WorldWideScience

Sample records for arctic weather conditions

  1. Arctic-midlatitude weather linkages in North America

    Science.gov (United States)

    Overland, James E.; Wang, Muyin

    2018-06-01

    There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.

  2. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  3. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne

    2012-01-01

    (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability...... is dependent on oil composition, ice conditions and weathering degree. In open water, oil spills rapidly become “not ignitable” due to the weathering e.g. high water content and low content of residual volatile components. The slower weathering of oil spills in ice (50 and 90% ice cover) results in longer time......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  4. Warm Arctic episodes linked with increased frequency of extreme winter weather in the United States.

    Science.gov (United States)

    Cohen, Judah; Pfeiffer, Karl; Francis, Jennifer A

    2018-03-13

    Recent boreal winters have exhibited a large-scale seesaw temperature pattern characterized by an unusually warm Arctic and cold continents. Whether there is any physical link between Arctic variability and Northern Hemisphere (NH) extreme weather is an active area of research. Using a recently developed index of severe winter weather, we show that the occurrence of severe winter weather in the United States is significantly related to anomalies in pan-Arctic geopotential heights and temperatures. As the Arctic transitions from a relatively cold state to a warmer one, the frequency of severe winter weather in mid-latitudes increases through the transition. However, this relationship is strongest in the eastern US and mixed to even opposite along the western US. We also show that during mid-winter to late-winter of recent decades, when the Arctic warming trend is greatest and extends into the upper troposphere and lower stratosphere, severe winter weather-including both cold spells and heavy snows-became more frequent in the eastern United States.

  5. Synoptic-scale fire weather conditions in Alaska

    Science.gov (United States)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  6. Thermal advantage of tracking solar collectors under Danish weather conditions

    DEFF Research Database (Denmark)

    Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2010-01-01

    Theoretical investigations have been carried out with the aim to elucidate the thermal advantage of tracking solar collectors for different weather conditions in Kgs. Lyngby, Denmark (55.8°N), and for the weather conditions in Sisimiut, Greenland (66.9°N), just north of the arctic circle....... The investigations are based on calculations with a newly developed program. Measured weather data from a solar radiation measurement station at Technical University of Denmark in Kgs. Lyngby Denmark in the period 1990 to 2002 and the Danish Design Reference Year, DRY data file are used in the investigations....... The weather data used for Sisimiut are based on a Test Reference Year, TRY weather data file. The thermal advantages of different tracking strategies is investigated for two flat plate solar collectors with different efficiencies, operated at different temperature levels. The investigations show...

  7. Arctic Region Space Weather Customers and SSA Services

    DEFF Research Database (Denmark)

    Høeg, Per; Kauristi, Kirsti; Wintoft, Peter

    Arctic inhabitants, authorities, and companies rely strongly on precise localization information and communication covering vast areas with low infrastructure and population density. Thus modern technology is crucial for establishing knowledge that can lead to growth in the region. At the same time...... and communication can be established without errors resulting from Space Weather effects. An ESA project have identified and clarified, how the products of the four ESA Space Weather Expert Service Centres (SWE) in the ESA Space Situational Awareness Programme (SSA), can contribute to the requirements of SSA...

  8. It's the Physics: Organized Complexity in the Arctic/Midlatitude Weather Controversy

    Science.gov (United States)

    Overland, J. E.; Francis, J. A.; Wang, M.

    2017-12-01

    There is intense scientific and public interest in whether major Arctic changes can and will impact mid-latitude weather. Despite numerous workshops and a growing literature, convergence of understanding is lacking, with major objections about possible large impacts within the scientific community. Yet research on the Arctic as a new potential driver in improving subseasonal forecasting at midlatitudes remains a priority. A recent review laid part of the controversy on shortcomings in experimental design and ill-suited metrics, such as examining the influence of only sea-ice loss rather than overall Arctic temperature amplification, and/or calculating averages over large regions, long time periods, or many ensemble members that would tend to obscure event-like Arctic connections. The present analysis lays the difficulty at a deeper level owing to the inherently complex physics. Jet-stream dynamics and weather linkages on the scale of a week to months has characteristics of an organized complex system, with large-scale processes that operate in patterned, quasi-geostrophic ways but whose component feedbacks are continually changing. Arctic linkages may be state dependent, i.e., relationships may be more robust in one atmospheric wave pattern than another, generating intermittency. The observational network is insufficient to fully initialize such a system and the inherent noise obscures linkage signals, leading to an underdetermined problem; often more than one explanation can fit the data. Further, the problem may be computationally irreducible; the only way to know the result of these interactions is to trace out their path over time. Modeling is a suggested approach, but at present it is unclear whether previous model studies fully resolve anticipated complexity. The jet stream from autumn to early winter is characterized by non-linear interactions among enhanced atmospheric planetary waves, irregular transitions between the zonal and meridional flows, and the

  9. Population-level body condition correlates with productivity in an arctic wader, the dunlin Calidris alpina, during post-breeding migration.

    Directory of Open Access Journals (Sweden)

    Grzegorz Neubauer

    Full Text Available Weather and predation constitute the two main factors affecting the breeding success of those Arctic waders whose productivity is highly variable over the years. We tested whether reproductive success is associated with the post-breeding condition of adults, in which in 'good' years (with warm weather, plentiful food and low predation pressure the condition of breeders and their productivity is high. To verify this hypothesis, we used a 10-year dataset comprising 20,792 dunlins Calidris alpina, trapped during migration at a stopover site on the southern Baltic Sea shore. Males were consistently in a slightly worse condition than females, likely due to male-biased parental investment in brood rearing. Annual productivity indices were positively correlated with the respective condition indices of breeders from the Eurasian Arctic, indicating that in 'good' years, despite great effort spent on reproduction, breeders leave the breeding grounds in better condition. The pattern did not hold for 1992: productivity was low, but the average condition of adults during migration was the highest noted over the decade. We suggest that the delayed effect of the Mount Pinatubo eruption in the Philippines in 1991, could be responsible for the unexpected high condition of Arctic breeders in 1992. High population-level average condition, coupled with the low productivity could stem from severe weather caused by the volcano eruption a year before and strong predation pressure, which in turn lead to a reduced investment in reproduction. The importance of large-scale episodic phenomena, like this volcano eruption, may blur the statistical associations of wildlife with local environmental drivers.

  10. Population-level body condition correlates with productivity in an arctic wader, the dunlin Calidris alpina, during post-breeding migration.

    Science.gov (United States)

    Neubauer, Grzegorz; Pilacka, Lucyna; Zieliński, Piotr; Gromadzka, Jadwiga

    2017-01-01

    Weather and predation constitute the two main factors affecting the breeding success of those Arctic waders whose productivity is highly variable over the years. We tested whether reproductive success is associated with the post-breeding condition of adults, in which in 'good' years (with warm weather, plentiful food and low predation pressure) the condition of breeders and their productivity is high. To verify this hypothesis, we used a 10-year dataset comprising 20,792 dunlins Calidris alpina, trapped during migration at a stopover site on the southern Baltic Sea shore. Males were consistently in a slightly worse condition than females, likely due to male-biased parental investment in brood rearing. Annual productivity indices were positively correlated with the respective condition indices of breeders from the Eurasian Arctic, indicating that in 'good' years, despite great effort spent on reproduction, breeders leave the breeding grounds in better condition. The pattern did not hold for 1992: productivity was low, but the average condition of adults during migration was the highest noted over the decade. We suggest that the delayed effect of the Mount Pinatubo eruption in the Philippines in 1991, could be responsible for the unexpected high condition of Arctic breeders in 1992. High population-level average condition, coupled with the low productivity could stem from severe weather caused by the volcano eruption a year before and strong predation pressure, which in turn lead to a reduced investment in reproduction. The importance of large-scale episodic phenomena, like this volcano eruption, may blur the statistical associations of wildlife with local environmental drivers.

  11. The Rapid Arctic Warming and Its Impact on East Asian Winter Weather in Recent Decade

    Science.gov (United States)

    Kim, S. J.; Kim, B. M.; Kim, J. H.

    2015-12-01

    The Arctic is warming much more rapidly than the lower latitudes. In contrast to the rapid Arctic warming, in winters of the recent decade, the cold-air outbreaks over East Asia occur more frequently and stronger than in 1990s. By accompanying the snow over East Asia, the strong cold surges have led to a severe socio-economic impact. Such severe cold surges in recent decade over east Asia is consistent with the more dominant negative phase of the Arctic Oscillation (AO), that may be attributed by the Arctic amplification. In both observation-based reanalysis and numerical model experiments, the Arctic sea ice melting leads to the weakening of the AO polarity by reducing the meridional temperature gradient through a heat flux feedback. The Arctic warming and associated sea ice melting over the Kara-Barents area in late fall and early winter first release a lot of heat to the atmosphere from the ocean by a strong contrast in temperature and moisture and higher height anomaly is developed over the Kara/Barents and the Ural mountains The anomalous anticyclonic anomaly over the Arctic strengthen the Siberian High and at the same time the east Asian trough is developed over the western coast of the North Pacific. Through the passage between the margin of the Siberian High and east Asian tough, an extremely cold air is transported from east Siberia to east Asia for sometimes more than a week. Such a severe sold air brings about the moisture from nearby ocean, largely influencing the daily lives and economy in north East China, Korea, and Japan. The recent Arctic and associated sea ice melting is not only contributed to the local climate and weather, but also a severe weather in mid-latitudes through a modulation in polar vortex.

  12. Weather conditions conducive to Beijing severe haze more frequent under climate change

    Science.gov (United States)

    Cai, Wenju; Li, Ke; Liao, Hong; Wang, Huijun; Wu, Lixin

    2017-03-01

    The frequency of Beijing winter severe haze episodes has increased substantially over the past decades, and is commonly attributed to increased pollutant emissions from China’s rapid economic development. During such episodes, levels of fine particulate matter are harmful to human health and the environment, and cause massive disruption to economic activities, as occurred in January 2013. Conducive weather conditions are an important ingredient of severe haze episodes, and include reduced surface winter northerlies, weakened northwesterlies in the midtroposphere, and enhanced thermal stability of the lower atmosphere. How such weather conditions may respond to climate change is not clear. Here we project a 50% increase in the frequency and an 80% increase in the persistence of conducive weather conditions similar to those in January 2013, in response to climate change. The frequency and persistence between the historical (1950-1999) and future (2050-2099) climate were compared in 15 models under Representative Concentration Pathway 8.5 (RCP8.5). The increased frequency is consistent with large-scale circulation changes, including an Arctic Oscillation upward trend, weakening East Asian winter monsoon, and faster warming in the lower troposphere. Thus, circulation changes induced by global greenhouse gas emissions can contribute to the increased Beijing severe haze frequency.

  13. Controls on Weathering of Pyrrhotite in a Low-Sulfide, Granitic Mine-Waste Rock in the Canadian Arctic

    Science.gov (United States)

    Langman, J. B.; Holland, S.; Sinclair, S.; Blowes, D.

    2013-12-01

    Increased environmental risk is incurred with expansion of mineral extraction in the Arctic. A greater understanding of geochemical processes associated with hard-rock mining in this cold climate is needed to evaluate and mitigate these risks. A laboratory and in-situ experiment was conducted to examine mineral weathering and the generation of acid rock drainage in a low-sulfide, run-of-mine waste rock in an Arctic climate. Rock with different concentrations of sulfides (primarily pyrrhotite [Fe7S8] containing small amounts of Co and Ni) and carbonates were weathered in the laboratory and in-situ, large-scale test piles to examine leachate composition and mineral weathering. The relatively larger sulfide-containing rock produced sufficient acid to overcome carbonate buffering and produced a declining pH environment with concomitant release of SO4, Fe, Co, and Ni. Following carbonate consumption, aluminosilicate buffering stabilized the pH above 4 until a reduction in acid generation. Results from the laboratory experiment assisted in determining that after consumption of 1.6 percent of the total sulfide, the larger sulfide-concentration test pile likely is at an internal steady-state or maximal weathering rate after seven years of precipitation input and weathering that is controlled by an annual freeze-thaw cycle. Further weathering of the test pile should be driven by external factors of temperature and precipitation in this Arctic, semi-arid region instead of internal factors of wetting and non-equilibrium buffering. It is predicted that maximal weathering will continue until at least 20 percent of the total sulfide is consumed. Using the identified evolution of sulfide consumption in this Arctic climate, a variable rate factor can now be assessed for the possible early evolution and maximal weathering of larger scale waste-rock piles and seasonal differences because of changes in the volume of a waste-rock pile undergoing active weathering due to the freeze

  14. Assessment of the Space Weather Effect on Human Health in the Arctic Zone Using the Example of Tiksi Settlement

    Directory of Open Access Journals (Sweden)

    Alena A. Strekalovskaya

    2018-03-01

    Full Text Available In order to assess the space weather effect on the well-being and health of people with cardiovascular pathology in Arctic conditions, we carried out the processing and analysis of space weather parameters and the electronic database of patients with cardiovascular diseases at the Central District Hospital in Tiksi settlement (the Republic of Sakha (Yakutia (RS(Y. Patients visited the polyclinic or requested an ambulance because their health had deteriorated. As a result of our research, we found some conjunctions of trends in the change in geomagnetic disturbances (Kp-index and the number of patients' visits to medical institutions for arterial hypertension (AH in 2015, 2016 and 2017. It can therefore be concluded that geomagnetic disturbances have an impact on the cardiovascular system of a person living at high latitudes.

