WorldWideScience

Sample records for area carbide-derived carbon

  1. Silicon Carbide Derived Carbons: Experiments and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kertesz, Miklos [Georgetown University, Washington DC 20057

    2011-02-28

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this graphitization. The modeling gives firm basis for the slit-pore modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  2. Carbide Derived Carbon Super Capacitor Application

    Science.gov (United States)

    Appelgate, James; Bauer, Dave; Quirin, James; Lofland, S. E.; Hettinger, J. D.; Heon, M.; Gogotsi, Y.

    2010-02-01

    Supercapacitors can be applied into many different fields from nano-robots to high density energy storage. Growing TiC films from a know recipe and removing the transition metal element, Titanium, by chlorination leaves a carbon film that can then be applied as an electrode in a super capacitor. The problem is when the Titanium is removed from the film the stress induced by this process causes the films to fracture into isolated islands. The islands allow electrons to travel across them every easily, but there is no transfer of electrons from island to island. We present results of an investigation of a technique control the location of the fractures and use them to our benefit. Ideally, we want to create them to fracture in parallel lines. To force these fractures into straight lines we will purchase substrates with thermal SiO2 created on the surface of Si. Using an etching process we will removed a channel of SiO2 the same as the thickness of the TiC film we plan on growing. These channels will allow the fractures to form in a correlated way creating a straight line. )

  3. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  4. An Atomistic Carbide-Derived Carbon Model Generated Using ReaxFF-Based Quenched Molecular Dynamics

    Directory of Open Access Journals (Sweden)

    Matthew W. Thompson

    2017-10-01

    Full Text Available We report a novel atomistic model of carbide-derived carbons (CDCs, which are nanoporous carbons with high specific surface areas, synthesis-dependent degrees of graphitization, and well-ordered, tunable porosities. These properties make CDCs viable substrates in several energy-relevant applications, such as gas storage media, electrochemical capacitors, and catalytic supports. These materials are heterogenous, non-ideal structures and include several important parameters that govern their performance. Therefore, a realistic model of the CDC structure is needed in order to study these systems and their nanoscale and macroscale properties with molecular simulation. We report the use of the ReaxFF reactive force field in a quenched molecular dynamics routine to generate atomistic CDC models. The pair distribution function, pore size distribution, and adsorptive properties of this model are reported and corroborated with experimental data. Simulations demonstrate that compressing the system after quenching changes the pore size distribution to better match the experimental target. Ring size distributions of this model demonstrate the prevalence of non-hexagonal carbon rings in CDCs. These effects may contrast the properties of CDCs against those of activated carbons with similar pore size distributions and explain higher energy densities of CDC-based supercapacitors.

  5. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  6. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    Science.gov (United States)

    Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-04-01

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.

  7. Nanocasting hierarchical carbide-derived carbons in nanostructured opal assemblies for high-performance cathodes in lithium-sulfur batteries.

    Science.gov (United States)

    Hoffmann, Claudia; Thieme, Sören; Brückner, Jan; Oschatz, Martin; Biemelt, Tim; Mondin, Giovanni; Althues, Holger; Kaskel, Stefan

    2014-12-23

    Silica nanospheres are used as templates for the generation of carbide-derived carbons with monodisperse spherical mesopores (d=20-40 nm) and microporous walls. The nanocasting approach with a polycarbosilane precursor and subsequent pyrolysis, followed by silica template removal and chlorine treatment, results in carbide-derived carbons DUT-86 (DUT=Dresden University of Technology) with remarkable textural characteristics, monodisperse, spherical mesopores tunable in diameter, and very high pore volumes up to 5.0 cm3 g(-1). Morphology replication allows these nanopores to be arranged in a nanostructured inverse opal-like structure. Specific surface areas are very high (2450 m2 g(-1)) due to the simultaneous presence of micropores. Testing DUT-86 samples as cathode materials in Li-S batteries reveals excellent performance, and tailoring of the pore size allows optimization of cell performance, especially the active center accessibility and sulfur utilization. The outstanding pore volumes allow sulfur loadings of 80 wt %, a value seldom achieved in composite cathodes, and initial capacities of 1165 mAh gsulfur(-1) are reached. After 100 cycle capacities of 860 mAh gsulfur(-1) are retained, rendering DUT-86 a high-performance sulfur host material.

  8. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors

    NARCIS (Netherlands)

    Oschatz, M.; Boukhalfa, S.; Nickel, W.; Hofmann, J.P.; Fischer, C.; Yushin, G.; Kaskel, S.

    2017-01-01

    Carbide-derived carbon (CDC) aerogels with hierarchical porosity are prepared from cross-linked polycarbosilane aerogels by pyrolysis and chlorine treatment at 700 and 1000 °C. The low-temperature sample is further activated with carbon dioxide to introduce additional micropores. The influence of

  9. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    Directory of Open Access Journals (Sweden)

    Boris Dyatkin

    2015-12-01

    Full Text Available This study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.

  10. Capacitance, charge dynamics, and electrolyte-surface interactions in functionalized carbide-derived carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dyatkin, Boris; Mamontov, Eugene; Cook, Kevin M.; Gogotsi, Yury

    2015-12-01

    This study analyzed the dynamics of ionic liquid electrolyte inside of defunctionalized, hydrogenated, and aminated pores of carbide-derived carbon supercapacitor electrodes. The approach tailors surface functionalities and tunes nanoporous structures to decouple the influence of pore wall composition on capacitance, ionic resistance, and long-term cyclability. Quasi-elastic neutron scattering probes the self-diffusion properties and electrode-ion interactions of electrolyte molecules confined in functionalized pores. Room-temperature ionic liquid interactions in confined pores are strongest when the hydrogen-containing groups are present on the surface. This property translates into higher capacitance and greater ion transport through pores during electrochemical cycling. Unlike hydrogenated pores, aminated pores do not favorably interact with ionic liquid ions and, subsequently, are outperformed by defunctionalized surfaces.

  11. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  12. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips

    Science.gov (United States)

    Huang, Peihua; Heon, Min; Pech, David; Brunet, Magali; Taberna, Pierre-Louis; Gogotsi, Yury; Lofland, Samuel; Hettinger, Jeffrey D.; Simon, Patrice

    2013-03-01

    Interdigitated on-chip micro-supercapacitors based on Carbide Derived Carbon (CDC) films were fabricated and tested. A titanium carbide (TiC) film was patterned and treated with chlorine to obtain a TiC derived carbon (TiC-CDC) film, followed by the deposition of two types of current collectors (Ti/Au and Al) using standard micro-fabrication processes. CDC based micro-supercapacitors were electrochemically characterized by cyclic voltammetry and impedance spectroscopy using a 1 M tetraethylammonium tetrafluoroborate, NEt4BF4, in propylene carbonate (PC) electrolyte. A capacitance of 0.78 mF for the device and 1.5 mF cm-2 as the specific capacitance for the footprint of the device was measured for a 2 V potential range at 100 mV s-1. A specific energy of 3.0 mJ cm-2 and a specific power of 84 mW cm-2 were calculated for the devices. These devices provide a pathway for fabricating pure carbon-based micro-supercapacitors by micro-fabrication, and can be used for powering micro-electromechanical systems (MEMS) and electronic devices.

  13. Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido

    2018-01-01

    The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.

  14. Unique graphitized mesophase carbon microbead@niobium carbide-derived carbon composites as high performance anode materials of lithium-ion battery

    International Nuclear Information System (INIS)

    Yuan, Xiulan; Cong, Ye; Yu, Yanyan; Li, Xuanke; Zhang, Jiang; Dong, Zhijun; Yuan, Guanming; Cui, Zhengwei; Li, Yanjun

    2017-01-01

    To meet the requirements of the energy storage materials for high energy density and high power density, unique niobium carbide-derived carbon (NbC-CDC) coated graphitized mesophase carbon microbead (GMCMB) composites (GMCMB@NbC-CDC) with core-shell structure were prepared by chlorinating the precursor of graphitization mesophase carbon microbead@niobium carbide. The microstructure of NbC-CDC was characterized as mainly amorphous carbon combined with short and curved sheets of graphene, and the order degree of carbon layers increases with the chlorination temperature. The composites exhibited a tunable specific surface area and micropore volume, with micropore size of 0.6∼0.7 nm. Compared with the pure GMCMB, the GMCMB@NbC-CDC composites manifested higher charge (726.9 mAh g"−"1) and discharge capacities (458.9 mAh g"−"1) at the first cycle, which was probably that Li ions could insert into not only carbon layers of GMCMB but also micropores of NbC-CDC. After 100 cycles, the discharge capacity of GMCMB@NbC-CDC chlorinated at 800 °C still kept 384.6 mAh g"−"1, which was much higher than that of the pure GMCMB (305.2 mAh g"−"1). Furthermore, the GMCMB@NbC-CDC composites presented better rate performance at higher current densities.

  15. Ordered mesoporous carbide-derived carbon as new high performance electrode material in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Korenblit, Yair; Yushin, Gleb [Georgia Inst. of Technology, Atlanta, GA (United States); Rose, Marcus; Kockrick, Emanuel; Borchardt, Lars; Kaskel, Stefan [Technische Univ. Dresden (Germany); Kvit, Alexander [Wisconsin Univ., Madison, WI (United States)

    2010-07-01

    The preparation and application of templated ordered mesoporous CDC overcome the present limitations of slow intraparticle ion transport and poor control over the biomodal pore size distribution in the carbons currently used, and shows a route for further performance enhancement. The ordered mesoporous channels in SiC CDC serve as ion-highways and allow for very fast ionic transport into the bulk of the CDC particles, thus leading to an excellent frequency response and outstanding capacitance retention at high current densities. The ordered mesopores in SiC allow for a greatly increased specific surface area and specific capacitance of SiC CDC, nearly doubling the previously reported values. The use of CDC produced from other carbides, including mesoporous TiC or VC is expected to further enhance the energy storage characteristics of EDLC electrodes, while optimization of the mesopore size is expected to enhance the power characteristics of EDLC. (orig.)

  16. Energy and power performance of electrochemical double-layer capacitors based on molybdenum carbide derived carbon

    International Nuclear Information System (INIS)

    Thomberg, T.; Jaenes, A.; Lust, E.

    2010-01-01

    Cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectroscopy have been applied to establish the electrochemical characteristics for electric double-layer capacitor (EDLC) consisting of the 1 M (C 2 H 5 ) 3 CH 3 NBF 4 electrolyte in acetonitrile and micro/mesoporous carbon electrodes prepared from Mo 2 C, noted as C(Mo 2 C). The N 2 sorption (total BET specific surface area (S BET ≤ 1855 m 2 g -1 ), micropore area (S micro ≤ 1823 m 2 g -1 ), total pore volume (V tot ≤ 1.399 m 3 g -1 ) and pore size distribution (average NLDFT pore width d NLDFT ≥ 0.89 nm) values obtained have been correlated with the electrochemical characteristics for EDLCs (region of ideal polarizability (ΔV = 3.0 V), characteristic time constant (τ R = 1.05 s), gravimetric capacitance (C m ≤ 143 F g -1 )) dependent strongly on the C(Mo 2 C) synthesis temperature. High gravimetric energy (35 Wh kg -1 ) and gravimetric power (237 kW kg -1 ) values, normalised to the total active mass of both C(Mo 2 C) electrodes, synthesised at T synt = 800 deg. C, have been demonstrated at cell voltage 3.0 V and T = 20 deg. C.

  17. Ultrahigh-power supercapacitors based on highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon frameworks.

    Science.gov (United States)

    Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun

    2018-06-22

    In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s -1 to 20 V s -1 , and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s -1 , suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.

  18. Ultrahigh-power supercapacitors based on highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon frameworks

    Science.gov (United States)

    Yan, Pengtao; Zhang, Xuesha; Hou, Meiling; Liu, Yanyan; Liu, Ting; Liu, Kang; Zhang, Ruijun

    2018-06-01

    In order to develop energy storage devices with high power performance, electrodes should hold well-defined pathways for efficient ionic and electronic transport. Herein, we demonstrate a highly conductive graphene nanosheet/nanometer-sized carbide-derived carbon framework (hcGNS/nCDC). In this architecture, nCDC possesses short transport paths for electrolyte ions, thus ensuring the rapid ions transportation. The excellent electrical conductivity of hcGNS can reduce the electrode internal resistance for the supercapacitor and thus endows the hcGNS/nCDC composite electrodes with excellent electronic transportation performance. Electrochemical measurements show that the cyclic voltammogram of hcGNS/nCDC can maintain a rectangular-like shape with the increase of the scan rate from 5 mV s‑1 to 20 V s‑1, and the specific capacitance retention is up to 51% even at a high scan rate of 20 V s‑1, suggesting ultrahigh power performance, which, to the best of our knowledge, is among the best power performances reported so far for the carbon materials. Furthermore, the hcGNS/nCDC composite also shows an excellent cycling stability (no drop in its capacitance occurs even after 10000 cycles). This work demonstrates the advantage in the ultrahigh power performance for the framework having both short transport pathways for electrolyte ions and high electrical conductivity.

  19. Replacing Chlorine with Hydrogen Chloride as a Possible Reactant for Synthesis of Titanium Carbide Derived Carbon Powders for High-Technology Devices

    International Nuclear Information System (INIS)

    Tallo, Indrek; Thomberg, Thomas; Jänes, Alar; Lust, Enn

    2013-01-01

    Micro- and mesoporous carbide-derived carbons were synthesized from titanium carbide (TiC) powder via gas phase reaction by using different reactants (Cl 2 and HCl) within the temperature range from 700 to 1100 °C. Analysis of XRD results show that TiC-derived carbons (TiC-CDC) consist mainly of graphitic crystallites. The first-order Raman spectra showed the graphite-like absorption peaks at ∼1577 cm 1 and the disorder-induced peaks at ∼1338 cm- 1 . The energy-related properties of supercapacitors based on 1 M (C 2 H 5 ) 3 CH 3 NBF 4 in acetonitrile and carbide-derived carbons (TiC-CDC (Cl 2 ) and TiC-CDC (HCl)) as electrode materials were also investigated using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge and constant power methods. The Ragone plots for carbide-derived carbons prepared by using different reactants (Cl 2 , HCl) are quite similar and at high power loads TiC-CDC (Cl 2 ) material synthesized at 900 °C, i.e. materials with optimal porous structure, deliver higher power at constant energy

  20. Hierarchical micro- and mesoporous carbide-derived carbon as a high-performance electrode material in supercapacitors.

    Science.gov (United States)

    Rose, Marcus; Korenblit, Yair; Kockrick, Emanuel; Borchardt, Lars; Oschatz, Martin; Kaskel, Stefan; Yushin, Gleb

    2011-04-18

    Ordered mesoporous carbide-derived carbon (OM-CDC) materials produced by nanocasting of ordered mesoporous silica templates are characterized by a bimodal pore size distribution with a high ratio of micropores. The micropores result in outstanding adsorption capacities and the well-defined mesopores facilitate enhanced kinetics in adsorption processes. Here, for the first time, a systematic study is presented, in which the effects of synthesis temperature on the electrochemical performance of these materials in supercapacitors based on a 1 M aqueous solution of sulfuric acid and 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid are reported. Cyclic voltammetry shows the specific capacitance of the OM-CDC materials exceeds 200 F g(-1) in the aqueous electrolyte and 185 F g(-1) in the ionic liquid, when measured in a symmetric configuration in voltage ranges of up to 0.6 and 2 V, respectively. The ordered mesoporous channels in the produced OM-CDC materials serve as ion-highways and allow for very fast ionic transport into the bulk of the OM-CDC particles. At room temperature the enhanced ion transport leads to 75% and 90% of the capacitance retention at current densities in excess of ∼10 A g(-1) in ionic liquid and aqueous electrolytes, respectively. The supercapacitors based on 250-300 μm OM-CDC electrodes demonstrate an operating frequency of up to 7 Hz in aqueous electrolyte. The combination of high specific capacitance and outstanding rate capabilities of the OM-CDC materials is unmatched by state-of-the art activated carbons and strictly microporous CDC materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The preparation and performance of calcium carbide-derived carbon/polyaniline composite electrode material for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liping; Wang, Xianyou; Li, Na; An, Hongfang; Chen, Huajie [School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Minister of Education, Xiangtan University, Hunan 411105 (China); Wang, Ying; Guo, Jia [School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Hubei 430073 (China)

    2010-03-15

    Calcium carbide (CaC{sub 2})-derived carbon (CCDC)/polyaniline (PANI) composite materials are prepared by in situ chemical oxidation polymerization of an aniline solution containing well-dispersed CCDC. The structure and morphology of CCDC/PANI composite are characterized by Fourier infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscopy (TEM) and N{sub 2} sorption isotherms. It has been found that PANI was uniformly deposited on the surface and the inner pores of CCDC. The supercapacitive behaviors of the CCDC/PANI composite materials are investigated with cyclic voltammetry (CV), galvanostatic charge/discharge and cycle life measurements. The results show that the CCDC/PANI composite electrodes have higher specific capacitances than the as grown CCDC electrodes and higher stability than the conducting polymers. The capacitance of CCDC/PANI composite electrode is as high as 713.4 F g{sup -1} measured by cyclic voltammetry at 1 mV s{sup -1}. Besides, the capacitance retention of coin supercapacitor remained 80.1% after 1000 cycles. (author)

  2. Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

    OpenAIRE

    Chmiola, John; Largeot, Céline; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury

    2010-01-01

    Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficie...

  3. Carbon Monoxide Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for Carbon Monoxide and have...

  4. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD Method

    Directory of Open Access Journals (Sweden)

    Yehia M. Manawi

    2018-05-01

    Full Text Available Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs, carbon nanofibers (CNFs, graphene, carbide-derived carbon (CDC, carbon nano-onion (CNO and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  5. A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method

    Science.gov (United States)

    Manawi, Yehia M.; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A.

    2018-01-01

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research. PMID:29772760

  6. Development of Nanoporous Carbide-Derived Carbon Electrodes for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    2011-09-01

    applications in regenerative braking in electric vehicles or to power emergency actuation systems for doors and evacuation slides in airliners. In...sodium-beta, nickel-hydrogen, and regenerative fuel cells. Primary batteries are the energy source of choice for a variety of portable consumer...hybrid electric vehicles. Applications of secondary batteries can be grouped into two categories : 1. Applications used as an energy storage device, such

  7. Organic Carbon Storage in China's Urban Areas

    Science.gov (United States)

    Zhao, Shuqing; Zhu, Chao; Zhou, Decheng; Huang, Dian; Werner, Jeremy

    2013-01-01

    China has been experiencing rapid urbanization in parallel with its economic boom over the past three decades. To date, the organic carbon storage in China's urban areas has not been quantified. Here, using data compiled from literature review and statistical yearbooks, we estimated that total carbon storage in China's urban areas was 577±60 Tg C (1 Tg  = 1012 g) in 2006. Soil was the largest contributor to total carbon storage (56%), followed by buildings (36%), and vegetation (7%), while carbon storage in humans was relatively small (1%). The carbon density in China's urban areas was 17.1±1.8 kg C m−2, about two times the national average of all lands. The most sensitive variable in estimating urban carbon storage was urban area. Examining urban carbon storages over a wide range of spatial extents in China and in the United States, we found a strong linear relationship between total urban carbon storage and total urban area, with a specific urban carbon storage of 16 Tg C for every 1,000 km2 urban area. This value might be useful for estimating urban carbon storage at regional to global scales. Our results also showed that the fraction of carbon storage in urban green spaces was still much lower in China relative to western countries, suggesting a great potential to mitigate climate change through urban greening and green spaces management in China. PMID:23991014

  8. High-surface-area active carbon

    International Nuclear Information System (INIS)

    O'Grady, T.M.; Wennerberg, A.N.

    1986-01-01

    This paper describes the preparation and properties of a unique active carbon having exceptionally high surface areas, over 2500 m 2 /gm, and extraordinary adsorptive capacities. The carbon is made by a direct chemical activation route in which petroleum coke or other carbonaceous sources are reacted with excess potassium hydroxide at 400 0 to 500 0 C to an intermediate product that is subsequently pyrolyzed at 800 0 to 900 0 C to active carbon containing potassium salts. These are removed by water washing and the carbon is dried to produce a powdered product. A granular carbon can also be made by further processing the powdered carbon by using specialized granulation techniques. Typical properties of the carbon include Iodine Numbers of 3000 to 3600, methylene blue adsorption of 650 to 750 mg/gm, pore volumes of 2.0 to 2.6 cc/gm and less than 3.0% ash. This carbon's high adsorption capacities make it uniquely suited for numerous demanding applications in the medical area, purifications, removal of toxic substances, as catalyst carriers, etc

  9. High surface area carbon and process for its production

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, Jimmy; Burress, Jacob; Pfeifer, Peter; Rash, Tyler; Shah, Parag; Suppes, Galen

    2016-12-13

    Activated carbon materials and methods of producing and using activated carbon materials are provided. In particular, biomass-derived activated carbon materials and processes of producing the activated carbon materials with prespecified surface areas and pore size distributions are provided. Activated carbon materials with preselected high specific surface areas, porosities, sub-nm (<1 nm) pore volumes, and supra-nm (1-5 nm) pore volumes may be achieved by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process.

  10. Periorbital area rejuvenation using carbon dioxide therapy.

    Science.gov (United States)

    Paolo, Fioramonti; Nefer, Fallico; Paola, Parisi; Nicolò, Scuderi

    2012-09-01

    Different conservative and surgical approaches are used for periorbital region rejuvenation, but none of them is effective in the treatment of the medial third of the lower eyelid. The present study is designed to assess the effectiveness of carboxytherapy in the treatment of wrinkles on the median and medial region of the lower eyelid and dark circles around the eyes. From January 2008 to December 2010, 90 patients with moderate to severe periorbital wrinkles and/or dark circles underwent subcutaneous injections of CO(2) once a week for 7 weeks. Patients were assessed before and 2 months after the treatment through photographic documentation and the compilation of visual analog scales. At the end of the study period, patients reported a reduction of facial fine lines and wrinkles as well as a decrease in periorbital hyperpigmentation. A few side effects were observed but they were all transient and did not require discontinuation of treatment. Carbon dioxide therapy results as an effective noninvasive modality for the rejuvenation of the periorbital area. © 2012 Wiley Periodicals, Inc.

  11. Initiatives towards Carbon Neutrality in the Helsinki Metropolitan Area

    Directory of Open Access Journals (Sweden)

    Karna Dahal

    2016-07-01

    Full Text Available Carbon neutrality represents one climate strategy adopted by many cities, including the city of Helsinki and the Helsinki metropolitan area in Finland. This study examines initiatives adopted by the Helsinki metropolitan area aimed at reducing energy-related carbon emissions and achieving carbon neutrality through future actions. Various sectorial energy consumption rates per year and carbon emissions from various sectors within the city of Helsinki and the metropolitan area were extracted from an online database and re-calculated (in GWh, MWh/inhabitant and MtCO2e, KtCO2e/inhabitant. We employed a backcasting scenario method to explore the various carbon reduction measures in the Helsinki metropolitan area. About 96% of the emissions produced in the Helsinki metropolitan area are energy-based. District heating represents the primary source of emissions, followed by transportation and electricity consumption, respectively. We also found that accomplishing the carbon reduction strategies of the Helsinki metropolitan area by 2050 remains challenging. Technological advancement for clean and renewable energy sources, smart policies and raising awareness resulting in behavioral changes greatly affect carbon reduction actions. Thus, strong political commitments are also required to formulate and implement stringent climate actions.

  12. Carbon benefits from protected areas in the conterminous United States

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2013-01-01

    Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land...

  13. Implications of urban structure on carbon consumption in metropolitan areas

    International Nuclear Information System (INIS)

    Heinonen, Jukka; Junnila, Seppo

    2011-01-01

    Urban structure influences directly or indirectly the majority of all green house gas (GHG) emissions in cities. The prevailing belief is that dense metropolitan areas produce less carbon emissions on a per capita basis than less dense surrounding rural areas. Consequently, density targets have a major role in low-carbon urban developments. However, based on the results of this study, the connection seems unclear or even nonexistent when comprehensive evaluation is made. In this letter, we propose a hybrid life cycle assessment (LCA) method for calculating the consumption-based carbon footprints in metropolitan areas, i.e. carbon consumption, with the emphasis on urban structures. The method is input-output-based hybrid LCA, which operates with the existing data from the region. The study is conducted by performing an analysis of the carbon consumption in two metropolitan areas in Finland, including 11 cities. Both areas consist of a dense city core and a less dense surrounding suburban area. The paper will illustrate that the influence of urban density on carbon emissions is insignificant in the selected metropolitan areas. In addition, the utilized consumption-based method links the climate effects of city-level development to the global production of emissions.

  14. Carbon Storage in Urban Areas in the USA

    Science.gov (United States)

    Churkina, G.; Brown, D.; Keoleian, G.

    2007-12-01

    It is widely accepted that human settlements occupy a small proportion of the landmass and therefore play a relatively small role in the dynamics of the global carbon cycle. Most modeling studies focusing on the land carbon cycle use models of varying complexity to estimate carbon fluxes through forests, grasses, and croplands, but completely omit urban areas from their scope. Here, we estimate carbon storage in urban areas within the United States, defined to encompass a range of observed settlement densities, and its changes from 1950 to 2000. We show that this storage is not negligible and has been continuously increasing. We include natural- and human-related components of urban areas in our estimates. The natural component includes carbon storage in urban soil and vegetation. The human related component encompasses carbon stored long term in buildings, furniture, cars, and waste. The study suggests that urban areas should receive continued attention in efforts to accurately account for carbon uptake and storage in terrestrial systems.

  15. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, f ow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  16. Valuing blue carbon: carbon sequestration benefits provided by the marine protected areas in Colombia.

    Directory of Open Access Journals (Sweden)

    Tatiana G Zarate-Barrera

    Full Text Available Marine protected areas are aimed to protect and conserve key ecosystems for the provision of a number of ecosystem services that are the basis for numerous economic activities. Among the several services that these areas provide, the capacity of sequestering (capturing and storing organic carbon is a regulating service, provided mainly by mangroves and seagrasses, that gains importance as alternatives for mitigating global warming become a priority in the international agenda. The objective of this study is to value the services associated with the capture and storage of oceanic carbon, known as Blue Carbon, provided by a new network of marine protected areas in Colombia. We approach the monetary value associated to these services through the simulation of a hypothetical market for oceanic carbon. To do that, we construct a benefit function that considers the capacity of mangroves and seagrasses for capturing and storing blue carbon, and simulate scenarios for the variation of key variables such as the market carbon price, the discount rate, the natural rate of loss of the ecosystems, and the expectations about the post-Kyoto negotiations. The results indicate that the expected benefits associated to carbon capture and storage provided by these ecosystems are substantial but highly dependent on the expectations in terms of the negotiations surrounding the extension of the Kyoto Protocol and the dynamics of the carbon credit's demand and supply. We also find that the natural loss rate of these ecosystems does not seem to have a significant effect on the annual value of the benefits. This approach constitutes one of the first attempts to value blue carbon as one of the services provided by conservation.

  17. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-11-01

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  18. Preparation of hollow mesoporous carbon spheres and their performances for electrochemical applications

    Science.gov (United States)

    Ariyanto, T.; Zhang, G. R.; Kern, A.; Etzold, B. J. M.

    2018-03-01

    Hollow carbon materials have received intensive attention for energy storage/conversion applications due to their attractive properties of high conductivity, high surface area, large void and short diffusion pathway. In this work, a novel hollow mesoporous material based on carbide-derived carbon (CDC) is presented. CDC is a new class of carbon material synthesized by the selective extraction of metals from metal carbides. With a two-stage extraction procedure of carbides with chlorine, firstly hybrid core-shell carbon particles were synthesized, i.e. mesoporous/graphitic carbon shells covering microporous/amorphous carbon cores. The amorphous cores were then selectively removed from particles by a careful oxidative treatment utilizing its low thermal characters while the more stable carbon shells remained, thus resulting hollow particles. The characterization methods (e.g. N2 sorption, Raman spectroscopy, temperature-programmed oxidation and SEM) proved the successful synthesis of the aspired material. In electric double-layer capacitor (EDLC) testing, this novel hollow core material showed a remarkable enhancement of EDLC’s rate handling ability (75% at a high scan rate) with respect to an entirely solid-mesoporous material. Furthermore, as a fuel cell catalyst support the material showed higher Pt mass activity (a factor of 1.8) compared to a conventional carbon support for methanol oxidation without noticeably decreasing activity in a long-term testing. Therefore, this carbon nanostructure shows great promises as efficient electrode materials for energy storage and conversion systems.

  19. Carbon dioxide fluxes from an urban area in Beijing

    Science.gov (United States)

    Song, Tao; Wang, Yuesi

    2012-03-01

    A better understanding of urban carbon dioxide (CO 2) emissions is important for quantifying urban contributions to the global carbon budget. From January to December 2008, CO 2 fluxes were measured, by eddy covariance at 47 m above ground on a meteorological tower in a high-density residential area in Beijing. The results showed that the urban surface was a net source of CO 2 in the atmosphere. Diurnal flux patterns were similar to those previously observed in other cities and were largely influenced by traffic volume. Carbon uptake by both urban vegetation during the growing season and the reduction of fuel consumption for domestic heating resulted in less-positive daily fluxes in the summer. The average daily flux measured in the summer was 0.48 mg m - 2 s - 1 , which was 82%, 35% and 36% lower than those in the winter, spring and autumn, respectively. The reduction of vehicles on the road during the 29th Olympic and Paralympic Games had a significant impact on CO 2 flux. The flux of 0.40 mg m - 2 s - 1 for September 2008 was approximately 0.17 mg m - 2 s - 1 lower than the flux for September 2007. Annual CO 2 emissions from the study site were estimated at 20.6 kg CO 2 m - 2 y - 1 , considerably higher than yearly emissions obtained from other urban and suburban landscapes.

  20. Not just graphene: The wonderful world of carbon and related nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury

    2015-11-27

    Carbon, with its variety of allotropes and forms, is the most versatile material, and virtually any combination of mechanical, optical, electrical, and chemical properties can be achieved with carbon by controlling its structure and surface chemistry. The goal of this article is to help readers appreciate the variety of carbon nanomaterials and to describe some engineering applications of the most important of these. Many different materials are needed to meet a variety of performance requirements, but they can all be built of carbon. Considering the example of supercapacitor electrodes, zero- and one-dimensional nanoparticles, such as carbon onions and nanotubes, respectively, deliver very high power because of fast ion sorption/desorption on their outer surfaces. Two-dimensional (2D) graphene offers higher charge/discharge rates than porous carbons and a high volumetric energy density. Three-dimensional porous activated, carbide-derived, and templated carbon networks, with high surface areas and porosities in the angstrom or nanometer range, can provide high energy densities if the pore size is matched with the electrolyte ion size. Finally, carbon-based nanostructures further expand the range of available nanomaterials: Recently discovered 2D transition-metal carbides (MXenes) have already grown into a family with close to 20 members in about four years and challenge graphene in some applications.

  1. Carbon savings resulting from the cooling effect of green areas: A case study in Beijing

    International Nuclear Information System (INIS)

    Lin Wenqi; Wu Tinghai; Zhang Chengguo; Yu Ting

    2011-01-01

    Green areas cool the climate of a city, reduce the energy consumption caused by the urban heat island (UHI) effect, and bring along carbon savings. However, the calculation of carbon savings due to the cooling effect of green areas is still not well understood. We have used a Landsat Enhanced Thematic Mapper Plus (ETM+) image of Beijing, to identify the cooled areas, compute the possible energy used to maintain the temperature differences between cooled areas and their surrounding heated areas, and calculate the carbon savings owing to the avoidance of energy use. Results show that a total amount of 14315.37 tons carbon savings was achieved in the study area and the amount was related to the biomass, the size and the shape of green areas. These results demonstrate the importance of carbon savings resulting from green areas' cooling effect. - Highlights: → We provide an integral equation for the calculation of energy conservation and carbon savings. → We show that carbon savings is partly influenced by green areas' features. → A strong correlation between biomass, size and shape of green areas and carbon savings. - An integral equation for the calculation of energy conservation and carbon savings; Showing that carbon savings is partly influenced by green areas' features.

  2. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.

    Science.gov (United States)

    Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung

    2016-04-29

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.

  3. Low-dimensional carbon and MXene-based electrochemical capacitor electrodes

    International Nuclear Information System (INIS)

    Yoon, Yeoheung; Lee, Hyoyoung; Lee, Keunsik

    2016-01-01

    Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp 2 -bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications. (topical review)

  4. Large area diamond-like carbon coatings by ion implantation

    International Nuclear Information System (INIS)

    McCabe, A.R.; Proctor, G.; Jones, A.M.; Bull, S.J.; Chivers, D.J.

    1993-01-01

    Diamond-like Carbon (DLC) coatings have been deposited onto large geometry components in the Harwell Blue Tank ion implantation facility. To modify the substrate surface and to crack the low vapour pressure oil which is evaporated and condensed onto the surface, a 40 Kev nitrogen ion bucket ion source is used. The coating of areas up to 1 metre in diameter is common and with component manipulation larger areas may be coated. Since the component temperature never exceeds 80 o C during the process, a wide range of materials may be coated including specialist tool steels and even certain high density polymers. In order to produce hard wear resistant coatings with extremely low coefficients of friction (0.02-0.15) and a range of mechanical and electrical properties, various oil precursors have been investigated. The production and assessment of such coatings, including measurements of their tribiological performance, is presented. Applications for wear resistance, corrosion protection and electrically conducting coatings are discussed with examples drawn from engineering, electronics and biomedicine. (7 figures, 13 references). (UK)

  5. Methodology proposal for estimation of carbon storage in urban green areas

    NARCIS (Netherlands)

    Schröder, C.; Mancosu, E.; Roerink, G.J.

    2013-01-01

    Methodology proposal for estimation of carbon storage in urban green areas; final report. Subtitle: Final report of task Task 262-5-6 "Carbon sequestration in urban green infrastructure" Project manager Marie Cugny-Seguin. Date: 15-10-2013

  6. Fabrication of mesoporous and high specific surface area lanthanum carbide-carbon nanotube composites

    International Nuclear Information System (INIS)

    Biasetto, L.; Carturan, S.; Maggioni, G.; Zanonato, P.; Bernardo, P. Di; Colombo, P.; Andrighetto, A.; Prete, G.

    2009-01-01

    Mesoporous lanthanum carbide-carbon nanotube composites were produced by means of carbothermal reaction of lanthanum oxide, graphite and multi-walled carbon nanotube mixtures under high vacuum. Residual gas analysis revealed the higher reactivity of lanthanum oxide towards carbon nanotubes compared to graphite. After sintering, the composites revealed a specific surface area increasing with the amount of carbon nanotubes introduced. The meso-porosity of carbon nanotubes was maintained after thermal treatment.

  7. Subclinical carbon monoxide poisoning in our health area

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, I.G.; Testa, A.F.; Sangrador, C.O.; Garcia, M.T.A.; Berrocal, J.L.S.; Pastor, N.R.; Martin, J.M.; Garcia, L.S.; Garcia, M.C.F.; Maire-Richard, E.G. [Hospital of Virgen Concha, Zamora (Spain)

    2003-08-01

    We present an observation study on the relationship between high levels of carboxyhemoglobin (COHB) and subclinical poisoning by carbon monoxide (CO) in our health area. The study was carried out in February and March 2000 in 228 over 18-year-old patients of both sexes who went to the Emergency Room for various reasons. After an informed consent was conceded, a venous blood sample was obtained in order to determine the level of COHB; later, we collected the anthropometric data, the data relative to the tobacco use, and the data of the type of heating at home. The values limit of the COHB obtained were the following: in non smokers, 1.9%; in 1-10 cigarettes/day smokers, 5.2%; in 11-20 cigarettes/day smokers, 6.9%; in {gt}20 cigarettes/day smokers, 9.6%. A COHB high level was observed in 25% of the patients regardless of the smoking habits, being the coal-dust slack brazier the source of most frequent exposure to CO.

  8. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Loefgren, Anders [EcoAnalytica, Haegersten (Sweden)

    2011-12-15

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca{sup 2+} associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved.

  9. Dissolved inorganic carbon and organic carbon in mires in the Forsmark area. A pilot study

    International Nuclear Information System (INIS)

    Loefgren, Anders

    2011-12-01

    Dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) are the large dissolved carbon pools in mires. They are both related to a number of factors such as groundwater flow, minerogenic influence and peat properties, which all are more or less related to peatland development stage. In a scenario of a release of radionuclides from an underground repository containing radioactive material, behaviour of these pools during the mire ontogeny will be of importance for the understanding of how C-14 will constitute a potential risk to humans and non-human biota. In this pilot study, DIC and DOC concentrations were investigated for three mires representing a potential sequence of peatland development in a coastal area at Forsmark in central Sweden characterized by land upheaval, a flat topography and calcareous content in the soil. The mires where chosen based on difference in height above the sea level, covering approximate 1000 years, and characteristics based on their vegetation. Water samples were collected during August from all three mires at two different depths in the anoxic layer of the mires, by extracting water from peat obtained with a peat corer. DIC concentrations where related to the age of the mires, with the lowest concentrations in the highest located mire. There was a positive correlation between pH and DIC, where the higher DIC concentrations were found in the 'richer' fens. DIC concentrations were also positively related to the conductivity within and between the mires, where conductivity would be a proxy for the dominating cation Ca 2+ associated to the calcareous-influenced groundwater. DOC concentrations were highest in the oldest mire, but were similar in the younger mires. No patterns were found between DIC and DOC, and the peat bulk density. The report ends with suggestions on how a continued study could be improved

  10. Transport of sediments, carbon and nutrients in areas of reforestation and grassland based on simulated rainfall

    Directory of Open Access Journals (Sweden)

    Adilson Pinheiro

    2013-08-01

    Full Text Available The objective of this study was to evaluate the soil losses, as well as carbon and chemical samples in runoff through areas of pine (Pinus taeda, eucalyptus (Eucalyptus dunni and a consortium of pasture with oat (Avena stringosa and ryegrass (Lolium multiflorium in the Fragosos river basin, in Concordia, SC. For this, rainfall simulations with mean intensities of 94 mm h-1 were conducted in September and November 2011, in plots of 1 m2 established in the three areas. Runoff, loads carried of the sediment, and carbon and chemical concentrations were quantified in the experiment. The results showed that the concentrations of sediment and organic carbon were higher in the eucalyptus area. The largest concentrations of chemicals for all areas were nitrate, calcium, magnesium and potassium. Total carbon, organic carbon, sediment and nitrate were transported in higher loads in the eucalyptus area. With the exception of nitrate and chloride, the chemical loads carried were higher in the pasture area.

  11. 40 CFR 51.241 - Nonattainment areas for carbon monoxide and ozone.

    Science.gov (United States)

    2010-07-01

    ... Intergovernmental Consultation Agency Designation § 51.241 Nonattainment areas for carbon monoxide and ozone. (a... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Nonattainment areas for carbon monoxide and ozone. 51.241 Section 51.241 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  12. Effect of high surface area activated carbon on thermal degradation of jet fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gergova, K.; Eser, S.; Arumugam, R.; Schobert, H.H. [Pennsylvania State Univ., University Park, PA (United States)

    1995-05-01

    Different solid carbons added to jet fuel during thermal stressing cause substantial changes in pyrolytic degradation reactions. Activated carbons, especially high surface area activated carbons were found to be very effective in suppressing solid deposition on metal reactor walls during stressing at high temperatures (425 and 450{degrees}C). The high surface area activated carbon PX-21 prevented solid deposition on reactor walls even after 5h at 450{degrees}C. The differences seen in the liquid product composition when activated carbon is added indicated that the carbon surfaces affect the degradation reactions. Thermal stressing experiments were carried out on commercial petroleum-derived JPTS jet fuel. We also used n-octane and n-dodecane as model compounds in order to simplify the study of the chemical changes which take place upon activated carbon addition. In separate experiments, the presence of a hydrogen donor, decalin, together with PX-21 was also studied.

  13. Synthesis and electrochemical capacitive properties of nitrogen-doped porous carbon micropolyhedra by direct carbonization of zeolitic imidazolate framework-11

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Fei; Li, Li; Zhang, Xiaohua, E-mail: mickyxie@hnu.edu.cn; Chen, Jinhua, E-mail: chenjinhua@hnu.edu.cn

    2015-06-15

    Highlights: • Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were prepared from ZIF-11. • The activated N-PCMPs with fused KOH (N-PCMPs-A) have high specific surface area. • N-PCMPs-A exhibits high specific capacitance. • N-PCMPs-A reveals good cycling performance even at a high current density. - Abstract: Nitrogen-doped porous carbon micropolyhedra (N-PCMPs) were successfully prepared by direct carbonization of ZIF-11 polyhedra and further activated with fused KOH to obtain N-PCMPs-A. The morphology and microstructure of samples were examined by scanning electron microscopy, X-ray diffraction, and micropore and chemisorption analyzer. Electrochemical properties were characterized by cyclic voltammetry and galvanostatic charge/discharge method in 1.0 M H{sub 2}SO{sub 4} aqueous solution on a standard three-electrode system. Results show that, compared with N-PCMPs, N-PCMPs-A has higher specific surface area (2188 m{sup 2} g{sup −1}) and exhibits improved electrochemical capacitive properties (307 F g{sup −1} at 1.0 A g{sup −1}). The mass specific capacitance of N-PCMPs-A is also higher than that of most MOF-derived carbons, some carbide-derived carbons and carbon aerogel-derived carbons. In addition, the capacitance of the N-PCMPs-A retains 90% after 4000 cycles even at a high current density of 10 A g{sup −1}. These imply that N-PCMPs-A is the promising materials for the construction of a high-performance supercapacitor.

  14. Converting biomass waste into microporous carbon with simultaneously high surface area and carbon purity as advanced electrochemical energy storage materials

    Science.gov (United States)

    Sun, Fei; Wang, Lijie; Peng, Yiting; Gao, Jihui; Pi, Xinxin; Qu, Zhibin; Zhao, Guangbo; Qin, Yukun

    2018-04-01

    Developing carbon materials featuring both high accessible surface area and high structure stability are desirable to boost the performance of constructed electrochemical electrodes and devices. Herein, we report a new type of microporous carbon (MPC) derived from biomass waste based on a simple high-temperature chemical activation procedure. The optimized MPC-900 possesses microporous structure, high surface area, partially graphitic structure, and particularly low impurity content, which are critical features for enhancing carbon-based electrochemical process. The constructed MPC-900 symmetric supercapacitor exhibits high performances in commercial organic electrolyte such as widened voltage window up to 3 V and thereby high energy/power densities (50.95 Wh kg-1 at 0.44 kW kg-1; 25.3 Wh kg-1 at 21.5 kW kg-1). Furthermore, a simple melt infiltration method has been employed to enclose SnO2 nanocrystals onto the carbon matrix of MPC-900 as a high-performance lithium storage material. The obtained SnO2-MPC composite with ultrafine SnO2 nanocrystals delivers high capacities (1115 mAh g-1 at 0.2 A g-1; 402 mAh g-1 at 10 A g-1) and high-rate cycling lifespan of over 2000 cycles. This work not only develops a microporous carbon with high carbon purity and high surface area, but also provides a general platform for combining electrochemically active materials.

  15. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    Science.gov (United States)

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  16. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Gao, Jihui, E-mail: gaojh@hit.edu.cn; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-11-30

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g{sup −1}. • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m{sup 2} g{sup −1}) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g{sup −1} at 0.5 A g{sup −1} and still 120 F g{sup −1} at a high rate of 30 A g{sup −1}. There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg{sup −1} and 4.03 Wh kg{sup −1} with the corresponding power densities of 108 W kg{sup −1} and 6.49 kW kg{sup −1}, respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  17. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-01-01

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g −1 . • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m 2 g −1 ) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g −1 at 0.5 A g −1 and still 120 F g −1 at a high rate of 30 A g −1 . There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg −1 and 4.03 Wh kg −1 with the corresponding power densities of 108 W kg −1 and 6.49 kW kg −1 , respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  18. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere's Reserve, Mexico

    NARCIS (Netherlands)

    Balderas Torres, Arturo; Lovett, Jonathan Cranidge

    2012-01-01

    Increasing use of woody plants for greenhouse gas mitigation has led to demand for rapid, cost-effective estimation of forest carbon stocks. Bole diameter is readily measured and basal area can be correlated to biomass and carbon through application of allometric equations. We explore different

  19. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  20. Carbon storage and sequestration by trees in urban and community areas of the United States

    International Nuclear Information System (INIS)

    Nowak, David J.; Greenfield, Eric J.; Hoehn, Robert E.; Lapoint, Elizabeth

    2013-01-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m −2 of tree cover and sequestration densities average 0.28 kg C m −2 of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). -- Highlights: •Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes. •Total tree carbon storage in U.S. urban and community areas is estimated at 1.36 billion tonnes. •Net carbon sequestration in U.S. urban areas varies by state and is estimated at 18.9 million tonnes per year. •Overlap between U.S. forest and urban forest carbon estimates is between 247 million and 303 million tonnes. -- Field and tree cover measurements reveal carbon storage and sequestration by trees in U.S. urban and community areas

  1. Multi-factor controls on terrestrial carbon dynamics in urbanized areas

    Science.gov (United States)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2014-12-01

    As urban land expands rapidly across the globe, much concern has been raised that urbanization may alter the terrestrial carbon cycle. Urbanization involves complex changes in land structure and multiple environmental factors. Little is known about the relative contribution of these individual factors and their interactions to the terrestrial carbon dynamics, however, which is essential for assessing the effectiveness of carbon sequestration policies focusing on urban development. This study developed a comprehensive analysis framework for quantifying relative contribution of individual factors (and their interactions) to terrestrial carbon dynamics in urbanized areas. We identified 15 factors belonging to five categories, and we applied a newly developed factorial analysis scheme to the southern United States (SUS), a rapidly urbanizing region. In all, 24 numeric experiments were designed to systematically isolate and quantify the relative contribution of individual factors. We found that the impact of land conversion was far larger than other factors. Urban managements and the overall interactive effects among major factors, however, created a carbon sink that compensated for 42% of the carbon loss in land conversion. Our findings provide valuable information for regional carbon management in the SUS: (1) it is preferable to preserve pre-urban carbon pools than to rely on the carbon sinks in urban ecosystems to compensate for the carbon loss in land conversion. (2) In forested areas, it is recommendable to improve landscape design (e.g., by arranging green spaces close to the city center) to maximize the urbanization-induced environmental change effect on carbon sequestration. Urbanization-induced environmental change will be less effective in shrubland regions. (3) Urban carbon sequestration can be significantly improved through changes in management practices, such as increased irrigation and fertilizer and targeted use of vehicles and machinery with least

  2. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass

    International Nuclear Information System (INIS)

    Danish, Mohammed; Hashim, Rokiah; Ibrahim, M.N. Mohamad; Sulaiman, Othman

    2014-01-01

    The preparation of activated carbon from date stone treated with phosphoric acid was optimized using rotatable central composite design of response surface methodology (RSM). The chemical activating agent concentration and temperature of activation plays a crucial role in preparation of large surface area activated carbons. The optimized activated carbon was characterized using thermogravimetric analysis, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the larger surface area of activated carbon from date stone can be achieved under optimum activating agent (phosphoric acid) concentration, 50.0% (8.674 mol L −1 ) and activation temperature, 900 °C. The Brunauer–Emmett–Teller (BET) surface area of optimized activated carbon was found to be 1225 m 2  g −1 , and thermogravimetric analysis revealed that 55.2% mass of optimized activated carbon was found thermally stable till 900 °C. The leading chemical functional groups found in the date stone activated carbon were aliphatic carboxylic acid salt ν(C=O) 1561.22 cm −1 and 1384.52 cm −1 , aliphatic hydrocarbons ν(C–H) 2922.99 cm −1 (C–H sym./asym. stretch frequency), aliphatic phosphates ν(P–O–C) 1054.09 cm −1 , and secondary aliphatic alcohols ν(O–H) 3419.81 cm −1 and 1159.83 cm −1 . - Highlights: • RSM optimization was done for the production of large surface area activated carbon. • Two independent variables with two responses were selected for optimization. • Characterization was done for surface area, morphology and chemical constituents. • Optimized date stone activated carbon achieved surface area 1225 m 2  g −1

  3. Study of LiFePO{sub 4} cathode materials coated with high surface area carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Cheng-Zhang; Fey, George Ting-Kuo [Department of Chemical and Materials Engineering, National Central University, Chung-Li 32054 (China); Kao, Hsien-Ming [Department of Chemistry, National Central University, Chung-Li 32054 (China)

    2009-04-01

    LiFePO{sub 4} is a potential cathode material for 4 V lithium-ion batteries. Carbon-coated lithium iron phosphates were prepared using a high surface area carbon to react precursors through a solid-state process, during which LiFePO{sub 4} particles were embedded in amorphous carbon. The carbonaceous materials were synthesized by the pyrolysis of peanut shells under argon, where they were carbonized in a two-step process that occurred between 573 and 873 K. The shells were also treated with a proprietary porogenic agent with the goal of altering the pore structure and surface area of the pyrolysis products. The electrochemical properties of the as-prepared LiFePO{sub 4}/C composite cathode materials were systematically characterized by X-ray diffraction, scanning electron microscope, element mapping, energy dispersive spectroscopy, Raman spectroscopy, and total organic carbon (TOC) analysis. In LiFePO{sub 4}/C composites, the carbon not only increases rate capability, but also stabilizes capacity. In fact, the capacity of the composites increased with the specific surface area of carbon. The best result was observed with a composite made of 8.0 wt.% with a specific surface area of 2099 m{sup 2} g{sup -1}. When high surface area carbon was used as a carbon source to produce LiFePO{sub 4}, overall conductivity increased from 10{sup -8} to 10{sup -4} S cm{sup -1}, because the inhibition of particle growth during the final sintering process led to greater specific capacity, improved cycling properties and better rate capability compared to a pure olivine LiFePO{sub 4} material. (author)

  4. ORGANIC CARBON AND CARBON STOCK: RELATIONS WITH PHYSICAL INDICATORS AND SOIL AGGREGATION IN AREAS CULTIVATED WITH SUGAR CANE

    Directory of Open Access Journals (Sweden)

    Diego Tolentino de Lima

    2017-08-01

    Full Text Available Soil organic carbon and carbon stock influence, directly or indirectly, most of soil aggregate stability indicators. The objective of this study was to quantify the production of dry biomass (DB, total organic carbon (TOC and carbon stock (CStk in soil, and to evaluate their influence on some indicators of aggregation in an Oxisol at a Cerrado biome in Uberaba-MG, Brazil. The design was completely randomized blocks, in two evaluation periods: three and six cuts, at six depths (0-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5 and 0.5-0.6 m. It was evaluated: soil density (SD, volumetric humidity (VH, aggregate stability index (AEI, weighted mean diameter (WDA, mean diameter (GDA, index of aggregates with diameter greater than 2 mm (AI and sensitivity index (SI, replicated by 4. The best AEI of the soil and the highest TOC contents were found in the most superficial layers, 0 to 0.2 m, for both cuttings. The greater values of TOC and CStk, occurred at the sixth cut area, where there was a higher amount of DB on soil surface. The higher levels of organic matter did not provide higher AEI in the area of sixth cut, when compared to that of the third cut. The TOC and CStk levels in both areas generally had a positive influence on soil aggregation indicators for both cuts.

  5. Effect of surface area of substrates aiming the optimization of carbon nanotube production from ferrocene

    International Nuclear Information System (INIS)

    Osorio, A.G.; Bergmann, C.P.

    2013-01-01

    Highlights: ► An optimized synthesis of CNTs by ferrocene is proposed. ► The surface area of substrates influences the nucleation of CNTs. ► The higher the surface area of substrates the lower the temperature of synthesis. ► Chemical composition of substrates has no influence on the growth of CNTs. - Abstract: Ferrocene is widely used for the synthesis of carbon nanotubes due to its ability to act as catalyst and precursor of the synthesis. This paper proposes an optimization of the synthesis of carbon nanotubes from ferrocene, using a substrate with high surface area for their nucleation. Four different surface areas of silica powder were tested: 0.5, 50, 200 and 300 m 2 /g. Raman spectroscopy and microscopy were used to characterize the product obtained and X-ray diffraction and thermal analysis were also performed to evaluate the phases of the material. It was observed that the silica powder with the highest surface area allowed the synthesis of carbon nanotubes to occur at a lower temperature (600 °C), whereas substrates with a surface area lower than 50 m 2 /g will only form carbon nanotubes at temperatures higher than 750 °C. In order to evaluate the influence of chemical composition of the substrate, three different ceramic powders were analyzed: alumina, silica and zirconia. carbon black and previously synthesized carbon nanotubes were also used as substrate for the synthesis and the results showed that the chemical composition of the substrate does not play a relevant role in the synthesis of carbon nanotubes, only the surface area showed an influence.

  6. Acoustic Impedance Inversion To Identify Oligo-Miocene Carbonate Facies As Reservoir At Kangean Offshore Area

    Science.gov (United States)

    Zuli Purnama, Arif; Ariyani Machmud, Pritta; Eka Nurcahya, Budi; Yusro, Miftahul; Gunawan, Agung; Rahmadi, Dicky

    2018-03-01

    Model based inversion was applied to inversion process of 2D seismic data in Kangean Offshore Area. Integration acoustic impedance from wells and seismic data was expected showing physical property, facies separation and reservoir quality of carbonate rock, particularly in Kangean Offshore Area. Quantitative and qualitative analysis has been conducted on the inversion results to characterize the carbonate reservoir part of Kujung and correlate it to depositional facies type. Main target exploration in Kangean Offshore Area is Kujung Formation (Oligo-Miocene Carbonate). The type of reservoir in this area generate from reef growing on the platform. Carbonate rock is a reservoir which has various type and scale of porosity. Facies determination is required to to predict reservoir quality, because each facies has its own porosity value. Acoustic impedance is used to identify and characterize Kujung carbonate facies, also could be used to predict the distribution of porosity. Low acoustic impedance correlated with packstone facies that has acoustic impedance value below 7400 gr/cc*m/s. In other situation, high acoustic impedance characterized by wackestone facies above 7400 gr/cc*m/s. The interpretation result indicated that Kujung carbonate rock dominated by packstone facies in the upper part of build-up and it has ideal porosity for hydrocarbon reservoir.

  7. Carbonate reservoirs modified by magmatic intrusions in the Bachu area, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Kang Xu

    2015-09-01

    Full Text Available Oil and gas exploration in carbonate rocks was extremely successful in recent years in the Ordovician in Tarim Basin, NW China. Here, we investigate the carbonate reservoirs in the Bachu area of the Tarim Basin through petrological and geochemical studies combined with oil and gas exploration data. Geochemical analysis included the major, trace, and rare earth elements; fluid inclusion thermometry; clay mineral characterization; and carbon and oxygen isotopes of the carbonate rocks. Homogenization temperatures of the fluid inclusions of Well He-3 in the Bachu area indicate three groups, 60–80 °C, 90–130 °C, and 140–170 °C, and suggest that the carbonate rocks experienced modification due to heating events. The porosity in the reservoir is defined by fractures and secondary pores, and there is a notable increase in the porosity of the carbonate reservoirs in proximity to magmatic intrusion, particularly approximately 8–10 m from the intrusive rocks. The development of secondary pores was controlled by lithofacies and corrosion by various fluids. We identify supercritical fluids with high density (138.12–143.97 mg/cm3 in the Bachu area. The negative correlations of δ13C (−2.76‰ to −0.97‰ and δ18O (−7.91‰ to −5.07‰ suggest that the carbonate rocks in the study area were modified by high-salinity hydrothermal fluid. The formation of clay minerals, such as illite and montmorillonite, caused a decrease in porosity. Our study demonstrates the effect of magmatic intrusions in modifying the reservoir characteristics of carbonate rocks and has important implications for oil and gas exploration.

