzhen; Dong, Renjie

    2017-03-15

    Three types of vertical flow constructed wetland columns (VFCWs), packed with corn cob biochar (CB-CW), wood biochar (WB-CW) and gravel (G-CW) under tidal flow operations, were comparatively evaluated to investigate anaerobic digested effluent treatment performance and mechanisms. It was demonstrated that CB-CW and WB-CW provide significantly higher removal efficiencies for organic matter (>59%), NH4(+)-N (>76%), TN (>37%) and phosphorus (>71%), compared with G-CW (22%-49%). The higher pollutants removal ability of biochar-packed VFCWs was mainly attribute to the higher adsorption ability and microbial cultivation in the porous biochar media. Moreover, increasing the flooded/drained ratio from 4/8h to 8/4h of the tidal operation further improved around 10% of the removal of both organics and NH4(+)-N for biochar-packed VFCWs. The phosphorus removal was dependent on the media adsorption capacities through the whole experiment. However, the NH4(+)-N biodegradation by microbial communities was demonstrated to become the dominant removal mechanism in the long term treatment, which compensated the decreased adsorption capacities of the media. The study supported that the use of biochar would increase the treatment performance and elongate the lifespan of CWs under tidal operation.

  17. Lipase from marine Aspergillus awamori BTMFW032: production, partial purification and application in oil effluent treatment.

    Science.gov (United States)

    Basheer, Soorej M; Chellappan, Sreeja; Beena, P S; Sukumaran, Rajeev K; Elyas, K K; Chandrasekaran, M

    2011-10-01

    Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal-0.77% (w/v); (NH(4))(2)SO(4)-0.1m; KH(2)PO(4)-0.05 m; rice bran oil-2% (v/v); CaCl(2)-0.05 m; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35°C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6-fold increase in lipase production was achieved. Partial purification by (NH(4))(2)SO(4) precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40°C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.

  18. Novel Adsorbent-Reactants for Treatment of Ash and Scrubber Pond Effluents

    Energy Technology Data Exchange (ETDEWEB)

    Bill Batchelor; Dong Suk Han; Eun Jung Kim

    2010-01-31

    The overall goal of this project was to evaluate the ability of novel adsorbent/reactants to remove specific toxic target chemicals from ash and scrubber pond effluents while producing stable residuals for ultimate disposal. The target chemicals studied were arsenic (As(III) and As(V)), mercury (Hg(II)) and selenium (Se(IV) and Se(VI)). The adsorbent/reactants that were evaluated are iron sulfide (FeS) and pyrite (FeS{sub 2}). Procedures for measuring concentrations of target compounds and characterizing the surfaces of adsorbent-reactants were developed. Effects of contact time, pH (7, 8, 9, 10) and sulfate concentration (0, 1, 10 mM) on removal of all target compounds on both adsorbent-reactants were determined. Stability tests were conducted to evaluate the extent to which target compounds were released from the adsorbent-reactants when pH changed. Surface characterization was conducted with x-ray photoelectron spectroscopy (XPS) to identify reactions occurring on the surface between the target compounds and surface iron and sulfur. Results indicated that target compounds could be removed by FeS{sub 2} and FeS and that removal was affected by time, pH and surface reactions. Stability of residuals was generally good and appeared to be affected by the extent of surface reactions. Synthesized pyrite and mackinawite appear to have the required characteristics for removing the target compounds from wastewaters from ash ponds and scrubber ponds and producing stable residuals.

  19. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: a two-dimensional flow cell study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.

  20. Correlation between DNAPL distribution area and dissolved concentration in surfactant enhanced aquifer remediation effluent: A two-dimensional flow cell study.

    Science.gov (United States)

    Wu, Bin; Li, Huiying; Du, Xiaoming; Zhong, Lirong; Yang, Bin; Du, Ping; Gu, Qingbao; Li, Fasheng

    2016-02-01

    During the process of surfactant enhanced aquifer remediation (SEAR), free phase dense non-aqueous phase liquid (DNAPL) may be mobilized and spread. The understanding of the impact of DNAPL spreading on the SEAR remediation is not sufficient with its positive effect infrequently mentioned. To evaluate the correlation between DNAPL spreading and remediation efficiency, a two-dimensional sandbox apparatus was used to simulate the migration and dissolution process of 1,2-DCA (1,2-dichloroethane) DNAPL in SEAR. Distribution area of DNAPL in the sandbox was determined by digital image analysis and correlated with effluent DNAPL concentration. The results showed that the effluent DNAPL concentration has significant positive linear correlation with the DNAPL distribution area, indicating the mobilization of DNAPL could improve remediation efficiency by enlarging total NAPL-water interfacial area for mass transfer. Meanwhile, the vertical migration of 1,2-DCA was limited within the boundary of aquifer in all experiments, implying that by manipulating injection parameters in SEAR, optimal remediation efficiency can be reached while the risk of DNAPL vertical migration is minimized. This study provides a convenient visible and quantitative method for the optimization of parameters for SEAR project, and an approach of rapid predicting the extent of DNAPL contaminant distribution based on the dissolved DNAPL concentration in the extraction well.

  1. Treatment of Common Effluent Treatment Plant Wastewater in a Sequential Anoxic-Oxic Batch Reactor by Developed Bacterial Consortium VN11.

    Science.gov (United States)

    Chattaraj, Sananda; Purohit, Hemant J; Sharma, Abhinav; Jadeja, Niti B; Madamwar, Datta

    2016-06-01

    A laboratory-scale anoxic-oxic sequential reactor system was seeded with acclimatized mixed microbial consortium for the treatment of common effluent treatment plant (CETP) wastewater having 7000-7400 mg L(-1) of COD and 3000-3400 mg L(-1) of BOD. Initially, CETP wastewater was treated under anoxic reactor at 5000 mg L(-1) of MLSS concentrations, 5.26 ± 0.27 kg COD m(-3) day(-1) of organic loading rate (OLR) and 36 h of hydraulic retention time (HRT). Further, the effluent of anoxic reactor was treated in oxic reactor with an OLR of 6.6 ± 0.31 kg COD m(-3) day(-1) and 18 h HRT. Maximum color and COD removal were found to be 72 and 85 % at total HRT of 2.25 days under anoxic-oxic sequential reactor at 37 °C and pH 7.0. The UV-VIS, FTIR, NMR and GCMS studies showed that majority of peaks observed in untreated wastewater were either shifted or disappeared after sequential treatment. Phytotoxicity study with the seeds of Vigna radiata and Triticum aestivum showed more sensitivity toward the CETP wastewater, while the products obtained after sequential treatment does not have any inhibitory effects. The results demonstrated that the anoxic-oxic reactor fed with bacterial consortium VN11 could bring about efficient bioremediation of industrial wastewaters.

  2. Treatment of effluent containing uranium with magnetic zeolite; Tratamento de efluente contendo uranio com zeolita magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Craesmeyer, Gabriel Ramos

    2013-07-01

    Within this work, a magnetic-zeolite composite was successfully synthesized using ferrous sulfate as raw material for the magnetic part of the composite, magnetite, and coal fly ash as raw material for the zeolitic phase. The synthesis of the zeolitic phase was made by alkali hydrothermal treatment and the magnetite nanoparticles were obtained through Fe{sup 2+} precipitation on alkali medium. The synthetic process was repeated many times and showed good reproducibility comparing the zeolitic nanocomposite from different batches. The final product was characterized using infrared spectroscopy, powder X-ray diffraction, X-ray fluorescence, scanning electron microscopy with coupled EDS. Specific mass, specific surface area and other physicochemical proprieties. The main crystalline phases found in the final product were magnetite, zeolites types NaP1 and hydroxysodalite, quartz and mullite, those last two remaining from the raw materials. Uranium removal capacity of the magnetic zeolite composite was tested using batch techniques. The effects of contact time and initial concentration of the adsorbate over the adsorption process were evaluated. Equilibrium time was resolved and the following kinetics and diffusion models were evaluated: pseudo-first order kinetic model, pseudo-second order kinetic model and interparticle diffusion model. A contact time of 120 min turned out to be enough to reach equilibrium of the adsorption process. The rate of adsorption followed the pseudo-second order model and the intra particle diffusion did not turn out to be a speed determinant step. Two adsorption isotherms models, the Langmuir model and the Freundlich model, were also evaluated. The Langmuir model was the best fit for the obtained experimental data. Using the best fitted adsorption isotherm and kinetic model, the theoretical maximum adsorption capacity of uranium over the composite was determined for both models. The maximum removal capacity calculated was 20.7 mg.g{sup -1

  3. Reutilização de efluente de tingimentos de fibras acrílicas pós-tratamento fotoeletroquímico Reuse of a effluent from the dyeing of acrylic fabrics after photoelectrochemical treatment

    Directory of Open Access Journals (Sweden)

    Mônica Lucas

    2008-01-01

    Full Text Available On a laboratory scale effluents were produced from bichromic dyeing of acrylic fabrics with the basic dyes Blue Astrazon FGGL 300% and Yellow Gold Astrazon GL 200%. The residual dyeing baths were subjected to a photoelectrochemical treatment and reused in a second dyeing process. In the reutilization study, dyeings with treated effluent were compared with standard dyeings with distilled water. The results of dyeings using 100% of treated effluent were unsatisfactory, but the substitution of 10 to 30% of the treated effluent by distilled water resulted in reduced and more acceptable values for difference in colour intensity (ΔE between 1.86 and 0.3.

  4. Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation

    Science.gov (United States)

    The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...

  5. Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation (Presentation)

    Science.gov (United States)

    The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...

  6. Designing slanted soil system for greywater treatment for irrigation purposes in rural area of arid regions.

    Science.gov (United States)

    Maiga, Y; Moyenga, D; Nikiema, B C; Ushijima, K; Maiga, A H; Funamizu, N

    2014-01-01

    To solve the unpleasant disposal of greywater in rural area and allow its collection for reuse in gardening, a slanted soil treatment system (SSTS) was designed and installed in two households. Granitic gravel of 1-9 mm size was used as the filter medium. The aim of this study was to design a SSTS and assess its suitability as a treatment system allowing greywater reuse in gardening. The efficiency of the SSTS was assessed based on organic matter and bacterial pollution removal. The developed SSTS allowed the collection of greywater from three main sources (shower, dishwashing and laundry) in rural area. The SSTS is efficient in removing at least 50% of suspended solids, chemical oxygen demand and biological oxygen demand. The study highlighted that, contrary to the common perception, greywater streams in rural area are heavily polluted with faecal indicators. The removal efficiency of faecal indicators was lower than 2 log units, and the bacteriological quality of the effluents is generally higher than the WHO reuse guidelines for restricted irrigation. Longer retention time is required to increase the efficiency. The possibility of reusing the treated greywater as irrigation water is discussed on the basis of various qualitative parameters. The SSTS is a promising greywater treatment system for small communities in the rural area in the Sahelian region. To increase the treatment efficiency, future research will focus on the characteristics of the SSTS, the grain size and the establishment of a pretreatment step.

  7. Promoting the Growth of Chlorella vulgaris in Secondary Wastewater Treatment Effluent of Tofu Industry using Azospirillum sp

    Directory of Open Access Journals (Sweden)

    Wahyunanto Agung Nugroho

    2016-05-01

    Full Text Available The objective of this research is to investigate the influence of growth promoting bacteria (GPB Azospirillum sp on the growth of microalgae Chlorella vulgaris in wastewater of tofu industry as a medium. To observe the influence, about 106 cells/mL of Chlorella vulgaris was cultivated in 1 L of wastewater of tofu industry. The wastewater was an effluent of an aerobic treatment. Six different treatments were set regarding to the Azospirillum sp added to the medium. The glass was marked as A0 as no GPB inoculants added to the medium, and A2, A4, A6, A8 and A10 for 2 mL, 4mL, 6mL, 8 mL and 10 mL of GPB added to the medium respectively. The concentration of GPB inoculant was 108 cfu per mL. The result showed that the highest number of Chlorella vulgaris population was achieved by addition of 6 mL GPB Azospirillum sp in the day 10, while the highest maximum growth rate was achieved by addition of 10 mL GPB Azospirillum sp  to the medium.

  8. Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Ejovwokoghene C. Odjadjare

    2015-08-01

    Full Text Available In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents.

  9. Prevalence of Antimicrobial Resistant and Virulent Salmonella spp. in Treated Effluent and Receiving Aquatic Milieu of Wastewater Treatment Plants in Durban, South Africa.

    Science.gov (United States)

    Odjadjare, Ejovwokoghene C; Olaniran, Ademola O

    2015-08-18

    In this study, we evaluated the impact of treated wastewater effluent from two wastewater treatment plants on the physicochemical parameters and Salmonella spp. load of receiving rivers. Presumptive Salmonella spp. were obtained at all sampled points including the discharge points, with counts ranging from 0 to 4.14 log cfu/mL at both plants. Turbidity, chemical and biological oxygen demand were found to be high and mostly above the required limit for treated wastewater discharge. However, recorded nitrate and phosphate values were very low. Of the 200 confirmed Salmonella spp. isolates recovered from the treated effluent and receiving surface waters, 93% harbored the spiC gene, 84% harbored the misL gene, and 87.5% harbored the orfL gene while 87% harbored the pipD gene. The antibiotic resistance profile revealed that the isolates were resistant to sulfamethoxazole, nalidixic acid and streptomycin, but susceptible to quinolones and third generation β-lactams. These results indicate that in South Africa treated effluents are still a major source of contamination of rivers with pathogens such as Salmonella. Appropriate steps by the regulatory authorities and workers at the treatment plants are needed to enforce stipulated guidelines in order to prevent pollution of surface water resources due to the discharge of poorly treated effluents.

  10. Aerobic granular SBR systems applied to the treatment of industrial effluents

    Energy Technology Data Exchange (ETDEWEB)

    Rio, V. del; Figueroa, M.; Arrojo, B.; Mosquera-Corral, A.; Campos, J. L.; Garcia-Torriello, G.; Mendez, R.

    2009-07-01

    Systems based on aerobic granular biomass are an alternative to the conventional activated sludge plants for wastewater treatment. Large organic and nitrogen loads are treated in these systems where biomass grown as granules, easy to separate by setting, make unnecessary the construction of secondary settler reducing the surface requirements for the treatment system construction. Furthermore, in aerobic granular reactors simultaneously carbon and nitrogen removal is feasible. These systems have been already applied at laboratory scale for the treatment of different types of industrial and urban wastewater. (Author)

  11. Evaluating an integrated pilot model for post-treatment of RAP effluent using Spirodela Sp.

    Directory of Open Access Journals (Sweden)

    Yolanda Gamarra Hernández

    2007-05-01

    Full Text Available Integrated residual water treatment systems try to reduce organic matter and nutrients and reuse by-produets generated during the process. An integrated pilot model was constructed with Spirodela sp. to complement the Bolivariana University's current residual water treatment plant's efficieney in removing nutrients. This was evaluated for its efficieney in removing nutrients (ammoniacal nitrogen and phosphorus and total and faecal coliforms using different depths of water. 77.07% efficieney was obtained for ammoniacal nitrogen, 97.10% for total phosphorus, 98.56% for faecal coliforms and 96.4% for total coliforms. Key words: biological treatment, residual water, nutrient removal.

  12. Evaluating an integrated pilot model for post-treatment of RAP effluent using Spirodela Sp.

    OpenAIRE

    Yolanda Gamarra Hernández; Juan Forero Sarmiento; Oscar Quintero Higuera; Fredy Rueda Villamizar; Fernanda Aguilar Acevedo

    2007-01-01

    Integrated residual water treatment systems try to reduce organic matter and nutrients and reuse by-produets generated during the process. An integrated pilot model was constructed with Spirodela sp. to complement the Bolivariana University's current residual water treatment plant's efficieney in removing nutrients. This was evaluated for its efficieney in removing nutrients (ammoniacal nitrogen and phosphorus) and total and faecal coliforms using different depths of water. 77.07% eff...

  13. TREATMENT AND RESOURCE REUSE OF 1,2,4-ACID PRODUCING EFFLUENT WITH MACROPOROUS POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The treatment and resource reuse of 1,2,4-acid producing wastewater by self-mademacroporous adsorption resin ND,A-107 was studied in this paper. Optimum adsorption anddesorption process parameters were acquired by systematically study. The polymeric resin NDA-10 7indicated good adsorption & desorption of 1,2, 4-acid in the wastewater. The removal efficiency of1,2,4-acid, CODer is about 78%, 72% respectively. It is evident that this adsorption process is anefficient treatment method for 1,2,4-acid producing wastewater. At the same time, the accumulationand resource reuse of l,2, 4-acid can be realized in this process.

  14. Treatment of dairy effluent model solutions by nanofiltration and reverse osmosis

    OpenAIRE

    I. Kyrychuk; Yu. Zmievskii; V. Myronchuk

    2015-01-01

    Introduction. Dairy industry generates a large amount of wastewaters that have high concentrations and contain milk components. Membrane processes have been shown to be convenient for wastewater treatment recovering milk components present in wastewaters and producing treated water. Materials and methods. The experiments were carried out in an unstirred batch sell using nanofiltration membranes OPMN-P (ZAO STC “Vladipor”, ...

  15. Thermo-alkali-stable catalases from newly isolated Bacillus sp. for the treatment and recycling of textile bleaching effluents.

    Science.gov (United States)

    Paar, A; Costa, S; Tzanov, T; Gudelj, M; Robra, K H; Cavaco-Paulo, A; Gübitz, G M

    2001-08-23

    Three thermoalkaliphilic bacteria, which were grown at pH 9.3-10 and 60-65 degrees C were isolated out of a textile wastewater drain. The unknown micro-organisms were identified as thermoalkaliphilic Bacillus sp. Growth conditions were studied and catalase activities and stabilities compared. Catalases from Bacillus SF showed high stabilities at 60 degrees C and pH 9 (t1/2=38 h) and thus this strain was chosen for further investigations, such as electron microscopy, immobilization of catalase and hydrogen peroxide degradation studies. Degradation of hydrogen peroxide with an immobilized catalase from Bacillus SF enabled the reuse of the water for the dyeing process. In contrast, application of the free enzyme for treatment of bleaching effluents, caused interaction between the denaturated protein and the dye, resulting in reduced dye uptake, and a higher color difference of 1.3DeltaE* of dyed fabrics compared to 0.9DeltaE* when using the immobilized enzyme.

  16. Catalytic thermal treatment (catalytic thermolysis) of a rice grain-based biodigester effluent of an alcohol distillery plant.

    Science.gov (United States)

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar; Mazumdar, Bidyut; Choudhary, Rumi

    2015-01-01

    The catalytic thermolysis (CT) process is an effective and novel approach to treat rice grain-based biodigester effluent (BDE) of the distillery plant. CT treatment of rice grain-based distillery wastewater was carried out in a 0.5 dm(3) thermolytic batch reactor using different catalysts such as CuO, copper sulphate and ferrous sulphate. With the CuO catalyst, a temperature of 95°C, catalyst loading of 4 g/dm(3) and pH 5 were found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 80.4% and 72%, respectively. The initial pH (pHi) was an important parameter to remove COD and colour from BDE. At higher pHi (pH 9.5), less COD and colour reduction were observed. The settling characteristics of CT-treated sludge were also analysed at different temperatures. It was noted that the treated slurry at a temperature of 80°C gave best settling characteristics. Characteristics of residues are also analysed at different pH.

  17. Dynamics of microbiological parameters, enzymatic activities and worm biomass production during vermicomposting of effluent treatment plant sludge of bakery industry.

    Science.gov (United States)

    Yadav, Anoop; Suthar, S; Garg, V K

    2015-10-01

    This paper reports the changes in microbial parameters and enzymatic activities during vermicomposting of effluent treatment plant sludge (ETPS) of bakery industry spiked with cow dung (CD) by Eisenia fetida. Six vermibins containing different ratios of ETPS and CD were maintained under controlled laboratory conditions for 15 weeks. Total bacterial and total fungal count increased upto 7th week and declined afterward in all the bins. Maximum bacterial and fungal count was 31.6 CFU × 10(6) g(-1) and 31 CFU × 10(4) g(-1) in 7th week. Maximum dehydrogenase activity was 1921 μg TPF g(-1) h(-1) in 9th week in 100 % CD containing vermibin, whereas maximum urease activity was 1208 μg NH4 (-)N g(-1) h(-1) in 3rd week in 100 % CD containing vermibin. The enzyme activity and microbial counts were lesser in ETPS containing vermibins than control (100 % CD). The growth and fecundity of the worms in different vermibins were also investigated. The results showed that initially biomass and fecundity of the worms increased but decreased at the later stages due to non-availability of the palatable feed. This showed that quality and palatability of food directly affect biological parameters of the system.

  18. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment.

    Science.gov (United States)

    Venkata Mohan, S; Prathima Devi, M

    2012-11-01

    Acid-rich effluent generated from acidogenic biohydrogen production process was evaluated as substrate for lipid synthesis by integrating with heterotrophic cultivation of mixed microalgae. Experiments were performed both with synthetic volatile fatty acids (SVFA) and fermented fatty acids (FFA) from biohydrogen producing reactor. Fatty acid based platform evidenced significant influence on algal growth as well as lipid accumulation by the formation of triglycerides through fatty acid synthesis. Comparatively FFA documented higher biomass and lipid productivity (1.42mg/ml (wet weight); 26.4%) than SVFAs ((HAc+HBu+HPr), 0.60mg/ml; 23.1%). Lipid profiles varied with substrates and depicted 18 types of saturated and unsaturated fatty acids with wide fuel and food characteristics. The observed higher concentrations of Chl b over Chl a supports the biosynthesis of triacylglycerides. Microalgae diversity visualized the presence of lipid accumulating species viz., Scenedesmus sp. and Chlorella sp. Integration of microalgae cultivation with biohydrogen production showed lipid productivity for biodiesel production along with additional treatment.

  19. Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential.