  15. The influence of weather and lemmings on spatiotemporal variation in the abundance of multiple avian guilds in the arctic.

    Directory of Open Access Journals (Sweden)

    Barry G Robinson

    Full Text Available Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010-2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between

  16. Advancing NOAA NWS Arctic Program Development

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  17. Synthesis of User Needs for Arctic Sea Ice Predictions

    Science.gov (United States)

    Wiggins, H. V.; Turner-Bogren, E. J.; Sheffield Guy, L.

    2017-12-01

    Forecasting Arctic sea ice on sub-seasonal to seasonal scales in a changing Arctic is of interest to a diverse range of stakeholders. However, sea ice forecasting is still challenging due to high variability in weather and ocean conditions and limits to prediction capabilities; the science needs for observations and modeling are extensive. At a time of challenged science funding, one way to prioritize sea ice prediction efforts is to examine the information needs of various stakeholder groups. This poster will present a summary and synthesis of existing surveys, reports, and other literature that examines user needs for sea ice predictions. The synthesis will include lessons learned from the Sea Ice Prediction Network (a collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions), the Sea Ice for Walrus Outlook (a resource for Alaska Native subsistence hunters and coastal communities, that provides reports on weather and sea ice conditions), and other efforts. The poster will specifically compare the scales and variables of sea ice forecasts currently available, as compared to what information is requested by various user groups.

  18. Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets.

    Science.gov (United States)

    Petrick, Sebastian; Riemann-Campe, Kathrin; Hoog, Sven; Growitsch, Christian; Schwind, Hannah; Gerdes, Rüdiger; Rehdanz, Katrin

    2017-12-01

    A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.

  19. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  20. Calculation of optimal outdoor enclosure in the arctic conditions

    Science.gov (United States)

    Tarabukina, Sardaana; Simankina, Tatyana; Pykhtin, Kirill; Grabovyy, Kirill

    2017-10-01

    Definition of optimal thickness of thermal insulating materials, prevention of frost penetration and overheat and provision of proper thermal efficiency is an important problem in arctic conditions. This article demonstrates the results of thermotechnical calculations of enclosing constructions using SHADDAN software and economic calculations made in RIK software. These results allowed us to perform comparative analysis of two building technologies: «thermal block» and «render system». Both options met regulatory heat transfer requirements. However, regarding cost efficiency, use of «thermal blocks» technology is more effective in arctic conditions.

  1. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    International Nuclear Information System (INIS)

    Hansen, Brage B; Isaksen, Ketil; Benestad, Rasmus E; Kohler, Jack; Pedersen, Åshild Ø; Loe, Leif E; Coulson, Stephen J; Larsen, Jan Otto; Varpe, Øystein

    2014-01-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January–February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (∼5–20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties. (letter)

  2. Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic

    Science.gov (United States)

    Hansen, Brage B.; Isaksen, Ketil; Benestad, Rasmus E.; Kohler, Jack; Pedersen, Åshild Ø.; Loe, Leif E.; Coulson, Stephen J.; Larsen, Jan Otto; Varpe, Øystein

    2014-11-01

    One predicted consequence of global warming is an increased frequency of extreme weather events, such as heat waves, droughts, or heavy rainfalls. In parts of the Arctic, extreme warm spells and heavy rain-on-snow (ROS) events in winter are already more frequent. How these weather events impact snow-pack and permafrost characteristics is rarely documented empirically, and the implications for wildlife and society are hence far from understood. Here we characterize and document the effects of an extreme warm spell and ROS event that occurred in High Arctic Svalbard in January-February 2012, during the polar night. In this normally cold semi-desert environment, we recorded above-zero temperatures (up to 7 °C) across the entire archipelago and record-breaking precipitation, with up to 98 mm rainfall in one day (return period of >500 years prior to this event) and 272 mm over the two-week long warm spell. These precipitation amounts are equivalent to 25 and 70% respectively of the mean annual total precipitation. The extreme event caused significant increase in permafrost temperatures down to at least 5 m depth, induced slush avalanches with resultant damage to infrastructure, and left a significant ground-ice cover (˜5-20 cm thick basal ice). The ground-ice not only affected inhabitants by closing roads and airports as well as reducing mobility and thereby tourism income, but it also led to high starvation-induced mortality in all monitored populations of the wild reindeer by blocking access to the winter food source. Based on empirical-statistical downscaling of global climate models run under the moderate RCP4.5 emission scenario, we predict strong future warming with average mid-winter temperatures even approaching 0 °C, suggesting increased frequency of ROS. This will have far-reaching implications for Arctic ecosystems and societies through the changes in snow-pack and permafrost properties.

  3. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    International Nuclear Information System (INIS)

    Bjerke, Jarle W; Jepsen, Jane U; Lovibond, Sarah; Tømmervik, Hans; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Vikhamar-Schuler, Dagrun

    2014-01-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32–39%) of the Arctic, but much of the Arctic shows stable (57–64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011–September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000–11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research. (letter)

  4. Telemedicine Services for the Arctic: A Systematic Review

    Science.gov (United States)

    Walderhaug, Ståle; Hartvigsen, Gunnar

    2017-01-01

    Background Telemedicine services have been successfully used in areas where there are adequate infrastructures such as reliable power and communication lines. However, despite the increasing number of merchants and seafarers, maritime and Arctic telemedicine have had limited success. This might be linked with various factors such as lack of good infrastructure, lack of trained onboard personnel, lack of Arctic-enhanced telemedicine equipment, extreme weather conditions, remoteness, and other geographical challenges. Objective The purpose of this review was to assess and analyze the current status of telemedicine services in the context of maritime conditions, extreme weather (ie, Arctic weather), and remote accidents and emergencies. Moreover, the paper aimed to identify successfully implemented telemedicine services in the Arctic region and in maritime settings and remote emergency situations and present state of the art systems for these areas. Finally, we identified the status quo of telemedicine services in the context of search and rescue (SAR) scenarios in these extreme conditions. Methods A rigorous literature search was conducted between September 7 and October 28, 2015, through various online databases. Peer reviewed journals and articles were considered. Relevant articles were first identified by reviewing the title, keywords, and abstract for a preliminary filter with our selection criteria, and then we reviewed full-text articles that seemed relevant. Information from the selected literature was extracted based on some predefined categories, which were defined based on previous research and further elaborated upon via iterative brainstorming. Results The initial hits were vetted using the title, abstract, and keywords, and we retrieved a total of 471 papers. After removing duplicates from the list, 422 records remained. Then, we did an independent assessment of the articles and screening based on the inclusion and exclusion criteria, which eliminated

  5. Cold weather oil spill response training

    International Nuclear Information System (INIS)

    Solsberg, L.B.; Owens, E.H.

    2001-01-01

    In April 2000, a three-day oil spill response training program was conducted on Alaska's North Slope. The unique hands-on program was specifically developed for Chevron Corporation's world-wide response team. It featured a combination of classroom and outdoor sessions that helped participants to learn and apply emergency measures in a series of field exercises performed in very cold weather conditions. Temperatures remained below minus 20 degrees C and sometimes reached minus 40 degrees C throughout the training. The classroom instructions introduced participants to the Emergency Prevention Preparedness and Response (EPPR) Working Group's Field Guide for Spill Response in Arctic Waters. This guide provides response strategies specific to the Arctic, including open water, ice and snow conditions. The sessions also reviewed the Alaska Clean Seas Tactics Manual which addresses spill containment and recovery, storage, tracking, burning and disposal. The issues that were emphasized throughout the training program were cold weather safety and survival. During the training sessions, participants were required to set up weather ports and drive snowmobiles and all terrain vehicles. Their mission was to detect oil with infra-red and hand-held devices. They were required to contain the oil by piling snow into snow banks, and by augering, trenching and slotting ice. Oil was removed by trimming operations on solid ice, snow melting, snow blowing, skimming and pumping. In-situ burning was also performed. Other sessions were also conducted develop skills in site characterization and treating oiled shorelines. The successfully conducted field sessions spanned all phases of a cleanup operation in cold weather. 5 refs., 7 figs

  6. Artificial changes of weather conditions

    International Nuclear Information System (INIS)

    Kozin, I.D.; Vasil'ev, I.V.; Fedulina, I.N.; Zakizhan, Z.Z.; Khalimov, R.A.

    2005-01-01

    Unfavorable weather conditions have undesirable ecological consequences, causes remarkable economical damage. In the paper authors consider physical factors and technical methods of influence on cloud formation. (author)

  7. Arctic shipping and risks: Emergency categories and response capacities

    DEFF Research Database (Denmark)

    Marchenko, Nataly A.; Andreassen, Natalia; Borch, Odd Jarl

    2018-01-01

    The sea ice in the Arctic has shrunk significantly in the last decades. The transport pattern has as a result partly changed with more traffic in remote areas. This change may influence the risk pattern. The critical factors are harsh weather, ice conditions, remoteness and vulnerability of natur...... are rare, there are limited statistics available for Arctic maritime accidents. Hence, this study offers a qualitative analysis and an expert-based risk assessment. Implications for the emergency preparedness system of the Arctic region are discussed........ In this paper, we look into the risk of accidents in Atlantic Arctic based on previous ship accidents and the changes in maritime activity. The risk has to be assessed to ensure a proper level of emergency response. The consequences of incidents depend on the incident type, scale and location. As accidents...

  8. Facility engineering for Arctic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, D.M.; McClusky, K.R.; Shirley, R.; Spitzenberger, R. [Mustang Engineering Inc., Houston, TX (United States)

    2001-07-01

    The Northstar Development Project is located on Seal Island in the Beaufort Sea, north of Prudhoe Bay. The design and engineering of the facilities for the Northstar Development Project was fraught with challenges. Mustang Engineering Incorporated was involved in the design and engineering of the pipe rack, pump house, process and compressor modules. All the characteristics of an offshore facility are present, even though the project is land-based on a man-made island. A number of the strategies developed for offshore platforms of the Gulf of Mexico were adapted to the fabrication, logistics and installation of the modules. To reduce yard fabrication time, a modularized design concept was adopted. Cost savings and onsite fabrication efficiencies were realized through open communication with the operator, early discussions with vendors, regulatory agencies, and local fabrication and installation contractors. Some improvisation and deviations were required to meet the stringent requirements for operation under Arctic conditions. The lessons learned on this project will be of use in future Arctic projects. 1 tab., 6 figs.

  9. Weather conditions: a neglected factor in human salivary cortisol research?

    Science.gov (United States)

    Milas, Goran; Šupe-Domić, Daniela; Drmić-Hofman, Irena; Rumora, Lada; Klarić, Irena Martinović

    2018-02-01

    There is ample evidence that environmental stressors such as extreme weather conditions affect animal behavior and that this process is in part mediated through the elevated activity of the hypothalamic pituitary adrenal axis which results in an increase in cortisol secretion. This relationship has not been extensively researched in humans, and weather conditions have not been analyzed as a potential confounder in human studies of stress. Consequently, the goal of this paper was to assess the relationship between salivary cortisol and weather conditions in the course of everyday life and to test a possible moderating effect of two weather-related variables, the climate region and timing of exposure to outdoors conditions. The sample consisted of 903 secondary school students aged 18 to 21 years from Mediterranean and Continental regions. Cortisol from saliva was sampled in naturalistic settings at three time points over the course of a single day. We found that weather conditions are related to salivary cortisol concentration and that this relationship may be moderated by both the specific climate and the anticipation of immediate exposure to outdoors conditions. Unpleasant weather conditions are predictive for the level of salivary cortisol, but only among individuals who anticipate being exposed to it in the immediate future (e.g., in students attending school in the morning shift). We also demonstrated that isolated weather conditions or their patterns may be relevant in one climate area (e.g., Continental) while less relevant in the other (e.g., Mediterranean). Results of this study draw attention to the importance of controlling weather conditions in human salivary cortisol research.

  10. The Sea Ice for Walrus Outlook: A collaboration between scientific and Indigenous communities to support safety and food security in a changing Arctic

    Science.gov (United States)

    Sheffield Guy, L.; Wiggins, H. V.; Schreck, M. B.; Metcalf, V. K.

    2017-12-01

    The Sea Ice for Walrus Outlook (SIWO) provides Alaskan Native subsistence walrus hunters and Bering Strait coastal communities with weekly reports on spring sea ice and weather conditions to promote hunter safety, food security, and preservation of cultural heritage. These reports integrate scientific and Indigenous knowledge into a co-produced tool that is used by both local and scientific communities. SIWO is a team effort led by the Arctic Research Consortium of the U.S. (ARCUS, with funding from NSF Arctic Sciences Section), with the Eskimo Walrus Commission, National Weather Service - Alaska Sea Ice Program, University of Alaska Fairbanks - International Arctic Research Center, and local observers. For each weekly outlook, the National Weather Service provides location-specific weather and sea ice forecasts and regional satellite imagery. Local observations of sea ice, weather, and hunting conditions are provided by observers from five Alaskan communities in the Bering Strait region: Wales, Shishmaref, Nome, Gambell, and Savoonga. These observations typically include a written description of conditions accompanied by photographs of sea ice or subsistence activities. Outlooks are easily accessible and provide a platform for sharing of knowledge among hunters in neighboring communities. The opportunity to contribute is open, and Indigenous language and terms are encouraged. These observations from local hunters and community members also provide a valuable tool for validation of weather forecasts, satellite products, and other information for scientists. This presentation will discuss the process, products, and mutually beneficial outcomes of the Sea Ice for Walrus Outlook.