  8. Dissolved organic carbon in the INDEX area of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; De

    -Sea Research II 48 (2001) 3353–3361 Dissolved organic carbon in the INDEX area of the Central Indian Basin Sugandha Sardessai*, S.N. de Sousa National Institute of Oceanography, Dona-Paula, Goa 403 004, India Abstract Dissolved organic carbon (DOC..., 1996). While there is substantial information available on the DOC content of sea water throughout the Atlantic, Pacific and southern oceans, there are limited reports on contents and distribution of this organic fraction in the Indian Ocean (Menzel...

  9. Leaf area index, biomass carbon and growth rate of radiata pine genetic types and relationships with LiDAR

    Science.gov (United States)

    Peter N. Beets; Stephen Reutebuch; Mark O. Kimberley; Graeme R. Oliver; Stephen H. Pearce; Robert J. McGaughey

    2011-01-01

    Relationships between discrete-return light detection and ranging (LiDAR) data and radiata pine leaf area index (LAI), stem volume, above ground carbon, and carbon sequestration were developed using 10 plots with directly measured biomass and leaf area data, and 36 plots with modelled carbon data. The plots included a range of genetic types established on north- and...

  10. Influence of chemical agents on the surface area and porosity of active carbon hollow fibers

    Directory of Open Access Journals (Sweden)

    LJILJANA M. KLJAJEVIĆ

    2011-09-01

    Full Text Available Active carbon hollow fibers were prepared from regenerated polysulfone hollow fibers by chemical activation using: disodium hydrogen phosphate 2-hydrate, disodium tetraborate 10-hydrate, hydrogen peroxide, and diammonium hydrogen phosphate. After chemical activation fibers were carbonized in an inert atmosphere. The specific surface area and porosity of obtained carbons were studied by nitrogen adsorption–desorption isotherms at 77 K, while the structures were examined with scanning electron microscopy and X-ray diffraction. The activation process increases these adsorption properties of fibers being more pronounced for active carbon fibers obtained with disodium tetraborate 10-hydrate and hydrogen peroxide as activator. The obtained active hollow carbons are microporous with different pore size distribution. Chemical activation with phosphates produces active carbon material with small surface area but with both mesopores and micropores. X-ray diffraction shows that besides turbostratic structure typical for carbon materials, there are some peaks which indicate some intermediate reaction products when sodium salts were used as activating agent. Based on data from the electrochemical measurements the activity and porosity of the active fibers depend strongly on the oxidizing agent applied.

  11. Expedited response action proposal (EE/CA ampersand EA) for 200 West Area carbon tetrachloride plume

    International Nuclear Information System (INIS)

    1991-09-01

    The report contains the proposal for an expedited response action (ERA) for the remediation of carbon tetrachloride contamination in the unsaturated soils beneath the 200 West Area of the Hanford Site. It provides the US Environmental Protection Agency (EPA) and the Washington State Department of Ecology (Ecology) with information regarding the need for the ERA and an evaluation of alternatives to reduce the mobility, toxicity, and/or volume of the carbon tetrachloride in the unsaturated soils. This report is intended to aid the EPA and Ecology in selecting a preferred alternative for implementing the ERA. This proposal does not address remediation of carbon tetrachloride in the ground water underlying the 200 West Area; nor is the radioactive waste mixed with the carbon tetrachloride in the disposal site the subject of this ERA. This report has also been prepared to address the requirements for an environmental assessment (EA). The purpose of this ERA is to prevent, or at least minimize, further migration of carbon tetrachloride contamination from the unsaturated soils to uncontaminated areas. This action is needed to ensure that the environment and public health are adequately protected and to reduce the threat of further groundwater contamination. Information on the origin, nature, and extent of carbon tetrachloride (and co-contaminants), and other site characteristics used as a basis for evaluating remedial alternatives is presented

  12. Water desalination using capacitive deionization with microporous carbon electrodes.

    Science.gov (United States)

    Porada, S; Weinstein, L; Dash, R; van der Wal, A; Bryjak, M; Gogotsi, Y; Biesheuvel, P M

    2012-03-01

    Capacitive deionization (CDI) is a water desalination technology in which salt ions are removed from brackish water by flowing through a spacer channel with porous electrodes on each side. Upon applying a voltage difference between the two electrodes, cations move to and are accumulated in electrostatic double layers inside the negatively charged cathode and the anions are removed by the positively charged anode. One of the key parameters for commercial realization of CDI is the salt adsorption capacity of the electrodes. State-of-the-art electrode materials are based on porous activated carbon particles or carbon aerogels. Here we report the use for CDI of carbide-derived carbon (CDC), a porous material with well-defined and tunable pore sizes in the sub-nanometer range. When comparing electrodes made with CDC with electrodes based on activated carbon, we find a significantly higher salt adsorption capacity in the relevant cell voltage window of 1.2-1.4 V. The measured adsorption capacity for four materials tested negatively correlates with known metrics for pore structure of the carbon powders such as total pore volume and BET-area, but is positively correlated with the volume of pores of sizes <1 nm, suggesting the relevance of these sub-nanometer pores for ion adsorption. The charge efficiency, being the ratio of equilibrium salt adsorption over charge, does not depend much on the type of material, indicating that materials that have been identified for high charge storage capacity can also be highly suitable for CDI. This work shows the potential of materials with well-defined sub-nanometer pore sizes for energy-efficient water desalination. © 2012 American Chemical Society

  13. Evaluation of granular activated carbon reactivation and regeneration alternatives for the 200 West Area carbon tetrachloride Expedited Response Action

    International Nuclear Information System (INIS)

    Green, J.W.; Tranbarger, R.K.

    1996-07-01

    This document presents the results of an engineering study to evaluate alternative technologies for the reactivation or regeneration of granular activated carbon (GAC) resulting from remediation operations in the 200 West Area of the Hanford Site. The objective of the study was to determine whether there is a more cost-effective (onsite or offsite) method of regenerating/reactivating GAC than the present method of shipping the GAC offsite to a commercial reactivation facility in Pennsylvania

  14. Coking coal of Checua Lenguazaque area; Carbones coquizantes del area Checua - Samaca

    Energy Technology Data Exchange (ETDEWEB)

    Arboleda Otalora, Carlos Ariel

    1987-06-01

    In this report a summary of the main characteristics of the coal of the area of Checua-Samaca is presented. Using the main works carried out on this area, the most important geologic, physical-chemical, technological and petrographic aspects are compiled that are considered essential to carry out a technical evaluation of these coal and all the analyses they take to conclude that in this area, bituminous coal are presented with very good coking properties, on the other hand, it is demonstrated by the use that is given to the coal extracted by the small existent mining. However, keeping in mind the demands of the international market of the coking coal, it becomes necessary to improve the existent geologic information to be able to make reliable stratigraphic correlations.

  15. Synthesis of partially graphitic ordered mesoporous carbons with high surface areas

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wenjun; Wan, Ying [Department of Chemistry, Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai 200234 (China); Dou, Yuqian; Zhao, Dongyuan [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2011-01-01

    Graphitic carbons with ordered mesostructure and high surface areas (of great interest in applications such as energy storage) have been synthesized by a direct triblock-copolymer-templating method. Pluronic F127 is used as a structure-directing agent, with a low-molecular-weight phenolic resol as a carbon source, ferric oxide as a catalyst, and silica as an additive. Inorganic oxides can be completely eliminated from the carbon. Small-angle XRD and N{sub 2} sorption analysis show that the resultant carbon materials possess an ordered 2D hexagonal mesostructure, uniform bimodal mesopores (about 1.5 and 6 nm), high surface area ({proportional_to}1300 m{sup 2}/g), and large pore volumes ({proportional_to}1.50 cm{sup 3}/g) after low-temperature pyrolysis (900 C). All surface areas come from mesopores. Wide-angle XRD patterns demonstrate that the presence of the ferric oxide catalyst and the silica additive lead to a marked enhancement of graphitic ordering in the framework. Raman spectra provide evidence of the increased content of graphitic sp{sup 2} carbon structures. Transmission electron microscopy images confirm that numerous domains in the ordered mesostructures are composed of characteristic graphitic carbon nanostructures. The evolution of the graphitic structure is dependent on the temperature and the concentrations of the silica additive, and ferric oxide catalyst. Electrochemical measurements performed on this graphitic mesoporous carbon when used as an electrode material for an electrochemical double layer capacitor shows rectangular-shaped cyclic voltammetry curves over a wide range of scan rates, even up to 200 mV/s, with a large capacitance of 155 F/g in KOH electrolyte. This method can be widely applied to the synthesis of graphitized carbon nanostructures. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. A highly permeable and enhanced surface area carbon-cloth electrode for vanadium redox flow batteries

    Science.gov (United States)

    Zhou, X. L.; Zhao, T. S.; Zeng, Y. K.; An, L.; Wei, L.

    2016-10-01

    In this work, a high-performance porous electrode, made of KOH-activated carbon-cloth, is developed for vanadium redox flow batteries (VRFBs). The macro-scale porous structure in the carbon cloth formed by weaving the carbon fibers in an ordered manner offers a low tortuosity (∼1.1) and a broad pore distribution from 5 μm to 100 μm, rendering the electrode a high hydraulic permeability and high effective ionic conductivity, which are beneficial for the electrolyte flow and ion transport through the porous electrode. The use of KOH activation method to create nano-scale pores on the carbon-fiber surfaces leads to a significant increase in the surface area for redox reactions from 2.39 m2 g-1 to 15.4 m2 g-1. The battery assembled with the present electrode delivers an energy efficiency of 80.1% and an electrolyte utilization of 74.6% at a current density of 400 mA cm-2, as opposed to an electrolyte utilization of 61.1% achieved by using a conventional carbon-paper electrode. Such a high performance is mainly attributed to the combination of the excellent mass/ion transport properties and the high surface area rendered by the present electrode. It is suggested that the KOH-activated carbon-cloth electrode is a promising candidate in redox flow batteries.

  17. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China

    Science.gov (United States)

    Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili

    2018-06-01

    The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.

  18. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China

    Science.gov (United States)

    Li, Jianguo; Yang, Wenhui; Li, Qiang; Pu, Lijie; Xu, Yan; Zhang, Zhongqi; Liu, Lili

    2018-04-01

    The coastal wetlands of eastern China form one of the most important carbon sinks in the world. However, reclamation can significantly alter the soil carbon pool dynamics in these areas. In this study, a chronosequence was constructed for four reclamation zones in Rudong County, Jiangsu Province, eastern China (reclaimed in 1951, 1974, 1982, and 2007) and a reference salt marsh to identify both the process of soil organic carbon (SOC) evolution, as well as the effect of cropping and soil properties on SOC with time after reclamation. The results show that whereas soil nutrient elements and SOC increased after reclamation, the electrical conductivity of the saturated soil extract (ECe), pH, and bulk density decreased within 62 years following reclamation and agricultural amendment. In general, the soil's chemical properties remarkably improved and SOC increased significantly for approximately 30 years after reclamation. Reclamation for agriculture (rice and cotton) significantly increased the soil organic carbon density (SOCD) in the top 60 cm, especially in the top 0-30 cm. However, whereas the highest concentration of SOCD in rice-growing areas was in the top 0-20 cm of the soil profile, it was greater at a 20-60 cm depth in cottongrowing areas. Reclamation also significantly increased heavy fraction organic carbon (HFOC) levels in the 0-30 cm layer, thereby enhancing the stability of the soil carbon pool. SOC can thus increase significantly over a long time period after coastal reclamation, especially in areas of cultivation, where coastal SOC pools in eastern China tend to be more stable.

  19. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Science.gov (United States)

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  20. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  1. Estimating Large Area Forest Carbon Stocks—A Pragmatic Design Based Strategy

    Directory of Open Access Journals (Sweden)

    Andrew Haywood

    2017-03-01

    Full Text Available Reducing uncertainty in forest carbon estimates at local and regional scales has become increasingly important due to the centrality of the terrestrial carbon cycle in issues of climate change. In Victoria, Australia, public natural forests extend over 7.2 M ha and constitute a significant and important carbon stock. Recently, a wide range of approaches to estimate carbon stocks within these forests have been developed and applied. However, there are a number of data and estimation limitations associated with these studies. In response, over the last five years, the State of Victoria has implemented a pragmatic plot-based design consisting of pre-stratified permanent observational units located on a state-wide grid. Using the ground sampling grid, we estimated aboveground and belowground carbon stocks (including soil to 0.3 m depth in both National Parks and State Forests, across a wide range of bioregions. Estimates of carbon stocks and associated uncertainty were conducted using simple design based estimators. We detected significantly more carbon in total aboveground and belowground components in State Forests (408.9 t ha−1, 95% confidence interval 388.8–428.9 t ha−1 than National Parks (267.6 t ha−1, 251.9–283.3 t ha−1. We were also able to estimate forest carbon stocks (and associated uncertainty for 21 strata that represent all of Victoria’s bioregions and public tenures. It is anticipated that the lessons learnt from this study may support the discussion on planning and implementing low cost large area forest carbon stock sampling in other jurisdictions.

  2. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Eva [Uppsala Univ. (Sweden). Dept. of Limnology

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  3. A preliminary carbon budget for two oligotrophic hardwater lakes in the Forsmark area, Sweden

    International Nuclear Information System (INIS)

    Nilsson, Eva

    2001-06-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is responsible for management and disposal of Swedish radioactive waste. The company is planning to construct repositories that will keep radioactive waste away from humans for hundreds of thousands of years. In a safety assessment of the repositories hypothetical releases are used to evaluate the robustness of the repositories. It is important to know how the radioactive nuclides would react if they were released and by which way they could enter the living biota. SFR are responsible for the disposal of low radioactive waste and close to the nuclear plant in Forsmark there is a storage for low radioactive waste. At the moment this storage is located in the bedrock far below the sea level but due to land-rise in the area it will in the future be located above sea level. Hence, it is of importance to know how the surface ecosystems in the area are functioning. A carbon budget for the aquatic ecosystem above SFR in Oeresundsgrepen exist, but it is also important to have a carbon budget for the surface systems in the Forsmark area since SFR in the future will be situated above sea level. Carbon budgets can be used to get a picture of how an ecosystem functions. The carbon flow shows how carbon is transported through a food web from lower trophic levels, e.g. plants and bacteria to higher trophic levels such as fish. Oligotrophic hardwater lakes are the most important lakes in the Forsmark area. This report aims to give a picture of a potential flow of carbon through the ecosystem in two oligotrophic hard-water lakes, Lake Haellefjaerd and Lake Eckarfjaerden. Macrophyte, mainly Chara, were calculated to make up the largest part of the biomass and production in both lakes. Benthic bacteria and microphytobenthos (benthic photosynthesising microorganisms) were other large contributors to the production. Benthic bacteria were found responsible for a major part of respiration and, hence, consumption of carbon in the

  4. Assessment of Carbon Status in Marine Protected Area of Payung Island Waters, South Sumatera Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Anna Ida Sunaryo Purwiyanto

    2017-03-01

    Full Text Available CO2 is a greenhouse gas that receive more attention than the other gases because the properties of carbon easily deformed and diffuseed. Changes in the concentration of CO2 in the water will impact on changes in the amount of CO2 in the atmosphere that affect sea surface temperatures. It continuously will result in a change of marine capture fisheries. Payung Island is one of the important areas in South Sumatra that acts as the provider of the fishery. This because Payung Island is located in the mouth of Musi and Telang River covered by mangrove, has a very important ecological function. However, the condition of the carbon in the waters of the Payung Island has not explored further. This elementary study is to determine status on Payung Island waters as a sink or source of CO2. The study was conducted in June until August 2015. The research stages include surface water sampling, measurement of the CO2 in the atmosphere, the analysis of the concentration of Dissolved Inorganic Carbon (DIC and Total Alkalinity (TA, and partial pressure of carbon dioxide (pCO2 calculation.  Atmospheric CO2 were measured insitu, while the DIC and TA were analyzed using titration methods. Partial pressure of carbon dioxide (pCO2 obtained from the calculation using the software CO2Calc using data of  DIC, TA, nutrients and atmospheric CO2. The results showed that the content of DIC and TA on the Payung Island waters has similar distribution pattern  i.e. high in areas close to the river, and getting lower in the area which were closer to the sea. The comparisons between pCO2 atmosphere and pCO2 waters showed that Payung Island waters generally act as a carbon sink in area towards the sea but however, in the territorial waters adjacent to the river as a source of carbon.   Keywords: carbon, marine protected area, Payung Island waters

  5. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.

    Science.gov (United States)

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon

  6. Identification of areas in Brazil that optimize conservation of forest carbon, jaguars, and biodiversity.

    Science.gov (United States)

    De Barros, Alan E; MacDonald, Ewan A; Matsumoto, Marcelo H; Paula, Rogério C; Nijhawan, Sahil; Malhi, Y; MacDonald, David W

    2014-04-01

    A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co-benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co-benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. ©2013 Society for Conservation Biology.

  7. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    DEFF Research Database (Denmark)

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.

    2012-01-01

    estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been...

  8. Drivers of land use change and carbon mapping in the savannah area of Ghana

    Directory of Open Access Journals (Sweden)

    Koranteng Addo

    2017-12-01

    Full Text Available Land-use and land-cover change in both forest reserves and off-reserves is a critical issue in sub Saharan Africa. Deforestation and conversion of forest land to agricultural land continue to be one of the major environmental problems in Africa, and for that matter, Ghana cannot be exceptional; and its resultant effect is the loss in the ecological integrity and the quality of forests, resulting in carbon loss and the resultant climate change effects (FAO 2016. The study area covers the Community Resource Management Areas (CREMA of the Mole National Park in Ghana, and this study reveals that the area is well endowed with a diverse composition and structure of woodland including dense, open and riverine stretches, which – under the national definition of forest – qualifies as forest. The results reveal that there had been an annual deforestation rate of 0.11% over the period of review. It was concluded from the study that woodland had high carbon stocks with an average carbon of 80 tC/ha, the highest being 194 tC/ha and the lowest being 7 tC/ha, which was recorded in the dense woodland and grassland respectively. The fluxes within the land sector in the study area are moderate and the potential of the area to qualify for as REDD+ is very high. However, the drivers of deforestation, especially bush fires and illegal timber harvesting, are challenges that need to be addressed.

  9. Estimation of surface area and pore volume of activated carbons by methylene blue and iodine numbers

    Directory of Open Access Journals (Sweden)

    Cleiton A. Nunes

    2011-01-01

    Full Text Available Data of methylene blue number and iodine number of activated carbons samples were calibrated against the respective surface area, micropore volume and total pore volume using multiple regression. The models obtained from the calibrations were used in predicting these physical properties of a test group of activated carbon samples produced from several raw materials. In all cases, the predicted values were in good agreement with the expected values. The method allows extracting more information from the methylene blue and iodine adsorption studies than normally obtained with this type of material.

  10. Gross changes in forest area shape the future carbon balance of tropical forests

    Directory of Open Access Journals (Sweden)

    W. Li

    2018-01-01

    Full Text Available Bookkeeping models are used to estimate land-use and land-cover change (LULCC carbon fluxes (ELULCC. The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016 with the curves used previously in bookkeeping models from Houghton (1999 and Hansis et al. (2015. We find that the two latter models overestimate the long-term (100 years vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross, above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  11. Gross changes in forest area shape the future carbon balance of tropical forests

    Science.gov (United States)

    Li, Wei; Ciais, Philippe; Yue, Chao; Gasser, Thomas; Peng, Shushi; Bastos, Ana

    2018-01-01

    Bookkeeping models are used to estimate land-use and land-cover change (LULCC) carbon fluxes (ELULCC). The uncertainty of bookkeeping models partly arises from data used to define response curves (usually from local data) and their representativeness for application to large regions. Here, we compare biomass recovery curves derived from a recent synthesis of secondary forest plots in Latin America by Poorter et al. (2016) with the curves used previously in bookkeeping models from Houghton (1999) and Hansis et al. (2015). We find that the two latter models overestimate the long-term (100 years) vegetation carbon density of secondary forest by about 25 %. We also use idealized LULCC scenarios combined with these three different response curves to demonstrate the importance of considering gross forest area changes instead of net forest area changes for estimating regional ELULCC. In the illustrative case of a net gain in forest area composed of a large gross loss and a large gross gain occurring during a single year, the initial gross loss has an important legacy effect on ELULCC so that the system can be a net source of CO2 to the atmosphere long after the initial forest area change. We show the existence of critical values of the ratio of gross area change over net area change (γAnetAgross), above which cumulative ELULCC is a net CO2 source rather than a sink for a given time horizon after the initial perturbation. These theoretical critical ratio values derived from simulations of a bookkeeping model are compared with observations from the 30 m resolution Landsat Thematic Mapper data of gross and net forest area change in the Amazon. This allows us to diagnose areas in which current forest gains with a large land turnover will still result in LULCC carbon emissions in 20, 50 and 100 years.

  12. Three exciting areas of experimental physical sciences : high temperature superconductors, metal clusters and super molecules of carbon

    International Nuclear Information System (INIS)

    Rao, C.N.

    1992-01-01

    The author has narrated his experience in carrying out research in three exciting areas of physical sciences. These areas are : high temperature superconductors, metal clusters and super molecules of carbon. (M.G.B.)

  13. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    OpenAIRE

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been o...

  14. Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012.

    Science.gov (United States)

    Bebber, Daniel P; Butt, Nathalie

    2017-10-25

    Tropical deforestation is responsible for around one tenth of total anthropogenic carbon emissions, and tropical protected areas (PAs) that reduce deforestation can therefore play an important role in mitigating climate change and protecting biodiversity and ecosystem services. While the effectiveness of PAs in reducing deforestation has been estimated, the impact on global carbon emissions remains unquantified. Here we show that tropical PAs overall reduced deforestation carbon emissions by 4.88 Pg, or around 29%, between 2000 and 2012, when compared to expected rates of deforestation controlling for spatial variation in deforestation pressure. The largest contribution was from the tropical Americas (368.8 GgC y -1 ), followed by Asia (25.0 GgC y -1 ) and Africa (12.7 GgC y -1 ). Variation in PA effectiveness is largely driven by local factors affecting individual PAs, rather than designations assigned by governments.

  15. Carbon dynamics after forest harvest in Central Siberia: the ZOTTO footprint area

    Science.gov (United States)

    Panov, Alexey; Zrazhevskaya, Galina; Shibistova, Olga; Onuchin, Alexander; Heimann, Martin

    2013-04-01

    Temperate and boreal forests of the Northern Hemisphere have been recognized as important carbon sinks. Accurate calculation of forest carbon budget and estimation of the temporal variations of forest net carbon fluxes are important topics to elucidate the ''missing sink'' question and follow up the changing carbon dynamics in forests. In the frame of the ongoing Russian-German partner project the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a unique international research platform for large-scale climatic observations is operational about 20 km west of the Yenisei river (60.8°N; 89.35°E). The data of the ongoing greenhouse gas and aerosol measurements at the tall tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over the whole Northern Eurasia. The tall tower footprint area estimates of carbon stocks and fluxes are highly demanded for bottom-up validation of inversion estimates. The ZOTTO site lies in a vast region of forests and wetlands, still relatively undisturbed by anthropogenic influences, but a moderate human impact on vegetation, represented mainly by logging activities, becomes essential. Therefore, accurate estimates of carbon pools in vegetation and soil following harvesting are essential to inversion studies for ZOTTO and critical to predictions of both local ecosystem sustainability and global C exchange with the atmosphere. We present our investigation of carbon dynamics after forest harvest in the tall tower footprint area (~1000 km2). The changes in C pools and annual sequestration were quantified among several clear-cut lichen pine (Pinus sylvestris Lamb.) stands representing various stages of secondary succession with a "space-for-time substitution" technique. When viewed as a chronosequence, these stands represent snapshots showing how the effects of logging may propagate through time. The study concluded that ecosystems during the first 15 yrs after forest harvest become C

  16. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area

    Science.gov (United States)

    Zhou, Dan; Dong, Yan; Cui, Liru; Lin, Huiming; Qu, Fengyu

    2014-12-01

    Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with 1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2-6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m2 g-1) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g-1 at 0.5 A g-1). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.

  17. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dan; Dong, Yan; Cui, Liru; Lin, Huiming, E-mail: hiuminglin@gmail.com; Qu, Fengyu, E-mail: qufengyu2012@yahoo.cn, E-mail: qufengyu@hrbnu.edu.cn [Harbin Normal University, College of Chemistry and Chemical Engineering (China)

    2014-12-15

    Carbon/silica-nanostructured microfibers were synthesized via electrospinning method using phenol-formaldehyde resin and tetraethyl orthosilicate as carbon and silica precursor with triblock copolymer Pluronic P123 as soft template. The prepared samples show uniform microfiber structure with ∼1 μm in diameter and dozens of microns in length. Additionally, the mesopores in the material is about 2–6 nm. When the silica component was removed by HF, the porous carbon microfibers (PCMFs) were obtained. In addition, after the carbon/silica composites were calcined in air, the porous silica microfibers (PSiMFs) were obtained, revealing the converse porous nanostructure as PCMFs. It is a simple way to prepare PCMFs and PSiMFs with silica and carbon as the template to each other. Additionally, PCMFs possess an ultrahigh specific surface area (2,092 m{sup 2} g{sup −1}) and large pore volume. The electrochemical performance of the prepared PCMF material was investigated in 6.0 M KOH electrolyte. The PCMF electrode exhibits a high specific capacitance (252 F g{sup −1} at 0.5 A g{sup −1}). Then, superior cycling stability (97 % retention after 4,000 cycles) mainly is due to its unique nanostructure.

  18. Carbon storage and sequestration by trees in urban and community areas of the United States.

    Science.gov (United States)

    Nowak, David J; Greenfield, Eric J; Hoehn, Robert E; Lapoint, Elizabeth

    2013-07-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m(-2) of tree cover and sequestration densities average 0.28 kg C m(-2) of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). Published by Elsevier Ltd.

  19. Popcorn-Derived Porous Carbon Flakes with an Ultrahigh Specific Surface Area for Superior Performance Supercapacitors.

    Science.gov (United States)

    Hou, Jianhua; Jiang, Kun; Wei, Rui; Tahir, Muhammad; Wu, Xiaoge; Shen, Ming; Wang, Xiaozhi; Cao, Chuanbao

    2017-09-13

    Popcorn-derived porous carbon flakes have been successfully fabricated from the biomass of maize. Utilizing the "puffing effect", the nubby maize grain turned into materials with an interconnected honeycomb-like porous structure composed of carbon flakes. The following chemical activation method enabled the as-prepared products to possess optimized porous structures for electrochemical energy-storage devices, such as multilayer flake-like structures, ultrahigh specific surface area (S BET : 3301 m 2 g -1 ), and a high content of micropores (microporous surface area of 95%, especially the optimized sub-nanopores with the size of 0.69 nm) that can increase the specific capacitance. The as-obtained sample displayed excellent specific capacitance of 286 F g -1 at 90 A g -1 for supercapacitors. Moreover, the unique porous structure demonstrated an ideal way to improve the volumetric energy density performance. A high energy density of 103 Wh kg -1 or 53 Wh L -1 has been obtained in the case of ionic liquid electrolyte, which is the highest among reported biomass-derived carbon materials and will satisfy the urgent requirements of a primary power source for electric vehicles. This work may prove to be a fast, green, and large-scale synthesis route by using the large nubby granular materials to synthesize applicable porous carbons in energy-storage devices.

  20. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas.

    Science.gov (United States)

    Ottelin, Juudit; Heinonen, Jukka; Junnila, Seppo

    2015-08-18

    Avoiding urban sprawl and increasing density are often considered as effective means to mitigate climate change through urban planning. However, there have been rapid technological changes in the fields of housing energy and private driving, and the development is continuing. In this study, we analyze the carbon footprints of the residents living in new housing in different urban forms in Finland. We compare the new housing to existing housing stock. In all areas, the emissions from housing energy were significantly lower in new buildings. However, in the inner urban areas the high level of consumption, mostly due to higher affluence, reverse the gains of energy efficient new housing. The smallest carbon footprints were found in newly built outer and peri-urban areas, also when income level differences were taken into account. Rather than strengthening the juxtaposition of urban and suburban areas, we suggest that it would be smarter to recognize the strengths and weaknesses of both modes of living and develop a more systemic strategy that would result in greater sustainability in both areas. Since such strategy does not exist yet, it should be researched and practically developed. It would be beneficial to focus on area specific mitigation measures.

  1. Genesis of carbonate-siliceous-pelitic type uranium deposits in Baoyuan area

    International Nuclear Information System (INIS)

    Guo Baochi; Zhang Daishi; Li Shengxiang; Zhu Jiechen

    1995-01-01

    Based on systematic studies of the regional geology, the fundamental geological characteristics of uranium mineralizations, and according to the researches of uranium source, the REE characteristics, the H,O,C,S isotope compositions, as well as the chronology of uranium metallogenesis of the uranium deposits, the authors consider that the multistage accumulative metallogenesis (especially the hydrothermal superimposed and reworking metallogenesis) is the universal and important uranium metallogenesis in the formation of carbonate-siliceous-pelitic type uranium deposits in the area

  2. Large-area thin self-supporting carbon foils with MgO coatings

    Science.gov (United States)

    Stolarz, Anna; Maier-Komor, Peter

    2002-03-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 μg/cm 2, coated with approximately 4 μg/cm 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  3. Method of measuring interface area of activated carbons in condensed phase

    Science.gov (United States)

    Dmitriyev, D. S.; Agafonov, D. V.; Kiseleva, E. A.; Mikryukova, M. A.

    2018-01-01

    In this work, we investigated the correlation between the heat of wetting of super-capacitor electrode material (activated carbon) with condensed phases (electrolytes based on homologous series of phosphoric acid esters) and the capacity of the supercapacitor. The surface area of the electrode-electrolyte interface was calculated according to the obtained correlations using the conventional formula for calculating the capacitance of a capacitor.

  4. Towards regional, error-bounded landscape carbon storage estimates for data-deficient areas of the world.

    Directory of Open Access Journals (Sweden)

    Simon Willcock

    Full Text Available Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as 'lowland tropical forest' are often used, termed 'Tier 1 type' analyses by the Intergovernmental Panel on Climate Change (IPCC. Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC 'Tier 2' reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92-6.74 Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced

  5. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Science.gov (United States)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  6. [Carbon emissions and low-carbon regulation countermeasures of land use change in the city and town concentrated area of central Liaoning Province, China].

    Science.gov (United States)

    Xi, Feng-ming; Liang, Wen-juan; Niu, Ming-fen; Wang, Jiao-yue

    2016-02-01

    Carbon emissions due to land use change have an important impact on global climate change. Adjustment of regional land use patterns has a great scientific significance to adaptation to a changing climate. Based on carbon emission/absorption parameters suitable for Liaoning Province, this paper estimated the carbon emission of land use change in the city and town concentrated area of central Liaoning Province. The results showed that the carbon emission and absorption were separately 308.51 Tg C and 11.64 Tg C from 1997 to 2010. It meant 3.8% of carbon emission. was offset by carbon absorption. Among the 296.87 Tg C net carbon emission of land use change, carbon emission of remaining land use type was 182.24 Tg C, accounting for 61.4% of the net carbon emission, while the carbon emission of land use transformation was 114.63 Tg C, occupying the rest 38.6% of net carbon emission. Through quantifying the mapping relationship between land use change and carbon emission, it was shown that during 1997-2004 the contributions of remaining construction land (40.9%) and cropland transform ation to construction land (40.6%) to carbon emission were larger, but the greater contributions to carbon absorption came from cropland transformation to forest land (38.6%) and remaining forest land (37.5%). During 2004-2010, the land use types for carbon emission and absorption were the same to the period of 1997-2004, but the contribution of remaining construction land to carbon emission increased to 80.6%, and the contribution of remaining forest land to carbon absorption increased to 71.7%. Based on the carbon emission intensity in different land use types, we put forward the low-carbon regulation countermeasures of land use in two aspects. In carbon emission reduction, we should strict control land transformation to construction land, increase the energy efficiency of construction land, and avoid excessive development of forest land and water. In carbon sink increase, we should

  7. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  8. Pd nanoparticles supported on ultrahigh surface area honeycomb-like carbon for alcohol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zaoxue; He, Guoqiang; Zhang, Guanghui; Meng, Hui; Shen, Pei Kang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-04-15

    The honeycomb-like porous carbon was prepared using glucose as carbon source and solid core mesoporous shell (SCMS) silica as templates. The material was characterized by physical and electrochemical methods. The results showed that the honeycomb-like porous carbon was consisted of hollow porous carbon (HPC) which gave an ultrahigh BET surface area of 1012.97 m{sup 2} g{sup -1} and pore volume of 2.19 cm{sup 3} g{sup -1}. The porous walls of the HPC were formed in the mesoporous shells of the silica templates. The HPC was used as the support to load Pd nanoparticles (Pd/HPC) for alcohol electrooxidation. It was highly active for methanol, ethanol and isopropanol electrooxidation. The peak current density for ethanol electrooxidation on Pd/HPC electrode was five times higher than that on Pd/C electrode at the same Pd loadings. The mass activity for ethanol electrooxidation was 4000 A g{sup -1} which is much higher compared to the data reported in the literature. The highly porous structure of such HPC can be widely used as support for uniform dispersing metal nanoparticles to increase their utilization as electrocatalysts. (author)

  9. The Application Study in Solar Energy Technology for Highway Service Area: A Case Study of West Lushan Highway Low-Carbon Service Area in China

    OpenAIRE

    Qin, Xiaochun; Shen, Yi; Shao, Shegang

    2015-01-01

    A lot of research works have been made concerning highway service area or solar technology and acquired great achievements. However, unfortunately, few works have been made combining the two topics together of highway service areas and solar energy saving to make a systemic research on solar technology application for highway service area. In this paper, taking West Lushan highway low-carbon service area in Jiangxi Province of China as the case study, the advantages, technical principles, and...

  10. A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.Y.; Buckley, C.E. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Sheppard, D.A.; Paskevicius, M. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); Hanna, N. [CSIRO Process Science and Engineering, Waterford, WA (Australia)

    2010-12-15

    Carbon aerogels doped with nanoscaled Co particles were prepared by first coating activated carbon aerogels using a wet-thin layer coating process. The resulting metal-doped carbon aerogels had a higher surface area ({proportional_to}1667 m{sup 2} g{sup -1}) and larger micropore volume ({proportional_to}0.6 cm{sup 3} g{sup -1}) than metal-doped carbon aerogels synthesised using other methods suggesting their usefulness in catalytic applications. The hydrogen adsorption behaviour of cobalt doped carbon aerogel was evaluated, displaying a high {proportional_to}4.38 wt.% H{sub 2} uptake under 4.6 MPa at -196 C. The hydrogen uptake capacity with respect to unit surface area was greater than for pure carbon aerogel and resulted in {proportional_to}1.3 H{sub 2} (wt. %) per 500 m{sup 2} g{sup -1}. However, the total hydrogen uptake was slightly reduced as compared to pure carbon aerogel due to a small reduction in surface area associated with cobalt doping. The improved adsorption per unit surface area suggests that there is a stronger interaction between the hydrogen molecules and the cobalt doped carbon aerogel than for pure carbon aerogel. (author)

  11. Programmable and functional electrothermal bimorph actuators based on large-area anisotropic carbon nanotube paper

    Science.gov (United States)

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2018-04-01

    Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.

  12. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors.

    Science.gov (United States)

    Karnan, M; Subramani, K; Sudhan, N; Ilayaraja, N; Sathish, M

    2016-12-28

    Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m 2 /g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

  13. Tree Diversity Enhances Stand Carbon Storage but Not Leaf Area in a Subtropical Forest.

    Science.gov (United States)

    Castro-Izaguirre, Nadia; Chi, Xiulian; Baruffol, Martin; Tang, Zhiyao; Ma, Keping; Schmid, Bernhard; Niklaus, Pascal A

    2016-01-01

    Research about biodiversity-productivity relationships has focused on herbaceous ecosystems, with results from tree field studies only recently beginning to emerge. Also, the latter are concentrated largely in the temperate zone. Tree species diversity generally is much higher in subtropical and tropical than in temperate or boreal forests, with reasons not fully understood. Niche overlap and thus complementarity in the use of resources that support productivity may be lower in forests than in herbaceous ecosystems, suggesting weaker productivity responses to diversity change in forests. We studied stand basal area, vertical structure, leaf area, and their relationship with tree species richness in a subtropical forest in south-east China. Permanent forest plots of 30 x 30 m were selected to span largely independent gradients in tree species richness and secondary successional age. Plots with higher tree species richness had a higher stand basal area. Also, stand basal area increases over a 4-year census interval were larger at high than at low diversity. These effects translated into increased carbon stocks in aboveground phytomass (estimated using allometric equations). A higher variability in tree height in more diverse plots suggested that these effects were facilitated by denser canopy packing due to architectural complementarity between species. In contrast, leaf area was not or even negatively affected by tree diversity, indicating a decoupling of carbon accumulation from leaf area. Alternatively, the same community leaf area might have assimilated more C per time interval in more than in less diverse plots because of differences in leaf turnover and productivity or because of differences in the display of leaves in vertical and horizontal space. Overall, our study suggests that in species-rich forests niche-based processes support a positive diversity-productivity relationship and that this translates into increased carbon storage in long-lived woody

  14. Hairy foam" : carbon nanofibers grown on solid foam. A fully accessible, high surface area, graphitic catalyst support

    NARCIS (Netherlands)

    Wenmakers, P.W.A.M.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    This paper describes the synthesis of carbon nanofibers (CNFs) on solid carbon foam ("Hairy Foam") by catalytic decompn. of ethylene. The effect of nickel loading on fiber diam. and morphol., CNF coverage, and fiber layer thickness is studied using SEM and N2/Kr-physisorption. The surface area

  15. Increase of porosity by combining semi-carbonization and KOH activation of formaldehyde resins to prepare high surface area carbons for supercapacitor applications

    Science.gov (United States)

    Heimböckel, Ruben; Kraas, Sebastian; Hoffmann, Frank; Fröba, Michael

    2018-01-01

    A series of porous carbon samples were prepared by combining a semi-carbonization process of acidic polymerized phenol-formaldehyde resins and a following chemical activation with KOH used in different ratios to increase specific surface area, micropore content and pore sizes of the carbons which is favourable for supercapacitor applications. Samples were characterized by nitrogen physisorption, powder X-ray diffraction, Raman spectroscopy and scanning electron microscopy. The results show that the amount of KOH, combined with the semi-carbonization step had a remarkable effect on the specific surface area (up to SBET: 3595 m2 g-1 and SDFT: 2551 m2 g-1), pore volume (0.60-2.62 cm3 g-1) and pore sizes (up to 3.5 nm). The carbons were tested as electrode materials for electrochemical double layer capacitors (EDLC) in a two electrode setup with tetraethylammonium tetrafluoroborate in acetonitrile as electrolyte. The prepared carbon material with the largest surface area, pore volume and pore sizes exhibits a high specific capacitance of 145.1 F g-1 at a current density of 1 A g-1. With a high specific energy of 31 W h kg-1 at a power density of 33028 W kg-1 and a short time relaxation constant of 0.29 s, the carbon showed high power capability as an EDLC electrode material.

  16. Large-area thin self-supporting carbon foils with MgO coatings

    CERN Document Server

    Stolarz, A

    2002-01-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 mu g/cm sup 2 , coated with approximately 4 mu g/cm sup 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm sup 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  17. Large-area thin self-supporting carbon foils with MgO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Stolarz, Anna E-mail: anna@slcj.uw.edu.pl; Maier-Komor, Peter

    2002-03-11

    Large area self-supporting carbon foils in the thickness of range of 8-22 {mu}g/cm{sup 2}, coated with approximately 4 {mu}g/cm{sup 2} MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm{sup 2}. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  18. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    International Nuclear Information System (INIS)

    Kumar, Arvind; Mohan Jena, Hara

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbons have been prepared from Fox nutshell with chemical activation using ZnCl 2 . • The thermal behavior of the raw material and impregnated raw material has been carried out by thermogravimetric analysis. • The characterizations of the prepared activated carbons have been determined by nitrogen adsorption–desorption isotherms, FTIR, XRD, and FESEM. • The BET surface area and total pore volume of prepared activated carbon has been obtained as 2869 m 2 /g, 2124 m 2 /g, and 1.96 cm 3 /g, respectively. • The microporous surface area, micropore volume, and microporosity percentage of prepared activated carbon has been obtained as 2124 m 2 /g, 1.68 cm 3 /g, and 85.71%, respectively. - Abstract: High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl 2 as an activator. The process has been conducted at different impregnation (ZnCl 2 /Fox nutshell) ratios (1–2.5) and carbonization temperatures (500–700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption–desorption isotherms at −196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m 2 /g, 2124 m 2 /g, 1.96 cm 3 /g, and 1.68 cm 3 /g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  19. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    Science.gov (United States)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  20. [Simulation of water and carbon fluxes in harvard forest area based on data assimilation method].

    Science.gov (United States)

    Zhang, Ting-Long; Sun, Rui; Zhang, Rong-Hua; Zhang, Lei

    2013-10-01

    Model simulation and in situ observation are the two most important means in studying the water and carbon cycles of terrestrial ecosystems, but have their own advantages and shortcomings. To combine these two means would help to reflect the dynamic changes of ecosystem water and carbon fluxes more accurately. Data assimilation provides an effective way to integrate the model simulation and in situ observation. Based on the observation data from the Harvard Forest Environmental Monitoring Site (EMS), and by using ensemble Kalman Filter algorithm, this paper assimilated the field measured LAI and remote sensing LAI into the Biome-BGC model to simulate the water and carbon fluxes in Harvard forest area. As compared with the original model simulated without data assimilation, the improved Biome-BGC model with the assimilation of the field measured LAI in 1998, 1999, and 2006 increased the coefficient of determination R2 between model simulation and flux observation for the net ecosystem exchange (NEE) and evapotranspiration by 8.4% and 10.6%, decreased the sum of absolute error (SAE) and root mean square error (RMSE) of NEE by 17.7% and 21.2%, and decreased the SAE and RMSE of the evapotranspiration by 26. 8% and 28.3%, respectively. After assimilated the MODIS LAI products of 2000-2004 into the improved Biome-BGC model, the R2 between simulated and observed results of NEE and evapotranspiration was increased by 7.8% and 4.7%, the SAE and RMSE of NEE were decreased by 21.9% and 26.3%, and the SAE and RMSE of evapotranspiration were decreased by 24.5% and 25.5%, respectively. It was suggested that the simulation accuracy of ecosystem water and carbon fluxes could be effectively improved if the field measured LAI or remote sensing LAI was integrated into the model.

  1. Differences on soil organic carbon stock estimation according to sampling type in Mediterranean areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Consequently, the scientific community is researching the fate of the organic carbon in the ecosystems. In this line, soil organic matter configuration plays an important role in the Soil System (Parras-Alcántara and Lozano García, 2014). Internationally it is known that soil C sequestration is a strategy to mitigate climate change. In this sense, many soil researchers have studied this parameter (SOC). However, many of these studies were carried out arbitrarily using entire soil profiles (ESP) by pedogenetic horizons or soil control sections (SCS) (edaphic controls to different thickness). As a result, the indiscriminate use of both methodologies implies differences with respect to SOC stock (SOCS) quantification. This scenario has been indicated and warned for different researchers (Parras-Alcántara et al., 2015a; Parras-Alcántara et al., 2015b). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in the Cardeña and Montoro Natural Park (Spain). This nature reserve is a forested area with 385 km2 in southern Spain. Thirty-seven sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The results obtained show an overestimation of SOCS when SCS sampling approach is used compared to ESP. This supports that methodology selection is very important to SOCS quantification. This research is an assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Parras-Alcántara, L., Lozano-García, B., 2014

  2. Soil Carbon Mapping in Low Relief Areas with Combined Land Use Types and Percentages

    Science.gov (United States)

    Liu, Y. L.; Wu, Z. H.; Chen, Y. Y.; Wang, B. Z.

    2018-05-01

    Accurate mapping of soil carbon in low relief areas is of great challenge because of the defect of conventional "soil-landscape" model. Efforts have been made to integrate the land use information in the modelling and mapping of soil organic carbon (SOC), in which the spatial context was ignored. With 256 topsoil samples collected from Jianghan Plain, we aim to (i) explore the land-use dependency of SOC via one-way ANOVA; (ii) investigate the "spillover effect" of land use on SOC content; (iii) examine the feasibility of land use types and percentages (obtained with a 200-meter buffer) for soil mapping via regression Kriging (RK) models. Results showed that the SOC of paddy fields was higher than that of woodlands and irrigated lands. The land use type could explain 20.5 % variation of the SOC, and the value increased to 24.7 % when the land use percentages were considered. SOC was positively correlated with the percentage of water area and irrigation canals. Further research indicated that SOC of irrigated lands was significantly correlated with the percentage of water area and irrigation canals, while paddy fields and woodlands did not show similar trends. RK model that combined land use types and percentages outperformed the other models with the lowest values of RMSEC (5.644 g/kg) and RMSEP (6.229 g/kg), and the highest R2C (0.193) and R2P (0.197). In conclusions, land use types and percentages serve as efficient indicators for the SOC mapping in plain areas. Additionally, irrigation facilities contributed to the farmland SOC sequestration especially in irrigated lands.

  3. High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue.

    Science.gov (United States)

    Nasrullah, Asma; Bhat, A H; Naeem, Abdul; Isa, Mohamed Hasnain; Danish, Mohammed

    2018-02-01

    High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (S BET ), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent

    Energy Technology Data Exchange (ETDEWEB)

    Luo, W; Bommier, C; Jian, ZL; Li, X; Carter, R; Vail, S; Lu, YH; Lee, JJ; Ji, XL

    2015-02-04

    Na-ion batteries are emerging as one of the most promising energy storage technologies, particularly for grid-level applications. Among anode candidate materials, hard carbon is very attractive due to its high capacity and low cost. However, hard carbon anodes often suffer a low first-cycle Coulombic efficiency and fast capacity fading. In this study, we discover that doping graphene oxide into sucrose, the precursor for hard carbon, can effectively reduce the specific surface area of hard carbon to as low as 5.4 m(2)/g. We further reveal that such doping can effectively prevent foaming during caramelization of sucrose and extend the pyrolysis burnoff of sucrose caramel over a wider temperature range. The obtained low-surface-area hard carbon greatly improves the first-cycle Coulombic efficiency from 74% to 83% and delivers a very stable cyclic life with 95% of capacity retention after 200 cycles.

  5. Dynamics of Carbonates in Soils under Different Land Use in Forest-Steppe Area of Russia Using Stable and Radiogenic Carbon Isotope Data

    Directory of Open Access Journals (Sweden)

    Olga Khokhlova

    2018-04-01

    Full Text Available The work is aimed at the analysis of carbonate dynamics in soils under different land use. The studied area is located in the forest steppe - of the Central Russian Upland. Soils were sampled at four sites: a broadleaf forest, an adjacent 50-year continuously cropped field including plots under a corn monoculture, bare fallow, and a crop rotation area with a clean fallow every fourth year. The carbonates’ morphology, their chemical composition, as well as their stable and radiogenic isotopes of carbon were studied. Clear-cut distinctions were found in the carbonate distribution throughout the profiles in the microstructure of carbonate pedofeatures, carbon isotopic composition, and radiocarbon age of carbonates between the pairs of the plots as follows: the bare fallow and the crop rotation on the one hand, and the corn monoculture and forest on the other. The distinctions are commonly assumed to result from repeating upward water fluxes, which are different in the bare soils and those with plant cover. A clear difference occurred in the hydrothermal regime for soils with and without plant cover, and was found to be the key factor of the observed differences. In addition, in soils under plant cover, the carbonate migration upward occurs due to process of transpiration, whereas in soils devoid of plants, it occurs due to physical evaporation.

  6. Use of cyclic voltammetry and electrochemical impedance spectroscopy for determination of active surface area of modified carbon-based electrodes

    International Nuclear Information System (INIS)

    Souza, Leticia Lopes de

    2011-01-01

    Carbon-based electrodes as well the ion exchange electrodes among others have been applied mainly in the treatment of industrial effluents and radioactive wastes. Carbon is also used in fuel cells as substrate for the electrocatalysts, having high surface area which surpasses its geometric area. The knowledge of the total active area is important for the determination of operating conditions of an electrochemical cell with respect to the currents to be applied (current density). In this study it was used two techniques to determine the electrochemical active surface area of glassy carbon, electrodes and ion exchange electrodes: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The experiments were carried out with KNO 3 0.1 mol.L -1 solutions in a three-electrode electrochemical cell: carbon-based working electrode, platinum auxiliary electrode and Ag/AgCl reference electrode. The glassy carbon and porous carbon electrodes with geometric areas of 3.14 x 10 -2 and 2.83 X 10 -1 cm 2 , respectively, were used. The ion exchange electrode was prepared by mixing graphite, carbon, ion exchange resin and a binder, and this mixture was applied in three layers on carbon felt, using a geometric area of 1.0 cm 2 during the experiments. The capacitance (Cd) of the materials was determined by EIS using Bode diagrams. The value of 172 μF.cm -2 found for the glassy carbon is consistent with the literature data (∼ 200 μF.cm'- 2 ). By VC, varying the scan rate from 0.2 to 2.0 mV.s-1, the capacitance CdS (S = active surface area) in the region of the electric double layer (EDL) of each material was determined. By EIS, the values of C d , 3.0 x 10 -5 μF.cm'- 2 and 11 x 10 3 μF.cm-2, were found for the porous carbon and ion exchange electrodes, respectively, which allowed the determination of active surface areas as 3.73 x 106 cm 2 and 4.72 cm 2 . To sum up, the combined use of EIS and CV techniques is a valuable tool for the calculation of active surface

  7. Stable carbon isotopes in high-productive littoral areas of Lake Constance

    International Nuclear Information System (INIS)

    Chondrogianni, C.

    1992-01-01

    The investigation attempted to extend understanding of C fractionation in aquatic systems and to facilitate the interpretation of palaeolimnological isotope data. Particular interest was taken in the aspect of bicarbonate assimilation at high productivity and in the exchange processes between water and atmosphere. Littoral areas of lakes were chosen as areas of investigation as they offer a high-productivity environment with large populations of submersed macrophytes and periphytes. To get a better picture of the factors influencing C fractionation, litteral and pellagial regions were compared on the one hand and a mesotrophic (Ueberlingersee) and a eutrophic (Gnadensee) lake section on the other hand. Further factors of differentiation between the two lake parts were: Volume, the proportional share of the litteral area, and water exchange. Two main fields of interest were investigated: - Determination of the C isotope ratio (δ 13 C) in the dissolved bicarbonate of water in the sediments of a single year for the purpose of calibrating its fractionation in the basis of the present chemical and physical status of the lake water (water programme). - Determination of δ 13 C in selected carbonate components from sedimentary cores in order to find out about palaeolimnological events in the areas of investigation (sediment programme). (orig.) [de

  8. Huge enhancement of energy storage capacity and power density of supercapacitors based on the carbon dioxide activated microporous SiC-CDC

    International Nuclear Information System (INIS)

    Tee, Ester; Tallo, Indrek; Kurig, Heisi; Thomberg, Thomas; Jänes, Alar; Lust, Enn

    2015-01-01

    Nanostructured carbide-derived carbons (CDC) were synthesized from SiC powders (SiC-CDC) via gas phase chlorination within the temperature range from 1000 °C to 1100 °C. Thereafter the CDCs were additionally activated by CO 2 treatment method, resulting in nearly two-fold increase in specific surface area. The results of X-ray diffraction, high-resolution transmission electron microscopy and Raman spectroscopy showed that the synthesized CDC materials are mainly amorphous, however containing small graphitic crystallites. The low-temperature N 2 sorption experiments were performed and the specific micropore surface areas from 1100 m 2 g −1 up to 2270 m 2 g −1 were obtained, depending on the extent of CO 2 activation. The energy and power density characteristics of the supercapacitors based on 1 M (C 2 H 5 ) 3 CH 3 NBF 4 solution in acetonitrile and SiC-CDC as an electrode material were investigated using the cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge and constant power discharge methods. The electrochemical data indicated two-times increase in specific capacitance. Most importantly, the activation of SiC-CDC with CO 2 significantly increases the performance (energy density, power density, etc.) of the supercapacitors especially at higher potential scan rates and at higher power loads

  9. How do soil properties and soil carbon stocks change after land abandonment in Mediterranean mountain areas?

    Science.gov (United States)

    Nadal Romero, Estela; Cammeraat, Erik; Pérez Cardiel, Estela; Lasanta, Teodoro

    2016-04-01

    Land abandonment and subsequent revegetation processes (due to secondary succession and afforestation practices) are global issues with important implications in Mediterranean mountain areas. Moreover, the effects of land use changes on soil carbon stocks are a matter of concern stated in international policy agendas on the mitigation of greenhouse emissions, and afforestation practices are increasingly viewed as an environmental restorative land use change prescription and are considered one of the most efficient carbon sequestration strategies currently available. The MED-AFFOREST project aims to gain more insight into the discussion by exploring the following central research questions: (i) what is the impact of land abandonment on soil properties? and (ii) how do soil organic carbon change after land abandonment? The main objective of this study is to assess the effects of land abandonment, land use change and afforestation practices on soil properties and soil organic carbon (SOC) dynamics. For this aim, five different land covers (bare soil, meadows, secondary succession, Pinus sylvestris (PS) and Pinus nigra (PN) afforestation), in the Central Spanish Pyrenees were analysed. Results showed that changes in soil properties after land abandonment were limited, even if afforestation practices were carried out and no differences were observed between natural succession and afforestation. The results on SOC dynamics showed that: (i) SOC contents were higher in the PN sites in the topsoil (10 cm), (ii) when all the profile was considered no significant differences were observed between meadows and PN, (iii) SOC accumulation under secondary succession is a slow process, and (iv) meadows should also be considered due to the relative importance in SOC stocks. The first step of SOC stabilization after afforestation is the formation of macro-aggregates promoted by large inputs of SOC, with a high contribution of labile organic matter. However, our respiration

  10. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    Science.gov (United States)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  11. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest

  12. Stable isotopes of pedogenic carbonates from the Somma-Vesuvius area, southern Italy, over the past 18 kyr: palaeoclimatic implications

    Science.gov (United States)

    Zanchetta, G.; di Vito, M.; Fallick, A. E.; Sulpizio, R.

    2000-12-01

    Stable isotopes were measured in the carbonate and organic matter of palaeosols in the Somma-Vesuvius area, southern Italy in order to test whether they are suitable proxy records for climatic and ecological changes in this area during the past 18000 yr. The ages of the soils span from ca. 18 to ca. 3 kyr BP. Surprisingly, the Last Glacial to Holocene climate transition was not accompanied by significant change in 18O of pedogenic carbonate. This could be explained by changes in evaporation rate and in isotope fractionation between water and precipitated carbonate with temperature, which counterbalanced the expected change in isotope composition of meteoric water. Because of the rise in temperature and humidity and the progressive increase in tree cover during the Holocene, the Holocene soil carbonates closely reflect the isotopic composition of meteoric water. A cooling of about 2°C after the Avellino eruption (3.8 ka) accounts for a sudden decrease of about 1 in 18O of pedogenic carbonate recorded after this eruption. The 13C values of organic matter and pedogenic carbonate covary, indicating an effective isotope equilibrium between the organic matter, as the source of CO2, and the pedogenic carbonate. Carbon isotopes suggest prevailing C3 vegetation and negligible mixing with volcanogenic or atmospheric CO2.

  13. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    Directory of Open Access Journals (Sweden)

    Makoto Onodera

    2016-01-01

    Full Text Available Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p=0.021, but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  14. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas.

    Science.gov (United States)

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p = 0.021), but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  15. Why is the South Orkney Island shelf (the world's first high seas marine protected area) a carbon immobilization hotspot?