    Science.gov (United States)

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2016-03-01

    The impact of long-term (>2 years) biological activated carbon (BAC) treatment for mitigating organic fouling in the microfiltration of biologically treated secondary effluent was investigated. Correlation between the organic constituents and hydraulic filtration resistance was investigated to identify the major components responsible for fouling. Over two years operation, the removal efficiency for dissolved organic carbon (DOC) by the BAC treatment was fairly consistent (30 ± 3%), although the reduction in UVA254 gradually decreased from 56 to 34%. BAC treatment effectively decreased the organic foulants in the effluent and so contributed to the mitigation of membrane fouling as shown by reduction in the unified membrane fouling index (UMFI). BAC consistently removed biopolymers whereas the removal of humic substances decreased from 52 to 25% after two years of BAC operation, and thus led to a gradual decrease in UMFI reduction efficiency from 78 to 43%. This was due to gradual reduction in adsorption capacity of the activated carbon as confirmed by analysis of its pore size distribution. Hence humics also played an important role in membrane fouling. However, there was a good correlation between protein and carbohydrate contents with hydraulically reversible and irreversible filtration resistance, compared with UVA254, turbidity and DOC. Although the mitigation of membrane fouling decreased over time, this study demonstrated that the long-term use of BAC pre-treatment of biologically treated secondary effluent prior to microfiltration has potential to reduce the need for frequent chemical cleaning and so increase membrane life span.

  20. Wastes treatment: Naskeo undertakes on the way of methanization; Traitement des effluents: Naskeo mise sur la methanisation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-09-15

    Naskeo proposes to cleanse the organic effluents of the chemical or pharmaceutical firms by methanization. A process which produces a renewable biogas, directly valorizable at the level of the process of the manufacturer. (O.M.)

  1. Influence of effluents from a Wastewater Treatment Plant on nutrient distribution in a coastal creek from southern Brazil

    Directory of Open Access Journals (Sweden)

    Isaac Rodrigues Santos

    2008-02-01

    Full Text Available The hypothesis that effluents treated through activated sludge process cause changes in nutrient biogeochemistry of receiving water bodies was investigated in Vieira creek, southern Brazil. Dissolved oxygen, suspended matter, and pH did not vary among the sampling stations. Nutrient, biochemical oxygen demand, and conductivity values were significantly higher downstream from the Wastewater Treatment Plant (WWTP effluents. Further downstream, nitrate concentrations were higher due to ammonium nitrification, organic matter remineralization and/or the occurrence of unidentified sources. Per capita nutrient emission factors were estimated to be 0.16 kg P.yr-1 and 4.14 kg N.yr-1. Under pristine conditions, low N:P ratios were observed, which were significantly increased downstream due to the high ammonium input. The mixing zone of the nitrogen-rich waters from Vieira creek with the phosphorus-enriched waters from Patos lagoon estuary was considered under high risk of eutrophication. The results could be useful for planning and management of WWTP-effluent receiving waters in temperate regions from developing countries.A hipótese de que efluentes urbanos tratados através de um sistema de lodo ativado causam alterações na qualidade de água de ambientes aquáticos foi investigada no Arroio Vieira, Rio Grande, RS. Amostras de água foram coletadas a montante e a jusante dos emissários de uma estação de tratamento de esgoto (ETE. Oxigênio, material em suspensão e pH não variaram espacialmente. Já os valores para os nutrientes e para a demanda bioquímica do oxigênio foram significativamente maiores a jusante dos efluentes. Mais a jusante, as concentrações de nitrato aumentam devido à nitrificação do nitrogênio amoniacal, remineralização da matéria orgânica e/ou ocorrência de outros aportes não-identificados. A emissão de nutrientes per capita após o tratamento dos efluentes domésticos (0.16 kg P ano-1 e 4.14 kg N ano-1

  2. What have we learned from worldwide experiences on the management and treatment of hospital effluent? — An overview and a discussion on perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Verlicchi, P., E-mail: paola.verlicchi@unife.it [Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Terra& Acqua Tech Technopole of the University of Ferrara, Via Borsari 46, 44123 Ferrara (Italy); Al Aukidy, M., E-mail: mustafakether.alaukidi@unife.it [Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy); Zambello, E., E-mail: elena.zambello@unife.it [Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara (Italy)

    2015-05-01

    This study overviews lessons learned from experimental investigations on dedicated treatment systems of hospital effluent carried out worldwide in the last twenty years. It includes 48 peer reviewed papers from 1995 to 2015 assessing the efficacy of different treatment levels (preliminary, primary, secondary and polishing) of hospital wastewater in removing a wide spectrum of pharmaceutical compounds as well as conventional contaminants. Moreover, it highlights the rationale and the reasons for each study: reducing the discharge of micropollutants in surface water, improving existing wastewater treatment technologies and reducing the risk of spread of pathogens causing endemic diseases and finally, it offers a critical analysis of the conclusions and suggestions of each study. The most investigated technologies are membrane bioreactors equipped with ultrafiltration membranes in the secondary step, ozonation followed by activated carbon filtration (in powder and in granules) in the polishing step. Interesting research projects deal with photo-Fenton processes acting as primary treatments to enhance biodegradation before biological treatment, and as a polishing step, thus further reducing micro-contaminant occurrence. Investment and operational costs are also presented and discussed for the different treatment technologies tested worldwide, in particular membrane bioreactors and various advanced oxidation processes. This study also discusses the need for further research to evaluate toxicity resulting from advanced oxidation processes as well as the need to develop an accurate feasibility study that encompasses technical, ecotoxicological and economic aspects to identify the best available treatment in the different situations from a global view point. - Highlights: • Different technologies for a dedicated treatment of hospital effluent are discussed. • Photo-Fenton process seems to be a promising preliminary treatment. Membrane bioreactor is a proper secondary

  3. Treatment of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran production effluent by combination of biological treatments and Fenton's oxidation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High strength refractory organic stream is produced during the production of 2-phenylamino-3-methyl-6-di-n-butylaminofluoran(One Dye Black 2, abbr. ODB 2), a novel heat-sensitive material with a promising market. In this study, a combination of acidificationprecipitation, primary biological treatment, Fenton's oxidation and another biological treatment was successfully used for the removal of COD from 18000-25000 mg/L to below 200 mg/L from the ODB 2 production wastewater in a pilot experiment. A COD removal of 70%-80% was achieved by acidification-precipitation under a pH of 2.5-3.0. The first step biodegradation permitted an average COD removal of 70% under an hydraulic residence time (HRT) of 30 h. By batch tests, the optimum conditions of Fenton's oxidation were acquired as: Fe2+ dose 6.0 mmol/L; H2O2 dose 3000 mg/L; and reaction time 6 h. The second step biological treatment could ensure an effluent COD below 200 mg/L under an HRT of 10 h following the Fenton's treatment.

  4. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Garcia, Gregorio [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom); Johnson, Anbu Clemensis, E-mail: acj265@yahoo.com [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Bachmann, Robert T. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)] [Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 1988 Vendor City, 7800 Taboh Naning, Alor Gajah, Melaka (Malaysia); Williams, Ceri J. [Yorkshire-Forward, Victoria House, Victoria Place, LS11 5AE Leeds (United Kingdom); Burgoyne, Andrea; Edyvean, Robert G.J. [Department of Chemical and Process Engineering, University of Sheffield, S1 3JD Sheffield (United Kingdom)

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 deg. C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20 L fixed-bed reactor at 37 deg. C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m{sup -3} day{sup -1} during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L{sub biogas}L{sub reactor}{sup -1}day{sup -1}, respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  5. Anaerobic treatment of olive mill wastewater and piggery effluents fermented with Candida tropicalis.

    Science.gov (United States)

    Martinez-Garcia, Gregorio; Johnson, Anbu Clemensis; Bachmann, Robert T; Williams, Ceri J; Burgoyne, Andrea; Edyvean, Robert G J

    2009-05-30

    Olive mill wastewater (OMW) contains high concentrations of phenolic compounds that are inhibitory to many microorganisms making it difficult to treat biologically prior to discharge in waterways. The total mono-cyclic phenol reduction in OMW in this study was carried out by aerobic pre-treatment using the yeast Candida tropicalis in a 18 L batch reactor at 30 degrees C for 12 days followed by anaerobic co-digestion. A COD removal of 62% and a reduction in the total mono-cyclic phenol content by 51% of the mixture was achieved in the aerobic pre-treatment. Pig slurry was added as co-substrate to supplement the low nitrogen levels in the olive mill wastewater. Subsequent anaerobic treatment was carried out in a 20L fixed-bed reactor at 37 degrees C and HRT between 11 and 45 days. After a long start-up period, the OLR was increased from 1.25 to 5 kg COD m(-3)day(-1) during the last 30 days, resulting in subsequent increase in overall COD removal and biogas production, up to maximum values of 85% and 29 L(biogas)L(reactor)(-1)day(-1), respectively. Methane content of the biogas produced from the anaerobic digestion ranged between 65% and 74%.

  6. Physic-Chemical treatment and demineralization by EDR to reutilize the effluent of an urban waste water treatment plant; Tratamiento fisico-quimico y desmineralizacion por electrodialisis reversible para reutilizar el efluente de una EDAR urbana

    Energy Technology Data Exchange (ETDEWEB)

    Torres Corral, M.; Pino, M.P. del; Gil Lodos, M.; Rodriguez Garcia, M.

    1998-12-01

    Etudes held at the research and development center DEREA placed at Gran Canaria, Canary islands, have proved the viability of regenerating urban waste waters treating the effluent of an urban waste water treatment plant (WWTP del surest) with a physic-chemical treatment followed by a demineralization by electrodialysis reversal. The physic-chemical system was composed of the following units: 1 coagulation tank, 3 floculators, 1 lamellar decanter, 1 pH neutralization system, 1 chlorination system, 1 multi bed filter with chemicals reservoir, dosifiers for lime, FeCl{sub 3} polielectrolytes, sulfuric acid, and NaOCl. The physic-chemical system treated daily about 250-300 cubic meters of the effluents of the EDAR del surest, without chlorination effluent, and worked with a 90% recovery (got 90 m``3 for each 100 feeded). (Author)

  7. FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; GUTHRIE MD

    2008-08-29

    This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

  8. Reconnaissance of contaminants in selected wastewater-treatment-plant effluent and stormwater runoff entering the Columbia River, Columbia River Basin, Washington and Oregon, 2008-10

    Science.gov (United States)

    Morace, Jennifer L.

    2012-01-01

    Toxic contamination is a significant concern in the Columbia River Basin in Washington and Oregon. To help water managers and policy makers in decision making about future sampling efforts and toxic-reduction activities, a reconnaissance was done to assess contaminant concentrations directly contributed to the Columbia River through wastewater-treatment-plant (WWTP) effluent and stormwater runoff from adjacent urban environments and to evaluate instantaneous loadings to the Columbia River Basin from these inputs.

  9. Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Effluent Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K. B. Campbell

    2002-09-01

    The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.

  10. Multi-pollutant treatment of crystalline cellulosic effluent: Function of dissolved oxygen on process control.

    Science.gov (United States)

    Shanthi Sravan, J; Naresh Kumar, A; Venkata Mohan, S

    2016-10-01

    Treatment of crystalline cellulose based wastewater was carried out in periodic discontinuous batch reactor (PDBR). Specific influence of dissolved oxygen on treatment of crystalline cellulosic (CC) wastewater was evaluated in three different microenvironments such as aerobic, anoxic and anaerobic. PDBR-aerobic biosystem documented relatively higher substrate degradation [2.63kgCOD/m(3)-day (92%)] in comparison to PDBR-anoxic [2.12kgCOD/m(3)-day (71%)] and PDBR-anaerobic [1.81kgCOD/m(3)-day (63%)], which is in accordance with the observed DO levels. Similarly, multipollutants viz., phosphates and nitrates removal was observed to be higher in aerobic followed by anoxic and anaerobic operations. Higher nitrate removal in aerobic operation might be attributed to the efficient denitrification carried out by the biocatalyst, which utilizes both nitrates and oxygen as oxidizing agents. Multiscan spectral profiles depicted reduction in color intensity in all three microenvironments that correlated with the substrate degradation observed. Despite the high organic load, PDBR functioned well without exhibiting process inhibition.

  11. Post-discharge treatment of air effluents polluted by butyl-mercaptan: role of nitrate radical

    Science.gov (United States)

    Braci, L.; Ognier, S.; Liu, Y. N.; Cavadias, S.

    2011-01-01

    Dry air polluted by butyl-mercaptan was treated in a Dielectric Barrier Discharge (DBD) reactor at atmospheric pressure using air as plasmagene gas in discharge and post-discharge modes. The energy density was varied between 200 to 1300 J/L. To assess the treatment efficiency, the concentrations of buty-mercaptan, total Volatile Organic Compounds (VOCs) and SO2 were determined in the exhaust gas. Whatever the energy density was, the treatment efficiency was better in post-discharge mode. The butyl-mercaptan could be completely eliminated from 400 J/L and SO2 selectivity was always low, below 10%. Measurements of CO, CO2 and total VOCs indicated that 50 to 70% of the reaction products were condensed on the reactor wall in the form of micro-droplets, depending on the energy density. FTIR and XPS techniques were used to characterize the reaction products which were soluble in water. These analyses indicated that the reaction products contain oxygen, nitrogen and sulphur in an oxidized form. A reaction mechanism involving hydrogen abstraction from the -SH bond by the nitrate radical was proposed, pointing out the important role of nitrate radicals NO3 in the reactivity of air flowing post-discharge.

  12. Kinetics of pulp mill effluent treatment by ozone-based processes

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Chun-Han; Hsieh, Po-Hung [School of Forestry and Resource Conservation, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan (China); Chang, Meng-Wen [Department of Chemical Engineering, Tatung University, 40 Chungshan North Road, 3rd Sec., Taipei, 104, Taiwan (China); Chern, Jia-Ming, E-mail: jmchern@ttu.edu.tw [Department of Chemical Engineering, Tatung University, 40 Chungshan North Road, 3rd Sec., Taipei, 104, Taiwan (China); Chiang, Shih-Min [Bureau of Environmental Protection Tainan County, No. 78, Sec. 2, Changrong Rd., Sinying City, Tainan County 730, Taiwan (China); Tzeng, Chewn-Jeng [CECI Engineering Consultants, Inc., Taiwan, No. 185, Sec. 2, Chinhai Rd., Taipei, 106, Taiwan (China)

    2009-09-15

    The wastewaters generated from wood pulping and paper production processes are traditionally treated by biological and physicochemical processes. In order to reduce chemical oxygen demand (COD) and color to meet increasingly strict discharge standards, advanced oxidation processes (AOPs) are being adapted as polishing treatment units. Various ozone-based processes were used in this study to treat simulated wastewaters prepared from black liquor from a hardwood Kraft pulp mill in Taiwan. The experimental results showed that the COD and color were primarily removed by direct ozone oxidation and activated carbon adsorption. While the addition of activated carbon could enhance the COD and color removal during ozonation, the addition of hydrogen peroxide improved the color removal only. For the various ozone-based treatment processes, kinetic models were developed to satisfactorily predict the COD and color removal rates. According to the kinetic parameters obtained from the various ozone-based processes, the enhanced COD and color removal of ozonation in the presence of activated carbon was attributed to the regeneration of the activated carbon by ozonation. These kinetic models can be used for reactor design and process design to treat pulping wastewater using ozone-based processes.

  13. Effect of by-pass and effluent recirculation on nitrogen removal in hybrid constructed wetlands for domestic and industrial wastewater treatment.

    Science.gov (United States)

    Torrijos, V; Gonzalo, O G; Trueba-Santiso, A; Ruiz, I; Soto, M

    2016-10-15

    Hybrid constructed wetlands (CWs) including subsurface horizontal flow (HF) and vertical flow (VF) steps look for effective nitrification and denitrification through the combination of anaerobic/anoxic and aerobic conditions. Several CW configurations including several configurations of single pass systems (HF + HF, VF + VF, VF + HF), the Bp(VF + HF) arrangement (with feeding by-pass) and the R(HF + VF) system (with effluent recirculation) were tested treating synthetic domestic wastewater. Two HF/VF area ratios (AR) were tested for the VF + HF and Bp(VF + HF) systems. In addition, a R(VF + VF) system was tested for the treatment of a high strength industrial wastewater. The percentage removal of TSS, COD and BOD5 was usually higher than 95% in all systems. The single pass systems showed TN removal below the threshold of 50% and low removal rates (0.6-1.2 g TN/m(2) d), except the VF + VF system which reached 63% and 3.5 g TN/m(2) d removal but only at high loading rates. Bp(VF + HF) systems required by-pass ratios of 40-50% and increased TN removal rates to approximately 50-60% in a sustainable manner. Removal rates depended on the AR value, increasing from 1.6 (AR 2.0) to 5.2 g TN/m(2) d (AR 0.5), both working with synthetic domestic wastewater. On real domestic wastewater the Bp (VF + HF) (AR 0.5 and 30% by-pass) reached 2.5 g TN/m(2) d removal rate. Effluent recirculation significantly improved the TN removal efficiency and rate. The R(HF + VF) system showed stable TN removals of approximately 80% at loading rates ranging from 2 to 8 g TN/m(2) d. High TN removal rates (up to 73% TN and 8.4 g TN/m(2) d) were also obtained for the R(VF + VF) system treating industrial wastewater.

  14. Treatment of Remazol Brilliant Blue Dye Effluent by Advanced Photo Oxidation Process in TiO2/UV and H2O2/UV reactors

    Directory of Open Access Journals (Sweden)

    M. Verma

    2008-01-01

    Full Text Available Advanced oxidation processes involving TiO2/UV and H2O2/UV were evaluated for their potential use in decolorization of textile dye effluents. A coil photo reactor, consisting of UV radiation source and a spiral coil coated with TiO2, was used to treat synthetic effluent of Remazol Brilliant Blue dye. The TiO2 coating was performed using the sol-gel technique. The effects of UV radiation, TiO2 coatings and dye concentration were studied and the results were compared to dye treatment involving H2O2. The maximum dye removal efficiencies were 7.3, 12.2 and 12.5 % for uncoated, single coat and dual coat of TiO2, respectively. The decolorization efficiency was inversely related to dye concentration of the effluent. The treatments with UV only, TiO2 only, UV+TiO2, H2O2 only and UV+H2O2 resulted in color reduction of 7.6, 2.3, 12.5, 4.1 and 99.9 % respectively. The maximum decolorization occurred in ≤ 100 min in all cases. The temperature varied from 29.2 to 54.7°C for UV+TiO2 treatment and no change in reactor temperature was observed when UV was not used.

  15. Survey on possibility of Disinfection of Isfahan North Wastewater Treatment Plant Effluent by Low and Medium Pressure Ultraviolet Systems in Pilot ScaleSystems in Pilot Scale

    Directory of Open Access Journals (Sweden)

    H. Movahedian Attar

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives:Today, due to health, environmental and economical problems, of chlorine application, UV radiation is better option than chlorine for disinfection of effluent. The aim of this study was disinfection of secondary effluent with UV radiation."nMaterials and Methods: Two types of UV disinfection system including low pressure (LP and medium pressure (MP was used to disinfection of Isfahan North Wastewater Treatment Plant (INWWTP effluent without pretreatment. Single and combined lamps were operated to evaluate the removal of total and fecal coliforms (TC and FC, and fecal streptococcus (FS. TSS, iron, hardness, UV absorption and transmittance were analyzed in order to observe the fouling of the quartz sleeves. "nResults: After using LP lamp with dose of 161 mws/cm2, TC and FC content was declined to standard level (1000 TC, and 400 FC/100ml. In addition, disinfection with MP lamp was led to FS content of 400 MPN/100 mL. Combination of LP and MP, with dose of 460 mws/cm2 could be met the environmental requirements of TC & FC, and the FS count was reached to 400 MPN/100 mL with dose of 237 mws/cm2. Maximum photo-reactivation percentage of coliforms after LP and MP lamps were appeared 15 and 3 percent respectively, while it was not observed for FS."nConclusion: High fluctuation in secondary effluent quality of INWWTP mainly TSS concentration was caused to decline of the UVT value. Therefore, disinfection of effluent by LP, MP and even combined both systems are not applicable in conventional UV dose. Hence, using advanced process unit before UV disinfection system is necessary for removal of TSS.

  16. Control system of liquid effluents generated in treatment with I-131; Sistema de control de efluentes liquidos generados en el tratamiento con I-131

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Ruiz C, M. A.; Angeles C, A.; Ramirez S, R., E-mail: teodoro.garcia@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    In recent years, nuclear medicine has developed greatly in our country and around the world. Techniques for both medical diagnosis and therapy have increased the use of radiopharmaceuticals, notably the I-131. In Mexico there are around 150 nuclear medicine establishments authorized by the Comision Nacional de Seguridad Nuclear y Salvaguardias. Most of these establishments do not have an appropriate facility for the treatment of radioactive liquid effluents, to ensure compliance with the concentration limits established in the regulations. The Instituto Nacional de Investigaciones Nucleares (ININ) developed and implemented successfully, a control system of radioactive effluents (named SACEL) from a nuclear medicine facility. This system ensures an effective compliance with regulations and also better management and control of these radioactive effluents. Calculations and design of SACEL were made with respect to I-131, because is one of the most commonly used in radiotherapy and medical diagnostics, besides its half-life is greater in relation to other radionuclides. SACEL is comprised of four storage tanks and decay and a fifth tank for measuring the concentration of I-131 and later discharge to the drain; these tanks are connected to an automated system that controls the effluents passage. The calculation to determine the volume of the tanks was carried out according to the demand that has the hospital, to the maximum activity being poured in effluents and time required to decay. In this paper the design and installation of SACEL system, in addition to functioning as a facility that enables the Hospital meet the required standards is presented. Dose calculations performed with MCNPX and the methodology used in the calibration of the detection system is also presented. (Author)

  17. Wastewater use in agriculture: irrigation of sugar cane with effluents from the Cañaveralejo wastewater treatment plant in Cali, Colombia.

    Science.gov (United States)

    Madera, C A; Silva, J; Mara, D D; Torres, P

    2009-09-01

    In Valle del Cauca, south-west Colombia, surface and ground waters are used for sugar cane irrigation at a rate of 100 m3 of water per tonne of sugar produced. In addition large quantities of artificial fertilizers and pesticides are used to grow the crop. Preliminary experiments were undertaken to determine the feasibility of using effluents from the Cañaveralejo primary wastewater treatment plant in Cali. Sugar cane variety CC 8592 was planted in 18 box plots, each 0.5 m2. Six were irrigated with conventional primary effluent, six with chemically enhanced primary effluent and six with groundwater. For each set of six box plots, three contained local soil and three a 50:50 mixture of sand and rice husks. The three irrigation waters were monitored for 12 months, and immediately after harvest the sugar content of the sugar cane juice determined. All physico-chemical quality parameters for the three irrigation waters were lower than the FAO guideline values for irrigation water quality; on the basis of their sodium absorption ratios and electrical conductivity values, both wastewater effluents were in the USDA low-to-medium risk category C2S1. There was no difference in the sugar content of the cane juice irrigated with the three waters. However, the microbiological quality (E. coli and helminth numbers) of the two effluents did not meet the WHO guidelines and therefore additional human exposure control measures are required in order to minimize any resulting adverse health risks to those working in the wastewater-irrigated fields.