  11. Impacts of projected sea ice changes on trans-Arctic navigation

    Science.gov (United States)

    Stephenson, S. R.; Smith, L. C.

    2012-12-01

    Reduced Arctic sea ice continues to be a palpable signal of global change. Record lows in September sea ice extent from 2007 - 2011 have fueled speculation that trans-Arctic navigation routes may become physically viable in the 21st century. General Circulation Models project a nearly ice-free Arctic Ocean in summer by mid-century; however, how reduced sea ice will realistically impact navigation is not well understood. Using the ATAM (Arctic Transportation Accessibility Model) we present simulations of 21st-century trans-Arctic voyages as a function of climatic (ice) conditions and vessel class. Simulations are based on sea ice projections for three climatic forcing scenarios (RCP 4.5, 6.0, and 8.5 W/m^2) representing present-day and mid-century conditions, assuming Polar Class 6 (PC6) and open-water vessels (OW) with medium and no ice-breaking capability, respectively. Optimal least-cost routes (minimizing travel time while avoiding ice impassible to a given vessel class) between the North Atlantic and the Bering Strait were calculated for summer months of each time window. While Arctic navigation depends on other factors besides sea ice including economics, infrastructure, bathymetry, current, and weather, these projections should be useful for strategic planning by governments, regulatory and environmental agencies, and the global maritime industry to assess potential changes in the spatial and temporal ranges of Arctic marine operations.

  12. Mountain Warfare and Cold Weather Operations

    Science.gov (United States)

    2016-04-29

    is important to determine whether the bottom is composed of sand, gravel, silt, clay , or rock and in what proportions. For more information see ATP...these planning factors by about two quarts per individual. 6-22. Water increases in viscosity in extreme cold weather, and therefore moves slower...In arctic conditions, fuel spilled on flesh can cause instant frostbite if the proper gloves are not worn. 6-32. Multi- viscosity oil (15W-40) is

  13. Reconstruction of historic sea ice conditions in a sub-Arctic lagoon

    Science.gov (United States)

    Petrich, Chris; Tivy, Adrienne C.; Ward, David H.

    2014-01-01

    Historical sea ice conditions were reconstructed for Izembek Lagoon, Bering Sea, Alaska. This lagoon is a crucial staging area during migration for numerous species of avian migrants and a major eelgrass (Zostera marina) area important to a variety of marine and terrestrial organisms, especially Pacific Flyway black brant geese (Branta bernicla nigricans). Ice cover is a common feature of the lagoon in winter, but appears to be declining, which has implications for eelgrass distribution and abundance, and its use by wildlife. We evaluated ice conditions from a model based on degree days, calibrated to satellite observations, to estimate distribution and long-term trends in ice conditions in Izembek Lagoon. Model results compared favorably with ground observations and 26 years of satellite data, allowing ice conditions to be reconstructed back to 1943. Specifically, periods of significant (limited access to eelgrass areas) and severe (almost complete ice coverage of the lagoon) ice conditions could be identified. The number of days of severe ice within a single season ranged from 0 (e.g., 2001) to ≥ 67 (e.g., 2000). We detected a slight long-term negative trend in ice conditions, superimposed on high inter-annual variability in seasonal aggregate ice conditions. Based on reconstructed ice conditions, the seasonally cumulative number of significant or severe ice days correlated linearly with mean air temperature from January until March. Further, air temperature at Izembek Lagoon was correlated with wind direction, suggesting that ice conditions in Izembek Lagoon were associated with synoptic-scale weather patterns. Methods employed in this analysis may be transferable to other coastal locations in the Arctic.

  14. Arctic amplification: does it impact the polar jet stream?

    Directory of Open Access Journals (Sweden)

    Valentin P. Meleshko

    2016-10-01

    Full Text Available It has been hypothesised that the Arctic amplification of temperature changes causes a decrease in the northward temperature gradient in the troposphere, thereby enhancing the oscillation of planetary waves leading to extreme weather in mid-latitudes. To test this hypothesis, we study the response of the atmosphere to Arctic amplification for a projected summer sea-ice-free period using an atmospheric model with prescribed surface boundary conditions from a state-of-the-art Earth system model. Besides a standard global warming simulation, we also conducted a sensitivity experiment with sea ice and sea surface temperature anomalies in the Arctic. We show that when global climate warms, enhancement of the northward heat transport provides the major contribution to decrease the northward temperature gradient in the polar troposphere in cold seasons, causing more oscillation of the planetary waves. However, while Arctic amplification significantly enhances near-surface air temperature in the polar region, it is not large enough to invoke an increased oscillation of the planetary waves.

  15. Relationship between onset of spontaneous pneumothorax and weather conditions.

    Science.gov (United States)

    Mishina, Taijiro; Watanabe, Atsushi; Miyajima, Masahiro; Nakazawa, Junji

    2017-09-01

    Spontaneous pneumothorax (SP) results from the rupture of blebs or bullae. It has been suggested that changes in weather conditions may trigger the onset of SP. Our aim was to examine the association between the onset of primary SP with weather changes in the general population in Sapporo, Japan. From January 2008 through September 2013, 345 consecutive cases with a diagnosis of primary SP were reviewed. All cases of primary SP developed in the area within 40 km from the Sapporo District Meteorological Observatory. Climatic measurements were obtained from the Observatory, which included 1-h readings of weather conditions. Logistic regression model was used to obtain predicted risks for the onset of SP with respect to weather conditions. SP occurred significantly when the atmospheric pressure decreased by - 18 hPa or less during 96 h before the survey date (odds ratio = 1.379, P = 0.026), when the pressure increased by 15 hPa or more during 72 h before the survey date (odds ratio = 1.095, P = 0.007) and when maximum fluctuation in atmospheric pressure over 22 hPa was observed during 96 h before the survey date (odds ratio = 1.519, P = 0.001). Other weather conditions, including the presence of thunderstorms, were not significantly correlated with the onset of pneumothorax. Changes in atmospheric pressure influence the onset of SP. Future studies on the relationship between the onset of SP and weather conditions on days other than before the onset and with large number of patients may enable us to predict the onset of SP in various regions and weather conditions. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Body size and condition influence migration timing of juvenile Arctic grayling

    Science.gov (United States)

    Heim, Kurt C.; Wipfli, Mark S.; Whitman, Matthew S.; Seitz, Andrew C.

    2016-01-01

    Freshwater fishes utilising seasonally available habitats within annual migratory circuits time movements out of such habitats with changing hydrology, although individual attributes of fish may also mediate the behavioural response to environmental conditions. We tagged juvenile Arctic grayling in a seasonally flowing stream on the Arctic Coastal Plain in Alaska and recorded migration timing towards overwintering habitat. We examined the relationship between individual migration date, and fork length (FL) and body condition index (BCI) for fish tagged in June, July and August in three separate models. Larger fish migrated earlier; however, only the August model suggested a significant relationship with BCI. In this model, 42% of variability in migration timing was explained by FL and BCI, and fish in better condition were predicted to migrate earlier than those in poor condition. Here, the majority (33%) of variability was captured by FL with an additional 9% attributable to BCI. We also noted strong seasonal trends in BCI reflecting overwinter mass loss and subsequent growth within the study area. These results are interpreted in the context of size and energetic state-specific risks of overwinter starvation and mortality (which can be very high in the Arctic), which may influence individuals at greater risk to extend summer foraging in a risky, yet prey rich, habitat. Our research provides further evidence that heterogeneity among individuals within a population can influence migratory behaviour and identifies potential risks to late season migrants in Arctic beaded stream habitats influenced by climate change and petroleum development.

  17. Power losses in electrical networks depending on weather conditions

    International Nuclear Information System (INIS)

    Zhelezko, Yu. S.; Kostyushko, V. A.; Krylov, S. V.; Nikiforov, E. P.; Savchenko, O. V.; Timashova, L. V.; Solomonik, E. A.

    2005-01-01

    Specific power losses to corona and to leakage currents over overhead insulators are presented for 110 - 750-kV transmission lines with different phase design and pole types for different weather conditions. Consumption of electric energy for ice melting on conductors of various cross sections is evaluated. Meteorological data of 1372 weather stations in Russia are processed for a period of 10 years. The territory of the country is divided into 7 regions with approximately homogeneous weather conditions. Specific power losses to corona and leakage currents over overhead insulators are presented for every region

  18. Impacts of Snowy Weather Conditions on Expressway Traffic Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Jiancheng Weng

    2013-01-01

    Full Text Available Snowy weather will significantly degrade expressway operations, reduce service levels, and increase driving difficulty. Furthermore, the impact of snow varies in different types of roads, diverse cities, and snow densities due to different driving behavior. Traffic flow parameters are essential to decide what should be appropriate for weather-related traffic management and control strategies. This paper takes Beijing as a case study and analyzes traffic flow data collected by detectors in expressways. By comparing the performance of traffic flow under normal and snowy weather conditions, this paper quantitatively describes the impact of adverse weather on expressway volume and average speeds. Results indicate that average speeds on the Beijing expressway under heavy snow conditions decrease by 10–20 km/h when compared to those under normal weather conditions, the vehicle headway generally increases by 2–4 seconds, and the road capacity drops by about 33%. This paper also develops a specific expressway traffic parameter reduction model which proposes reduction coefficients of expressway volumes and speeds under various snow density conditions in Beijing. The conclusions paper provide effective foundational parameters for urban expressway controls and traffic management under snow conditions.

  19. Relationships between Long-Term Demography and Weather in a Sub-Arctic Population of Common Eider.

    Directory of Open Access Journals (Sweden)

    Jón Einar Jónsson

    Full Text Available Effects of local weather on individuals and populations are key drivers of wildlife responses to climatic changes. However, studies often do not last long enough to identify weather conditions that influence demographic processes, or to capture rare but extreme weather events at appropriate scales. In Iceland, farmers collect nest down of wild common eider Somateria mollissima and many farmers count nests within colonies annually, which reflects annual variation in the number of breeding females. We collated these data for 17 colonies. Synchrony in breeding numbers was generally low between colonies. We evaluated 1 demographic relationships with weather in nesting colonies of common eider across Iceland during 1900-2007; and 2 impacts of episodic weather events (aberrantly cold seasons or years on subsequent breeding numbers. Except for episodic events, breeding numbers within a colony generally had no relationship to local weather conditions in the preceding year. However, common eider are sexually mature at 2-3 years of age and we found a 3-year time lag between summer weather and breeding numbers for three colonies, indicating a positive effect of higher pressure, drier summers for one colony, and a negative effect of warmer, calmer summers for two colonies. These findings may represent weather effects on duckling production and subsequent recruitment. Weather effects were mostly limited to a few aberrant years causing reductions in breeding numbers, i.e. declines in several colonies followed severe winters (1918 and some years with high NAO (1992, 1995. In terms of life history, adult survival generally is high and stable and probably only markedly affected by inclement weather or aberrantly bad years. Conversely, breeding propensity of adults and duckling production probably do respond more to annual weather variations; i.e. unfavorable winter conditions for adults increase probability of death or skipped breeding, whereas favorable summers

  20. Thermal stress analysis of reactor containment building considering severe weather condition

    International Nuclear Information System (INIS)

    Lee, Yun; Kim, Yun-Yong; Hyun, Jung-Hwan; Kim, Do-Gyeum

    2014-01-01

    Highlights: • We examine that through-wall crack risk in cold weather is high. • It is predicted that cracking in concrete wall will not happen in hot region. • Cracking due to hydration heat can be controlled by appropriate curing condition. • Temperature differences between inner and outer face is relatively small in hot weather. - Abstract: Prediction of concrete cracking due to hydration heat in mass concrete such as reactor containment building (RCB) in nuclear power plant is a crucial issue in construction site. In this study, the numerical analysis for heat transfer and stress development is performed for the containment wall in RCB by considering the severe weather conditions. Finally, concrete cracking risk in hot and cold weather is discussed based on analysis results. In analyses considering severe weather conditions, it is found that the through-wall cracking risk in cold weather is high due to the abrupt temperature difference between inside concrete and the ambient air in cold region. In hot weather, temperature differences between inner and outer face is relatively small, and accordingly the relevant cracking risk is relatively low in contrast with cold weather

  1. China and the Arctic: An Opportunity for the U.S.

    Science.gov (United States)

    2017-04-06

    of the lack of China’s sovereignty in the Arctic.15 Most academic writings focus on China’s need to voice an opinion concerning sea routes...effects that climate change in the Arctic will have on food production and extreme weather; (b) to ensure access at a reasonable cost to Arctic...21 Studying climate change and the Arctic will enable scholars to predict consequences to the environment, and potential effects on Chinese food

  2. WEATHER CONDITIONS AND COMPLAINTS IN FIBROMYALGIA

    NARCIS (Netherlands)

    DEBLECOURT, ACE; KNIPPING, AA; DEVOOGD, N; VANRIJSWIJK, MH

    1993-01-01

    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain,

  3. WEATHER CONDITIONS AND COMPLAINTS IN FIBROMYALGIA

    NARCIS (Netherlands)