    Science.gov (United States)

    Barnes, David K A; Ireland, Louise; Hogg, Oliver T; Morley, Simon; Enderlein, Peter; Sands, Chester J

    2016-03-01

    The Southern Ocean archipelago, the South Orkney Islands (SOI), became the world's first entirely high seas marine protected area (MPA) in 2010. The SOI continental shelf (~44 000 km(2) ), was less than half covered by grounded ice sheet during glaciations, is biologically rich and a key area of both sea surface warming and sea-ice losses. Little was known of the carbon cycle there, but recent work showed it was a very important site of carbon immobilization (net annual carbon accumulation) by benthos, one of the few demonstrable negative feedbacks to climate change. Carbon immobilization by SOI bryozoans was higher, per species, unit area and ice-free day, than anywhere-else polar. Here, we investigate why carbon immobilization has been so high at SOI, and whether this is due to high density, longevity or high annual production in six study species of bryozoans (benthic suspension feeders). We compared benthic carbon immobilization across major regions around West Antarctica with sea-ice and primary production, from remotely sensed and directly sampled sources. Lowest carbon immobilization was at the northernmost study regions (South Georgia) and southernmost Amundsen Sea. However, data standardized for age and density showed that only SOI was anomalous (high). High immobilization at SOI was due to very high annual production of bryozoans (rather than high densities or longevity), which were 2x, 3x and 5x higher than on the Bellingshausen, South Georgia and Amundsen shelves, respectively. We found that carbon immobilization correlated to the duration (but not peak or integrated biomass) of phytoplankton blooms, both in directly sampled, local scale data and across regions using remote-sensed data. The long bloom at SOI seems to drive considerable carbon immobilization, but sea-ice losses across West Antarctica mean that significant carbon sinks and negative feedbacks to climate change could also develop in the Bellingshausen and Amundsen seas. © 2015 John Wiley

  16. How to estimate forest carbon for large areas from inventory data

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Peter B. Woodbury

    2004-01-01

    Carbon sequestration through forest growth provides a low-cost approach for meeting state and national goals to reduce net accumulations of atmospheric carbon dioxide. Total forest ecosystem carbon stocks include "pools" in live trees, standing dead trees, understory vegetation, down dead wood, forest floor, and soil. Determining the level of carbon stocks in...

  17. Fault-related carbonate breccia dykes in the La Chilca area, Eastern Precordillera, San Juan, Argentina

    Science.gov (United States)

    Castro de Machuca, Brígida; Perucca, Laura P.

    2015-03-01

    Carbonate fault breccia dykes in the Cerro La Chilca area, Eastern Precordillera, west-central Argentina, provide clues on the probable mechanism of both fault movement and dyke injection. Breccia dykes intrude Upper Carboniferous sedimentary rocks and Triassic La Flecha Trachyte Formation. The timing of breccia dyke emplacement is constrained by cross cutting relationships with the uppermost Triassic unit and conformable contacts with the Early Miocene sedimentary rocks. This study supports a tectonic-hydrothermal origin for these breccia dykes; fragmentation and subsequent hydraulic injection of fluidized breccia are the more important processes in the breccia dyke development. Brecciation can be triggered by seismic activity which acts as a catalyst. The escape of fluidized material can be attributed to hydrostatic pressure and the direction of movement of the material establishes the direction of least pressure. Previous studies have shown that cross-strike structures have had an important role in the evolution of this Andean segment since at least Triassic times. These structures represent pre-existing crustal fabrics that could have controlled the emplacement of the dykes. The dykes, which are composed mostly of carbonate fault breccia, were injected upward along WNW fractures.

  18. Characterization of black carbon in an urban-rural fringe area of Beijing.

    Science.gov (United States)

    Ji, Dongsheng; Li, Liang; Pang, Bo; Xue, Peng; Wang, Lili; Wu, Yunfei; Zhang, Hongliang; Wang, Yuesi

    2017-04-01

    Measuring black carbon (BC) is critical to understand the impact of combustion aerosols on air quality and climate change. In this study, BC was measured in 2014 at a unique community formed with rapid economic development and urbanization in an urban-rural fringe area of Beijing. Hourly BC concentrations were 0.1-33.5 μg/m 3 with the annual average of 4.4 ± 3.7 μg/m 3 . BC concentrations had clear diurnal, weekly, and seasonal variations, and were closely related with atmospheric visibility. The absorption coefficient of aerosols increased while its contribution to extinction coefficient decreased with the enhancement of PM 2.5 concentration. The high mass absorption efficiency (MAE) of EC was attributed to a combination of coal combustion, vehicular emission and rapidly coating by water-soluble ions and organic carbon (OC). BC concentrations followed a typical lognormal pattern, with over 88% samples in 0.1-10.0 μg/m 3 . Low BC levels were mostly bounded up with winds from north and northwest. Coal combustion and biomass burning were closely associated with severe haze pollution events. Firework discharge had significant UV absorption contribution. During the Asia-Pacific Economic Cooperation (APEC) forum in November 2014, air quality obviously improved due to various control strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  20. Carbon Monoxide Emission and Concentration Models for Chiang Mai Urban Area

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An emission inventory containing emissions from traffic and other sources was complied. Based on the analysis, Carbon Monoxide (CO) emissions from traffic play a very important role in CO levels in Chiang Mai area. Analysis showed that CO emissions from traffic during rush hours contributed approximately 90% of total CO emissions. Regional Atmospheric Modeling System (RAMS) was applied to simulate wind fields and temperatures in the Chiang Mai area, and eight cases were selected to study annual variations in wind fields and temperatures. Model results can reflect major features of wind fields and diurnal variations in temperatures. For evaluating the model performance, model results were compared with observed wind speed, wind direction and temperature, which were monitored at a meteorological tower. Comparison showed that model results are in good agreement with observations, and the model captured many of the observed features. HYbrid Particle And Concentration Transport model (HYPACT) was used to simulate CO concentration in the Chiang Mai area. Model results generally agree well with observed CO concentrations at the air quality monitoring stations, and can explain observed CO diurnal variations.

  1. Comparison of sorption capacity and surface area of activated carbon prepared from Jatropha curcas fruit pericarp and seed coat

    Directory of Open Access Journals (Sweden)

    O.M. Ameen

    2012-08-01

    Full Text Available Activated carbons were prepared from fruit pericarp and seed coat of Jatropha curcas using KOH and NaCl as activating agents leading to the production of four samples of activated carbons JPS, JPP, JCS and JCP. The adsorption capacity based on adsorption of methylene blue was determined for each sample. A further study of adsorptive properties of the most efficient activated carbon (JPS was made by contacting it with standard solutions of methylene blue, acetic acid and potassium permanganate. The effects of mass of active carbon used, initial concentration of the solute and the pH of the solution on adsorption performance were investigated. Ash content and percentage fixed carbon were determined for two of the activated carbons (JPS and JCS with the highest adsorptive capacity. Equilibrium study on adsorption was carried out and the adsorption data were analyzed using the Langmuir isotherm. The results obtained indicate that activated carbons from the fruit pericarp and the seed coat of J. curcas can be used as high performance adsorbents with the fruit pericarp activated carbon showing the higher adsorption capacity. The adsorption data fitted well to the Langmuir model and adsorptive area of 824–910 m2/g was obtained for the activated carbon.DOI: http://dx.doi.org/10.4314/bcse.v26i2.2

  2. [Dynamics of unprotected soil organic carbon with the restoration process of Pinus massoniana plantation in red soil erosion area].

    Science.gov (United States)

    Lü, Mao-Kui; Xie, Jin-Sheng; Zhou, Yan-Xiang; Zeng, Hong-Da; Jiang, Jun; Chen, Xi-Xiang; Xu, Chao; Chen, Tan; Fu, Lin-Chi

    2014-01-01

    By the method of spatiotemporal substitution and taking the bare land and secondary forest as the control, we measured light fraction and particulate organic carbon in the topsoil under the Pinus massoniana woodlands of different ages with similar management histories in a red soil erosion area, to determine their dynamics and evaluate the conversion processes from unprotected to protected organic carbon. The results showed that the content and storage of soil organic carbon increased significantly along with ages in the process of vegetation restoration (P organic carbon content and distribution proportion to the total soil organic carbon increased significantly (P organic carbon mostly accumulated in the form of unprotected soil organic carbon during the initial restoration period, and reached a stable level after long-term vegetation restoration. Positive correlations were found between restoration years and the rate constant for C transferring from the unprotected to the protected soil pool (k) in 0-10 cm and 10-20 cm soil layers, which demonstrated that the unprotected soil organic carbon gradually transferred to the protected soil organic carbon in the process of vegetation restoration.

  3. Carbon and Noble Gas Isotopes in the Tengchong Volcanic Geothermal Area, Yunnan, Southwestern China

    Institute of Scientific and Technical Information of China (English)

    XU Sheng; Shun'ich NAKAI; Hiroshi WAKITA; WANG Xianbin

    2004-01-01

    Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He.Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic area than do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4 ‰ to 1.6 ‰ and from -52.8 ‰ to -2.8 ‰,respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and nearsurface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantlederived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the Tengchong magmatic component. Compared with MORB, this relative low 3He/4He ratio could be fully attributed to either deep crustal contamination, or radioactive aging, or past contamination of the local mantle by U- and Th-rich subducted crustal material.However, a combination of low 3He/4He, high radiogenic 4He/40Ar ratio and identical CO2/3He and δ13Cco2 relative to MORB may suggest addition of prior subductedd crsustal material (ca 1%-2%) to the MORB reservoir around 1.3 Ga ago,which is essentially compatible with the LIL-elements, and Sr-Nd-Pb isotopes of volcanic rocks.

  4. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    Energy Technology Data Exchange (ETDEWEB)

    Truve, Johan; Cederlund, Goeran [Svensk Naturfoervaltning AB, Ramsberg (Sweden)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented.

  5. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    Energy Technology Data Exchange (ETDEWEB)

    Truve, Johan; Cederlund, Goeran [Svensk Naturfoervaltning AB, Ramsberg (Sweden)

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented.

  6. Mammals in the areas adjacent to Forsmark and Oskarshamn. Population density, ecological data and carbon budget

    International Nuclear Information System (INIS)

    Truve, Johan; Cederlund, Goeran

    2005-06-01

    The Swedish Nuclear Fuel and Waste Management Co is in the process of selecting a safe and environmentally acceptable location for the deep-level repository of radioactive waste. SKB has expressed the importance of monitoring mammal species that are of interest both in biodiversity issues and for local hunting and recreational purposes. Two of the major goals are to: 1) monitor dynamics of population density over several years; 2) obtain information that is essential for modelling of energy/carbon flows in the biosphere and ultimately calculations of the risks of exposure to radionuclides. This report contributes to the major goals by presenting: Results from surveys of mammal abundance in the study sites near Forsmark and Oskarshamn, and a comparison with data from other surveys. A summary of traits associated to demography, resource selection and spatial distribution. A model framework that can be used to model the future development of populations. A plausible future scenario for mammal species. Mammal contribution to fluxes of energy and material in the ecosystem. Estimated harvest rates of mammals in the study sites. General conclusions that can be drawn from the survey are that population densities of the most common species are in the same range as many other populations. Lynx, wild boar, red deer and fallow deer are expanding in the areas. Marine mammals have not been surveyed but at least grey seals are important top consumers in the coastal ecosystem. Red listed species resident in the areas are Lynx, Otter, Whiskered bat, Natterer's bat, Nathusius' pipistrelle and Harbour seal. Annual production of the mammal species that were surveyed was 40-50 mg carbon/m2 and year. Hunters harvest nearly half of the production each year. Future developments for the populations are briefly discussed and a model framework that can be used to make better quantitative predictions is presented

  7. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  8. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    Science.gov (United States)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  9. The Application Study in Solar Energy Technology for Highway Service Area: A Case Study of West Lushan Highway Low-Carbon Service Area in China

    Directory of Open Access Journals (Sweden)

    Xiaochun Qin

    2015-01-01

    Full Text Available A lot of research works have been made concerning highway service area or solar technology and acquired great achievements. However, unfortunately, few works have been made combining the two topics together of highway service areas and solar energy saving to make a systemic research on solar technology application for highway service area. In this paper, taking West Lushan highway low-carbon service area in Jiangxi Province of China as the case study, the advantages, technical principles, and application methods of solar energy technology for highway service area including solar photoelectric technology and solar water heating technology were discussed based on the analysis of characteristics of highway low-carbon service area; the system types, operation mode, and installing tilt angle of the two kinds of solar systems suitable for highway service areas were confirmed. It was proved that the reduction of the cost by electricity savings of solar system was huge. Taking the investment of the solar systems into account, the payback period of solar photoelectric systems and solar water heating systems was calculated. The economic effect of the solar systems in West Lushan highway service area during the effective operation periods was also calculated and proved very considerable.

  10. Vegetation Structure and Carbon Stocks of Two Protected Areas within the South-Sudanian Savannas of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Mohammad Qasim

    2016-09-01

    Full Text Available Savannas and adjacent vegetation types like gallery forests are highly valuable ecosystems contributing to several ecosystem services including carbon budgeting. Financial mechanisms such as REDD+ (Reduced Emissions from Deforestation and Forest Degradation can provide an opportunity for developing countries to alleviate poverty through conservation of its forestry resources. However, for availing such opportunities carbon stock assessments are essential. Therefore, a research study for this purpose was conducted at two protected areas (Nazinga Game Ranch and Bontioli Nature Reserve in Burkina Faso. Similarly, analysis of various vegetation parameters was also conducted to understand the overall vegetation structure of these two protected areas. For estimating above ground biomass, existing allometric equations for dry tropical woody vegetation types were used. Compositional structure was described by applying tree species and family importance indices. The results show that both sites collectively contain a mean carbon stock of 3.41 ± 4.98 Mg·C·ha−1. Among different savanna vegetation types, gallery forests recorded the highest mean carbon stock of 9.38 ± 6.90 Mg·C·ha−1. This study was an attempt at addressing the knowledge gap particularly on carbon stocks of protected savannas—it can serve as a baseline for carbon stocks for future initiatives such as REDD+ within these areas.

  11. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area.

    Science.gov (United States)

    Woodborne, Stephan; Gandiwa, Patience; Hall, Grant; Patrut, Adrian; Finch, Jemma

    2016-01-01

    Carbon isotope analysis of four baobab (Adansonia digitata L.) trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa.

  12. Using ANN and EPR models to predict carbon monoxide concentrations in urban area of Tabriz

    Directory of Open Access Journals (Sweden)

    Mohammad Shakerkhatibi

    2015-09-01

    Full Text Available Background: Forecasting of air pollutants has become a popular topic of environmental research today. For this purpose, the artificial neural network (AAN technique is widely used as a reliable method for forecasting air pollutants in urban areas. On the other hand, the evolutionary polynomial regression (EPR model has recently been used as a forecasting tool in some environmental issues. In this research, we compared the ability of these models to forecast carbon monoxide (CO concentrations in the urban area of Tabriz city. Methods: The dataset of CO concentrations measured at the fixed stations operated by the East Azerbaijan Environmental Office along with meteorological data obtained from the East Azerbaijan Meteorological Bureau from March 2007 to March 2013, were used as input for the ANN and EPR models. Results: Based on the results, the performance of ANN is more reliable in comparison with EPR. Using the ANN model, the correlation coefficient values at all monitoring stations were calculated above 0.85. Conversely, the R2 values for these stations were obtained <0.41 using the EPR model. Conclusion: The EPR model could not overcome the nonlinearities of input data. However, the ANN model displayed more accurate results compared to the EPR. Hence, the ANN models are robust tools for predicting air pollutant concentrations.

  13. Nitrogen and carbon export from urban areas through removal and export of litterfall

    International Nuclear Information System (INIS)

    Templer, Pamela H.; Toll, Jonathan W.; Hutyra, Lucy R.; Raciti, Steve M.

    2015-01-01

    We found that up to 52 ± 17% of residential litterfall carbon (C) and nitrogen (N; 390.6 kg C and 6.5 kg N ha −1  yr −1 ) is exported through yard waste removed from the City of Boston, which is equivalent to more than half of annual N outputs as gas loss (i.e. denitrification) or leaching. Our results show that removing yard waste results in a substantial decrease in N inputs to urban areas, which may offset excess N inputs from atmospheric deposition, fertilizer application and pet waste. However, export of C and N via yard waste removal may create nutrient limitation for some vegetation due to diminished recycling of nutrients. Removal of leaf litter from residential areas disrupts nutrient cycling and residential yard management practices are an important modification to urban biogeochemical cycling, which could contribute to spatial heterogeneity of ecosystems that are either N limited or saturated within urban ecosystems. - Highlights: • We monitored yard waste bags for one complete fall yard waste collection season. • 52% of residential litterfall C and N is exported annually from the City of Boston. • Litterfall export may create nutrient limitation hotspots in urban ecosystems. • C and N export through litterfall collection modifies urban biogeochemical cycling. - Litterfall removal leads to C and N export from urban ecosystems and disrupts nutrient cycling, showing that this activity is an important modification to urban biogeochemical cycling

  14. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area.

    Directory of Open Access Journals (Sweden)

    Stephan Woodborne

    Full Text Available Carbon isotope analysis of four baobab (Adansonia digitata L. trees from the Pafuri region of South Africa yielded a 1000-year proxy rainfall record. The Pafuri record age model was based on 17 radiocarbon dates, cross correlation of the climate record, and ring structures that were presumed to be annual for two of the trees. Here we present the analysis of five additional baobabs from the Mapungubwe region, approximately 200km west of Pafuri. The Mapungubwe chronology demonstrates that ring structures are not necessarily annually formed, and accordingly the Pafuri chronology is revised. Changes in intrinsic water-use efficiency indicate an active response by the trees to elevated atmospheric CO2, but this has little effect on the environmental signal. The revised Pafuri record, and the new Mapungubwe record correlate significantly with local rainfall. Both records confirm that the Medieval Warm Period was substantially wetter than present, and the Little Ice Age was the driest period in the last 1000 years. Although Mapungubwe is generally drier than Pafuri, both regions experience elevated rainfall peaking between AD 1570 and AD 1620 after which dry conditions persist in the Mapungubwe area until about AD 1840. Differences between the two records correlate with Agulhas Current sea-surface temperature variations suggesting east/west displacement of the temperate tropical trough system as an underlying mechanism. The Pafuri and Mapungubwe records are combined to provide a regional climate proxy record for the northern summer rainfall area of southern Africa.

  15. Burial fluxes and source apportionment of carbon in culture areas of Sanggou Bay over the past 200 years

    Institute of Scientific and Technical Information of China (English)

    LIU Sai; HUANG Jiansheng; YANG Qian; YANG Shu; YANG Guipeng; SUN Yao

    2015-01-01

    In this study, we assessed the burial fluxes and source appointment of different forms of carbon in core sediments collected from culture areas in the Sanggou Bay, and preliminarily analyzed the reasons for the greater proportion of inorganic carbon burial fluxes (BFTIC). The average content of total carbon (TC) in the Sanggou Bay was 2.14%. Total organic carbon (TOC) accounted for a small proportion in TC, more than 65% of which derived from terrigenous organic carbon (Ct), and while the proportion of marine-derived organic carbon (Ca) increased significantly since the beginning of large-scale aquaculture. Total inorganic carbon (TIC) accounted for 60%–75%of TC, an average of which was 60%, with a maximum up to 90% during flourishing periods (1880–1948) of small natural shellfish derived from seashells inorganic carbon (Shell-IC). The TC burial fluxes ranged from 31 g/(m2·a) to 895 g/(m2·a) with an average of 227 g/(m2·a), which was dominated by TIC (about 70%). Shell-IC was the main source of TIC and even TC. As the main food of natural shellfish, biogenic silica (BSi) negatively correlated with BFTIC through affecting shellfish breeding. BFTIC of Sta. S1, influenced greatly by the Yellow Sea Coastal Current, had a certain response to Pacific Decadal Oscillation (PDO) in some specific periods.

  16. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain

    Science.gov (United States)

    Becerril-Valle, M.; Coz, E.; Prévôt, A. S. H.; Močnik, G.; Pandis, S. N.; Sánchez de la Campa, A. M.; Alastuey, A.; Díaz, E.; Pérez, R. M.; Artíñano, B.

    2017-11-01

    A one-year black carbon (BC) experimental study was performed at three different locations (urban traffic, urban background, rural) in Spain with different equivalent BC (eBC) source characteristics by means of multi-wavelength Aethalometers. The Aethalometer model was used for the source apportionment study, based on the difference in absorption spectral dependence of emissions from biomass burning (bb) and fossil fuel (ff) combustion. Most studies use a single bb and ff absorption Ångström exponent (AAE) pair (AAEbb and AAEff), however in this work we use a range of AAE values associated with fossil fuel and biomass burning based on the available measurements, which represents more properly all conditions. A sensitivity analysis of the source specific AAE was carried out to determine the most appropriate AAE values, being site dependent and seasonally variable. Here we present a methodology for the determination of the ranges of AAEbb and AAEff by evaluating the correlations between the source apportionment of eBC using the Aethalometer model with four biomass burning tracers measured at the rural site. The best combination was AAEbb = [1.63-1.74] and AAEff = [0.97-1.12]. Mean eBC values (±SD) obtained during the period of study were 3.70 ± 3.73 μg m-3 at the traffic urban site, 2.33 ± 2.96 μg m-3 at the urban background location, and 2.61 ± 5.04 μg m-3 in the rural area. High contributions of eBC to the PM10 mass were found (values up to 21% in winter), but with high eBC/PM10 variability. The hourly mean eBCff and eBCbb concentrations varied from 0 to 51 μg m-3 and from 0 to 50 μg m-3 at the three sites, respectively, exhibiting distinct seasonal and daily patterns. The fossil fuel combustion was the dominant eBC source at the urban sites, while biomass burning dominated during the cold season (88% of eBCbb) in the rural area. Daily PM2.5 and PM10 samples were collected using high-volume air samplers and analyzed for OC and EC. Analysis of biomass

  17. High-Surface-Area, Emulsion-Templated Carbon Foams by Activation of polyHIPEs Derived from Pickering Emulsions

    Directory of Open Access Journals (Sweden)

    Robert T. Woodward

    2016-09-01

    Full Text Available Carbon foams displaying hierarchical porosity and excellent surface areas of >1400 m2/g can be produced by the activation of macroporous poly(divinylbenzene. Poly(divinylbenzene was synthesized from the polymerization of the continuous, but minority, phase of a simple high internal phase Pickering emulsion. By the addition of KOH, chemical activation of the materials is induced during carbonization, producing Pickering-emulsion-templated carbon foams, or carboHIPEs, with tailorable macropore diameters and surface areas almost triple that of those previously reported. The retention of the customizable, macroporous open-cell structure of the poly(divinylbenzene precursor and the production of a large degree of microporosity during activation leads to tailorable carboHIPEs with excellent surface areas.

  18. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox) shell by zinc chloride activation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Mohan Jena, Hara, E-mail: hmjena@nitrkl.ac.in

    2015-11-30

    Graphical abstract: - Highlights: • Activated carbons have been prepared from Fox nutshell with chemical activation using ZnCl{sub 2}. • The thermal behavior of the raw material and impregnated raw material has been carried out by thermogravimetric analysis. • The characterizations of the prepared activated carbons have been determined by nitrogen adsorption–desorption isotherms, FTIR, XRD, and FESEM. • The BET surface area and total pore volume of prepared activated carbon has been obtained as 2869 m{sup 2}/g, 2124 m{sup 2}/g, and 1.96 cm{sup 3}/g, respectively. • The microporous surface area, micropore volume, and microporosity percentage of prepared activated carbon has been obtained as 2124 m{sup 2}/g, 1.68 cm{sup 3}/g, and 85.71%, respectively. - Abstract: High surface area microporous activated carbon has been prepared from Fox nutshell (Euryale ferox) by chemical activation with ZnCl{sub 2} as an activator. The process has been conducted at different impregnation (ZnCl{sub 2}/Fox nutshell) ratios (1–2.5) and carbonization temperatures (500–700 °C). The thermal decomposition behavior of Fox nutshell and impregnated Fox nutshell has been carried out by thermogravimetric analysis. The pore properties including the BET surface area, micropore surface area, micropore volume, and pore size distribution of the activated carbons have been determined by nitrogen adsorption–desorption isotherms at −196 °C using the BET, t-plot method, DR, and BJH methods. The BET surface area, the microporous surface area, total pore volume, and micropore volume have been obtained as 2869 m{sup 2}/g, 2124 m{sup 2}/g, 1.96 cm{sup 3}/g, and 1.68 cm{sup 3}/g, respectively, and the microporosity percentage of the prepared activated carbon is 85.71%. The prepared activated carbons have been also characterized with instrumental methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field emission scanning electron microscopy (FESEM).

  19. Local and remote black carbon sources in the Metropolitan Area of Buenos Aires

    Science.gov (United States)

    Diaz Resquin, Melisa; Santágata, Daniela; Gallardo, Laura; Gómez, Darío; Rössler, Cristina; Dawidowski, Laura

    2018-06-01

    Equivalent black carbon (EBC) mass concentrations in the fine inhalable fraction of airborne particles (PM2.5) were determined using a 7-wavelength Aethalometer for 17 months, between November 2014 and March 2016, for a suburban location of the Metropolitan Area of Buenos Aires (MABA), Argentina. In addition to describing seasonal and diurnal black carbon (BC) cycles for the first time in this region, the relative contributions of fossil fuel and remote and local biomass burning were determined by distinguishing different carbonaceous components based on their effect on light attenuation for different wavelengths. Trajectory analyses and satellite-based fire products were used to illustrate the impact of long-range transport of particles emitted by non-local sources. EBC data showed a marked diurnal cycle, largely modulated by traffic variations and the height of the boundary layer, and a seasonal cycle with monthly median EBC concentrations (in μg /m3) ranging from 1.5 (February) to 3.4 (June). Maximum values were found during winter due to the combination of prevailingly stable atmospheric conditions and the increase of fossil fuel emissions, derived primarily from traffic and biomass burning from the domestic use of wood for heating. The use of charcoal grills was also detected and concentrated during weekends. The average contribution of fossil fuel combustion sources to EBC concentrations was 96%, with the remaining 4% corresponding to local and regional biomass burning. During the entire study period, only two events were identified during which EBC concentrations attributed to regional biomass burning accounted for over 50% of total EBC ; these events demonstrate the relevance of agricultural and forestry activities that take place far from the city yet whose emissions can affect the urban atmosphere of the MABA.

  20. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    Science.gov (United States)

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  1. Brazilian environmental legislation and scenarios for carbon balance in Areas of Permanent Preservation (APP) in dairy livestock regions

    Science.gov (United States)

    Hott, M. C.; Fonseca, L. D.; Andrade, R. G.

    2011-12-01

    The present study aimed at mapping some categories of Areas of Permanent Preservation (APP) for natural regeneration of semideciduous forests in the regions of Zona da Mata and Campo das Vertentes, Minas Gerais State (Figure 1), and from this to establish what impact the deployment of APP over area of pastures and subsequently milk production and carbon sequestration, considering areas of pasture as one of major factors for the dairy farming in the regions concerned. From the altimetric information from MDE, it was possible to extract morphological and morphometrical data to estimate the areas of APP. We used imagery of MODIS/Terra for extraction of the pastures areas from the vegetation index data NDVI to intersect with the estimated area of APP. In a linear or deterministic scenario of deployment of APPs over in the pasture areas considering that wich are proportionately responsible for sizing the herd, and thus for the milk production in extensive livestock, despite the existence of numerous other factors, there would be an impact 12% in the production of Campo das Vertentes region and 21.5% for the Zona da Mata. In this scenario, according to the carbon balance of forests and livestock, there would be a positive balance with the deployment of areas of permanent preservation and, subsequent promotion of natural regeneration. Considering the current grazing area of the Zona da Mata and Campo das Vertentes, 1.6 million hectares, with the carbon balance estimated at 1 ton/hectare/year, 300,000 hectares would have a balance of 5 ton/hectare/year in whole cycle of 40 years, totaling 200 tons carbon by hectare, or additional 48 million tons fixed, considering 4 tons more than pastures in the case of semideciduous forest. At the end of the cycle or forest climax, there would still be positive carbon balance, estimated as a balance of 2 ton/hectare/year. However, despite the higher carbon balance for the semideciduous forest, compared to livestock, it is important to

  2. Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan

    International Nuclear Information System (INIS)

    Hung, C.-C.; Gong, G.-C.; Chen, H.-Y.; Hsieh, H.-L.; Santschi, Peter H.; Wade, Terry L.; Sericano, Jose L.

    2007-01-01

    In order to understand the fate of pesticides in marine environments, concentrations of pesticides and different carbonaceous fractions were determined for surface sediments in the Danshui River and nearby coastal areas of Taiwan. The major compounds detected were tetrachlorobenzene, HCHs, chlordane, aldrin, DDDs, DDEs and DDTs. Total concentrations of pesticides in the sediments ranged from not detectable to 23 ng g -1 , with the maximum value detected near the discharge point of the marine outfall from the Pali sewage treatment plant. These results confirm that pesticides persist in estuarine and nearby coastal environments of the Danshui River well after their ban. Concentrations of total pesticides significantly correlate with concentrations of total organic carbon and black carbon in these sediments, suggesting that total organic carbon and black carbon regulate the distribution of trace organic pollutants in fluvial and coastal marine sediments. - Total organic carbon and black carbon regulate the distribution of trace organic pollutants in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan

  3. Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K. Schlecht. et Cham Forest

    Directory of Open Access Journals (Sweden)

    Pablo I. Fragoso-López

    2017-11-01

    Full Text Available The effects of global climate change have highlighted forest ecosystems as a key element in reducing the amount of atmospheric carbon through photosynthesis. The objective of this study was to estimate the amount of carbon content and its percentage capture in a protected Abies religiosa forest in which the study area was zoned with satellite image analysis. Dendrometric and epidometric variables were used to determine the volume and increase of aerial biomass, and stored carbon and its capture rate using equations. The results indicate that this forest contains an average of 105.72 MgC ha−1, with an estimated sequestration rate of 1.03 MgC ha−1 yr−1. The results show that carbon capture increasing depends on the increase in volume. Therefore, in order to achieve the maximum yield in a forest, it is necessary to implement sustainable forest management that favors the sustained use of soil productivity.

  4. Atmospheric Inputs of Nitrogen, Carbon, and Phosphorus across an Urban Area: Unaccounted Fluxes and Canopy Influences

    Science.gov (United States)

    Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.

    2018-02-01

    Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.

  5. Carbon isotope chemostratigraphy of the Llandovery in northern peri-Gondwana: new data from the Barrandian area, Czech Republic

    Directory of Open Access Journals (Sweden)

    Jiří Frýda

    2014-12-01

    Full Text Available The first complete δ13Corg record of the uppermost Hirnantian to lower Telychian strata of the Barrandian area (northern peri-Gondwana is presented based on 168 new samples. The new data from the study area reveal that the evolution of the Llandoverian organic carbon isotope reservoir was similar to that on other palaeoplates, but it differs from the development of the coeval carbonate carbon isotope reservoir in the absence of two δ13C excursions (i.e. the early Aeronian positive excursion in the upper part of the Demirastrites triangulatus graptolite Biozone and a negative excursion occurring close to the boundary between the Cystograptus vesiculosus and Coronograptus cyphus graptolite biozones.

  6. A study on the relationship between carbon budget and ecosystem service in urban areas according to urbanization

    Science.gov (United States)

    Lee, S. J.; Lee, W. K.

    2017-12-01

    The study on the analysis of carbon storage capacity of urban green spaces with increasing urban forest. Modern cities have experienced rapid economic development since Industrial Revolution in the 18th century. The rapid economic growth caused an exponential concentration of population to the cities and decrease of green spaces due to the conversion of forest and agricultural lands to build-up areas with rapid urbanization. As green areas including forests, grasslands, and wetlands provide diverse economic, environmental, and cultural benefits, the decrease of green areas might be a huge loss. Also, the process of urbanization caused pressure on the urban environment more than its natural capacity, which accelerates global climate change. This study tries to see the relations between carbon budget and ecosystem services according to the urbanization. For calculating carbon dynamics, this study used VISIT(Vegetation Integrated Simulator for trace gases) model. And the value that ecosystem provides is explained with the concept of ecosystem service and calculated by InVEST model. Study sites are urban and peri-urban areas in Northeast Asia. From the result of the study, the effect of the urbanization can be understood in regard to carbon storage and ecosystem services.

  7. Heteroatom Polymer-Derived 3D High-Surface-Area and Mesoporous Graphene Sheet-Like Carbon for Supercapacitors.

    Science.gov (United States)

    Sheng, Haiyang; Wei, Min; D'Aloia, Alyssa; Wu, Gang

    2016-11-09

    Current supercapacitors suffer from low energy density mainly due to the high degree of microporosity and insufficient hydrophilicity of their carbon electrodes. Development of a supercapacitor capable of simultaneously storing as much energy as a battery, along with providing sufficient power and long cycle stability would be valued for energy storage applications and innovations. Differing from commonly studied reduced graphene oxides, in this work we identified an inexpensive heteroatom polymer (polyaniline-PANI) as a carbon/nitrogen precursor, and applied a controlled thermal treatment at elevated temperature to convert PANI into 3D high-surface-area graphene-sheet-like carbon materials. During the carbonization process, various transition metals including Fe, Co, and Ni were added, which play critical roles in both catalyzing the graphitization and serving as pore forming agents. Factors including post-treatments, heating temperatures, and types of metal were found crucial for achieving enhanced capacitance performance on resulting carbon materials. Using FeCl 3 as precursor along with optimal heating temperature 1000 °C and mixed acid treatment (HCl+HNO 3 ), the highest Brunauer-Emmett-Teller (BET) surface area of 1645 m 2 g -1 was achieved on the mesopore dominant graphene-sheet-like carbon materials. The unique morphologies featured with high-surface areas, dominant mesopores, proper nitrogen doping, and 3D graphene-like structures correspond to remarkably enhanced electrochemical specific capacitance up to 478 Fg -1 in 1.0 M KOH at a scan rate of 5 mV s -1 . Furthermore, in a real two-electrode system of a symmetric supercapacitor, a specific capacitance of 235 Fg -1 using Nafion binder is obtained under a current density of 1 Ag -1 by galvanostatic charge-discharge tests in 6.0 M KOH. Long-term cycle stability up to 5000 cycles by using PVDF binder in electrode was systematically evaluated as a function of types of metals and current densities.

  8. [Adsorption behavior and influence factors of p-nitroaniline on high surface area activated carbons prepared from plant stems].

    Science.gov (United States)

    Li, Kun-quan; Zheng, Zheng; Luo, Xing-zhang

    2010-08-01

    Low-cost and high surface area microporous activated carbons were prepared from Spartina alternilora and cotton stalk with KOH activation under the conditions of impregnation ratio of 3.0, activation temperature at 800 degrees C and activation time of 1.5 h. The adsorption behavior of p-nitroaniline on the activated carbons was investigated by batch sorption experiments. The influences of solution pH value, adsorbent dose and temperature were investigated. The adsorption isotherm and thermodynamic characteristics were also discussed. The Spartina alterniflora activated carbon (SA-AC) has a high surface area of 2825 m2 x g(-1) and a micropore volume of 1.192 cm3 x g(-1). The BET surface area and micropore volume of the cotton stalk activated carbon (CS-AC) are 2135 m2 x g(-1) and 1.011 cm3 x g(-1), respectively. The sorption experiments show that both the activated carbons have high sorption capacity for p-nitroaniline. The Langmuir maximum sorption amount was found to be 719 mg x g(-1) for SA-AC and 716 mg x g(-1) for CS-AC, respectively. The sorption was found to depend on solution pH, adsorbent dose, and temperature. The optimum pH for the removal of p-nitroaniline was found to be 7.0. The Freundlich model and Redlich-Peterson model can describe the experimental data effectively. The negative changes in free energy (delta G0) and enthalpy (delta H0) indicate that the sorption is a spontaneous and exothermic procedure. The negative values of the adsorption entropy delta S0 indicate that the mobility of p-nitroaniline on the carbon surface becomes more restricted as compared with that of those in solution.

  9. Paleofacies of Eocene Lower Ngimbang Source Rocks in Cepu Area, East Java Basin based on Biomarkers and Carbon-13 Isotopes

    Science.gov (United States)

    Devi, Elok A.; Rachman, Faisal; Satyana, Awang H.; Fahrudin; Setyawan, Reddy

    2018-02-01

    The Eocene Lower Ngimbang carbonaceous shales are geochemically proven hydrocarbon source rocks in the East Java Basin. Sedimentary facies of source rock is important for the source evaluation that can be examined by using biomarkers and carbon-13 isotopes data. Furthermore, paleogeography of the source sedimentation can be reconstructed. The case study was conducted on rock samples of Lower Ngimbang from two exploration wells drilled in Cepu area, East Java Basin, Kujung-1 and Ngimbang-1 wells. The biomarker data include GC and GC-MS data of normal alkanes, isoprenoids, triterpanes, and steranes. Carbon-13 isotope data include saturate and aromatic fractions. Various crossplots of biomarker and carbon-13 isotope data of the Lower Ngimbang source samples from the two wells show that the source facies of Lower Ngimbang shales changed from transitional/deltaic setting at Kujung-1 well location to marginal marine setting at Ngimbang-1 well location. This reveals that the Eocene paleogeography of the Cepu area was composed of land area in the north and marine setting to the south. Biomarkers and carbon-13 isotopes are powerful data for reconstructing paleogeography and paleofacies. In the absence of fossils in some sedimentary facies, these geochemical data are good alternatives.

  10. Multi-factor controls on terrestrial carbon dynamics in urbanised areas

    Science.gov (United States)

    Zhang, C.; Tian, H.; Pan, S.; Lockaby, G.; Chappelka, A.

    2013-11-01

    As urban land cover and populations continue rapidly increasing across the globe, much concern has been raised that urbanization may significantly alter terrestrial carbon dynamics that affects atmospheric CO2 concentration and climate. Urbanization involves complex changes in land structure and multiple environmental factors. Relative contribution of these and their interactive effects need be quantified to better understand urbanization effects on regional C dynamics as well as assess the effectiveness of C sequestration policies focusing on urban green space development. In this study, we analyzed the factors that may control the urbanization effect on ecosystem C dynamics, and proposed a numeric experimental scheme, i.e. scenarios design, to conduct factorial analysis on the effects of different factors. Then as a case study, a dynamic land ecosystem model (DLEM) was applied to quantify the urbanization effect on the C dynamics of the Southern US (SUS) from 1945-2007, and to analyze the relative contributions from each environmental factor and their interactive effects. We found the effect of urban land conversion dominated the C dynamics in the SUS, resulting in about 0.37 Pg C lost from 1945-2007. However, urban ecosystem management and urban-induced environmental changes enhanced C sequestration by 0.12 Pg and 0.03 Pg, respectively. Their C sequestration effects, which amounted to 40% of the magnitude of land conversion effect, partially compensated for the C loss during urbanization. Numeric experiments and factorial analyses indicated complex interactive effects among different factors and between various land covers and environmental controls, findings need to be further confirmed by field studies. The proposed numeric experimental scheme provides a quantitative approach for understanding the complex mechanisms controlling C dynamics, and defining best development practices in urbanised areas.

  11. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    Energy Technology Data Exchange (ETDEWEB)

    Giuntini, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Massi, M. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Calusi, S. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Castelli, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Carraresi, L. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Fedi, M.E.; Gelli, N. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Liccioli, L.; Mandò, P.A.; Mazzinghi, A. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze, Via Sansone 1, I-50019 Sesto Fiorentino, Firenze (Italy); Palla, L. [INFN, Sezione di Pisa and Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Romano, F.P. [Consiglio Nazionale delle Ricerche (CNR), Istituto per i Beni Archeologici e Monumentali (IBAM), Via Biblioteca, 4, 95124 Catania (Italy); Istituto Nazionale di Fisica Nucleare (INFN), LNS, Via S.Sofia 62, 95125 Catania (Italy); and others

    2015-04-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm{sup 2}), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported.

  12. Wide area scanning system and carbon microbeams at the external microbeam facility of the INFN LABEC laboratory in Florence

    International Nuclear Information System (INIS)

    Giuntini, L.; Massi, M.; Calusi, S.; Castelli, L.; Carraresi, L.; Fedi, M.E.; Gelli, N.; Liccioli, L.; Mandò, P.A.; Mazzinghi, A.; Palla, L.; Romano, F.P.

    2015-01-01

    Recently, developments have been made to the external scanning microbeam of INFN-LABEC laboratory in Florence. A new system for mechanical sample scanning was implemented. This system allows us to acquire large maps (up to 20 × 20 cm 2 ), of great interest in the Cultural Heritage field. In parallel, the possibility of using carbon microbeams for experiments, such as, for example, ion beam modification of materials and MeV Secondary Ion Mass Spectrometry, has been investigated. As a test application, Particle Induced X-ray Emission with carbon microbeams has been performed on a lapis lazuli stone. First results for both wide area imaging and external carbon microbeams are briefly reported

  13. Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite.

    Science.gov (United States)

    Barbera, Vincenzina; Guerra, Silvia; Brambilla, Luigi; Maggio, Mario; Serafini, Andrea; Conzatti, Lucia; Vitale, Alessandra; Galimberti, Maurizio

    2017-12-11

    In this work, carbon papers and aerogels based on graphene layers and chitosan were prepared. They were obtained by mixing chitosan (CS) and a high surface area nanosized graphite (HSAG) in water in the presence of acetic acid. HSAG/CS water dispersions were stable for months. High resolution transmission electron microscopy revealed the presence of few graphene layers in water suspensions. Casting or lyophilization of such suspensions led to the preparation of carbon paper and aerogel, respectively. In X-ray spectra of both aerogels and carbon paper, peaks due to regular stacks of graphene layers were not detected: graphene with unaltered sp 2 structure was obtained directly from graphite without the use of any chemical reaction. The composites were demonstrated to be electrically conductive thanks to the graphene. Chitosan thus makes it possible to obtain monolithic carbon aerogels and flexible and free-standing graphene papers directly from a nanosized graphite by avoiding oxidation to graphite oxide and successive reduction. Strong interaction between polycationic chitosan and the aromatic substrate appears to be at the origin of the stability of HSAG/CS adducts. Cation-π interaction is hypothesized, also on the basis of X-ray photoelectron spectroscopy findings. This work paves the way for the easy large-scale preparation of carbon papers through a method that has a low environmental impact and is based on a biosourced polymer, graphene, and water.

  14. Characteristic and Prediction of Carbon Monoxide Concentration using Time Series Analysis in Selected Urban Area in Malaysia

    Directory of Open Access Journals (Sweden)

    Abdul Hamid Hazrul

    2017-01-01

    Full Text Available Carbon monoxide (CO is a poisonous, colorless, odourless and tasteless gas. The main source of carbon monoxide is from motor vehicles and carbon monoxide levels in residential areas closely reflect the traffic density. Prediction of carbon monoxide is important to give an early warning to sufferer of respiratory problems and also can help the related authorities to be more prepared to prevent and take suitable action to overcome the problem. This research was carried out using secondary data from Department of Environment Malaysia from 2013 to 2014. The main objectives of this research is to understand the characteristic of CO concentration and also to find the most suitable time series model to predict the CO concentration in Bachang, Melaka and Kuala Terengganu. Based on the lowest AIC value and several error measure, the results show that ARMA (1,1 is the most appropriate model to predict CO concentration level in Bachang, Melaka while ARMA (1,2 is the most suitable model with smallest error to predict the CO concentration level for residential area in Kuala Terengganu.

  15. Cropping practices, soil properties, pedotransfer functions and organic carbon storage at Kuanria canal command area in India

    OpenAIRE

    Mandal, Krishna Gopal; Kundu, Dilip Kumar; Singh, Ravender; Kumar, Ashwani; Rout, Rajalaxmi; Padhi, Jyotiprakash; Majhi, Pradipta; Sahoo, Dillip Kumar

    2013-01-01

    Effects of cropping practices on soil properties viz. particle size distribution, pH, bulk density (BD), field capacity (FC, -33 kPa), permanent wilting point (PWP, -1500 kPa), available water capacity (AWC) and soil organic carbon (SOC) were assessed. The pedotransfer functions (PTFs) were developed for saturated hydraulic conductivity (Ks), water retention at FC and PWP of soils for different sites under major cropping system in a canal irrigated area. The results revealed that the soils ar...

  16. Preparation, Surface and Pore Structure of High Surface Area Activated Carbon Fibers from Bamboo by Steam Activation

    Directory of Open Access Journals (Sweden)

    Xiaojun Ma

    2014-06-01

    Full Text Available High surface area activated carbon fibers (ACF have been prepared from bamboo by steam activation after liquefaction and curing. The influences of activation temperature on the microstructure, surface area and porosity were investigated. The results showed that ACF from bamboo at 850 °C have the maximum iodine and methylene blue adsorption values. Aside from the graphitic carbon, phenolic and carbonyl groups were the predominant functions on the surface of activated carbon fiber from bamboo. The prepared ACF from bamboo were found to be mainly type I of isotherm, but the mesoporosity presented an increasing trend after 700 °C. The surface area and micropore volume of samples, which were determined by application of the Brunauer-Emmett-Teller (BET and t-plot methods, were as high as 2024 m2/g and 0.569 cm3/g, respectively. It was also found that the higher activation temperature produced the more ordered microcrystalline structure of ACF from bamboo.

  17. Age-related effects on leaf area/sapwood area relationships, canopy transpiration and carbon gain of Norway spruce stands (Picea abies) in the Fichtelgebirge, Germany.

    Science.gov (United States)

    Köstner, B; Falge, E; Tenhunen, J D

    2002-06-01

    Stand age is an important structural determinant of canopy transpiration (E(c)) and carbon gain. Another more functional parameter of forest structure is the leaf area/sapwood area relationship, A(L)/A(S), which changes with site conditions and has been used to estimate leaf area index of forest canopies. The interpretation of age-related changes in A(L)/A(S) and the question of how A(L)/A(S) is related to forest functions are of current interest because they may help to explain forest canopy fluxes and growth. We conducted studies in mature stands of Picea abies (L.) Karst. varying in age from 40 to 140 years, in tree density from 1680 to 320 trees ha(-1), and in tree height from 15 to 30 m. Structural parameters were measured by biomass harvests of individual trees and stand biometry. We estimated E(c) from scaled-up xylem sap flux of trees, and canopy-level fluxes were predicted by a three-dimensional microclimate and gas exchange model (STANDFLUX). In contrast to pine species, A(L)/A(S) of P. abies increased with stand age from 0.26 to 0.48 m(2) cm(-2). Agreement between E(c) derived from scaled-up sap flux and modeled canopy transpiration was obtained with the same parameterization of needle physiology independent of stand age. Reduced light interception per leaf area and, as a consequence, reductions in net canopy photosynthesis (A(c)), canopy conductance (g(c)) and E(c) were predicted by the model in the older stands. Seasonal water-use efficiency (WUE = A(c)/E(c)), derived from scaled-up sap flux and stem growth as well as from model simulation, declined with increasing A(L)/A(S) and stand age. Based on the different behavior of age-related A(L)/A(S) in Norway spruce stands compared with other tree species, we conclude that WUE rather than A(L)/A(S) could represent a common age-related property of all species. We also conclude that, in addition to hydraulic limitations reducing carbon gain in old stands, a functional change in A(L)/A(S) that is related to

  18. Blue Energy and Desalination with Nanoporous Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models

    Directory of Open Access Journals (Sweden)

    Michele Simoncelli

    2018-04-01

    Full Text Available Capacitive mixing (CapMix and capacitive deionization (CDI are currently developed as alternatives to membrane-based processes to harvest blue energy—from salinity gradients between river and sea water—and to desalinate water—using charge-discharge cycles of capacitors. Nanoporous electrodes increase the contact area with the electrolyte and hence, in principle, also the performance of the process. However, models to design and optimize devices should be used with caution when the size of the pores becomes comparable to that of ions and water molecules. Here, we address this issue by simulating realistic capacitors based on aqueous electrolytes and nanoporous carbide-derived carbon (CDC electrodes, accounting for both their complex structure and their polarization by the electrolyte under applied voltage. We compute the capacitance for two salt concentrations and validate our simulations by comparison with cyclic voltammetry experiments. We discuss the predictions of Debye-Hückel and Poisson-Boltzmann theories, as well as modified Donnan models, and we show that the latter can be parametrized using the molecular simulation results at high concentration. This then allows us to extrapolate the capacitance and salt adsorption capacity at lower concentrations, which cannot be simulated, finding a reasonable agreement with the experimental capacitance. We analyze the solvation of ions and their confinement within the electrodes—microscopic properties that are much more difficult to obtain experimentally than the electrochemical response but very important to understand the mechanisms at play. We finally discuss the implications of our findings for CapMix and CDI, both from the modeling point of view and from the use of CDCs in these contexts.

  19. Blue Energy and Desalination with Nanoporous Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models

    Science.gov (United States)

    Simoncelli, Michele; Ganfoud, Nidhal; Sene, Assane; Haefele, Matthieu; Daffos, Barbara; Taberna, Pierre-Louis; Salanne, Mathieu; Simon, Patrice; Rotenberg, Benjamin

    2018-04-01

    Capacitive mixing (CapMix) and capacitive deionization (CDI) are currently developed as alternatives to membrane-based processes to harvest blue energy—from salinity gradients between river and sea water—and to desalinate water—using charge-discharge cycles of capacitors. Nanoporous electrodes increase the contact area with the electrolyte and hence, in principle, also the performance of the process. However, models to design and optimize devices should be used with caution when the size of the pores becomes comparable to that of ions and water molecules. Here, we address this issue by simulating realistic capacitors based on aqueous electrolytes and nanoporous carbide-derived carbon (CDC) electrodes, accounting for both their complex structure and their polarization by the electrolyte under applied voltage. We compute the capacitance for two salt concentrations and validate our simulations by comparison with cyclic voltammetry experiments. We discuss the predictions of Debye-Hückel and Poisson-Boltzmann theories, as well as modified Donnan models, and we show that the latter can be parametrized using the molecular simulation results at high concentration. This then allows us to extrapolate the capacitance and salt adsorption capacity at lower concentrations, which cannot be simulated, finding a reasonable agreement with the experimental capacitance. We analyze the solvation of ions and their confinement within the electrodes—microscopic properties that are much more difficult to obtain experimentally than the electrochemical response but very important to understand the mechanisms at play. We finally discuss the implications of our findings for CapMix and CDI, both from the modeling point of view and from the use of CDCs in these contexts.

  20. LARGE AREA FILTERED ARC DEPOSITION OF CARBON AND BORON BASED HARD COATINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Rabi S.

    2003-12-05

    This document is a final report covering work performed under Contract No. DE-FG02-99ER82911 from the Department of Energy under a SBIR Phase II Program. Wear resistant, hard coatings can play a vital role in many engineering applications. The primary goal of this project was to develop coatings containing boron and carbon with hardness greater than 30 GPa and evaluate these coatings for machining applications. UES has developed a number of carbon and boron containing coatings with hardness in the range of 34 to 65 GPa using a combination of filtered cathodic arc and magnetron sputtering. The boron containing coatings were based on TiB2, TiBN, and TiBCN, while the carbon containing coatings ere TiC+C and hydrogen free diamond-like-carbon. Machining tests were performed with single and multilayer coated tools. The turning and milling tests were run at TechSolve Inc., under a subcontract at Ohio State University. Significant increases in tool lives were realized in end milling of H-13 die steel (8X) and titanium alloy (80%) using the TiBN coating. A multilayer TiBN/TiN performed the best in end-milling of highly abrasive Al-Si alloys. A 40% increase in life over the TiAlN benchmark coating was found. Further evaluations of these coatings with commercialization partners are currently in progress.

  1. Identifying potential sources of variability between vegetation carbon storage estimates for urban areas

    DEFF Research Database (Denmark)

    Davies, Zoe G.; Dallimer, Martin; Edmondson, Jill L.

    2013-01-01

    Although urbanisation is a major cause of land-use change worldwide, towns and cities remain relatively understudied ecosystems. Research into urban ecosystem service provision is still an emerging field, yet evidence is accumulating rapidly to suggest that the biological carbon stores in cities ...

  2. Calculating Soil Wetness, Evapotranspiration and Carbon Cycle Processes Over Large Grid Areas Using a New Scaling Technique

    Science.gov (United States)

    Sellers, Piers

    2012-01-01

    Soil wetness typically shows great spatial variability over the length scales of general circulation model (GCM) grid areas (approx 100 km ), and the functions relating evapotranspiration and photosynthetic rate to local-scale (approx 1 m) soil wetness are highly non-linear. Soil respiration is also highly dependent on very small-scale variations in soil wetness. We therefore expect significant inaccuracies whenever we insert a single grid area-average soil wetness value into a function to calculate any of these rates for the grid area. For the particular case of evapotranspiration., this method - use of a grid-averaged soil wetness value - can also provoke severe oscillations in the evapotranspiration rate and soil wetness under some conditions. A method is presented whereby the probability distribution timction(pdf) for soil wetness within a grid area is represented by binning. and numerical integration of the binned pdf is performed to provide a spatially-integrated wetness stress term for the whole grid area, which then permits calculation of grid area fluxes in a single operation. The method is very accurate when 10 or more bins are used, can deal realistically with spatially variable precipitation, conserves moisture exactly and allows for precise modification of the soil wetness pdf after every time step. The method could also be applied to other ecological problems where small-scale processes must be area-integrated, or upscaled, to estimate fluxes over large areas, for example in treatments of the terrestrial carbon budget or trace gas generation.

  3. Source apportionment of organic pollutants of a highway-traffic-influenced urban area in Bayreuth (Germany) using biomarker and stable carbon isotope signatures.

    Science.gov (United States)

    Glaser, Bruno; Dreyer, Annekatrin; Bock, Michael; Fiedler, Stefan; Mehring, Marion; Heitmann, Tobias

    2005-06-01

    Traffic- and urban-influenced areas are prone to enhanced pollution with products of incomplete combustion of fossil fuels and biomass such as black carbon or polycyclic aromatic hydrocarbons (PAHs). Black carbon is composed of aromatic and graphitic structures and may act as a carrier for pollutants such as PAHs and heavy metals. However, little is known about possible contributions of traffic-derived black carbon to the black carbon inventory in soils. Similar uncertainties exist regarding the contribution of different pollutant sources to total PAH and black carbon contents. Therefore, the objective of this study was to quantify the importance of traffic pollution to black carbon and PAH inventories in soils. PAH contamination of soils adjacent to a major German highway in the urban area of Bayreuth with about 50,000 vehicles per day was in the same order of magnitude compared to highway-close soils reported in other studies. Using molecular (black carbon and PAHs) and compound-specific stable carbon isotope evidence (PAHs) it was demonstrated that this contamination originated not only from automobile exhausts, here primarily diesel, but also from tire abrasion and tailpipe soot which significantly contributed to the traffic-caused black carbon and PAH contamination. Low molecular weight PAHs were more widely transported than their heavy molecular counterparts (local distillation), whereas highway-traffic-caused black carbon contamination was distributed to at least 30 m from the highway. On the other hand, urban fire exhausts were distributed more homogeneously among the urban area.

  4. Experimental determination of effective surface area and conductivities in the porous anode of molten carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M.; Boden, A.; Sparr, M.; Lindbergh, G. [Central Research Institute for Electric Power Industry, Kanagawa (Japan)

    2006-07-14

    Stationary polarization curves and electrochemical impedance spectroscopy of a porous nickel anode in a molten carbonate fuel cell were obtained in order to determine the active surface area and conductivities with varying degree of electrolyte filling for two anode feed-gas compositions, one simulating operation with steam reformed natural gas and the other one gasified coal. The active surface area for coal gas is reduced by around 70-80% compared to the standard gas composition in the case of Li/Na carbonate. Moreover, an optimal degree of electrolyte filling was shifted toward higher filling degree in the case of operation with coal gas. In order to evaluate the experimental data a one-dimensional model was used. The reaction rate at the matrix/electrode interface is about five times higher than the average reaction rate in the whole electrode in case of 10% electrolyte filling. This result suggests that the lower limit of the filling degree of the anode should be around 15% in order to avoid non-uniform distribution of the reaction in the electrode. Therefore, in the case of applying Li/Na carbonate in the MCFC, an electrolyte distribution model taking into account the wetting properties of the electrode is required in order to set an optimal electrolyte filling degree in the electrode.

  5. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    Energy Technology Data Exchange (ETDEWEB)

    Dagg, J.; Lafleur, P.

    2010-07-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO{sub 2}) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO{sub 2} exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO{sub 2} fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO{sub 2} uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO{sub 2} exchange in heterogeneous Tundra vegetation is variable.