  18. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    Science.gov (United States)

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  19. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    Science.gov (United States)

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  20. Aplicação de radiação UV artificial e solar no tratamento fotocatalítico de efluentes de curtume Application of artificial and solar UV radiation in the photocatalytic treatment of a tannery effluent

    Directory of Open Access Journals (Sweden)

    Salomão de Andrade Pascoal

    2007-10-01

    Full Text Available Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI. This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI and organic matter, respectively.

  1. Inactivation of bacteria and helminth in wastewater treatment plant effluent using oxidation processes.

    Science.gov (United States)

    Guadagnini, Regiane Aparecida; dos Santos, Luciana Urbano; Franco, Regina Maura Bueno; Guimarães, José Roberto

    2013-01-01

    The contamination of bodies of water by raw and even treated sewage is worrying because pathogens that affect public health and the environment are not fully eliminated in wastewater treatment systems. The disinfection step is an important barrier to adopt to reduce this contamination. However, widely used disinfectants such as chlorine do not guarantee the inactivation of resistant organisms such as spore-forming bacteria and helminth eggs. This study evaluated the effectiveness of processes of peroxidation (H2O2), ultraviolet radiation (UV) and peroxidation assisted by ultraviolet radiation (H2O2/UV) in terms of reduction and inactivation of total coliform bacteria, Escherichia coli, helminth eggs and larvae present in a treated sewage. Doses of UV radiation of 70 mJ cm(-2) and hydrogen peroxide concentration of 30 mg L(-1) were used. The number of bacteria reduced after UV and H2O2/UV processes was 3 and 4 log, respectively. An average reduction of 59% in the number of eggs was verified when using H2O2, UV, and H2O2/UV processes. Helminth larvae were reduced by 24% after H2O2 and UV; the process H2O2/UV did not reduce the number of larvae. Statistically significant differences between the processes for both organisms were not observed.

  2. Fate of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol in groundwater contaminated by wastewater treatment plant effluent

    Science.gov (United States)

    Barber, Larry B.; Keefe, Steffanie H.; LeBlanc, Denis R.; Bradley, Paul M.; Chapelle, Francis H.; Meyer, Michael T.; Loftin, Keith A.; Koplin, Dana W.; Rubio, Fernando

    2009-01-01

    Organic wastewater contaminants (OWCs) were measured in samples collected from monitoring wells located along a 4.5-km transect of a plume of groundwater contaminated by 60 years of continuous rapid infiltration disposal of wastewater treatment plant effluent. Fifteen percent of the 212 OWCs analyzed were detected, including the antibiotic sulfamethoxazole (SX), the nonionic surfactant degradation product 4-nonylphenol (NP), the solvent tetrachloroethene (PCE), and the disinfectant 1,4-dichlorobenzene (DCB). Comparison of the 2005 sampling results to data collected from the same wells in 1985 indicates that PCE and DCB are transported more rapidly in the aquifer than NP, consistent with predictions based on compound hydrophobicity. Natural gradient in situ tracer experiments were conducted to evaluate the subsurface behavior of SX, NP, and the female sex hormone 17β-estradiol (E2) in two oxic zones in the aquifer: (1) a downgradient transition zone at the interface between the contamination plume and the overlying uncontaminated groundwater and (2) a contaminated zone located beneath the infiltration beds, which have not been loaded for 10 years. In both zones, breakthrough curves for the conservative tracer bromide (Br−) and SX were nearly coincident, whereas NP and E2 were retarded relative to Br− and showed mass loss. Retardation was greater in the contaminated zone than in the transition zone. Attenuation of NP and E2 in the aquifer was attributed to biotransformation, and oxic laboratory microcosm experiments using sediments from the transition and contaminated zones show that uniform-ring-labeled 14C 4-normal-NP was biodegraded more rapidly (30−60% recovered as 14CO2 in 13 days) than 4-14C E2 (20−90% recovered as 14CO2in 54 days). There was little difference in mineralization potential between sites.

  3. Clear and present danger? The use of a yeast biosensor to monitor changes in the toxicity of industrial effluents subjected to oxidative colour removal treatments.

    Science.gov (United States)

    Keenan, Patrick O; Knight, Andrew W; Billinton, Nicholas; Cahill, Paul A; Dalrymple, Ian M; Hawkyard, Christopher J; Stratton-Campbell, Duncan; Walmsley, Richard M

    2007-12-01

    Discharges of coloured effluents into surface waters provide conspicuous evidence of the impact of industry on the environment. The textile industry is an obvious candidate for sources of such discharges. Conventional treatment methods appear to alleviate this situation by removing colour, however the affect on toxicity is less obvious. The objective of this study was to examine the changes in effluent toxicity during the course of two alternative wastewater treatment methods, ozonation and electrochemical oxidation, using a novel toxicity biosensor, GreenScreen EM. The biosensor is capable of measuring both general acute toxicity (cytotoxicity), and more specifically genotoxicity, that is damage to a cell's DNA structure, replication or distribution, caused by substances that may be mutagenic and/or carcinogenic. The biosensor utilises a modified strain of the brewers yeast Saccharomyces cerevisiae, incorporating a gene encoding green fluorescent protein (GFP) linked to the inducible promoter of the DNA damage responsive RAD54 gene. Upon exposure to a genotoxin, the production of GFP is up-regulated in parallel with RAD54, and the resulting cellular fluorescence provides a measure of genotoxicity. Acute toxicity is simultaneously determined by monitoring relative total growth of the cell culture during incubation. The results presented in this paper show that a reduction in colouration does not necessarily correspond to a reduction in effluent toxicity.

  4. Toxicity assays applied for evaluation of ionizing radiation and zeolites adsorption as treatment technologies for coloured effluent; Aplicacao de ensaios de toxicidade na avaliacao da eficiencia da radiacao ionizante e da adsorcao em zeolitas para o tratamento de efluentes coloridos

    Energy Technology Data Exchange (ETDEWEB)

    Higa, Marcela Cantelli

    2008-07-01

    Textile industry is one raising commercial activity in Brazil. This activity has been generating important environmental interferences such as colour and bad biological effects into aquatic environment. Liquid textile effluents are toxic to lived organisms and may present low biological degradability. Although foreseen at federal regulation, the effluent quality is not controlled by toxicity assays in the country. These assays are carried out to determine the potential effects of chemical substances and effluents to cause negative effects to the exposed organisms. The present work aimed whole toxicity evaluation as well as the applicability of two different treatment techniques: ionizing radiation and zeolite adsorption. The efficacy of them were evaluated using eco toxicity bases and real effluents. Two different industries from Sao Paulo State contributed to this project supplying their real effluents. The samples were collected at a Textile Industry and at a Chemical Industry (dying producer) and after the measurement of whole toxicity the samples were submitted to treatments. Toxicity assays were carried out for Daphnia similis and for Vibrio fischeri. Sample irradiations were performed at an Electron Beam Accelerator at CTR/IPEN. Zeolites treatment is an P and D activity from CQMA/IPEN which contributed to this Project. Zeolites v/ere prepared from fly ash previously being used as an adsorber material. Both treatments (electron irradiation and zeolite adsorption) resulted on important toxicity and colour reduction. Concerning irradiation the effluents from chemical industry required higher radiation doses than that from textile activity. The radiation dose to be suggested is 40 kGy (toxicity reduction > 60%) for the chemical effluents and 0.5 kGy for the textile effluents (toxicity reduction > 90%). When zeolite adsorption was evaluated the Z1M6 resulted in 85%o v/hole toxicity reduction and ZC6 resulted in very low efficiency for the effluents of chemical

  5. Bioassay of Estrogenic Activity of Effluent and Influent in a Farm Wastewater Treatment Plant Using an in vitro Recombinant Assay with Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    XIANG-MING LI; FANG-NI LUO; GuI-XIA LIU; PING-TING ZHU

    2008-01-01

    Objective Environmental estrogens at an elevated concentration are known to produce adverse effects on human and animal life. However, the majority of researches have been focused on ndustrial discharges, while the impact of livestock wastes as a source of endocrine disrupters in aquatic environments has been rarely elucidated. In order to investigate the contribution of environmental estrogens from livestock, the estrogenic activity in water samples from a farm wastewater treatment plant was analyzed by a recombinant yeast screening method. Methods The extracts prepared from 15 selected water samples from the farm wastewater treatment plant, among which 6 samples were from pre-treatment section (influents) and 9 from post-treatment section (effluents), were analyzed for estrogenic activity by cellar bioassay. Yeast cells transfected with the expression plasmid of human estrogen receptor and the Lac Z reporter plasmid encoding β-galactossidase, were used to measure the estrogen-like compounds in the farm wastewater treatment plant. Results The wastewater samples from influents showed a higher estrogenic potency than the effluent samples showing a low induction of β-galactossidase relative to solvent control condition. By comparison with a standard curve for 1713-estradiol (E2), estrogenic potency in water samples from the influents was calculated as E2-equivalent and ranged from 0.1 to 150 pM E2-equivalent. The estrogenic potency in water samples from the effluents was significantly lower than that in the influents, and 7 water samples had less detectable limit in the total of 9 samples. Conclusion Yeast bioassay of estrogenic activity in most of the samples from the farm wastewater after disposal by traditional sewage treatment showed negative results.

  6. Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    DEFF Research Database (Denmark)

    Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi

    2016-01-01

    The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP...

  7. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  8. Technical area status report for second-stage destruction and offgas treatment

    Energy Technology Data Exchange (ETDEWEB)

    French, N.B. [Sandia National Labs., Livermore, CA (United States); Dalton, J.D. [Science Applications International Corp., Idaho Falls, ID (United States); Vavruska, J. [Equinox Ltd., Santa Fe, NM (United States)

    1994-08-01

    This report was sponsored by the Mixed Waste Integrated Program (MWIP), which was established by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), Office of Technology Development (OTD). DOE/EM carries the charter to direct and coordinate waste management and site remediation throughout the DOE complex. Within EM, the OTD established the MWIP to identify and develop new technologies for treatment of DOE low-level mixed waste. This report represents the second TASR for the Second-Stage Destruction and Offgas Treatment technical area. This TASR updates technology information, a design methodology for air pollution control systems for mixed waste treatment, and technology development needs for DOE/EM. The TASRs form the basis of a technology development program that addresses the highest priority DOE environmental needs and is coordinated with other technology development efforts both inside and outside DOE. The main functions of the second-stage destruction and offgas treatment system are to treat the gaseous effluent from the primary treatment process to acceptable levels for release to the atmosphere. Specific functions include (1) destruction of volatile organics; (2) capture of particulate matter; (3) capture of volatile metals; (4) capture and control of volatile, condensed-phase, and solid-phase radionuclides; (5) control of acid gases; (6) NO{sub x} abatement; and (7) gas cooling and reheating as required to perform these functions.

  9. Managing medical treatment waste and effluent: the point of view of a nuclear medicine practitioner; Gestion des dechets et effluents issus de traitements medicaux: le point de vue d'un praticien de medecine nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Karcher, G. [Chef du Service de medecine nucleaire de l' Hopital d' adultes de Brabois - CHU, 54 - Nancy (Meurthe-et-Moselle) (France)

    2011-02-15

    The nuclear medicine department of the Nancy CHU hospital is one of the largest in France: 16.000 patients are welcomed each year and 4.000 persons undergo a tomography there. 5 shielded and isolated rooms, dedicated to Iodine{sup 131} treatment, allow the care of 150 to 200 patients each year. The head of the nuclear medicine department gives his meaning about the new regulation on the management of radioactive effluents. According to him, regulations are necessary but the values of the imposed thresholds have to be scientifically justified. Another point is that a lot of money is spent on radiation protection issues while the radioactive risks are almost null, which leads to wasting money. The elaboration of the radioprotection regulations must be made not as a whole but on a specific basis according to the domain: nuclear power plants, research reactors or nuclear medicine, it applies. (A.C.)

  10. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Rodriguez, A.M. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Ambientales, Universidad Pablo de Olavide. Carretera de Utrera, km 1. 41013 Sevilla (Spain); Duran-Barrantes, M.M. [Departamento de Ingenieria Quimica, Facultad de Quimica, Universidad de Sevilla, C/Profesor Garcia Gonzalez, s/n, 41071 Sevilla (Spain); Borja, R., E-mail: rborja@cica.es [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de la Grasa, Avda. Padre Garcia Tejero 4, 41012 Sevilla (Spain); Sanchez, E.; Colmenarejo, M.F. [Consejo Superior de Investigaciones Cientificas (CSIC), Centro de Ciencias Medioambientales, C/Serrano, 115-duplicado, 28006 Madrid (Spain); Raposo, F. [Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de la Grasa, Avda. Padre Garcia Tejero 4, 41012 Sevilla (Spain)

    2009-06-15

    Four alternatives (runs A, B, C and D) for heavy metals removal (Fe, Cu, Zn and Al) from acid mine drainage water (AMDW) produced in the mining areas of the Huelva Province, Spain, were evaluated. In run A, the anaerobic effluent from the treatment of acid mine drainage water (cheese whey added as a source of carbon) was mixed with the raw AMDW. The pH increased to 3.5 with the addition of KOH. In run B, biogas with around 30% of hydrogen sulphide obtained in the anaerobic reactor was sparged to the mixture obtained in run A, but in this case at a pH of 5.5. In run C, the pH of the raw AMDW was increased to 3.5 by the addition of KOH solution. Finally, in run D, the pH of the raw AMDW was increased to 5.5 by the addition of KOH solution and further biogas was sparged under the same conditions as in run A. It was found that heavy metal removal was a function of pH. At a pH of 3.5 most of the iron was removed while Zn and Cu were partially removed. At a pH of 5.5 the removal of all metals increased considerably. The best results were obtained in run B where the percentages of removal of Fe, Cu, Zn and Al achieved values of 91.3, 96.1, 79.0 and 99.0%, respectively. According to the experimental results obtained tentative schemas of the flow diagram of the processes were proposed.

  11. Advanced treatment of textile dyeing secondary effluent using magnetic anion exchange resin and its effect on organic fouling in subsequent RO membrane.

    Science.gov (United States)

    Yang, Cheng; Li, Li; Shi, Jialu; Long, Chao; Li, Aimin

    2015-03-02

    Strict regulations are forcing dyeing factory to upgrade existing waste treatment system. In this study, advanced treatment of dyeing secondary effluent by magnetic anion exchange resin (NDMP) was investigated and compared with ultrafiltration (UF); NDMP as a pre-treatment of reverse osmosis (RO) was also studied. NDMP resin (20 mL/L) gave higher removal of dissolved organic carbon (DOC) (83.9%) and colority (94.9%) than UF with a cut-off of 10 kDa (only 48.6% and 44.1%, respectively), showing that NDMP treatment was effective to meet the stringent discharge limit of DOC and colority. Besides, NDMP resin (20 mL/L) as a pretreatment of RO increased the permeate flux by 12.5% and reduced irreversible membrane fouling by 6.6%, but UF pretreatment did not mitigate RO membrane fouling. The results of excitation-emission matrix fluorescence spectra and resin fractions showed that NDMP had more efficient removal than UF for transphilic acid and hydrophilic fraction, such as protein-like organic matters and soluble microbial products, which contributed to a significant proportion of RO membrane fouling. In sum, NDMP resin treatment not only gave effective removal of DOC and colority of dyeing secondary effluent, but exhibited some improvement for RO membrane flux and irreversible fouling.

  12. Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

    DEFF Research Database (Denmark)

    Fang, Cheng; O-Thong, Sompong; Boe, Kanokwan

    2011-01-01

    Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME...

  13. Removal of pollutants from pulp and paper mill effluent by anaerobic and aerobic treatment in pilot scale bioreactor

    DEFF Research Database (Denmark)

    Singh, P.; Katiyar, D.; Gupta, M.

    2011-01-01

    . The anaerobically treated effluent was then treated in a bioreactor in the presence of a fungal strain (Aspergillus fumigatus) or a bacterial strain (Pseudomonas ovalis). The results of this study indicated a reduction in colour (76% and 56%), lignin (78% and 68%), COD (85% and 78%) and AOX (70% and 82...

  14. Genotoxicity of industrial wastes and effluents.

    Science.gov (United States)

    Claxton, L D; Houk, V S; Hughes, T J

    1998-06-01

    In excess of several million pounds of genotoxic and/or carcinogenic industrial wastes are released into the U.S. environment each year. Chemical characterization of these waste materials can rarely provide an adequate assessment of their genotoxicity and potential hazard. Bioassays do not require prior information about chemical composition and can effectively assess the genotoxicity of complex waste materials. The most commonly used genotoxicity assay has been the Salmonella mutagenicity assay. Results with this system have shown that the genotoxic potency of industrial wastes can vary over 10 orders of magnitude, from virtually nondetectable to highly potent. Industries employing similar industrial processes generally release wastes of similar potency. Extremely high potency wastes include those from furazolidone and nitrofurfural production. Pulp and paper mills, steel foundries, and organic chemical manufacturing facilities also discharge wastes of noteworthy potency. Treatment and remediation of some wastes, such as pulp and paper mill effluents, have been shown to reduce or eliminate genotoxicity. However, in other cases, treatment and remediation have been shown to enhance genotoxicity, such as for fungal treatment of oils. Analyses of samples collected from areas known to receive industrial wastes and effluents have shown that genotoxins can accumulate in the receiving environment and have adverse effects on indigenous biota. The evaluation of hazardous wastes and effluents by genotoxicity assays may provide data useful not only for hazard identification but for comparative risk assessment.

  15. Oestrogenic activity of a textile industrial wastewater treatment plant effluent evaluated by the E-screen test and MELN gene-reporter luciferase assay

    Energy Technology Data Exchange (ETDEWEB)

    Schiliro, Tiziana, E-mail: tiziana.schiliro@unito.it [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Porfido, Arianna [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy); Spina, Federica; Varese, Giovanna Cristina [Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino (Italy); Gilli, Giorgio [Department of Public Health and Microbiology, University of Torino, Via Santena 5bis, 10126 Torino (Italy)

    2012-08-15

    This study quantified the biological oestrogenic activity in the effluent of a textile industrial wastewater treatment plant (IWWTP) in northwestern Italy. Samples of the IWWTP effluent were collected monthly, both before and after tertiary treatment (ozonation). After solid phase extraction, all samples were subjected to two in vitro tests of total estrogenic activity, the human breast cancer cell line (MCF-7 BUS) proliferation assay, or E-screen test, and the luciferase-transfected human breast cancer cell line (MELN) gene-reporter assay, to measure the 17{beta}-oestradiol equivalent quantity (EEQ). In the E-screen test, the mean EEQ values were 2.35 {+-} 1.68 ng/L pre-ozonation and 0.72 {+-} 0.58 ng/L post-ozonation; in the MELN gene-reporter luciferase assay, the mean EEQ values were 4.18 {+-} 3.54 ng/L pre-ozonation and 2.53 {+-} 2.48 ng/L post-ozonation. These results suggest that the post-ozonation IWWTP effluent had a lower oestrogenic activity (simple paired t-tests, p < 0.05). The average reduction of estrogenic activity of IWWTP effluent after ozonation was 67 {+-} 26% and 52 {+-} 27% as measured by E-screen test and MELN gene-reporter luciferase assay, respectively. There was a positive and significant correlation between the two tests (Rho S = 0.650, p = 0.022). This study indicates that the environmental risk is low because oestrogenic substances are deposited into the river via IWWTP at concentrations lower than those at which chronic exposure has been reported to affect the endocrine system of living organisms. -- Highlights: Black-Right-Pointing-Pointer The two in vitro tests are suited for oestrogenic activity assessment in textile WWTP. Black-Right-Pointing-Pointer There is a significant correlation between the results of the two in vitro tests. Black-Right-Pointing-Pointer The oestrogenic activity of the effluent is reduced by ozonation. Black-Right-Pointing-Pointer The input of estrogenic substances into the river via textile WWTP is low.

  16. Analysis of copper losses throughout weak acid effluent flows generated during off-gas treatment in the New Copper Smelter RTB Bor

    Directory of Open Access Journals (Sweden)

    Dragana Ivšić-Bajčeta

    2013-09-01

    Full Text Available The previous inadequate treatment of off-gas in RTB Bor in Serbia has resulted in serious pollution of the environment and the possibly high losses of copper through the effluent flows. The project of New Copper Smelter RTB Bor, besides the new flash smelting furnace (FSF and the reconstruction of Pierce-Smith converter (PSC, includes more effective effluent treatment. Paper presents an analysis of the new FSF and PSC off-gas treatment, determination of copper losses throughout generated wastewaters and discussion of its possible valorization. Assumptions about the solubility of metals phases present in the FSF and PSC off-gas, obtained by the treatment process simulation, were compared with the leaching results of flue dusts. Determined wastewaters characteristics indicate that the PSC flow is significantly richer in copper, mostly present in insoluble metallic/sulfide form, while the FSF flow has low concentration of copper in the form of completely soluble oxide/sulfate. The possible scenario for the copper valorization, considering arsenic and lead as limiting factors, is the separation of the FSF and PSC flows, return of the metallic/sulfide solid phase to the smelting process and recovery from the sulfate/oxide liquid phase.

  17. 300 Area waste acid treatment system closure plan

    Energy Technology Data Exchange (ETDEWEB)

    LUKE, S.N.

    1999-05-17

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to the General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.

  18. Spatial distribution and importance of potential perfluoroalkyl acid precursors in urban rivers and sewage treatment plant effluent--case study of Tama River, Japan.

    Science.gov (United States)

    Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki

    2014-12-15

    Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well.

  19. Anaerobic digestion in the treatment of waste and wastewater effluent; Digestion anaerobia en el tratamiento de efluentes y lodos residuales

    Energy Technology Data Exchange (ETDEWEB)

    Baraza, X.; Galimary, F.; Torres, R.