    DEBLECOURT, ACE; KNIPPING, AA; DEVOOGD, N; VANRIJSWIJK, MH

    Patients with musculoskeletal disorders, including fibromyalgia syndrome (FS), often state that weather conditions modulate their complaints. There have been a few studies concerning this issue, but the results appear to be contradictory. We tried to relate the subjective symptoms of pain,

  4. Effects of weather conditions, light conditions, and road lighting on vehicle speed.

    Science.gov (United States)

    Jägerbrand, Annika K; Sjöbergh, Jonas

    2016-01-01

    Light conditions are known to affect the number of vehicle accidents and fatalities but the relationship between light conditions and vehicle speed is not fully understood. This study examined whether vehicle speed on roads is higher in daylight and under road lighting than in darkness, and determined the combined effects of light conditions, posted speed limit and weather conditions on driving speed. The vehicle speed of passenger cars in different light conditions (daylight, twilight, darkness, artificial light) and different weather conditions (clear weather, rain, snow) was determined using traffic and weather data collected on an hourly basis for approximately 2 years (1 September 2012-31 May 2014) at 25 locations in Sweden (17 with road lighting and eight without). In total, the data included almost 60 million vehicle passes. The data were cleaned by removing June, July, and August, which have different traffic patterns than the rest of the year. Only data from the periods 10:00 A.M.-04:00 P.M. and 06:00 P.M.-10:00 P.M. were used, to remove traffic during rush hour and at night. Multivariate adaptive regression splines was used to evaluate the overall influence of independent variables on vehicle speed and nonparametric statistical testing was applied to test for speed differences between dark-daylight, dark-twilight, and twilight-daylight, on roads with and without road lighting. The results show that vehicle speed in general depends on several independent variables. Analyses of vehicle speed and speed differences between daylight, twilight and darkness, with and without road lighting, did not reveal any differences attributable to light conditions. However, vehicle speed decreased due to rain or snow and the decrease was higher on roads without road lighting than on roads with lighting. These results suggest that the strong association between traffic accidents and darkness or low light conditions could be explained by drivers failing to adjust their

  5. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    Science.gov (United States)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  6. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  7. Robust vehicle detection in different weather conditions: Using MIPM.

    Science.gov (United States)

    Yaghoobi Ershadi, Nastaran; Menéndez, José Manuel; Jiménez, David

    2018-01-01

    Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions.

  8. Correlation-study about the ambient dose rate and the weather conditions

    Science.gov (United States)

    Furuya, Masato; Hatano, Yuko; Aoyama, Tomoo; Igarashi, Yasuhito; Kita, Kazuyuki; Ishizuka, Masahide

    2016-04-01

    The long-term radiation risks are believed to be heavily affected by the resuspension process. We therefore focus on the surface-atmosphere exchange process of released radioactive materials in this study. Radioactive materials were deposited on the soil and float in the air, and such complicated process are influenced by the weather conditions deeply. We need to reveal the correlation between the weather conditions and the ambient dose rate. In this study, we study the correlation between the weather conditions and the ambient dose rate with the correction of the decrease due to the radioactive decay. We found that there is a negative correlation between the ambient dose rate and the soil water content by the correlation coefficient. Using this result, we reconstruct the ambient dose rate from the weather conditions by the multiple regression analysis and found that the reconstructed data agree with the observation very well. Using Kalman filter, which can be sequentially updates the state estimate, we obtained such a good agreement.

  9. Historical Arctic and Antarctic Surface Observational Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This product consists of meteorological data from 105 Arctic weather stations and 137 Antarctic stations, extracted from the National Climatic Data Center (NCDC)'s...

  10. Weather conditions and daily television use in the Netherlands, 1996-2005

    NARCIS (Netherlands)

    Eisinga, R.; Franses, Ph.-H.; Vergeer, M.

    2010-01-01

    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996–2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather

  11. AROME-Arctic: New operational NWP model for the Arctic region

    Science.gov (United States)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    substitute our actual operational Arctic mesoscale HIRLAM (High Resolution Limited Area Model) NWP model. This presentation will discuss in detail the operational implementation of the AROME-Arctic model together with post-processing methods. Aimed services in the Arctic region covered by the model, such as online weather forecasting (yr.no) and tracking of polar lows (barentswatch.no), is also included.

  12. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea

    Directory of Open Access Journals (Sweden)

    James E. Overland

    2011-12-01

    Full Text Available Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episodic intrinsic atmospheric and ocean variability and persistent increasing greenhouse gases. Winter 2009/10 and December 2010 showed a unique connectivity between the Arctic and more southern weather patterns when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a warm Arctic—cold continents pattern. The negative value of the winter (DJF 2009/10 North Atlantic Oscillation (NAO index associated with enhanced meridional winds was the lowest observed value since the beginning of the record in 1865. Wind patterns in December 2007 and 2008 also show an impact of warmer Arctic temperatures. A tendency for higher geopotential heights over the Arctic and enhanced meridional winds are physically consistent with continued loss of sea ice over the next 40 years. A major challenge is to understand the interaction of Arctic changes with climate patterns such as the NAO, Pacific North American and El Niño–Southern Oscillation.

  13. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  14. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  15. Towards seasonal Arctic shipping route predictions

    Science.gov (United States)

    Haines, K.; Melia, N.; Hawkins, E.; Day, J. J.

    2017-12-01

    In our previous work [1] we showed how trans-Arctic shipping routes would become more available through the 21st century as sea ice declines, using CMIP5 models with means and stds calibrated to PIOMAS sea ice observations. Sea ice will continue to close shipping routes to open water vessels through the winter months for the foreseeable future so the availability of open sea routes will vary greatly from year to year. Here [2] we look at whether the trans-Arctic shipping season period can be predicted in seasonal forecasts, again using several climate models, and testing both perfect and imperfect knowledge of the initial sea ice conditions. We find skilful predictions of the upcoming summer shipping season can be made from as early as January, although typically forecasts may show lower skill before a May `predictability barrier'. Focussing on the northern sea route (NSR) off Siberia, the date of opening of this sea route is twice as variable as the closing date, and this carries through to reduced predictability at the start of the season. Under climate change the later freeze-up date accounts for 60% of the lengthening season, Fig1 We find that predictive skill is state dependent with predictions for high or low ice years exhibiting greater skill than for average ice years. Forecasting the exact timing of route open periods is harder (more weather dependent) under average ice conditions while in high and low ice years the season is more controlled by the initial ice conditions from spring onwards. This could be very useful information for companies planning vessel routing for the coming season. We tested this dependence on the initial ice conditions by changing the initial ice state towards climatologically average conditions and show directly that early summer sea-ice thickness information is crucial to obtain skilful forecasts of the coming shipping season. Mechanisms for this are discussed. This strongly suggests that good sea ice thickness observations

  16. The Immediacy of Arctic Change: New 2016-17 Extremes

    Science.gov (United States)

    Overland, J. E.; Kattsov, V.; Olsen, M. S.; Walsh, J. E.

    2017-12-01

    Additional recent observations add increased certainty to cryospheric Arctic changes, and trends are very likely to continue past mid-century. Observed and projected Arctic changes are large compared with those at mid-latitude, driven by greenhouse gas (GHG) increase and Arctic feedbacks. Sea ice has undergone a regime shift from mostly multi-year to first-year sea ice, and summer sea ice is likely to be esentially gone within the next few decades. Spring snow cover is decreasing, and Arctic greening is increasing, although somewhat variable. There are potential emerging impacts of Arctic change on mid-latitude weather and sea level rise. Model assessments under different future GHG concentration scenarios show that stabilizing global temperatures near 2° C compliant with Paris agreement could slow, but not halt further major changes in the Arctic before mid- 21st century; foreseeable Arctic temperature changes are 4-5° C for fall/winter by 2040-2050. Substantial and immediate mitigation reductions in GHG emissions (at least at the level of the RCP 4.5 emission scenario) should reduce the risk of further change for most cryospheric components after mid-century, and reduce the likelyhood of potential runaway loss of ice sheets and glaciers and their impact on sea level rise. Extreme winter 2016 Arctic temperatures and a large winter 2017 sea ice deficit demonstrate contemporary climate states outside the envelope of previous experience. While there is confidence in the sign of Arctic changes, recent observations increase uncertainty in projecting the rate for future real world scenarios. Do events return to mean conditions, represent irreversible changes, or contribute to accelerating trends beyond those provided by climate models? Such questions highlight the need for improved quantitative prediction of the cryosphere and its global impacts, crucial for adaptation actions and risk management at local to global scales.

  17. Energy Management for Automatic Monitoring Stations in Arctic Regions

    Science.gov (United States)

    Pimentel, Demian

    Automatic weather monitoring stations deployed in arctic regions are usually installed in hard to reach locations. Most of the time they run unsupervised and they face severe environmental conditions: very low temperatures, ice riming, etc. It is usual practice to use a local energy source to power the equipment. There are three main ways to achieve this: (1) a generator whose fuel has to be transported to the location at regular intervals (2) a battery and (3) an energy harvesting generator that exploits a local energy source. Hybrid systems are very common. Polar nights and long winters are typical of arctic regions. Solar radiation reaching the ground during this season is very low or non-existent, depending on the geographical location. Therefore, solar power generation is not very effective. One straightforward, but expensive and inefficient solution is the use of a large bank of batteries that is recharged during sunny months and discharged during the winter. The main purpose of the monitoring stations is to collect meteorological data at regular intervals; interruptions due to a lack of electrical energy can be prevented with the use of an energy management subsystem. Keeping a balance between incoming and outgoing energy flows, while assuring the continuous operation of the station, is the delicate task of energy management strategies. This doctoral thesis explores alternate power generation solutions and intelligent energy management techniques for equipment deployed in the arctic. For instance, harvesting energy from the wind to complement solar generation is studied. Nevertheless, harvested energy is a scarce resource and needs to be used efficiently. Genetic algorithms, fuzzy logic, and common sense are used to efficiently manage energy flows within a simulated arctic weather station.

  18. Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to Factual and Counterfactual forcing

    Directory of Open Access Journals (Sweden)

    Lantao Sun

    2018-03-01

    Full Text Available A suite of historical atmospheric model simulations is described that uses a hierarchy of global boundary forcings designed to inform research on the detection and attribution of weather and climate-related extremes. In addition to experiments forced by actual variations in sea surface temperature, sea ice concentration, and atmospheric chemical composition (so-called Factual experiments; additional (Counterfactual experiments are conducted in which the boundary forcings are adjusted by removing estimates of long-term climate change. A third suite of experiments are identical to the Factual runs except that sea ice concentrations are set to climatological conditions (Clim-Polar experiments. These were used to investigate the cause for extremely warm Arctic surface temperature during 2016.Much of the magnitude of surface temperature anomalies averaged poleward of 65°N in 2016 (3.2 ± 0.6 °C above a 1980–89 reference is shown to have been forced by observed global boundary conditions. The Factual experiments reveal that at least three quarters of the magnitude of 2016 annual mean Arctic warmth was forced, with considerable sensitivity to assumptions of sea ice thickness change. Results also indicate that 30–40% of the overall forced Arctic warming signal in 2016 originated from drivers outside of the Arctic. Despite such remote effects, the experiments reveal that the extreme magnitude of the 2016 Arctic warmth could not have occurred without consideration of the Arctic sea ice loss. We find a near-zero probability for Arctic surface temperature to be as warm as occurred in 2016 under late-19th century boundary conditions, and also under 2016 boundary conditions that do not include the depleted Arctic sea ice. Results from the atmospheric model experiments are reconciled with coupled climate model simulations which lead to a conclusion that about 60% of the 2016 Arctic warmth was likely attributable to human-induced climate change

  19. The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown.

    Science.gov (United States)

    Speelman, E N; Van Kempen, M M L; Barke, J; Brinkhuis, H; Reichart, G J; Smolders, A J P; Roelofs, J G M; Sangiorgi, F; de Leeuw, J W; Lotter, A F; Sinninghe Damsté, J S

    2009-03-01

    Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (approximately 48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated pCO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) pCO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9-3.5 10(18) gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 10(18) to 3.5 10(18) g carbon would result in a 55 to 470 ppm drawdown of pCO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric pCO2 levels through enhanced burial of organic matter.

  20. The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model

    Directory of Open Access Journals (Sweden)

    A. Dörnbrack

    2012-04-01

    Full Text Available The relatively warm 2009–2010 Arctic winter was an exceptional one as the North Atlantic Oscillation index attained persistent extreme negative values. Here, selected aspects of the Arctic stratosphere during this winter inspired by the analysis of the international field experiment RECONCILE are presented. First of all, and as a kind of reference, the evolution of the polar vortex in its different phases is documented. Special emphasis is put on explaining the formation of the exceptionally cold vortex in mid winter after a sequence of stratospheric disturbances which were caused by upward propagating planetary waves. A major sudden stratospheric warming (SSW occurring near the end of January 2010 concluded the anomalous cold vortex period. Wave ice polar stratospheric clouds were frequently observed by spaceborne remote-sensing instruments over the Arctic during the cold period in January 2010. Here, one such case observed over Greenland is analysed in more detail and an attempt is made to correlate flow information of an operational numerical weather prediction model to the magnitude of the mountain-wave induced temperature fluctuations. Finally, it is shown that the forecasts of the ECMWF ensemble prediction system for the onset of the major SSW were very skilful and the ensemble spread was very small. However, the ensemble spread increased dramatically after the major SSW, displaying the strong non-linearity and internal variability involved in the SSW event.