  6. An application of plot-scale NDVI in predicting carbon dioxide exchange and leaf area index in heterogeneous subarctic tundra

    International Nuclear Information System (INIS)

    Dagg, J.; Lafleur, P.

    2010-01-01

    This paper reported on a study that examined the flow of carbon into and out of tundra ecosystems. It is necessary to accurately predict carbon dioxide (CO 2 ) exchange in the Tundra because of the impacts of climate change on carbon stored in permafrost. Understanding the relationships between the normalized difference vegetation index (NDVI) and vegetation and CO 2 exchange may explain how small-scale variation in vegetation community extends to remotely sensed estimates of landscape characteristics. In this study, CO 2 fluxes were measured with a portable chamber in a range of Tundra vegetation communities. Biomass and leaf area were measured with destructive harvest, and NDVI was obtained using a hand-held infrared camera. There was a weak correlation between NDVI and leaf area index in some vegetation communities, but a significant correlation between NDVI and biomass, including mosses. NDVI was found to be strongly related to photosynthetic activity and net CO 2 uptake in all vegetation groups. However, NDVI related to ecosystem respiration only in wet sedge. It was concluded that at plot scale, the ability of NDVI to predict ecosystem properties and CO 2 exchange in heterogeneous Tundra vegetation is variable.

  7. Deployment of Low-Cost, Carbon Dioxide Sensors throughout the Washington Metropolitan Area - The Capital Climate Initiative

    Science.gov (United States)

    Caine, Kristen M.; Bailey, D. Michelle; Houston Miller, J.

    2016-04-01

    According to the IPCC from 1995 to 2005, atmospheric carbon dioxide (CO2) concentrations increased by 19 ppm, the highest average growth rate recorded for any decade since measurements began in the 1950s. Due to its ability to influence global climate change, it is imperative to continually monitor carbon dioxide emission levels, particularly in urban areas where some estimate in excess of 75% of total greenhouse gas emissions occur. Although high-precision sensors are commercially available, these are not cost effective for mapping a large spatial area. A goal of this research is to build out a network of sensors that are accurate and precise enough to provide a valuable data tool for accessing carbon emissions from a large, urban area. This publically available greenhouse gas dataset can be used in numerous environmental assessments and as validation for remote sensing products. It will also be a valuable teaching tool for classes at our university and will promote further engagement of K-12 students and their teachers through education and outreach activities. Each of our sensors (referred to as "PiOxides") utilizes a non-dispersive infrared (NDIR) sensor for the detection of carbon dioxide along with a combination pressure/temperature/humidity sensor. The collection of pressure and temperature increases the accuracy and precision of the CO2 measurement. The sensors communicate using a serial interfaces with a Raspberry Pi microcontroller. Each PiOxide is connected to a website that leverages recent developments in open source GIS tools. In this way, data from individual sensors can be followed individually or aggregated to provide real-time, spatially-resolved data of CO2 trends across a broad area. Our goal for the network is to expand across the entire DC/Maryland/Virginia Region through partnerships with private and public schools. We are also designing GHG Bluetooth beacons that may be accessed by mobile phone users in their vicinity. In two additional

  8. Soil organic carbon dynamics of black locust plantations in the middle Loess Plateau area of China

    Science.gov (United States)

    Lu, N.; Liski, J.; Chang, R. Y.; Akujärvi, A.; Wu, X.; Jin, T. T.; Wang, Y. F.; Fu, B. J.

    2013-11-01

    Soil organic carbon (SOC) is the largest terrestrial carbon pool and sensitive to land use and cover change; its dynamics are critical for carbon cycling in terrestrial ecosystems and the atmosphere. In this study, we combined a modeling approach and field measurements to examine the temporal dynamics of SOC following afforestation (Robinia pseudoacacia) of former arable land at six sites under different climatic conditions in the Loess Plateau during 1980-2010, where the annual mean precipitation ranging from 450 mm to 600 mm. The results showed that the measured mean SOC increased to levels higher than before afforestation when taking the last measurements (i.e., at age 25 to 30 yr) at all the sites, although it decreased at the wetter sites in the first few years. The accumulation rates of SOC were 1.58 to 6.22% yr-1 in the upper 20 cm and 1.62 to 5.15% yr-1in the upper 40 cm of soil. The simulations reproduced the basic characteristics of measured SOC dynamics, suggesting that litter input and climatic factors (temperature and precipitation) were the major causes for SOC dynamics and the differences among the sites. They explained 88-96, 48-86 and 57-74% of the variations in annual SOC changes at the soil depths of 0-20, 0-40, and 0-100 cm, respectively. Notably, the simulated SOC decreased during the first few years at all the sites, although the magnitudes of decreases were smaller at the drier sites. This suggested that the modeling may be advantageous in capturing SOC changes at finer timescale. The discrepancy between the simulation and measurement was a result of uncertainties in model structure, data input, and sampling design. Our findings indicated that afforestation promoted soil carbon sequestration at the study sites during 1980-2010. Afforestation activities should decrease soil disturbances to reduce carbon release in the early stage. The long-term strategy for carbon fixation capability of the plantations should also consider the climate and site

  9. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning

    Science.gov (United States)

    Coelho, C. H.; Francisco, J. G.; Nogueira, R. F. P.; Campos, M. L. A. M.

    This work reports on rainwater dissolved organic carbon (DOC) from Ribeirão Preto (RP) and Araraquara over a period of 3 years. The economies of these two cities, located in São Paulo state (Brazil), are based on agriculture and related industries, and the region is strongly impacted by the burning of sugar cane foliage before harvesting. Highest DOC concentrations were obtained when air masses traversed sugar cane fields burned on the same day as the rain event. Significant increases in the DOC volume weighted means (VWM) during the harvest period, for both sites, and a good linear correlation ( r = 0.83) between DOC and K (a biomass burning marker) suggest that regional scale organic carbon emissions prevail over long-range transport. The DOC VWMs and standard deviations were 272 ± 22 μmol L -1 ( n = 193) and 338 ± 40 μmol L -1 ( n = 80) for RP and Araraquara, respectively, values which are at least two times higher than those reported for other regions influenced by biomass burning, such as the Amazon. These high DOC levels are discussed in terms of agricultural activities, particularly the large usage of biogenic fuels in Brazil, as well as the analytical method used in this work, which includes volatile organic carbon when reporting DOC values. Taking into account rainfall volume, estimated annual rainwater DOC fluxes for RP (4.8 g C m -2 yr -1) and Araraquara (5.4 g C m -2 yr -1) were close to that previously found for the Amazon region (4.8 g C m -2 yr -1). This work also discusses whether previous calculations of the global rainwater carbon flux may have been underestimated, since they did not consider large inputs from biomass combustion sources, and suffered from a possible analytical bias.

  10. Short Term vs Long Term Environmental Reconstruction from Carbonated Deposits of the Limagne Area (Massif Central, France)

    Energy Technology Data Exchange (ETDEWEB)

    Barbecot, F.; Gibert, E.; Amokrane, Y.; Massault, M.; Noret, A. [Centre National de la Recherche Scientifique Interaction et Dynamique des Environnements de Surface, Universite Paris (France); Ghaleb, B. [Geotop, Universite du Quebec a Montreal, Montreal (Canada)

    2013-07-15

    A 80 cm sequence has been cored from carbonated travertine in the limagne area (French Massif Central, France) in order to document recent environmental fluctuations (0-100 a) of gaseous springs, in relation to the environmental and geochemical parameters that control the isotopic signatures of modern carbonate deposits. The chronology of these finely laminated deposits that are ideal for reconstructing hydrological conditions at very narrow time steps is determined through AMS-{sup 14}C and {sup 210}Pb/{sup 226}Ra radiometric methods. Preliminary results highlight a high enrichment in stable isotopes (eg up to +8 per mille vs VPDB for {delta}{sup 13}C), likely linked to both recharge temperature and degassing processes. Moreover, two general trends are superimposed: the first one, cyclic, may be correlated to the hydrologic annual/biannual budget while the second one, linear, implies a long term environmental trend. (author)

  11. Emissions of black carbon and co-pollutants emitted from diesel vehicles in the Mexico City Metropolitan Area

    Science.gov (United States)

    Zavala, Miguel; Molina, Luisa T.; Fortner, Edward; Knighton, Berk; Herndon, Scott; Yacovitch, Tara; Floerchinger, Cody; Roscioli, Joseph; Kolb, Charles; Mejia, Jose Antonio; Sarmiento, Jorge; Paramo, Victor Hugo; Zirath, Sergio; Jazcilevich, Aron

    2014-05-01

    Black carbon emitted from freight, public transport, and heavy duty trucks sources is linked with adverse effects on human health. In addition, the control of emissions of black carbon, an important short-lived climate forcing agent (SLCF), has recently been considered as one of the key strategies for mitigating regional near-term climate change. Despite the availability of new emissions control technologies for reducing emissions from diesel-powered mobile sources, their introduction is still not widespread in many urban areas and there is a need to characterize real-world emission rates of black carbon from this key source. The emissions of black carbon, organic carbon, and other gaseous and particle pollutants from diesel-powered mobile sources in Mexico were characterized by deploying a mobile laboratory equipped with real-time instrumentation in Mexico City as part of the SLCFs-Mexico 2013 project. From February 25-28 of 2013 the emissions from selected diesel-powered vehicles were measured in both controlled experiments and real-world on-road driving conditions. Sampled vehicles had several emissions levels technologies, including: EPA98, EPA03, EPA04, EURO3-5, and Hybrid. All vehicles were sampled using diesel fuel and several vehicles were measured using both diesel and biodiesel fuels. Additional measurements included the use of a remote sensing unit for the co-sampling of all tested vehicles, and the installation and operation of a Portable Emissions Measurements System (PEMS) for the measurement of emissions from a test vehicle. We will present inter-comparisons of the emission factors obtained among the various vehicle technologies that were sampled during the experiment as well as the inter-comparison of results from the various sampling platforms. The results can be used to

  12. Comparative study of the growth and carbon sequestration potential of Bermuda grass in industrial and urban areas

    Directory of Open Access Journals (Sweden)

    Usman Ali

    2018-06-01

    Full Text Available Climate change is a global phenomenon occurring throughout the world. Greenhouse gases (GHGs especially carbon dioxide (CO2 considered to be the major culprit to bring these changes. So, carbon (C sequestration by any mean could be useful to reduce the CO2 level in atmosphere. Turf grasses have the ability to sequester C and minimize the effects of GHGs on the environment. In order to study that how turf grasses can help in C sequestration, Bermuda grass (Cynodon dactylon was grown both at industrial and urban location and its effect on C storage were assessed by soil and plant analysis. Dry deposition of ammonium and nitrate was maximum at both locations through the year. However wet deposition was highest during the months of high rainfall. It was examined through soil analysis that soil organic matter, soil C and nitrogen in both locations increased after second mowing of grass. However, soil pH 6.68 in urban and 7.00 in industrial area and EC 1.86 dS/m in urban and 1.90 dS/m in industrial area decreased as the grass growth continue. Soil fresh weight (27.6 g in urban and (27.28 g industrial area also decreased after first and second mowing of grass. The C levels in plant dry biomass also increased which showed improved ability of plant to uptake C from the soil and store it. Similarly, chlorophyll contents were more in industrial area compared to urban area indicates the positive impact of high C concentration. Whereas stomatal conductance was reduced in high C environment to slow down respiration process. Hence, from present study it can be concluded that the Bermuda grass could be grown in areas with high C concentration in atmosphere for sequestrating C in soil.

  13. Projecting large-scale area changes in land use and land cover for terrestrial carbon analyses.

    Science.gov (United States)

    Ralph J. Alig; Brett J. Butler

    2004-01-01

    One of the largest changes in US forest type areas over the last half-century has involved pine types in the South. The area of planted pine has increased more than 10-fold since 1950, mostly on private lands. Private landowners have responded to market incentives and government programs, including subsidized afforestation on marginal agricultural land. Timber harvest...

  14. [Effects of land cover change on soil organic carbon and light fraction organic carbon at river banks of Fuzhou urban area].

    Science.gov (United States)

    Zeng, Hong-Da; Du, Zi-Xian; Yang, Yu-Sheng; Li, Xi-Bo; Zhang, Ya-Chun; Yang, Zhi-Feng

    2010-03-01

    By using Vario EL III element analyzer, the vertical distribution characteristics of soil organic carbon (SOC) and light-fraction organic carbon (LFOC) in the lawn, patch plantation, and reed wetland at river banks of Fuzhou urban area were studied in July 2007. For all the three land cover types, the SOC and LFOC contents were the highest in surface soil layer, and declined gradually with soil depth. Compared with reed wetland, the lawn and patch plantation had higher SOC and LFOC contents in each layer of the soil profile (0-60 cm), and the lawn had significantly higher contents of SOC and LFOC in 0-20 cm soil layer, compared with the patch plantation. After the reed wetland was converted into lawn and patch plantation, the SOC stock in the soil profile was increased by 94.8% and 72.0%, and the LFOC stock was increased by 225% and 93%, respectively. Due to the changes of plant species, plant density, and management measure, the conversion from natural wetland into human-manipulated green spaces increased the SOC and LFOC stocks in the soil profile, and improved the soil quality. Compared with the SOC, soil LFOC was more sensitive to land use/cover change, especially for those in 0-20 cm soil layer.

  15. The application of stable carbon isotope ratios as water quality indicators in coastal areas of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Mashiatullah, A.; Javed, T.; Tasneem, M.A.; Sajjad, M.I.; Saleem, M.; Khan, S.H.; Rizvi, S.H.N.; Siddiqui, S.A.; Qari, R.

    1998-01-01

    Stable carbon isotope ratios (δ 13 C) of total dissolved inorganic carbon (TDIC), total inorganic and organic carbon in bottom sediments, as well as sea plants in polluted water sources, non-polluted Karachi Sea water and pollution recipients are used to elaborate pollution scenario of shallow marine environment off Karachi coast. These results are supplemented with stable isotope composition of nitrogen (δ 15 N) in seaweeds and mangroves, toxic/trace metal concentration in sea-bottom sediments, total Coliform bacterial population, electrical conductivity, temperature and turbidity. Isotopic data shows that the mangrove ecosystem and the tidal fluctuations play a key role in controlling contamination inventories in shallow sea water off Karachi coast, specifically the Manora Channel. The Karachi harbour zone is found to be the most heavily polluted marine site in Manora channel during high as well as low tide regimes. Significant concentrations of toxic metals such as Pb, Ni, Cr, Zn, V, U are observed in off-shore sediments of Karachi coast. The results show that sewage and industrial wastes are the main sources of heavy metal pollution in Karachi harbour, Manora Channel exit zone and the southeast coast. However, as compared to other coastal areas, the Karachi coast is moderately polluted. Studies suggest incorporation of quick remedial measures to combat pollution in shallow marine environments off Karachi Coast. (author)

  16. Identifying grain-size dependent errors on global forest area estimates and carbon studies

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    Satellite-derived coarse-resolution data are typically used for conducting global analyses. But the forest areas estimated from coarse-resolution maps (e.g., 1 km) inevitably differ from a corresponding fine-resolution map (such as a 30-m map) that would be closer to ground truth. A better understanding of changes in grain size on area estimation will improve our...

  17. Land use and land management effects on soil organic carbon stock in Mediterranean agricultural areas (Southern Spain)

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz

    2014-05-01

    INTRODUCTION Soils play a key role in the carbon geochemical cycle. Agriculture contributes to carbon sequestration through photosynthesis and the incorporation of carbon into carbohydrates. Soil management is one of the best tools for climate change mitigation. Small increases or decreases in soil carbon content due to changes in land use or management practices, may result in a significant net exchange of carbon between the soil carbon pool and the atmosphere. In the last decades arable crops (AC) have been transformed into olive grove cultivations (OG) or vineyards (V) in Mediterranean areas. A field study was conducted to determine long-term effects of land use change (LUC) (AC by OG and V) on soil organic carbon (SOC), total nitrogen (TN), C:N ratio and their stratification in Calcic-Chromic Luvisols (LVcc/cr) in Mediterranean conditions. MATERIAL AND METHODS An unirrigated farm in Montilla-Moriles (Córdoba, Spain) cultivated under conventional tillage (animal power with lightweight reversible plows and non-mineral fertilization or pesticides) was selected for study in 1965. In 1966, the farm was divided into three plots with three different uses (AC, OG and V). The preliminary analyses were realized in 1965 for AC (AC1), and the second analyses were realized in 2011 for AC (AC2 - winter crop rotation with annual wheat and barley, receiving mineral fertilization or pesticides), OG (annual passes with disk harrow and cultivator in the spring, followed by a tine harrow in the summer receiving mineral fertilization and weed control with residual herbicides), and V (with three or five chisel passes a year from early spring to early autumn with mineral fertilization or pesticides.). In all cases (AC1, AC2, OG and V) were collected soil entire profiles. Soil properties determined were: soil particle size, bulk density, SOC, TN, C:N ratio, stocks and SRs. The statistical significance of the differences in the variables between land use practices was tested using the

  18. Effect of length of thinning area on the failure behavior of carbon steel pipe containing a defect of wall thinning

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Chi Yong

    2003-01-01

    The present study performed pipe failure tests using 102 mm-Sch. 80 carbon steel pipe with various simulated wall thinning defects, to investigate the effect of axial length of wall thinning and internal pressure on the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The tests were conducted under loading conditions of four-point bending with and without internal pressure. The results showed that a failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Both load carrying capability (LCC) and deformation capability (DC) were depended on stress type in the thinning area and dimensions of thinning defect. For applying tensile stress to the thinned area, the dependence of LCC on the axial length of wall thinning was determined by circumferential thinning angle, and the DC was proportionally increased with increase in axial length of wall thinning regardless of the circumferential angle. For applying compressive stress to thinned area, however, the LCC was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area

  19. Surface Sediment Analysis on Petroleum Hydrocarbon and Total Organic Carbon from Coastal Area of Papar to Tuaran, Sabah

    International Nuclear Information System (INIS)

    Siti Aishah Mohd Ali; Payus, C.; Masni Mohd Ali

    2015-01-01

    Total petroleum hydrocarbons (TPH) and total organic carbon (TOC) were investigated in surface sediments along coastal area of Papar to Tuaran, Sabah. Surface sediment samples were collected in 24 different stations in each area by using Ponar grab sampler. Samples were extracted for TPH using standard method sediment/ sludge APHA 5520E and analyzed using UV/VIS spectrophotometer while for TOC method analysis using United Nations Environment Programme (UNEP)/ MAP Athens (2006). The range of TPH concentrations in surface sediments were recorded at 0.24 - 20.65 mg/ kg dw Miri crude oil equivalents, meanwhile the TOC percentage ranged from 0.03 - 4.02 %. In the mean time, the statistical analysis by Pearson correlation showed a positive correlation with coefficient, r = 0.790 which showing the TPH concentrations significantly have influence on the TOC accumulations in the surface sediment. (author)

  20. Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers

    Science.gov (United States)

    An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki

    2015-01-01

    Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.

  1. Soybeans Grown in the Chernobyl Area Produce Fertile Seeds that Have Increased Heavy Metal Resistance and Modified Carbon Metabolism

    Science.gov (United States)

    Klubicová, Katarína; Danchenko, Maksym; Skultety, Ludovit; Berezhna, Valentyna V.; Uvackova, Lubica; Rashydov, Namik M.; Hajduch, Martin

    2012-01-01

    Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis. PMID:23110204

  2. Soybeans grown in the Chernobyl area produce fertile seeds that have increased heavy metal resistance and modified carbon metabolism.

    Directory of Open Access Journals (Sweden)

    Katarína Klubicová

    Full Text Available Plants grow and reproduce in the radioactive Chernobyl area, however there has been no comprehensive characterization of these activities. Herein we report that life in this radioactive environment has led to alteration of the developing soybean seed proteome in a specific way that resulted in the production of fertile seeds with low levels of oil and β-conglycinin seed storage proteins. Soybean seeds were harvested at four, five, and six weeks after flowering, and at maturity from plants grown in either non-radioactive or radioactive plots in the Chernobyl area. The abundance of 211 proteins was determined. The results confirmed previous data indicating that alterations in the proteome include adaptation to heavy metal stress and mobilization of seed storage proteins. The results also suggest that there have been adjustments to carbon metabolism in the cytoplasm and plastids, increased activity of the tricarboxylic acid cycle, and decreased condensation of malonyl-acyl carrier protein during fatty acid biosynthesis.

  3. [Impact of Rocky Desertification Treatment on Underground Water Chemistry and Dissolved Inorganic Carbon Isotope in Karst Areas].

    Science.gov (United States)

    Xiao, Shi-zhen; Xiong, Kang-ning; Lan, Jia-cheng; Zhang, Hui; Yang, Long

    2015-05-01

    Five springs representing different land-use types and different karst rocky desertification treatment models were chosen at the Huajiang Karst Rocky Desertification Treatment Demonstration Site in Guanling-Zhenfeng Counties in Guizhou, to analyze the features of underground water chemistry and dissolved inorganic carbon isotopes (δ13C(DIC)) and reveal the effect of rocky desertification treatment on karstification and water quality. It was found that, the underground water type of the research area was HCO3-Ca; the water quality of the springs which were relatively less affected by human activities including Shuijingwan Spring (SJW) , Gebei Spring (GB), and Maojiawan Spring (MJW) was better than those relatively more affected by human activities including Diaojing Spring (DJ) and Tanjiazhai Spring (TJZ) , the main ion concentrations and electrical conductivity of which were higher; pH, SIc and pCO2 were sensitive to land-use types and rocky desertification treatment, which could be shown by the higher pH and SIc and lower pCO2 in MJW than those in the other four springs; (Ca(2+) + Mg2+)/HCO(3-) of SJW, MJW and GB were nearly 1:1, dominated by carbonate rock weathering by carbon acid, while the (Ca(2+) + Mg2+) of DJ and TJZ was much higher than HCO3-, suggesting that sulfate and nitrate might also dissolve carbonate rock because of the agricultural activities; δ13C(DIC) was lighter in wet season because of the higher biological activities; the average δ13C(DIC) was in the order of DJ (-12.79 per thousand) desertification and lighter after the rocky desertification are treated and controlled.

  4. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Science.gov (United States)

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  5. Soil organic carbon distribution in Mediterranean areas under a climate change scenario via multiple linear regression analysis.

    Science.gov (United States)

    Olaya-Abril, Alfonso; Parras-Alcántara, Luis; Lozano-García, Beatriz; Obregón-Romero, Rafael

    2017-08-15

    Over time, the interest on soil studies has increased due to its role in carbon sequestration in terrestrial ecosystems, which could contribute to decreasing atmospheric CO 2 rates. In many studies, independent variables were related to soil organic carbon (SOC) alone, however, the contribution degree of each variable with the experimentally determined SOC content were not considered. In this study, samples from 612 soil profiles were obtained in a natural protected (Red Natura 2000) of Sierra Morena (Mediterranean area, South Spain), considering only the topsoil 0-25cm, for better comparison between results. 24 independent variables were used to define it relationship with SOC content. Subsequently, using a multiple linear regression analysis, the effects of these variables on the SOC correlation was considered. Finally, the best parameters determined with the regression analysis were used in a climatic change scenario. The model indicated that SOC in a future scenario of climate change depends on average temperature of coldest quarter (41.9%), average temperature of warmest quarter (34.5%), annual precipitation (22.2%) and annual average temperature (1.3%). When the current and future situations were compared, the SOC content in the study area was reduced a 35.4%, and a trend towards migration to higher latitude and altitude was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs.

    Science.gov (United States)

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-03-31

    In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.

  7. Carbon monoxide poisoning and death in a large enclosed ventilated area.

    Science.gov (United States)

    Huston, Butch; Froloff, Victor; Mills, Kelly; McGee, Michael

    2013-11-01

    A 55-year-old man with a medical history of tobacco use suddenly collapsed while power washing an empty indoor pool in a hotel. The decedent was transported to the local hospital where he was pronounced. A postmortem examination revealed atherosclerotic heart disease and bilateral pulmonary edema and congestion. A postmortem blood carbon monoxide (CO) level was 27% saturation, and a CO performed on hospital admission blood was 49% saturation. CO poisoning is a common cause of toxicological morbidity and mortality in the United States. The circumstances most often occur in an enclosed environment and may be intentional or unintentional. CO poisoning has been reported in open, well-ventilated spaces, but rarely results in death. A warning label was present on the engine clearly stating the dangers of CO emission. However, there was a false sense of security due to the large size of the pool room and the presence of industrial blowers that were being used for ventilation. © 2013 American Academy of Forensic Sciences.

  8. Distribution of Soil Organic Carbon and the Influencing Factors in An Oasis Farmland Area

    Directory of Open Access Journals (Sweden)

    WANG Ze

    2014-08-01

    Full Text Available The soil organic carbon(SOC of a typical oasis farmland in middle part of Manasi county of Xinjiang was used as the research ob原 ject. Using remote sensing and lab analysis techniques, influences of soil texture, terrain, land uses, and crop types on SOC content of farmland were studied. Results showed that the SOC distribution in farmland of Manasi was mainly determined by comprehensive natural environmental factors. The SOC content decreased along with the increasing soil depth. For soil textures, the SOC content from high to low was clay loam>powder loam>silty loam. Slope direction had significantly positive correlations with SOC contents at 0~30 cm and 30~60 cm, while altitude and SOC content at 60~100 cm were significantly positive correlation. The SOC content of orchard was the highest, and the uncultivated land was the lowest under different land-use patterns. For different crop planting systems, the order of SOC content was corn field >wine grapes field>cotton field, and the difference was significant.

  9. Progress in the reduction of carbon monoxide levels in major urban areas in Korea

    International Nuclear Information System (INIS)

    Kim, Ki-Hyun; Sul, Kyung-Hwa; Szulejko, Jan E.; Chambers, Scott D.; Feng, Xinbin; Lee, Min-Hee

    2015-01-01

    Long-term trends in observed carbon monoxide (CO) concentrations were analyzed in seven major South Korean cities from 1989 to 2013. Temporal trends were evident on seasonal and annual timescales, as were spatial gradients between the cities. As CO levels in the most polluted cities decreased significantly until the early 2000s, the data were arbitrarily divided into two time periods (I: 1989–2000 and II: 2001–2013) for analysis. The mean CO concentration of period II was about 50% lower than that of period I. Long-term trends of annual mean CO concentrations, examined using the Mann–Kendall (MK) method, confirm a consistent reduction in CO levels from 1989 to 2000 (period I). The abrupt reduction in CO levels was attributed to a combination of technological improvements and government administrative/regulatory initiatives (e.g., emission mitigation strategies and a gradual shift in the fuel/energy consumption mix away from coal and oil to natural gas and nuclear power). - Highlights: • As one of the criteria pollutants, CO has been extensively studied worldwide. • The concentration of CO in ambient air should be reduced to a more manageable level. • The spatiotemporal characteristics of CO in Korea are analyzed for 1989–2013. • Our efforts will help develop systematic strategies to reduce CO emissions. - The efficacy of CO mitigation strategies adopted throughout Korea is highlighted along with the limitations faced to improving air quality due to cross-boundary pollution transport.

  10. Hydrogeochemistry and geothermometry of deep thermal water in the carbonate formation in the main urban area of Chongqing, China

    Science.gov (United States)

    Yang, Pingheng; Cheng, Qun; Xie, Shiyou; Wang, Jianli; Chang, Longran; Yu, Qin; Zhan, Zhaojun; Chen, Feng

    2017-06-01

    Many geothermal reservoirs in Chongqing in southwestern China are located in carbonate rock aquifers and exploited through drilling. Water samples from 36 geothermal wells have been collected in the main urban area of Chongqing. Chemical types of the thermal water samples are Ca·Mg-SO4 and Ca-SO4. High contents of Ca2+ and SO42- in the thermal water samples are derived from the dissolution of evaporates. Furthermore, the HCO3- concentration is constrained by the common ion effect. Drilling depth has no effect on the physical and chemical characteristics according to the results of a t-test. The geothermal reservoir's temperature can be estimated to be 64.8-93.4 °C (average 82 °C) using quartz and improved SiO2 geothermometers. Values of δD and δ18O for the thermal water samples indicate that the thermal water resources originate from local precipitation with a recharge elevation between 838 and 1130 m and an annual air temperature between 10.4 and 13.9 °C. A conceptual model of regional scale groundwater flow for the thermal water is proposed. The thermal water mainly originates from the meteoric water recharged in the elevated areas of northeastern Tongluoshan and Huayingshan by means of percolation through exposed carbonate before becoming groundwater. The groundwater is heated at depth and moves southwest along the fault and the anticlinal core in a gravity-driven regime. The thermal water is exposed in the form of artesian hot springs in river cutting and low-elevation areas or in wells.

  11. High Power Electric Double-Layer Capacitors based on Room-Temperature Ionic Liquids and Nanostructured Carbons

    Science.gov (United States)

    Perez, Carlos R.

    The efficient storage of electrical energy constitutes both a fundamental challenge for 21st century science and an urgent requirement for the sustainability of our technological civilization. The push for cleaner renewable forms of energy production, such as solar and wind power, strongly depends on a concomitant development of suitable storage methods to pair with these intermittent sources, as well as for mobile applications, such as vehicles and personal electronics. In this regard, Electrochemical Double-Layer Capacitors (supercapacitors) represent a vibrant area of research due to their environmental friendliness, long lifetimes, high power capability, and relative underdevelopment when compared to electrochemical batteries. Currently supercapacitors have gravimetric energies one order of magnitude lower than similarly advanced batteries, while conversly enjoying a similar advantage over them in terms of power. The challenge is to increase the gravimentric energies and conserve the high power. On the material side, research focuses on highly porous supports and electrolytes, the critical components of supercapacitors. Through the use of electrolyte systems with a wider electrochemical stability window, as well as properly tailored carbon nanomaterials as electrodes, significant improvements in performance are possible. Room Temperature Ionic Liquids and Carbide-Derived Carbons are promising electrolytes and electrodes, respectively. RTILs have been shown to be stable at up to twice the voltage of organic solvent-salt systems currently employed in supercapacitors, and CDCs are tunable in pore structure, show good electrical conductivity, and superior demonstrated capability as electrode material. This work aims to better understand the interplay of electrode and electrolyte parameters, such as pore structure and ion size, in the ultimate performance of RTIL-based supercapacitors in terms of power, energy, and temperature of operation. For this purpose, carbon

  12. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  13. Storage and stability of biochar-derived carbon and total organic carbon in relation to minerals in an acid forest soil of the Spanish Atlantic area.

    Science.gov (United States)

    Fernández-Ugalde, Oihane; Gartzia-Bengoetxea, Nahia; Arostegi, Javier; Moragues, Lur; Arias-González, Ander

    2017-06-01

    Biochar can largely contribute to enhance organic carbon (OC) stocks in soil and improve soil quality in forest and agricultural lands. Its contribution depends on its recalcitrance, but also on its interactions with minerals and other organic compounds in soil. Thus, it is important to study the link between minerals, natural organic matter and biochar in soil. In this study, we investigated the incorporation of biochar-derived carbon (biochar-C) into various particle-size fractions with contrasting mineralogy and the effect of biochar on the storage of total OC in the particle-size fractions in an acid loamy soil under Pinus radiata (C3 type) in the Spanish Atlantic area. We compared plots amended with biochar produced from Miscanthus sp. (C4 type) with control plots (not amended). We separated sand-, silt-, and clay-size fractions in samples collected from 0 to 20-cm depth. In each fraction, we analyzed clay minerals, metallic oxides and oxy-hydroxides, total OC and biochar-C. The results showed that 51% of the biochar-C was in fractions fractions (0.2-2μm, 0.05-0.2μm, fractions, as it occurred with the vermiculitic phases and metallic oxides and oxy-hydroxides. Biochar also affected to the distribution of total OC among particle-size fractions. Total OC concentration was greater in fractions 2-20μm, 0.2-2μm, 0.05-0.2μm in biochar-amended plots than in control plots. This may be explained by the adsorption of dissolved OC from fraction organic matter already occurred in the first year. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K. [ed.

    1996-02-01

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO{sub 3} type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A K{sub p} value of 2* 10{sup 6} ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs.

  15. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    International Nuclear Information System (INIS)

    Pedersen, K.

    1996-02-01

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO 3 type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A K p value of 2* 10 6 ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs

  16. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox shell by chemical activation with H3PO4

    Directory of Open Access Journals (Sweden)

    Arvind Kumar

    Full Text Available Activated carbons were prepared from Fox nutshell by chemical activation with H3PO4 in N2 atmosphere and their characteristics were studied. The effects of activation temperature and impregnation ratio were examined. N2 adsorption isotherms characterized the surface area, total pore volume, micropore volume and pore size distribution of activated carbons. Activated carbon was produced at 700 °C with a 1.5 impregnation ratio and one hour of activation time has found 2636 m2/g and 1.53 cm3/g of highest BET surface area and total pore volume, respectively. The result of Fourier-infrared spectroscopy analysis of the prepared activated carbon confirmed that the carbon has abundant functional groups on the surface. Field emission scanning electron micrographs of the prepared activated carbon showed that a porous structure formed during activation. Keywords: Activated carbons, Fox nutshell, Chemical activation, H3PO4, Activated carbon, Surface chemistry, Porous structure

  17. Ultrahigh surface area meso/microporous carbon formed with self-template for high-voltage aqueous supercapacitors

    Science.gov (United States)

    Yang, Jie; Hu, Jiangtao; Zhu, Min; Zhao, Yan; Chen, Haibiao; Pan, Feng

    2017-10-01

    A new hierarchically porous carbon has been synthesized with self-template of silica phase from a commercial silicone resin by pyrolysis and subsequent NaOH activation. The obtained carbon materials achieve an ultrahigh specific surface area (2896 m2 g-1) with abundant mesopores. The C800 sample demonstrates excellent performance in supercapacitors, with a high capacitance of 322 F g-1 at 0.5 A g-1 and outstanding rate capability (182 F g-1 at 100 A g-1) in a three-electrode system using 6.0 mol L-1 KOH electrolyte. The energy density is improved by widening the voltage window using 1.0 mol L-1 alkali metal nitrate solutions (LiNO3, NaNO3, KNO3) in which the strong solvation of alkali metal cations and nitrate anions effectively reduce the activity of water. In a symmetric supercapacitor, the maximum operating voltage is essentially restricted by the potential of positive electrode and the total capacitance is dominated by the capacitance of the anion at the positive electrode. The symmetric supercapacitors based on C800 deliver a high energy density of 22.4 Wh kg-1 at a power density of 0.23 kW kg-1 in 1.0 mol L-1 LiNO3 with a voltage of 1.8 V and long-term stability with a retention of 89.87% after 10000 cycles.

  18. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Wenger, Daniela; Tedde, Sandro F. [Siemens Healthcare GmbH, Technology Centre, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria)

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  19. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Science.gov (United States)

    Ummethala, Raghunandan; Wenger, Daniela; Tedde, Sandro F.; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Eckert, Jürgen

    2016-01-01

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  20. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    International Nuclear Information System (INIS)

    Last, G.V.; Rohay, V.J.

    1991-01-01

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site's 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl 4 ), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford's plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl 4 . This paper contains brief descriptions of the principal CCl 4 waste disposal facilities in Hanford's 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl 4 distributions

  1. High surface area bio-waste based carbon as a superior electrode for vanadium redox flow battery

    Science.gov (United States)

    Maharjan, Makhan; Bhattarai, Arjun; Ulaganathan, Mani; Wai, Nyunt; Oo, Moe Ohnmar; Wang, Jing-Yuan; Lim, Tuti Mariana

    2017-09-01

    Activated carbon (AC) with high surface area (1901 m2 g-1) is synthesized from low cost bio-waste orange (Citrus sinensis) peel for vanadium redox flow battery (VRB). The composition, structure and electrochemical properties of orange peel derived AC (OP-AC) are characterized by elemental analyzer, field emission-scanning electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy. CV results show that OP-AC coated bipolar plate demonstrates improved electro-catalytic activity in both positive and negative side redox couples than the pristine bipolar plate electrode and this is ascribed to the high surface area of OP-AC which provides effective electrode area and better contact between the porous electrode and bipolar plate. Consequently, the performance of VRB in a static cell shows higher energy efficiency for OP-AC electrode than the pristine electrode at all current densities tested. The results suggest the OP-AC to be a promising electrode for VRB applications and can be incorporated into making conducting plastics electrode to lower the VRB cell stack weight and cost.

  2. Simulation of low-carbon tourism in world natural and cultural heritage areas: An application to Shizhong District of Leshan City in China

    International Nuclear Information System (INIS)

    Xu Jiuping; Yao Liming; Mo Liwen

    2011-01-01

    The national goal of 40-45% mitigation of the 2005 level intensity of carbon by 2020 was announced by the Chinese government at the Copenhagen Conference. Every industry in China is preparing to realize this national reduction target. Some attempts have been made to achieve low-carbon development in a few industries, but relatively little work has linked low-carbon development to tourism. This article concentrates on how to develop low-carbon tourism using a quantitative approach. Firstly, the tourism system including some mutual influence factors is investigated and some historical data are given in support for the research of their quantitative relationship. Secondly, a differential dynamic system model with fuzzy coefficients is proposed to predict tourism revenue, energy consumption, waste emissions and the carbon intensity. Finally, an application to Shizhong District of Leshan City in China (LCSD), as a representative of a world natural and cultural heritage area, is presented to show the trend of modern tourism in a low-carbon economy and prove the effectiveness of the proposed model. - Highlights: → The system of low-carbon tourism is described. → A differential dynamic model with fuzzy coefficients is developed. → Carbon intensity in the tourism system will gradually decrease. → Some suggestions about developing low-carbon tourism are exhibited.

  3. Simulation of low-carbon tourism in world natural and cultural heritage areas: An application to Shizhong District of Leshan City in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu Jiuping, E-mail: xujiuping@scu.edu.cn [Low Carbon Technology and Economy Research Center, Sichuan University, Chengdu 610064 (China); Yao Liming; Mo Liwen [Low Carbon Technology and Economy Research Center, Sichuan University, Chengdu 610064 (China)

    2011-07-15

    The national goal of 40-45% mitigation of the 2005 level intensity of carbon by 2020 was announced by the Chinese government at the Copenhagen Conference. Every industry in China is preparing to realize this national reduction target. Some attempts have been made to achieve low-carbon development in a few industries, but relatively little work has linked low-carbon development to tourism. This article concentrates on how to develop low-carbon tourism using a quantitative approach. Firstly, the tourism system including some mutual influence factors is investigated and some historical data are given in support for the research of their quantitative relationship. Secondly, a differential dynamic system model with fuzzy coefficients is proposed to predict tourism revenue, energy consumption, waste emissions and the carbon intensity. Finally, an application to Shizhong District of Leshan City in China (LCSD), as a representative of a world natural and cultural heritage area, is presented to show the trend of modern tourism in a low-carbon economy and prove the effectiveness of the proposed model. - Highlights: > The system of low-carbon tourism is described. > A differential dynamic model with fuzzy coefficients is developed. > Carbon intensity in the tourism system will gradually decrease. > Some suggestions about developing low-carbon tourism are exhibited.

  4. Design, operations, and maintenance of the soil vapor extraction systems for the 200 West Area Carbon Tetrachloride Expedited Response Action

    International Nuclear Information System (INIS)

    Tranbarger, R.K.

    1996-05-01

    This report provides the design, operating, and maintenance guidelines for the soil vapor extraction (SVE) systems implemented as part of the 200 West Area Carbon Tetrachloride ERA. Additionally, this document provides general information regarding the ERA, the SVE system design, and the general approach towards soil vapor extraction. The remaining content of this document includes the following: regulatory compliance; summary of vadose zone physical and containment characteristics; past and present SVE system designs and potential design upgrades; general design and monitoring considerations for the SVE systems; descriptions of the SVE system components and their respective functions; safety requirements; operation of the SVE systems including startup, surveillances, shutdown, GAC canister changeouts, and wellfield characterization; monitoring requirements; SVE optimization; and instrument calibrations, preventive maintenance, and spare parts and site inventory requirements

  5. Inter-Annual Variability of Area-Scaled Gaseous Carbon Emissions from Wetland Soils in the Liaohe Delta, China.

    Science.gov (United States)

    Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F

    2016-01-01

    Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.

  6. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP, Ecosystem Respiration (Reco and Net Ecosystem Exchange (NEE were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different

  7. Improving estimation of tree carbon stocks by harvesting aboveground woody biomass within airborne LiDAR flight areas

    Science.gov (United States)

    Colgan, M.; Asner, G. P.; Swemmer, A. M.

    2011-12-01

    harvesting of trees is not possible within KNP, this was a unique opportunity to fell trees already scheduled to be cleared for mining operations. The area was first flown by the Carnegie Airborne Observatory in early May, prior to harvest, to enable correlation of LiDAR-measured tree height and crown diameter to harvested tree mass. Results include over 4,000 harvested stems and 13 species-specific biomass equations, including seven Kruger woody species previously without allometry. We found existing biomass stem allometry over-estimates ACD in the field, whereas airborne estimates based on harvest data avoid this bias while maintaining similar precision to field-based estimates. Lastly, a new airborne algorithm estimating biomass at the tree-level reduced error from tree canopies "leaning" into field plots but whose stems are outside plot boundaries. These advances pave the way to better understanding of savanna and forest carbon density at landscape and regional scales.

  8. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  9. Source data supported high resolution carbon emissions inventory for urban areas of the Beijing-Tianjin-Hebei region: Spatial patterns, decomposition and policy implications.

    Science.gov (United States)

    Cai, Bofeng; Li, Wanxin; Dhakal, Shobhakar; Wang, Jianghao

    2018-01-15

    This paper developed internationally compatible methods for delineating boundaries of urban areas in China. By integrating emission source data with existing official statistics as well as using rescaling methodology of data mapping for 1 km grid, the authors constructed high resolution emission gridded data in Beijing-Tianjin-Hebei (Jing-Jin-Ji) region in China for 2012. Comparisons between urban and non-urban areas of carbon emissions from industry, agriculture, household and transport exhibited regional disparities as well as sectoral differences. Except for the Hebei province, per capita total direct carbon emissions from urban extents in Beijing and Tianjin were both lower than provincial averages, indicating the climate benefit of urbanization, comparable to results from developed countries. Urban extents in the Hebei province were mainly industrial centers while those in Beijing and Tianjin were more service oriented. Further decomposition analysis revealed population to be a common major driver for increased carbon emissions but climate implications of urban design, economic productivity of land use, and carbon intensity of GDP were both cluster- and sector-specific. This study disapproves the one-size-fits-all solution for carbon mitigation but calls for down-scaled analysis of carbon emissions and formulation of localized carbon reduction strategies in the Jing-Jin-Ji as well as other regions in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Low-carbon off-grid electrification for rural areas in the United Kingdom: Lessons from the developing world

    International Nuclear Information System (INIS)

    Yadoo, Annabel; Gormally, Alexandra; Cruickshank, Heather

    2011-01-01

    Low-carbon off-grid electrification for rural areas is becoming increasingly popular in the United Kingdom. However, many developing countries have been electrifying their rural areas in this way for decades. Case study fieldwork in Nepal and findings from United Kingdom based research will be used to examine how developed nations can learn from the experience of developing countries with regard to the institutional environment and delivery approach adopted in renewable energy off-grid rural electrification. A clearer institutional framework and more direct external assistance during project development are advised. External coordinators should also engage the community in a mobilization process a priori to help alleviate internal conflicts of interest that could later impede a project. - Highlights: → Development of community renewable energy projects in the UK is commended. → The UK can benefit from the experience of successful programmes in Nepal. → A clearer institutional framework and more direct external assistance is required. → External coordinators should engage the community in a mobilization process.

  11. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.

    Science.gov (United States)

    Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    2018-03-14

    Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

  12. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area

    International Nuclear Information System (INIS)

    Vingiani, S.; Adamo, P.; Giordano, S.

    2004-01-01

    The accumulation ability of the major elements sulphur, nitrogen and carbon by the moss Sphagnum capillifolium (Ehrh.) Hedw. and the lichen Pseudevernia furfuracea (L.) Zopf exposed in bags in Naples urban area,was investigated. Bags were exposed at the beginning of July 1999 and gathered in two subsequent moments: at the end of the dry season (after 10 weeks of exposure) and during the wet season (after 17 weeks of exposure), to include the effects of rainy conditions. Sulphur and N content of the lichen increased all over the exposure period, while the level of C did not change significantly either after 10 or 17 weeks of exposition. For the moss the S accumulation was limited to the dry period of exposure, whereas N and C content decreased with exposure. Results, in contrast with those obtained in a previous study on trace elements bioaccumulation [Adamo et al., Environmental Pollution, (2003) 122, 91-103], suggest that accumulation of gaseous pollutants is strongly influenced by biomonitor vitality and that lichen bags are a more reliable and effective tool for monitoring S, N and C atmospheric depositions in urban areas compared to moss bags, because of greater lichen resistance to dry and stressing conditions of urban environment. - The lichen Pseudevernia furfuracea is more effective than the moss Sphagnum capillifolium as S and N pollutants biomonitor

  13. Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics.

    Science.gov (United States)

    Ahmed, M J; Islam, Md Azharul; Asif, M; Hameed, B H

    2017-11-01

    In this work, a human hair-derived high surface area porous carbon material (HHC) was prepared using potassium hydroxide activation. The morphology and textural properties of the HHC structure, along with its adsorption performance for tetracycline (TC) antibiotics, were evaluated. HHC showed a high surface area of 1505.11m 2 /g and 68.34% microporosity. The effects of most important variables, such as initial concentration (25-355mg/L), solution pH (3-13), and temperatures (30-50°C), on the HHC adsorption performance were investigated. Isotherm data analysis revealed the favorable application of the Langmuir model, with maximum TC uptakes of 128.52, 162.62, and 210.18mg/g at 30, 40, and 50°C, respectively. The experimental data of TC uptakes versus time were analyzed efficiently using a pseudo-first order model. Porous HHC could be an efficient adsorbent for eliminating antibiotic pollutants in wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Preparation of High Surface Area Activated Carbon from Spent Phenolic Resin by Microwave Heating and KOH Activation

    Science.gov (United States)

    Cheng, Song; Zhang, Libo; Zhang, Shengzhou; Xia, Hongying; Peng, Jinhui

    2018-01-01

    The spent phenolic resin is as raw material for preparing high surface area activated carbon (HSAAC) by microwave-assisted KOH activation. The effects of microwave power, activation duration and impregnation ratio (IR) on the iodine adsorption capability and yield of HSAAC were investigated. The surface characteristics of HSAAC were characterized by nitrogen adsorption isotherms, FTIR, SEM and TEM. The operating variables were optimized utilizing the response surface methodology (RSM) and were identified to be microwave power of 700 W, activation duration of 15 min and IR of 4, corresponding to a yield of 51.25 % and an iodine number of 2,384 mg/g. The pore structure parameters of the HSAAC, i. e., Brunauer-Emmett-Teller (BET) surface area, total pore volume, and average pore diameter were estimated to be 4,269 m2/g, 2.396 ml/g and 2.25 nm, respectively, under optimum conditions. The findings strongly support the feasibility of microwave-assisted KOH activation for preparation of HSAAC from spent phenolic resin.

  15. The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaoliang [The Ecosystems Center, Marine Biological Laboratory, Woods Hole MA USA; Zhou, Yuyu [Departments of Geological and Atmospheric Sciences, Iowa State University, Ames IA USA; Liu, Yaling [Pacific Northwest National Laboratory, Joint Global Change Research Institute, College Park MD USA; Le Page, Yannick [Department Tapada da Ajuda, Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon Portugal

    2017-08-08

    Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experienced little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non-PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large-scale disturbances that would release large amounts of carbon in PAs.

  16. The carbon transfer in karst areas - an application to the study of environmental changes and paleoclimatic reconstruction

    International Nuclear Information System (INIS)

    Vokal, Barbara

    1999-01-01

    Karst areas constitute a large part of Slovenia, with several thousands of caves located in the limestone formations. The karstic caves provide valuable resources for reconstruction of environmental conditions on the continent in the past. This is possible due to the great stability of climatic conditions within a cave. Secondary minerals deposited in caves, known as speleothems, preserve records of long-term climatic and environmental changes at the site of their deposition and in the vicinity. The purity of speleothems and their chemical and physical stability make them exceptionally well suited for detailed geochemical and isotopic analysis.To understand the processes influencing the speleothem isotopic composition, monitoring of cave waters as well as springs and underground rivers is very important for at least one hydrological cycle. In this way we can observe the influence of seasonal changes on the cave waters feeding stalagmite growth laminae. Chemical and environmental parameters which influence speleothem formation are the temperature of air and water, as well as the properties of the water such as pH, electrical conductivity, Ca 2+ , HCO 3 - and Mg 2+ ion concentrations and drip rate. The thickness of the roof above the cave and the types of cave water may also determine the water properties. During one year monthly water samples were collected at three locations in Postojna cave to characterise different types of cave waters (pool, fast and stalactite drip water), and also from the river Pivka and spring Mocilnik. Rainwater samples were also collected and analysed. Dissolved CO 2 and carbonate in cave seepage waters originate from various sources: atmospheric CO 2 , organic matter that decomposes in soil, CO 2 from respiration of plants in the soil, and the dissolution of old layers of limestone. The isotopic composition of speleothems is directly linked with the isotopic composition of CO 2 produced in the soil above the cave. Production of CO 2 in

  17. Respiration of bivalves from three different deep-sea areas: Cold seeps, hydrothermal vents and organic carbon-rich sediments

    Science.gov (United States)

    Khripounoff, A.; Caprais, J. C.; Decker, C.; Le Bruchec, J.; Noel, P.; Husson, B.

    2017-08-01

    We studied bivalves (vesicomyids and mytilids) inhabiting four different areas of high sulfide and methane production: (1) in the Gulf of Guinea, two pockmarks (650 m and 3150 m depth) and one site rich in organic sediments in the deepest zone (4950 m average depth), (2) at the Azores Triple Junction on the Mid-Atlantic Ridge, one hydrothermal site (Lucky Strike vent field, 1700 m depth). Two types of Calmar benthic chambers were deployed, either directly set into the sediment (standard Calmar chamber) or fitted with a tank to isolate organisms from the sediment (modified Calmar chamber), to assess gas and solute exchanges in relation to bivalve bed metabolism. Fluxes of oxygen, total carbon dioxide, ammonium and methane were measured. At the site with organic-rich sediments, oxygen consumption by clams measured in situ with the standard benthic chamber was variable (1.3-6.7 mmol m-2 h-1) as was total carbon dioxide production (1-9.6 mmol m-2 h-1). The observed gas and solute fluxes were attributed primarily to bivalve respiration (vesicomyids or mytilids), but microbial and geochemical processes in the sediment may be also responsible for some of variations in the deepest stations. The respiration rate of isolated vesicomyids (16.1-0.25.7 μmol g-1 dry weight h-1) was always lower than that of mytilids (33 μmol g-1 dry weight h-1). This difference was attributed to the presence of a commensal scaleworm in the mytilids. The respiratory coefficient (QR) ≥1 indicated high levels of anaerobic metabolism. The O:N index ranged from 5 to 25, confirming that vesicomyids and mytilids, living in symbiosis with bacteria, have a protein-based food diet.

  18. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections.

    Science.gov (United States)

    Parras-Alcántara, L; Lozano-García, B; Brevik, E C; Cerdá, A

    2015-05-15

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Over time, some researches have analyzed entire soil profile (ESP) by pedogenetic horizons and other researches have analyzed soil control sections (SCS) to different thickness. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km(2) forested area in southern Spain. Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The soils investigated in this study included Phaeozems, Cambisols, Regosols and Leptosols. Total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C (10,604.2 Mg km(-2)) to 0.6353 Tg C (8272.1 Mg km(-2)) respectively (1 Tg = 10(12) g). However, when the topsoil (surface horizon and superficial section control) was analyzed, this difference increased to 59.8% in SCS compared to ESP. The comparison between ESP and SCS showed the effect of mixing pedogenetic horizons when depth increments were analyzed. This indicates an overestimate of T-SOCS when sampling by SCS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: Assessment of retention efficiency.

    Science.gov (United States)

    Mermillod-Blondin, Florian; Simon, Laurent; Maazouzi, Chafik; Foulquier, Arnaud; Delolme, Cécile; Marmonier, Pierre

    2015-09-15

    Managed aquifer recharge (MAR) has been developed in many countries to limit the risk of urban flooding and compensate for reduced groundwater recharge in urban areas. The environmental performances of MAR systems like infiltration basins depend on the efficiency of soil and vadose zone to retain stormwater-derived contaminants. However, these performances need to be finely evaluated for stormwater-derived dissolved organic matter (DOM) that can affect groundwater quality. Therefore, this study examined the performance of MAR systems to process DOM during its transfer from infiltration basins to an urban aquifer. DOM characteristics (fluorescent spectroscopic properties, biodegradable and refractory fractions of dissolved organic carbon -DOC-, consumption by micro-organisms during incubation in slow filtration sediment columns) were measured in stormwater during its transfer through three infiltration basins during a stormwater event. DOC concentrations sharply decreased from surface to the aquifer for the three MAR sites. This pattern was largely due to the retention of biodegradable DOC which was more than 75% for the three MAR sites, whereas the retention of refractory DOC was more variable and globally less important (from 18% to 61% depending on MAR site). Slow filtration column experiments also showed that DOC retention during stormwater infiltration through soil and vadose zone was mainly due to aerobic microbial consumption of the biodegradable fraction of DOC. In parallel, measurements of DOM characteristics from groundwaters influenced or not by MAR demonstrated that stormwater infiltration increased DOC quantity without affecting its quality (% of biodegradable DOC and relative aromatic carbon content -estimated by SUVA254-). The present study demonstrated that processes occurring in soil and vadose zone of MAR sites were enough efficient to limit DOC fluxes to the aquifer. Nevertheless, the enrichments of DOC concentrations measured in groundwater below

  20. Temporal characteristics of black carbon concentrations and its potential emission sources in a southern Taiwan industrial urban area.

    Science.gov (United States)

    Cheng, Yu-Hsiang; Lin, Chi-Chi; Liu, Jyh-Jian; Hsieh, Cheng-Ju

    2014-03-01

    This study investigates the temporal characteristics of black carbon and its potential emission sources, as well as the fractions of BC in PM2.5 levels in Kaohsiung urban area, which is an industrial city in southern Taiwan. Concentrations of BC and PM2.5 are monitored continuously from March 2006 to February 2010, using an aethalometer and a tapered element oscillating microbalance monitor. Additionally, the presence of organic compounds (or UV enhanced species) in particles at the sampling site is determined using the Delta-C (UVBC-BC) value. According to long-term measurement results, BC and PM2.5 concentrations are 3.33 and 34.0 μg m(-3), respectively, in the Kaohsiung urban area. The ratio of BC/PM2.5 is approximately 11 %. Low concentration of BC and PM2.5 in the summer of this study period is mostly likely owing to meteorological conditions that favored dispersion of local air pollutants. Nevertheless, BC concentrations peaked markedly during morning hours (7:00-11:00), likely owing to local traffic congestion. Measurement results suggest that BC is released from local traffic activities and emitted from industrial activities at this sampling site. Additionally, Delta-C values are significantly higher than zero during January-March and November-December periods in this industrial urban area, implying that UV enhanced species can be observed. At this sampling site, these UV enhanced species do not only originate from household activity and solid waste burning but also release from industrial activities. The elevated Delta-C values during nighttime (18:00-6:00) in the autumn and winter seasons are likely related to those UV enhanced species in the atmosphere, which can be condensed on particle surface under low temperature conditions. According to long-term measurement results, significantly positive Delta-C values can be observed under temperatures industrial parks and a coal-fired power plant.

  1. Soil respiration and carbon loss relationship with temperature and land use conversion in freeze-thaw agricultural area.