    2003-07-01

    Anaerobic digestion is one of the processes most commonly employed at the present time in treating effluent and wastewater containing a large proportion of organic matter. This article describes the process involved and its applications in the environmental engineering field. It also discusses the physical, chemical and biological factors influencing anaerobic digestion and which therefore have a bearing on whether to implements this process and how it is actually applied from a technological point of view. (Author) 125 refs.

  20. Mineralization of synthetic and industrial pharmaceutical effluent containing trimethoprim by combining electro-Fenton and activated sludge treatment

    OpenAIRE

    Mansour, Dorsaf; Fourcade, Florence; Soutrel, Isabelle; Hauchard, Didier; Bellakhal, Nizar; Amrane, Abdeltif

    2015-01-01

    International audience; A combined process coupling of an electro-Fenton and a biological degradation was investigated in order to mineralize synthetic and industrial pharmaceutical effluent containing trimethoprim, a bacteriostatic antibiotic. Electro-Fenton degradation of trimethoprim was optimized by means of a Doehlert experimental design, showing that 0.69 mM Fe2+, 466 mA and 30 min electrolysis time were optimal, leading to total trimethoprim removal, while mineralization remained limit...

  1. Correlation of radioactive-waste-treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part II. The solvent extraction-fluorination process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Etnier, E.L.; Hill, G.S.; Patton, B.D.; Witherspoon, J.P.; Yen, S.N.

    1983-03-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the solvent extraction-fluorination process, and to evaluate the radiological impact (dose commitment) of the release materials on the environment. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose committment are correlated with the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration, or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  2. Degradation and monitoring of acetamiprid, thiabendazole and their transformation products in an agro-food industry effluent during solar photo-Fenton treatment in a raceway pond reactor.

    Science.gov (United States)

    Carra, Irene; Sirtori, Carla; Ponce-Robles, Laura; Sánchez Pérez, José Antonio; Malato, Sixto; Agüera, Ana

    2015-07-01

    In this study, pesticides acetamiprid and thiabendazole and their transformation products (TPs), seven from each pesticide, were successfully monitored during solar photo-Fenton treatment in a real secondary effluent from an agro-food industry spiked with 100μgL(-1) of each pesticide. To this end, a highly sensitive procedure was developed, based on liquid chromatography (LC) coupled to hybrid quadrupole-linear ion trap mass spectrometry (QqLIT-MS). In addition, finding low-cost and operational technology for the application of AOPs would then facilitate their use on a commercial level. Simple and extensive photoreactors such as raceway pond reactors (RPRs) are therefore proposed as an alternative for the application of solar photo-Fenton. Results showed that high degradation could be achieved in a complex water matrix (>99% TBZ and 91% ACTM in 240min) using a 120-L RPR pilot plant as novel technology. The analyses indicated that after the treatment only three TPs from ACTM were still present in the effluent, while the others had been removed. The study showed that the goal of either just removing the parent compounds, or going one step further and removing all the TPs, can significantly change the treatment time, which would affect process costs.

  3. Catalytic reduction of nitrate in secondary effluent of wastewater treatment plants by Fe(0) and Pd-Cu/γ-Al2O3.

    Science.gov (United States)

    Yun, Yupan; Li, Zifu; Chen, Yi-Hung; Saino, Mayiani; Cheng, Shikun; Zheng, Lei

    2016-01-01

    Total nitrogen, in which NO3(-) is dominant in the effluent of most wastewater treatment plants, cannot meet the requirements of the Chinese wastewater discharge standard (nitrate (NO3(-)) elimination attract considerable attention. In this study, reductant iron (Fe(0)) and γ-Al2O3 supported palladium-copper bimetallic catalysts (Pd-Cu/γ-Al2O3) were innovatively used for the chemical catalytic reduction of nitrate in wastewater. A series of specific operational conditions (such as mass ratio of Pd:Cu, catalyst amounts, reaction time and pH of solution) were optimized for nitrate reduction in the artificial solution, and then the selected optimal conditions were further applied for investigating the nitrate elimination of secondary effluent of a wastewater treatment plant in Beijing, China. Results indicated that a better catalytic performance (74% of nitrate removal and 62% of N2 selectivity) could be obtained under the optimal condition: 5 g/L Fe(0), 3:1 mass ratio (Pd:Cu), 4 g/L catalyst, 2 h reaction time and pH 5.1. It is noteworthy to point out that nitrogen gas (N2) predominated in the byproducts without another system to treat ammonium and nitrite. Therefore, the chemical catalytic reduction combining Fe(0) with Pd-Cu/γ-Al2O3 could be regarded as a better alternative for nitrate removal in wastewater treatment.

  4. Treatment of anaerobic digester effluents of nylon wastewater through chemical precipitation and a sequencing batch reactor process.

    Science.gov (United States)

    Huang, Haiming; Song, Qianwu; Wang, Wenjun; Wu, Shaowei; Dai, Jiankun

    2012-06-30

    Chemical precipitation, in combination with a sequencing batch reactor (SBR) process, was employed to remove pollutants from anaerobic digester effluents of nylon wastewater. The effects of the chemicals along with various Mg:N:P ratios on the chemical precipitation (struvite precipitation) were investigated. When brucite and H(3)PO(4) were applied at an Mg:N:P molar ratio of 3:1:1, an ammonia-removal rate of 81% was achieved, which was slightly more than that (80%) obtained with MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O at Mg:N:P molar ratios greater than the stoichiometric ratio. To further reduce the ammonia loads of the successive biotreatment, an overdose of phosphate with brucite and H(3)PO(4) was applied during chemical precipitation. The ammonia-removal rate at the Mg:N:P molar ratio of 3.5:1:1.05 reached 88%, with a residual PO(4)-P concentration of 16 mg/L. The economic analysis showed that the chemical cost of chemical precipitation could be reduced by about 41% when brucite and H(3)PO(4) were used instead of MgSO(4)·7H(2)O and Na(2)HPO(4)·12H(2)O. The subsequent biological process that used a sequencing batch reactor showed high removal rates of contaminants. The quality of the final effluent met the requisite effluent-discharging standards.

  5. Zero effluent; Efluente zero

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Silvio Rogerio; Santos, Angelo Francisco dos [Liquigas Distribuidora S.A., Sao Paulo, SP (Brazil)

    2008-07-01

    A scenery of water shortage and the search for profitability improvement obligate the companies to exercise their creativity and to adopt alternative methods to the conventional ones to preserve the environmental resources. The 'Effluent Zero' project comes from a paradigms changing that the environmental preservation is a necessary cost. It brings a new analysis approach of this problem with the purpose to adapt the investments and operational costs with the effluents treatment to the demands of the productive processes. In Liquigas, the project brought significant results; made a potential reduction of nearly 90% in the investments of the effluents treatment systems. That means nearly 13% in reduction in the total investments in modernization and upgrade of the existents companies installations and of 1,6% in the total operational costs of the Company. Further more, it has contributed for a reduction of until 43% of the water consumption in the bottling process of the Liquefied Petroleum Gas (LPG). This way, the project resulted in effective actions of environmental protection with relevant economic benefits. (author)

  6. Effects of temperature, plant configuration and loading on the effluent concentration of biological sewage treatment plants; Einfluss von Temperatur, Anlagenkonfiguration und Auslastung auf die Ablaufkonzentration bei der biologischen Abwasserreinigung

    Energy Technology Data Exchange (ETDEWEB)

    Durth, A.

    2000-07-01

    The design of wastewater treatment plants is generally based on the maximum growth rate of the nitrifiers, which is smaller and shows a stronger dependency on temperature than the growth rate of heterotrophic bacteria. This 'kinetic temperature influence' is usually described by exponential equations with a temperature coefficient {theta}. Using these equations for the design of treatment plants results in large volumes of the aeration basin, followed by high investment cost and consumption of large space. On the other hand, long-term effluent data from various plants reveal a small or even no temperature influence on the effluent concentrations. This effect has to be attributed to other influences, which can only be taken into account by modelling the process as a whole. Therefore, the aim of this thesis is to quantify the temperature influence on the effluent concentration of biological treatment by modelling the entire treatment process. (orig.)

  7. Biogas treatment arising from effluent anaerobic digestion: organic substrate with high sulphate content; Tratamiento de biogas generado por la digestion anaerobia de efluentes: sustratos organicos con elevado contenido en sulfato

    Energy Technology Data Exchange (ETDEWEB)

    Navia, R.; Vidal, G.

    2002-07-01

    Biological anaerobic treatment of waste water offers a good alternative for high organic rate effluents. However, in fermentation with high sulphate concentrations, sulphide could be detected in the biogas. The goal of this work is to analyze the biogas production from the anaerobic digestions of the effluents with high sulphate content. Treatment to remove sulphite in the biogas stream is also described. Oxidation in liquid phase and biological process are the most attractive treatments. In both cases, sulphite is converted in sulphate and sulphur, which have no problems in the environmental disposal. (Author) 47 refs.

  8. ARCHETYPES OF CONSTRUCTED WETLANDS SYSTEMS FOR TREATMENT OF AQUICULTURE EFFLUENT = PROTÓTIPOS DE SISTEMAS CONSTRUÍDOS DE ÁREAS ALAGADAS PARA TRATAMENTO DE EFLUENTES DE PISCICULTURA

    Directory of Open Access Journals (Sweden)

    Roberto Naves Domingos

    2008-01-01

    Full Text Available The aquaculture is an activity that finishes causing eutrofization them water bodies in which its effluent one is launched, decurrent of the nutrition and prophylaxes used in its reservoirs. The components that cause greater problems are those that contain nitrogen and phosphorus. The management used in the aquiculture must be guided in such way to prevent the eutrofization and to provide treatment of effluent and water reuse. Constructed wetland system (CWS’s has been efficient for treatment of waters, effluent and domestic and industrial sewer, being pertinent so that physical, chemical and biological processes occur similar as they happen in natural ecosystems. Initially some archetypes of CWS’s had been simulated, in laboratory scale, using 46 L reservoirs, with aeration system, being vegetated with a polyculture of aquatic macrophytes, for effluent treatment of tanks of Tilapia of the Nile creation. The analyzed types of support matrix had been: soil of cerrado area; soil plus brick fragments (1:1 (aggregate; soil plus brick fragments (3:1; and brick fragments. The results had demonstrated that CWS’s contend soil plus aggregate was efficient to treat the effluent one used in this study. After the stabilization of CWS’s, better efficiencies had been observed in the system only contend brick fragments or only soil, depending on the analyzed parameter. = A piscicultura é uma atividade que acarreta o processo de eutrofização nos corpos de água nos quais seu efluente é lançado, decorrente da nutrição e profilaxias utilizadas em seus tanques de criação. Os compostos que contribuem para o processo de eutrofização são aqueles que contêm nutrientes, como nitrogênio e fósforo. Os manejos utilizados na piscicultura devem ser orientados de tal modo a se evitar o processo de eutrofização, e contemplar tratamentos dos efluentes. Sistemas construídos de áreas alagadas Cosntructed Wetland System - CWS’s têm mostrado efici

  9. UV light tolerance and reactivation potential of tetracycline-resistant bacteria from secondary effluents of a wastewater treatment plant.

    Science.gov (United States)

    Huang, Jing-Jing; Xi, Jinying; Hu, Hong-Ying; Li, Yi; Lu, Sun-Qin; Tang, Fang; Pang, Yu-Chen

    2016-03-01

    Tetracycline-resistant bacteria (TRB) are of concern as emerging microbial contaminants in reclaimed water. To understand the effects of UV disinfection on TRB, both inactivation and reactivation profiles of TRB, as well as 16 tetracycline-resistant isolates from secondary effluent, were characterized in this study. The inactivation ratio of TRB was significantly lower (3.0-log) than that of heterotrophic bacteria (>4.0-log) in the secondary effluent. Additionally, the proportion of TRB significantly increased from 1.65% to 15.51% under 20mJ/cm(2) ultraviolet (UV) exposure. The inactivation rates of tetracycline-resistant isolates ranged from 0.57/s to 1.04/s, of which tetracycline-resistant Enterobacter-1 was the most tolerant to UV light. The reactivation of TRB, tetracycline-resistant isolated strains, as well as heterotrophic bacteria commonly occurred in the secondary effluent even after 20mJ/cm(2) UV exposure. The colony forming ability of TRB and heterotrophic bacteria reached 3.2-log and 3.0-log under 20mJ/cm(2) UV exposure after 22hr incubation. The final inactivation ratio of tetracycline-resistant Enterobacter-1 was 1.18-log under 20mJ/cm(2) UV exposure after 22hr incubation, which is similar to those of TRB (1.18-log) and heterotrophic bacteria (1.19-log). The increased proportion of TRB and the reactivation of tetracycline-resistant enterobacteria in reclaimed water could induce a microbial health risk during wastewater reuse.

  10. Multidrug Resistance in Quinolone-Resistant Gram-Negative Bacteria Isolated from Hospital Effluent and the Municipal Wastewater Treatment Plant.

    Science.gov (United States)

    Vaz-Moreira, Ivone; Varela, Ana Rita; Pereira, Thamiris V; Fochat, Romário C; Manaia, Célia M

    2016-03-01

    This study is aimed to assess if hospital effluents represent an important supplier of multidrug-resistant (MDR) Gram-negative bacteria that, being discharged in the municipal collector, may be disseminated in the environment and bypassed in water quality control systems. From a set of 101 non-Escherichia coli Gram-negative bacteria with reduced susceptibility to quinolones, was selected a group of isolates comprised by those with the highest indices of MDR (defined as nonsusceptibility to at least one agent in six or more antimicrobial categories, MDR ≥6) or resistance to meropenem or ceftazidime (n = 25). The isolates were identified and characterized for antibiotic resistance phenotype, plasmid-mediated quinolone resistance (PMQR) genes, and other genetic elements and conjugative capacity. The isolates with highest MDR indices were mainly from hospital effluent and comprised ubiquitous bacterial groups of the class Gammaproteobacteria, of the genera Aeromonas, Acinetobacter, Citrobacter, Enterobacter, Klebsiella, and Pseudomonas, and of the class Flavobacteriia, of the genera Chryseobacterium and Myroides. In this group of 25 strains, 19 identified as Gammaproteobacteria harbored at least one PMQR gene (aac(6')-Ib-cr, qnrB, qnrS, or oqxAB) or a class 1 integron gene cassette encoding aminoglycoside, sulfonamide, or carbapenem resistance. Most of the E. coli J53 transconjugants with acquired antibiotic resistance resulted from conjugation with Enterobacteriaceae. These transconjugants demonstrated acquired resistance to a maximum of five classes of antibiotics, one or more PMQR genes and/or a class 1 integron gene cassette. This study shows that ubiquitous bacteria, other than those monitored in water quality controls, are important vectors of antibiotic resistance and can be disseminated from hospital effluent to aquatic environments. This information is relevant to support management options aiming at the control of this public health problem.

  11. Fate of thiabendazole through the treatment of a simulated agro-food industrial effluent by combined MBR/Fenton processes at μg/L scale.

    Science.gov (United States)

    Sánchez Peréz, J A; Carra, I; Sirtori, C; Agüera, A; Esteban, B

    2014-03-15

    This study has been carried out to assess the performance of a combined system consisting of a membrane bioreactor (MBR) followed by an advanced oxidation process (Fenton/Photo-Fenton) for removing the fungicide thiabendazole (TBZ) in a simulated agro-food industrial wastewater. Previous studies have shown the presence of TBZ in the effluent of an agro-food industry treated by activated sludge in a sequencing batch reactor (SBR), thus reinforcing the need for alternative treatments for removal. In this study, a simulated agro-food industry effluent was enriched with 100 μg L(-1) TBZ and treated by combined MBR/Fenton and MBR/solar photo-Fenton systems. Samples were directly injected into a highly sensitive liquid chromatography-triple quadrupole-linear ion trap-mass spectrometer (LC-QqLiT-MS/MS) analytical system to monitor the degradation of TBZ even at low concentration levels (ng L(-1)). Results showed that the biological treatment applied was not effective in TBZ degradation, which remained almost unaltered; although most dissolved organic matter was biodegraded effectively. Fenton and solar photo-Fenton, were assayed as tertiary treatments. The experiments were run without any pH adjustment by using an iron dosage strategy in the presence of excess hydrogen peroxide. Both treatments resulted in a total degradation of TBZ, obtaining more than 99% removal in both cases. To assure the total elimination of contaminants in the treated waters, transformation products (TPs) of TBZ generated during Fenton degradation experiments were identified and monitored by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS). Up to four TPs could be identified. Two of them corresponded to mono-hydroxylated derivatives, typically generated under hydroxyl radicals driven processes. The other two corresponded with the hydrolysis of the TBZ molecule to yield benzoimidazole and thiazole-4-carboxamidine. All of them were also degraded during the

  12. The Utilization of Water Hyacinth (Eichhorniacrassipes) as Aquatic Macrophage Treatment System (AMATS) in Phytoremediation for Palm Oil Mill Effluent (POME)

    OpenAIRE

    Innocent Chukwunonso Ossai; Fauziah S. H.; Ghufran Redzwan

    2014-01-01

    The need for edible oil has increased resulting with a consequent boost in palm oil production. As a result, production of palm oil mill effluent (POME) which is one of the by-products of the milling process has also increased. In Malaysia, palm oil industry is identified as one of the agricultural industries that generate the highest pollution load into the rivers throughout the country. Some palm oil mills store POME in ponds or lagoons in the hope of treating and detoxifying it. Often ti...

  13. Micropollutant degradation, bacterial inactivation and regrowth risk in wastewater effluents: Influence of the secondary (pre)treatment on the efficiency of Advanced Oxidation Processes.

    Science.gov (United States)

    Giannakis, Stefanos; Voumard, Margaux; Grandjean, Dominique; Magnet, Anoys; De Alencastro, Luiz Felippe; Pulgarin, César

    2016-10-01

    In this work, disinfection by 5 Advanced Oxidation Processes was preceded by 3 different secondary treatment systems present in the wastewater treatment plant of Vidy, Lausanne (Switzerland). 5 AOPs after two biological treatment methods (conventional activated sludge and moving bed bioreactor) and a physiochemical process (coagulation-flocculation) were tested in laboratory scale. The dependence among AOPs efficiency and secondary (pre)treatment was estimated by following the bacterial concentration i) before secondary treatment, ii) after the different secondary treatment methods and iii) after the various AOPs. Disinfection and post-treatment bacterial regrowth were the evaluation indicators. The order of efficiency was Moving Bed Bioreactor > Activated Sludge > Coagulation-Flocculation > Primary Treatment. As far as the different AOPs are concerned, the disinfection kinetics were: UVC/H2O2 > UVC and solar photo-Fenton > Fenton or solar light. The contextualization and parallel study of microorganisms with the micropollutants of the effluents revealed that higher exposure times were necessary for complete degradation compared to microorganisms for the UV-based processes and inversed for the Fenton-related ones. Nevertheless, in the Fenton-related systems, the nominal 80% removal of micropollutants deriving from the Swiss legislation, often took place before the elimination of bacterial regrowth risk.

  14. Individual treatment of hotel and restaurant waste water in rural areas.

    Science.gov (United States)

    Van Hulle, S W H; Ghyselbrecht, N; Vermeiren, T J L; Depuydt, V; Boeckaert, C

    2012-01-01

    About 25 hotels, restaurants and pubs in the rural community Heuvelland are situated in the area designated for individual water treatment. In order to meet the legislation by the end of 2015, each business needs to install an individual waste water treatment system (IWTS). To study this situation, three catering businesses were selected for further research. The aim of the study was to quantify the effluent quality and to assess IWTS performance for these catering businesses. First of all, the influence of discharging untreated waste water on the receiving surface water was examined. The results showed a decrease in water quality after the discharge point at every business. With the collected data, simulations with the software WEST were performed. With this software two types of IWTSs with different (buffer) volumes were modelled and tested for each catering business. The first type is a completely mixed activated sludge reactor and the second type is a submerged aerobic fixed-bed reactor. The results of these simulations demonstrate that purification with an IWTS is possible if the capacity is large enough and if an adequate buffer volume is installed and if regular maintenance is performed.

  15. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu

    Science.gov (United States)

    Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish

    2016-03-01

    The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.

  16. Design of a treatment pilot by electro-coagulation and electro-flotation of high charged liquid effluents; Conception d'un pilote de traitement par electrocoagulation-electroflottation d'effluents liquides fortement charges

    Energy Technology Data Exchange (ETDEWEB)

    Cames, M.C.; Leclerc, J.P.; Valentin, G.; Sanchez-Calvo, L.; Lapicque, F. [Centre National de la Recherche Scientifique (CNRS-ENSIC), Lab. des Sciences du Genie Chimique, 54 - Nancy (France); Rostan, A.; Muller, P. [Centre de Recherche pour l' Environnement, l' Energie et le Dechet, Vivendi Environnement, 78 - Limay (France)

    2001-07-01

    The possibilities of the electro-coagulation and electro-flotation process has been studied on many industrial effluents by cells. The results show that the process efficiency is conditioned by the effluent nature and the dissolved aluminium quantity, what ever the initial rate of Carbon Organic Total (COT). Other parameters as the current density and the circulation speed are not significant. (A.L.B.)

  17. Correlation between Microbial Quality and Organic Content in the Effluent of an Activated Sludge Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Mostafaii Gh.R.1 PhD,

    2015-01-01

    Full Text Available Aims Regarding water as the main source of brio, not only its quantity and being availability is vital, but also its quality must be considered. This study was done in order to determine the correlation between physicochemical BOD5 and microbiological parameters (FC and TC in the Kashan University of Medical Sciences wastewater effluent of activated sludge system. Materials & Methods This descriptive study was done from July to October 2012 at Kashan University of Medical Sciences. A total number of 130 samples were taken on different days of the week over a 4-month period from effluent, randomly. All of the taken samples were transferred to the water and wastewater laboratory for analysis, immediately. The SPSS 16 software and regression test for were used to analyze the obtained data, ultimately. Findings The mean value for BOD5 was 11.27±5.43mgL1. The mean value of TC was log1.62±0.32. A linear correlation (F=312.9 ;p<0.001 was observed between TC and BOD5. The mean value of FC was log1.42±0.31. A linear correlation (F=298.3 ;p<0.001 was observed between FC and BOD5. Conclusion BOD5 parameter can be used to predict the wastewater quality instead of TC and FC.