  1. Influence of weather conditions on natural radioactivity

    International Nuclear Information System (INIS)

    Simion, Florin; Simion, Elena; Cuculeanu, Vasile; Mihalcea, Ion

    2011-01-01

    This paper presents the dependence of the natural radioactivity on atmospheric weather conditions: air temperature, atmospheric pressure, wind speed, atmospherical precipitations and relative humidity. The values used in the paper were taken from the environmental radioactivity monitoring in Botosani city, Romania, as measured by the Environmental Radioactivity Surveillance Station. Daily global measurements of atmospheric deposition beta and atmospheric aerosols as well were carried out, including the indirect determination of radon and thoron, and the absorbed gamma dose rate in air, as well. Sampling and measurement frequency depended on the type of sample analyzed as follows: atmospheric deposition were taken daily, atmospheric aerosols were collected 4 times/day, with a sampling interval of 5 hours while the air absorbed dose rate was determined at a hourly rate. The coefficient of multiple correlation between the type of analysis and weather conditions, was determined. By using multiple linear regression it was highlighted the natural radioactivity dependence on the atmospheric conditions and meteorological parameters by a mathematical expression that can be used to determine missing values in a time series of measured data. By predicting the measured values our procedure can be considered as a validation process of the measurement accuracy

  2. Changing Conditions in the Arctic: An Analysis of 45 years of Tropospheric Ozone Measurements at Barrow Observatory

    Science.gov (United States)

    McClure-Begley, A.; Petropavlovskikh, I. V.; Crepinsek, S.; Jefferson, A.; Emmons, L. K.; Oltmans, S. J.

    2017-12-01

    In order to understand the impact of climate on local bio-systems, understanding the changes to the atmospheric composition and processes in the Arctic boundary layer and free troposphere is imperative. In the Arctic, many conditions influence tropospheric ozone variability such as: seasonal halogen caused depletion events, long range transport of pollutants from mid-northern latitudes, compounds released from wildfires, and different meteorological conditions. The Barrow station in Utqiagvik, Alaska has collected continuous measurements of ground-level ozone since 1973. This unique long-term time series allows for analysis of the influence of a rapidly changing climate on ozone conditions in this region. Specifically, this study analyzes the frequency of enhanced ozone episodes over time and provides in depth analysis of periods of positive deviations from the expected conditions. To discern the contribution of different pollutant sources to observed ozone variability, co-located measurements of aerosols, carbon monoxide, and meteorological conditions are used. In addition, the NCAR Mozart-4/MOPITT Chemical Forecast model and NOAA Hysplit back-trajectory analysis provide information on transport patterns to the Arctic and confirmation of the emission sources that influenced the observed conditions. These anthropogenic influences on ozone variability in and below the boundary layer are essential for developing an understanding of the interaction of climate change and the bio-systems in the Arctic.

  3. Arctic Warming as News - Perils and Possibilities

    Science.gov (United States)

    Revkin, A. C.

    2015-12-01

    A science journalist in his 30th year covering human-driven climate change, including on three Arctic reporting trips, reflects on successes and setbacks as news media, environmentalists and Arctic communities have tried to convey the significance of polar change to a public for which the ends of the Earth will always largely be a place of the imagination.Novel challenges are arising in the 24/7 online media environment, as when a paper by a veteran climate scientist proposing a mechanism for abrupt sea-level rise became a big news story before it was accepted by the open-review journal to which it had been submitted. New science is digging in on possible connections between changing Arctic sea ice and snow conditions and disruptive winter weather in more temperate northern latitudes, offering a potential link between this distant region and the lives of ordinary citizens. As cutting-edge research, such work gets substantial media attention. But, as with all new areas of inquiry, uncertainty dominates - creating the potential for distracting the public and policymakers from the many aspects of anthropogenic climate change that are firmly established - but, in a way, boring because of that.With the challenges, there are unprecedented opportunities for conveying Arctic science. In some cases, researchers on expeditions are partnering with media, offering both scientists and news outlets fresh ways to convey the story of Arctic change in an era of resource constraints.Innovative uses of crittercams, webcams, and satellite observations offer educators and interested citizens a way to track and appreciate Arctic change. But more can be done to engage the public directly without the news media as an intermediary, particularly if polar scientists or their institutions test some of the established practices honed by more experienced communicators at NASA.

  4. RAMS data collection under Arctic conditions

    International Nuclear Information System (INIS)

    Barabadi, Abbas; Tobias Gudmestad, Ove; Barabady, Javad

    2015-01-01

    Reliability, availability, maintainability and supportability analysis is an important step in the design and operation of production processes and technology. Historical data such as time between failures and time to repairs play an important role in such analysis. The data must reflect the conditions that equipment has experienced during its operating time. To have a precise understanding of the conditions experienced, all influence factors on the failure and repair processes of a production facility in Arctic environment need to be identified and collected in the database. However, there is a lack of attention to collect the effect of influence factors in the reliability, availability, maintainability and supportability database. Hence, the aim of this paper is to discuss the challenges of the available methods of data collection and suggest a methodology for data collection considering the effect of environmental conditions. Application of the methodology will make the historical RAMS data of a system more applicable and useful for the design and operation of the system in different types of operational environments. - Highlights: • The challenges related to use of the available RAMS data is discussed. • It is important to collect information about operational condition in RAMS data. • A methodology for RAMS data collection considering environment condition is suggested. • Information about influence factors will make the result of RAMS analysis more applicable

  5. Local air pollution in the Arctic: knowledge gaps, challenges and future directions

    Science.gov (United States)

    Law, K.; Schmale, J.; Anenberg, S.; Arnold, S.; Simpson, W. R.; Mao, J.; Starkweather, S.

    2017-12-01

    It is estimated that about 30 % of the world's undiscovered gas and 13 % of undiscovered oil resources are located in the Arctic. Sea ice loss with climate change is progressing rapidly and by 2050 the Arctic could be nearly sea ice free in summer. This will allow for Arctic industrialization, commercial shipping, fishing and tourism to increase. Given that the world population is projected to grow beyond 9 billion by mid-century needing more resources, partly to be found in the Arctic, it can be expected that the current urbanization trend in the region will accelerate in the future. Against this background, it is likely that new local emission sources emerge which may lead to increased burdens of air pollutants such as particulate matter (PM), reactive nitrogen, and ozone. Typical Arctic emission sources include road transport, domestic fuel burning, diesel emissions, as well as industrial sources such as oil and gas extraction, metallurgical smelting, power generation as well as shipping in coastal areas. These emissions and their impacts remain poorly quantified in the Arctic. Boreal wildfires can already affect summertime air quality and may increase in frequency and size in a warmer climate. Locally produced air pollution, in combination with cold, stagnant weather conditions and inversion layers in winter, can also lead to significant localized pollutant concentrations, often in exceedance of air quality standards. Despite these concerns, very few process studies on local air pollution in or near inhabited areas in the Arctic have been conducted, which significantly limits our understanding of atmospheric chemical reactions involving air pollutants under Arctic conditions (e.g., extremely cold and dry air with little solar radiation in winter) and their impacts on human health and ecosystems. We will provide an overview of our current understanding of local air pollution and its impacts in Arctic urban environments and highlight key gaps. We will discuss a

  6. Long distance migratory songbirds respond to extremes in arctic seasonality

    Science.gov (United States)

    Boelman, N.; Asmus, A.; Chmura, H.; Krause, J.; Perez, J. H.; Sweet, S. K.; Gough, L.; Wingfield, J.

    2017-12-01

    Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration and intensity, as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affect the phenology and productivity of vegetation, while far fewer have examined how arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and White-crowned sparrows, Zonotrichia leucophrys gambelii, across seven consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, food availability, body condition, stress physiology, and ultimately, reproductive success. Spring temperatures, precipitation, storm frequency, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover, and 2015 and 2016 characterized by unusually early snow-free dates and several late spring snowstorms. In response, we found that relative to other study years, there was a significant delay in breeding cycle phenology for both study species in 2013, while breeding cycle phenology was significantly earlier in 2015 only. For both species, we also found significant variation among years in: the seasonal patterns of arthropod availability during the nesting stage; body condition, and; stress physiology. Finally, we found significant variation in reproductive success of both species across years, and that daily survival rates were decreased by snow storm events. Our findings suggest that arctic-breeding passerine communities may be able to adjust phenology to unpredictable shifts in the timing of spring, but extreme conditions during the incubation and nestling stages are detrimental to reproductive success.

  7. Comprehensive Ocean - Atmosphere Data Set (COADS) LMRF Arctic Subset

    Data.gov (United States)

    National Aeronautics and Space Administration — The Comprehensive Ocean - Atmosphere Data Set (COADS) LMRF Arctic subset contains marine surface weather reports for the region north of 65 degrees N from ships,...

  8. Arctic security and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tamnes, Rolf

    2013-03-01

    Global warming is one of the most serious threats facing mankind. Many regions and countries will be affected, and there will be many losers. The earliest and most intense climatic changes are being experienced in the Arctic region. Arctic average temperature has risen at twice the rate of the global average in the past half century. These changes provide an early indication for the world of the environmental and societal significance of global warming. For that reason, the Arctic presents itself as an important scientific laboratory for improving our understanding of the causes and patterns of climate changes. The rapidly rising temperature threatens the Arctic ecosystem, but the human consequences seem to be far less dramatic there than in many other places in the world. According to the U.S. National Intelligence Council, Russia has the potential to gain the most from increasingly temperate weather, because its petroleum reserves become more accessible and because the opening of an Arctic waterway could provide economic and commercial advantages. Norway might also be fortunate. Some years ago, the Financial Times asked: #Left Double Quotation Mark#What should Norway do about the fact that global warming will make their climate more hospitable and enhance their financial situation, even as it inflicts damage on other parts of the world?#Right Double Quotation Mark#(Author)

  9. Mooring-based long-term observation of oceanographic condition in the Chukchi Ses and Canada Basin of the Arctic Ocean

    Science.gov (United States)

    Kikuchi, Takashi; Itoh, Motoyo; Nishino, Shigeto; Watanabe, Eiji

    2015-04-01

    Changes of the Arctic Ocean environment are well known as one of the most remarkable evidences of global warming, attracting social and public attentions as well as scientists'. However, to illustrate on-going changes and predict future condition of the Arctic marine environment, we still do not have enough knowledge of Arctic sea ice and marine environment. In particular, lack of observation data in winter, e.g., under sea ice, still remains a key issue for precise understanding of seasonal cycle on oceanographic condition in the Arctic Ocean. Mooring-based observation is one of the most useful methods to collect year-long data in the Arctic Ocean. We have been conducting long-term monitoring using mooring system in the Pacific sector of the Arctic Ocean. Volume, heat, and freshwater fluxes through Barrow Canyon where is a major conduit of Pacific-origin water-masses into the Canada Basin have been observed since 2000. We show from an analysis of the mooring results that volume flux through Barrow Canyon was about 60 % of Bering Strait volume flux. Averaged heat flux ranges from 0.9 to 3.07 TW, which could melt 88,000 to 300,000 km2 of 1m thick ice in the Canada Basin, which likely contributed to sea ice retreat in the Pacific sector of the Arctic Ocean. In winter, we found inter-annual variability in salinity related to coastal polynya activity in the Chukchi Sea. In collaboration with Distributed Biological Observatory (DBO) project, which is one of the tasks of Sustaining Arctic Observing Network (SAON), we also initiated year-long mooring observation in the Hope Valley of the southern Chukchi Sea since 2012. Interestingly, winter oceanographic conditions in the Hope Valley are greatly different between in 2012-2013 and in 2013-2014. We speculate that differences of sea ice freeze-up and coastal polynya activity in the southern Chukchi Sea cause significant difference of winter oceanographic condition. It suggests that recent sea ice reduction in the Pacific

  10. Recent increased warming of the Alaskan marine Arctic due to midlatitude linkages

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Ballinger, Thomas J.

    2018-01-01

    Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008-13, this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north-south thermal barrier. This front separates the southeastern Bering Sea temperatures from Arctic air masses. Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate, reaching a change of +4°C by 2040 relative to the 1981-2010 mean. Offshore at 74°N, climate models project the open water duration season to increase from a current average of three months to five months by 2040. These rates are occasionally enhanced by midlatitude connections. Beginning in August 2014, additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska, especially in winter 2015-16. While global warming and equatorial teleconnections are implicated in North Pacific SSTs, the ending of the 2014-16 North Pacific warm event demonstrates the importance of internal, chaotic atmospheric natural variability on weather conditions in any given year. Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss, with occasional North Pacific support, are projected to continue to propagate through the marine ecosystem in the foreseeable future. The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.