    Science.gov (United States)

    Ouyang, Wei; Lai, Xuehui; Li, Xia; Liu, Heying; Lin, Chunye; Hao, Fanghua

    2015-11-15

    Soil respiration (Rs) was hypothesized to have a special response pattern to soil temperature and land use conversion in the freeze-thaw area. The Rs differences of eight types of land use conversions during agricultural development were observed and the impacts of Rs on soil organic carbon (SOC) loss were assessed. The land use conversions during last three decades were categorized into eight types, and the 141 SOC sampling sites were grouped by conversion type. The typical soil sampling sites were subsequently selected for monitoring of soil temperature and Rs of each land use conversion types. The Rs correlations with temperature at difference depths and different conversion types were identified with statistical analysis. The empirical mean error model and the biophysical theoretical model with Arrhenius equation about the Rs sensitivity to temperature were both analyzed and shared the similar patterns. The temperature dependence of soil respiration (Q10) analysis further demonstrated that the averaged value of eight types of land use in this freeze-thaw agricultural area ranged from 1.15 to 1.73, which was lower than the other cold areas. The temperature dependence analysis demonstrated that the Rs in the top layer of natural land covers was more sensitive to temperature and experienced a large vertical difference. The natural land covers exhibited smaller Rs and the farmlands had the bigger value due to tillage practices. The positive relationships between SOC loss and Rs were identified, which demonstrated that Rs was the key chain for SOC loss during land use conversion. The spatial-vertical distributions of SOC concentration with the 1.5-km grid sampling showed that the more SOC loss in the farmland, which was coincided with the higher Rs in farmlands. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze-thaw agricultural area. The analysis of Rs dynamics provided an innovative explanation for SOC loss in the freeze

  2. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection

  3. Preparation and characterization of high-surface-area activated carbon fibers from silkworm cocoon waste for congo red adsorption

    International Nuclear Information System (INIS)

    Li, Jia; Ng, Dickon H.L.; Song, Peng; Kong, Chao; Song, Yi; Yang, Ping

    2015-01-01

    Herein, we report the preparation of activated carbon fibers from silkworm cocoon waste via the combination of (NH 4 ) 2 HPO 4 -pretreatment and KOH activation. The morphology, phase structure and surface chemistry constitute of the obtained ACFs were characterized by X-ray diffraction, IR spectroscopy, Micro Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, thermal analysis and N 2 adsorption–desorption isotherm. The effects of various factors such as the concentration of (NH 4 ) 2 HPO 4 and the activation time of KOH were also evaluated. These results demonstrated that the synthesized ACFs retained the fibrous morphology of silkworm cocoon waste, and exhibited highly defective graphite layer structure. A large amount of surface oxygen-containing functional groups were found on the ACFs surface. The obtained samples exhibited high BET surface areas ranging from 1153 to 2797 m 2  g −1 , total pore volumes of 0.64–1.74 cm 3  g −1 with micropore volume fractions between 75.2 and 93.6%. In addition, we also evaluated the congo red (CR) adsorption performance of the obtained ACFs. The CR adsorption fitted well to the pseudo-second-order kinetic model. Adsorption isotherm data indicated that the adsorption of CR onto ACFs was monolayer adsorption which followed well the Langmuir isotherm model. The maximum adsorption capacity of CR was 512 g kg −1 . The mechanism of the adsorption process was also described from the intraparticle diffusion model. - Highlights: • A new biomass fibroin precursor for activated carbon fibers (ACFs) was proposed. • High specific surface area (2797 m 2  g −1 ) and total pore volume (1.74 cm 3  g −1 ) were obtained. • The original fibrous structure of raw silkworm cocoons was retained in the ACF product. • Congo red maximum monolayer adsorption capacity of our ACF product was up to 1100 g kg −1

  4. Calculation of the Carbon Footprint to Determine Sustainability Status: A Comparative Analysis of Some Selected Planned and Unplanned Areas of Dhaka Megacity

    Science.gov (United States)

    Iqbal, S. M. S.

    2015-12-01

    Resource scarcity is considered to be one of the most serious issues plaguing Dhaka city. Because of the massive pressure of increasing population (15.931 million), a very unsustainable situation is waiting for this city in the upcoming future. It is inevitable to know how far this city is from being sustainable. This paper embodies the comparative analysis of the carbon footprint of four different areas in Dhaka city. It is considered as one of the most important key indicators of sustainability. It calculates the amount of biologically productive land in order to produce all the resources consumed by an individual or a particular community. This research has been conducted in both the planned and unplanned areas of this city. Among compound, component and direct method, component method was used to calculate the carbon footprint. Primary data were collected from door to door questionnaire survey. Total 371 samples were drawn from all the study areas at 95 % confidence level and 5% confidence interval. After finishing data analysis it was clear that the per capita carbon footprint of the selected study areas exceeds the per capita biocapacity of Dhaka city. And there exists a huge variation between the planned and unplanned areas of Old Dhaka and New Dhaka. Per capita carbon footprint of Gulshan & Jhigatola (part of New Dhaka) is higher than the per capita carbon footprint of Gandaria & Wari (part of Old Dhaka) that means resource stress is higher in Gulshan & Jhigatola in comparison with Gandaria & Wari because of the difference of daily consumption pattern. One of the most important findings of this study is that the per capita carbon footprint is the highest in Gulshan (1.2407 gha) among all the study areas and it is 85.56 times greater than the per capita biocapacity of Dhaka city (0.0145 gha) that means a single resident of this area needs 1.2407 gha land in order to support his/her demand on nature but only 0.0145 gha land (in an average) is available for

  5. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    Science.gov (United States)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  6. Network Level Carbon Dioxide Emissions From On-road Sources in the Portland OR, (USA) Metropolitan Area

    Science.gov (United States)

    Powell, J.; Butenhoff, C. L.; Rice, A. L.

    2014-12-01

    To mitigate climate change, governments at multiple levels are developing policies to decrease anthropogenic carbon dioxide (CO2) emissions. The City of Portland (Oregon) and Multnomah County have adopted a Climate Action Plan with a stated goal of reducing emissions to 80% below 1990 levels by 2050. The transportation sector alone accounts for about 40% of total emissions in the Portland metropolitan area. Here we show a new street-level model of on-road mobile CO2 emissions for the Portland, OR metropolitan region. The model uses hourly traffic counter recordings made by the Portland Bureau of Transportation at 9,352 sites over 21 years (1986-2006), augmented with freeway loop detector data from the Portland Regional Transportation Archive Listing (PORTAL) transportation data archive. We constructed a land use regression model to fill in traffic network gaps with traffic counts as the dependent variable using GIS data such as road class (32 categories) and population density. The Environmental Protection Agency (EPA) MOtor Vehicle Emission Simulator (MOVES) model was used to estimate transportation CO2 emissions. The street-level emissions can be aggregated and gridded and used as input to atmospheric transport models for comparison with atmospheric measurements. This model also provides an independent assessment of top-down inventories that determine emissions from fuel sales, while being an important component of our ongoing effort to assess the effectiveness of emission mitigation strategies at the urban scale.

  7. Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area.

    Science.gov (United States)

    Li, Xue Jin; Xing, Wei; Zhou, Jin; Wang, Gui Qiang; Zhuo, Shu Ping; Yan, Zi Feng; Xue, Qing Zhong; Qiao, Shi Zhang

    2014-10-06

    Three-dimensional hierarchical porous graphene/carbon composite was successfully synthesized from a solution of graphene oxide and a phenolic resin by using a facile and efficient method. The morphology, structure, and surface property of the composite were investigated intensively by a variety of means such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). It is found that graphene serves as a scaffold to form a hierarchical pore texture in the composite, resulting in its superhigh surface area of 2034 m(2) g(-1), thin macropore wall, and high conductivity (152 S m(-1)). As evidenced by electrochemical measurements in both EMImBF4 ionic liquid and KOH electrolyte, the composite exhibits ideal capacitive behavior, high capacitance, and excellent rate performance due to its unique structure. In EMImBF4 , the composite has a high energy density of up to 50.1 Wh kg(-1) and also possesses quite stable cycling stability at 100 °C, suggesting its promising application in high-temperature supercapacitors. In KOH electrolyte, the specific capacitance of this composite can reach up to an unprecedented value of 186.5 F g(-1), even at a very high current density of 50 A g(-1), suggesting its prosperous application in high-power applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nitrogen-doped ordered mesoporous carbon with a high surface area, synthesized through organic-inorganic coassembly, and its application in supercapacitors.

    Science.gov (United States)

    Song, Yanfang; Li, Li; Wang, Yonggang; Wang, Congxiao; Guo, Zaipin; Xia, Yongyao

    2014-07-21

    A new nitrogen-doped ordered mesoporous carbon (N-doped OMC) is synthesized by using an organic-inorganic coassembly method, in which resol is used as the carbon precursor, dicyandiamide as the nitrogen precursor, silicate oligomers as the inorganic precursors, and F127 as the soft template. The N-doped OMC possesses a surface area as high as 1374 m(2)  g(-1) and a large pore size of 7.4 nm. As an electrode material for supercapacitors, the obtained carbon exhibits excellent cycling stability and delivers a reversible specific capacitance as high as 308 F g(-1) in 1 mol L(-1) H(2)SO(4) aqueous electrolyte, of which 58 % of the capacity is due to pseudo-capacitance. The large specific capacitance is attributed to proper pore size distributions, large surface area, and high nitrogen content. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China

    Directory of Open Access Journals (Sweden)

    Y. Li

    2017-05-01

    Full Text Available Soil loss tolerance (T value is one of the criteria in determining the necessity of erosion control measures and ecological restoration strategy. However, the validity of this criterion in subtropical karst regions is strongly disputed. In this study, T value is calculated based on soil formation rate by using a digital distribution map of carbonate rock assemblage types. Results indicated a spatial heterogeneity and diversity in soil loss tolerance. Instead of only one criterion, a minimum of three criteria should be considered when investigating the carbonate areas of southern China because the one region, one T value concept may not be applicable to this region. T value is proportionate to the amount of argillaceous material, which determines the surface soil thickness of the formations in homogenous carbonate rock areas. Homogenous carbonate rock, carbonate rock intercalated with clastic rock areas and carbonate/clastic rock alternation areas have T values of 20, 50 and 100 t/(km2 a, and they are extremely, severely and moderately sensitive to soil erosion. Karst rocky desertification (KRD is defined as extreme soil erosion and reflects the risks of erosion. Thus, the relationship between T value and erosion risk is determined using KRD as a parameter. The existence of KRD land is unrelated to the T value, although this parameter indicates erosion sensitivity. Erosion risk is strongly dependent on the relationship between real soil loss (RL and T value rather than on either erosion intensity or the T value itself. If RL > > T, then the erosion risk is high despite of a low RL. Conversely, if T > > RL, then the soil is safe although RL is high. Overall, these findings may clarify the heterogeneity of T value and its effect on erosion risk in a karst environment.

  10. Assessment of Current Energy Consumption Practices, Carbon Emissions and Indoor Air Pollution in Samagaun, Manaslu Conservation Area, Nepal

    Directory of Open Access Journals (Sweden)

    Rajani Suwal

    2016-07-01

    Full Text Available Nepal is one of the lowest energy consuming countries in the world. More than 85 percent of its total energy comes from traditional biomass energy such as forests, agricultural residues and by-products from crops. Due to increasing per capita energy consumption, natural resources are being depleted with heavy emissions of GHGs in the atmosphere, which causes global warming. The main objective of the study was to investigate current energy consumption practices, to estimate particulate matter and carbon emissions from current practices and to recommend the most suitable alternative energy technologies. The fieldwork was based on primary and secondary data with a design methodology. Firewood burning was found to be the major source of energy used for cooking purposes in Samagaun. The use of this traditional fuel has negative environmental implications, such as deforestation, indoor air pollution and it ultimately affects human health. The results show that traditional cooking stoves (TCS are used more than improved cooking stoves (ICS. The total amount of firewood used per day by TCS is 2135 kg/day, and by ICS it is 349 kg/day. The average amount of firewood consumed by traditional and improved cooking stoves per day is 62.79 kg and 43.63 kg, respectively. The annual per capita firewood consumption of TCS and ICS is 4401.9 kg and 3266.7 kg, respectively. The calculation shows that per capita firewood consumption by TCS users is 1.3 times higher than that of ICS users. The annual per capita carbon emissions from TCS and ICS is 8055.47 kg CO2e and 5978.15 kg CO2e, respectively. This calculation shows that ICS emits 1.3 times less CO2 into the atmosphere than the TCS. The average mean particulate concentration at normal atmospheric conditions for a traditional cooking stove was found to be 2866 μg/Nm3 and for an improved cooking stove 1333 μg/Nm3, both of which far exceed the national standard of 230 μg/m3 TSP. Based on the study results, metallic

  11. Spatial Variation of Soil Organic Carbon and Total Nitrogen in the Coastal Area of Mid-Eastern China.

    Science.gov (United States)

    Xu, Yan; Pu, Lijie; Liao, Qilin; Zhu, Ming; Yu, Xue; Mao, Tianying; Xu, Chenxing

    2017-07-14

    Soils play an important role in sequestrating atmospheric CO₂. Coastal tidal flats have been intensively reclaimed for food security and living spaces worldwide. We aimed to identify the changes of soil organic carbon (SOC) and total nitrogen (TN) following coastal reclamation and their spatial variation in the coastal area of mid-Eastern China to provide information for coastal cropland management. We measured SOC and TN of 463 soil samples in the coastal plain of mid-Eastern China. The results showed that SOC and TN increased highly from the uncultivated coastal tidal flat (2.49 g·kg -1 and 0.21 g·kg -1 , respectively) to the cropland (10.73 g·kg -1 and 1.3 g·kg -1 , respectively). After long-term cultivation, SOC and TN in the old farmland (12.98 g·kg -1 and 1.49 g·kg -1 , respectively) were greater than those in the young farmland (5.76 g·kg -1 and 0.86 g·kg -1 , respectively). The density of SOC in the uncultivated coastal tidal flat, young farmland, and old farmland were 0.68 kg·C·m -2 , 1.52 kg·C·m -2 , and 3.31 kg·C·m -2 , respectively. The density of TN in the uncultivated coastal tidal flat, young farmland and old farmland were 0.05 kg·N·m -2 , 0.23 kg·N·m -2 , and 0.38 kg·N·m -2 , respectively. The C/N (11.17) in the uncultivated coastal tidal flat was highest comparing to that in the young and old farmland due to lower nitrogen. The C/N increased from 6.78 to 8.71 following cultivation. Reclaimed coastal tidal flats had high carbon and nitrogen sequestration potential that not only mitigated the threat of global warming, but also improved soil fertility for crop production. Coastal management of cropland should consider the spatial distribution of SOC and TN to improve ecosystem services of coastal soils.

  12. [Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area].

    Science.gov (United States)

    Zhao, Peng Zhi; Chen, Xiang Wei; Wang, En Heng

    2017-11-01

    Tillage and water erosion have been recognized as the main factors causing degradation in soil organic carbon (SOC) pools of black soil. To further explore the response of SOC and its fractions to different driving forces of erosion (tillage and water), geostatistical methods were used to analyze spatial patterns of SOC and its three fractions at a typical sloping farmland based on tillage and water erosion rates calculated by local models. The results showed that tillage erosion and deposition rates changed according to the slope positions, decreasing in the order: upper-slope > lower-slope > middle-slope > toe-slope and toe-slope > lower-slope > middle-slope > upper-slope, respectively; while the order of water erosion rates decreased in the order: lower-slope > toe-slope > middle-slope > upper-slope. Tillage and water erosion cooperatively triggered intense soil loss in the lower-slope areas with steep slope gradient. Tillage erosion could affect C cycling through the whole slope at different levels, although the rate of tillage erosion (0.02-7.02 t·hm -2 ·a -1 ) was far less than that of water erosion (5.96-101.17 t·hm -2 ·a -1 ) in black soil area. However, water erosion only played a major role in controlling C dynamics in the runoff-concentrated lower slope area. Affected by water erosion and tillage erosion-deposition disturbance, the concentrations of SOC, particulate organic carbon and dissolved organic carbon in depositional areas were higher than in erosional areas, however, microbial biomass carbon showed an opposite trend. Tillage erosion dominated SOC dynamic by depleting particulate organic carbon.

  13. Biomass-derived nitrogen-doped porous carbons with tailored hierarchical porosity and high specific surface area for high energy and power density supercapacitors

    Science.gov (United States)

    Sun, Junting; Niu, Jin; Liu, Mengyue; Ji, Jing; Dou, Meiling; Wang, Feng

    2018-01-01

    Porous carbon materials with hierarchical structures attract intense interest for the development of high-performance supercapacitors. Herein, we demonstrate a facile and efficient strategy to synthesize nitrogen-doped hierarchically porous carbons with tailored porous structure combined with high specific surface area (SSA), which involves a pre-carbonization and a subsequent carbonization combined with KOH activation of silkworm cocoon precursors. Through adjusting the mass ratio of the activator (KOH) to pre-carbonized precursor in the activation process, the hierarchically porous carbon prepared at the mass ratio of 2 (referred to as NHPC-2) possesses a high defect density and a high SSA of 3386 m2 g-1 as well as the relatively high volumetric proportion of mesopores and macropores (45.5%). As a result, the energy density and power density of the symmetric supercapacitor based on NHPC-2 electrode are as high as 34.41 Wh kg-1 and 31.25 kW kg-1 in organic-solvent electrolyte, and are further improved to 112.1 Wh kg-1 and 23.91 kW kg-1 in ionic-liquid electrolyte.

  14. Hierarchical nitrogen-doped porous carbon with high surface area derived from endothelium corneum gigeriae galli for high-performance supercapacitor

    International Nuclear Information System (INIS)

    Hong, Xiaoting; Hui, K.S.; Zeng, Zhi; Hui, K.N.; Zhang, Luojiang; Mo, Mingyue; Li, Min

    2014-01-01

    Highlights: • Porous carbons were prepared using endothelium corneum gigeriae galli as precursor. • Surface and structural properties strongly depend on carbonization temperatures. • Resultant carbons possess nitrogen heteroatom and high surface areas. • ECGG-900 sample exhibits excellent electrochemical capacitive performances. - Abstract: Endothelium corneum gigeriae galli derived 3D hierarchical nitrogen-doped porous carbon was for the first time prepared by preliminary carbonization at 450 °C and final KOH activation at high temperatures. The surface and structural properties of the as-synthesized samples are analyzed with Brunauer–Emmett–Teller surface analyzer apparatus, X-Ray Diffractometer, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrometer. The electrochemical performances are analyzed by cyclic voltammetry, galvanostatic charge/discharge cycling and electrochemical impedance spectroscopy. The obtained results show that the sample carbonized at 900 °C possesses the SSA of 2149.9 m 2 g −1 , average micropore diameter of 1.78 nm, and exhibits the highest initial specific capacitance of 198.0 F g −1 at current density of 1 A g −1 in 6 M KOH solution. It retains good specific capacitance retention of 91.6% after 3000 charge/discharge cycles at current density of 2 A g −1

  15. Influence of surface oxidation on ion dynamics and capacitance in porous and nonporous carbon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Dyatkin, Boris [Drexel Univ., Philadelphia, PA (United States); Zhang, Yu [Vanderbilt Univ., Nashville, TN (United States); Mamontov, Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kolesnikov, Alexander I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheng, Yongqiang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cummings, Peter T. [Vanderbilt Univ., Nashville, TN (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2016-04-07

    Here, we investigate the influence of surface chemistry and ion confinement on capacitance and electrosorption dynamics of room-temperature ionic liquids (RTILs) in supercapacitors. Using air oxidation and vacuum annealing, we produced defunctionalized and oxygen-rich surfaces of carbide-derived carbons (CDCs) and graphene nanoplatelets (GNPs). While oxidized surfaces of porous CDCs improve capacitance and rate handling abilities of ions, defunctionalized nonporous GNPs improve charge storage densities on planar electrodes. Quasi-elastic neutron scattering (QENS) and inelastic neutron scattering (INS) probed the structure, dynamics, and orientation of RTIL ions confined in divergently functionalized pores. Oxidized, ionophilic surfaces draw ions closer to pore surfaces and enhance potential-driven ion transport during electrosorption. Molecular dynamics (MD) simulations corroborated experimental data and demonstrated the significance of surface functional groups on ion orientations, accumulation densities, and capacitance.

  16. Morphological and electrochemical properties of boron-doped diamond films on carbon cloths with enhanced surface area

    International Nuclear Information System (INIS)

    Silva, L.L.G.; Ferreira, N.G.; Corat, E.J.

    2008-01-01

    The electrochemical properties of doped diamond electrodes (10 17 -10 19 B cm -3 ) grown on carbon fiber cloths in H 2 SO 4 0.1 mol L -1 electrolyte were investigated. Cyclic voltammograms of B-doped diamond/carbon fiber cloth and carbon fiber cloth electrodes showed that both kinds of electrodes possess similar working potential windows of about 2.0 V. The electrode capacitance was determined by impedance spectroscopy and chronopotentiometry measurements and very close values were obtained. The capacitance values of the diamond film on carbon fiber cloths were 180 times higher than the ones of diamond films on Si. In this paper we have also discussed the capacitance frequency dependence of diamond/carbon cloth electrodes

  17. Total belowground carbon flux in subalpine forests is related to leaf area index, soil nitrogen, and tree height

    Science.gov (United States)

    Berryman, Erin Michele; Ryan, Michael G.; Bradford, John B.; Hawbaker, Todd J.; Birdsey, R.

    2016-01-01

    In forests, total belowground carbon (C) flux (TBCF) is a large component of the C budget and represents a critical pathway for delivery of plant C to soil. Reducing uncertainty around regional estimates of forest C cycling may be aided by incorporating knowledge of controls over soil respiration and TBCF. Photosynthesis, and presumably TBCF, declines with advancing tree size and age, and photosynthesis increases yet C partitioning to TBCF decreases in response to high soil fertility. We hypothesized that these causal relationships would result in predictable patterns of TBCF, and partitioning of C to TBCF, with natural variability in leaf area index (LAI), soil nitrogen (N), and tree height in subalpine forests in the Rocky Mountains, USA. Using three consecutive years of soil respiration data collected from 22 0.38-ha locations across three 1-km2 subalpine forested landscapes, we tested three hypotheses: (1) annual soil respiration and TBCF will show a hump-shaped relationship with LAI; (2) variability in TBCF unexplained by LAI will be related to soil nitrogen (N); and (3) partitioning of C to TBCF (relative to woody growth) will decline with increasing soil N and tree height. We found partial support for Hypothesis 1 and full support for Hypotheses 2 and 3. TBCF, but not soil respiration, was explained by LAI and soil N patterns (r2 = 0.49), and the ratio of annual TBCF to TBCF plus aboveground net primary productivity (ANPP) was related to soil N and tree height (r2 = 0.72). Thus, forest C partitioning to TBCF can vary even within the same forest type and region, and approaches that assume a constant fraction of TBCF relative to ANPP may be missing some of this variability. These relationships can aid with estimates of forest soil respiration and TBCF across landscapes, using spatially explicit forest data such as national inventories or remotely sensed data products.

  18. Three-dimensional cheese-like carbon nanoarchitecture with tremendous surface area and pore construction derived from corn as superior electrode materials for supercapacitors

    Science.gov (United States)

    Gopiraman, Mayakrishnan; Deng, Dian; Kim, Byoung-Suhk; Chung, Ill-Min; Kim, Ick Soo

    2017-07-01

    Highly porous carbon nanoarchitectures (HPCNs) were derived from biomass materials, namely, corn fibers (CF), corn leafs (CL), and corn cobs (CC). We surprisingly found that by a very simple activation process the CF, CL, and CC materials can be transformed into exciting two-dimensional (2D) and three-dimensional (3D) carbon nanoarchitectures with excellent physicochemical properties. FESEM and HRTEM results confirmed a three different carbon forms (such as foams-like carbon, carbon sheets with several holes and cheese-like carbon morphology) of HPCNs. Huge surface area (2394-3475 m2/g) with excellent pore properties of HPCNs was determined by BET analysis. Well condensed graphitic plans of HPCNs were confirmed by XRD, XPS and Raman analyses. As an electrode material, HPCNs demonstrated a maximum specific capacitance (Cs) of 575 F/g in 1.0 M H2SO4 with good stability over 20,000 cycles. The CC-700 °C showed a tremendous Cs of 375 F/g even at 20000th cycles. To the best of our knowledge, this is the highest Cs by the biomass derived activated carbons in aqueous electrolytes. The CC-700 °C exhibited excellent charge-discharge behavior at various current densities (0.5-10 A g-1). Notably, CC-700 °C demonstrated an excellent Cs of 207 F/g at current density of 10 A g-1. An extraordinary change-discharge behavior was noticed at low current density of 0.5 A g-1.

  19. Evidence of calcium carbonates in coastal (Talos Dome and Ross Sea area) East Antarctica snow and firn: Environmental and climatic implications

    Science.gov (United States)

    Sala, M.; Delmonte, B.; Frezzotti, M.; Proposito, M.; Scarchilli, C.; Maggi, V.; Artioli, G.; Dapiaggi, M.; Marino, F.; Ricci, P. C.; De Giudici, G.

    2008-07-01

    Micrometre-sized aeolian dust particles stored in Antarctic firn and ice layers are a useful tool for reconstructing climate and environmental changes in the past. The mineral content, particle concentration and chemical composition of modern dust in firn cores from the peripherycal dome (Talos Dome) and coastal area of East Antarctica (Ross Sea sector) were investigated. During analyses there was a considerable decrease in microparticle concentrations within a few hours of ice sample melting, accompanied by a systematic increase in the concentration of calcium ions (Ca 2+) in solution. Based on mineralogical phase analyses, which reveal the presence of anhydrous and hydrous calcium carbonates such as calcite (CaCO 3), monohydrocalcite (CaCO 3·H 2O) and ikaite (CaCO 3·6H 2O, hexahydrate calcium carbonate), the observed variations in concentrations are ascribed to the partial dissolution of the carbonate content of samples. Soluble carbonate compounds are thus primary aerosols included into the samples along with insoluble aluminosilicate minerals. We hypothesize hydrous carbonates may derive from the sea ice surface, where ikaite typically forms at the early stages of sea ice formation. Back trajectory calculations show that favourable events for air mass advection from the sea ice surface to Talos Dome are rare but likely to occur.

  20. Test of the suitability of ECOPATH/ECOSIM modelling software as a compliment to estimate flows of carbon, C-14 and radionuclides in the Oeregrundsgrepen area

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Johannes [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    2004-04-01

    In this study it was evaluated whether the ECOPATH with ECOSIM software could be used as a standard platform to facilitate for radioecologists to construct and study transport and accumulation of radionuclides in aquatic food webs. The evaluation was based upon: 1) a previously published food web model of carbon/carbon-14 flow for the Oeregrundsgrepen area, Baltic Sea, 2) a generic model, 3) an ECOSIM model and 4) an ECOTRACE model. The results presented clearly shows that there is great potential for a successful development of this scientific approach in the future. The original carbon flows and assumptions was easily incorporated into the ECOPATH with ECOSIM modelling environment. The carbon flows differed only negligible between the two models, except for the benthic flows, which was more accurately described in this study. Further, by using ECOPATH it was easily discovered that the growth efficiencies used in the original model was quite high, being 47% for most of the heterotrophs, which are high from an ecological point of view. However, that is probably due to differences in how the carbon flows have been estimated in the original versus the present study. It is likely, however that the carbon demand has been underestimated in the original model. The generic model was parameterised from data available through the software as well from the diets and assumptions used in the original carbon model. The use of these parameters resulted in carbon flows, which was between 0.7 to 11 times the flows estimated by the ECOPATH model. The difference was greatest for primary producers being 3.7 to 11 times the original flows. Thus, depending on the question one is addressing it was suggested that the use of generic parameters is best for making test models of carbon and radionuclide flows in ecosystems, where the data set for validation is limited. Finally, the ECOPATH and ECOSIM model was well suited to drive a C-14 flow model, such as ECOTRACER for each of the

  1. Test of the suitability of ECOPATH/ECOSIM modelling software as a compliment to estimate flows of carbon, C-14 and radionuclides in the Oeregrundsgrepen area

    International Nuclear Information System (INIS)

    Sandberg, Johannes

    2004-04-01

    In this study it was evaluated whether the ECOPATH with ECOSIM software could be used as a standard platform to facilitate for radioecologists to construct and study transport and accumulation of radionuclides in aquatic food webs. The evaluation was based upon: 1) a previously published food web model of carbon/carbon-14 flow for the Oeregrundsgrepen area, Baltic Sea, 2) a generic model, 3) an ECOSIM model and 4) an ECOTRACE model. The results presented clearly shows that there is great potential for a successful development of this scientific approach in the future. The original carbon flows and assumptions was easily incorporated into the ECOPATH with ECOSIM modelling environment. The carbon flows differed only negligible between the two models, except for the benthic flows, which was more accurately described in this study. Further, by using ECOPATH it was easily discovered that the growth efficiencies used in the original model was quite high, being 47% for most of the heterotrophs, which are high from an ecological point of view. However, that is probably due to differences in how the carbon flows have been estimated in the original versus the present study. It is likely, however that the carbon demand has been underestimated in the original model. The generic model was parameterised from data available through the software as well from the diets and assumptions used in the original carbon model. The use of these parameters resulted in carbon flows, which was between 0.7 to 11 times the flows estimated by the ECOPATH model. The difference was greatest for primary producers being 3.7 to 11 times the original flows. Thus, depending on the question one is addressing it was suggested that the use of generic parameters is best for making test models of carbon and radionuclide flows in ecosystems, where the data set for validation is limited. Finally, the ECOPATH and ECOSIM model was well suited to drive a C-14 flow model, such as ECOTRACER for each of the

  2. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    International Nuclear Information System (INIS)

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M.; McDonnell, J.R.

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas

  3. U-isotopes and (226)Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas.

    Science.gov (United States)

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-07-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ((238)U, (235)U and (234)U) and (226)Ra by alpha spectrometry were determined. The activity concentration of (238)U presented a large variation from around 1.1 to 65 mBq L(-1). Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The (234)U/(238)U activity ratios were higher than unity for all samples (1.1-3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. (226)Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10(2) mBq L(-1)); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed (226)Ra/(234)U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). (226)Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest (234)U/(238)U activity ratios, probably due to fast uniform bulk mineral dissolution

  4. Peanut Shell-Derived Carbon Solid Acid with Large Surface Area and Its Application for the Catalytic Hydrolysis of Cyclohexyl Acetate

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2016-10-01

    Full Text Available A carbon solid acid with large surface area (CSALA was prepared by partial carbonization of H3PO4 pre-treated peanut shells followed by sulfonation with concentrated H2SO4. The structure and acidity of CSALA were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, 13C cross polarization (CP/magic angle spinning (MAS nuclear magnetic resonance (NMR, X-ray photoelectron spectroscopy (XPS, Fourier transform-infrared spectroscopy (FT-IR, titration, and elemental analysis. The results demonstrated that the CSALA was an amorphous carbon material with a surface area of 387.4 m2/g. SO3H groups formed on the surface with a density of 0.46 mmol/g, with 1.11 mmol/g of COOH and 0.39 mmol/g of phenolic OH. Densities of the latter two groups were notably greater than those observed on a carbon solid acid (CSA with a surface area of 10.1 m2/g. The CSALA catalyst showed better performance than the CSA for the hydrolysis of cyclohexyl acetate to cyclohexanol. Under optimal reaction conditions, cyclohexyl acetate conversion was 86.6% with 97.3% selectivity for cyclohexanol, while the results were 25.0% and 99.4%, respectively, catalyzed by CSA. The high activity of the CSALA could be attributed to its high density of COOH and large surface area. Moreover, the CSALA showed good reusability. Its catalytic activity decreased slightly during the first two cycles due to the leaching of polycyclic aromatic hydrocarbon-containing SO3H groups, and then remained constant during following uses.

  5. ENVIRONMENTAL LEVELS AND DISTRIBUTION OF CARBON MONOXIDE IN BUCHAREST URBAN AREA CASE STUDY: 1. 07. 2006 – 31.03.2007

    Directory of Open Access Journals (Sweden)

    POPESCU NICOLAE CRISTIAN

    2013-03-01

    Full Text Available Ambient concentrations of carbon monoxide in the vicinity of or inside urban and industrial areas can substantially exceed environmental background levels and can be detrimental to human health and welfare. In this period of analysis (July 2006 – March 2007, the maximum allowable concentration (MAC was exceeded especially at Mihai Bravu and Cercul Militar. The accompanying diagrams showing the time evolution and charts revealing the spatial distribution of CO ambient air concentrations (based on GIS techniques can be useful instruments in identifying the potential risk areas, like the important streets in the center of Bucharest.

  6. The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors.

    Science.gov (United States)

    Pohlmann, Sebastian; Lobato, Belén; Centeno, Teresa A; Balducci, Andrea

    2013-10-28

    This study analyses and compares the behaviour of 5 commercial porous carbons in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) and its mixture with propylene carbonate (PC) as electrolytes. The results of this investigation show that the existence of a distribution of pore sizes and/or constrictions at the entrance of the pores leads to significant changes in the specific capacitance of the investigated materials. The use of PYR14TFSI as an electrolyte has a positive effect on the EDLC energy storage, but its high viscosity limits the power density. The mixture 50 : 50 wt% propylene carbonate-PYR14TFSI provides high operative voltage as well as low viscosity and thus notably enhances EDLC operation.

  7. Identification of Skills Needed for Central Areas of Green and Low-Carbon Economy, for the Needs of Labor Market, in Finland

    Directory of Open Access Journals (Sweden)

    Tove Holm

    2017-01-01

    Full Text Available EU has set sustainable growth as a goal for 2020, by which a transition to a more resource efficient greener and competitive economy should be achieved. This requires new skills in business life. We have studied how vocational education and training and higher education may serve as a promoter of a green and low-carbon economy in Finland. Based on results from interviews of companies three main areas were chosen. These areas were decentralized renewable energy production, use of organic by-products and promotion of energy efficiency in properties. Education in vocational education and training and universities of applied sciences, for the selected areas, was mapped in 2014-15. The results were presented on workshops, where knowledge supply chains for a green economy on the selected areas were developed. If was found that cooperation between different fields and levels of education is important, as the new skills often emerge at the interfaces.

  8. Evasion of CO2 and dissolved carbon in river waters of three small catchments in an area occupied by small family farms in the eastern Amazon

    Directory of Open Access Journals (Sweden)

    Maria Beatriz Silva da Rosa

    2017-08-01

    Full Text Available CO2 effluxes from streams and rivers have been hypothesized to be a critical pathway of carbon flow from the biosphere back to the atmosphere. This study was conducted in three small Amazonian catchments to evaluate carbon evasion and dynamics, where land-use change has occurred on small family-farms. Monthly field campaigns were conducted from June 2006 to May 2007 in the Cumaru (CM, Pachibá (PB and São João (SJ streams. Electrical conductivity, pH, temperature, and dissolved oxygen measurements were done in situ, while water samples were collected to determine dissolved organic carbon (DOC and dissolved inorganic carbon (DIC concentrations, as well as carbon dioxide partial pressures (pCO2 and CO2 evasion fluxes. Instantaneous discharge measured by a current meter was used to calculate DOC fluxes. Considering all the sites, DOC, DIC, pCO2, and CO2 flux measurements ranged as follows, respectively: 0.27 - 12.13 mg L-1; 3.5 - 38.9 mg L-1; 2,265 - 26,974 ppm; and 3.39 - 75.35 μmol m-2 s-1. DOC annual flux estimates for CM, SJ and PB were, respectively, 281, 245, and 169 kg C ha-1. CO2 evasion fluxes had an average of 22.70 ± 1.67 μmol m-2 s-1. These CO2 evasion fluxes per unit area were similar to those measured for major Amazonian rivers, thus confirming our hypothesis that small streams can evade substantial quantities of CO2. As secondary vegetation is abundant as a result of family farming management in the region, we conclude that this vegetation can be a major driver of an abundant carbon cycle.

  9. Total and size-resolved particle number and black carbon concentrations in urban areas near Schiphol airport (the Netherlands)

    NARCIS (Netherlands)

    Keuken, M.P.; Moerman, M.; Zandveld, P.; Henzing, J.S.; Hoek, G.

    2015-01-01

    The presence of black carbon, and size-resolved and total particle number concentrations (PNC) were investigated in the vicinity of Schiphol airport in the Netherlands, the fourth busiest airport in Europe. Continuous measurements were conducted between March and May 2014at Adamse Bos, located 7km

  10. Contrasting responses to long-term climate change of carbon flows to benthic consumers in two different sized lakes in the Baltic area.

    Science.gov (United States)

    Belle, Simon; Freiberg, Rene; Poska, Anneli; Agasild, Helen; Alliksaar, Tiiu; Tõnno, Ilmar

    2018-05-01

    The study of lake sediments and archived biological remains is a promising approach to better understand the impacts of climate change on aquatic ecosystems. Small lakes have been shown to be strongly sensitive to past climate change, but similar information is lacking for large lakes. By identifying responses to climate change of carbon flows through benthic food web in two different sized lakes, we aimed to understand how lake morphometry can mediate the effects of climate change. We reconstructed the dynamics of phytoplankton community composition and carbon resources sustaining chironomid biomass during the Holocene from the combined analysis of sedimentary pigment quantification and carbon stable isotopic composition of subfossil chironomid head capsules (δ13CHC) in a large lake in the Baltic area (Estonia). Our results showed that chironomid biomass in the large lake was mainly sustained by phytoplankton, with no significant relationship between δ13CHC values and temperature fluctuations. We suggest that lake morphometry (including distance of the sampling zone to the shoreline, and lake volume for primary producers) mediates the effects of climate change, making large lakes less sensitive to climate change. Complementary studies are needed to better understand differences in organic matter dynamics in different sized lakes and to characterize the response of the aquatic carbon cycle to past climate change.

  11. Geographic overlaps between priority areas for forest carbon-storage efforts and those for delivering peacebuilding programs: implications for policy design

    Science.gov (United States)

    Castro-Nunez, Augusto; Mertz, Ole; Sosa, Chrystian C.

    2017-05-01

    Of the countries considering national-level policies for incentivizing reductions in forest-based greenhouse gas emissions (REDD+), some 25 are experiencing (or are emerging from) armed-conflicts. It has been hypothesized that the outcomes of the interactions between carbon-storage and peacebuilding efforts could result in either improved or worsened forest conservation and likewise increased or decreased conflict. Hence, for this study we explore potential interactions between forest carbon-storage and peacebuilding efforts, with Colombia as a case study. Spatial associations between biomass carbon and three conflict-related variables suggest that such interactions may exist. Nonetheless, while priority areas for carbon-focused conservation are presumably those at highest risks of deforestation, our research indicates that forests with lower risk of deforestation are typically those affected by armed-conflict. Our findings moreover highlight three possible roles played by Colombian forested municipalities in armed groups’ military strategies: venues for battle, hideouts, and sources of natural resources to finance war.

  12. Fully Screen-Printed, Large-Area, and Flexible Active-Matrix Electrochromic Displays Using Carbon Nanotube Thin-Film Transistors.

    Science.gov (United States)

    Cao, Xuan; Lau, Christian; Liu, Yihang; Wu, Fanqi; Gui, Hui; Liu, Qingzhou; Ma, Yuqiang; Wan, Haochuan; Amer, Moh R; Zhou, Chongwu

    2016-11-22

    Semiconducting single-wall carbon nanotubes are ideal semiconductors for printed electronics due to their advantageous electrical and mechanical properties, intrinsic printability in solution, and desirable stability in air. However, fully printed, large-area, high-performance, and flexible carbon nanotube active-matrix backplanes are still difficult to realize for future displays and sensing applications. Here, we report fully screen-printed active-matrix electrochromic displays employing carbon nanotube thin-film transistors. Our fully printed backplane shows high electrical performance with mobility of 3.92 ± 1.08 cm 2 V -1 s -1 , on-off current ratio I on /I off ∼ 10 4 , and good uniformity. The printed backplane was then monolithically integrated with an array of printed electrochromic pixels, resulting in an entirely screen-printed active-matrix electrochromic display (AMECD) with good switching characteristics, facile manufacturing, and long-term stability. Overall, our fully screen-printed AMECD is promising for the mass production of large-area and low-cost flexible displays for applications such as disposable tags, medical electronics, and smart home appliances.

  13. Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation

    Science.gov (United States)

    Kim, Pilnam; Kang, Tae June

    2017-12-01

    We present a simple and scalable fluidic-assembly approach, in which bundles of single-walled carbon nanotubes (SWCNTs) are selectively aligned and deposited by directionally controlled dip-coating and solvent evaporation processes. The patterned surface with alternating regions of hydrophobic polydimethyl siloxane (PDMS) (height 100 nm) strips and hydrophilic SiO2 substrate was withdrawn vertically at a constant speed ( 3 mm/min) from a solution bath containing SWCNTs ( 0.1 mg/ml), allowing for directional evaporation and subsequent selective deposition of nanotube bundles along the edges of horizontally aligned PDMS strips. In addition, the fluidic assembly was applied to fabricate a field effect transistor (FET) with highly oriented SWCNTs, which demonstrate significantly higher current density as well as high turn-off ratio (T/O ratio 100) as compared to that with randomly distributed carbon nanotube bundles (T/O ratio <10).

  14. Geographic overlaps between priority areas for forest carbon-storage efforts and those for delivering peacebuilding programs

    DEFF Research Database (Denmark)

    Nunez, Augusto Carlos Castro; Mertz, Ole; Sosa, Chrystian C.

    2017-01-01

    -storage and peacebuilding efforts could result in either improved or worsened forest conservation and likewise increased or decreased conflict. Hence, for this study we explore potential interactions between forest carbon-storage and peacebuilding efforts, with Colombia as a case study. Spatial associations between biomass...... by armed-conflict. Our findings moreover highlight three possible roles played by Colombian forested municipalities in armed groups' military strategies: venues for battle, hideouts, and sources of natural resources to finance war....

  15. Lithofacies Attributes of a Transgressive Carbonate System : The Middle Eocence Seeb Formation, Al Khoud Area, Muscat, Oman

    OpenAIRE

    Osman Salad Hersi; Abdulrahman AL-Harthy

    2010-01-01

    The Seeb Formation (Middle Eocene) is an about 600 m thick transgressive carbonate succession deposited in the Batina and Muscat coastal region of Oman. The formation consists of five informal, but distinct units, and their stacking architecture suggests a deepening-upward, shallow marine depositional setting. Unit I is characterized by cross-bedded, sandy, bioclastic packstones to grainstones deposited in a high energy beach-to-intertidal environment. Unit II consists of indistinctly bedded,...

  16. Temporal and Spatial variations in Organic and Elemental carbon concentrations in PM10/PM2.5 in the Metropolitan Area of Costa Rica, Central America

    Science.gov (United States)

    Campos-Ramos, A.; Herrera Murillo, J.; Rodriguez-Roman, S.; Cardenas, B.; Blanco-Jimenez, S.

    2011-12-01

    During 2010-2011, as part of a Binational Cooperation Project between Mexico and Costa Rica, samples collected weekly in 15 and 5 sites for PM10 and PM2,5 respectively, in the Metropolitan area of Costa Rica, a region of 2.5 million habitants. Based on the high PM2.5 mass concentrations found (17-38 μg/m3), samples were analyzed to determinate the organic and elemental carbon concentrations using DRI Model 2001 Thermal/Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, CA, USA). Organic (OC) and Elemental (EC) carbon concentrations exhibited a clear seasonal pattern with higher concentrations in the rainy period than in the dry period, due to cooperative effects of changes in emission rates and seasonal meteorology. Spatial variations in carbonaceous species concentrations were observed mostly influenced by the local sources at the different sampling sites in the following magnitude of contribution: vehicle emissions > industrial > agricultural burning. Total carbonaceous aerosol accounted for 42.7% and 26.8% of PM2.5 mass in rainy and dry period, respectively. Good correlation (R = 0.87-0.93) between OC and EC indicated that they had common dominant sources of combustion such as heavy fuels used in industries and traffic emissions. The estimated secondary organic carbon (SOC) accounted for 46.9% and 35.3% of the total OC in the rainy and dry period, respectively, indicating that SOC may be an important contributor to fine organic aerosol in the Metropolitan Area of Costa Rica. These results will be used to improve the National Emissions Inventory, particularly for PM2.5.

  17. Carbon Dynamics of Reclaimed Coal Mine Soil under Agricultural Use: A Chronosequence Study in the Dongtan Mining Area, Shandong Province, China

    Directory of Open Access Journals (Sweden)

    Jun-Feng Qu

    2017-04-01

    Full Text Available Soil organic carbon (SOC plays an essential role in the early stages of pedogenisis and ecological restoration in reclaimed mine soils. Dynamic changes in the SOC content are essential for assessing the quality of reclaimed mine soils and the effect of ecological restoration. To objectively assess the carbon dynamics of reclaimed soils, we selected the surface (0–20 cm soil of farmland under agricultural use (soybean–wheat rotation from a reclamation chronosequence (R4: 4 years of reclamation, R7: 7 years of reclamation, R10: 10 years of reclamation and R13: 13 years of reclamation in the Dongtan Mining Area, Shandong Province, China. The adjacent normal, unaffected farmland was used as a control (CK. The results showed that the SOC content gradually increased with the reclamation age until it reached 7.98 g·kg−1 for R13, which accounted for 76% of that of the CK. However, the total carbon contents of the reclaimed soils did not significantly differ from and even appeared higher than that of the CK. This is mainly because the inorganic carbon contents of the reclaimed soils ranged from 2.98 to 12.61 g·kg−1, all of which were significantly higher than the 0.87 g·kg−1 obtained for the CK. The microbial biomass carbon (MBC content and the microbial quotient significantly increased with the reclamation age of the soil, and both parameters were markedly higher for R13 than for the CK. The dissolved organic carbon (DOC content and its ratio to the SOC were significantly higher for R4–R13 than for the CK and DOC/SOC gradually decreased with the reclamation age. Both the reclamation age and the temperature had positive effects on the soil basal respiration (SBR. The SBR rate constantly increased with the reclamation age and was markedly higher at 25 °C than at 15 °C. The temperature sensitivity (Q10 of the SBR showed a clearly decreasing trend for the reclamation chronosequence, but its value remained higher for R13 than for the CK (2

  18. Spacetime Distributions of Wildfire Areas and Emissions of Carbon-Containing Gases and Aerosols in Northern Eurasia according to Satellite-Monitoring Data

    Science.gov (United States)

    Bondur, V. G.; Gordo, K. A.; Kladov, V. L.

    2017-12-01

    Based on online wildfire satellite-monitoring data, distributions of burned-out areas, as well as emission volumes of carbon-containing gases (CO and CO2) and fine aerosols (PM2.5), for different regions and months in 2005-2016 (across the territory of Russia) and in 2010-2016 (northern Eurasia) are analyzed. Distinctive features of the seasonal behavior of wildfires and emission volumes of carbon-containing gases and fine aerosols for different regions of northern Eurasia are determined. It is shown that between 2005 and 2016 the annual area of territories burned out during wildfires in Russia decreased by almost a factor of 2.6 owing to early detection and suppression of fire sources. It is determined that in 2014-2016 the relative size of burned-out areas in Ukraine increased 6-9-fold and volumes of CO, CO2, and PM2.5 emissions by more than a factor of 6.5-7.5 times when compared to earlier years and these characteristics for other European countries.

  19. Preparation of nitrogen-doped cotton stalk microporous activated carbon fiber electrodes with different surface area from hexamethylenetetramine-modified cotton stalk for electrochemical degradation of methylene blue

    Directory of Open Access Journals (Sweden)

    Kunquan Li

    Full Text Available Cotton-stalk activated carbon fibers (CSCFs with controllable micropore area and nitrogen content were prepared as an efficient electrode from hexamethylenetetramine-modified cotton stalk by steam/ammonia activation. The influence of microporous area, nitrogen content, voltage and initial concentration on the electrical degradation efficiency of methylene blue (MB was evaluated by using CSCFs as anode. Results showed that the CSCF electrodes exhibited excellent MB electrochemical degradation ability including decolorization and COD removal. Increasing micropore surface area and nitrogen content of CSCF anode leaded to a corresponding increase in MB removal. The prepared CSCF-800-15-N, which has highest N content but lowest microporous area, attained the best degradation effect with 97% MB decolorization ratio for 5 mg/L MB at 12 V in 4 h, implying the doped nitrogen played a prominent role in improving the electrochemical degradation ability. The electrical degradation reaction was well described by first-order kinetics model. Overall, the aforesaid findings suggested that the nitrogen-doped CSCFs were potential electrode materials, and their electrical degradation abilities could be effectively enhanced by controlling the nitrogen content and micropore surface area. Keywords: Cotton stalk, Nitrogen content, Electrode, Surface area, Methylene blue

  20. Removal of Cr{sup 6+} from wastewater via adsorption with high-specific-surface-area nitrogen-doped hierarchical porous carbon derived from silkworm cocoon

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junting; Zhang, Zhengping; Ji, Jing; Dou, Meiling, E-mail: douml@mail.buct.edu.cn; Wang, Feng, E-mail: wangf@mail.buct.edu.cn

    2017-05-31

    Highlights: • The nitrogen-doped hierarchical porous carbon was prepared from silkworm cocoon. • The NHPC possesses a unique porous structure and a high specific surface area. • The NHPC presents superior adsorption performance for Cr (VI). • The NHPC exhibits an excellent recyclability for the removal of Cr (VI). - Abstract: The development of highly efficient adsorbents is an effective way to remove Cr{sup 6+} from wastewater for environment protection. Herein, a high-specific-surface-area nitrogen-doped hierarchical porous carbon (NHPC) derived from silkworm cocoon was synthesized and applied as an efficient adsorbent for the removal of Cr{sup 6+} from wastewater. The resultant NHPC possesses a specific surface area as high as 3134 m{sup 2} g{sup −1} and a unique hierarchical porous structure with a large number of small mesopores (2–4 nm) and micropores (0.8–2 nm) embedded in the sidewall of bowl-like macropores (200–300 nm), in which sufficient exposure of adsorption sites and high-flow transfer of Cr{sup 6+} ions can be achieved. As a result, the NHPC exhibits a remarkable adsorption performance with a larger adsorption capacity (366.3 mg g{sup −1}), a higher adsorption rate (4 × 10{sup −2} g mg{sup −1} min{sup −1}) and a superior recyclability in comparison with the commercial adsorbent (Norit CGP). Thermodynamic and kinetic analyses indicate that the adsorption process is spontaneous and endothermic, which fits well with the pseudo-second-order kinetic model and Langmuir isotherm model. This biomass-based porous carbon with well-defined hierarchical porous structure can be applied as a promising adsorbent for the removal of Cr{sup 6+} from wastewater.

  1. High fluxes but different patterns of nitrous oxide and carbon dioxide emissions from soil in a cattle overwintering area

    Czech Academy of Sciences Publication Activity Database

    Hynšt, Jaroslav; Šimek, Miloslav; Brůček, Petr; Petersen, S. O.

    2007-01-01

    Roč. 120, 2-4 (2007), s. 269-279 ISSN 0167-8809 R&D Projects: GA ČR GA526/04/0325 Grant - others:Evropská unie(XE) EVK2-CT-2000-00096; MŠMT(CZ) 21-1072/2004 Institutional research plan: CEZ:AV0Z60660521 Source of funding: R - rámcový projekt EK ; V - iné verejné zdroje Keywords : nitrous oxide * carbon dioxide * denitrification Subject RIV: EH - Ecology, Behaviour Impact factor: 2.308, year: 2007

  2. Confocal Microscopy for Process Monitoring and Wide-Area Height Determination of Vertically-Aligned Carbon Nanotube Forests

    Directory of Open Access Journals (Sweden)

    Markus Piwko

    2015-08-01

    Full Text Available Confocal microscopy is introduced as a new and generally applicable method for the characterization of the vertically-aligned carbon nanotubes (VACNT forest height. With this technique process control is significantly intensified. The topography of the substrate and VACNT can be mapped with a height resolution down to 15 nm. The advantages of confocal microscopy, compared to scanning electron microscopy (SEM, are demonstrated by investigating the growth kinetics of VACNT using Al2O3 buffer layers with varying thicknesses. A process optimization using confocal microscopy for fast VACNT forest height evaluation is presented.

  3. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Science.gov (United States)

    Deshmukh, Chandrashekhar; Guérin, Frédéric; Vongkhamsao, Axay; Pighini, Sylvie; Oudone, Phetdala; Sopraseuth, Saysoulinthone; Godon, Arnaud; Rode, Wanidaporn; Guédant, Pierre; Oliva, Priscia; Audry, Stéphane; Zouiten, Cyril; Galy-Lacaux, Corinne; Robain, Henri; Ribolzi, Olivier; Kansal, Arun; Chanudet, Vincent; Descloux, Stéphane; Serça, Dominique

    2018-03-01

    Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air-water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR) in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles) and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C) fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require an in-depth evaluation

  4. Carbon dioxide emissions from the flat bottom and shallow Nam Theun 2 Reservoir: drawdown area as a neglected pathway to the atmosphere

    Directory of Open Access Journals (Sweden)

    C. Deshmukh

    2018-03-01

    Full Text Available Freshwater reservoirs are a significant source of CO2 to the atmosphere. CO2 is known to be emitted at the reservoir surface by diffusion at the air–water interface and downstream of dams or powerhouses by degassing and along the river course. In this study, we quantified total CO2 emissions from the Nam Theun 2 Reservoir (Lao PDR in the Mekong River watershed. The study started in May 2009, less than a year after flooding and just a few months after the maximum level was first reached and lasted until the end of 2013. We tested the hypothesis that soils from the drawdown area would be a significant contributor to the total CO2 emissions.Total inorganic carbon, dissolved and particulate organic carbon and CO2 concentrations were measured in 4 pristine rivers of the Nam Theun watershed, at 9 stations in the reservoir (vertical profiles and at 16 stations downstream of the monomictic reservoir on a weekly to monthly basis. CO2 bubbling was estimated during five field campaigns between 2009 and 2011 and on a weekly monitoring, covering water depths ranging from 0.4 to 16 m and various types of flooded ecosystems in 2012 and 2013. Three field campaigns in 2010, 2011 and 2013 were dedicated to the soils description in 21 plots and the quantification of soil CO2 emissions from the drawdown area. On this basis, we calculated total CO2 emissions from the reservoir and carbon inputs from the tributaries. We confirm the importance of the flooded stock of organic matter as a source of carbon (C fuelling emissions. We show that the drawdown area contributes, depending on the year, from 40 to 75 % of total annual gross emissions in this flat and shallow reservoir. Since the CO2 emissions from the drawdown zone are almost constant throughout the years, the large interannual variations result from the significant decrease in diffusive fluxes and downstream emissions between 2010 and 2013. This overlooked pathway in terms of gross emissions would require

  5. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tan, I.A.W.; Ahmad, A.L. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Hameed, B.H. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)], E-mail: chbassim@eng.usm.my

    2008-06-15

    Adsorption isotherm and kinetics of methylene blue on activated carbon prepared from coconut husk were determined from batch tests. The effects of contact time (1-30 h), initial dye concentration (50-500 mg/l) and solution temperature (30-50 {sup o}C) were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherm models. The equilibrium data were best represented by Langmuir isotherm model, showing maximum monolayer adsorption capacity of 434.78 mg/g. The kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models, and was found to follow closely the pseudo-second-order kinetic model. Thermodynamic parameters such as standard enthalpy ({delta}H{sup o}), standard entropy ({delta}S{sup o}) and standard free energy ({delta}G{sup o}) were evaluated. The adsorption interaction was found to be exothermic in nature. Coconut husk-based activated carbon was shown to be a promising adsorbent for removal of methylene blue from aqueous solutions.