  18. Prevalence and Treatment of Children's Asthma in Rural Areas Compared with Urban Areas in Beijing

    Institute of Scientific and Technical Information of China (English)

    Wen-Jing Zhu; Hai-Xia Ma; Hui-Ying Cui; Xu Lu; Ming-Jun Shao; Shuo Li; Yan-Qing Luo

    2015-01-01

    Background:The prevalence of childhood asthma has been increasing in China.This study aimed to compare the prevalence,diagnosis,and treatment of asthmatic children from urban and rural areas in Beijing,China.Methods:Schools,communities,and kindergartens were randomly selected by cluster random sampling from urban and rural areas in Beijing.Parents were surveyed by the same screening questionnaires.On-the-spot inquiries,physical examinations,medical records,and previous test results were used to diagnose asthmatic children.Information on previous diagnoses,treatments,and control of symptoms was obtained.Results:From 7209 children in rural areas and 13,513 children in urban areas who completed screening questionnaires,587 children were diagnosed as asthma.The prevalence of asthma in rural areas was lower than in urban areas (1.25% vs.3.68%,x2 =100.80,P < 0.001).The diagnosis of asthma in rural areas was lower than in urban areas (48.9% vs.73.9%,x2 =34.6,P < 0.001).Compared with urban asthmatic children (56.5%),only 35.6% of rural asthmatic children received inhaled corticosteroids (P < 0.05).The use ofbronchodilators was also lower in rural areas than in urban areas (56.5% vs.66.4%,x2 =14.2,P < 0.01).Conclusion:The prevalence of asthma in children was lower in rural areas compared with children in the urban area of Beijing.A considerable number of children were not diagnosed and inadequately treated in rural areas.

  19. What have we learned from worldwide experiences on the management and treatment of hospital effluent? - an overview and a discussion on perspectives.

    Science.gov (United States)

    Verlicchi, P; Al Aukidy, M; Zambello, E

    2015-05-01

    This study overviews lessons learned from experimental investigations on dedicated treatment systems of hospital effluent carried out worldwide in the last twenty years. It includes 48 peer reviewed papers from 1995 to 2015 assessing the efficacy of different treatment levels (preliminary, primary, secondary and polishing) of hospital wastewater in removing a wide spectrum of pharmaceutical compounds as well as conventional contaminants. Moreover, it highlights the rationale and the reasons for each study: reducing the discharge of micropollutants in surface water, improving existing wastewater treatment technologies and reducing the risk of spread of pathogens causing endemic diseases and finally, it offers a critical analysis of the conclusions and suggestions of each study. The most investigated technologies are membrane bioreactors equipped with ultrafiltration membranes in the secondary step, ozonation followed by activated carbon filtration (in powder and in granules) in the polishing step. Interesting research projects deal with photo-Fenton processes acting as primary treatments to enhance biodegradation before biological treatment, and as a polishing step, thus further reducing micro-contaminant occurrence. Investment and operational costs are also presented and discussed for the different treatment technologies tested worldwide, in particular membrane bioreactors and various advanced oxidation processes. This study also discusses the need for further research to evaluate toxicity resulting from advanced oxidation processes as well as the need to develop an accurate feasibility study that encompasses technical, ecotoxicological and economic aspects to identify the best available treatment in the different situations from a global view point.

  20. Continuous-flow photocatalytic treatment of pharmaceutical micropollutants: Activity, inhibition, and deactivation of TiO2 photocatalysts in wastewater effluent

    KAUST Repository

    Carbonaro, Sean

    2013-01-01

    Titanium dioxide (TiO2) photocatalysts have been shown to be effective at degrading a wide range of organic micropollutants during short-term batch experiments conducted under ideal laboratory solution conditions (e.g., deionized water). However, little research has been performed regarding longer-term photocatalyst performance in more complex matrices representative of contaminated water sources (e.g., wastewater effluent, groundwater). Here, a benchtop continuous-flow reactor was developed for the purpose of studying the activity, inhibition, and deactivation of immobilized TiO2 photocatalysts during water treatment applications. As a demonstration, degradation of four pharmaceutical micropollutants (iopromide, acetaminophen, sulfamethoxazole, and carbamazepine) was monitored in both a pH-buffered electrolyte solution and a biologically treated wastewater effluent (WWE) to study the effects of non-target constituents enriched in the latter matrix. Reactor performance was shown to be stable over 7d when treating micropollutants in buffered electrolyte, with 7-d averaged kobs values (acetaminophen=0.97±0.10h-1; carbamazepine=0.50±0.04h-1; iopromide=0.49±0.03h-1; sulfamethoxazole=0.79±0.06h-1) agreeing closely with measurements from short-term circulating batch reactions. When reactor influent was switched to WWE, treatment efficiencies decreased to varying degrees (acetaminophen=40% decrease; carbamazepine=60%; iopromide=78%; sulfamethoxazole=54%). A large fraction of the catalyst activity was recovered upon switching back to the buffered electrolyte influent after 4d, suggesting that much of the observed decrease resulted from reversible inhibition by non-target constituents (e.g., scavenging of photocatalyst-generated OH). However, there was also a portion of the decrease in activity that was not recovered, indicating WWE constituents also contributed to photocatalyst deactivation (acetaminophen=6% deactivation; carbamazepine=24%; iopromide=16

  1. Soil aquifer treatment (SAT) as a natural and sustainable wastewater reclamation/reuse technology: fate of wastewater effluent organic matter (EfOM) and trace organic compounds.

    Science.gov (United States)

    Amy, Gary; Drewes, Jörg

    2007-06-01

    Through the use of innovative analytical tools, the removal/transformation of wastewater effluent organic matter (EfOM) have been tracked through soil aquifer treatment (SAT). While the total amount of EfOM is significantly reduced by SAT, there are trends of shorter term versus longer term removals of specific EfOM fractions. The preferential removal of non-humic components (e.g., proteins, polysaccharides) of EfOM occurs over shorter travel times/distances while humic components (i.e., humic substances) are removed over longer travel times/distances, with the removal of both by sustainable biodegradation. Dissolved organic nitrogen (DON), a surrogate for protein-like EfOM, is also effectively removed over shorter term SAT. There is some background humic-like natural organic matter (NOM), associated with the drinking water source within the watershed, that persists through SAT. While most effluent-derived trace organic compounds are removed to varying degrees as a function of travel time and redox conditions, a few persist even through longer term SAT.

  2. Replacing synthetic with microbial surfactants as collectors in the treatment of aqueous effluent produced by acid mine drainage, using the dissolved air flotation technique.

    Science.gov (United States)

    Menezes, Carlyle T B; Barros, Erilson C; Rufino, Raquel D; Luna, Juliana M; Sarubbo, Leonie A

    2011-02-01

    Dissolved air flotation (DAF) is a well-established separation process employing micro bubbles as a carrier phase. The application of this technique in the treatment of acid mine drainage, using three yeast biosurfactants as alternative collectors, is hereby analyzed. Batch studies were carried out in a 50-cm high acrylic column with an external diameter of 2.5 cm. High percentages (above 94%) of heavy metals Fe(III) and Mn(II) were removed by the biosurfactants isolated from Candida lipolytica and Candida sphaerica and the values were found to be similar to those obtained with the use of the synthetic sodium oleate surfactant. The DAF operation with both surfactant and biosurfactants, achieved acceptable turbidity values, in accordance with Brazilian standard limits. The best ones were obtained by the biosurfactant from C. lipolytica, which reached 4.8 NTU. The results obtained with a laboratory synthetic effluent were also satisfactory. The biosurfactants removed almost the same percentages of iron, while the removal percentages of manganese were slightly higher compared with those obtained in the acid mine drainage effluent. They showed that the use of low-cost biosurfactants as collectors in the DAF process is a promising technology for the mining industries.

  3. Occurrence of Vibrio Pathotypes in the Final Effluents of Five Wastewater Treatment Plants in Amathole and Chris Hani District Municipalities in South Africa

    Directory of Open Access Journals (Sweden)

    Vuyokazi Nongogo

    2014-08-01

    Full Text Available We assessed the occurrence of Vibrio pathogens in the final effluents of five wastewater treatment plants (WWTPs located in Amathole and Chris Hani District Municipalities in South Africa over a 12 months period between September 2012 and August 2013 using standard membrane filtration technique followed by cultivation on thiosulphate citrate-bile salts-sucrose (TCBS agar. The identities of the presumptive Vibrio isolates were confirmed using polymerase chain reaction (PCR including delineation into V. parahaemolyticus, V. vulnificus and V. fluvialis pathotypes. The counts of Vibrio spp. varied with months in all the study sites and ranged in the order of 101 and 104 CFU/100mL. Vibrio distribution also showed seasonality with high counts being obtained in autumn and spring (p < 0.05. Prevalence of Vibrio spp. among the five WWTPs also differed significantly (p < 0.05. Of the 300 isolates that were confirmed as belonging to the Vibrio genus, 29% (86 were V. fluvialis, 28% (84 were V. vulnificus and 12% (35 were V. parahaemolyticus. The isolation of Vibrio pathogens from the final effluent suggests that this pathogen is in circulation in some pockets of the population and that the WWTPs under study do not efficiently remove bacterial pathogens from the wastewater and consequently are threats to public health.

  4. Effect of mercury and arsenic from industrial effluents on the drinking water and comparison of the water quality of polluted and non-polluted areas: a case study of Peshawar and Lower Dir.

    Science.gov (United States)

    Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah

    2013-02-01

    The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.

  5. Catalytic hydrothermal treatment of pulping effluent using a mixture of Cu and Mn metals supported on activated carbon as catalyst.

    Science.gov (United States)

    Yadav, Bholu Ram; Garg, Anurag

    2016-10-01

    The present study was performed to investigate the performance of activated carbon-supported copper and manganese base catalyst for catalytic wet oxidation (CWO) of pulping effluent. CWO reaction was performed in a high pressure reactor (capacity = 0.7 l) at temperatures ranging from 120 to 190 °C and oxygen partial pressures of 0.5 to 0.9 MPa with the catalyst concentration of 3 g/l for 3 h duration. With Cu/Mn/AC catalyst at 190 °C temperature and 0.9 MPa oxygen partial pressures, the maximum chemical oxygen demand (COD), total organic carbon (TOC), lignin, and color removals of 73, 71, 86, and 85 %, respectively, were achieved compared to only 52, 51, 53, and 54 % removals during the non-catalytic process. Biodegradability (in terms of 5-day biochemical oxygen demand (BOD5) to COD ratio) of the pulping effluent was improved to 0.38 from an initial value of 0.16 after the catalytic reaction. The adsorbed carbonaceous fraction on the used catalyst was also determined which contributed meager TOC reduction of 3-4 %. The leaching test showed dissolution of the metals (i.e., Cu and Mn) from the catalysts in the wastewater during CWO reaction at 190 °C temperature and 0.9 MPa oxygen partial pressures. In the future, the investigations should focus on the catalyst reusability.

  6. Spatiotemporal variations in estrogenicity, hormones, and endocrine-disrupting compounds in influents and effluents of selected wastewater-treatment plants and receiving streams in New York, 2008-09

    Science.gov (United States)

    Baldigo, Barry P.; Phillips, Patrick J.; Ernst, Anne G.; Gray, James L.; Hemming, Jocelyn D.C.

    2014-01-01

    Endocrine-disrupting compounds (EDCs) in wastewater effluents have been linked to changes in sex ratios, intersex (in males), behavioral modifications, and developmental abnormalities in aquatic organisms. Yet efforts to identify and regulate specific EDCs in complex mixtures are problematic because little is known about the estrogen activity (estrogenicity) levels of many common and emerging contaminants. The potential effects of EDCs on the water quality and health of biota in streams of the New York City water supply is especially worrisome because more than 150 wastewater-treatment plants (WWTPs) are permitted to discharge effluents into surface waters and groundwaters of watersheds that provide potable water to more than 9 million people. In 2008, the U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), and New York City Department of Environmental Protection (NYCDEP) began a pilot study to increase the understanding of estrogenicity and EDCs in effluents and receiving streams mainly in southeastern New York. The primary goals of this study were to document and assess the spatial and temporal variability of estrogenicity levels; the effectiveness of various treatment-plant types to remove estrogenicity; the concentrations of hormones, EDCs, and pharmaceuticals, personal care products (PPCPs); and the relations between estrogenicity and concentrations of hormones, EDCs, and PPCPs. The levels of estrogenicity and selected hormones, non-hormone EDCs, and PPCPs were characterized in samples collected seasonally in effluents from 7 WWTPs, once or twice in effluents from 34 WWTPs, and once in influents to 6 WWTPs. Estrogenicity was quantified, as estradiol equivalents, using both the biological e-screen assay and a chemical model. Results generally show that (1) estrogenicity levels in effluents varied spatially and seasonally, (2) a wide range of known and unknown EDCs

  7. Mobil pilot unit of the advanced oxidation process for waste water treatment and reuse of the hydrics effluents; Unidade piloto movel de processo oxidativo avancado aplicado a tratamento e reuso de efluentes hidricos

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Lucia Maria Limoeiro; Pereira Junior, Oswaldo de Aquino; Henriques, Sheyla de Oliveira Carvalho; Jacinto Junior, Agenor [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The chemical oxidation processes which generate free hydroxyl radicals are called Advanced Oxidation Process (AOP). These processes have been studied, in the last decades, as a new alternative for pollutants degradation. In the (AOP)'s there are in situ formation of hydroxyl radicals (OH{center_dot}), which are highly oxidant. Its high oxidation strength becomes it indicated in the treatment of effluent with highly refractory contaminants. It can be used as a partial treatment (taking the effluent to more degradable compounds), as a final treatment (taking the effluent to complete mineralization) or as a complementary treatment to other processes, allowing, for example, its reuse. The applicability of this technology in oily water effluents in all segments of the oil industry, has taken to the development, in the LARA (Laboratory of Treatment and Reuse of Waters - CENPES), of the Advanced Oxidation Process Mobile Pilot Unit (AOP's- MU) with capacity up to 1 m3/h. The (AOP's- MU) are able to produce hydroxyl radical from Fenton's reaction, titanium dioxide heterogeneous photo catalysis and hydrogen peroxide, photo-radiated or not. It is equipped with ultraviolet reactors of different wave lengths and power. (author)

  8. Chlorine and antibiotic-resistant bacilli isolated from an effluent treatment plant - doi: 10.4025/actascitechnol.v35i1.12951

    Directory of Open Access Journals (Sweden)

    Suzana Cláudia Silveira Martins

    2013-01-01

    Full Text Available Resistance to different concentrations of chlorine and the susceptibility to antibiotics by bacteria isolated from the final effluent of the Pici Campus wastewater treatment plant of the Federal University of Ceará (UFC is evaluated. Twelve strains, morphologically and biochemically identified as belonging to the genus Bacillus, were selected. The strains were submitted to sodium hypochlorite at different contact times and tested against the antibiotics amoxicillin, erythromycin, chloramphenicol, tetracycline, and vancomycin. All strains were resistant to concentration 0.1 ppm chlorine up to 30 minutes, but bacteria resistant to concentrations up to 5,000 ppm for 10 minutes were detected. Bacterial growth was impaired in 10,000 ppm concentration. The strains presented three antibiotic resistance profiles, 50% were sensitive to all antibiotics, 25% were resistant to one antibiotic and 25% were resistant to two antibiotics.  

  9. A novel application of red mud-iron on granulation and treatment of palm oil mill effluent using upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Ahmad, Anwar

    2014-01-01

    The performance of the upflow anaerobic sludge blanket reactor that used red mud-iron (RM-Fe) for methane production for the treatment of palm oil mill effluent (POME) at various hydraulic retention time (HRT) was determined. POME was used as the substrate carbon source. The biogas production rate was 1.7 l biogas/h with a methane yield of 0.78 l CH4/g CODremoved and chemical oxygen demand (COD) removal was 85% at POME concentration of 30 g COD/l at HRT 16 h. The reactor R2 showed average methane content of biogas and COD reduction of 78% and 85% at 400 mg/l RM-Fe. Significant increase in the granule diameter (up to 2900 μm) in R2 was compared to control R1 (up to 86 μm) at end of the experiment.

  10. Calculation of the release of total organic matter and total mineral using the hydrodynamic equations applied to palm oil mill effluent treatment by cascaded anaerobic ponds.

    Science.gov (United States)

    Fulazzaky, Mohamad Ali

    2013-01-01

    Anaerobic treatment processes to remove organic matter from palm oil mill effluent (POME) have been used widely in Malaysia. Still the amounts of total organic and total mineral released from POME that may cause degradation of the receiving environment need to be verified. This paper proposes the use of the hydrodynamic equations to estimate performance of the cascaded anaerobic ponds (CAP) and to calculate amounts of total organic matter and total mineral released from POME. The CAP efficiencies to remove biochemical oxygen demands, chemical oxygen demands, total solids and volatile solids (VS) as high as 94.5, 93.6, 96.3 and 98.2 %, respectively, are estimated. The amounts of total organic matter and total mineral as high as 538 kg VS/day and 895 kg FS/day, respectively, released from POME to the receiving water are calculated. The implication of the proposed hydrodynamic equations contributes to more versatile environmental assessment techniques, sometimes replacing laboratory analysis.

  11. Treatment of wastewater from service areas at motorways

    Directory of Open Access Journals (Sweden)

    Makowska Małgorzata

    2016-12-01

    Full Text Available This paper deals with wastewater treatment systems placed in motorway service areas (MSAs. In the years 2008-2009 eight of such facilities installed on the stretch of the A2 motorway between Poznań and Nowy Tomyśl were examined and analyzed. The system consists of a septic tank, a submerged aerated biofilter and an outflow filter. The volume of traffic on the highway was analyzed, the amount of water use was measured and peak factors were calculated. On this basis it was concluded that the inflows to the wastewater treatment systems in many cases exceeded the nominal design values.

  12. Functionalized nanostructured silica by tetradentate-amine chelating ligand as efficient heavy metals adsorbent : Applications to industrial effluent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shahbazi, Afsaneh [Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Younesi, Habibollah [Tarbiat Modares University, Noor (Iran, Islamic Republic of); Badiei, Alireza [University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Organofunctionalized nanostructured silica SBA-15 with tri(2-aminoethyl)amine tetradentate-amine ligand was synthesized and applied as adsorbent for the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from both synthetic wastewater and real paper mill and electroplating industrial effluents. The prepared materials were characterized by XRD, N{sub 2} adsorption-desorption, TGA, and FT-IR analysis. The Tren-SBA-15 was found to be a fast adsorbent for heavy metal ions from single solution with affinity for Cu{sup 2+}, Pb{sup 2+}, than for Cd{sup 2+} due to the complicated impacts of metal ion electronegativity. The kinetic rate constant decreased with increasing metal ion concentration due to increasing of ion repulsion force. The equilibrium batch experimental data is well described by the Langmuir isotherm. The maximum adsorption capacity was 1.85 mmol g{sup -1} for Cu{sup 2+}, 1.34 mmol g{sup -1} for Pb{sup 2+}, and 1.08 mmol g{sup -1} for Cd{sup 2+} at the optimized adsorption conditions (pH=4, T=323 K, t=2 h, C0=3 mmol L{sup -1}, and adsorbent dose=1 g L{sup -1}). All Gibbs energy was negative as expected for spontaneous interactions, and the positive entropic values from 103.7 to 138.7 J mol{sup -1} K{sup -1} also reinforced this favorable adsorption process in heterogeneous system. Experiment with real wastewaters showed that approximately a half fraction of the total amount of studied metal ions was removed within the first cycle of adsorption. Hence, desorption experiments were performed by 0.3M HCl eluent, and Tren-SBA-15 successfully reused for four adsorption/desorption cycles to complete removal of metal ions from real effluents. The regenerated Tren-SBA-15 displayed almost similar adsorption capacity of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} even after four recycles. The results suggest that Tren-SBA-15 is a good candidate as an adsorbent in the removal of Cu{sup 2+}, Pb{sup 2+}, and Cd{sup 2+} from aqueous solutions.

  13. Bulking on the activated slugde process applied to the cheese whey effluent treatment: characterization and use of chemical flocullants to improve settling

    Directory of Open Access Journals (Sweden)

    Nelson Duran

    2007-11-01

    Full Text Available In this work was studied the activated sludge process applied to an effluent treatment from a cheese manufacture (cheese whey, which is characterized by the high organic content containing easily biodegradable compounds as lactose. In the diluted whey treatment, it was found that the activated sludge is an adequate system at a diluted condition (100x, 50x, 25x e 10x and treatment (HRT varying between 6-36 h and suspended solid (SS between 2800-19417mgL-1. However, the system is susceptible to bulking occurrence. Chemical flocculants were evaluated in order to monitoring the biological flocs sedimentation present in a continuous activated sludge system under bulking conditions. The treatment was carried out in a continuous reactor at laboratory scale and the coagulants (Al2 (SO43 and FeSO4 .7H2O were added to sludge at 50-200 mg L-1 concentration range. The results showed that Al3+ presented higher settling capacity compared with Fe2+ effect, and the good settling characteristics were observed in terms of SVI (sludge volume index. However, more detailed studies in this direction should be done to evaluate if the characteristic organisms in the activated sludge are not irreversible suppressed with the use of chemical flocculants.

  14. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: conversion of yellow cake to uranium hexafluoride. Part I. The fluorination-fractionation process

    Energy Technology Data Exchange (ETDEWEB)

    Sears, M.B.; Blanco, R.E.; Finney, B.C.; Hill, G.S.; Moore, R.E.; Witherspoon, J.P.

    1977-07-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials and chemicals from a model uranium hexafluoride (UF/sub 6/) production plant using the fluorination-fractionation (dry hydrofluor) process, and to evaluate the radiological impact (dose commitment) of the released materials on the environment. This study is designed to assist in defining the term as low as is reasonably achievable (ALARA) in relation to limiting the release of radioactive materials from nuclear facilities. The model plant processes 10,000 metric tons of uranium per year. Base-case waste treatment is the minimum necessary to operate the process. Effluents meet the radiological requirements listed in the Code of Federal Regulations, Title 10, Part 20 (10 CFR 20), Appendix B, Table II, but may not be acceptable chemically at all sites. Additional radwaste treatment techniques are applied to the base-case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The costs for the added waste treatment operations and the corresponding dose commitment are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases will require development and demonstration or else is proprietary and unavailable for immediate use. The methodology and assumptions for the radiological doses are found in ORNL-4992.