  11. Kinetically limited weathering at low denudation rates in semiarid climatic conditions

    Science.gov (United States)

    Schoonejans, Jérôme; Vanacker, Veerle; Opfergelt, Sophie; Ameijeiras-Mariño, Yolanda; Christl, Marcus

    2016-02-01

    Biogeochemical cycling within the Critical Zone depends on the interactions between minerals and fluids controlling chemical weathering and physical erosion rates. In this study, we explore the role of water availability in controlling soil chemical weathering in semiarid climatic conditions. Weathering rates and intensities were evaluated for nine soil profiles located on convex ridge crests of three mountain ranges in the Spanish Betic Cordillera. We combine a geochemical mass balance with 10Be cosmogenic nuclides to constrain chemical weathering intensities and long-term denudation rates. As such, this study presents new data on chemical weathering and 10Be-derived denudation for understudied semiarid climate systems. In the Betic Cordillera, chemical weathering intensities are relatively low (~5 to 30% of the total denudation of the soil) and negatively correlated with the magnitude of the water deficit in soils. Chemical mass losses are inversely related to denudation rates (14-109 mm/kyr) and positively to soil thickness (14-58 cm); these results are consistent with kinetic limitation of chemical weathering rates. A worldwide compilation of chemical weathering data suggests that soil water balance may regulate the coupling between chemical weathering and physical erosion by modulating soil solute fluxes. Therefore, future landscape evolution models that seek to link chemical weathering and physical erosion should include soil water flux as an essential driver of weathering.

  12. Climate-derived tensions in Arctic security.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Strickland, James Hassler

    2008-09-01

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.

  13. A new technique for observationally derived boundary conditions for space weather

    Science.gov (United States)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a

  14. Effects of weather and heliophysical conditions on emergency ambulance calls for elevated arterial blood pressure.

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta M; Dobozinskas, Paulius; Sakalyte, Gintare; Lopatiene, Kristina; Mikelionis, Nerijus

    2015-02-27

    We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009-2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs), in which the conditions for the emergency calls were made coded I.10-I.15. The Kaunas Weather Station provided daily records of air temperature (T), wind speed (WS), relative humidity, and barometric pressure (BP). We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS>600 km/s) increased the daily number of elevated arterial blood pressure (EABP) by 12% (RR=1.12; 95% confidence interval (CI) 1.04-1.21); and WS≥3.5 knots during days of Tweather conditions. These results may help in the understanding of the population's sensitivity to different weather conditions.

  15. A conditional stochastic weather generator for seasonal to multi-decadal simulations

    Science.gov (United States)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico

    2018-01-01

    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  16. Influence factor analysis of atmospheric electric field monitoring near ground under different weather conditions

    International Nuclear Information System (INIS)

    Wan, Haojiang; Wei, Guanghui; Cui, Yaozhong; Chen, Yazhou

    2013-01-01

    Monitoring of atmospheric electric field near ground plays a critical role in atmospheric environment detecting and lightning warning. Different environmental conditions (e.g. buildings, plants, weather, etc.) have different influences on the data's coherence in an atmospheric electric field detection network. In order to study the main influence factors of atmospheric electric field monitoring under different weather conditions, with the combination of theoretical analysis and experiments, the electric field monitoring data on the ground and on the top of a building are compared in fair weather and thunderstorm weather respectively in this paper. The results show that: In fair weather, the field distortion due to the buildings is the main influence factor on the electric field monitoring. In thunderstorm weather, the corona ions produced from the ground, besides the field distortion due to the buildings, can also influence the electric field monitoring results.

  17. Role of Winter Weather Conditions and Slipperiness on Tourists’ Accidents in Finland

    Directory of Open Access Journals (Sweden)

    Élise Lépy

    2016-08-01

    Full Text Available (1 Background: In Finland, slippery snowy or icy ground surface conditions can be quite hazardous to human health during wintertime. We focused on the impacts of the variability in weather conditions on tourists’ health via documented accidents during the winter season in the Sotkamo area. We attempted to estimate the slipping hazard in a specific context of space and time focusing on the weather and other possible parameters, responsible for fluctuations in the numbers of injuries/accidents; (2 Methods: We used statistical distributions with graphical illustrations to examine the distribution of visits to Kainuu Hospital by non-local patients and their characteristics/causes; graphs to illustrate the distribution of the different characteristics of weather conditions; questionnaires and interviews conducted among health care and safety personnel in Sotkamo and Kuusamo; (3 Results: There was a clear seasonal distribution in the numbers and types of extremity injuries of non-local patients. While the risk of slipping is emphasized, other factors leading to injuries are evaluated; and (4 Conclusions: The study highlighted the clear role of wintery weather conditions as a cause of extremity injuries even though other aspects must also be considered. Future scenarios, challenges and adaptive strategies are also discussed from the viewpoint of climate change.

  18. Mechanism and kinetics of mineral weathering under acid conditions

    NARCIS (Netherlands)

    Anbeek, C.

    1994-01-01

    This study deals with the relationships between crystal structure, grain diameter, surface morphology and dissolution kinetics for feldspar and quartz under acid conditions.

    Intensively ground samples from large, naturally weathered mineral fragments are frequently used in

  19. Weather variability affects the Peregrine Falcon (F. p. tundrius) breeding success in South Greenland

    DEFF Research Database (Denmark)

    Carlzon, Linnéa; Karlsson, Amanda; Falk, Knud

    Global warming is affecting the Arctic at a much higher rate than the rest of the globe, causing a rapidly changing environment for Arctic biota. Climate change is already causing increased variability and extremes in precipitation. Although the peregrine falcon is a well-studied top predator...... in the Arctic only a few studies have identified how the changing weather patterns affect the breeding populations. Therefore, in order to understand the effects of climate change on the peregrine’s future prospects, we investigated the relationship between weather variability (“extreme weather”) and breeding......’ and total days with ‘extreme weather’ during the pre-laying and incubation period also had significant negative correlation with breeding success. Contrary to expectations (and other studies), we found no significant effect of precipitation during the nesting period. Results also indicate that other factors...

  20. Atmospheric propagation of high power laser radiation at different weather conditions

    OpenAIRE

    Pargmann, Carsten; Hall, Thomas; Duschek, Frank; Handke, Jürgen

    2016-01-01

    Applications based on the propagation of high power laser radiation through the atmosphere are limited in range and effect, due to weather dependent beam wandering, beam deterioration, and scattering processes. Security and defense related application examples are countermeasures against hostile projectiles and the powering of satellites and aircrafts. For an examination of the correlations between weather condition and laser beam characteristics DLR operates at Lampoldshausen a 130 m long fr...

  1. Accounts from 19th-century Canadian Arctic explorers' logs reflect present climate conditions

    Science.gov (United States)

    Overland, James E.; Wood, Kevin

    The widely perceived failure of 19th-century expeditions to find and transit the Northwest Passage in the Canadian Arctic is often attributed to extraordinary cold climatic conditions associated with the “Little Ice Age” evident in proxy records. However, examination of 44 explorers' logs for the western Arctic from 1818 to 1910 reveals that climate indicators such as navigability, the distribution and thickness of annual sea ice, monthly surface air temperature, and the onset of melt and freeze were within the present range of variability.The quest for the Northwest Passage through the Canadian archipelago during the 19th century is frequently seen as a vain and tragic failure. Polar exploration during the Victorian era seems to us today to have been a costly exercise in heroic futility, which in many respects it was. This perspective has been reinforced since the 1970s, when paleoclimate reconstructions based on Arctic ice core stratigraphy appeared to confirm the existence of exceptionally cold conditions consistent with the period glaciologists had termed the “Little Ice Age” (Figure 1a), with temperatures more than one standard deviation colder relative to an early 20th-century mean [Koerner, 1977; Koerner and Fisher, 1990; Overpeck et al., 1998]. In recent years, the view of the Little Ice Age as a synchronous worldwide and prolonged cold epoch that ended with modern warming has been questioned [Bradley and Jones, 1993; Jones and Briffa, 2001 ;Ogilvie, 2001].

  2. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  3. Moball-Buoy Network: A Near-Real-Time Ground-Truth Distributed Monitoring System to Map Ice, Weather, Chemical Species, and Radiations, in the Arctic

    Science.gov (United States)

    Davoodi, F.; Shahabi, C.; Burdick, J.; Rais-Zadeh, M.; Menemenlis, D.

    2014-12-01

    The work had been funded by NASA HQ's office of Cryospheric Sciences Program. Recent observations of the Arctic have shown that sea ice has diminished drastically, consequently impacting the environment in the Arctic and beyond. Certain factors such as atmospheric anomalies, wind forces, temperature increase, and change in the distribution of cold and warm waters contribute to the sea ice reduction. However current measurement capabilities lack the accuracy, temporal sampling, and spatial coverage required to effectively quantify each contributing factor and to identify other missing factors. Addressing the need for new measurement capabilities for the new Arctic regime, we propose a game-changing in-situ Arctic-wide Distributed Mobile Monitoring system called Moball-buoy Network. Moball-buoy Network consists of a number of wind-propelled self-powered inflatable spheres referred to as Moball-buoys. The Moball-buoys are self-powered. They use their novel mechanical control and energy harvesting system to use the abundance of wind in the Arctic for their controlled mobility and energy harvesting. They are equipped with an array of low-power low-mass sensors and micro devices able to measure a wide range of environmental factors such as the ice conditions, chemical species wind vector patterns, cloud coverage, air temperature and pressure, electromagnetic fields, surface and subsurface water conditions, short- and long-wave radiations, bathymetry, and anthropogenic factors such as pollutions. The stop-and-go motion capability, using their novel mechanics, and the heads up cooperation control strategy at the core of the proposed distributed system enable the sensor network to be reconfigured dynamically according to the priority of the parameters to be monitored. The large number of Moball-buoys with their ground-based, sea-based, satellite and peer-to-peer communication capabilities would constitute a wireless mesh network that provides an interface for a global

  4. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  5. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  6. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  7. Arctic Messages: Arctic Research in the Vocabulary of Poets and Artists

    Science.gov (United States)

    Samsel, F.

    2017-12-01

    Arctic Messages is a series of prints created by a multidisciplinary team designed to build understanding and encourage dialogue about the changing Arctic ecosystems and the impacts on global weather patterns. Our team comprised of Arctic researchers, a poet, a visual artist, photographers and visualization experts set out to blend the vocabularies of our disciplines in order to provide entry into the content for diverse audiences. Arctic Messages is one facet of our broader efforts experimenting with mediums of communication able to provide entry to those of us outside scientific of fields. We believe that the scientific understanding of change presented through the languages art will speak to our humanity as well as our intellect. The prints combine poetry, painting, visualization, and photographs, drawn from the Arctic field studies of the Next Generation Ecosystem Experiments research team at Los Alamos National Laboratory. The artistic team interviewed the scientists, read their papers and poured over their field blogs. The content and concepts are designed to portray the wonder of nature, the complexity of the science and the dedication of the researchers. Smith brings to life the intertwined connection between the research efforts, the ecosystems and the scientist's experience. Breathtaking photography of the research site is accompanied by Samsel's drawings and paintings of the ecosystem relationships and geological formations. Together they provide entry to the variety and wonder of life on the Arctic tundra and that resting quietly in the permafrost below. Our team has experimented with many means of presentation from complex interactive systems to quiet individual works. Here we are presenting a series of prints, each one based on a single thread of the research or the scientist's experience but containing intertwined relationships similar to the ecosystems they represent. Earlier interactive systems, while engaging, were not tuned to those seeking

  8. Pyrite oxidation under simulated acid rain weathering conditions.

    Science.gov (United States)

    Zheng, Kai; Li, Heping; Wang, Luying; Wen, Xiaoying; Liu, Qingyou

    2017-09-01

    We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

  9. Arctic Observing Experiment (AOX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Rigor, Ignatius [Applied Physics Lab, University of Washington; Johnson, Jim [Applied Physics Lab, University of Washington; Motz, Emily [National Ice Center; Bisic, Aaron [National Ice Center

    2017-06-30

    Our ability to understand and predict weather and climate requires an accurate observing network. One of the pillars of this network is the observation of the fundamental meteorological parameters: temperature, air pressure, and wind. We plan to assess our ability to measure these parameters for the polar regions during the Arctic Observing Experiment (AOX, Figure 1) to support the International Arctic Buoy Programme (IABP), Arctic Observing Network (AON), International Program for Antarctic Buoys (IPAB), and Southern Ocean Observing System (SOOS). Accurate temperature measurements are also necessary to validate and improve satellite measurements of surface temperature across the Arctic. Support for research associated with the campaign is provided by the National Science Foundation, and by other US agencies contributing to the US Interagency Arctic Buoy Program. In addition to the support provided by the U.S Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s North Slope of Alaska (NSA) site at Barrow and the National Science Foundation (NSF), the U.S. IABP is supported by the U.S. Coast Guard (USCG), the National Aeronautics and Space Administration (NASA), the National Ice Center (NIC), the National Oceanic and Atmospheric Administration (NOAA), and the Office of Naval Research (ONR).