  6. Distribution and Thermal Maturity of Devonian Carbonate Reservoir Solid Bitumen in Desheng Area of Guizhong Depression, South China

    Directory of Open Access Journals (Sweden)

    Yuguang Hou

    2017-01-01

    Full Text Available The distribution of solid bitumen in the Devonian carbonate reservoir from well Desheng 1, Guizhong Depression, was investigated by optical microscope and hydrocarbon inclusions analysis. Vb and chemical structure indexes measured by bitumen reflectance, laser Raman microprobe (LRM, and Fourier transform infrared spectroscopy (FTIR were carried out to determine the thermal maturity of solid bitumen. Based on the solid bitumen thermal maturity, the burial and thermal maturity history of Devonian carbonate reservoir were reconstructed by basin modeling. The results indicate that the fractures and fracture-related dissolution pores are the main storage space for the solid bitumen. The equivalent vitrinite reflectance of solid bitumen ranges from 3.42% to 4.43% converted by Vb (% and LRM. The infrared spectroscopy analysis suggests that there are no aliphatic chains detected in the solid bitumen which is rich in aromatics C=C chains (1431–1440 cm−1. The results of Vb (%, LRM, and FTIR analysis demonstrate that the solid bitumen has experienced high temperature and evolved to the residual carbonaceous stage. The thermal evolution of Devonian reservoirs had experienced four stages. The Devonian reservoirs reached the highest reservoir temperature 210–260°C during the second rapid burial-warming stage, which is the main period for the solid bitumen formation.

  7. Belemnite-based strontium, carbon and oxygen isotope stratigraphy of the type area of the Maastrichtian Stage

    NARCIS (Netherlands)

    Vonhof, H.B.; Jagt, J.W.M.; Immenhauser, A.; Smit, J.; Berg, Y.W. van den; Saher, M.; Keutgen, N.; Reijmer, J.J.G.

    2011-01-01

    Belemnitellid cephalopods from the Maastrichtian stratotype area (southeast Netherlands) are shown to be comparatively well preserved. Although partial diagenetic alteration has been observed, micromilling techniques have permitted the extraction of pristine belemnite calcite, suitable for the

  8. Saptial and Temporal in Stable Carbon and Oxygen Isotope Ratios of Juvenile Winter Flounder Otoliths From Selected Nursery Areas

    Science.gov (United States)

    Winter flounder (Pseudopleuronectes americanus) populations have supported large commercial and recreational fisheries along the coast of New England. In recent years, however, the population of this important species has declined precipitously in some areas, especially Narragan...

  9. Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China.

    Science.gov (United States)

    Zhang, Yang; Ni, Jiupai; Yang, John; Zhang, Tong; Xie, Deti

    2017-08-01

    Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4-61.6% in topsoil (0-10 cm) and by 24.8-39.9% in subsoil (10-30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1-62.4% in topsoil and 34.8-46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6-206.0% in topsoil and 2.77-61.09% in subsoil), and mineral-associated OC (MOC, 43.6-46.5% in topsoil and 26.0-51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO 2 emission.

  10. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    Science.gov (United States)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  11. Improving winter leaf area index estimation in evergreen coniferous forests and its significance in carbon and water fluxes modeling

    Science.gov (United States)

    Wang, R.; Chen, J. M.; Luo, X.

    2016-12-01

    Modeling of carbon and water fluxes at the continental and global scales requires remotely sensed LAI as inputs. For evergreen coniferous forests (ENF), severely underestimated winter LAI has been one of the issues for mostly available remote sensing products, which could cause negative bias in the modeling of Gross Primary Productivity (GPP) and evapotranspiration (ET). Unlike deciduous trees which shed all the leaves in winter, conifers retains part of their needles and the proportion of the retained needles depends on the needle longevity. In this work, the Boreal Ecosystem Productivity Simulator (BEPS) was used to model GPP and ET at eight FLUXNET Canada ENF sites. Two sets of LAI were used as the model inputs: the 250m 10-day University of Toronto (U of T) LAI product Version 2 and the corrected LAI based on the U of T LAI product and the needle longevity of the corresponding tree species at individual sites. Validating model daily GPP (gC/m2) against site measurements, the mean RMSE over eight sites decreases from 1.85 to 1.15, and the bias changes from -0.99 to -0.19. For daily ET (mm), mean RMSE decreases from 0.63 to 0.33, and the bias changes from -0.31 to -0.16. Most of the improvements occur in the beginning and at the end of the growing season when there is large correction of LAI and meanwhile temperature is still suitable for photosynthesis and transpiration. For the dormant season, the improvement in ET simulation mostly comes from the increased interception of precipitation brought by the elevated LAI during that time. The results indicate that model performance can be improved by the application the corrected LAI. Improving the winter RS LAI can make a large impact on land surface carbon and energy budget.

  12. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  13. Potential soil organic carbon stocks in semi arid areas under climate change scenarios: an application of CarboSOIL model in northern Egypt

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Abd-Elmabod, Sameh K.; Jordán, Antonio; Zavala, Lorena M.; Anaya-Romero, Maria; De la Rosa, Diego

    2014-05-01

    1. INTRODUCTION Climate change is predicted to have a large impact on semi arid areas which are often degraded and vulnerable to environmental changes (Muñoz-Rojas et al., 2012a; 2012b; 2013). However, these areas might play a key role in mitigation of climate change effects through sequestration of carbon in soils (United Nations, 2011). At the same time, increasing organic carbon in these environments could be beneficial for soil erosion control, soil fertility and, ultimately, food production (Lal, 2004). Several approaches have been carried out to evaluate climate change impacts on soil organic carbon (SOC) stocks, but soil carbon models are amongst the most effective tools to assess C stocks, dynamics and distribution and to predict trends under climate change scenarios (Jones et al., 2005 ). CarboSOIL is an empirical model based on regression techniques and developed to predict SOC contents at standard soil depths of 0 to 25, 25 to 50 and 50-75 cm (Muñoz-Rojas et al., 2013). CarboSOIL model has been designed as a GIS-integrated tool and is a new component of the agroecological decision support system for land evaluation MicroLEIS DSS (De la Rosa et al., 2004). 2. GENERAL METHODS In this research, CarboSOIL was applied in El-Fayoum depression, a semi arid region located in northern Egypt with a large potential for agriculture (Abd-Elmabod et al, 2012). The model was applied in a total of six soil-units classified according the USDA Soil Taxonomy system within the orders Entisols and Aridisols under different climate climate change scenarios. Global climate models based on the Organisation for Economic Co-operation and Development (Agrawala at al., 2004) and the Intergovernmental Panel on Climate Change (IPCC, 2007) were applied to predict short-, medium- and long-term trends (2030, 2050 and 2100) of SOC dynamics and sequestration at different soil depths (0-25, 25-50 and 50-75) and land use types (irrigated areas, olive groves, wheat, cotton and other annual

  14. Application of optimized large surface area date stone (Phoenix dactylifera ) activated carbon for rhodamin B removal from aqueous solution: Box-Behnken design approach.

    Science.gov (United States)

    Danish, Mohammed; Khanday, Waheed Ahmad; Hashim, Rokiah; Sulaiman, Nurul Syuhada Binti; Akhtar, Mohammad Nishat; Nizami, Maniruddin

    2017-05-01

    Box-Behnken model of response surface methodology was used to study the effect of adsorption process parameters for Rhodamine B (RhB) removal from aqueous solution through optimized large surface area date stone activated carbon. The set experiments with three input parameters such as time (10-600min), adsorbent dosage (0.5-10g/L) and temperature (25-50°C) were considered for statistical significance. The adequate relation was found between the input variables and response (removal percentage of RhB) and Fisher values (F- values) along with P-values suggesting the significance of various term coefficients. At an optimum adsorbent dose of 0.53g/L, time 593min and temperature 46.20°C, the adsorption capacity of 210mg/g was attained with maximum desirability. The negative values of Gibb ' s free energy (ΔG) predicted spontaneity and feasibility of adsorption; whereas, positive Enthalpy change (ΔH) confirmed endothermic adsorption of RhB onto optimized large surface area date stone activated carbons (OLSADS-AC). The adsorption data were found to be the best fit on the Langmuir model supporting monolayer type of adsorption of RhB with maximum monolayer layer adsorption capacity of 196.08mg/g. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Porous carbons

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and ...

  16. Lithofacies Attributes of a Transgressive Carbonate System : The Middle Eocence Seeb Formation, Al Khoud Area, Muscat, Oman

    Directory of Open Access Journals (Sweden)

    Osman Salad Hersi

    2010-12-01

    Full Text Available The Seeb Formation (Middle Eocene is an about 600 m thick transgressive carbonate succession deposited in the Batina and Muscat coastal region of Oman. The formation consists of five informal, but distinct units, and their stacking architecture suggests a deepening-upward, shallow marine depositional setting. Unit I is characterized by cross-bedded, sandy, bioclastic packstones to grainstones deposited in a high energy beach-to-intertidal environment. Unit II consists of indistinctly bedded, nodular, bioclastic (mainly larger foraminifera packstones and wackestones deposited in a logoonal lagoonal environment. Unit III is defined by medium to thickly bedded, bioclastic packestones to grainstones and subordinate, laterally confined conglomerates. Prominent sedimentary structures in Unit III include hummocky and swaly cross-stratificiation, erosional surfaces, dewatering-induced deformations and laterally amalgamating beds. This unit represents sub-tidal sand shoals deposited in a storm-dominated shelf (between the fair-weather wave-base and storm-base. Unit IV is extensively burrowed, nodular, bioclastic wackestone to rudstone which is similar to Unit II in many aspects. Unit IV was deposited on the basinward side of the Unit III sand shoals below the reach of the storm-generated waves and currents. The uppermost Unit V is characterized by poorly-cemented bioclastic (large foraminiferal rudstones with clay and silt-size quartz matrix. Bioclasts are generally intact with no apparent reworking. Deposition of Unit V is also envisaged as a low-energy, outershelf environment.

  17. Assimilation of Remotely Sensed Leaf Area Index into the Community Land Model with Explicit Carbon and Nitrogen Components using Data Assimilation Research Testbed

    Science.gov (United States)

    Ling, X.; Fu, C.; Yang, Z. L.; Guo, W.

    2017-12-01

    Information of the spatial and temporal patterns of leaf area index (LAI) is crucial to understand the exchanges of momentum, carbon, energy, and water between the terrestrial ecosystem and the atmosphere, while both in-situ observation and model simulation usually show distinct deficiency in terms of LAI coverage and value. Land data assimilation, combined with observation and simulation together, is a promising way to provide variable estimation. The Data Assimilation Research Testbed (DART) developed and maintained by the National Centre for Atmospheric Research (NCAR) provides a powerful tool to facilitate the combination of assimilation algorithms, models, and real (as well as synthetic) observations to better understanding of all three. Here we systematically investigated the effects of data assimilation on improving LAI simulation based on NCAR Community Land Model with the prognostic carbon-nitrogen option (CLM4CN) linked with DART using the deterministic Ensemble Adjustment Kalman Filter (EAKF). Random 40-member atmospheric forcing was used to drive the CLM4CN with or without LAI assimilation. The Global Land Surface Satellite LAI data (GLASS LAI) LAI is assimilated into the CLM4CN at a frequency of 8 days, and LAI (and leaf carbon / nitrogen) are adjusted at each time step. The results show that assimilating remotely sensed LAI into the CLM4CN is an effective method for improving model performance. In detail, the CLM4-CN simulated LAI systematically overestimates global LAI, especially in low latitude with the largest bias of 5 m2/m2. While if updating both LAI and leaf carbon and leaf nitrogen simultaneously during assimilation, the analyzed LAI can be corrected, especially in low latitude regions with the bias controlled around ±1 m2/m2. Analyzed LAI could also represent the seasonal variation except for the Southern Temperate (23°S-90°S). The obviously improved regions located in the center of Africa, Amazon, the South of Eurasia, the northeast of

  18. Seasonal variability of soil CO2 flux and its carbon isotope composition in Krakow urban area, Southern Poland.

    Science.gov (United States)

    Jasek, Alina; Zimnoch, Miroslaw; Gorczyca, Zbigniew; Smula, Ewa; Rozanski, Kazimierz

    2014-06-01

    As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.

  19. The morphogroups of small agglutinated foraminifera from the Devonian carbonate complex of the Prague Synform, (Barrandian area, Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Holcová, K.; Slavík, Ladislav

    2013-01-01

    Roč. 386, č. 5 (2013), s. 210-214 ISSN 0031-0182 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100131201 Institutional support: RVO:67985831 Keywords : Barrandian area * Early Devonian * foraminifera * morphogroups Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.752, year: 2013

  20. Exposure of motorcycle, car and bus commuters to carbon monoxide on a main road in the Tel Aviv metropolitan area, Israel.

    Science.gov (United States)

    Potchter, Oded; Oz, Meirav; Brenner, Shmuel; Yaakov, Yaron; Schnell, Izhak

    2014-12-01

    Short-term personal exposure of passengers in different types of motor vehicles to carbon monoxide was investigated in an intensively used main road in Israel's Tel Aviv metropolitan area. According to monitoring stations of the Ministry for Environmental Protection (MEP), concentrations of carbon monoxide (CO) along the road, at a height of 3 m above pedestrian level, in the Tel Aviv metropolitan area, are currently very low. However, these measurements do not reflect the actual exposure of commuters, which were the main objective of this study. Four vehicle types/travel modes were investigated: private cars with closed windows, private cars with open windows, motorcycles, and buses. The commuter CO average exposure was the accumulative exposure divided by the duration of the sampling taken along the route, for each type of vehicles. The results showed that commuters in cars with closed windows were exposed to the highest mean CO level, 27.2 ppm, for a period of 38 min; those in a car with open windows, to 19.7 ppm for 38 min; motorcycle riders, to 12.8 ppm, for 17 min; and bus users were exposed to the lowest mean pollution level, of only 3.6 ppm, for 25 min. Thus, CO values of 1 to 3 ppm, as measured at an MEP adjacent monitoring station, may indicate the exposure to CO pollution of area residents, but do not represent the actual exposure of commuters on the congested main road.

  1. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Brevik, Eric. C.; Cerdá, Artemi

    2015-04-01

    Soil organic carbon (SOC) is extremely important in the global carbon (C) cycle; also, SOC is a soil property subject to changes, inasmuch as SOC is highly variable in space and time. The scientific community is researching the fate of the organic carbon in the ecosystems and this is why there is a blooming interest on this topic (Oliveira et al., 2014; Kukal et al., 2015). Soil organic matter play a key role in the Soil System (Fernández-Romero et al., 2014; Parras-Alcántara and Lozano García, 2014; Lozano-García and Parras-Alcántara; Parras-Alcántara et al., 2015).Globally it is known that soil C sequestration is a strategy to mitigate climate change. Over time, some researchers have analyzed entire soil profiles (ESP) by pedogenetic horizons and other researchers have analyzed soil control sections (SCS) (edaphic controls to different thickness), and in each case the benefits of the methodology established was justified. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km2 forested area in southern Spain. The park is in a Mediterranean environment and is a natural area (free of human disturbance). Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C to 0.6353 Tg C respectively (1 Tg = 10E12 g). However, when the top soil (surface horizon and superficial section control) was analyzed, this difference increased to

  2. Temporal hydrological and hydrochemical behaviour of the regional discharge area of a carbonate system - why we can not see fast responses?

    Science.gov (United States)

    Bodor, Petra; Eröss, Anita; Kovács, József; Mádl-Szönyi, Judit

    2016-04-01

    The subsurface part of the hydrologic cycle, the saturated groundwater flow can be mostly studied in regional discharge areas. In these regions the water has already spent geologically long time under the surface, therefore the upwelling water reflect the effect of the geometry and boundary conditions of the whole flow field, its geology and chemical processes. According to these conditions, the discharging waters can be characterized with different values and variability of physicochemical parameters (temperature, total dissolved solids, cations, anions, gas content etc.). This question has special interest in carbonate systems where the concept of regional groundwater flow was only introduced in the last few years. Hydrographs and chemographs are frequently used in karst studies to demonstrate the effect of variability of the system and to derive information for the nature of flow inside the karst (channel, fracture or matrix). Usually these graphs show abrupt changes after precipitation events, but this is typical for epigenic karsts. However, discharge areas, where hypogenic karsts developed, can behave differently due to their feeding flow systems. These systems and their effects are not so well studied yet. In this study we examined hydrographs and chemographs of the regional discharge area of a deep and thick carbonate range of Buda Thermal Karst and tried to understand those mechanisms which determine the hydrological and hydrochemical behaviour of the region. Here cold, lukewarm and also thermal waters discharge along the River Danube. The variability of physicochemical parameters (temperature, electric conductivity, pH, volume discharge, water level, dissolved CO2 and 222Rn, δ18O, δD) of the discharging water was studied to understand influencing mechanisms. We tried to understand the effect of precipitation (short and long term) and the effect of River Danube with geomathematical methods for the lukewarm components of the discharging water. Based on

  3. A decision support model for waste management in support of developing low carbon, eco regions. Case studies of densely populated kampung settlements in urban areas in Jakarta

    International Nuclear Information System (INIS)

    Candra Dewi, Ova

    2013-01-01

    Due to the various types of waste disposal, treatment, utilization and technologies, decision support model for waste management is needed to assist planners and decision makers in finding most suitable way to manage municipal solid waste efficiently. Many planners and decision makers in the area of municipal solid waste have a lack of thorough understanding of the complex chains of waste management system. Therefore the impact for the environment quality and the public health can only be judged at the rudimentary level. However, most existing models are primarily focusing on cost or environmental analysis. Only few consider other crucial factors such as the demographic condition, the characteristics of urban form and urban infrastructure, land transformation aspects due to urban development. Consequently, such models often meet difficulties to cope with cultural requirement. Based on those reasons, a decision support model to set up alternatives of most appropriate technology for sustainable waste management towards a low carbon eco-city on a regional basis is developed in this PhD study. The Low Carbon- and Eco-Region, in particular the contribution of waste management sector, is a vision of living in low rate of carbon generation, using fewer natural resources, and encouraging energy recovery and/or waste reduction at source by improving the used material quality (up-cycling). This decision support model is constructed mainly based on the cultural requirement and local context of a region and synergize the geographic, environmental, social capital and economics aspects in order to fulfill the needs of the respective region and its society. The method employed in this model is not solely a new developed model, but also an advanced model in material flow analysis (STAN), and life cycle assessment on solid waste system (EASEWASTE) and Geographic Information System (GIS). At the same time the model also assists the stakeholders in improving the environmental quality

  4. A decision support model for waste management in support of developing low carbon, eco regions. Case studies of densely populated kampung settlements in urban areas in Jakarta

    Energy Technology Data Exchange (ETDEWEB)

    Candra Dewi, Ova

    2013-06-14

    Due to the various types of waste disposal, treatment, utilization and technologies, decision support model for waste management is needed to assist planners and decision makers in finding most suitable way to manage municipal solid waste efficiently. Many planners and decision makers in the area of municipal solid waste have a lack of thorough understanding of the complex chains of waste management system. Therefore the impact for the environment quality and the public health can only be judged at the rudimentary level. However, most existing models are primarily focusing on cost or environmental analysis. Only few consider other crucial factors such as the demographic condition, the characteristics of urban form and urban infrastructure, land transformation aspects due to urban development. Consequently, such models often meet difficulties to cope with cultural requirement. Based on those reasons, a decision support model to set up alternatives of most appropriate technology for sustainable waste management towards a low carbon eco-city on a regional basis is developed in this PhD study. The Low Carbon- and Eco-Region, in particular the contribution of waste management sector, is a vision of living in low rate of carbon generation, using fewer natural resources, and encouraging energy recovery and/or waste reduction at source by improving the used material quality (up-cycling). This decision support model is constructed mainly based on the cultural requirement and local context of a region and synergize the geographic, environmental, social capital and economics aspects in order to fulfill the needs of the respective region and its society. The method employed in this model is not solely a new developed model, but also an advanced model in material flow analysis (STAN), and life cycle assessment on solid waste system (EASEWASTE) and Geographic Information System (GIS). At the same time the model also assists the stakeholders in improving the environmental quality

  5. Estimates of carbon stored in harvested wood products from United States Forest Service's Sierra Nevada Bio-Regional Assessment Area of the Pacific Southwest Region, 1909-2012

    Science.gov (United States)

    Keith Stockmann; Nathaniel Anderson; Jesse Young; Ken Skog; Sean Healey; Dan Loeffler; Edward Butler; J. Greg Jones; James Morrison

    2014-01-01

    Global forests capture and store significant amounts of carbon through photosynthesis. When carbon is removed from forests through harvest, a portion of the harvested carbon is stored in wood products, often for many decades. The United States Forest Service (USFS) and other agencies are interested in accurately accounting for carbon flux associated with harvested wood...

  6. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Winterfeld, Maria

    2014-08-01

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ 13 C and Δ 14 C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  7. N- and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction

    Science.gov (United States)

    Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.

    2015-02-01

    Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.

  8. UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes--A Case Study from the CarboZALF Experimental Area.

    Science.gov (United States)

    Wehrhan, Marc; Rauneker, Philipp; Sommer, Michael

    2016-02-19

    The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b899. The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part.

  9. In-treatment tests for the monitoring of proton and carbon-ion therapy with a large area PET system at CNAO

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, V., E-mail: valeria.rosso@pi.infn.it [Department of Physics, University of Pisa and INFN, Pisa (Italy); Battistoni, G. [INFN Sezione di Milano, Milano (Italy); Belcari, N.; Camarlinghi, N. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Ciocca, M. [Fondazione CNAO, Pavia (Italy); Collini, F. [Department of Physical Sciences, Earth and Environment, University of Siena and INFN, Pisa (Italy); Ferretti, S.; Kraan, A.C.; Lucenò, S. [Department of Physics, University of Pisa and INFN, Pisa (Italy); Molinelli, S.; Pullia, M. [Fondazione CNAO, Pavia (Italy); Sportelli, G.; Zaccaro, E.; Del Guerra, A. [Department of Physics, University of Pisa and INFN, Pisa (Italy)

    2016-07-11

    One of the most promising new radiotherapy techniques makes use of charged particles like protons and carbon ions, rather than photons. At present, there are more than 50 particle therapy centers operating worldwide, and many new centers are being constructed. Positron Emission Tomography (PET) is considered a well-established non-invasive technique to monitor range and delivered dose in patients treated with particle therapy. Nuclear interactions of the charged hadrons with the patient tissue lead to the production of β+ emitting isotopes (mainly {sup 15}O and {sup 11}C), that decay with a short lifetime producing a positron. The two 511 keV annihilation photons can be detected with a PET detector. In-beam PET is particularly interesting because it could allow monitoring the ions range also during dose delivery. A large area dual head PET prototype was built and tested. The system is based on an upgraded version of the previously developed DoPET prototype. Each head covers now 15×15 cm{sup 2} and is composed by 9 (3×3) independent modules. Each module consists of a 23×23 LYSO crystal matrix (2 mm pitch) coupled to H8500 PMT and is readout by custom front-end and a FPGA based data acquisition electronics. Data taken at the CNAO treatment facility in Pavia with proton and carbon beams impinging on heterogeneous phantoms demonstrate the DoPET capability to detect the presence of a small air cavity in the phantom.

  10. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    Science.gov (United States)

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for

  11. [Simulating climate change effect on aboveground carbon sequestration rates of main broadleaved trees in the Xiaoxing'an Mountains area, Northeast China].

    Science.gov (United States)

    Ma, Jun; Bu, Rencang; Deng, Hua-Wei; Hu, Yuan-Man; Qin, Qin; Han, Feng-Lin

    2014-09-01

    LANDIS Pro 7.0 model was used to simulate the dynamics of aboveground biomass of ten broadleaved tree species in the Xiao Xing' an Mountains area under current and various climate change scenarios from 2000 to 2200, and carbon content coefficients (CCCs) were coupled to cal- culate the aboveground carbon sequestration rates (ACSRs) of these species. The results showed that in the initial year of simulation, the biomasses and their proportions of Fraxinus mandshurica, Phellodendron amurense, Quercus mongolica, Ulmus propinqua, and Acer mono were relatively low, while those of Betula costata, Betula platyphylla, and Populus davidiana were higher. A trend of rise after decline occurred in ACSR for pioneer species in the mid and late periods of simulation years, but ACSRs for the other broadleaved tree species were considerably complex. The ACSRs of Q. mongolica and Tilla amurensis fluctuated in the ranges of -0.05-0.25 t · hm(-2) · 10 a(-1) and 0.16-1.29 t · hm(-2) · 10 a(-1) in simulation years, respectively. The ACSRs of F. mandshurica, U. propinqua, A. mono, and B. costata showed a trend of decline after rise in late simulation years. There were significant differences in ACSR for P. amurense and B. davurica among various climate change scenarios in the periods of 2050-2100 and 2150-2200, while no significant difference in ACSR for the other species would be detected. Difference of sensitivity of various species in ACSR for future climate scenarios in the Small Khingan Mountains area existed. However, the un- certainty of future climates would not yield significant difference in ACSR for most broadleaved tree species. Moreover, a time lag would exist in the process of climate change effects on temperate forest's ACSR.

  12. Demise of the northern Tethyan Urgonian carbonate platform and subsequent transition towards pelagic conditions: The sedimentary record of the Col de la Plaine Morte area, central Switzerland

    Science.gov (United States)

    Föllmi, Karl B.; Gainon, François

    2008-04-01

    The sedimentary succession of the Col de la Plaine Morte area (Helvetic Alps, central Switzerland) documents the disappearance of the northern Tethyan Urgonian platform in unprecedented detail and suggests stepwise platform demise, with each drowning phase documented by erosion and phosphogenesis. The first identified drowning phase terminated Urgonian carbonate production in a predominantly photozoan mode. Using a correlation of the whole-rock δ13C record with the well-dated record from SE France, its age is inferred to as Middle Early Aptian (near the boundary between the weissi and deshayesi zones). A subsequent drowning phase is dated by ammonites and by a correlation of the whole-rock δ13C record as Late Early Aptian (late deshayesi to early furcata zone). A third drowning phase provides an ammonite-based age of Early Late Aptian ( subnodosocostatum and melchioris zones) and is part of a widely recognized phase of sediment condensation and phosphogenesis, which is dated as latest Early to Middle Late Aptian (late furcata zone to near the boundary of the melchioris and nolani zones). The fourth and final drowning phase started in the latest Aptian ( jacobi zone) as is also indicated by ammonite findings at the Col de la Plaine Morte. The phases of renewed platform-carbonate production intervening between the drowning phases were all in a heterozoan mode. During the ultimate drowning phase, phosphogenesis continued until the Early Middle Albian, whereas condensation processes lasted until the Middle Turonian. Coverage of the external margin of the drowned Urgonian platform by a drape of pelagic carbonates started only in the Late Turonian. During the Santonian, the external part of the drowned platform underwent normal faulting and saw the re-exposure of already lithified Urgonian carbonates at the seafloor. Based on the here-inferred ages, the first drowning phase just precedes oceanic anoxic episode 1a (OAE 1a or "selli event") in time, and the second

  13. Influence of soil sampling approaches in the evaluation of soil organic carbon stocks under different land uses in a Mediterranean area

    Science.gov (United States)

    Francaviglia, Rosa; Doro, Luca; Ledda, Luigi; Parras-Alcántara, Luis; Lozano-García, Beatriz

    2016-04-01

    Different approaches of soil sampling can provide significantly different estimates of soil organic carbon stocks (SOCs) (Parras-Alcántara et al., 2015a). Many studies have focused on SOC distribution only in the biologically active layers of topsoil, the IPCC carbon accounting method estimates the change in SOC storage for the top 30 cm of a soil profile, and indeed limited data are available for SOCs below this depth. Moreover, SOC estimates are more uncertain in areas with heterogeneous land uses and pedoclimatic conditions such as Mediterranean environments, which are more prone to land degradation due to SOC degradation and depletion and erosive processes (Muñoz-Rojas et al., 2015). Anyhow, the open question is whether soil should be sampled following the pedogenetic horizons with soil entire soil approach (ESP), or along fixed depth increments using the soil control section method (SCS) (Parras-Alcántara et al., 2015b). In addition, SOCs are often not adjusted for the soil volume occupied by coarse fragments as recommended by the IPCC Good Practice Guidance for LULUCF (IPCC, 2003) accordingly to the equation: SOCs = SOC (g kg-1) × bulk density (Mg m-3) × depth (m) × (1 - coarse fragment) × 10. The work deals with the comparison of SOCs using the ESP and SCS approaches, applied to a study area of northeastern Sardinia (Italy) under typical agro-silvo-pastoral systems (Francaviglia et al., 2014). The area lies within a hilly basin where elevation is in the range 275-340 m a.s.l., and slope ranges from 2-6% to 16-30%. The local climate is warm temperate with dry and hot summers, mean annual rainfall is 623 mm (range 367-811mm) and mean annual temperature is 15.0° C (13.8-16.4° C). The area has the same soil type (Haplic Endoleptic Cambisols, Dystric) according to IUSS Working Group WRB (2006), and the following land uses with different levels of cropping intensification were compared: Tilled vineyards (Tv), No-tilled grassed vineyards (Ntgv), Hay crop

  14. Particle count and black carbon measurements at schools in Las Vegas, NV and in the greater Salt Lake City, UT area.

    Science.gov (United States)

    Brown, Steven G; Vaughn, David L; Roberts, Paul T

    2017-11-01

    As part of two separate studies aimed to characterize ambient pollutant concentrations at schools in urban areas, we compare black carbon and particle count measurements at Adcock Elementary in Las Vegas, NV (April-June 2013), and Hunter High School in the West Valley City area of greater Salt Lake City, UT (February 2012). Both schools are in urban environments, but Adcock Elementary is next to the U.S. 95 freeway. Black carbon (BC) concentrations were 13% higher at Adcock compared to Hunter, while particle count concentrations were 60% higher. When wind speeds were low-less than 2 m/sec-both BC and particle count concentrations were significantly higher at Adcock, while concentrations at Hunter did not have as strong a variation with wind speed. When wind speeds were less than 2 m/sec, emissions from the adjacent freeway greatly affected concentrations at Adcock, regardless of wind direction. At both sites, BC and particle count concentrations peaked in the morning during commute hours. At Adcock, particle count also peaked during midday or early afternoon, when BC was low and conditions were conducive to new particle formation. While this midday peak occurred at Adcock on roughly 45% of the measured days, it occurred on only about 25% of the days at Hunter, since conditions for particle formation (higher solar radiation, lower wind speeds, lower relative humidity) were more conducive at Adcock. Thus, children attending these schools are likely to be exposed to pollution peaks during school drop-off in the morning, when BC and particle count concentrations peak, and often again during lunchtime recess when particle count peaks again. Particle count concentrations at two schools were shown to typically be independent of BC or other pollutants. At a school in close proximity to a major freeway, particle count concentrations were high during the midday and when wind speeds were low, regardless of wind direction, showing a large area of effect from roadway emissions

  15. A self-template and self-activation co-coupling green strategy to synthesize high surface area ternary-doped hollow carbon microspheres for high performance supercapacitors.

    Science.gov (United States)

    Gao, Meng; Fu, Jianwei; Wang, Minghuan; Wang, Kai; Wang, Shaomin; Wang, Zhiwei; Chen, Zhimin; Xu, Qun

    2018-04-06

    Development of facile and cost-effective routes to achieve hierarchical porous and heteroatoms-doped carbon architectures is urgently needed for high-performance supercapacitor application. In our study, ternary-doped (nitrogen, phosphorus and oxygen) hollow carbon microspheres (NPO-HCSs) are fabricated by one-step pyrolysis of single poly(cyclotriphosphazene-co-phloroglucinol) (PCPP) microsphere, which is generated through a facile polymerization between hexachlorocyclotriphosphazene and phloroglucinol at mild conditions. The whole preparation process is not used any additional template or activating agent. The obtained NPO-HCS-950 with average diameter of 580 nm and shell thickness of about 80 nm have a high specific surface area (2390 m 2  g -1 ), a large pore volume (1.35 cm 3  g -1 ), hierarchically interconnected pore texture, and uniform ternary heteroatom doping (O: 3.04 at%; N: 1.33 at% and P: 0.67 at%). As an electrode material for supercapacitors, the specific capacitance of the NPO-HCS-950 reaches 253 F g -1 of 1 A g - 1 and 176 F g -1 at 20 A g -1 , revealing superior rate performance. The capacity retention after 10,000 consecutive charge-discharge cycles at 20 A g -1 is up to 98.9%, demonstrating excellent cycling stability. Moreover, the assembled symmetric supercapacitor using NPO-HCS-950 exhibits a relatively high energy density of 17.6 W h kg -1 at a power density of 800 W kg -1 . Thus, a promising electrode material for high-performance supercapacitors is obtained through a facile, green and scalable synthesis route. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Atmospheric carbon tetrachloride in rural background and industry surrounded urban areas in Northern Iberian Peninsula: Mixing ratios, trends, and potential sources

    International Nuclear Information System (INIS)

    Blas, Maite de; Uria-Tellaetxe, Iratxe; Gomez, Maria Carmen; Navazo, Marino; Alonso, Lucio; García, Jose Antonio; Durana, Nieves; Iza, Jon; Ramón, Jarol Derley

    2016-01-01

    Latest investigations on atmospheric carbon tetrachloride (CTC) are focused on its ozone depleting potential, adverse effects on the human health, and radiative efficiency and Global Warming Potential as a greenhouse gas. CTC mixing ratios have been thoroughly studied since its restriction under the Montreal Protocol, mostly in remote areas with the aim of reporting long-term trends after its banning. The observed decrease of the CTC background mixing ratio, however, was not as strong as expected. In order to explain this behavior CTC lifetime should be adjusted by estimating the relative significance of its sinks and by identifying ongoing potential sources. Looking for possible sources, CTC was measured with high-time resolution in two sites in Northern Spain, using auto-GC systems and specifically developed acquisition and processing methodologies. The first site, Bilbao, is an urban area influenced by the surrounding industry, where measurements were performed with GC–MSD for a one-year period (2007–2008). The second site, at Valderejo Natural Park (VNP), is a rural background area where measurements were carried out with GC-FID and covering CTC data a nonsuccessive five-year period (2003–2005, 2010–2011, and 2014–2015 years). Median yearly CTC mixing ratios were slightly higher in the urban area (120 pptv) than in VNP (80–100 pptv). CTC was reported to be well mixed in the atmosphere and no sources were noticed to impact the rural site. The observed long-term trend in VNP was in agreement with the estimated global CTC emissions. In the urban site, apart from industrial and commercial CTC sources, chlorine-bleach products used as cleaning agents were reported as promotors of indoor sources. - Highlights: • A methodology was developed to measure CTC using GC-MSD and GC-FID. • CTC ongoing sources were noticed in an industry surrounded urban area. • No noticeable nearby CTC sources impacted the rural site. • Long-term CTC trend in agreement

  17. Atmospheric carbon tetrachloride in rural background and industry surrounded urban areas in Northern Iberian Peninsula: Mixing ratios, trends, and potential sources

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Maite de, E-mail: maite.deblas@ehu.eus [School of Engineering of Bilbao, University of the Basque Country UPV/EHU (Spain); Uria-Tellaetxe, Iratxe; Gomez, Maria Carmen [School of Engineering of Bilbao, University of the Basque Country UPV/EHU (Spain); Navazo, Marino [University College of Engineering of Vitoria-Gasteiz, University of the Basque Country UPV/EHU (Spain); Alonso, Lucio; García, Jose Antonio; Durana, Nieves; Iza, Jon; Ramón, Jarol Derley [School of Engineering of Bilbao, University of the Basque Country UPV/EHU (Spain)

    2016-08-15

    Latest investigations on atmospheric carbon tetrachloride (CTC) are focused on its ozone depleting potential, adverse effects on the human health, and radiative efficiency and Global Warming Potential as a greenhouse gas. CTC mixing ratios have been thoroughly studied since its restriction under the Montreal Protocol, mostly in remote areas with the aim of reporting long-term trends after its banning. The observed decrease of the CTC background mixing ratio, however, was not as strong as expected. In order to explain this behavior CTC lifetime should be adjusted by estimating the relative significance of its sinks and by identifying ongoing potential sources. Looking for possible sources, CTC was measured with high-time resolution in two sites in Northern Spain, using auto-GC systems and specifically developed acquisition and processing methodologies. The first site, Bilbao, is an urban area influenced by the surrounding industry, where measurements were performed with GC–MSD for a one-year period (2007–2008). The second site, at Valderejo Natural Park (VNP), is a rural background area where measurements were carried out with GC-FID and covering CTC data a nonsuccessive five-year period (2003–2005, 2010–2011, and 2014–2015 years). Median yearly CTC mixing ratios were slightly higher in the urban area (120 pptv) than in VNP (80–100 pptv). CTC was reported to be well mixed in the atmosphere and no sources were noticed to impact the rural site. The observed long-term trend in VNP was in agreement with the estimated global CTC emissions. In the urban site, apart from industrial and commercial CTC sources, chlorine-bleach products used as cleaning agents were reported as promotors of indoor sources. - Highlights: • A methodology was developed to measure CTC using GC-MSD and GC-FID. • CTC ongoing sources were noticed in an industry surrounded urban area. • No noticeable nearby CTC sources impacted the rural site. • Long-term CTC trend in agreement

  18. Changes in water mass exchange between the NW shelf areas and the North Atlantic and their impact on nutrient/carbon cycling

    Science.gov (United States)

    Gröger, Matthias; Maier-Reimer, Ernst; Mikolajewicz, Uwe; Segschneider, Joachim; Sein, Dimitry

    2010-05-01

    Despite their comparatively small extension on a global scale, shelf areas are of interest for several economic reasons and climatic processes related to nutrient cycling, sea food supply, and biological productivity. Moreover, they constitute an important interface for nutrients, pollutants and freshwater on their pathway from the continents to the open ocean. This modelling study aims to investigate the spatial and temporal variability of water mass exchange between the North Atlantic and the NW European shelf and their impact on nutrient/carbon cycling and biological productivity. For this, a new modeling approach has been set up which bridges the gap between pure shelf models where water mass transports across the model domain too strongly depend on the formulation of open boundaries and global models suffering under their too coarse resolution in shelf regions. The new model consists of the global ocean and carbon cycle model MPIOM/HAMOCC with strongly increased resolution in the North Sea and the North Atlantic coupled to the regional atmosphere model REMO. The model takes the full luni-solar tides into account. It includes further a 12 layer sediment module with the relevant pore water chemistry. The main focus lies on the governing mechanisms of water mass exchange across the shelf break and the imprint on shelf biogeochemistry. For this, artificial tracers with a prescribed decay rate have been implemented to distinguish waters arriving from polar and shelf regions and those that originate from the tropics. Experiments were carried out for the years 1948 - 2007. The relationship to larger scale circulation patterns like the position and variability of the subtropical and subpolar gyres is analyzed. The water mass exchange is analyzed with respect to the nutrient concentration and productivity on the European shelf areas. The implementation of tides leads to an enhanced vertical mixing which causes lower sea surface temperatures compared to simulations

  19. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation

    Directory of Open Access Journals (Sweden)

    A. Verhegghen

    2012-12-01

    Full Text Available This study aims to contribute to the understanding of the Congo Basin forests by delivering a detailed map of vegetation types with an improved spatial discrimination and coherence for the whole Congo Basin region. A total of 20 land cover classes were described with the standardized Land Cover Classification System (LCCS developed by the FAO. Based on a semi-automatic processing chain, the Congo Basin vegetation types map was produced by combining 19 months of observations from the Envisat MERIS full resolution products (300 m and 8 yr of daily SPOT VEGETATION (VGT reflectances (1 km. Four zones (north, south and two central were delineated and processed separately according to their seasonal and cloud cover specificities. The discrimination between different vegetation types (e.g. forest and savannas was significantly improved thanks to the MERIS sharp spatial resolution. A better discrimination was achieved in cloudy areas by taking advantage of the temporal consistency of the SPOT VGT observations. This resulted in a precise delineation of the spatial extent of the rural complex in the countries situated along the Atlantic coast. Based on this new map, more accurate estimates of the surface areas of forest types were produced for each country of the Congo Basin. Carbon stocks of the Basin were evaluated to a total of 49 360 million metric tons. The regional scale of the map was an opportunity to investigate what could be an appropriate tree cover threshold for a forest class definition in the Congo Basin countries. A 30% tree cover threshold was suggested. Furthermore, the phenology of the different vegetation types was illustrated systematically with EVI temporal profiles. This Congo Basin forest types map reached a satisfactory overall accuracy of 71.5% and even 78.9% when some classes are aggregated. The values of the Cohen's kappa coefficient, respectively 0.64 and 0.76 indicates a result significantly better than random.

  20. Air pollution studies in terms of PM2.5, PM2.5-10, PM10, lead and black carbon in urban areas of Antananarivo-Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Ravoson, H. N.; Raoelina Andriambololona; Randriamanivo, L. V.; Ramaherison, H.; Ahmed, H.; Harinoely, M.

    2011-01-01

    Atmospheric aerosols or particulate matters are chemically complex and dynamic mixtures of solid and liquid particles. Sources of particulate matters include both natural and anthropogenic processes. The present work consists in determining the concentrations of existing elements in the aerosols collected in Andravoahangy and in Ambodin Isotry in Antananarivo city (Madagascar). The size distribution of these elements and their main sources are also studied.The Total Reflection X-Ray Fluorescence spectrometer is used for the qualitative and quantitative analyses. The results show that the concentrations of the airborne particulate matters PM 2.5-10 are higher than those of PM 2.5 .The identified elements in the aerosol samples are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The calculation of the enrichment factors by Mason's model shows that Cr, Ni, Cu, Zn, Br and Pb are of anthropogenic origins. The average concentrations of lead (2.8 ng.m -3 , 31.3 ng.m -3 and 19.6 ng.m -3 respectively in aerosols collected in Andravoahangy in 2007 and in 2008 and in Ambodin Isotry in 2008) are largely lower than the average concentration of 1.8 μg.m -3 obtained in 2000 in the Antananarivo urban areas. The concentration of black carbon is higher in the fine particles. The Air Quality Index category is variable in the two sites.

  1. Electrochemical behavior of high performance on-chip porous carbon films for micro-supercapacitors applications in organic electrolytes

    Science.gov (United States)

    Brousse, K.; Huang, P.; Pinaud, S.; Respaud, M.; Daffos, B.; Chaudret, B.; Lethien, C.; Taberna, P. L.; Simon, P.

    2016-10-01

    Carbide derived carbons (CDCs) are promising materials for preparing integrated micro-supercapacitors, as on-chip CDC films are prepared via a process fully compatible with current silicon-based device technology. These films show good adherence on the substrate and high capacitance thanks to their unique nanoporous structure which can be fine-tuned by adjusting the synthesis parameters during chlorination of the metallic carbide precursor. The carbon porosity is mostly related to the synthesis temperature whereas the thickness of the films depends on the chlorination duration. Increasing the pore size allows the adsorption of large solvated ions from organic electrolytes and leads to higher energy densities. Here, we investigated the electrochemical behavior and performance of on-chip TiC-CDC in ionic liquid solvent mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) diluted in either acetonitrile or propylene carbonate via cyclic voltammetry and electrochemical impedance spectroscopy. Thin CDC films exhibited typical capacitive signature and achieved 169 F cm-3 in both electrolytes; 65% of the capacitance was still delivered at 1 V s-1. While increasing the thickness of the films, EMI+ transport limitation was observed in more viscous PC-based electrolyte. Nevertheless, the energy density reached 90 μW h cm-2 in 2M EMIBF4/ACN, confirming the interest of these CDC films for micro-supercapacitors applications.

  2. Carbons and carbon supported catalysts in hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, Edward

    2009-07-01

    This book is a comprehensive summary of recent research in the field and covers all areas of carbons and carbon materials. The potential application of carbon supports, particularly those of carbon black (CB) and activated carbon (AC) in hydroprocessing catalysis are covered. Novel carbon materials such as carbon fibers and carbon nano tubes (CNT) are also covered, including the more recent developments in the use of fullerenes in hydroprocessing applications. Although the primary focus of this book is on carbons and carbon supported catalysts, it also identifies the difference in the effect of carbon supports compared with the oxidic supports, particularly that of the Al{sub 2}O{sub 3}. The difference in catalyst activity and stability was estimated using both model compounds and real feeds under variable conditions. The conditions applied during the preparation of carbon supported catalysts are also comprehensively covered and include various methods of pretreatment of carbon supports to enhance catalyst performance. The model compounds results consistently show higher hydrodesulfurization and hydrodeoxygenation activities of carbon supported catalysts than that of the Al{sub 2}O{sub 3} supported catalysts. Also, the deactivation of the former catalysts by coke deposition was much less evident. Chapter 6.3.1.3 is on carbon-supported catalysts: coal-derived liquids.

  3. Re-sampling of carbon stocks in forest soils and afforestation areas after 18 years – results from the 7x7 km Kvadratnet in Denmark

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Vesterdal, Lars; Stupak, Inge

    drainage regime of soils that were frequently water saturated in previous centuries. It was also hypothesized that carbon gains in soils with a low or intermediate carbon stock, typical of well-drained soils, reflected the favorable, high precipitation conditions during the monitoring period, allowing...

  4. USE OF NARROW-DIAMETER DIRECT-PUSH WELLS TO CHARACTERIZE AND REMEDIATE CARBON TETRACHLORIDE IN THE 200 WEST AREA HANFORD SITE, WASHINGTON

    International Nuclear Information System (INIS)

    Rohay, V.J.

    2009-01-01

    This single page graphic shows several figures. The Hydraulic Hammer Rig (HHR) direct-push technology has been successfully used to characterize carbon tetrachloride in the vadose zone. Based on their favorable performance and radius of influence, HHR SVE wells have potential for future use in both monitoring and targeted SVE to achieve VOC cleanup goals at the carbon tetrachloride waste sites

  5. Seasonal patterns in nutrients, carbon, and algal responses in wadeable streams within three geographically distinct areas of the United States, 2007-08

    Science.gov (United States)

    Lee, Kathy E.; Lorenz, David L.; Petersen, James C.; Greene, John B.

    2012-01-01

    The U.S. Geological Survey determined seasonal variability in nutrients, carbon, and algal biomass in 22 wadeable streams over a 1-year period during 2007 or 2008 within three geographically distinct areas in the United States. The three areas are the Upper Mississippi River Basin (UMIS) in Minnesota, the Ozark Plateaus (ORZK) in southern Missouri and northern Arkansas, and the Upper Snake River Basin (USNK) in southern Idaho. Seasonal patterns in some constituent concentrations and algal responses were distinct. Nitrate concentrations were greatest during the winter in all study areas potentially because of a reduction in denitrification rates and algal uptake during the winter, along with reduced surface runoff. Decreases in nitrate concentrations during the spring and summer at most stream sites coincided with increased streamflow during the snowmelt runoff or spring storms indicating dilution. The continued decrease in nitrate concentrations during summer potentially is because of a reduction in nitrate inputs (from decreased surface runoff) or increases in biological uptake. In contrast to nitrate concentrations, ammonia concentrations varied among study areas. Ammonia concentration trends were similar at UMIS and USNK sampling sites with winter peak concentrations and rapid decreases in ammonia concentrations by spring or early summer. In contrast, ammonia concentrations at OZRK sampling sites were more variable with peak concentrations later in the year. Ammonia may accumulate in stream water in the winter under ice and snow cover at the UMIS and USNK sites because of limited algal metabolism and increased mineralization of decaying organic matter under reducing conditions within stream bottom sediments. Phosphorus concentration patterns and the type of phosphorus present changes with changing hydrologic conditions and seasons and varied among study areas. Orthophosphate concentrations tended to be greater in the summer at UMIS sites, whereas total

  6. Reduced uncertainty of regional scale CLM predictions of net carbon fluxes and leaf area indices with estimated plant-specific parameters

    Science.gov (United States)

    Post, Hanna; Hendricks Franssen, Harrie-Jan; Han, Xujun; Baatz, Roland; Montzka, Carsten; Schmidt, Marius; Vereecken, Harry

    2016-04-01

    Reliable estimates of carbon fluxes and states at regional scales are required to reduce uncertainties in regional carbon balance estimates and to support decision making in environmental politics. In this work the Community Land Model version 4.5 (CLM4.5-BGC) was applied at a high spatial resolution (1 km2) for the Rur catchment in western Germany. In order to improve the model-data consistency of net ecosystem exchange (NEE) and leaf area index (LAI) for this study area, five plant functional type (PFT)-specific CLM4.5-BGC parameters were estimated with time series of half-hourly NEE data for one year in 2011/2012, using the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, a Markov Chain Monte Carlo (MCMC) approach. The parameters were estimated separately for four different plant functional types (needleleaf evergreen temperate tree, broadleaf deciduous temperate tree, C3-grass and C3-crop) at four different sites. The four sites are located inside or close to the Rur catchment. We evaluated modeled NEE for one year in 2012/2013 with NEE measured at seven eddy covariance sites in the catchment, including the four parameter estimation sites. Modeled LAI was evaluated by means of LAI derived from remotely sensed RapidEye images of about 18 days in 2011/2012. Performance indices were based on a comparison between measurements and (i) a reference run with CLM default parameters, and (ii) a 60 instance CLM ensemble with parameters sampled from the DREAM posterior probability density functions (pdfs). The difference between the observed and simulated NEE sum reduced 23% if estimated parameters instead of default parameters were used as input. The mean absolute difference between modeled and measured LAI was reduced by 59% on average. Simulated LAI was not only improved in terms of the absolute value but in some cases also in terms of the timing (beginning of vegetation onset), which was directly related to a substantial improvement of the NEE estimates in

  7. Eraser-based eco-friendly fabrication of a skin-like large-area matrix of flexible carbon nanotube strain and pressure sensors.

    Science.gov (United States)

    Sahatiya, Parikshit; Badhulika, Sushmee

    2017-03-03

    This paper reports a new type of electronic, recoverable skin-like pressure and strain sensor, produced on a flexible, biodegradable pencil-eraser substrate and fabricated using a solvent-free, low-cost and energy efficient process. Multi-walled carbon nanotube (MWCNT) film, the strain sensing element, was patterned on pencil eraser with a rolling pin and a pre-compaction mechanical press. This induces high interfacial bonding between the MWCNTs and the eraser substrate, which enables the sensor to achieve recoverability under ambient conditions. The eraser serves as a substrate for strain sensing, as well as acting as a dielectric for capacitive pressure sensing, thereby eliminating the dielectric deposition step, which is crucial in capacitive-based pressure sensors. The strain sensing transduction mechanism is attributed to the tunneling effect, caused by the elastic behavior of the MWCNTs and the strong mechanical interlock between MWCNTs and the eraser substrate, which restricts slippage of MWCNTs on the eraser thereby minimizing hysteresis. The gauge factor of the strain sensor was calculated to be 2.4, which is comparable to and even better than most of the strain and pressure sensors fabricated with more complex designs and architectures. The sensitivity of the capacitive pressure sensor was found to be 0.135 MPa -1 .To demonstrate the applicability of the sensor as artificial electronic skin, the sensor was assembled on various parts of the human body and corresponding movements and touch sensation were monitored. The entire fabrication process is scalable and can be integrated into large areas to map spatial pressure distributions. This low-cost, easily scalable MWCNT pin-rolled eraser-based pressure and strain sensor has huge potential in applications such as artificial e-skin in flexible electronics and medical diagnostics, in particular in surgery as it provides high spatial resolution without a complex nanostructure architecture.

  8. Effect of water stress on carbon isotope discrimination and its relationship with transpiration efficiency and specific leaf area in Cenchrus species.

    Science.gov (United States)

    Dubey, Archana; Chandra, Amaresh

    2008-05-01

    Carbon isotope discrimination (CID) has been proposed in estimating transpiration efficiency (TE) in plants indirectly To identify variations for TE and specific leaf area (SLA) and their association with CID, a glasshouse experiment was conducted using six prominent species of Cenchrus. A significant increase in TE (3.50 to 3.87 g kg(-1)) and decrease in SLA (219.50 to 207.99 cm2 g(-1)) and CID (13.72 to 13.23% per hundred) was observed from well watered to stress condition. Results indicated a direct relationship of SLA with CID (r = 0.511* and 0.544*) and inverse relationship between TE and CID (r = -0.229 and -0.270) However the relationship of TE with CID was insignificant. A positive and significant relationship was visualized between TE and dry matter production in both control (r = 0.917**) and stress (0.718**) treatments. Relationships of total dry matter with SLA and CID were monitored insignificant and negative in control and positive in stress treatment indicated difference in dry matter production under two treatments. It seems that, in Cenchrus species, CID was influenced more by the photosynthetic capacity than by stomatal conductance, as indicated by its positive relationship with SLAin both control (r = 0.511) and stress (r = 0.544) conditions and negative relationship with root dry matter production under control (r = -0.921**) and stress (r = -0.919***) condition. Results showed good correspondence between CID and SLA, indicating that lines having high TE and biomass production can be exploited for their genetic improvement for drought.

  9. Inferences of Present and Past Changes at Isolated Enclaves and Matrix of Savannas by Carbon Isotopes in a Transitional Forest-Savanna Area in Northern Amazonia

    Science.gov (United States)

    Couto-Santos, F. R.; Luizao, F. J.; Camargo, P. B.

    2013-12-01

    The evolutionary history of savannas influenced by short term climate cycles, during the Quaternary Period, could prompt variations in forest cover often related to movements of the forest-savanna boundary. In this study we investigated current and past changes in the structure of vegetation and the origins of savannas of different natures in a biogeographically and climatic transitional forest-savanna area in northern Amazonia. Variations in the isotopic composition of soil organic matter (δ13C) from surface soils (0-10 cm) along forest-savanna boundaries, detected by a sigmoidal non-linear function, were used to identify current changes in vegetation, while past changes were inferred by discontinuities in the evolution of δ13C with soil depth using piecewise regression associated with radiocarbon dating (14C). By comparing small isolated savanna enclaves inside a strictly protected nature reserve (ESEC Maracá) with its outskirts unprotected continuous savanna matrix, we found that origins and the patterns of dynamics were distinct between these areas and did not respond in the same way to climate change and fire events, either in the last decades or during the Holocene. The stability of the present boundaries of the surrounding savanna matrix reflects the resilience of the transitional forests under a recent intensified fire regime and favorable climate, while the deep forest soil isotopic signal indicated a forest shrinkage of at least 70 m occurring since its origin in early Holocene until 780 years BP associated with a climate drier than the current one. Contrarily, the protected enclaves inside ESEC Maracá, remained stable since the middle Holocene, suggesting a non-anthropogenic origin related to soil edaphic conditions, but with recent dynamics of advancing forest by 8 m century-1 favored by current climate and lacking fire events. A detailed understanding of the origins of savannas of distinct natures and the way they are affected by climate and fire

  10. SUGARLOAF ROADLESS AREA, CALIFORNIA.

    Science.gov (United States)

    Powell, Robert E.; Campbell, Harry W.

    1984-01-01

    On the basis of geologic, geochemical, and geophysical investigations and a survey of mines, quarries, and prospects the Sugarloaf Roadless Area, California, has little promise for the occurrence of metallic mineral or energy resources. Units of carbonate rock and graphitic schist have demonstrated resources of magnesian marble and graphite. Sand, gravel, and construction stone other than carbonate rock are present in the roadless area, but similar or better quality materials are abundant and more accessible outside the area.

  11. High-Resolution Forest Carbon Monitoring and Modeling: Continued Prototype Development and Deployment Across The Tri-state Area (MD, PA, DE), USA

    Science.gov (United States)

    Hurtt, G. C.; Birdsey, R.; Campbell, E.; Dolan, K. A.; Dubayah, R.; Escobar, V. M.; Finley, A. O.; Flanagan, S.; Huang, W.; Johnson, K.; Lister, A.; ONeil-Dunne, J.; Sepulveda Carlo, E.; Zhao, M.