  15. Sedimentation of mixed cultures using natural coagulants for the treatment of effluents generated in terrestrial fuel distribution terminals.

    Science.gov (United States)

    Vieira, R B; Vieira, P A; Cardoso, S L; Ribeiro, E J; Cardoso, V L

    2012-09-15

    This study evaluated the use of natural coagulants (Moringa oleifera and chitosan) under different conditions with a mixed culture (C1 mixed culture). This culture was used for the biodegradation of hydrocarbons present in the effluent from fuel distribution terminals contaminated with diesel oil and gasoline. The biodegradation was evaluated by two central composite design (CCD) experiments: the first with varying concentrations of Moringa oleifera (MO), drying temperatures (TE) and seed drying times (TI); the second with varying concentrations of chitosan and the hydrochloric acid in which chitosan had been solubilized. The responses monitored in the CCD experiments included the sludge volume index (SVI), the turbidity removal (TR) and the specific rate of oxygen uptake (SOUR). Subsequently, the biodegradation was monitored in a sequencing batch reactor (SBR) under the optimal conditions obtained for each CCD experiment. The results indicated that the best coagulant was chitosan solubilized in 0.25 N HCl at a concentration of 50mg/L. Within five cycles with chitosan as a coagulant, the total organic carbon (TOC) removal increased from 77±1.0% to 82±0.5%, the volatile suspended solids (VSS) increased from 1.4±0.3 to 2.25±0.3 g/L and the total petroleum hydrocarbon (TPH) removal increased from 75±1.0% to 81±0.5%.

  16. Simultaneous treatment of raw palm oil mill effluent and biodegradation of palm fiber in a high-rate CSTR.

    Science.gov (United States)

    Khemkhao, Maneerat; Techkarnjanaruk, Somkiet; Phalakornkule, Chantaraporn

    2015-02-01

    A high-rate continuous stirred tank reactor (CSTR) was used to produce biogas from raw palm oil mill effluent (POME) at 55°C at a highest organic loading rate (OLR) of 19 g COD/ld. Physical and chemical pretreatments were not performed on the raw POME. In order to promote retention of suspended solids, the CSTR was installed with a deflector at its upper section. The average methane yield was 0.27 l/g COD, and the biogas production rate per reactor volume was 6.23 l/l d, and the tCOD removal efficiency was 82%. The hydrolysis rate of cellulose, hemicelluloses and lignin was 6.7, 3.0 and 1.9 g/d, respectively. The results of denaturing gradient gel electrophoresis (DGGE) suggested that the dominant hydrolytic bacteria responsible for the biodegradation of the palm fiber and residual oil were Clostridium sp., while the dominant methanogens were Methanothermobacter sp.

  17. Comparative Study on Performance and Organic Fouling of ZrO2 Ceramic Membranes in Ultrafiltration of Synthetic Water and Wastewater Treatment Plant Effluent

    KAUST Repository

    Li, Cen

    2011-07-01

    Adsorption of organic matter on ceramic membrane can lead to hydraulic-irreversible fouling, which decreases the permeate flux and the cost-efficiency of membrane devices. In order to optimize the filtration process, detailed information is necessary about the organic fouling mechanisms on ceramic membranes. In this study, dead-end filtration experiments of both synthetic water and secondary effluent from a wastewater treatment plant (WWTP) were conducted on a ZrO2 ceramic membrane. The experiment results of synthetic water showed that humic acid (HA) was able to be adsorbed by the ZrO2 membrane and cause permeate flux decline; and that HA-tryptophan mixture, at the same DOC level, promoted the filtration flux decline; DOC removal in the case of HA-tryptophan was lower than that of HA alone. It seems that hydrophilic organic matter with low molecular weight have some specific contribution to the organic fouling of the ZrO2 membrane. The results also suggest that tryptophan molecules were preferentially adsorbed on the membrane at the beginning, exposing their hydrophobic sides which might further adsorb HA from the feed water. During the filtration of WWTP effluent, protein-like substances (mainly tryptophan-like) were also preferentially adsorbed on the membrane compared with humic-like ones in the initial few cycles of filtration. More humic-like substances were adsorbed in the following filtration cycles due to the increase of membrane hydrophobicity. A significant rise in hydraulic-irreversible flux decline was obtained by decreasing pH from near pHpzc to below pHpzc of the membrane. It suggests that a positively charged surface is preferred for HA adsorption. Ionic strength increase did not affect the filtration of HA, but it lessened the hydraulic-irreversible flux decline of HA-tryptophan filtration. The adsorption of HA-tryptophan can be attributed to outersphere interaction while HA adsorption is mainly caused by inner-sphere interaction. The results of

  18. Sludge from paper mill effluent treatment as raw material to produce carbon adsorbents: An alternative waste management strategy.

    Science.gov (United States)

    Jaria, Guilaine; Silva, Carla Patrícia; Ferreira, Catarina I A; Otero, Marta; Calisto, Vânia

    2017-03-01

    Pulp and paper industry produces massive amounts of sludge from wastewater treatment, which constitute an enormous environmental challenge. A possible management option is the conversion of sludge into carbon-based adsorbents to be applied in water remediation. For such utilization it is important to investigate if sludge is a consistent raw material originating reproducible final materials (either over time or from different manufacturing processes), which is the main goal of this work. For that purpose, different primary (PS) and biological sludge (BS) batches from two factories with different operation modes were sampled and subjected to pyrolysis (P materials) and to pyrolysis followed by acid washing (PW materials). All the materials were characterized by proximate analysis, total organic carbon (TOC) and inorganic carbon (IC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and N2 adsorption isotherms (specific surface area (SBET)and porosity determination). Sludge from the two factories proved to have distinct physicochemical properties, mainly in what concerns IC. After pyrolysis, the washing step was essential to reduce IC and to considerably increase SBET, yet with high impact in the final production yield. Among the materials here produced, PW materials from PS were those having the highest SBET values (387-488 m(2) g(-1)). Overall, it was found that precursors from different factories might originate final materials with distinct characteristics, being essential to take into account this source of variability when considering paper mill sludge as a raw material. Nevertheless, for PS, low variability was found between batches, which points out to the reliability of such residues to be used as precursors of carbon adsorbents.

  19. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    Directory of Open Access Journals (Sweden)

    Vara Saritha

    2010-02-01

    Full Text Available Two fungi (unidentified were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of these fungi was also tested, and the clearance zone was obtained in the plate assay.

  20. POTENTIAL FUNGI FOR BIOREMEDIATION OF INDUSTRIAL EFFLUENTS

    OpenAIRE

    Vara Saritha; Avasn Maruthi; Mukkanti, K.

    2010-01-01

    Two fungi (unidentified) were isolated from soil and marine environ-ments. These isolates were used for bioremediation of pulp and paper mill effluent at the laboratory scale. The treatment resulted in the reduction of color, lignin, and COD of the effluent in the order of 78.6%, 79.0%, and 89.4% in 21 days. A major part of reductions in these parameters occurred within 5 days of the treatment, which was also characterized by a steep decline in the pH of the effluent. The enzyme activity of t...

  1. Sedimentation of mixed cultures using natural coagulants for the treatment of effluents generated in terrestrial fuel distribution terminals

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, R.B., E-mail: rafaelbrunovieira@yahoo.com.br [Faculdade de Engenharia Quimica - Universidade Federal de Uberlandia, Campus Santa Monica, 2121 - CEP: 38400-902, Uberlandia, MG (Brazil); Vieira, P.A., E-mail: patriciavieira@feq.ufu.br [Faculdade de Engenharia Quimica - Universidade Federal de Uberlandia, Campus Santa Monica, 2121 - CEP: 38400-902, Uberlandia, MG (Brazil); Cardoso, S.L., E-mail: saulo_shaulin_@hotmail.com [Faculdade de Engenharia Quimica - Universidade Federal de Uberlandia, Campus Santa Monica, 2121 - CEP: 38400-902, Uberlandia, MG (Brazil); Ribeiro, E.J., E-mail: ejribeiro@ufu.br [Faculdade de Engenharia Quimica - Universidade Federal de Uberlandia, Campus Santa Monica, 2121 - CEP: 38400-902, Uberlandia, MG (Brazil); Cardoso, V.L., E-mail: vicelma@ufu.br [Faculdade de Engenharia Quimica - Universidade Federal de Uberlandia, Campus Santa Monica, 2121 - CEP: 38400-902, Uberlandia, MG (Brazil)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Moringa oleifera and chitosan as natural coagulant. Black-Right-Pointing-Pointer Chitosan is a superior coagulant compared with Moringa oleifera for the sedimentation. Black-Right-Pointing-Pointer Chitosan reduced the process cost without compromising the process performance. - Abstract: This study evaluated the use of natural coagulants (Moringa oleifera and chitosan) under different conditions with a mixed culture (C1 mixed culture). This culture was used for the biodegradation of hydrocarbons present in the effluent from fuel distribution terminals contaminated with diesel oil and gasoline. The biodegradation was evaluated by two central composite design (CCD) experiments: the first with varying concentrations of Moringa oleifera (MO), drying temperatures (TE) and seed drying times (TI); the second with varying concentrations of chitosan and the hydrochloric acid in which chitosan had been solubilized. The responses monitored in the CCD experiments included the sludge volume index (SVI), the turbidity removal (TR) and the specific rate of oxygen uptake (SOUR). Subsequently, the biodegradation was monitored in a sequencing batch reactor (SBR) under the optimal conditions obtained for each CCD experiment. The results indicated that the best coagulant was chitosan solubilized in 0.25 N HCl at a concentration of 50 mg/L. Within five cycles with chitosan as a coagulant, the total organic carbon (TOC) removal increased from 77 {+-} 1.0% to 82 {+-} 0.5%, the volatile suspended solids (VSS) increased from 1.4 {+-} 0.3 to 2.25 {+-} 0.3 g/L and the total petroleum hydrocarbon (TPH) removal increased from 75 {+-} 1.0% to 81 {+-} 0.5%.

  2. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  3. Animal alternatives for whole effluent toxicity testing ...

    Science.gov (United States)

    Since the 1940s, effluent toxicity testing has been utilized to varying degrees in many countries to assess potential ecological impacts and assist in determining necessary treatment options for environmental protection. However, it was only in the early 1980’s that toxicity based effluent assessments and subsequent discharge controls became globally important, when it was recognized that physical and chemical measurements alone did not protect the environment from potential impacts. Consequently, various strategies using different toxicity tests, whole effluent assessment techniques (incorporating bioaccumulation potential and persistence) plus supporting analytical tools have been developed over 30 years of practice. Numerous workshops and meetings have focused on effluent risk assessment through ASTM, SETAC, OSPAR, UK competent authorities, and EU specific country rules. Concurrent with this drive to improve effluent quality using toxicity tests, interest in reducing animal use has risen. The Health and Environmental Sciences Institute (HESI) organized and facilitated an international workshop in March 2016 to evaluate strategies for concepts, tools, and effluent assessments and update the toolbox of for effluent testing methods. The workshop objectives were to identify opportunities to use a suite of strategies for effluents, and to identify opportunities to reduce the reliance on animal tests and to determine barriers to implementation of new methodologie

  4. Disinfection of an advanced primary effluent with peracetic acid and ultraviolet combined treatment: a continuous-flow pilot plant study.

    Science.gov (United States)

    González, Abelardo; Gehr, Ronald; Vaca, Mabel; López, Raymundo

    2012-03-01

    Disinfection of an advanced primary effluent using a continuous-flow combined peracetic acid/ultraviolet (PAA/UV) radiation system was evaluated. The purpose was to determine whether the maximum microbial content, established under Mexican standards for treated wastewaters meant for reuse--less than 240 most probable number fecal coliforms (FC)/100 mL--could be feasibly accomplished using either disinfectant individually, or the combined PAA/UV system. This meant achieving reduction of up to 5 logs, considering initial concentrations of 6.4 x 10(+6) to 5.8 x 10(+7) colony forming units/100 mL. During the tests performed under these experiments, total coliforms (TC) were counted because FC, at the most, will be equal to TC. Peracetic acid disinfection achieved less than 1.5 logs TC reduction when the C(t) x t product was less than 2.26 mg x minimum (min)/L; 3.8 logs for C(t) x t 4.40 mg x min/L; and 5.9 logs for C(t) x t 24.2 mg x min/L. In continuous-flow UV irradiation tests, at a low-operating flow (21 L/min; conditions which produced an average UV fluence of 13.0 mJ/cm2), the highest TC reduction was close to 2.5 logs. The only condition that produced a disinfection efficiency of approximately 5 logs, when both disinfection agents were used together, was the combined process dosing 30 mg PAA/L at a pilot plant flow of 21 L/min and contact time of 10 minutes to attain an average C(t) x t product of 24.2 mg x min/L and an average UV fluence of 13 mJ/cm2. There was no conclusive evidence of a synergistic effect when both disinfectants were employed in combination as compared to the individual effects achieved when used separately, but this does not take into account the nonlinearity (tailing-off) of the dose-response curve.

  5. 2014 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2013, through October 31, 2014. The report contains, as applicable, the following information; Site description; Facility and system description; Permit required monitoring data and loading rates; Status of compliance conditions and activities; and Discussion of the facility’s environmental impacts. The current permit expires on March 16, 2015. A permit renewal application was submitted to Idaho Department of Environmental Quality on September 15, 2014. During the 2014 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. Seepage testing of the three lagoons was performed between August 26, 2014 and September 22, 2014. Seepage rates from Lagoons 1 and 2 were below the 0.25 inches/day requirement; however, Lagoon 3 was above the 0.25 inches/day. Lagoon 3 has been isolated and is being evaluated for future use or permanent removal from service.

  6. Optimization of O3 as Pre-Treatment and Chemical Enhanced Backwashing in UF and MF Ceramic Membranes for the Treatment of Secondary Wastewater Effluent and Red Sea Water

    KAUST Repository

    Herrera, Catalina

    2011-12-12

    Ceramic membranes have proven to have many advantages over polymeric membranes. Some of these advantages are: resistance against extreme pH, higher permeate flux, less frequent chemical cleaning, excellent backwash efficiency and longer lifetime. Other main advantage is the use of strong chemical agent such as Ozone (O3), to perform membrane cleaning. Ozone has proven to be a good disinfection agent, deactivating bacteria and viruses. Ozone has high oxidation potential and high reactivity with natural organic matter (NOM). Several studies have shown that combining ozone to MF/UF systems could minimize membrane fouling and getting higher operational fluxes. This work focused on ozone – ceramic membrane filtration for treating wastewater effluent and seawater. Effects of ozone as a pre – treatment or chemical cleaning with ceramic membrane filtration were identified in terms of permeate flux and organic fouling. Ozonation tests were done by adjusting O3 dose with source water, monitoring flux decline and membrane fouling. Backwashing availability and membrane recovery rate were also analyzed. Two types of MF/UF ceramics membranes (AAO and TAMI) were used for this study. When ozone dosage was higher in the source water, membrane filtration improved in performance, resulting in a reduced flux decline. In secondary wastewater effluent, raw source water declined up to 77% of normalized flux, while with O3 as pre – treatment, source water at its higher O3 dose, flux decreased only 33% of normalized flux. For seawater, membrane performance increase from declining to 37% of its final normalized flux to 21%, when O3 as a pre – treatment was used. Membrane recovery rate also improved even with low O3 dose, as an example, with 8 mg/L irreversible fouling decreases from 58% with no ozone addition to 29% for secondary wastewater effluent treatment. For seawater treatment, irreversible fouling decreased from 37% with no ozone addition to 21% at 8 mg/L, proving ozone is a

  7. Correlation of radioactive waste treatment costs and the environmental impact of waste effluents in the nuclear fuel cycle: reprocessing light-water reactor fuel. [Radiation dose commitment to human populations from radioactive effluents released to environment

    Energy Technology Data Exchange (ETDEWEB)

    Finney, B.C.; Blanco, R.E.; Dahlman, R.C.; Hill, G.S.; Kitts, F.G.; Moore, R.E.; Witherspoon, J.P.

    1976-10-01

    A cost/benefit study was made to determine the cost and effectiveness of radioactive waste (radwaste) treatment systems for decreasing the release of radioactive materials from a model nuclear fuel reprocessing plant which processes light-water reactor (LWR) fuels, and to determine the radiological impact (dose commitment) of the released materials on the environment. The study is designed to assist in defining the term as low as reasonably achievable in relation to limiting the release of radioactive materials from nuclear facilities. The base case model plant is representative of current plant technology and has an annual capacity of 1500 metric tons of LWR fuel. Additional radwaste treatment systems are added to the base case plant in a series of case studies to decrease the amounts of radioactive materials released and to reduce the radiological dose commitment to the population in the surrounding area. The cost for the added waste treatment operations and the corresponding dose commitments are calculated for each case. In the final analysis, radiological dose is plotted vs the annual cost for treatment of the radwastes. The status of the radwaste treatment methods used in the case studies is discussed. Much of the technology used in the advanced cases is in an early stage of development and is not suitable for immediate use. The methodology used in estimating the costs, and the radiological doses, detailed calculations, and tabulations are presented in Appendix A and ORNL-4992. This report is a revision of the original study (ORNL/TM-4901).

  8. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent.

    Science.gov (United States)

    Toet, Sylvia; Bouwman, Meike; Cevaal, Annechien; Verhoeven, Jos T A

    2005-01-01

    The efficacy and feasibility of annual harvesting of Phragmites australis and Typha latifolia shoots in autumn for nutrient removal was evaluated in a wetland system used for polishing sewage treatment plant (STP) effluent. Aboveground biomass and nutrient dynamics nutrient removal through harvest were studied in parallel ditches with stands of Phragmites or Typha that were mown in October during two successive years. The inflow rate of STP effluent to the ditches was experimentally varied, resulting in pairs of ditches with mean hydraulic retention times (HRT) of 0.3, 0.8, 2.3, and 9.3 days, corresponding to N and P mass loading rates of 122-4190 g N m(-2) yr(-1) and 28.3-994 g P m(-2) yr(-1). Nitrogen and P removal efficiency by harvest of Phragmites and Typha shoots in October increased with increasing HRT, despite the opposite HRT effect on N and P standing stocks. This removal through harvest appeared to be useful in treatment wetlands with N and P mass loading rates lower than approximately 120 g N m(-2) yr(-1) and 30 g P m(-2) yr(-1), corresponding to a HRT of roughly 9 days in the ditches of this wetland system. At the HRT of 9.3 days, the annual mass input to the ditches was reduced through the harvest by 7.0-11% and 4.5 -9.2% for N and P, respectively. At the higher nutrient mass loading rates, the nutrient removal through harvest was insignificant compared to the mass inputs. The vitality of Phragmites and Typha, measured as maximum aboveground biomass, was not affected by the annual cutting of the shoots in autumn over two years. The Typha stands yielded higher N and P removal efficiencies through shoot harvest than the Phragmites stands, which was largely the result of lower decreases in N and P standing stocks between August and October. This difference in nutrient standing stocks between the two species was caused by a combined effect of greater decreases in nutrient concentrations largely due to higher nutrient retranslocation efficiencies of

  9. The Effect of Higher Sludge Recycling Rate on Anaerobic Treatment of Palm Oil Mill Effluent in a Semi-Commercial Closed Digester for Renewable Energy

    Directory of Open Access Journals (Sweden)

    Alawi Sulaiman

    2009-01-01

    Full Text Available Problem statement: A 500 m3 semi-commercial closed anaerobic digester was constructed for Palm Oil Mill Effluent (POME treatment and methane gas capture for renewable energy. During the start-up operation period, the Volatile Fatty Acids (VFA accumulation could not be controlled and caused instability on the system. Approach: A settling tank was installed and sludge was recycled as to provide a balanced microorganisms population for the treatment of POME and methane gas production. The effect of sludge recycling rate was studied by applying Organic Loading Rates (OLR (between 1.0 and 10.0 kgCOD m-3 day-1 at different sludge recycling rates (6, 12 and 18 m3 day-1. Results: At sludge recycling rate of 18 m3 day-1, the maximum OLR was 10.0 kgCOD m-3 day-1 with biogas and methane productivity of 1.5 and 0.9 m3 m-3 day-1, respectively. By increasing the sludge recycling rate the VFA concentration was controlled below its inhibitory limit (1000 mg L-1 and the COD removal efficiency recorded was above 95% which indicated good treatment performance for the digester. Two methanogens species (Methanosarcina sp. and Methanosaeta concilii had been identified from sludge samples obtained from the digester and recycled stream. Conclusion: By increasing the sludge recycling rate upon higher application of OLR, the treatment process was kept stable with high COD removal efficiency. The biogas and methane productivity were initially improved but reduced once OLR and recycling rate were increased to 10.0 kg COD m3 day-1 and 18 m3 day-1 respectively.

  10. Cell-based metabolomics approach for assessing the impact of wastewater treatment plant effluent on downstream water quality

    Science.gov (United States)

    Wastewater treatment plants (WWTP) are a known source of various types of chemicals including pharmaceuticals and personal care products (PPCPs), naturally occurring hormones, and pesticides. There is great concern regarding their adverse effects on human and ecological health th...

  11. Effects of a surfacing effluent plume on a coastal phytoplankton community

    KAUST Repository

    Reifel, Kristen M.

    2013-06-01

    Urban runoff and effluent discharge from heavily populated coastal areas can negatively impact water quality, beneficial uses, and coastal ecosystems. The planned release of treated wastewater (i.e. effluent) from the City of Los Angeles Hyperion Wastewater Treatment Plant, located in Playa del Rey, California, provided an opportunity to study the effects of an effluent discharge plume from its initial release until it could no longer be detected in the coastal ocean. Non-metric multi-dimensional scaling analysis of phytoplankton community structure revealed distinct community groups based on salinity, temperature, and CDOM concentration. Three dinoflagellates (Lingulodinium polyedrum, Cochlodinium sp., Akashiwo sanguinea) were dominant (together >50% abundance) prior to the diversion. Cochlodinium sp. became dominant (65-90% abundance) within newly surfaced wastewater, and A. sanguinea became dominant or co-dominant as the effluent plume aged and mixed with ambient coastal water. Localized blooms of Cochlodinium sp. and A. sanguinea (chlorophyll a up to 100mgm-3 and densities between 100 and 2000cellsmL-1) occurred 4-7 days after the diversion within the effluent plume. Although both Cochlodinium sp. and A. sanguinea have been occasionally reported from California waters, blooms of these species have only recently been observed along the California coast. Our work supports the hypothesis that effluent and urban runoff discharge can stimulate certain dinoflagellate blooms. All three dinoflagellates have similar ecophysiological characteristics; however, small differences in morphology, nutrient preferences, and environmental requirements may explain the shift in dinoflagellate composition. © 2013 Elsevier Ltd.