  10. Public Perceptions of Arctic Change

    Science.gov (United States)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  11. Beyond Thin Ice: Co-Communicating the Many Arctics

    Science.gov (United States)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  12. Biodiversity, Distributions and Adaptations of Arctic Species in the Context of Environmental Change

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    The individual of a species is the basic unit which responds to climate and UV-B changes, and it responds over a wide range of time scales. The diversity of animal, plant and microbial species appears to be low in the Arctic, and decreases from the boreal forests to the polar deserts of the extreme North but primitive species are particularly abundant. This latitudinal decline is associated with an increase in superdominant species that occupy a wide range of habitats. Climate warming is expected to reduce the abundance and restrict the ranges of such species and to affect species at their northern range boundaries more than in the South: some Arctic animal and plant specialists could face extinction. Species most likely to expand into tundra are boreal species that currently exist as outlier populations in the Arctic. Many plant species have characteristics that allow them to survive short snow-free growing seasons, low solar angles, permafrost and low soil temperatures, low nutrient availability and physical disturbance. Many of these characteristics are likely to limit species' responses to climate warming, but mainly because of poor competitive ability compared with potential immigrant species. Terrestrial Arctic animals possess many adaptations that enable them to persist under a wide range of temperatures in the Arctic. Many escape unfavorable weather and resource shortage by winter dormancy or by migration. The biotic environment of Arctic animal species is relatively simple with few enemies, competitors, diseases, parasites and available food resources. Terrestrial Arctic animals are likely to be most vulnerable to warmer and drier summers, climatic changes that interfere with migration routes and staging areas, altered snow conditions and freeze-thaw cycles in winter, climate-induced disruption of the seasonal timing of reproduction and development, and influx of new competitors, predators, parasites and diseases. Arctic microorganisms are also well

  13. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events.

    Science.gov (United States)

    Mann, Michael E; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A; Miller, Sonya K; Coumou, Dim

    2017-03-27

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.

  14. Effects of Weather and Heliophysical Conditions on Emergency Ambulance Calls for Elevated Arterial Blood Pressure

    Directory of Open Access Journals (Sweden)

    Jone Vencloviene

    2015-02-01

    Full Text Available We hypothesized that weather and space weather conditions were associated with the exacerbation of essential hypertension. The study was conducted during 2009–2010 in the city of Kaunas, Lithuania. We analyzed 13,475 cards from emergency ambulance calls (EACs, in which the conditions for the emergency calls were made coded I.10–I.15. The Kaunas Weather Station provided daily records of air temperature (T, wind speed (WS, relative humidity, and barometric pressure (BP. We evaluated the associations between daily weather variables and daily number of EACs by applying a multivariate Poisson regression. Unfavorable heliophysical conditions (two days after the active-stormy geomagnetic field or the days with solar WS > 600 km/s increased the daily number of elevated arterial blood pressure (EABP by 12% (RR = 1.12; 95% confidence interval (CI 1.04–1.21; and WS ≥ 3.5 knots during days of T < 1.5 °C and T ≥ 12.5 °C by 8% (RR = 1.08; CI 1.04–1.12. An increase of T by 10 °C and an elevation of BP two days after by 10 hPa were associated with a decrease in RR by 3%. An additional effect of T was detected during days of T ≥ 17.5 °C only in females. Women and patients with grade III arterial hypertension at the time of the ambulance call were more sensitive to weather conditions. These results may help in the understanding of the population’s sensitivity to different weather conditions.

  15. Weather conditions associated with autumn migration by mule deer in Wyoming

    Directory of Open Access Journals (Sweden)

    Chadwick D. Rittenhouse

    2015-06-01

    Full Text Available Maintaining ecological integrity necessitates a proactive approach of identifying and acquiring lands to conserve unfragmented landscapes, as well as evaluating existing mitigation strategies to increase connectivity in fragmented landscapes. The increased use of highway underpasses and overpasses to restore connectivity for wildlife species offers clear conservation benefits, yet also presents a unique opportunity to understand how weather conditions may impact movement of wildlife species. We used remote camera observations (19,480 from an existing wildlife highway underpass in Wyoming and daily meteorological observations to quantify weather conditions associated with autumn migration of mule deer in 2009 and 2010. We identified minimal daily temperature and snow depth as proximate cues associated with mule deer migration to winter range. These weather cues were consistent across does and bucks, but differed slightly by year. Additionally, extreme early season snow depth or cold temperature events appear to be associated with onset of migration. This information will assist wildlife managers and transportation officials as they plan future projects to maintain and enhance migration routes for mule deer.

  16. Regional Arctic System Model (RASM): A Tool to Advance Understanding and Prediction of Arctic Climate Change at Process Scales

    Science.gov (United States)

    Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.

    2014-12-01

    The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.

  17. Deoxynivalenol occurrence in Serbian maize under different weather conditions

    Directory of Open Access Journals (Sweden)

    Jajić Igor M.

    2017-01-01

    Full Text Available The aim of this paper was to investigate deoxynivalenol (DON occurrence in maize samples originating from two harvest seasons in Serbia. The key differences between harvest seasons were weather conditions, specifically the humidity. The samples were analyzed using high performance liquid chromatography with DAD detection, after clean-up on SPE columns. In samples from 2014, DON was found in 82 (100.0% samples with the average content of 2.517 mg/kg (ranged from 0.368 to 11.343 mg/kg. Two samples exceeded maximum level permitted by EU regulations. However, analyzing larger number of samples (163 from 2015 harvest season, DON was present in 51 (31.3% samples in significantly lower concentrations (average of 0.662 mg/kg, ranged from 0.106 to 2.628 mg/kg. None of the samples from 2015 exceeded maximum level permitted by EU regulations. The data on DON presence in Serbian maize were in relation to the different weather conditions that prevailed during the two harvest seasons. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 172042

  18. The Thermodynamic Structure of Arctic Coastal Fog Occurring During the Melt Season over East Greenland

    Science.gov (United States)

    Gilson, Gaëlle F.; Jiskoot, Hester; Cassano, John J.; Gultepe, Ismail; James, Timothy D.

    2018-05-01

    An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980-2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65-80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.

  19. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf......Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past...... Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even...

  20. Evaluation of Arctic broadband surface radiation measurements

    Directory of Open Access Journals (Sweden)

    N. Matsui

    2012-02-01

    Full Text Available The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW and thermal infrared, or longwave (LW, radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse SW measurements. The difference between these two quantities (that theoretically should be zero is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  1. Evaluation of Arctic broadband surface radiation measurements

    Science.gov (United States)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  2. Influence of Met-Ocean Condition Forecasting Uncertainties on Weather Window Predictions for Offshore Operations

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    2017-01-01

    The article briefly presents a novel methodology of weather window estimation for offshore operations and mainly focuses on effects of met-ocean condition forecasting uncertainties on weather window predictions when using the proposed methodology. It is demonstrated that the proposed methodology...... to include stochastic variables, representing met-ocean forecasting uncertainties and the results of such modification are given in terms of predicted weather windows for a selected test case....

  3. Thermal comfort sustained by cold protective clothing in Arctic open-pit mining-a thermal manikin and questionnaire study.

    Science.gov (United States)

    Jussila, Kirsi; Rissanen, Sirkka; Aminoff, Anna; Wahlström, Jens; Vaktskjold, Arild; Talykova, Ljudmila; Remes, Jouko; Mänttäri, Satu; Rintamäki, Hannu

    2017-12-07

    Workers in the Arctic open-pit mines are exposed to harsh weather conditions. Employers are required to provide protective clothing for workers. This can be the outer layer, but sometimes also inner or middle layers are provided. This study aimed to determine how Arctic open-pit miners protect themselves against cold and the sufficiency, and the selection criteria of the garments. Workers' cold experiences and the clothing in four Arctic open-pit mines in Finland, Sweden, Norway and Russia were evaluated by a questionnaire (n=1,323). Basic thermal insulation (I cl ) of the reported clothing was estimated (ISO 9920). The I cl of clothing from the mines were also measured by thermal manikin (standing/walking) in 0.3 and 4.0 m/s wind. The questionnaire showed that the I cl of the selected clothing was on average 1.2 and 1.5 clo in mild (-5 to +5°C) and dry cold (-20 to -10°C) conditions, respectively. The I cl of the clothing measured by thermal manikin was 1.9-2.3 clo. The results show that the Arctic open-pit miners' selected their clothing based on occupational (time outdoors), environmental (temperature, wind, moisture) and individual factors (cold sensitivity, general health). However, the selected clothing was not sufficient to prevent cooling completely at ambient temperatures below -10°C.

  4. Development of provisions for oil contaminated soil neutralizing in the conditions of Siberia and the Arctic

    Science.gov (United States)

    Shtripling, L. O.; Kholkin, E. G.

    2017-08-01

    Siberia and the Arctic zone of the Russian Federation occupy a large area of the country and they differ from other regions in special climatic conditions, in particular, a long period of freezing temperatures and relatively poor infrastructure. The main problem of neutralizing soils contaminated with oil products in conditions of negative ambient temperature is that the contaminated soil is in a frozen state, and it prevents the normal course of neutralization process, so additional energy is required for preparing the soil. There is proposed a technology adapted to the conditions of Siberia and the Arctic for the operational elimination of emergency situations consequences accompanied with oil spills. The technology for neutralizing soils contaminated with petroleum products is based on the encapsulation of a pollutant (reagent capsulation technology) using an alkaline calcium-based reagent. Powdered building quicklime is used as a reagent, and it is a product of roasting carbonate rocks or a mixture of this product with mineral additives (calcium oxide). The encapsulated material obtained as a result of neutralizing soils contaminated with petroleum products is resistant to natural and man-made factors such as moisture, temperature fluctuations, acid rain and high pressure. Energy use from the chemical detoxification exothermic process of soils contaminated with petroleum products in combination with the forced supply of carbon dioxide to the neutralization zone during the formation of a shell from calcium carbonate on the surface of the pollutant makes it possible to neutralize soils contaminated with oil products in the extreme climatic conditions of the Arctic using reagent Encapsulation. The principle of equipment operation that allows neutralizing soils contaminated with petroleum products in the natural and climatic conditions of the Arctic using reagent capsulation technology has been described. The results of experimental studies have been presented that

  5. Expanding Spatial and Temporal Coverage of Arctic CH4 and CO2 Fluxes

    Science.gov (United States)

    Murphy, P.; Oechel, W. C.; Moreaux, V.; Losacco, S.; Zona, D.

    2013-12-01

    Carbon storage and exchange in Arctic ecosystems is the subject of intensive study focused on determining rates, controls, and mechanisms of CH4 and CO2 fluxes. The Arctic contains more than 1 Gt of Carbon in the upper meter of soil, both in the active layer and permafrost (Schuur et al., 2008; Tarnocai et al., 2009). However, the annual pattern and controls on the release of CH4 is inadequately understood in Arctic tundra ecosystems. Annual methane budgets are poorly understood, and very few studies measure fluxes through the freeze-up cycle during autumn months (Mastepanov et al., 2008; Mastepanov et al., 2010; Sturtevant et al., 2012). There is no known, relatively continuous, CH4 flux record for the Arctic. Clearly, the datasets that currently exist for budget calculations and model parameterization and verification are inadequate. This is likely due to the difficult nature of flux measurements in the Arctic. In September 2012, we initiated a research project towards continuous methane flux measurements along a latitudinal transect in Northern Alaska. The eddy-covariance (EC) technique is challenging in such extreme weather conditions due to the effects of ice formation and precipitation on instrumentation, including gas analyzers and sonic anemometers. The challenge is greater in remote areas of the Arctic, when low power availability and limited communication can lead to delays in data retrieval or data loss. For these reasons, a combination of open- and closed-path gas analyzers, and several sonic anemometers (including one with heating), have been installed on EC towers to allow for cross-comparison and cross-referencing of calculated fluxes. Newer instruments for fast CH4 flux determination include: the Los Gatos Research Fast Greenhouse Gas Analyzer and the Li-Cor LI-7700. We also included the self-heated Metek Class-A uSonic-3 Anemometer as a new instrument. Previously existing instruments used for comparison include the Li-Cor LI-7500; Li-Cor LI-7200

  6. The joint Russia-US-Sweden studies in the near-shore zone of the East-Siberian Arctic seas: (1999-2008)

    Science.gov (United States)

    Sergienko, V. I.; Shakhova, N.; Dudarev, O.; Gustafsson, O.; Anderson, L.; Semiletov, I.

    2009-04-01

    The Arctic Ocean is surrounded by permafrost, which is being degraded at an increasing rate under conditions of warming which are most pronounced in Siberia and Alaska . A major constraint on our ability to understand linkages between the Arctic Ocean and the global climate system is the scarcity of observational data in the Siberian Arctic marginal seas where major fresh water input and terrestrial CNP fluxes exist. The East-Siberian Sea has never been investigated by modern techniques despite the progress that has been made in new technologies useful for measuring ocean characteristics of interest. In this multi-year international project which joins scientists from 3 nations (Russia-USA-Sweden), and in cooperation with scientists from other countries (UK, Netherlands) we focus on poorly explored areas located west from the U.S.-Russia boundary, Warming causes thawing of the permafrost underlying a substantial fraction of the Arctic; this process could accelerate coastal erosion, river discharge and carbon losses from soils. Siberian freshwater discharge to the Arctic Ocean is expected to increase with increasing temperatures, potentially resulting in greater river export of old terrigenous organic carbon to the ocean. Rivers integrate variability in the components of the hydrometeorological regime, including soil condition, permafrost seasonal thaw, and thermokarst development, all the variables that determine atmospheric and ground water supply for the rivers and chemical weathering in their watershed. Thus studying carbon cycling in the East Siberian Arctic marginal seas has a high scientific priority in order to establish the carbon budget and evaluate the role of the Arctic region in global carbon cycling, especially in the coastal zone where the redistribution of carbon between terrestrial and marine environments occurs and the characteristics of carbon exchange with atmosphere are unknown. In this report we overview the main field activities and present

  7. Review on the Strength Development Required for the Concrete Structure of Nuclear Power Plant under Cold Weather Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Kyung Teak; Park, Chun Jin; Ryu, Gum Sung; Kim, Do Gyeum; Lee, Jang Hwa [Korea Institute of Construction Technology, Goyang (Korea, Republic of)

    2011-10-15

    As a part of a Department of Energy-Nuclear According to the specifications for the construction execution for a nuclear power plant (NPP), the cold weather concrete should be facilitated that comply with the regulations of ACI-306R. Here, in terms of the standards applied to the cold weather concrete, such concrete should be applied in the case where the daily average temperature is 5 .deg. C or less. So, according to the analysis on the average temperature in winter over the last one year at each NPP construction area, it was found that such had lowered by about 0.5 - 2 .deg. C as compared to the temperature during the normal years (the last ten years) and the number of days applied to the cold weather concrete according to the ACI regulations was shown as 83, so as around 1/4 of year falls into the cold weather conditions and furthermore the recent weather is getting severe, it is necessary to perform the appropriate insulation curing for the cold weather concrete. On the other hand, according to the regulations with regards to the curing conditions for cold weather concrete, the insulation curing of such should be appropriately performed under an environment of 5 .deg. C or greater until the strength of 3.5 MPa (500 Psi) develops. Likewise, according to the regulations regarding the cold weather concrete in the domestic concrete specifications, the insulation curing should be performed until a strength development of 5 MPa (715 Psi) considering the safety factor indicated to the ACI regulation under the temperature of 5 .deg. C or greater. According to the above-mentioned regulations, the NPP structure is required to develop a minimum strength of 5 MPa or greater, and to maintain such important qualities, including strength development, early anti-freezing and duality under cold weather conditions. However, even though the early strength of 5 MPa or greater is secured under the recent abnormal weather conditions and cold weather conditions, if the structure is

  8. Simulating Arctic clouds during Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE)

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.; Wang, S. H.