    2017-12-01

    Local, national and international programs have increasing need for precise and accurate estimates of forest carbon and structure to support greenhouse gas reduction plans, climate initiatives, and other international climate treaty frameworks. In 2010 Congress directed NASA to initiate research towards the development of Carbon Monitoring Systems (CMS). In response, our team has worked to develop a robust, replicable framework to produce maps of high-resolution carbon stocks and future carbon sequestration potential. High-resolution (30m) maps of carbon stocks and uncertainty were produced by linking national 1m-resolution imagery and existing wall-to-wall airborne lidar to spatially explicit in-situ field observations such as the USFS Forest Inventory and Analysis (FIA) network. These same data, characterizing forest extent and vertical structure, were used to drive a prognostic ecosystem model to predict carbon fluxes and carbon sequestration potential at unprecedented spatial resolution and scale (90m), more than 100,000 times the spatial resolution of standard global models. Through project development, the domain of this research has expanded from two counties in MD (2,181 km2), to the entire state (32,133 km2), to the tri-state region of MD, PA, and DE (157,868 km2), covering forests in four major USDA ecological providences (Eastern Broadleaf, Northeastern Mixed, Outer Coastal Plain, and Central Appalachian). Across the region, we estimate 694 Tg C (14 DE, 113 MD, 567 PA) in above ground biomass, and estimate a carbon sequestration potential more than twice that amount. Empirical biomass products enhance existing approaches though high resolution accounting for trees outside traditional forest maps. Modeling products move beyond traditional MRV, and map future afforestation and reforestation potential for carbon at local actionable spatial scales. These products are relevant to multiple stakeholder needs in the region as discussed through the Tri

  12. Potential Use Of Activated Carbon To Recover Tc-99 From 200 West Area Groundwater As An Alternative To More Expensive Resins Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    Byrnes, M.E.; Rossi, A.J.; Tortoso, A.C.

    2009-01-01

    Recent treatability testing performed on groundwater at the 200-ZP-1 Operable Unit at the Hanford Site in Richland, Washington, has shown that Purolite(reg s ign) A530E resin very effectively removes Tc-99 from groundwater. However, this resin is expensive and cannot be regenerated. In an effort to find a less expensive method for removing Tc-99 from the groundwater, a literature search was performed. The results indicated that activated carbon may be used to recover technetium (as pertechnetate, TCO 4 - ) from groundwater. Oak Ridge National Laboratory used activated carbon in both batch adsorption and column leaching studies. The adsorption study concluded that activated carbon absorbs TCO 4 - selectively and effectively over a wide range of pH values and from various dilute electrolyte solutions ( 4 - . Since activated carbon is much less expensive than Purolite A530E resin, it has been determined that a more extensive literature search is warranted to determine if recent studies have reached similar conclusions, and, if so, pilot testing of 200-ZP-1 groundwater wi11 likely be implemented. It is possible that less expensive, activated carbon canisters could be used as pre-filters to remove Tc-99, followed by the use of the more expensive Purolite A530E resin as a polishing step.

  13. Synthesis and Characterization Carbon Nanotubes Doped Carbon Aerogels

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-12-01

    Polycondensation of phloroglucinol, resorcinol and formaldehyde with carbon nanotube (CNT) as the additives, using sodium carbonate as the catalyst, leads to the formation of CNT - doped carbon aerogels. The structure of carbon aerogels (CAs) with carbon nanotubes (CNTs) were characterized by X-ray diffraction and scanning electron microscopy. The specific surface area, pore size distribution and pore volume were measured by surface area analyzer. The results show that when the optimum doping dosage is 5%, the specific surface area of CNT - doped carbon aerogel is up to 665 m2 g-1 and exhibit plentiful mesoporous.

  14. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry.

    Science.gov (United States)

    Richey, Francis W; Dyatkin, Boris; Gogotsi, Yury; Elabd, Yossef A

    2013-08-28

    Electrochemical double layer capacitors (EDLCs), or supercapacitors, rely on electrosorption of ions by porous carbon electrodes and offer a higher power and a longer cyclic lifetime compared to batteries. Ionic liquid (IL) electrolytes can broaden the operating voltage window and increase the energy density of EDLCs. Herein, we present direct measurements of the ion dynamics of 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide in an operating EDLC with electrodes composed of porous nanosized carbide-derived carbons (CDCs) and nonporous onion-like carbons (OLCs) with the use of in situ infrared spectroelectrochemistry. For CDC electrodes, IL ions (both cations and anions) were directly observed entering and exiting CDC nanopores during charging and discharging of the EDLC. Conversely, for OLC electrodes, IL ions were observed in close proximity to the OLC surface without any change in the bulk electrolyte concentration during charging and discharging of the EDLC. This provides experimental evidence that charge is stored on the surface of OLCs in OLC EDLCs without long-range ion transport through the bulk electrode. In addition, for CDC EDLCs with mixed electrolytes of IL and propylene carbonate (PC), the IL ions were observed entering and exiting CDC nanopores, while PC entrance into the nanopores was IL concentration dependent. This work provides direct experimental confirmation of EDLC charging mechanisms that previously were restricted to computational simulations and theories. The experimental measurements presented here also provide deep insights into the molecular level transport of IL ions in EDLC electrodes that will impact the design of the electrode materials' structure for electrical energy storage.

  15. The late Aeronian graptolite sedgwickii Event. Associated positive carbon isotope excursion and facies changes in the Prague Synform (Barrandian area, Bohemia)

    Czech Academy of Sciences Publication Activity Database

    Štorch, Petr; Frýda, J.

    2012-01-01

    Roč. 149, č. 6 (2012), s. 1089-1106 ISSN 0016-7568 R&D Projects: GA ČR GA205/09/0619 Institutional research plan: CEZ:AV0Z30130516 Keywords : carbon isotope record * community evenness * extinction * graptolites * Silurian * species richness Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.270, year: 2012

  16. Modelling fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation model ORCHIDEE – Part 1: Simulating historical global burned area and fire regime

    CSIR Research Space (South Africa)

    Yue, C

    2014-01-01

    Full Text Available ., 2008; Turner et al., 1994) and biological diversity (Burton et al., 2008) and may also produce a higher rate of carbon emissions compared to small fires (Kasischke and Hoy, 2012). In some ecosystems, past climate warming is documented to have increased...

  17. Pt nanoparticle modified single walled carbon nanotube network electrodes for electrocatalysis: control of the specific surface area over three orders of magnitude

    NARCIS (Netherlands)

    Miller, T.S.; Sansuk, S.; Lai, Stanley; Macpherson, J.V.; Unwin, P.R.

    2015-01-01

    The electrodeposition of Pt nanoparticles (NPs) on two-dimensional single walled carbon nanotube (SWNT) network electrodes is investigated as a means of tailoring electrode surfaces with a well-defined amount of electrocatalytic material. Both Pt NP deposition and electrocatalytic studies are

  18. Investigation of carbon monoxide at heavy traffic intersections of Karachi (Pakistan) using GIS to evaluate potential risk areas for respiratory and heart disease

    International Nuclear Information System (INIS)

    Shareef, A.; Azam, M.

    2011-01-01

    Measurement of carbon monoxide in the ambient air at 36 locations on the busy roads of Karachi showed peak values of CO at 18 sites to be within the permissible limit of 10 ppm whereas up to 70 ppm at the other 18 sites. The evaluated carboxy haemoglobin (COHb) level was in the range of 1.1 to 15.8 %. (author)

  19. U-isotopes and "2"2"6Ra as tracers of hydrogeochemical processes in carbonated karst aquifers from arid areas

    International Nuclear Information System (INIS)

    Guerrero, José Luis; Vallejos, Ángela; Cerón, Juan Carlos; Sánchez-Martos, Francisco; Pulido-Bosch, Antonio; Bolívar, Juan Pedro

    2016-01-01

    Sierra de Gádor is a karst macrosystem with a highly complex geometry, located in southeastern Spain. In this arid environment, the main economic activities, agriculture and tourism, are supported by water resources from the Sierra de Gádor aquifer system. The aim of this work was to study the levels and behaviour of some of the most significant natural radionuclides in order to improve the knowledge of the hydrogeochemical processes involved in this groundwater system. For this study, 28 groundwater and 7 surface water samples were collected, and the activity concentrations of the natural U-isotopes ("2"3"8U, "2"3"5U and "2"3"4U) and "2"2"6Ra by alpha spectrometry were determined. The activity concentration of "2"3"8U presented a large variation from around 1.1 to 65 mBq L"−"1. Elevated groundwater U concentrations were the result of oxidising conditions that likely promoted U dissolution. The PHREEQC modelling code showed that dissolved U mainly existed as uranyl carbonate complexes. The "2"3"4U/"2"3"8U activity ratios were higher than unity for all samples (1.1–3.8). Additionally, these ratios were in greater disequilibrium in groundwater than surface water samples, the likely result of greater water-rock contact time. "2"2"6Ra presented a wide range of activity concentrations, (0.8 up to about 4 × 10"2 mBq L"−"1); greatest concentrations were detected in the thermal area of Alhama. Most of the samples showed "2"2"6Ra/"2"3"4U activity ratios lower than unity (median = 0.3), likely the result of the greater mobility of U than Ra in the aquifer system. The natural U-isotopes concentrations were strongly correlated with dissolution of sulphate evaporites (mainly gypsum). "2"2"6Ra had a more complex behaviour, showing a strong correlation with water salinity, which was particularly evident in locations where thermal anomalies were detected. The most saline samples showed the lowest "2"3"4U/"2"3"8U activity ratios, probably due to fast uniform bulk

  20. Particulate matter and carbon monoxide multiple regression models using environmental characteristics in a high diesel-use area of Baguio City, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Brandon E.; Naeher, Luke P. [The University of Georgia (UGA), College of Public Health, Department of Environmental Health Science, Athens, Georgia, GA 30602-2102 (United States); Alabanza-Akers, Mary Anne [UGA, College of Environment and Design, Athens, Georgia (United States); Akers, Timothy A. [Kennesaw State University, WellStar College of Health and Human Services, Kennesaw, Georgia (United States); Hall, Daniel B. [UGA, Franklin College of Arts and Sciences, Department of Statistics, Athens, Georgia (United States); Ryan, P. Barry [Emory University, Rollins School of Public Health, Atlanta, Georgia (United States); Bayer, Charlene W. [Georgia Tech Research Institute, Atlanta, Georgia (United States)

    2007-08-01

    In Baguio City, Philippines, a mountainous city of 252,386 people where 61% of motor vehicles use diesel fuel, ambient particulate matter < 2.5 {mu}m (PM{sub 2.5}) and < 10 {mu}m (PM{sub 10}) in aerodynamic diameter and carbon monoxide (CO) were measured at 30 street-level locations for 15 min apiece during the early morning (4:50-6:30 am), morning rush hour (6:30-9:10 am) and afternoon rush hour (3:40-5:40 pm) in December 2004. Environmental observations (e.g. traffic-related variables, building/roadway designs, wind speed and direction, etc.) at each location were noted during each monitoring event. Multiple regression models were formulated to determine which pollution sources and environmental factors significantly affect ground-level PM{sub 2.5}, PM{sub 10} and CO concentrations. The models showed statistically significant relationships between traffic and early morning particulate air pollution [(PM{sub 2.5}p = 0.021) and PM{sub 10} (p = 0.048)], traffic and morning rush hour CO (p = 0.048), traffic and afternoon rush hour CO (p = 0.034) and wind and early morning CO (p 0.044). The mean early morning, street-level PM{sub 2.5} (110 {+-} 8 {mu}g/m{sup 3}; mean {+-} 1 standard error) was not significantly different (p-value > 0.05) from either rush hour PM{sub 2.5} concentration (morning = 98 {+-} 7 {mu}g/m{sup 3}; afternoon = 107 {+-} 5 {mu}g/m{sup 3}) due to nocturnal inversions in spite of a 100% increase in automotive density during rush hours. Early morning street-level CO (3.0 {+-} 1.7 ppm) differed from morning rush hour (4.1 {+-} 2.3 ppm) (p 0.039) and afternoon rush hour (4.5 {+-}2.2 ppm) (p = 0.007). Additionally, PM{sub 2.5}, PM{sub 10}, CO, nitrogen dioxide (NO{sub 2}) and select volatile organic compounds were continuously measured at a downtown, third-story monitoring station along a busy roadway for 11 days. Twenty-four-hour average ambient concentrations were: PM{sub 2.5} = 72.9 {+-} 21 {mu}g/m{sup 3}; CO = 2.61 {+-} 0.6 ppm; NO{sub 2} = 27

  1. Particulate matter and carbon monoxide multiple regression models using environmental characteristics in a high diesel-use area of Baguio City, Philippines

    International Nuclear Information System (INIS)

    Cassidy, Brandon E.; Naeher, Luke P.; Alabanza-Akers, Mary Anne; Akers, Timothy A.; Hall, Daniel B.; Ryan, P. Barry; Bayer, Charlene W.

    2007-01-01

    In Baguio City, Philippines, a mountainous city of 252,386 people where 61% of motor vehicles use diesel fuel, ambient particulate matter 2.5 ) and 10 ) in aerodynamic diameter and carbon monoxide (CO) were measured at 30 street-level locations for 15 min apiece during the early morning (4:50-6:30 am), morning rush hour (6:30-9:10 am) and afternoon rush hour (3:40-5:40 pm) in December 2004. Environmental observations (e.g. traffic-related variables, building/roadway designs, wind speed and direction, etc.) at each location were noted during each monitoring event. Multiple regression models were formulated to determine which pollution sources and environmental factors significantly affect ground-level PM 2.5 , PM 10 and CO concentrations. The models showed statistically significant relationships between traffic and early morning particulate air pollution [(PM 2.5 p = 0.021) and PM 10 (p = 0.048)], traffic and morning rush hour CO (p = 0.048), traffic and afternoon rush hour CO (p = 0.034) and wind and early morning CO (p 0.044). The mean early morning, street-level PM 2.5 (110 ± 8 μg/m 3 ; mean ± 1 standard error) was not significantly different (p-value > 0.05) from either rush hour PM 2.5 concentration (morning = 98 ± 7 μg/m 3 ; afternoon = 107 ± 5 μg/m 3 ) due to nocturnal inversions in spite of a 100% increase in automotive density during rush hours. Early morning street-level CO (3.0 ± 1.7 ppm) differed from morning rush hour (4.1 ± 2.3 ppm) (p 0.039) and afternoon rush hour (4.5 ±2.2 ppm) (p = 0.007). Additionally, PM 2.5 , PM 10 , CO, nitrogen dioxide (NO 2 ) and select volatile organic compounds were continuously measured at a downtown, third-story monitoring station along a busy roadway for 11 days. Twenty-four-hour average ambient concentrations were: PM 2.5 = 72.9 ± 21 μg/m 3 ; CO = 2.61 ± 0.6 ppm; NO 2 = 27.7 ± 1.6 ppb; benzene = 8.4 ± 1.4 μg/m 3 ; ethylbenzene = 4.6 ± 2.0 μg/m 3 ; p-xylene = 4.4 ± 1.9 μg/m 3 ; m-xylene = 10.2 ± 4

  2. Stratigraphic significance and resolution of spectral reflectance logs in Lower Devonian carbonates of the Barrandian area, Czech Republic; a correlation with magnetic susceptibility and gamma-ray logs

    Czech Academy of Sciences Publication Activity Database

    Koptíková, Leona; Bábek, O.; Hladil, Jindřich; Kalvoda, J.; Slavík, Ladislav

    2010-01-01

    Roč. 225, 3/4 (2010), s. 83-98 ISSN 0037-0738 R&D Projects: GA AV ČR IAAX00130702; GA ČR GA205/08/0767 Institutional research plan: CEZ:AV0Z30130516 Keywords : VIS spectral reflectance * cyclostratigraphy * sea -level changes * Lower Devonian * red pelagic carbonates * diagenesis Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.685, year: 2010

  3. The Diesel Exhaust in Miners Study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities.

    Science.gov (United States)

    Vermeulen, Roel; Coble, Joseph B; Yereb, Daniel; Lubin, Jay H; Blair, Aaron; Portengen, Lützen; Stewart, Patricia A; Attfield, Michael; Silverman, Debra T

    2010-10-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NO(x)) and carbon oxides (CO(x)) were measured most frequently to estimate DE, but since the 1990s, the most commonly accepted surrogate for DE has been elemental carbon (EC). We developed quantitative estimates of historical exposure levels of respirable elemental carbon (REC) for an epidemiologic study of mortality, particularly lung cancer, among diesel-exposed miners by back-extrapolating 1998-2001 REC exposure levels using historical measurements of carbon monoxide (CO). The choice of CO was based on the availability of historical measurement data. Here, we evaluated the relationship of REC with CO and other current and historical components of DE from side-by-side area measurements taken in underground operations of seven non-metal mining facilities. The Pearson correlation coefficient of the natural log-transformed (Ln)REC measurements with the Ln(CO) measurements was 0.4. The correlation of REC with the other gaseous, organic carbon (OC), and particulate measurements ranged from 0.3 to 0.8. Factor analyses indicated that the gaseous components, including CO, together with REC, loaded most strongly on a presumed 'Diesel exhaust' factor, while the OC and particulate agents loaded predominantly on other factors. In addition, the relationship between Ln(REC) and Ln(CO) was approximately linear over a wide range of REC concentrations. The fact that CO correlated with REC, loaded on the same factor, and increased linearly in log-log space supported the use of CO in estimating historical exposure levels to DE.

  4. Printable Nano-Field Effect Transistors Combined with Carbon Nanotube Based Printable Interconnect Wires for Large-Area Deployable Active Phased-Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flexible electronic circuits can be easily integrated with large area (>10m aperture), inflatable antennas to provide distributed control and processing...

  5. Effects of adjacent land-use types on the distribution of soil organic carbon stocks in the montane area of central Taiwan.

    Science.gov (United States)

    Chen, Chiou-Pin; Juang, Kai-Wei; Cheng, Chih-Hsin; Pai, Chuang-Wen

    2016-12-01

    Soil organic carbon (SOC) stocks can be altered through reforestation and cropping. We estimated the effects of land use on SOC stocks after natural deciduous forests replaced by crops and coniferous plantations by examining the vertical distribution of SOC stocks at different depth intervals in an adjacent Oolong tea (Camellia sinensis L.) plantation, Moso bamboo (Phyllostachys pubescens) forest, Japanese cedar (Cryptomeria japonica) forest, and Taiwania (Taiwania cryptomerioides) forest in central Taiwan. The main soil characteristics, soil nitrogen (N) content, and soil carbon to nitrogen (C/N) ratio were also determined. Different land uses resulted in significantly higher bulk density, lower cation exchange capacity, SOC, soil N, soil C/N ratio, and SOC stocks in croplands compared to forestlands. Due to the long-term application of chemical fertilizers, a significantly lower soil pH was found in the tea plantation. Croplands had a lower soil C/N ratio because of less C input into the soil and a higher mineralization rate of organic carbon during cultivation. Similar SOC stocks were found in Taiwania and Japanese cedar forests (148.5 and 151.8 Mg C ha -1 , respectively), while the tea plantation had comparable SOC stocks to the bamboo forest (101.8 and 100.5 Mg C ha -1 , respectively). Over 40% of SOC stocks was stored in croplands and over 56% was stored in forestland within the upper 10 cm of soil. Coniferous plantations can contribute to a higher SOC stock than croplands, and a significant difference can be found in the top 0-5 cm of soil.

  6. Effects of long-term organic material applications and green manure crop cultivation on soil organic carbon in rain fed area of Thailand

    Directory of Open Access Journals (Sweden)

    Tomohide Sugino

    2013-12-01

    Full Text Available A long-term field experiment on organic material application and crop rotation with green manure crops has been conducted since 1976 at Lopburi Agricultural Research and Development Center, Department of Agriculture, Lop Buri Province, Thailand, to clarify the effect of organic materials and green manure crop on soil organic carbon changes. The stock change factors that stand for the relative change of soil organic carbon on the carbon stock in a reference condition (native vegetation that is not degraded or improved. Stock change factor for input of organic matter (FI, representing different levels of C input to soil such as organic material application, crop residue treatment and green manure crop cultivation, was computed with the present field experimental results. While the computed FI of "High input with manure" was within the range of IPCC default FI value, some of the computed FI of " High input without manure" was much higher than the IPCC default though it was varied due to the biomass production and nutrient contents of the green manure crops planted as the second crops after corn. Therefore, the FI computed by field experimental results can contribute to more accurate estimation of SOC changes in farm land especially in Southeast Asia because the default FI mostly depends on the experimental data in temperate zones. Moreover, the field experiment has focused the effect of reduced tillage practices on SOC changes and corn yield since 2011. The results of the experiment will be used to compute Stock change factor for management regime (FMG which represents the effects of tillage operations.

  7. Activated carbon from biomass

    Science.gov (United States)

    Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra

    2013-06-01

    Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).

  8. Analysis of Diurnal Variations in Energy Footprint and Its Associated Carbon Emission for Water Supply and Reuse in Arid and Semi-Arid Areas

    Science.gov (United States)

    Sobhani, Reza

    Arid and semi-arid regions throughout the world face water scarcity. Conventional water supply portfolio of these regions encompassed limited surface water, groundwater, and imported water. Current technological innovations technically and economically supplemented new water sources i.e., reclaimed water, desalted water and the groundwater sources that were not potable. The need for more efficient and alternative sources of drinking water supply necessitates studying the impediments e.g., intensive energy required, and emerging concern of the carbon emission. This dissertation discusses the challenges of energy footprint and its carbon emission among the processes involved in water supplies in the aforementioned regions. The conducted studies present time-dependent energy footprint analyses of different water reclamation and reuse processes. This study discusses the energy consumption in four main energy intensive processes inclusive of: activated sludge, microfiltration, reverse osmosis, and advanced oxidation with UV/ H2O2. The results indicate how the diurnal variations of different environmental parameters (e.g. flow and pollutant concentration) amplify the energy footprint variation among these processes. Meanwhile, the results show, due to the different power sources diurnally employed to provide electrical energy, the energy-associated carbon emission has more drastic variation in diurnal period compared to the energy footprint variation. In addition, this study presents the energy footprint of a modular process for treating local brackish groundwater by employing a combination of pellet reactor for radium and hardness minimization, reverse osmosis with intermediate precipitation, and concentrated brine crystallization to achieve high recovery with zero liquid discharge. Also it compares the energy footprint of the aforementioned process with the alternative option (i.e. desalted seawater conveyance with substantial lift). Finally, in coastal regions

  9. Coal exploration in the Alto San Jorge area, Cordoba Department. Exploracion de carbones en el Ato San Jorge, Departamento de Cordoba

    Energy Technology Data Exchange (ETDEWEB)

    Ospina, L H; Oquendo, G G [Geominas Ltda, Medellin (Colombia)

    1989-01-01

    A Mining Feasibility Study in the Area of Alto San Jorge, Department of Cordoba, Colombia, was commissioned by CARBOCOL S.A. to the Consortium Geominas-NACI. An area of 800 Ka2 was explored to define surface mining possibilities within two subareas referred to as Alto San Jorge and San Pedro Ure. Rocks of Cretaceous, Tertiary and Quaternary age crop out in the zone. In the subarea Alto San Jorge the principal structure is a syncline with a south-north direction. The San Pedro Ure subarea is formed by undulations with flanks of low dip, the most important being the San Antonio Syncline because it contains the mining block. The geological study of the surface demonstrated the existence of coal in the Oligocene Cienaga de Oro Formation and the Niocene Cerrito Formation, with potential resources of 6.3 billion tons. The subsequent exploration of the subsoil, with 20.618 m of drilling, permitted determination of demonstrated reserves in the order of 2.9 billion tons within two areas. In the sector selected for the mine plan, in the area of San Pedro-Puerto Libertador, 7.791 m of drilling was accomplished to define a demonstrated reserve of 515 million tons of coal down to a depth of 200. The combustible type coal has 5.000 cal/g. Complete mining schedules were developed at the prefeasibility level for two surface mines with productions of 1.5 MMTY and 4 MMTY. 9 figs., 3 tabs., 28 refs.

  10. Recharge areas and hydrochemistry of carbonate springs issuing from Semmering Massif, Austria, based on long-term oxygen-18 and hydrochemical data evidence

    Science.gov (United States)

    Yehdegho, Beyene; Reichl, Peter

    2002-10-01

    Résumé. Les teneurs en oxygène-18 et l'hydrochimie des sources émergeant du massif de Semmering ont été suivies de manière intensive dans le but de caractériser les zones de recharge et l'évolution hydrochimique. L'effet d'altitude sur le δ18O a été déterminé grâce aux données isotopiques et hydrogéologiques de petites sources de référence, principalement en terrains cristallins; cet effet est d'environ -0,27 et -0,21‰ par 100 m pour les versants respectivement nord et sud du massif. En appliquant ces valeurs, l'altitude moyenne de recharge des sources a été calculée. Pour les sources à fort débit issues des carbonates, elle est comprise entre 1,100 et 1,400 m, compatible avec le cadre topographique et hydrogéologique des calcaires et des dolomies de l'Austro-alpin inférieur alimentant ces sources. La composition chimique des sources des carbonates est dominée par les ions Ca2+, Mg2+, HCO3- et SO42-. Les sources sont presque toutes proches de la saturation par rapport à la calcite, mais sont sous-saturées en dolomite (sauf quelques sources proches de la saturation). Comme cela est habituel en ce qui concerne le dioxyde de carbone fourni par les sols en régions montagneuses, la pCO2 équilibrante moyenne est faible, comprise entre 10-3.0 et 10-2.5 atm (0,1 à 0,3% en volume). En ce qui concerne les variations à long terme, le pH, SIc, Sid et la pCO2 équilibrante sont soumis à des variations saisonnières, alors que les concentrations en Ca2+, Mg2+ et HCO3- ne varient pratiquement pas. En intégrant les résultats de δ18O et les données hydrochimiques, la variabilité altitudinale du chimisme des eaux souterraines des carbonates est démontrée. Reflétant les variations d'activité biologique et des conditions de recharge dans les zones d'alimentation, une covariation négative résulte de l'altitude de recharge et de la pCO2 et la concentration en HCO3- n'est pas modifiée par aucun des termes source ou puits, ce qui fait varier

  11. Porous carbons prepared by direct carbonization of MOFs for supercapacitors

    Science.gov (United States)

    Yan, Xinlong; Li, Xuejin; Yan, Zifeng; Komarneni, Sridhar

    2014-07-01

    Three porous carbons were prepared by direct carbonization of HKUST-1, MOF-5 and Al-PCP without additional carbon precursors. The carbon samples obtained by carbonization at 1073 K were characterized by XRD, TEM and N2 physisorption techniques followed by testing for electrochemical performance. The BET surface areas of the three carbons were in the range of 50-1103 m2/g. As electrode materials for supercapacitor, the MOF-5 and Al-PCP derived carbons displayed the ideal capacitor behavior, whereas the HKUST-1 derived carbon showed poor capacitive behavior at various sweep rates and current densities. Among those carbon samples, Al-PCP derived carbons exhibited highest specific capacitance (232.8 F/g) in 30% KOH solution at the current density of 100 mA/g.

  12. Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China

    Science.gov (United States)

    Chan, L. Y.; Lau, W. L.; Zou, S. C.; Cao, Z. X.; Lai, S. C.

    This study examined commuter exposure to respirable suspended particulate (PM 10 and PM 2.5) and carbon monoxide (CO) in public transportation modes in Guangzhou, China. During the sampling period, a total of 80 CO, 80 PM 10 and 56 PM 2.5 samples were conducted in four popular commuting modes (subway, air-conditioned bus, non-air-conditioned bus and taxi) while running in typical urban routes. The results show that the PM 10 as well as CO level is greatly influenced by the mode of transport. The highest mean PM 10 and CO level was obtained in a non-air-conditioned bus (203 μg m -3) and in an air-conditioned taxi (28.7 ppm) , respectively. Noticeably, the exposure levels in subway are lower than those in the roadway transports. The ventilation condition of the transport is also a crucial factor affecting the in-vehicle level. There was statistically significant difference of PM10 (ptransports, which provide service at regular intervals regardless of the time of day. The PM 2.5 inter-microenvironment variation is similar to the pattern of PM 10. The PM 2.5 to PM 10 ratio in the transports was high, ranging from 76% to 83%. The poor vehicle emission controls, poor vehicle maintenance, plus the slow moving traffic condition with frequent stops are believed to be the major causes of high in-vehicle levels in some public commuting trips.

  13. Areas of progress towards a factor 4 territorial coherence scheme. Which local levers for a post-carbon conurbation? Final report - Scenario 2020-2030

    International Nuclear Information System (INIS)

    Beauvais, Jean Marie; Metais, Benedicte; Baratier, Jerome; Vidalenc, Eric

    2011-01-01

    Taking the Tours conurbation as an example, this study examines how to elaborate and define a new territorial coherence scheme (a land and urban planning tool) which would include a planned reduction of greenhouse gas emissions by a factor 4 between 2020 and 2030. It is therefore a prospective study with 2006 as a reference year (reductions are assessed with respect to 2006 due to data availability). After an analysis of the reference situation (2006) and of objectives, the report presents the scenario for 2020-2030, analyses the various levers in different sectors (mobility, housing, office building, industry and construction, agriculture), and examines possibilities related to the production of renewable energy, the adaptation to climate change, the creation of a new governance to mitigate and to adapt to climate change. Expected gains are discussed for transports, housing, office building, industry, agriculture, renewable energies, and adaptation. The last part reports a sensitive approach to a post-carbon world through different workshops (with children or within a fiction writing workshop)

  14. Radon, methane, carbon dioxide, oil seeps and potentially harmful elements from natural sources and mining area: relevance to planning and development in Great Britain. Summary report

    International Nuclear Information System (INIS)

    Appleton, J.D.

    1995-01-01

    Contaminated land is a major environmental issue in Great Britain mainly due to increased awareness and the change in public attitudes, but also due to pressures of UK and EC environmental legislation and directives. Government policy with respect to contaminated land is to deal with actual threats to health on a risk-based approach taking into account the use and environmental setting of the land; and to bring contaminated land back into beneficial use as far as practicable, and taking into account the principles of sustainability. The government has been concerned primarily with land which is being or has been put to potentially contaminative uses. However, some potentially harmful substances occur naturally and this review is concerned principally with three groups of 'natural' contaminants from geological sources: natural radioactivity, including radon, background radioactivity, and radioactive waters, derived mainly from uranium minerals and their weathering products in rocks and soils; methane, carbon dioxide and oil derived from coal bearing rocks, hydrocarbon source rocks, peat and other natural accumulations of organic matter; and potentially harmful chemical elements (PHEs), including arsenic, cadmium, chromium, copper, fluorine, lead, mercury, nickel, and zinc, derived from naturally occurring rocks and minerals. (author)

  15. Determination of ocean/atmosphere carbon dioxide flux within OMP survey area. Final technical progress report, June, 1 1993--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Chipman, D.W.; Takahashi, T.

    1995-10-17

    Determination of the net flux of atmospheric CO{sub 2} with the ocean at the continental margin is one of the three principal goals of the Ocean Margins Program. The work reported here represents the initial phase of that determination, as carried out during two cruises within the OMP survey area in 1993 and 1994. The interannual variability was addressed through the occupation of hydrographic stations of nearly identical location one year apart, while the spatial variability in the air-sea PCO{sub 2} difference (ApCO{sub 2}), representing the driving force for net CO{sub 2} flux, was addressed during a survey of much of the continental shelf between the survey area off North Carolina and Georges Bank. Not addressed by the initial cruises was the seasonal variability of the net CO{sub 2} flux, since both scoping cruises were mounted during the same season of the respective years.

  16. Fabricating solid carbon porous electrodes from powders

    Science.gov (United States)

    Kaschmitter, James L.; Tran, Tri D.; Feikert, John H.; Mayer, Steven T.

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  17. The effects of anthropogenic organic matter inputs on stable carbon and nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal area

    International Nuclear Information System (INIS)

    Vizzini, Salvatrice; Mazzola, Antonio

    2006-01-01

    Stable isotope ratios were used to determine the impact of anthropogenically derived organic matter from onshore and offshore fish farming and a sewage outfall on organisms at different trophic levels (primary producers and consumers) on the south-east coast of Sicily (Italy, Mediterranean). Representative macroalgae and consumers were collected in three sampling locations: 'Impact' and two putative 'Controls' sited to the north of the impacted location. While δ 13 C values of both organic matter sources and consumers varied little between locations, δ 15 N spatial variability was higher and δ 15 N was shown to be a good descriptor of organic enrichment and uptake of anthropogenically derived material within coastal food webs. Isotopic data were analysed using a multivariate approach. Organic matter sources and benthic components were more sensitive to pollution than nektobenthic species and revealed that the effects of anthropogenic activities seem to be detectable over a wide area. The study site is characterised by wide waste dispersal, which brings a reduction in impact in the area directly affected by organic matter inputs and enlarges the area of moderate impact

  18. Assessment of carbon dioxide sink/source in the oceanic areas: the results of 1982-84 investigation. Final technical report

    International Nuclear Information System (INIS)

    Takahashi, T.; Chipman, D.W.; Smethie, W. Jr.; Goddard, J.; Trumbore, S.; Mathieu, G.G.; Sutherland, S.

    1985-07-01

    The oceanic CO 2 sink/source relationships over the tropical Atlantic Ocean, the eastern North and South Pacific Ocean, and the Ross Sea were investigated. The net CO 2 flux across the air-sea interface over these areas was estimated. Measurements of the Kr-85 in atmospheric samples collected over the central Pacific along the 155 0 W meridian were initiated. Based on the measurements of the difference between the pCO 2 values in the surface ocean water and the atmosphere and of the radon-222 distribution in the upper water column, we have found that the average net flux for the Atlantic equatorial belt, 10 0 N-10 0 S, is 1.3 moles CO 2 /m 2 .y out of the ocean, when our measurements were made in November 1982 through February 1983. The surface water pCO 2 data obtained over the eastern North and South Pacific during the period, October 1983 through January 1984, show that the equatorial zone between 2 0 N and 8 0 S is an intense CO 2 source area, whereas a 10 0 wide belt coinciding with the area between the Subtropical and Antarctic Convergence Zones is a strong CO 2 sink area. The temperate gyre area located north of about 5 0 N and that located between 8 0 S and 35 0 S are nearly in equilibrium with atmospheric CO 2 . The surface water pCO 2 data obtained in the Southern Ocean during the past ten or more years suggest strongly the existence of an intense CO 2 sink zone, the Circumpolar Low pCO 2 Zone, which is about 10 0 wide in latitude and centered at about 50 0 S surrounding the Antarctica Continent. The surface water of the Ross Sea is found to be a strong CO 2 sink during the period January 23 through February 12, 1984. Because of contamination problems, no reliable data for atmospheric krypton-85 have been obtained. 23 refs., 22 figs., 3 tabs

  19. Externalities assessment of a coal power plant in the forest ecosystems in Valdecaballeros Area; Estimacion de las externalidades de una central termica de carbon en los ecosistemas forestales del Area de Valdecaballeros

    Energy Technology Data Exchange (ETDEWEB)

    Laforga, P; Planas, B

    1995-07-01

    The book is divided in two parts. The first one analyzes the critical load and level concepts, and the methodological framework for Environmental Impact Statement (E.L.S.). In line with this, critical loads and levels represent the system vulnerability and excedances of critical values identify zones where impacts could occur. These are evaluated according to a set of criteria, talking into account present and future land use, their socio cultural interest, economic value of their natural resources and ecological quality of the whole system. In addition to Environment Impact Statement of air pollutants, the proposed formalism allows assessing the external cost of gaseous emission. The second part applies the developed ideas to a practical case: a hypothetical coal power plant on Valdecaballeros (Badajoz, Spain). Environmental impact on forestry ecosystems is studied on a 70 km radius area around the plant. The assessment of the external costs rely on yield losses associated with gaseous emission of the hypothetical plant. (Author) 100 refs.

  20. [Effects of simulated nitrogen deposition on soil microbial biomass carbon and nitrogen in natural evergreen broad-leaved forest in the Rainy Area of West China].

    Science.gov (United States)

    Zhou, Shi Xing; Zou, Cheng; Xiao, Yong Xiang; Xiang, Yuan Bin; Han, Bo Han; Tang, Jian Dong; Luo, Chao; Huang, Cong de

    2017-01-01

    To understand the effects of increasing nitrogen deposition on soil microbial biomass carbon (MBC) and nitrogen(MBN), an in situ experiment was conducted in a natural evergreen broad-leaved forest in Ya'an City, Sichuan Province. Four levels of nitrogen deposition were set: i.e., control (CK, 0 g N·m -2 ·a -1 ), low nitrogen (L, 5 g N·m -2 ·a -1 ), medium nitrogen (M, 15 g N·m -2 ·a -1 ), and high nitrogen (H, 30 g N·m -2 ·a -1 ). The results indicated that nitrogen deposition significantly decreased MBC and MBN in the 0-10 cm soil layer, and as N de-position increased, the inhibition effect was enhanced. L and M treatments had no significant effect on MBC and MBN in the 10-20 cm soil layer, while H treatment significantly reduced. The influence of N deposition on MBC and MBN was weakened with the increase of soil depth. MBC and MBN had obvious seasonal dynamic, which were highest in autumn and lowest in summer both in the 0-10 and 10-20 cm soil layers. The fluctuation ranges of soil microbial biomass C/N were respectively 10.58-11.19 and 9.62-12.20 in the 0-10 cm and 10-20 cm soil layers, which indicated that the fungi hold advantage in the soil microbial community in this natural evergreen broad-leaved forest.

  1. [Characteristics of dissolved organic carbon release under inundation from typical grass plants in the water-level fluctuation zone of the Three Gorges Reservoir area].

    Science.gov (United States)

    Tan, Qiu-Xia; Zhu, Boi; Hua, Ke-Ke

    2013-08-01

    The water-level fluctuation zone of the Three Gorges Reservoir (TGR) exposes in spring and summer, then, green plants especially herbaceous plants grow vigorously. In the late of September, water-level fluctuation zone of TGR goes to inundation. Meanwhile, annually accumulated biomass of plant will be submerged for decaying, resulting in organism decomposition and release a large amount of dissolved organic carbon (DOC). This may lead to negative impacts on water environment of TGR. The typical herbaceous plants from water-level fluctuation zone were collected and inundated in the laboratory for dynamic measurements of DOC concentration of overlying water. According to the determination, the DOC release rates and fluxes have been calculated. Results showed that the release process of DOC variation fitted in a parabolic curve. The peak DOC concentrations emerge averagely in the 15th day of inundation, indicating that DOC released quickly with organism decay of herbaceous plant. The release process of DOC could be described by the logarithm equation. There are significant differences between the concentration of DOC (the maximum DOC concentration is 486.88 mg x L(-1) +/- 35.97 mg x L(-1) for Centaurea picris, the minimum is 4.18 mg x L(-1) +/- 1.07 mg x L(-1) for Echinochloacrus galli) and the release amount of DOC (the maximum is 50.54 mg x g(-1) for Centaurea picris, the minimum is 6.51 mg x g(-1) for Polygonum hydropiper) due to different characteristics of plants, especially, the values of C/N of herbaceous plants. The cumulative DOC release quantities during the whole inundation period were significantly correlated with plants' C/N values in linear equations.

  2. Spatial and Temporal Variability of Carbon Dioxide Using Structure Functions in Urban Areas: Insights for Future Active Remote CO2 Sensors

    Science.gov (United States)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan A.; Browell, Edward V.; DiGangi, Joshua P.

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaigns during July 2011 over Washington DC/Baltimore, MD; January-February 2013 over the San Joaquin Valley, CA; September 2013 over Houston, TX; and July-August 2014 over Denver, CO. Each of these campaigns have approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 kilometers) at 6-8 different sites in each of the urban areas. In this study, we used structure function analysis, which is a useful way to quantify spatial and temporal variability, by displaying differences with average observations, to evaluate the variability of CO2 in the 0-2 kilometers range (representative of the planetary boundary layer). These results can then be used to provide guidance in the development of science requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission to measure near-surface CO2 variability in different urban areas. We also compare the observed in-situ CO2 variability with the variability of the CO2 column-averaged optical depths in the 0-1 kilometer and 0-3.5 kilometers altitude ranges in the four geographically different urban areas, using vertical weighting functions for potential future ASCENDS lidar CO2 sensors operating in the 1.57 and 2.05 millimeter measurement regions. In addition to determining the natural variability of CO2 near the surface and in the column, radiocarbon method using continuous CO2 and CO measurements are used to examine the variation of emission quantification between anthropogenic and biogenic sources in the DC/Maryland urban site.

  3. Carbon monoxide adsorption studies on Ru:Mn bimetallic catalysts supported on alumina, silica and titania supported for the determination of metal surface area overview

    International Nuclear Information System (INIS)

    Hussain, S.T.

    1992-01-01

    Supported Ru: Mn bimetallic samples were studied using CO-chemisorption on alumina, silica and titania supports for the determination of active metal site/metal surface area. The data indicates the presence of Mn on the surface of Ru. With the increase of Mn loadings a decrease in the CO adsorption occurred indicating that presence of Mn masks the active sites responsible for Co-adsorption. On the titania supported system reduced at high and low temperature the CO-chemisorption data suggest the unusual behaviour. This behaviour is possibly caused due to creation of new active surface sites. (author)

  4. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  5. Area of Interest 1, CO2 at the Interface. Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mozley, Peter [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Evans, James [New Mexico Institute Of Mining And Technology, Socorro, NM (United States); Dewers, Thomas [New Mexico Institute Of Mining And Technology, Socorro, NM (United States)

    2014-10-31

    Formation reservoir/caprock interface in order to extend our work to a reservoir/caprock pair this is currently being assessed for long-term carbon storage. These analyses indicate that interface features similar to those observed at the Utah sites 3 were not observed. Although not directly related to our main study topic, one byproduct of our investigation is documentation of exceptionally high degrees of heterogeneity in the pore-size distribution of the Mount Simon Sandstone. This suggests that the unit has a greater-than-normal potential for residual trapping of supercritical CO2.

  6. Facile synthesis of porous graphene-like carbon nitride nanosheets with high surface area and enhanced photocatalytic activity via one-step catalyst-free solution self-polymerization

    Science.gov (United States)

    Wu, Shikai; Wen, Shengwu; Xu, Xinmei; Huang, Guozhi; Cui, Yifan; Li, Jinyu; Qu, Ailan

    2018-04-01

    Porous graphite carbon nitride nanosheets (g-C3N4) are achieved via one-step catalyst-free solution self-polymerization from a single melamine precursor. The resultant porous g-C3N4 nanosheets with the best photodegradation capacity provided the surface area of 669.15 m2/g, which is superior to the surface area of any other porous g-C3N4 reported. Results showed enhanced adsorption and degradation capacity of methyl orange (MO) under UV-visible light irradiation (λ > 350 nm) compared to bulk g-C3N4. The MO oxidation of the porous g-C3N4 nanosheets is driven mostly by the participation of holes, and secondly by rad O2- and rad OH radicals. This approach shed lights on porous g-C3N4 production simply by self-polycondensation of single functional monomer. It also provided a low-cost and eco-friendly method to facilely mass-produce g-C3N4 nanosheets with high surface area for many potential applications.

  7. Planning for a Low Carbon Future? Comparing Heat Pumps and Cogeneration as the Energy System Options for a New Residential Area

    Directory of Open Access Journals (Sweden)

    Jukka Heinonen

    2015-08-01

    Full Text Available The purpose of this paper is to compare, from an urban planning perspective, the choice between combined heat and power (CHP and a ground-source heat pump (HP as the energy systems of a new residential area in the light of the uncertainty related to the assessments. There has been a strong push globally for CHP due to its climate mitigation potential compared to separate production, and consequently it is often prioritized in planning without questioning. However, the uncertainties in assessing the emissions from CHP and alternative options in a certain planning situation make it very difficult to give robust decision guidelines. In addition, even the order of magnitude of the climate impact of a certain plan is actually difficult to assess robustly. With a case study of the new residential development of Härmälänranta in Tampere, Finland, we show how strongly the uncertainties related to (1 utilizing average or marginal electricity as the reference; (2 assigning emissions intensities for the production; and (3 allocating the emissions from CHP to heat and electricity affect the results and lead to varying decision guidelines. We also depict how a rather rarely utilized method in assigning the emissions from CHP is the most robust for planning support.

  8. What's so local about global climate change? Testing social theories of environmental degradation to quantify the demographic, economic, and governmental factors associated with energy consumption and carbon dioxide emissions in U.S. metropolitan areas and counties

    Science.gov (United States)

    Tribbia, John Luke

    This research investigates the consequence of a crucial and not yet fully explored problem: the reluctance of the United States to sign and ratify international agreements, like Kyoto, that aim to mitigate climate change and its underlying social and ecological impacts. This unwillingness has inspired local governments, mayors, metropolitan area governance consortia, state governments, and governors to take on the climate challenge without the directive of the federal government. Local areas of the U.S. are experiencing climate-change-related impacts such as receding beach lines due to sea level rise and intense storms, fresh water shortages, and extreme weather events. As a result, researchers have begun to explore the human dimensions of climate change through an inquiry in: among many other topics, the vulnerability of local areas to the impacts of climate change and the forces shaping local areas' contribution to climate change. This study addresses the latter issue using the STIRPAT framework - a reformulated version of the I=(P)(A)(T) formulation that relates environmental impacts (I) to population growth (P), affluence (A), and technology (T). I address three questions that have thus far been poorly answered in prior research: "across the U.S., do local areas differ in the extent of their contribution to climate change?", "what are the causes of variation in energy use and carbon dioxide (CO2) emissions across local areas?" and "which social theories best explain the causes of variation in energy use and CO2 emissions across local areas?" To make strides in answering these questions and contribute to the understanding of local level drivers of energy consumption and emissions, this research analyzes the causes of variation in: energy use and CO2 emissions in the 100 largest U.S. metropolitan areas in chapter 4, the change in energy consumption between 2000 and 2005 for these metropolitan areas in chapter 5, and CO2 emissions in all U.S. counties in chapter 6

  9. Regional potentiometric-surface map of the Great Basin carbonate and alluvial aquifer system in Snake Valley and surrounding areas, Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada

    Science.gov (United States)

    Gardner, Philip M.; Masbruch, Melissa D.; Plume, Russell W.; Buto, Susan G.

    2011-01-01

    Water-level measurements from 190 wells were used to develop a potentiometric-surface map of the east-central portion of the regional Great Basin carbonate and alluvial aquifer system in and around Snake Valley, eastern Nevada and western Utah. The map area covers approximately 9,000 square miles in Juab, Millard, and Beaver Counties, Utah, and White Pine and Lincoln Counties, Nevada. Recent (2007-2010) drilling by the Utah Geological Survey and U.S. Geological Survey has provided new data for areas where water-level measurements were previously unavailable. New water-level data were used to refine mapping of the pathways of intrabasin and interbasin groundwater flow. At 20 of these locations, nested observation wells provide vertical hydraulic gradient data and information related to the degree of connection between basin-fill aquifers and consolidated-rock aquifers. Multiple-year water-level hydrographs are also presented for 32 wells to illustrate the aquifer system's response to interannual climate variations and well withdrawals.

  10. Seasonal/Interannual Variations of Carbon Sequestration and Carbon Emission in a Warm-Season Perennial Grassland

    OpenAIRE

    Deepa Dhital; Tomoharu Inoue; Hiroshi Koizumi

    2014-01-01

    Carbon sequestration and carbon emission are processes of ecosystem carbon cycling that can be affected while land area converted to grassland resulting in increased soil carbon storage and below-ground respiration. Discerning the importance of carbon cycle in grassland, we aimed to estimate carbon sequestration in photosynthesis and carbon emission in respiration from soil, root, and microbes, for four consecutive years (2007–2010) in a warm-season perennial grassland, Japan. Soil carbon emi...

  11. Vertical variability of aerosol single-scattering albedo and equivalent black carbon concentration based on in-situ and remote sensing techniques during the iAREA campaigns in Ny-Ålesund

    Science.gov (United States)

    Markowicz, K. M.; Ritter, C.; Lisok, J.; Makuch, P.; Stachlewska, I. S.; Cappelletti, D.; Mazzola, M.; Chilinski, M. T.

    2017-09-01

    This work presents a methodology for obtaining vertical profiles of aerosol single scattering properties based on a combination of different measurement techniques. The presented data were obtained under the iAREA (Impact of absorbing aerosols on radiative forcing in the European Arctic) campaigns conducted in Ny-Ålesund (Spitsbergen) during the spring seasons of 2015-2017. The retrieval uses in-situ observations of black carbon concentration and absorption coefficient measured by a micro-aethalometer AE-51 mounted onboard a tethered balloon, as well as remote sensing data obtained from sun photometer and lidar measurements. From a combination of the balloon-borne in-situ and the lidar data, we derived profiles of single scattering albedo (SSA) as well as absorption, extinction, and aerosol number concentration. Results have been obtained in an altitude range from about 400 m up to 1600 m a.s.l. and for cases with increased aerosol load during the Arctic haze seasons of 2015 and 2016. The main results consist of the observation of increasing values of equivalent black carbon (EBC) and absorption coefficient with altitude, and the opposite trend for aerosol concentration for particles larger than 0.3 μm. SSA was retrieved with the use of lidar Raman and Klett algorithms for both 532 and 880 nm wavelengths. In most profiles, SSA shows relatively high temporal and altitude variability. Vertical variability of SSA computed from both methods is consistent; however, some discrepancy is related to Raman retrieval uncertainty and absorption coefficient estimation from AE-51. Typically, very low EBC concentration in Ny-Ålesund leads to large error in the absorbing coefficient. However, SSA uncertainty for both Raman and Klett algorithms seems to be reasonable, e.g. SSA of 0.98 and 0.95 relate to an error of ±0.01 and ± 0.025, respectively.

  12. [Differences and sources of CO2 concentration, carbon and oxygen stable isotope composition between inside and outside of a green space system and influencing factors in an urban area].

    Science.gov (United States)

    Sun, Shou-jia; Meng, Ping; Zhang, Jin-song; Shu, Jian-hua; Zheng, Ning

    2015-10-01

    by photosynthesis to maintain carbon and oxygen balance of urban area in the growing season, which played an important role in improving urban ecological environment.

  13. Control Areas

    Data.gov (United States)

    Department of Homeland Security — This feature class represents electric power Control Areas. Control Areas, also known as Balancing Authority Areas, are controlled by Balancing Authorities, who are...

  14. Carbon dioxide dangers demonstration model

    Science.gov (United States)

    Venezky, Dina; Wessells, Stephen

    2010-01-01

    Carbon dioxide is a dangerous volcanic gas. When carbon dioxide seeps from the ground, it normally mixes with the air and dissipates rapidly. However, because carbon dioxide gas is heavier than air, it can collect in snowbanks, depressions, and poorly ventilated enclosures posing a potential danger to people and other living things. In this experiment we show how carbon dioxide gas displaces oxygen as it collects in low-lying areas. When carbon dioxide, created by mixing vinegar and baking soda, is added to a bowl with candles of different heights, the flames are extinguished as if by magic.

  15. Mapping the variation of soil organic carbon (SOC) stock in time and space in Sicily, an extremely variable semi-arid Mediterranean region, highlighted that C was lost in area rich in organic C and gained in poor-C areas

    Science.gov (United States)

    Schillaci, Calogero; Acutis, Marco; Lombardo, Luigi; Lipani, Aldo; Fantappiè, Maria; Märker, Michael; Saia, Sergio

    2017-04-01

    The stock of organic carbon in the soil (SOC) is an indicator of soil ability to support agro-ecosystems productivity and resilience to environmental changes (Schillaci et al. 2016; 2017). In addition, SOC stock change through space and especially time is a valuable indicator of the soil ability to sequester CO2 from the atmosphere and thus its potential to reduce the greenhouse gas effect. In the present work, we mapped (1-km resolution) the space-time variation of the SOC stock after 15 years (1993 to 2008) in a semi-arid Mediterranean area (25,286 km2) after modelling SOC concentration (0-0.4 m depth) with boosted regression trees (BRT) and computing the SOC stock after the application of the bulk density maps of ISRIC (soilgrid.com, Hengl et al., 2014). The area under study (Sicily, south of Italy) has a plenty of contrasting environments, with changing ecosystems, soils, and microclimatic regions. The BRT procedure was run with a set of 25 predictors per year, including land use, soil traits, morphometric indicators and remote sensing covariates (derived from Landsat5 data). The BRT output consisted of a high pseudo-R2(=0.71 for 1993 and 0.63 for 2008) of the SOC concentration, low uncertainty (standard deviation doi:10.1016/j.geoderma.2016.10.

  16. Rivers of Carbon: Carbon Fluxes in a Watershed Context

    Science.gov (United States)

    Wohl, E.; Tom, B.; Hovius, N.

    2017-12-01

    Research within the past decade has identified the roles of diverse terrestrial processes in mobilizing terrestrial carbon from bedrock, soil, and vegetation and in redistributing this carbon among the atmosphere, biota, geosphere, and oceans. Rivers are central to carbon redistribution, serving as the primary initial receptor of mobilized terrestrial carbon, as well as governing the proportions of carbon sequestered within sediment, transported to oceans, or released to the atmosphere. We use a riverine carbon budget to examine how key questions regarding carbon dynamics can be addressed across diverse spatial and temporal scales from sub-meter areas over a few hours on a single gravel bar to thousands of square kilometers over millions of years across an entire large river network. The portion of the budget applying to the active channel(s) takes the form of ,in which Cs is organic carbon storage over time t. Inputs are surface and subsurface fluxes from uplands (CIupl) and the floodplain (CIfp), including fossil, soil, and biospheric organic carbon; surface and subsurface fluxes of carbon dioxide to the channel (CICO2); and net primary productivity in the channel (CINPP). Outputs occur via respiration within the channel and carbon dioxide emissions (COgas) and fluxes of dissolved and particulate organic carbon to the floodplain and downstream portions of the river network (COriver). The analogous budget for the floodplain portion of a river corridor is .

  17. Carbonate compensation depth: relation to carbonate solubility in ocean waters.

    Science.gov (United States)

    Ben-Yaakov, S; Ruth, E; Kaplan, I R

    1974-05-31

    In situ calcium carbonate saturometry measurements suggest that the intermediate water masses of the central Pacific Ocean are close to saturation with resppect to both calcite and local carbonate sediment. The carbonate compensation depth, located at about 3700 meters in this area, appears to represent a depth above which waters are essentially saturated with respect to calcite and below which waters deviate toward undersaturation with respect to calcite.

  18. Carbon composites composites with carbon fibers, nanofibers, and nanotubes

    CERN Document Server

    Chung, Deborah D L

    2017-01-01

    Carbon Composites: Composites with Carbon Fibers, Nanofibers, and Nanotubes, Second Edition, provides the reader with information on a wide range of carbon fiber composites, including polymer-matrix, metal-matrix, carbon-matrix, ceramic-matrix and cement-matrix composites. In contrast to other books on composites, this work emphasizes materials rather than mechanics. This emphasis reflects the key role of materials science and engineering in the development of composite materials. The applications focus of the book covers both the developing range of structural applications for carbon fiber composites, including military and civil aircraft, automobiles and construction, and non-structural applications, including electromagnetic shielding, sensing/monitoring, vibration damping, energy storage, energy generation, and deicing. In addition to these new application areas, new material in this updated edition includes coverage of cement-matrix composites, carbon nanofibers, carbon matrix precursors, fiber surface ...

  19. Compilation of carbon-14 data

    International Nuclear Information System (INIS)

    Paasch, R.A.

    1985-01-01

    A review and critical analysis was made of the original sources of carbon-14 in the graphite moderator and reflector zones of the eight Hanford production reactors, the present physical and chemical state of the carbon-14, pathways (other than direct combustion) by which the carbon-14 could be released to the biosphere, and the maximum rate at which it might be released under circumstances which idealistically favor the release. Areas of uncertainty are noted and recommendations are made for obtaining additional data in three areas: (1) release rate of carbon-14 from irradiated graphite saturated with aerated water; (2) characterization of carbon-14 deposited outside the moderator and reflector zones; and (3) corrosion/release rate of carbon-14 from irradiated steel and aluminum alloys

  20. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  1. Carbon/carbon composite materials

    International Nuclear Information System (INIS)

    Thebault, J.; Orly, P.

    2006-01-01

    Carbon/carbon composites are singular materials from their components, their manufacturing process as well as their characteristics. This paper gives a global overview of these particularities and applications which make them now daily used composites. (authors)

  2. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R; Mueller, S; Koetz, R; Wokaun, A [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  3. 长江口外海域沉积物中有机物的来源及分布%Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area

    Institute of Scientific and Technical Information of China (English)

    高建华; 汪亚平; 潘少明; 张瑞; 李军; 白风龙

    2008-01-01

    The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton,after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.

  4. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  5. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes

    Science.gov (United States)

    Jäckel, N.; Weingarth, D.; Zeiger, M.; Aslan, M.; Grobelsek, I.; Presser, V.