  12. A novel hybrid technology for remediation of molasses-based raw effluents

    Digital Repository Service at National Institute of Oceanography (India)

    Verma, A.K.; Raghukumar, C.; Naik, C.G.

    A novel three-step technology for treatment of four molasses-based raw industrial effluents, varying in their COD, color and turbidity is reported here. Sequential steps involved in this treatment are; (1) sonication of the effluents, (2) whole...

  13. Effluent Zero Release Concept——The Brazilian Experience

    Institute of Scientific and Technical Information of China (English)

    José Carlos Mierzwa; Sandra Mara Garcia Bello; Ivanildo Hespanhol

    2006-01-01

    Water scarcity is pushing the government, industries and researchers to the development of new strategies for water and wastewater management. An approach aimed at the optimization of the water use and minimization of effluent generation was developed at the Centro Experimental ARAMAR (CEA), a nuclear research facility, located in the State of Sao Paulo,Brazil. Bench scale tests followed by a pilot plant treating effluents from some nuclear research facilities have shown the results leading to the conclusion that the effluent zero release concept is feasible. Based on the gathered data, a project of an integrated effluent treatment system focusing on water recovery and environmental effluent release reduction has been developed.

  14. Effects of wastewater effluent discharge and treatment facility upgrades on environmental and biological conditions of the upper Blue River, Johnson County, Kansas and Jackson County, Missouri, January 2003 through March 2009

    Science.gov (United States)

    Graham, Jennifer L.; Stone, Mandy L.; Rasmussen, Teresa J.; Poulton, Barry C.

    2010-01-01

    The Johnson County Blue River Main Wastewater Treatment Facility discharges into the upper Blue River near the border between Johnson County, Kansas and Jackson County, Missouri. During 2005 through 2007 the wastewater treatment facility underwent upgrades to increase capacity and include biological nutrient removal. The effects of wastewater effluent on environmental and biological conditions of the upper Blue River were assessed by comparing an upstream site to two sites located downstream from the wastewater treatment facility. Environmental conditions were evaluated using previously and newly collected discrete and continuous data, and were compared with an assessment of biological community composition and ecosystem function along the upstream-downstream gradient. This evaluation is useful for understanding the potential effects of wastewater effluent on water quality, biological community structure, and ecosystem function. In addition, this information can be used to help achieve National Pollution Discharge Elimination System (NPDES) wastewater effluent permit requirements after additional studies are conducted. The effects of wastewater effluent on the water-quality conditions of the upper Blue River were most evident during below-normal and normal streamflows (about 75 percent of the time), when wastewater effluent contributed more than 20 percent to total streamflow. The largest difference in water-quality conditions between the upstream and downstream sites was in nutrient concentrations. Total and inorganic nutrient concentrations at the downstream sites during below-normal and normal streamflows were 4 to 15 times larger than at the upstream site, even after upgrades to the wastewater treatment facility were completed. However, total nitrogen concentrations decreased in wastewater effluent and at the downstream site following wastewater treatment facility upgrades. Similar decreases in total phosphorus were not observed, likely because the biological

  15. Advanced treatment of effluent from a wastewater treatment plant by embedded immobilized bacteria and algae system%固定化菌藻系统对污水处理厂出水的深度处理

    Institute of Scientific and Technical Information of China (English)

    严清; 高旭; 彭绪亚

    2012-01-01

    将海藻酸钠固定化活性污泥和小球藻制成颗粒小球,以自制的流化床反应器对重庆市某污水处理厂出水进行深度处理,探讨了系统对氨氮、TP、COD的去除效果,实验结果表明:在HRT=12 h,溶解氧浓度为3.0 mg/L左右,pH值为6.2至8.0之间,环境室温条件下,系统对氨氮、TP、COD均有较好的去除效果,系统稳定运行后对氨氮、TP、COD去除率基本维持在60%、60%和30%以上,出水氨氮、TP、COD浓度基本维持在8、0.5和40 mg/L以下,出水浓度达到了《城镇污水处理厂污染物排放标准》(GB 18918-2002)的一级A标准。这项研究显示固定化菌藻胶球系统在污水处理厂出水的深度处理中具有潜在的应用前景。%Coimmobilized activated sludge and Chlorella vulgaris with sodium alginate as entrapping agent were made into beads to treat effluent from a wastewater treatment plant in the fluidized bed reactor and the removal efficiencies of ammonia nitrogen,TP and COD were studied.The experiment indicates that under the conditions of natural temperature,HRT,DO,pH were 12 hours,3 mg/L,6.2 to 8.0,respectively,the embedded immobilized bacteria-algae has strong ability to remove ammonia nitrogen,TP and COD,and the removal rates are more than 60%,60% and 30%,respectively.The effluent concentrations of ammonia nitrogen,TP and COD basically maintain less than 8,0.5 and 40 mg/L,respectively,meeting the first level A criteria specified in the Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002).This study shows that coimmobilization of activated sludge and Chlorella vulgaris in small beads has the potential application prospect in the advanced treatment of effluent from wastewater treatment plants.

  16. Endocrine active chemicals, pharmaceuticals, and other chemicals of concern in surface water, wastewater-treatment plant effluent, and bed sediment, and biological characteristics in selected streams, Minnesota-design, methods, and data, 2009

    Science.gov (United States)

    Lee, Kathy E.; Langer, Susan K.; Barber, Larry B.; Writer, Jeff H.; Ferrey, Mark L.; Schoenfuss, Heiko L.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; ReVello, Rhiannon C.; Martinovic, Dalma; Woodruff, Olivia R.; Keefe, Steffanie H.; Brown, Greg K.; Taylor, Howard E.; Ferrer, Imma; Thurman, E. Michael

    2011-01-01

    This report presents the study design, environmental data, and quality-assurance data for an integrated chemical and biological study of selected streams or lakes that receive wastewater-treatment plant effluent in Minnesota. This study was a cooperative effort of the U.S. Geological Survey, the Minnesota Pollution Control Agency, St. Cloud State University, the University of St. Thomas, and the University of Colorado. The objective of the study was to identify distribution patterns of endocrine active chemicals, pharmaceuticals, and other organic and inorganic chemicals of concern indicative of wastewater effluent, and to identify biological characteristics of estrogenicity and fish responses in the same streams. The U.S. Geological Survey collected and analyzed water, bed-sediment, and quality-assurance samples, and measured or recorded streamflow once at each sampling location from September through November 2009. Sampling locations included surface water and wastewater-treatment plant effluent. Twenty-five wastewater-treatment plants were selected to include continuous flow and periodic release facilities with differing processing steps (activated sludge or trickling filters) and plant design flows ranging from 0.002 to 10.9 cubic meters per second (0.04 to 251 million gallons per day) throughout Minnesota in varying land-use settings. Water samples were collected from the treated effluent of the 25 wastewater-treatment plants and at one point upstream from and one point downstream from wastewater-treatment plant effluent discharges. Bed-sediment samples also were collected at each of the stream or lake locations. Water samples were analyzed for major ions, nutrients, trace elements, pharmaceuticals, phytoestrogens and pharmaceuticals, alkylphenols and other neutral organic chemicals, carboxylic acids, and steroidal hormones. A subset (25 samples) of the bed-sediment samples were analyzed for carbon, wastewater-indicator chemicals, and steroidal hormones; the

  17. A biodegradation and treatment of palm oil mill effluent (POME using a hybrid up-flow anaerobic sludge bed (HUASB reactor

    Directory of Open Access Journals (Sweden)

    S. A. Habeeb, AB. Aziz Abdul Latiff, Zawawi Daud, Zulkifli Ahmad

    2011-07-01

    Full Text Available Generally, anaerobic treatment has become a viable alternative in support of industrial wastewater treatment. Particularly, it is used in common to treat the palm oil mill effluent (POME. This study was carried out to assess the start-up performance of a bioreactor hybrid up-flow anaerobic sludge blanket (HUASB. Whereby, three identical reactors of 7.85-l capacity R1, R2, and R3 were operated for 57 days in order to provide two alienated comparisons. Identical operation conditions of organic loading rate (OLR and hydraulic retention time (HRT of 1.85 kg.m-3.day-1, and 2.6 day, respectively. R1 was operated in room temperature of 28±2°C, and packed with palm oil shell as filter medium support. R2 was set with room temperature but packed with course gravel. R3 was provided with water bath system to adjust its temperature at 37±1°C mesophilic, while its filter material had to be palm oil shell. During the whole operation period R3 was more efficient for organic materials, where a chemical oxygen demand (COD removal efficiency of 82% was registered, while R1 and R2 were relatively less efficient of 78%, and 76%, respectively. Furthermore, TSS removal of R3 was also higher than R1, and R2 as registered 80%, 77% and 76%, respectively. On the other hand, turbidity and colour removal were not efficient and needed a post treatment. The seeded sludge was developed in each reactor as illustrated in this paper. Therefore, all reactors show favorable performance of anaerobic treatability of POME as well as good response of microbial species development.

  18. Elimination of micropollutants and transformation products from a wastewater treatment plant effluent through pilot scale ozonation followed by various activated carbon and biological filters.

    Science.gov (United States)

    Knopp, Gregor; Prasse, Carsten; Ternes, Thomas A; Cornel, Peter

    2016-09-01

    Conventional wastewater treatment plants are ineffective in removing a broad range of micropollutants, resulting in the release of these compounds into the aquatic environment, including natural drinking water resources. Ozonation is a suitable treatment process for micropollutant removal, although, currently, little is known about the formation, behavior, and removal of transformation products (TP) formed during ozonation. We investigated the elimination of 30 selected micropollutants (pharmaceuticals, X-ray contrast media, industrial chemicals, and TP) by biological treatment coupled with ozonation and, subsequently, in parallel with two biological filters (BF) or granular activated carbon (GAC) filters. The selected micropollutants were removed to very different extents during the conventional biological wastewater treatment process. Ozonation (specific ozone consumption: 0.87 ± 0.29 gO3 gDOC(-1), hydraulic retention time: 17 ± 3 min) eliminated a large number of the investigated micropollutants. Although 11 micropollutants could still be detected after ozonation, most of these were eliminated in subsequent GAC filtration at bed volumes (BV) of approximately 25,000 m(3) m(-3). In contrast, no additional removal of micropollutants was achieved in the BF. Ozonation of the analgesic tramadol led to the formation of tramadol-N-oxide that is effectively eliminated by GAC filters, but not by BF. For the antiviral drug acyclovir, the formation of carboxy-acyclovir was observed during activated sludge treatment, with an average concentration of 3.4 ± 1.4 μg L(-1) detected in effluent samples. Subsequent ozonation resulted in the complete elimination of carboxy-acyclovir and led to the formation of N-(4-carbamoyl-2-imino-5-oxo imidazolidin)-formamido-N-methoxyacetetic acid (COFA; average concentration: 2.6 ± 1.0 μg L(-1)). Neither the BF nor the GAC filters were able to remove COFA. These results highlight the importance of considering TP in the

  19. Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents.

    Science.gov (United States)

    Machado, Manuela D; Soares, Eduardo V; Soares, Helena M V M

    2010-12-15

    The aim of this work was to seek an environmentally friendly process for recycling metals from biomass-sludges generated in the treatment of industrial wastewaters. This work proposes a hybrid process for selective recovery of copper, nickel and zinc from contaminated biomass of Saccharomyces cerevisiae, used in the bioremediation of electroplating effluents. The developed separation scheme comprised five consecutive steps: (1) incineration of the contaminated biomass; (2) microwave acid (HCl) digestion of the ashes; (3) recovery of copper from the acid solution by electrolysis at controlled potential; (4) recycle of nickel, as nickel hydroxide, by alcalinization of the previous solution at pH 14; (5) recovery of zinc, as zinc hydroxide, by adjusting the pH of the previous solution at 10. This integrated approach allowed recovering each metal with high yielder (>99% for all metals) and purity (99.9%, 92% and 99.4% for copper, nickel and zinc, respectively). The purity of the metals recovered allows selling them in the market or being recycled in the electroplating process without waste generation.

  20. Nitrogen and phosphorus removal from wastewater treatment plant effluent via bacterial sulfate reduction in an anoxic bioreactor packed with wood and iron.

    Science.gov (United States)

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko

    2014-09-22

    We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors.

  1. Nitrogen and Phosphorus Removal from Wastewater Treatment Plant Effluent via Bacterial Sulfate Reduction in an Anoxic Bioreactor Packed with Wood and Iron

    Directory of Open Access Journals (Sweden)

    Takahiro Yamashita

    2014-09-01

    Full Text Available We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors.

  2. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Junchao [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Environment Research Institute, Shandong University, Jinan, 250100 (China); Wang, Thanh, E-mail: bswang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Han, Shanlong [Environment Research Institute, Shandong University, Jinan, 250100 (China); Wang, Pu; Zhang, Qinghua; Jiang, Guibin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2013-10-01

    In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ{sup 13}C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m{sup −2}⋅y{sup −1}. Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. Highlights: • The distribution of PCBs in an urban riparian zone around a wastewater effluent affected river was investigated. • Relatively high abundances of PCB-11 and PCB-28 were found for most samples. • Mid-chlorinated congeners (PCB-153 and PCB-138) were more accumulated in chironomids and dragonflies as well as soil dwelling invertebrates. • Emerging invertebrates can carry waterborne PCBs to the

  3. Treatment of waste effluent water in Studsvik. Thermodynamic modelling on the distribution of organic ligands between the liquid and solid phases

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Puigdomenech, I. [Royal Inst. of Technology, Stockholm (Sweden)

    2000-10-01

    This preliminary study based on theoretical chemical equilibrium calculations has been carried out in order to analyse the effects of complexing reagents such as EDTA, NTA and oxalate on the treatment of waste effluent water in Studsvik. The necessary stability constants have been selected and added into the database in MEDUSA software for thermodynamic modelling. The modelling has been performed for a synthetic system of various components: Al{sup 3+} -Am{sup 3+} -Ca{sup 2+} -Co{sup 2+} -Cu{sup 2+} -Fe{sup 3+} -K{sup +} -Mg{sup 2+} -Na{sup +} -UO{sub 2}{sup 2+} -Zn{sup 2+} -SO{sub 4}{sup 2-} -Cl{sup -} , in the absence an presence of one of the complexing ligands, EDTA, NTA and C{sub 2}O{sub 4}{sup 2-} (oxalate). The concentration conditions for the modelling are based on the data supplied in the previous reports on the waste effluent water in Studsvik. The calculated results are represented in graphic diagrams, compared and discussed. It is generally concluded: No solid phase of the complexing reagents concerned, except for calcium oxalate, may form according to the present modelling. It means that the distribution of EDTA and NTA between the slurry and the clean solution is mainly dependent upon the volume ratio of the liquid phase. Oxalate, however, may mostly precipitate as calcium oxalate in the slurry. The major eventual problem with the presence of the complexing reagents in the slurry is the probable re-dissolution of the radioactive components such as Am(OH){sub 3} and CaUO{sub 4}. Therefore, it is necessary to study the solid formation of those radioactive compounds in the slurry, their stability in the presence of the complexing reagents and the respective conditions to avoid their re-dissolution. Sorption of organic ligands into the Fe(III)-hydroxides has not been included in the model, but available literature data suggest that sorption is improbable under the conditions used (at pH {>=} 8)

  4. Research Progress of Pulp Mill Effluent Treatment with Ozonation and Catalytic Ozonation Technology%臭氧及催化臭氧氧化法处理制浆废水的研究进展

    Institute of Scientific and Technical Information of China (English)

    雷利荣; 李友明

    2013-01-01

    Ozonation is an environmentally friendly technology for wastewater treatment.Catalytic ozonation technology,based on generation of hydroxyl radical (· OH) with high oxidizing power by synergistic effect of catalyst and ozone molecules,effectively enhances degradation efficiency of organic pollutants existed in wastewater and becomes one of the promising wastewater treatment technologies with practical application potential.In this paper,basic mechanisms of degradation of organic pollutant by ozonation and catalytic ozonation technology were described in detail,and factors which influence treatment efficiency of pulp mill effluent with ozoration were discussed.Moreover,the recent research progress of the pulping effluent treatment with ozonation and ozonation catalytic ozonation technology was reviewed.The existing problems and future development trends about ozonation of pulp mill effluent were presented.%介绍了臭氧及催化臭氧氧化技术降解去除废水中有机物的机理,分析了影响臭氧处理制浆废水效果的主要因素.综述了近年来臭氧及催化臭氧氧化技术处理制浆废水的研究进展;指出此领域尚存在的问题,并对未来的发展方向进行了展望.

  5. Enhancing the Decolorizing and Degradation Ability of Bacterial Consortium Isolated from Textile Effluent Affected Area and Its Application on Seed Germination

    Directory of Open Access Journals (Sweden)

    Rashid Mahmood

    2015-01-01

    Full Text Available A bacterial consortium BMP1/SDSC/01 consisting of six isolates was isolated from textile effected soil, sludge, and textile effluent from Hudiara drain near Nishat Mills Limited, Ferozepur Road, Lahore, Pakistan. It was selected because of being capable of degrading and detoxifying red, green, black, and yellow textile dyes. The pH and supplements were optimized to enhance the decolorization ability of the selected consortium. The results indicated that decolorizing ability of consortium for the red, green, black, and yellow dyes was higher as compared to individual strains. The consortium was able to decolorize 84%, 84%, 85%, 85%, and 82% of 200 ppm of red, green, black, yellow, and mixed dyes within 24 h while individual strain required 72 h. On supplementing urea, the consortium decolorized 87, 86, 89, 86, and 83%, respectively, while on supplementing sodium chloride the consortium decolorized 93, 94, 93, 94, and 89% of red, green, black, yellow, and mixed dyes, respectively, which was maximum while in the presence of ascorbic acid and ammonium chloride it showed intermediate results. The effect of untreated and treated dyes was investigated on Zea mays L. (maize and Sorghum vulgare Pers. (sorghum. This study will help to promote an efficient biotreatment of textile effluents.

  6. TECHNICAL AND ECONOMIC ASSESSMENT OF ANAEROBIC TREATMENT OF EFFLUENTS FROM A DAIRY FARM IN BUENOS AIRES PROVINCE, ARGENTINA

    Directory of Open Access Journals (Sweden)

    Claudia Dido

    2013-12-01

    Full Text Available This paper develops an alternative sanitation to the negative environmental impacts caused by the intensification of the production system and the inadequate management of waste from a dairy farm with 1050 cows, belonging to Trenque Lauquen, Buenos Aires Province of Argentina. Anaerobic digestion technology allows the biological degradation of organic material in an oxygen free environment and it is proposed to develop a treatment system that allows evaluation of the products obtained through electricity generation and biofertilizer. The working methodology includes an analysis of preliminary data from anaerobic digestion of cattle manure, characterization of the generated waste, the design of the treatment system and a technical economic analysis. This study shows that it is possible to reach the dairy sanitation with energy benefits developing a sustainable resource and environmental management

  7. Identification of residual non-biodegradable organic compounds in wastewater effluent after two-stage biochemical treatment

    Directory of Open Access Journals (Sweden)

    Xuqing Liu

    2016-01-01

    Full Text Available The main non-biodegradable compounds (soluble microbial product – SMP of wastewater from the Maotai aromatic factories, located in the Chishui river region, were analyzed by UV spectroscopy, and by solid-phase extraction followed by gas chromatography coupled to mass spectrometry, after a two-stage biochemical treatment. The UV-Vis spectra revealed that the wastewater contained two double-bonds in conjugated systems (conjugated diene or α, β- unsaturated ketone, etc. and simple non-conjugated chromophores containing n electrons from carbonyl groups or the like. The residual organic non-biodegradable substances were identified using SPE-GC/MS analysis as complex polymers containing hydroxyl, carbonyl, and carboxyl functional groups with multiple connections to either benzene rings or heterocyclic rings. As these compounds are difficult to remove by conventional biochemical treatments, our findings provide a scientific basis for the design of efficient new strategies to remove SMP from wastewater.

  8. Soil Aquifer Treatment (SAT) and Constructed Wetlands (CW) Applications for Nutrients and Organic Micropollutants (OMPs) Attenuation Using Primary and Secondary Wastewater Effluents

    KAUST Repository

    Hamadeh, Ahmed F.

    2014-06-01

    Constructed wetlands (CW) and soil aquifer treatment (SAT) represent natural wastewater treatment systems (NWTSs). The high costs of conventional wastewater treatment techniques encourage more studies to investigate lower cost treatment methods which make these appropriate for developing and also in developed countries. The main objective of this research was to investigate the removals of nutrients and organic micropollutants (OMPs) through SAT, CW and the CW-SAT hybrid system. CWs are an efficient technology to purify and remove different nutrients as well as OMPs from wastewater. They removed most of the dissolved organic matter (DOC), total nitrogen (TN), ammonium and phosphate. Furthermore, CWs aeration could be used as one of the alternatives to reduce CWs footprint by around 10%. The vegetation in CWs plays an essential role in the treatment especially for nitrogen and phosphate removals, it is responsible for the removal of 15%, 55%, 38%, and 22% for TN, dissolved organic nitrogen (DON), nitrate and phosphate, respectively. CWs achieved a very high removal for some OMPs; they attenuated acetaminophen, caffeine, fluoxetine and trimethoprim (>90%) under different redox conditions. Moreover, it was found that increasing temperature (up to 36 C) could enhance the removals of atenolol, caffeine, DEET and trimethoprim by 17%, 14%, 28% and 45%, respectively. On the other hand, some OMPs, were found to be removed by vegetation such as: acetaminophen, caffeine, fluoxetine, sulfamethoxazole, and trimethoprim. Moreover, atenolol, caffeine, fluoxetine and trimethoprim, showed high removal (>80%) through SAT system. It was also found that, temperature increasing and using primary instead of secondary effluent could enhance the removal of some OMPs. The CWs performance study showed that these systems are adapted to the prevailing extreme arid conditions and the average percent removals are about, 88%, 96%, 98%, 98% and 92%, for COD, BOD and TSS, ammonium and phosphate

  9. Remediação de efluentes derivados da indústria de papel e celulose: tratamento biológico e fotocatalítico Remediation of effluents from paper and cellulose industry: biological and photocatalytic treatment

    Directory of Open Access Journals (Sweden)

    P. Peralta-Zamora

    1997-04-01

    Full Text Available The contribution of the industrial activities to the environmental contamination phenomena is evident. Great efforts are dedicated to the establishment of methodologies which permits an adequate treatment of the produced effluents, as a manner of minimizing the environmental impact of these wastes. The methodologies based on photocatalytic processes are very promise alternatives, because permits degradation of a great number of chemical substances of high toxic potential, without the use of other chemicals. The present work is an overview about the principal environmental aspects related with the paper and cellulose industry and the main alternatives employed for the reduction of environmental impact produced for its residues. The principal results of the photocatalytic treatment of this kind of effluents using metallic semiconductors is also showed.

  10. COMPARISON OF FE AND AL ELECTRODES IN THE TREATMENT OF BLUE CA DYE EFFLUENT USING ELECTRO COAGULATION PROCESS.

    Directory of Open Access Journals (Sweden)

    VINODHA S

    2012-05-01

    Full Text Available In this work a comparison between Fe and Al electrodes, for electrocoagulation process was conducted with Blue CA dye. As there is no standard method to measure the colour intensity, a UV-Vis spectrophotometer was used to quantify the absorbance initially before the treatment and after the treatment of the dye solution.Removal efficiencies on the Blue CA were obtained by measuring absorbance of a sample at 588 nm. The percentage of Colour Removal Efficiency (CRE (% reached in a maximum of 92.45% for iron and 40.35% for aluminium. Removal was found highly dependent upon important parameters such as NaCl concentration, current density, time of treatment and initial pH. The obtained results showed that the colour removal optimal conditions are the following: initial pH of about 7.5, current density of 120 mA, 40 minutes of -electrolysis time, and 3% of concentration of NaCl, for 0.04% of dye with Fe. With iron electrode the CRE was high, about 93% for the optimized set, and for aluminium electrode the CRE was low about 40% for the same conditions that of iron electrode

  11. Aquatic Plant/microbial Filters for Treating Septic Tank Effluent

    Science.gov (United States)

    Wolverton, B. C.

    1988-01-01

    The use of natural biological processes for treating many types of wastewater have been developed by NASA at the John C. Stennis Space Center, NSTL, Mississippi, during the past 15 years. The simplest form of this technology involves the use of aquatic plant/marsh filters for treatment of septic tank effluent. Septic tank effluent from single home units can be treated to advanced secondary levels and beyond by using a 37.2 sq m (400 sq ft) surface area washed gravel filter. This filter is generally 0.3 m (1 ft) deep with a surface cover of approximately 0.15 m (6 in.) of gravel. The plants in this filter are usually aesthetic or ornamental such as calla lily (Zantedeschia aethiopica), canna lily (Canna flaccida), elephant ear (Colocasia esculenta), and water iris (Iris pseudacorus).

  12. Efficiency of a Horizontal Sub-Surface Flow Constructed Wetland Treatment System in an Arid Area

    Directory of Open Access Journals (Sweden)

    Abeer Albalawneh

    2016-02-01

    Full Text Available The main objective of this study was to evaluate the performance and treatment efficiency of the Horizontal Sub-Surface Flow Constructed Wetland treatment system (HSF-CW in an arid climate. Seventeen sub-surface, horizontal-flow HSF-CW units have been operated for approximately three years to improve the quality of partially-treated municipal wastewater. The studied design parameters included two sizes of volcanic tuff media (i.e., fine or coarse, two different bed dimensions (i.e., long and short, and three plantation types (i.e., reed, kenaf, or no vegetation as a control. The effluent Biological Oxygen Demand (BOD5, Chemical Oxygen Demand (COD, Total Suspended Solid (TSS, and phosphorus from all of the treatments were significantly lower as compared to the influent and demonstrated a removal efficiency of 55%, 51%, 67%, and 55%, respectively. There were significant increases in Electrical Conductivity (EC, sulfate, and calcium in the effluent of most HSF-CWs due to evaporative concentration and mineral dissolution from the media. The study suggests that unplanted beds with either fine or coarse media are the most suitable combinations among all of the studied designs based on their treatment efficiency and less water loss in arid conditions.

  13. Quality of effluents from Hattar Industrial Estate

    Institute of Scientific and Technical Information of China (English)

    SIAL R.A.; CHAUDHARY M.F.; ABBAS S.T.; LATIF M.I.; KHAN A.G.

    2006-01-01

    than NEQS. BOD and COD values of all the industries are also above the NEQS. On the whole, these effluents cannot be used for irrigation without proper treatment otherwise that may cause toxicity to soil, plants and animals as well add to the problems of salinity and sododicity. Similarly, these effluents cannot be used for fish farming.

  14. Post-discharge treatment of air effluents polluted by butyl-mercaptan: the role of nitrate radical

    Science.gov (United States)

    Liu, Y. N.; Braci, L.; Cavadias, S.; Ognier, S.

    2011-03-01

    Dry air polluted by butyl-mercaptan was treated in a dielectric barrier discharge reactor at atmospheric pressure using air as plasmagene gas in discharge and post-discharge modes. The energy density was varied between 200 and 1300 J l-1. To assess the treatment efficiency, the concentrations of butyl-mercaptan, total volatile organic compounds (VOCs) and SO2 were determined in the exhaust gas. Whatever the energy density was, the treatment efficiency was better in the post-discharge mode. Butyl-mercaptan could be completely eliminated from 400 J l-1 and SO2 selectivity was always low, below 10%. Measurements of CO, CO2 and total VOCs indicated that 50-70% of the reaction products were condensed on the reactor wall in the form of micro-droplets, depending on the energy density. FTIR and XPS techniques were used to characterize the reaction products which were soluble in water. These analyses indicated that the reaction products contained oxygen, nitrogen and sulfur in an oxidized form. A reaction mechanism involving hydrogen abstraction from the -SH bond by the nitrate radical was proposed, pointing out the important role of nitrate radicals NO3 in the reactivity of air flowing post-discharge.

  15. EFFLUENT TREATMENT OF PAY-TO-FISH IN CONSTRUCTED WETLAND SYSTEM = TRATAMENTO DE EFLUENTES DE PESQUE-PAGUE EM SISTEMA CONSTRUÍDO DE ÁREAS ALAGADAS

    Directory of Open Access Journals (Sweden)

    Alison Lulu Bitar

    2009-01-01

    Full Text Available The use of efficient process and low cost for effluent despollution comes being intensely applied in the Europe and United States and, gradually, in other countries in the three last decades. This is the “Constructed Wetland Systems” (CWS.Considering this trend, this study it has as objective to verify the effectiveness of this effluent treatment type for fish-pay, located in the basin of the Corumbatai River. Prototypes were built simulating CWS with horizontal subsurface flow and hydraulic retention time (HRT unbroken in 2 days; checking its efficiency with or without aquatic macrophytes as Salvinia sp and Eichhornia crassipes and/or aggregate and soil. For simulation of the fish-pays’ tanks, have been created Nile tilapia fish (Oreochromis niloticus into the reservoir of 1,500 litres controlling certain environmental factors. Three treatments were used with three different replicas each and analyzed through regular collections. The highest efficiencies had been verified how much to the reduction of the parameters total alkalinity, nitrite, ammonia, total nitrogen, material in suspension, chemical oxygen demand (COD, apparent color and turbidity. To optimize the reduction of phosphorus there is a need of greater control of environmental factors to the system used. The most efficient treatment system was soil-containing filter combined with the aquatic macrophytes. = O uso de processo eficiente e de baixo custo para despoluição de efluentes vem sendo intensamente aplicado na Europa e Estados Unidos e, gradativamente, em outros países nas três últimas décadas. Trata-se dos sistemas construídos de áreas alagadas “Constructed Wetland Systems” (CWS. Considerando esta tendência, este estudo tem como objetivo verificar a eficiência deste tipo de tratamento para efluentes de pesque-pague, localizados na bacia do rio Corumbataí. Foram construídos protótipos simulando (CWS de fluxo subsuperficial horizontal e tempo de reten

  16. 聚合硫酸铁铝在污水处理厂二级出水处理中的应用%Application of polymeric aluminum ferric sulfate to the treatment of secondary effluent in a wastewater treatment plant

    Institute of Scientific and Technical Information of China (English)

    蒋贞贞; 朱俊任

    2014-01-01

    The secondary effluent of Dadukou Wastewater Treatment Plant in Chongqing has been investigated. The effects of the dosage of self-made polymeric aluminum ferric sulfate (PAFS),and initial pH of water body on the re-moving effectiveness of total phosphorus (TP) and ammonia nitrogen (NH3-N) from the secondary effluent in the wastewater treatment plant are studied. The research results show that when the mass concentration of PAFS is 13 mg/L,the residual TP mass concentration is 0.094 mg/L,the first class A wastewater discharge standard can be reached. Meanwhile NH3-N removing rate reaches 24.8%. Compared with PAFC ,PAC and PFS which are sold in markets,PAFC has higher coagulation effectiveness,and lower dosages. Furthermore,PAFC has stronger charge neutralization and adsorption bridging capacities.%以重庆大渡口污水处理厂的二级出水为考察对象,研究了自制聚合硫酸铝铁(PAFS)投加量、水体初始pH对污水处理厂二级出水的TP、NH3-N去除效果的影响。研究表明:当PAFS投加质量浓度为13 mg/L时,剩余TP质量浓度为0.094 mg/L,达到污水排放一级A标准,同时NH3-N去除率为24.8%。与市售混凝剂PAFC、PAC、PFS相比,PAFS具有较好的混凝效果和较低的投加量,同时PAFS还具有更强的电荷中和和吸附架桥能力。

  17. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  18. Delisting petition for 300-M saltstone (treated F006 sludge) from the 300-M liquid effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-04

    This petition seeks exclusion for stabilized and solidified sludge material generated by treatment of wastewater from the 300-M aluminum forming and metal finishing processes. The waste contains both hazardous and radioactive components and is classified as a mixed waste. The objective of this petition is to demonstrate that the stabilized sludge material (saltstone), when properly disposed, will not exceed the health-based standards for the hazardous constituents. This petition contains sampling and analytical data which justify the request for exclusion. The results show that when the data are applied to the EPA Vertical and Horizontal Spread (VHS) Model, health-based standards for all hazardous waste constituents will not be exceeded during worst case operating and environmental conditions. Disposal of the stabilized sludge material in concrete vaults will meet the requirements pertaining to Waste Management Activities for Groundwater Protection at the Savannah River Site in Aiken, S.C. Documents set forth performance objectives and disposal options for low-level radioactive waste disposal. Concrete vaults specified for disposal of 300-M saltstone (treated F006 sludge) assure that these performance objectives will be met.

  19. Experimental Design of Photo-Fenton Reactions for the Treatment of Car Wash Wastewater Effluents by Response Surface Methodological Analysis

    Directory of Open Access Journals (Sweden)

    Maha A. Tony

    2014-01-01

    Full Text Available Establishing a treatment process for practical and economic disposal of car wash wastewater has become an urgent environmental concern. Photo-Fenton’s process as one of the advanced oxidation processes is a potentially useful oxidation process in treating such wastewater. Lab-scale experiments with UV source, coupled with Fenton’s reagent, showed that hydrocarbon oil is degradable through such a process. The feasibility of photo-Fenton’s process to treat wastewater from a car wash is investigated in the present study. A factorial design based on the response surface methodology was applied to optimize the photo-Fenton oxidation process conditions using chemical oxygen demand (COD reduction as the target parameter to optimize. The reagent (Fe2+ and H2O2 concentration and pH are used as the controlling factors to be optimized. Maximal COD reduction (91.7% was achieved when wastewater samples were treated at pH 3.5 in the presence of hydrogen peroxide and iron in amounts of 403.9 and 48.4 mg/L, respectively.

  20. Odours from pulp mill effluent treatment ponds: the origin of significant levels of geosmin and 2-methylisoborneol (MIB).

    Science.gov (United States)

    Watson, Susan B; Ridal, Jeff; Zaitlin, Beryl; Lo, Amy

    2003-06-01

    Pulp and paper mills are well known for their sharp, sulphurous stack emissions, but the secondary treatment units also can be significant contributors to local odour. This study investigated the source(s) of earthy/musty emissions from a mixed hardwood pulp mill in response to a high local odour. Samples from five sites in the mill over five months were analyzed for earthy/musty volatile organic compounds (VOCs), examined microscopically, and plated for bacteria and moulds. In all cases, activated sludge showed substantial geosmin levels and to a lesser extent 2-methylisoborneol (MIB) at 2000-9000 times their odour threshold concentrations (OTCs). These VOCs were lower or absent upstream and downstream, suggesting that they were produced within the bioreactor. Geosmin and MIB were highest in late summer and declined over winter, and correlated with different operating parameters. Geosmin was most closely coupled with temperature and MIB with nitrogen uptake. Cyanobacteria were present in all sludge samples, but actinomycetes were not found. Gram-negative bacteria and one fungal species isolated from the bioreactor and secondary outfall tested negative for geosmin or MIB. We conclude: (i) geosmin and MIB contribute significantly to airborne odours from this mill, but are diluted below OTC levels at the river; (ii) these VOCs are generated by biota in the activated sludge; and (iii) cyanobacteria are likely primary source(s). The growth of cyanobacteria in activated sludge represents a loss of energy to the heterotrophic population; thus earthy/musty odours may represent a diagnostic for less than optimal conditions.

  1. Thyroid hormone-dependent development in Xenopus laevis: a sensitive screen of thyroid hormone signaling disruption by municipal wastewater treatment plant effluent.

    Science.gov (United States)

    Searcy, Brian T; Beckstrom-Sternberg, Stephen M; Beckstrom-Sternberg, James S; Stafford, Phillip; Schwendiman, Angela L; Soto-Pena, Jenifer; Owen, Michael C; Ramirez, Claire; Phillips, Joel; Veldhoen, Nik; Helbing, Caren C; Propper, Catherine R

    2012-05-01

    Because thyroid hormones (THs) are conserved modulators of development and physiology, identification of compounds adversely affecting TH signaling is critical to human and wildlife health. Anurans are an established model for studying disruption of TH signaling because metamorphosis is dependent upon the thyroid system. In order to strengthen this model and identify new gene transcript biomarkers for TH disruption, we performed DNA microarray analysis of Xenopus laevis tadpole tail transcriptomes following treatment with triiodothyronine (T(3)). Comparison of these results with previous studies in frogs and mammals identified 36 gene transcripts that were TH-sensitive across clades. We then tested molecular biomarkers for sensitivity to disruption by exposure to wastewater effluent (WWE). X. laevis tadpoles, exposed to WWE from embryo through metamorphosis, exhibited an increased developmental rate compared to controls. Cultured tadpole tails showed dramatic increases in levels of four TH-sensitive gene transcripts (thyroid hormone receptor β (TRβ), deiodinase type II (DIO2), and corticotropin releasing hormone binding protein (CRHBP), fibroblast activation protein α (FAPα)) when exposed to T(3) and WWE extracts. TRβ, DIO2, and CRHBP were identified as TH sensitive in other studies, while FAPα mRNA transcripts were highly TH sensitive in our array. The results validate the array and demonstrate TH-disrupting activity by WWE. Our findings demonstrate the usefulness of cross-clade analysis for identification of gene transcripts that provide sensitivity to endocrine disruption. Further, the results suggest that development is disrupted by exposure to complex mixes of compounds found in WWE possibly through interference with TH signaling.

  2. Transformation and speciation of typical heavy metals in soil aquifer treatment system during long time recharging with secondary effluent: Depth distribution and combination.

    Science.gov (United States)

    Wei, Liangliang; Wang, Kun; Noguera, Daniel R; Jiang, Junqiu; Oyserman, Ben; Zhao, Ningbo; Zhao, Qingliang; Cui, Fuyi

    2016-12-01

    Soil aquifer treatment (SAT) systems rely on extensive physical and biogeochemical processes in the vadose zone and aquifer for water quality improvement. In this study, the distribution, quantitative changes, as well as the speciation characteristics of heavy metals in different depth of soils of a two-year operated lab-scale SAT was explored. A majority of the heavy metals in the recharged secondary effluent were efficiently trapped by the steady-state operated SAT (removal efficiency ranged from 74.7% to 98.2%). Thus, significant accumulations of 31.7% for Cd, 15.9% for Cu, 15.3% for Zn and 8.6% for Cr were observed for the top soil after 730 d operation, leading to the concentration (in μg g(-1)) of those four heavy metals of the packed soil increased from 0.51, 46.7, 61.0 and 35.7 to 0.66, 54.2, 70.4 and 38.8, respectively. By contrast, the accumulation of Mn and Pb were quite low. The residual species were the predominant fraction of the six heavy metals (ranged for 59.8-82.4%), followed by oxidisable species. Although the Zn, Cr, Cd, Cu and Mn were efficiently bounded onto the oxide components within the soil, the percentage of the labile metal fractions (water-, acid-exchangeable and reducible metal fractions) exhibited a slight increasing after 2 Y operation. Significantly heavy metals accumulation and slightly decreasing of the proportion of the stable fractions indicated a potentially higher environmental hazard for those six heavy metals after long-term SAT operation (especially for Cu, Zn and Cd). Finally, a linear relationship between the accumulation rate of metal species and the variation of soil organic carbon concentration and water extractable organic carbon was demonstrated.

  3. Industrial effluent costs in some Spanish regions and other parts of the EU. Canons and taxes of water treatment; El coste del vertido industrial en varias comunidades autonomas espanolas y en algunos territorios europeos. Los canones y tasas de depuracion

    Energy Technology Data Exchange (ETDEWEB)

    Grau Rahola, J.; Munoz Requena, A.; Ruaix Prat, T.

    2009-07-01

    In this article, the different systems existing in the Spanish regions for paying all the expense related to industrial effluents are examined and compared with the ones in use in other parts of the EU. Also, the degree of fulfillment of the economic objectives of the Water Framework Directives is determined. The findings are quite clear that there is a comparative disadvantage in the sense that some of the regions have not even regulated and instrument to ensure the principle of Who pollutes, pays, there is a widespread unequal treatment for the same type of effluent within Spain and there is clear evidence of a transfer of resources from the industrial use to the domestic one. (Author)

  4. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    Directory of Open Access Journals (Sweden)

    Sumate Chaiprapat

    2007-05-01

    Full Text Available Anaerobic treatment of palm oil mill effluent (POME with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB reactor and an up-flowanaerobic filter (UFAF reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane production. Therefore, POME without pH adjustment was used as influent for the UASB reactor. Moreover, the syntheticwastewater with pH adjustment to 6.00 was fed into the UFAF reactor. The inoculum source for both reactors was the combination of POME sludge collected from the CSTR of a POME treatment plant and granulesludge collected from the UASB reactor of a frozen sea food industry treatment plant. During experimental operation, the organic loading rate (OLR was gradually increased from 2.50 to 17.5 g COD/l/day in theUASB reactor and 1.10 to 10.0 g COD/l/day in the UFAF reactor. Consequently, hydraulic retention time (HRT ranged from 20.0 to 2.90 days in the UASB reactor and from 13.5 to 1.50 days in the UFAF reactor.The result showed that the COD removal efficiency from both reactors was greater than 60.0%. In addition, the total volatile fatty acids increased with the increasing OLR. The total volatile fatty acids and acetic acidproduction in the UASB reactor reached 5.50 g/l and 4.90 g/l, respectively at OLR of 17.5 g COD/l/day and HRT of 2.90 days before washout was observed. In the UFAF reactor, the methane and biogas productionincreased with increasing OLR until an OLR of 7.50 g COD/l/day. However, the methane and biogas production significantly decreased when OLR increased up to 10.0 g COD/l/day. Therefore, the optimum OLR inthe laboratory-scale UASB and UFAF reactors were concluded to be 15.5 and 7.50 g COD/l/day, respectively.

  5. 絮凝法深度处理造纸废水%A Study on Advanced Treatment of Paper Mill Effluent by Different Flocculants

    Institute of Scientific and Technical Information of China (English)

    尚尉; 涂强; 孙墨杰

    2012-01-01

    The new type waste water treatment agent Fe2+ complexes was used to pretreat the effluent water in secondary clarification pond, and then the water was flocculated by polyacrylamide (PAM), Al2(SO4)3 and PAC respectively. By detecting the CODc, and colority, it was found that the PAC can reach the best effect, and the optimal condition of the wastewater treatment are as follows: pH at about 6 - 7,200 mg·L-1 of PAC and sedimentation time 3 h. At these conditions, the ultimate CODCr was 85mg·L-1, colority was 30 times, which can meet the Discharge Standard of Water Pollutants for Pulp and Paper Industry (GB 3544- 2008). The PAC is of high efficiency, low cost, and friendly environmental, it will be widely used in advanced treatment of paper mill wastewater.%采用新型废水处理剂Fe2+配合物,预处理二沉池出水,然后分别用聚丙烯酰胺(PAM)、Al2(SO4)3、聚合氯化铝(PAC)三种絮凝剂进行絮凝处理。通过检测废水的COD和色度等指标,结果发现聚合氯化铝效果最佳。确定最优条件为:废水pH值6~7,聚合氯化铝的投放量为200mg·L-1,沉降时间3h。最终出水COD可降至85mg·L-1,色度为32倍。达到了《制浆造纸工业水污染物排放标准》(GB3544—2008)的排放要求。聚合氯化铝用于造纸废水深度处理效率高、成本低、绿色环保,具有很好的应用前景。

  6. Effluent generation by the dairy industry: preventive attitudes and opportunities

    OpenAIRE

    V. B. Brião; C. R. Granhen Tavares

    2007-01-01

    Work aimed to identify the effluent is generating areas in a dairy company for purpose of changing concept pollution prevention. methodology consisted measuring volumes and collecting samples effluents production sectors. analysis was conducted by sector, order those which generated excessive amounts effluents. results show that dry products (powdered milk powdered whey) are greatest generators BOD, nitrogen phosphorus, while fluid form (UHT milk, formulated UHT, pasteurized cream) butter pro...