    2014-12-01

    This study investigates carbon onions (∼400 m2 g-1) as a conductive additive for supercapacitor electrodes of activated carbon and compares their performance with carbon black with high or low internal surface area. We provide a study of the electrical conductivity and electrochemical behavior between 2.5 and 20 mass% addition of each of these three additives to activated carbon. Structural characterization shows that the density of the resulting film electrodes depends on the degree of agglomeration and the amount of additive. Addition of low surface area carbon black (∼80 m2 g-1) enhances the power handling of carbon electrodes but significantly lowers the specific capacitance even when adding small amounts of carbon black. A much lower decrease in specific capacitance is observed for carbon onions and the best values are seen for carbon black with a high surface area (∼1390 m2 g-1). The overall performance benefits from the addition of any of the studied additives only at either high scan rates and/or electrolytes with high ion mobility. Normalization to the volume shows a severe decrease in volumetric capacitance and only at high current densities nearing 10 A g-1 we can see an improvement of the electrode capacitance.

  6. ROE Carbon Storage - Forest Biomass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This polygon dataset depicts the density of forest biomass in counties across the United States, in terms of metric tons of carbon per square mile of land area....

  7. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  8. Recuperative supercritical carbon dioxide cycle

    Science.gov (United States)

    Sonwane, Chandrashekhar; Sprouse, Kenneth M; Subbaraman, Ganesan; O'Connor, George M; Johnson, Gregory A

    2014-11-18

    A power plant includes a closed loop, supercritical carbon dioxide system (CLS-CO.sub.2 system). The CLS-CO.sub.2 system includes a turbine-generator and a high temperature recuperator (HTR) that is arranged to receive expanded carbon dioxide from the turbine-generator. The HTR includes a plurality of heat exchangers that define respective heat exchange areas. At least two of the heat exchangers have different heat exchange areas.

  9. Carbonate aquifers

    Science.gov (United States)

    Cunningham, Kevin J.; Sukop, Michael; Curran, H. Allen

    2012-01-01

    Only limited hydrogeological research has been conducted using ichnology in carbonate aquifer characterization. Regardless, important applications of ichnology to carbonate aquifer characterization include its use to distinguish and delineate depositional cycles, correlate mappable biogenically altered surfaces, identify zones of preferential groundwater flow and paleogroundwater flow, and better understand the origin of ichnofabric-related karst features. Three case studies, which include Pleistocene carbonate rocks of the Biscayne aquifer in southern Florida and Cretaceous carbonate strata of the Edwards–Trinity aquifer system in central Texas, demonstrate that (1) there can be a strong relation between ichnofabrics and groundwater flow in carbonate aquifers and (2) ichnology can offer a useful methodology for carbonate aquifer characterization. In these examples, zones of extremely permeable, ichnofabric-related macroporosity are mappable stratiform geobodies and as such can be represented in groundwater flow and transport simulations.

  10. Carbon taxes: Their benefits, liabilities

    International Nuclear Information System (INIS)

    Kaufmann, R.K.; Thompson, L.L.J.

    1993-01-01

    A carbon tax holds much promise for helping to reduce global greenhouse gas emissions, but administration will be a problem. Non-compliance, tilting the economic scales in favor of one energy source at the expense of another, and questions of equity between and within nations all must be addressed if the market-based efficiencies of a carbon tax are to become a concrete global reality. This article discusses carbon taxes in the following topic areas: how to set the rates for carbon taxes; administering the tax; international cooperation; type or form of tax; tax adjustments in existing taxes

  11. Organic electrochemistry and carbon electrodes

    International Nuclear Information System (INIS)

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  12. Anchorage Areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An anchorage area is a place where boats and ships can safely drop anchor. These areas are created in navigable waterways when ships and vessels require them for...

  13. Carbon-On-Carbon Manufacturing

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Buchanan, Larry (Inventor); Banzon, Jr., Jose T. (Inventor)

    2017-01-01

    The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.

  14. Activated, coal-based carbon foam

    Science.gov (United States)

    Rogers, Darren Kenneth; Plucinski, Janusz Wladyslaw

    2004-12-21

    An ablation resistant, monolithic, activated, carbon foam produced by the activation of a coal-based carbon foam through the action of carbon dioxide, ozone or some similar oxidative agent that pits and/or partially oxidizes the carbon foam skeleton, thereby significantly increasing its overall surface area and concurrently increasing its filtering ability. Such activated carbon foams are suitable for application in virtually all areas where particulate or gel form activated carbon materials have been used. Such an activated carbon foam can be fabricated, i.e. sawed, machined and otherwise shaped to fit virtually any required filtering location by simple insertion and without the need for handling the "dirty" and friable particulate activated carbon foam materials of the prior art.

  15. Carbon photonics

    Energy Technology Data Exchange (ETDEWEB)

    Konov, V I [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-11-30

    The properties of new carbon materials (single-crystal and polycrystalline CVD diamond films and wafers, single-wall carbon nanotubes and graphene) and the prospects of their use as optical elements and devices are discussed. (optical elements of laser devices)

  16. Limits on carbon sequestration in arid blue carbon ecosystems.

    Science.gov (United States)

    Schile, Lisa M; Kauffman, J Boone; Crooks, Stephen; Fourqurean, James W; Glavan, Jane; Megonigal, J Patrick

    2017-04-01

    Coastal ecosystems produce and sequester significant amounts of carbon ("blue carbon"), which has been well documented in humid and semi-humid regions of temperate and tropical climates but less so in arid regions where mangroves, marshes, and seagrasses exist near the limit of their tolerance for extreme temperature and salinity. To better understand these unique systems, we measured whole-ecosystem carbon stocks in 58 sites across the United Arab Emirates (UAE) in natural and planted mangroves, salt marshes, seagrass beds, microbial mats, and coastal sabkha (inter- and supratidal unvegetated salt flats). Natural mangroves held significantly more carbon in above- and belowground biomass than other vegetated ecosystems. Planted mangrove carbon stocks increased with age, but there were large differences for sites of similar age. Soil carbon varied widely across sites (2-367 Mg C/ha), with ecosystem averages that ranged from 49 to 156 Mg C/ha. For the first time, microbial mats were documented to contain soil carbon pools comparable to vascular plant-dominated ecosystems, and could arguably be recognized as a unique blue carbon ecosystem. Total ecosystem carbon stocks ranged widely from 2 to 515 Mg C/ha (seagrass bed and mangrove, respectively). Seagrass beds had the lowest carbon stock per unit area, but the largest stock per total area due to their large spatial coverage. Compared to similar ecosystems globally, mangroves and marshes in the UAE have lower plant and soil carbon stocks; however, the difference in soil stocks is far larger than with plant stocks. This incongruent difference between stocks is likely due to poor carbon preservation under conditions of weakly reduced soils (200-350 mV), coarse-grained sediments, and active shoreline migration. This work represents the first attempt to produce a country-wide coastal ecosystem carbon accounting using a uniform sampling protocol, and was motivated by specific policy goals identified by the Abu Dhabi Global

  17. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  18. Structure of nanoporous carbon materials for supercapacitors

    Science.gov (United States)

    Volperts, A.; Mironova-Ulmane, N.; Sildos, I.; Vervikishko, D.; Shkolnikov, E.; Dobele, G.

    2012-08-01

    Activated carbons with highly developed porous structure and nanosized pores (8 - 11 Å) were prepared from alder wood using thermochemical activation method with sodium hydroxide. Properties of the obtained activated carbons were examined by benzene and nitrogen sorption, X-Ray diffraction and Raman spectroscopy. Tests of activated carbons as electrodes in supercapacitors were performed as well. It was found that specific surface area of above mentioned activated carbons was 1800 m2/g (Dubinin - Radushkevich). Raman spectroscopy demonstrated the presence of ordered and disordered structures of graphite origin. The performance of activated carbons as electrodes in supercapacitors have shown superior results in comparison with electrodes made with commercial carbon tissues.

  19. Structure of nanoporous carbon materials for supercapacitors

    International Nuclear Information System (INIS)

    Volperts, A; Dobele, G; Mironova-Ulmane, N; Sildos, I; Vervikishko, D; Shkolnikov, E

    2012-01-01

    Activated carbons with highly developed porous structure and nanosized pores (8 - 11 Å) were prepared from alder wood using thermochemical activation method with sodium hydroxide. Properties of the obtained activated carbons were examined by benzene and nitrogen sorption, X-Ray diffraction and Raman spectroscopy. Tests of activated carbons as electrodes in supercapacitors were performed as well. It was found that specific surface area of above mentioned activated carbons was 1800 m 2 /g (Dubinin - Radushkevich). Raman spectroscopy demonstrated the presence of ordered and disordered structures of graphite origin. The performance of activated carbons as electrodes in supercapacitors have shown superior results in comparison with electrodes made with commercial carbon tissues.

  20. Storage of hydrogen in nanostructured carbon materials

    OpenAIRE

    Yürüm, Yuda; Yurum, Yuda; Taralp, Alpay; Veziroğlu, T. Nejat; Veziroglu, T. Nejat

    2009-01-01

    Recent developments focusing on novel hydrogen storage media have helped to benchmark nanostructured carbon materials as one of the ongoing strategic research areas in science and technology. In particular, certain microporous carbon powders, carbon nanomaterials, and specifically carbon nanotubes stand to deliver unparalleled performance as the next generation of base materials for storing hydrogen. Accordingly, the main goal of this report is to overview the challenges, distinguishing trait...

  1. An Empirical Study on China’s Regional Carbon Emissions of Agriculture

    OpenAIRE

    Li Pang; Jingyuan Zhao

    2013-01-01

    Based on China’s carbon emissions of agriculture, the authors appraise the area differentiation of carbon emissions of agriculture; examine the influential factors of agricultural carbon emissions in China. The results show that the performance of China’s agricultural carbon emissions is on the rise. The agricultural carbon emissions in the west of China increase rapidly. The area differentiation of agricultural carbon emissions in China decreases. In general, the major driver of carbon e...

  2. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  3. Carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The document identifies the main sources of carbon monoxide (CO) in the general outdoor atmosphere, describes methods of measuring and monitoring its concentration levels in the United Kingdom, and discusses the effects of carbon monoxide on human health. Following its review, the Panel has put forward a recommendation for an air quality standard for carbon monoxide in the United Kingdom of 10 ppm, measured as a running 8-hour average. The document includes tables and graphs of emissions of CO, in total and by emission source, and on the increase in blood levels of carboxyhaemoglobin with continuing exposure to CO. 11 refs., 4 figs., 4 tabs.

  4. Carbon dioxide and climate

    International Nuclear Information System (INIS)

    1991-10-01

    Global climate change is a serious environmental concern, and the US has developed ''An Action Agenda'' to deal with it. At the heart of the US effort is the US Global Change Research Program (USGCRP), which has been developed by the Committee on Earth and Environmental Sciences (CEES) of the Federal Coordinating Council for Sciences, Engineering, and Technology (FCCSET). The USGCRP will provide the scientific basis for sound policy making on the climate-change issue. The DOE contribution to the USGCRP is the Carbon Dioxide Research Program, which now places particular emphasis on the rapid improvement of the capability to predict global and regional climate change. DOE's Carbon Dioxide Research Program has been addressing the carbon dioxide-climate change connection for more than twelve years and has provided a solid scientific foundation for the USGCRP. The expansion of the DOE effort reflects the increased attention that the Department has placed on the issue and is reflected in the National Energy Strategy (NES) that was released in 1991. This Program Summary describes projects funded by the Carbon Dioxide Research Program during FY 1991 and gives a brief overview of objectives, organization, and accomplishments. The Environmental Sciences Division of the Office of Health and Environmental Research, Office of Energy Research supports a Carbon Dioxide Research Program to determine the scientific linkage between the rise of greenhouse gases in the atmosphere, especially carbon dioxide, and climate and vegetation change. One facet is the Core CO 2 Program, a pioneering program that DOE established more than 10 years ago to understand and predict the ways that fossil-fuel burning could affect atmospheric CO 2 concentration, global climate, and the Earth's biosphere. Major research areas are: global carbon cycle; climate detection and models of climate change; vegetation research; resource analysis; and, information and integration

  5. Calcium Carbonate

    Science.gov (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  6. Carbon sequestration in agricultural soils: a potential carbon trading opportunity?

    International Nuclear Information System (INIS)

    Cowie, Annette L.; Murphy, Brian; Rawson, Andrew; Wilson, Brian; Singh, Bhupinderpal; Young, Rick; Grange, Ian

    2007-01-01

    Full text: Emissions trading schemes emerging in Australia and internationally create a market mechanism by which release of greenhouse gases incurs a cost, and implementation of abatement measures generates a financial return. There is growing interest amongst Australian landholders in emissions trading based on sequestration of carbon in soil through modified land management practices. Intensively cropped soils have low carbon content, due to disturbance, erosion and regular periods of minimal organic matter input. Because cropping soils in Australia have lost a substantial amount of carbon there is significant potential to increase carbon stocks through improved land management practices. Evidence from long term trials and modelling indicates that modified cropping practices (direct drilling, stubble retention, controlled traffic) have limited impact on soil carbon (0 to +2 tC02e ha-' year1) whereas conversion from cropping to pasture gives greater increases. Small-increases in soil carbon over large areas can contribute significantly to mitigation of Australia's greenhouse gas emissions. Furthermore, increase in soil organic matter will improve soil health, fertility and resilience. However, the inclusion of soil carbon offsets in an emissions trading scheme cannot occur until several barriers are overcome. The first relates to credibility. Quantification of the extent to which specific land management practices can sequester carbon in different environments will provide the basis for promotion of the concept. Current research across Australia is addressing this need. Secondly, cost-effective and accepted methods of estimating soil carbon change must be available. Monitoring soil carbon to document change on a project scale is not viable due to the enormous variability in carbon stocks on micro and macro scales. Instead estimation of soil carbon change could be undertaken through a combination of baseline measurement to assess the vulnerability of soil carbon

  7. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation modelORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Science.gov (United States)

    C. Yue; P. Ciais; P. Cadule; K. Thonicke; S. Archibald; B. Poulter; W. M. Hao; S. Hantson; F. Mouillot; P. Friedlingstein; F. Maignan; N. Viovy

    2014-01-01

    Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE...

  8. The diesel exhaust in miners study: III. Interrelations between respirable elemental carbon and gaseous and particulate components of diesel exhaust derived from area sampling in underground non-metal mining facilities.

    NARCIS (Netherlands)

    Vermeulen, R.; Coble, J.B.; Yereb, D.; Lubin, J.H.; Blair, A.; Portengen, L.; Stewart, P.A.; Attfield, M.; Silverman, D.T.

    2010-01-01

    Diesel exhaust (DE) has been implicated as a potential lung carcinogen. However, the exact components of DE that might be involved have not been clearly identified. In the past, nitrogen oxides (NO(x)) and carbon oxides (CO(x)) were measured most frequently to estimate DE, but since the 1990s, the

  9. Synthesis of Chiral Cyclic Carbonates via Kinetic Resolution of Racemic Epoxides and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Xiao Wu

    2016-01-01

    Full Text Available The catalytic synthesis of cyclic carbonates using carbon dioxide as a C1-building block is a highly active area of research. Here, we review the catalytic production of enantiomerically enriched cyclic carbonates via kinetic resolution of racemic epoxides catalysed by metal-containing catalyst systems.

  10. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.

  11. Mapping of topsoil organic carbon in agro-ecosystems of a flat terrain area (Lombardy) by means of legacy soil data, climatic data and NDVI time series predictors with machine learning methods

    Science.gov (United States)

    Schillaci, Calogero; Saia, Sergio; Braun, Andreas; Acutis, Marco

    2017-04-01

    Topsoil organic carbon plays an important role in the agricultural yield, yield potential, and to deliver many ecosystem services, such as the potential to reduce greenhouse gas (GHG) emission from soil. In particular, SOC content sturdily affects soil properties, thus the precision of its estimation can support broad-scale agricultural and environmental management policy. Soils in temperate agro-ecosystem are generally highly productive and cropland occupies about 60% of their surface (Ramankutty et al 2008). In such contexts, lands is frequently subjected to SOC degrading operations, mostly ploughing, with drawbacks on soil fertility and erosion. In temperate agro-ecosystems, a strong role in SOC maintenance can be played by manure and residues inputs after husbandry and related activities and return of plant biomass to the soil (Acutis et al 2014). In this perspective, soil management can have a major role in SOC spatial distribution to maintain soil fertility and ecosystem services in a target area. Due to the considerable importance of SOC on both agronomical and ecological aspects of the agro-ecosystems, regional soil surveys over the years frequently take into account the measurement of SOC concentration and often stock. In the present study, we integrated a highly detailed legacy SOC dataset with climatic data and RS data to produce a reliable SOC maps from a farm to a district scale. In particular, the Normalized Difference Vegetation Index (NDVI)was used after the computation of its average value in a given pixel derived from several approximately cloud-free images. The input dataset was made of about 3000 Ap horizons implemented of SOC concentration, texture, bulk density and metadata. Climatic data (Worldclim), soil type (from the pedological map 1:250000 WRB), and a time series NDVI were applied. The NDVI data were derived from a set of Landsat 5 scenes (path 193, row 28,29) whereas the path 194, (row 28 and 29) contributes for less than one fourth of

  12. Measurement of atmospheric carbon dioxide and water vapor in built-up urban areas in the Gandhinagar-Ahmedabad region in India using a portable tunable diode laser spectroscopy system.

    Science.gov (United States)

    Roy, Anirban; Sharma, Neetesh Kumar; Chakraborty, Arup Lal; Upadhyay, Abhishek

    2017-11-01

    This paper reports open-path in situ measurements of atmospheric carbon dioxide at Gandhinagar (23.2156°N, 72.6369°E) and Ahmedabad (23.0225°N, 72.5714°E) in the heavily industrialized state of Gujarat in western India. Calibration-free second harmonic wavelength modulation spectroscopy (2f WMS) is used to carry out accurate and fully automated measurements. The mean values of the mole fraction of carbon dioxide at four locations were 438 ppm, 495 ppm, 550 ppm, and 740 ppm, respectively. These values are much higher than the current global average of 406.67 ppm. A 1 mW, 2004-nm vertical cavity surface-emitting laser is used to selectively interrogate the R16 transition of carbon dioxide at 2003.5 nm (4991.2585 cm -1 ). The 2f WMS signal corresponding to the gas absorption line shape is simulated using spectroscopic parameters available in the HITRAN database and relevant laser parameters that are extracted in situ from non-absorbing spectral wings of the harmonic signals. The mole fraction of carbon dioxide is extracted in real-time by a MATLAB program from least-squares fit of the simulated 2f WMS signal to the corresponding experimentally obtained signal. A 10-mW, 1392.54-nm distributed feedback laser is used at two of the locations to carry out water vapor measurements using direct absorption spectroscopy. This is the first instance of a portable tunable diode laser spectroscopy system being deployed in an urban location in India to measure atmospheric carbon dioxide and water vapor under varying traffic conditions. The measurements clearly demonstrate the need to adopt tunable diode laser spectroscopy for precise long-term monitoring of greenhouse gases in the Indian subcontinent.

  13. The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, Δ14C) and organic tracers

    Science.gov (United States)

    Cathalot, C.; Rabouille, C.; Tisnérat-Laborde, N.; Toussaint, F.; Kerhervé, P.; Buscail, R.; Loftis, K.; Sun, M.-Y.; Tronczynski, J.; Azoury, S.; Lansard, B.; Treignier, C.; Pastor, L.; Tesi, T.

    2013-10-01

    A significant fraction of the global carbon flux to the ocean occurs in River-dominated Ocean Margins (RiOMar) although large uncertainties remain in the cycle of organic matter (OM) in these systems. In particular, the OM sources and residence time have not been well clarified. Surface (0-1 cm) and sub-surface (3-4 cm) sediments and water column particles (bottom and intermediate depth) from the Rhône River delta system were collected in June 2005 and in April 2007 for a multi-proxy study. Lignin phenols, black carbon (BC), proto-kerogen/BC mixture, polycyclic aromatic hydrocarbons (PAHs), carbon stable isotope (δ13COC), and radiocarbon measurements (Δ14COC) were carried out to characterize the source of sedimentary organic material and to address degradation and transport processes. The bulk OM in the prodelta sediment appears to have a predominantly modern terrigenous origin with a significant contribution of modern vascular C3 plant detritus (Δ14COC = 27.9‰, δ13COC = -27.4‰). In contrast, the adjacent continental shelf, below the river plume, seems to be dominated by aged OM (Δ14COC = -400‰, δ13COC = -24.2‰), and shows no evidence of dilution and/or replacement by freshly produced marine carbon. Our data suggest an important contribution of black carbon (50% of OC) in the continental shelf sediments. Selective degradation processes occur along the main dispersal sediment system, promoting the loss of a modern terrestrial OM but also proto-kerogen-like OM. In addition, we hypothesize that during the transport across the shelf, a long term resuspension/deposition loop induces efficient long term degradation processes able to rework such refractory-like material until the OC is protected by the mineral matrix of particles.

  14. Carbon Nanotube Supercapacitors

    OpenAIRE

    Lu, Wen; Dai, Liming

    2010-01-01

    In summary, CNTs have been explored as a new type of electrode materials for supercapacitors. Both randomly entangled and highly aligned CNTs have been investigated. The former is relatively easier to fabricate while the latter has a better capacitor performance. Combining the unique properties of CNTs with the high surface area of activated carbons or the additional pseduocapacitance of redox materials (electroactive polymers and metal oxides), high-capacitance and high-rate nanocomposites a...

  15. Revitalization Areas

    Data.gov (United States)

    Department of Housing and Urban Development — Revitalization areas are HUD-designated neighborhoods in need of economic and community development and where there is already a strong commitment by the local...

  16. 700 Area

    Data.gov (United States)

    Federal Laboratory Consortium — The 700 Area of the Hanford Site is located in downtown Richland.Called the Federal Office Building, the Richland Operations Site Manager and the Richland Operations...

  17. Lithographically defined microporous carbon structures

    Science.gov (United States)

    Burckel, David Bruce; Washburn, Cody M.; Polsky, Ronen; Brozik, Susan M.; Wheeler, David R.

    2013-01-08

    A lithographic method is used to fabricate porous carbon structures that can provide electrochemical electrodes having high surface area with uniform and controllable dimensions, providing enormous flexibility to tailor the electrodes toward specific applications. Metal nanoparticles deposited on the surface of the porous carbon electrodes exhibit ultra small dimensions with uniform size distribution. The resulting electrodes are rugged, electrically conductive and show excellent electrochemical behavior.

  18. Carbon sequestration.

    Science.gov (United States)

    Lal, Rattan

    2008-02-27

    Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

  19. Oxidation processes on conducting carbon additives for lithium-ion batteries

    KAUST Repository

    La Mantia, Fabio; Huggins, Robert A.; Cui, Yi

    2012-01-01

    The oxidation processes at the interface between different types of typical carbon additives for lithium-ion batteries and carbonates electrolyte above 5 V versus Li/Li+ were investigated. Depending on the nature and surface area of the carbon

  20. Carbon Fiber Biocompatibility for Implants

    Directory of Open Access Journals (Sweden)

    Richard Petersen

    2016-01-01

    Full Text Available Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8 and 0.8 mm at 41.6% vs. 19.5% (p < 10−4, respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  1. Use of carbon isotopes in studies of environmental contamination

    International Nuclear Information System (INIS)

    Aravena, R.; Olave, S.; Ortiz, J.

    1986-01-01

    This report informs the preliminary results of a study on tree leaves undertaken in various areas of Santiago, aired at evaluating the pollution levels reached by combustion of fossil fuels, using carbon - 14 and carbon - 13 as natural tracers. (Author)

  2. Carbon on Mercury's Surface — Origin, Distribution, and Concentration

    Science.gov (United States)

    Klima, R. L.; Blewett, D. T.; Denevi, B. W.; Ernst, C. M.; Murchie, S. L.; Peplowski, P. N.; Perera, V.; Vander Kaaden, K.

    2018-05-01

    Low-reflectance material on Mercury, excavated from depth, may contain up to 5wt% carbon in some areas of the planet. We interpret this as endogenic carbon associated with the earliest crust of Mercury.

  3. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    Science.gov (United States)

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  4. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    International Nuclear Information System (INIS)

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton

  5. The Nordic Seas carbon budget: Sources, sinks, and uncertainties

    OpenAIRE

    Jeansson, Emil; Olsen, Are; Eldevik, Tor; Skjelvan, Ingunn; Omar, Abdirahman M.; Lauvset, Siv K.; Nilsen, Jan Even Ø.; Bellerby, Richard G. J; Johannessen, Truls; Falck, Eva

    2011-01-01

    A carbon budget for the Nordic Seas is derived by combining recent inorganic carbon data from the CARINA database with relevant volume transports. Values of organic carbon in the Nordic Seas' water masses, the amount of carbon input from river runoff, and the removal through sediment burial are taken from the literature. The largest source of carbon to the Nordic Seas is the Atlantic Water that enters the area across the Greenland-Scotland Ridge; this is in particular true for the anthropogen...

  6. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sujit Das, Josh Warren, Devin West, Susan M. Schexnayder

    2016-05-01

    This analysis identifies key opportunities in the carbon fiber supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas — wind energy, aerospace, automotive, and pressure vessels — that top the list of industries using carbon fiber and carbon fiber reinforced polymers. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  7. Hierarchical carbon nanostructure design: ultra-long carbon nanofibers decorated with carbon nanotubes

    International Nuclear Information System (INIS)

    El Mel, A A; Achour, A; Gautron, E; Angleraud, B; Granier, A; Le Brizoual, L; Djouadi, M A; Tessier, P Y; Xu, W; Choi, C H

    2011-01-01

    Hierarchical carbon nanostructures based on ultra-long carbon nanofibers (CNF) decorated with carbon nanotubes (CNT) have been prepared using plasma processes. The nickel/carbon composite nanofibers, used as a support for the growth of CNT, were deposited on nanopatterned silicon substrate by a hybrid plasma process, combining magnetron sputtering and plasma-enhanced chemical vapor deposition (PECVD). Transmission electron microscopy revealed the presence of spherical nanoparticles randomly dispersed within the carbon nanofibers. The nickel nanoparticles have been used as a catalyst to initiate the growth of CNT by PECVD at 600 deg. C. After the growth of CNT onto the ultra-long CNF, SEM imaging revealed the formation of hierarchical carbon nanostructures which consist of CNF sheathed with CNTs. Furthermore, we demonstrate that reducing the growth temperature of CNT to less than 500 deg. C leads to the formation of carbon nanowalls on the CNF instead of CNT. This simple fabrication method allows an easy preparation of hierarchical carbon nanostructures over a large surface area, as well as a simple manipulation of such material in order to integrate it into nanodevices.

  8. Bilan CarboneR - Implementation

    International Nuclear Information System (INIS)

    Wolff, Aurelie

    2015-01-01

    Bilan Carbone TM , a method for calculating greenhouse gas emissions, was developed to help companies and territorial authorities estimate emissions from their activities or on their territories. After validating the audit perimeter and determining the emission categories to be taken into account, activity data is collected and greenhouse gas emissions are calculated using the tool. Besides accounting greenhouse gas emissions at any given time, the inventory evaluates impact on climate and energy dependence. This helps organizations deal with their emissions by classifying them, implementing action plans to reduce emissions and starting a dynamic process taking into account carbon in their strategic decisions

  9. Quiet areas

    DEFF Research Database (Denmark)

    Petersen, Rikke Munck

    2016-01-01

    This paper argues that drone filming can substantiate our understanding of multisensorial experiences of quiet areas and urban landscapes. Contrary to the distanced gaze often associated with the drone, this paper discusses drone filming as an intimate performativity apparatus that can affect...... perception as a result of its interrelationships between motion, gaze, and sound. This paper uses four films, one of which is a drone flyover, to launch a discussion concerning a smooth and alluring gaze, a sliding gaze that penetrates landscapes, and site appearance. Films hold the capacity to project both...... and transcendence can facilitate a deeper understanding of intimate sensations, substantiating their role in the future design and planning of urban landscapes. Hence, it addresses the ethics of an intimacy perspective (of drone filming) in the qualification of quiet areas....

  10. Stable carbon isotope ratios: implications for the source of sediment carbon and for phytoplankton carbon assimilation in Lake Memphremagog, Quebec

    International Nuclear Information System (INIS)

    LaZerte, B.D.

    1983-01-01

    The stable carbon isotope (SCI) ratio of the sediment of Lake Memphremagog, Quebec is compared with that ot terrestrial sources and the phytoplankton to determine the relative proportion of allochthonous carbon incorporated into the sediments. Approximately 40-50% of the organic carbon in the main basins' pelagic sediment was terrestrial in origin, whereas up to 100% was terrestrial in littoral areas. The SCI method of determining the organic carbon source of sediments appears more reliable than the C/N method. A comparison of the SCI fractionation of the phytoplankton with laboratory cultures under different degrees of carbon limitation indicates that the phytoplankton of Lake Memphremagog are not carbon limited and fix carbon primarily by the C 3 pathway

  11. Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment

    Science.gov (United States)

    John Bradford; Peter Weishampel; Marie-Louise Smith; Randall Kolka; Richard A. Birdsey; Scott V. Ollinger; Michael G. Ryan

    2009-01-01

    Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass,...

  12. INTERACTION OF CARBON DIOXIDE WITH CARBON ADSORBENTS BELOW 400 C

    Energy Technology Data Exchange (ETDEWEB)

    Deitz, V R; Carpenter, F G; Arnold, R G

    1963-06-15

    The adsorption of carbon dioxide on carbon adsorbents (FT carbon, coconut charcoal, acid-washed bone char) and adsorbents containing basic calcium phosphate (hydroxylapatite, bone char, ash of bone char) was studied. Special consideration was given to the pretreatment of the materials. The carbons equilibrated as rapidly as the temperature; the basic calcium phosphates showed a rapid initial adsorption followed by a very slow rate which continued for days. Linear adsorption isotherms were found on FT carbon and the isosteric heats varied slightiy with coverage. The isotherms for the remaining materials had varying curvature and were for the most part in the same sequence as the estimated surface areas. The isosteric heats of carbon dioxide correlated very well with the magnitude of surface hydroxyl groups, an estimate of which was made from the chemical composition. There appeared to be three increasing levels of interaction: (1) pure physical adsorption; (2) an adsorption complex having 'bicarbonate structure'; and (3) an adsorption complex having 'carbonate structure'. (auth)

  13. CARBON DIOXIDE - PARTIAL PRESSURE (pCO2) - SEA and Other Data from MULTIPLE SHIPS From TOGA Area - Pacific (30 N to 30 S) from 19890101 to 19891231 (NODC Accession 9500075)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea/air gas ratios data was collected in TOGA Area - Pacific (30 N to 30 S) between January 1, 1989 and December 31, 1989 during cruises conducted using ships...

  14. Magnetism in carbon nanostructures

    CERN Document Server

    Hagelberg, Frank

    2017-01-01

    Magnetism in carbon nanostructures is a rapidly expanding field of current materials science. Its progress is driven by the wide range of applications for magnetic carbon nanosystems, including transmission elements in spintronics, building blocks of cutting-edge nanobiotechnology, and qubits in quantum computing. These systems also provide novel paradigms for basic phenomena of quantum physics, and are thus of great interest for fundamental research. This comprehensive survey emphasizes both the fundamental nature of the field, and its groundbreaking nanotechnological applications, providing a one-stop reference for both the principles and the practice of this emerging area. With equal relevance to physics, chemistry, engineering and materials science, senior undergraduate and graduate students in any of these subjects, as well as all those interested in novel nanomaterials, will gain an in-depth understanding of the field from this concise and self-contained volume.

  15. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    OpenAIRE

    Saleem, Amin M.; Desmaris, Vincent; Enoksson, Peter

    2016-01-01

    Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor) due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million), can give energy density higher than parallel plate capacitor and power ...

  16. Carbonizing process

    Energy Technology Data Exchange (ETDEWEB)

    1923-11-22

    In the downward distillation of coal, shale, lignite, or the like, the heat is generated by the combustion of liquid or gaseous fuel above the charge the zone of carbonization thus initiated travelling downwards through the charge. The combustible gases employed are preferably those resulting from the process but gases such as natural gas may be employed. The charge is in a moistened and pervious state the lower parts being maintained at a temperature not above 212/sup 0/F until influenced by contact with the carbonization zone and steam may be admitted to increase the yield of ammonia. The combustible gases may be supplied with insufficient air so as to impart to them a reducing effect.

  17. Carbon aerogels

    International Nuclear Information System (INIS)

    Berthon-Fabry, S.; Achard, P.

    2003-06-01

    The carbon aerogel is a nano-porous material at open porosity, electrical conductor. The aerogels morphology is variable in function of the different synthesis parameters. This characteristic offers to the aerogels a better adaptability to many applications: electrodes (super condensers, fuel cells). The author presents the materials elaboration and their applications. It provides also the research programs: fundamental research, realization of super-condenser electrodes, fuel cells electrodes, gas storage materials and opaque materials for thermal insulation. (A.L.B.)

  18. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  19. Biocompatibility of Soft-Templated Mesoporous Carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gencoglu, Maria F. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Spurri, Amanda [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Franko, Mitchell [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering; Chen, Jihua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Hensley, Dale K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS); Heldt, Caryn L. [Michigan Technological Univ., Houghton, MI (United States). Dept. of Chemical Engineering; Saha, Dipendu [Widener Univ., Chester, PA (United States). Dept. of Chemical Engineering

    2014-08-21

    We report that soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer–Emmett–Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (~70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2–0.6 mg/m2 and 2–4 mg/m2 for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.

  20. Carbon cycle

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, J; Halbritter, G; Neumann-Hauf, G

    1982-05-01

    This report contains a review of literature on the subjects of the carbon cycle, the increase of the atmospheric CO/sub 2/ concentration and the possible impacts of an increased CO/sub 2/ concentration on the climate. In addition to this survey, the report discusses the questions that are still open and the resulting research needs. During the last twenty years a continual increase of the atmospheric carbon dioxide concentration by about 1-2 ppm per years has been observed. In 1958 the concentration was 315 ppm and this increased to 336 ppm in 1978. A rough estimate shows that the increase of the atmospheric carbon dioxide concentration is about half of the amount of carbon dioxide added to the atmosphere by the combustion of fossil fuels. Two possible sinks for the CO/sub 2/ released into the atmosphere are known: the ocean and the biota. The role of the biota is, however, unclear, since it can act both as a sink and as a source. Most models of the carbon cycle are one-dimensional and cannot be used for accurate predictions. Calculations with climate models have shown that an increased atmospheric CO/sub 2/ concentration leads to a warming of the earth's surface and lower atmosphere. Calculations show that a doubling of the atmospheric CO/sub 2/-concentration would lead to a net heating of the lower atmosphere and earth's surface by a global average of about 4 W m/sup -2/. Greater uncertainties arise in estimating the change in surface temperature resulting from this change in heating rate. It is estimated that the global average annual surface temperature would change between 1.5 and 4.5 K. There are, however, latitudinal and seasonal variations of the impact of increased CO/sub 2/ concentration. Other meteorological variables (e.g. precipitation, wind speed etc.) would also be changed. It appears that the impacts of the other products of fossil fuel combustion are unlikely to counteract the impacts of CO/sub 2/ on the climate.

  1. The Coupling Strategy Research of Urban Public Space and Traffic for Improving the Residents’ Low-Carbon Travel Accessibility: A Case Study of Hexi New City Central Area in Nanjing

    Directory of Open Access Journals (Sweden)

    Caiyun Qian

    2017-11-01

    Full Text Available Under the current model of advocating urban intensive development and updating built-up areas, promoting the coupling optimization of space and public transport in built-up areas is an important way to realize sustainable urban development. Apart from researching the space and accessibility of the central area in Hexi new city of Nanjing and analyzing problems from various aspects, i.e., urban land use, road network planning, bus station distribution, non-motorized traffic, and space and environment design, combining with the OD (Origin & Destination survey, this paper further put forward the corresponding improvement strategy for the public space accessibility of different levels and optimized design of non-motorized traffic.

  2. Carbon Dissolution Using Waste Biomass—A Sustainable Approach for Iron-Carbon Alloy Production

    Directory of Open Access Journals (Sweden)

    Irshad Mansuri

    2018-04-01

    Full Text Available This paper details the characterisation of char obtained by high-temperature pyrolysis of waste macadamia shell biomass and its application as carbon source in iron-carbon alloy production. The obtained char was characterised by ultimate and proximate analysis, X-ray diffraction (XRD, Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS, Brunauer-Emmett-Teller (BET surface area via N2 isothermal adsorption and scanning electron microscopy (SEM. The results indicated that obtained char is less porous, low in ash content, and high in carbon content. Investigation of iron-carbon alloy formation through carbon dissolution at 1550 °C was carried out using sessile drop method by using obtained char as a carbon source. Rapid carbon pickup by iron was observed during first two minutes of contact and reached a saturation value of ~5.18 wt % of carbon after 30 min. The carbon dissolution rate using macadamia char as a source of carbon was comparatively higher using than other carbonaceous materials such as metallurgical coke, coal chars, and waste compact discs, due to its high percentage of carbon and low ash content. This research shows that macadamia shell waste, which has a low content of ash, is a valuable supplementary carbon source for iron-carbon alloy industries.

  3. Carbon nanofibers obtained from electrospinning process

    Science.gov (United States)

    Bovi de Oliveira, Juliana; Müller Guerrini, Lília; Sizuka Oishi, Silvia; Rogerio de Oliveira Hein, Luis; dos Santos Conejo, Luíza; Cerqueira Rezende, Mirabel; Cocchieri Botelho, Edson

    2018-02-01

    In recent years, reinforcements consisting of carbon nanostructures, such as carbon nanotubes, fullerenes, graphenes, and carbon nanofibers have received significant attention due mainly to their chemical inertness and good mechanical, electrical and thermal properties. Since carbon nanofibers comprise a continuous reinforcing with high specific surface area, associated with the fact that they can be obtained at a low cost and in a large amount, they have shown to be advantageous compared to traditional carbon nanotubes. The main objective of this work is the processing of carbon nanofibers, using polyacrylonitrile (PAN) as a precursor, obtained by the electrospinning process via polymer solution, with subsequent use for airspace applications as reinforcement in polymer composites. In this work, firstly PAN nanofibers were produced by electrospinning with diameters in the range of (375 ± 85) nm, using a dimethylformamide solution. Using a furnace, the PAN nanofiber was converted into carbon nanofiber. Morphologies and structures of PAN and carbon nanofibers were investigated by scanning electron microscopy, Raman Spectroscopy, thermogravimetric analyses and differential scanning calorimeter. The resulting residual weight after carbonization was approximately 38% in weight, with a diameters reduction of 50%, and the same showed a carbon yield of 25%. From the analysis of the crystalline structure of the carbonized material, it was found that the material presented a disordered structure.

  4. Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride

    Directory of Open Access Journals (Sweden)

    H. Kouyoumdjian

    2006-01-01

    Full Text Available Levels of coarse (PM10-2.5 and fine (PM2.5 particles were determined between February 2004 and January 2005 in the city of Beirut, Lebanon. While low PM mass concentrations were measured in the rainy season, elevated levels were detected during sand storms originating from Arabian desert and/or Africa. Using ATR-FTIR and IC, it was shown that nitrate, sulfate, carbonate and chloride were the main anionic constituents of the coarse particles, whereas sulfate was mostly predominant in the fine particles in the form of (NH42SO4. Ammonium nitrate was not expected to be important because the medium was defined as ammonium poor. In parallel, the cations Ca2+ and Na+ dominated in the coarse, and NH4+, Ca2+ and Na+ in the fine particles. Coarse nitrate and sulfate ions resulted from the respective reactions of nitric and sulfuric acid with a relatively high amount of calcium carbonate. Both CaCO3 and Ca(NO32 crystals identified by ATR-FTIR in the coarse particles were found to be resistant to soaking in water for 24 h but became water soluble when they were formed in the fine particles suggesting, thereby, different growth and adsorption phenomena. The seasonal variational study showed that nitrate and sulfate ion concentrations increased in the summer due to the enhancement of photochemical reactions which facilitated the conversion of NO2 and SO2 gases into NO3- and SO42-, respectively. While nitrate was mainly due to local heavy traffic, sulfates were due to local and long-range transport phenomena. Using the air mass trajectory HYSPLIT model, it was found that the increase in the sulfate concentration correlated with wind vectors coming from Eastern and Central Europe. Chloride levels, on the other hand, were high when wind originated from the sea and low during sand storms. In addition to sea salt, elevated levels of chloride were also attributed to waste mass burning in proximity to the site. In comparison to other neighboring Mediterranean

  5. Exchanges in boundary layer and low troposphere and consequences on pollution of Fos-Berre-Marseille area (ESCOMPTE experiment); Les aerosols: emissions, formation d'aerosols organiques secondaires, transport longue distance. Zoom sur les aerosols carbones en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Guillaume, B

    2006-01-15

    There are two types of 'carbonaceous aerosols': 'black carbon' (BC) and 'organic carbon'(OC). BC is directly emitted in the atmosphere while OC is either directly emitted (primary OC, OCp) or secondarily formed through oxidation processes in the atmosphere (secondary organic aerosols, SOA). Complexity of carbonaceous aerosols is still poorly represented in existing aerosol models and uncertainties appear mainly both in their emission inventories and in their complex atmospheric evolution (transport, gas-particle interactions, dry/wet deposition), making difficult the estimation of their radiative impact. In this framework, I developed during my PhD at Laboratoire d'Aerologie, a new approach to deal with this complexity, with implementation of both a new carbonaceous aerosol emission inventory and a new aerosol modelling tool at global scale. My work is divided in 5 different tasks: - better characterisation of BC and OCp emissions, achieved through the development of a new emission inventory from fossil fuel and biofuel combustion sources (industrial, domestic and mobile sources). This inventory provides BC and OCp emissions for Europe at 25 km * 25 km resolution for the years 1990, 1995, 2000, 2005 and 2010, with two additional regional zooms: on France, at 10 km * 10 km resolution for the years 2000 and 2010 with improved road traffic, and in Marseille region (Escompte campaign, 1999,-2001) at 1 km * 1 km resolution for the year 1999; - better modelling of carbonaceous aerosol complex atmospheric evolution, through coupling of a global scale gas transport/chemistry model (TM4) with an aerosol module (ORISAM) featuring size-distributed aerosols (on 8 diameter sections from 40 nm to 10 {mu}m) organic/inorganic chemical composition and explicit treatment of SOA formation; - simulations with this new aerosol model ORISAM-TM4 and model/measurements comparisons to study BC and OC long-range transport; - sensitivity tests on SOA

  6. Bioenergy, the Carbon Cycle, and Carbon Policy

    Science.gov (United States)

    Kammen, D. M.

    2003-12-01

    The evolving energy and land-use policies across North America and Africa provide critical case studies in the relationship between regional development, the management of natural resources, and the carbon cycle. Over 50 EJ of the roughly 430 EJ total global anthropogenic energy budget is currently utilized in the form of direct biomass combustion. In North America 3 - 4 percent of total energy is derived from biomass, largely in combined heat and power (CHP) combustion applications. By contrast Africa, which is a major consumer of 'traditional' forms of biomass, uses far more total bioenergy products, but largely in smaller batches, with quantities of 0.5 - 2 tons/capita at the household level. Several African nations rely on biomass for well over 90 percent of household energy, and in some nations major portions of the industrial energy supply is also derived from biomass. In much of sub-Saharan Africa the direct combustion of biomass in rural areas is exceeded by the conversion of wood to charcoal for transport to the cities for household use there. There are major health, and environmental repercussions of these energy flows. The African, as well as Latin American and Asian charcoal trade has a noticeable signature on the global greenhouse gas cycles. In North America, and notably Scandinavia and India as well, biomass energy and emerging conversion technologies are being actively researched, and provide tremendous opportunities for the evolution of a sustainable, locally based, energy economy for many nations. This talk will examine aspects of these current energy and carbon flows, and the potential that gassification and new silvicultural practices hold for clean energy systems in the 21st century. North America and Africa will be examined in particular as both sources of innovation in this field, and areas with specific promise for application of these energy technologies and biomass/land use practices to further energy and global climate management.

  7. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Wang Yan; Xu Hao; Wu Xu; Zhu Yimei; Gu Baojing; Niu Xiaoyin; Liu Anqin; Peng Changhui; Ge Ying; Chang Jie

    2011-01-01

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha -1 yr -1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  8. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2012-01-01

    . Using an actor- network theory (ANT) framework, the aim is to investigate the actors who bring together the elements needed to classify their carbon emission sources and unpack the heterogeneous relations drawn on. Based on an ethnographic study of corporate agents of ecological modernisation over...... a period of 13 months, this paper provides an exploration of three cases of enacting classification. Drawing on ANT, we problematise the silencing of a range of possible modalities of consumption facts and point to the ontological ethics involved in such performances. In a context of global warming...

  9. Carbon Footprints

    OpenAIRE

    Rahel Aichele; Gabriel Felbermayr

    2011-01-01

    Lässt sich der Beitrag eines Landes zum weltweiten Klimaschutz an der Veränderung seines CO2-Ausstoßes messen, wie es im Kyoto-Abkommen implizit unterstellt wird? Oder ist aufgrund der Bedeutung des internationalen Güterhandels der Carbon Footprint – der alle CO2-Emissionen erfasst, die durch die Absorption (d.h. Konsum und Investitionen) eines Landes entstehen – das bessere Maß? Die Autoren erstellen eine Datenbank mit den Footprints von 40 Ländern für den Zeitraum 1995–2007. Die deskriptive...

  10. CARBON CRYOGEL MICROSPHERE FOR ETHYL LEVULINATE PRODUCTION: EFFECT OF CARBONIZATION TEMPERATURE AND TIME

    Directory of Open Access Journals (Sweden)

    MUZAKKIR M. ZAINOL

    2016-07-01

    Full Text Available The side products of biomass and bio-fuel industry have shown potential in producing carbon catalyst. The carbon cryogel was synthesized from ligninfurfural mixture based on the following details: 1.0 of lignin to furfural (L/F ratio, 1.0 of lignin to water (L/W ratio, and 8M of acid concentration. The lignin-furfural sol-gel mixture, initially prepared via polycondensation reaction at 90 °C for 30 min, was followed by freeze drying and carbonization process. Effects of carbonization temperature and time were investigated on the total acidity and surface area of the carbon cryogel. Furthermore, the effects of these parameters were studied on the ethyl levulinate yield through esterification reaction of levulinic acid in ethanol. The esterification reaction was conducted at reflux temperature, 10 h of reaction time, 19 molar ratio of ethanol to levulinic acid, and 15.0 wt.% carbon cryogel loading. Based on the carbonization temperature and time studies, the carbon cryogel carbonized at 500 °C and 4 h exhibited good performance as solid acid catalyst. Large total surface area and acidity significantly influenced the catalytic activity of carbon cryogel with 80.0 wt.% yield of ethyl levulinate. Thus, carbon cryogel is highly potential as acid catalyst for the esterification of levulinic acid with ethanol.

  11. Performance Enhancement of Carbon Nanomaterials for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Amin M. Saleem

    2016-01-01

    Full Text Available Carbon nanomaterials such as carbon nanotubes, carbon nanofibers, and graphene are exploited extensively due to their unique electrical, mechanical, and thermal properties and recently investigated for energy storage application (supercapacitor due to additional high specific surface area and chemical inertness properties. The supercapacitor is an energy storage device which, in addition to long cycle life (one million, can give energy density higher than parallel plate capacitor and power density higher than battery. In this paper, carbon nanomaterials and their composites are reviewed for prospective use as electrodes for supercapacitor. Moreover, different physical and chemical treatments on these nanomaterials which can potentially enhance the capacitance are also reviewed.

  12. The electrochemical properties of graphite and carbon

    International Nuclear Information System (INIS)

    Yeager, E.; Gupta, S.; Molla, J.A.

    1983-01-01

    Carbon and graphite are often used as supports for electrocatalysts, but also have an electrocatalytic function in such electrode reactions as O 2 reduction in alkaline electrolytes, Cl 2 generation in brine and SOCl 2 reduction in lithium-thionyl chloride batteries. These catalytic functions involve specific chemical functional groups bound to the carbon and graphite surfaces. The factors controlling O 2 reduction with various types of carbon electrodes of both low and high surface area are reviewed. Of particular importance is the role of hydrogen peroxide. The role of the functionality of the carbon in the electrocatalysis will be discussed

  13. Progress study of Micro Carbon Coils

    Science.gov (United States)

    Wang, Haiquan; Yang, Shaoming; Chen, Xiuqin

    2017-12-01

    As a kind of novel bio-mimetic carbon fibers, with diversities of high functions, carbon microcoils (CMC) have the outstanding properties of high specific strength, low-density, large specific surface area, heat resistance, corrosion resistance, chemical stability, conductive ability and thermal conductivity. Due to their special three-dimensional spiral structure, they have the chiral characteristics and a high flexibility. Carbon microcoils has become a research hotspot, especially the preparation of polymer-based carbon microcoils composite materials and they have wide more application such as flexible sensors, electromagnetic shielding materials, hydrogen storage materials, health care products and so on.

  14. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  15. CACTUS SPRING ROADLESS AREA, CALIFORNIA.

    Science.gov (United States)

    Matti, Jonathan C.; Kuizon, Lucia

    1984-01-01

    Geologic, geochemical, and geophysical studies together with a review of historic mining and prospecting activities indicate that the Cactus Spring Roadless Area in California has little promise for the occurrence of mineral or energy resources. Marble bodies occur in the northern part of the roadless area and are possible resources for building stone, crushed and quarried aggregate, and lime and magnesium for Portland cement and industrial applications. It is recommended that the terrane of marble be mapped and sampled carefully in order to evaluate the quantity and quality of the carbonate resources.

  16. Adsorption of palladium ions by modified carbons from rice husks

    International Nuclear Information System (INIS)

    Mostafa, M.R.

    1994-01-01

    Steam activated carbon of high surface area does not show palladium ions adsorption. Treatment of this carbon with HF acid increases to a great extent the gas adsorption capacity expressed as nitrogen surface area as well as the adsorption capacity of palladium ions from aqueous solution. HHB was loaded in different amounts on to these carbons. The acid sites represent the active fraction of the surface on which the adsorption palladium ions proceed. The uptake of palladium ions by HHB treated carbons is related to the total number of HHB molecules loaded on the carbon surface. (author)

  17. Clean energy from a carbon fuel cell

    Science.gov (United States)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  18. Absorption of carbon dioxide in waste tanks

    International Nuclear Information System (INIS)

    Hobbs, D.T.

    1987-01-01

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  19. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    An, Feng; Lu, Chunxiang; Li, Yonghong; Guo, Jinhai; Lu, Xiaoxuan; Lu, Huibin; He, Shuqing; Yang, Yu

    2012-01-01

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m 2 /g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  20. Carbon materials for H{sub 2} storage

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, L.; Arenillas, A.; Pis, J.J. [Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain)

    2009-05-15

    In this work a series of carbons with different structural and textural properties were characterised and evaluated for their application in hydrogen storage. The materials used were different types of commercial carbons: carbon fibers, carbon cloths, nanotubes, superactivated carbons, and synthetic carbons (carbon nanospheres and carbon xerogels). Their textural properties (i.e., surface area, pore size distribution, etc.) were related to their hydrogen adsorption capacities. These H{sub 2} storage capacities were evaluated by various methods (i.e., volumetric and gravimetric) at different temperatures and pressures. The differences between both methods at various operating conditions were evaluated and related to the textural properties of the carbon-based adsorbents. The results showed that temperature has a greater influence on the storage capacity of carbons than pressure. Furthermore, hydrogen storage capacity seems to be proportional to surface area, especially at 77 K. The micropore size distribution and the presence of narrow micropores also notably influence the H{sub 2} storage capacity of carbons. In contrast, morphological or structural characteristics have no influence on gravimetric storage capacity. If synthetic materials are used, the textural properties of carbon materials can be tailored for hydrogen storage. However, a larger pore volume would be needed in order to increase storage capacity. It seems very difficult approach to attain the DOE and EU targets only by physical adsorption on carbon materials. Chemical modification of carbons would seem to be a promising alternative approach in order to increase the capacities. (author)

  1. Treatment of heavily contaminated storm water from an industrial site area by filtration through an adsorbent barrier with pine bark (Pinus Silvestris), polonite and active carbon in a comparison study

    OpenAIRE

    Nehrenheim, Emma; Ribé, Veronica; Carlsson, Peter; Eneroth, Peder; Odlare, Monica

    2011-01-01

    This study aims to evaluate a simple and robust filtration method for separation of of heavy metals from storm water. The storm water, collected at a metals manufacturing site, is heavily contaminated with heavy metals, A first analysis of a water sample collected from the site in mid Sweden showed exceptionally high concentrations of especially Zn, which was present in concentrations exceeding 200 mgL-1. The basic idea is to filter the water as it flows out of the industry area through a pas...

  2. Materials for carbon dioxide separation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qingqing

    2014-10-01

    The CO{sub 2} adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO{sub 2} adsorption ability. Another promising class of materials for CO{sub 2} capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO{sub 3} and the relationship between physisorption and chemisorption properties of CaO-based materials.

  3. Photodetector based on carbon nanotubes

    Science.gov (United States)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  4. Gypsum accumulation on carbonate stone

    Science.gov (United States)

    McGee, E.S.; Mossotti, V.G.

    1992-01-01

    The accumulation of gypsum on carbonate stone has been investigated through exposure of fresh samples of limestone and marble at monitored sites, through examination of alteration crusts from old buildings and through laboratory experiments. Several factors contribute to gypsum accumulation on carbonate stone. Marble or limestone that is sheltered from direct washing by rain in an urban environment with elevated pollution levels is likely to accumulate a gypsum crust. Crust development may be enhanced if the stone is porous or has an irregular surface area. Gypsum crusts are a surficial alteration feature; gypsum crystals form at the pore opening-air interface, where evaporation is greatest.

  5. Materials for carbon dioxide separation

    International Nuclear Information System (INIS)

    Xu, Qingqing

    2014-01-01

    The CO 2 adsorption capacities at room temperature have been investigated by comparing carbon nanotubes, fullerene, graphenes, graphite and granular activated carbons. It turned out that the amount of the micropore surface area was dominating the CO 2 adsorption ability. Another promising class of materials for CO 2 capture and separation are CaO derived from the eggshells. Two aspects were studied in present work: a new hybrid materials synthesized by doping the CaTiO 3 and the relationship between physisorption and chemisorption properties of CaO-based materials.

  6. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, ... Install one and check its batteries regularly. View Information About CO Alarms Other CO Topics Safety Tips ...

  7. Global Carbon Budget 2017

    NARCIS (Netherlands)

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frederic; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Goldewijk, Kees Klein; Koertzinger, Arne; Landschuetzer, Peter; Lefevre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Roedenbeck, Christian; Schwinger, Jorg; Seferian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Soenke; Zhu, Dan

    2018-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project

  8. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Education Safety Education Centers Carbon Monoxide Information Center Carbon Monoxide Information Center En Español The Invisible Killer Carbon monoxide, also known as CO, is called the " ...

  9. Adsorption and desorption of pertechnetate on activated carbon

    International Nuclear Information System (INIS)

    Dano, M.; Galambos, M.; Rajec, P.; Viglasova, E.; Krajnak, A.; Novak, I.

    2014-01-01

    High surface area, a microporous structure, and a high degree of surface reactivity make activated carbons versatile adsorbents, particularly effective in the adsorption of radionuclides from aqueous solutions. The most important property of activated carbon, the property that determines its usage, is the pore structure. The total number of pores, their shape and size determine the adsorption capacity and even the dynamic adsorption rate of the activated carbon. This report is dedicated to sorption properties of new activated carbon sorbents. (authors)

  10. Integral Ring Carbon-Carbon Piston

    Science.gov (United States)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  11. Process of making titanium carbide (TiC) nano-fibrous felts

    Science.gov (United States)

    Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao

    2015-01-13

    A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.

  12. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  13. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  14. Scale-up of Carbon/Carbon Bipolar Plates