    2015-12-01

    The representation within global and regional models of the extensive low-level cloud cover over polar oceans remains a critical challenge for quantitative studies and forecasts of polar climate. In response, the polar-optimized version of the Weather Research and Forecasting model (Polar WRF) is used to simulate the meteorology, boundary layer, and Arctic clouds during the September-October 2014 Arctic Radiation- IceBridge Sea and Ice Experiment (ARISE) project. Polar WRF was developed with several adjustments to the sea ice thermodynamics in WRF. ARISE was based out of Eielson Air Force Base near Fairbanks, Alaska and included multiple instrumented C-130 aircraft flights over open water and sea ice of the Beaufort Sea. Arctic boundary layer clouds were frequently observed within cold northeasterly flow over the open ocean and ice. Preliminary results indicate these clouds were primarily liquid water, with characteristics differing between open water and sea ice surfaces. Simulated clouds are compared to ARISE observations. Furthermore, Polar WRF simulations are run for the August-September 2008 Arctic Summer Cloud Ocean Study (ASCOS) for comparison to the ARISE. Preliminary analysis shows that simulated low-level water clouds over the sea ice are too extensive during the the second half of the ASCOS field program. Alternatives and improvements to the Polar WRF cloud schemes are considered. The goal is to use the ARISE and ASCOS observations to achieve an improved polar supplement to the WRF code for open water and sea ice that can be provided to the Polar WRF community.

  9. SAR processing in the cloud for oil detection in the Arctic

    Science.gov (United States)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  10. Long-range transport of persistent pollutants into Arctic regions; Schadstoff-Ferntransport in die Arktis

    Energy Technology Data Exchange (ETDEWEB)

    Kallenborn, R.; Herzke, D. [Norwegian Inst. for Air Research, The Polar Environmental Centre, Tromso (Norway)

    2001-07-01

    In recent years, high concentrations of persistent pollutants (organic chemicals, metals) were detected in top predators of the Arctic food chain and indigenous peoples from the Canadian and Greenland Arctic, although no local contamination sources are known. The comprehensive, scientific investigations of the past 20 years confirmed that the combination of atmospheric and waterborne long-range transport is the major source of the high concentrations of persistent organic pollutants (POPs) in the pristine Arctic environment. However, also pelagic marine organisms (e.g. Atlantic cod, marine mammals) can transport large amounts of persistent pollutants in their lipids and introduce contaminants into the Arctic food web. Thus, the pollutants are transported into the Arctic and subsequently accumulated through the short and unbranched Arctic food web of the top predators. The most accepted theory nowadays describes the long-range transport of persistent pollutants as a combination of atmospheric and sea current transport, or as a 'global distillation' process. Depending on such physical properties of the substances as vapour pressure and the ambient temperature, persistent (semivolatile) contaminants are transported over different distances prior to deposition (sea surface, sediment, soil). After the deposition, however, and depending on the weather conditions and surrounding temperature, persistent pollutants will be re-evaporated into the atmosphere and undergo further atmospheric transport to the Arctic region. This process is also called the 'grasshopper effect'. The global transport of persistent pollutants into Arctic regions can be described as a repeatedly occurring combination of atmospheric and waterborne transport in which the main transport vehicle depends on the physical properties of the transported compound. The role of characteristic meteorological conditions in the respective climate zones through which the contaminant is

  11. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  12. The influence of weather conditions on road safety : an assessment of the effect of precipitation and temperature.

    NARCIS (Netherlands)

    Bijleveld, F.D. & Churchill, T.

    2009-01-01

    The influence of changes in extreme weather conditions is often identified as a cause of fluctuations in road safety and the resulting numbers of crashes and casualties. This report focuses on an analysis of the aggregate, accumulated effect of weather conditions (precipitation and temperature) on

  13. Weather conditions may worsen symptoms in rheumatoid arthritis patients: the possible effect of temperature.

    Science.gov (United States)

    Abasolo, Lydia; Tobías, Aurelio; Leon, Leticia; Carmona, Loreto; Fernandez-Rueda, Jose Luis; Rodriguez, Ana Belen; Fernandez-Gutierrez, Benjamin; Jover, Juan Angel

    2013-01-01

    Patients with rheumatoid arthritis (RA) complain that weather conditions aggravate their symptoms. We investigated the short-term effects of weather conditions on worsening of RA and determined possible seasonal fluctuations. We conducted a case-crossover study in Madrid, Spain. Daily cases of RA flares were collected from the emergency room of a tertiary level hospital between 2004 and 2007. 245 RA patients who visited the emergency room 306 times due to RA related complaints as the main diagnostic reason were included in the study. Patients from 50 to 65 years old were 16% more likely to present a flare with lower mean temperatures. Our results support the belief that weather influences rheumatic pain in middle aged patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  14. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  15. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis

    NARCIS (Netherlands)

    Timmermans, E.J.; Schaap, L.A.; Herbolsheimer, F.; Dennison, E.M.; Maggi, S.; Pedersen, N.L.; Castell, M.V; Denkinger, M.D.; Edwards, M.H.; Limongi, F.; Sanchez-Martinez, M.; Siviero, P.; Queipo, R.; Peter, R.; van der Pas, S.; Deeg, D.J.H.

    2015-01-01

    Objective. This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Methods. Data from the population-based European Project on OSteoArthritis were

  16. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  17. The Influence of Weather Conditions on Joint Pain in Older People with Osteoarthritis: Results from the European Project on OSteoArthritis.

    Science.gov (United States)

    Timmermans, Erik J; Schaap, Laura A; Herbolsheimer, Florian; Dennison, Elaine M; Maggi, Stefania; Pedersen, Nancy L; Castell, Maria Victoria; Denkinger, Michael D; Edwards, Mark H; Limongi, Federica; Sánchez-Martínez, Mercedes; Siviero, Paola; Queipo, Rocio; Peter, Richard; van der Pas, Suzan; Deeg, Dorly J H

    2015-10-01

    This study examined whether daily weather conditions, 3-day average weather conditions, and changes in weather conditions influence joint pain in older people with osteoarthritis (OA) in 6 European countries. Data from the population-based European Project on OSteoArthritis were used. The American College of Rheumatology classification criteria were used to diagnose OA in older people (65-85 yrs). After the baseline interview, at 6 months, and after the 12-18 months followup interview, joint pain was assessed using 2-week pain calendars. Daily values for temperature, precipitation, atmospheric pressure, relative humidity, and wind speed were obtained from local weather stations. Multilevel regression modelling was used to examine the pain-weather associations, adjusted for several confounders. The study included 810 participants with OA in the knee, hand, and/or hip. After adjustment, there were significant associations of joint pain with daily average humidity (B = 0.004, p weather conditions. Changes in weather variables between 2 consecutive days were not significantly associated with reported joint pain. The associations between pain and daily average weather conditions suggest that a causal relationship exist between joint pain and weather variables, but the associations between day-to-day weather changes and pain do not confirm causation. Knowledge about the relationship between joint pain in OA and weather may help individuals with OA, physicians, and therapists to better understand and manage fluctuations in pain.

  18. Observing Arctic Ecology using Networked Infomechanical Systems

    Science.gov (United States)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  19. Improving Arctic Sea Ice Observations and Data Access to Support Advances in Sea Ice Forecasting

    Science.gov (United States)

    Farrell, S. L.

    2017-12-01

    The economic and strategic importance of the Arctic region is becoming apparent. One of the most striking and widely publicized changes underway is the declining sea ice cover. Since sea ice is a key component of the climate system, its ongoing loss has serious, and wide-ranging, socio-economic implications. Increasing year-to-year variability in the geographic location, concentration, and thickness of the Arctic ice cover will pose both challenges and opportunities. The sea ice research community must be engaged in sustained Arctic Observing Network (AON) initiatives so as to deliver fit-for-purpose remote sensing data products to a variety of stakeholders including Arctic communities, the weather forecasting and climate modeling communities, industry, local, regional and national governments, and policy makers. An example of engagement is the work currently underway to improve research collaborations between scientists engaged in obtaining and assessing sea ice observational data and those conducting numerical modeling studies and forecasting ice conditions. As part of the US AON, in collaboration with the Interagency Arctic Research Policy Committee (IARPC), we are developing a strategic framework within which observers and modelers can work towards the common goal of improved sea ice forecasting. Here, we focus on sea ice thickness, a key varaible of the Arctic ice cover. We describe multi-sensor, and blended, sea ice thickness data products under development that can be leveraged to improve model initialization and validation, as well as support data assimilation exercises. We will also present the new PolarWatch initiative (polarwatch.noaa.gov) and discuss efforts to advance access to remote sensing satellite observations and improve communication with Arctic stakeholders, so as to deliver data products that best address societal needs.

  20. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  1. Simulating low-flow conditions in an arctic watershed using WaSiM

    Science.gov (United States)

    Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.

    2017-12-01

    The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water

  2. Is climate change affecting wolf populations in the high Arctic?

    Science.gov (United States)

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  3. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    Science.gov (United States)

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  4. Spring weather conditions influence breeding phenology and reproductive success in sympatric bat populations.

    Science.gov (United States)

    Linton, Danielle M; Macdonald, David W

    2018-04-10

    Climate is known to influence breeding phenology and reproductive success in temperate-zone bats, but long-term population level studies and interspecific comparisons are rare. Investigating the extent to which intrinsic (i.e. age), and extrinsic (i.e. spring weather conditions), factors influence such key demographic parameters as the proportion of females becoming pregnant, or completing lactation, each breeding season, is vital to understanding of bat population ecology and life-history traits. Using data from 12 breeding seasons (2006-2017), encompassing the reproductive histories of 623 Myotis daubentonii and 436 Myotis nattereri adult females, we compare rates of recruitment to the breeding population and show that these species differ in their relative sensitivity to environmental conditions and climatic variation, affecting annual reproductive success at the population level. We demonstrate that (1) spring weather conditions influence breeding phenology, with warm, dry and calm conditions leading to earlier parturition dates and advanced juvenile development, whilst cold, wet and windy weather delays birth timing and juvenile growth; (2) reproductive rates in first-year females are influenced by spring weather conditions in that breeding season and in the preceding breeding season when each cohort was born. Pregnancy and lactation rates were both higher when favourable spring foraging conditions were more prevalent; (3) reproductive success increases with age in both species, but at different rates; (4) reproductive rates were consistently higher, and showed less interannual variation, in second-year and older M. daubentonii (mean 91.55% ± 0.05 SD) than M. nattereri (mean 72.74% ± 0.15 SD); (5) estimates of reproductive success at the population level were highly correlated with the size of the juvenile cohort recorded each breeding season. Improving understanding of the influence of environmental conditions, especially extreme climatic

  5. Weather conditions and political party vote share in Dutch national parliament elections, 1971-2010

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-11-01

    Inclement weather on election day is widely seen to benefit certain political parties at the expense of others. Empirical evidence for this weather-vote share hypothesis is sparse however. We examine the effects of rainfall and temperature on share of the votes of eight political parties that participated in 13 national parliament elections, held in the Netherlands from 1971 to 2010. This paper merges the election results for all Dutch municipalities with election-day weather observations drawn from all official weather stations well distributed over the country. We find that the weather parameters affect the election results in a statistically and politically significant way. Whereas the Christian Democratic party benefits from substantial rain (10 mm) on voting day by gaining one extra seat in the 150-seat Dutch national parliament, the left-wing Social Democratic (Labor) and the Socialist parties are found to suffer from cold and wet conditions. Cold (5°C) and rainy (10 mm) election day weather causes the latter parties to lose one or two parliamentary seats.

  6. Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    M. Tjernström

    2012-08-01

    Full Text Available Understanding the rapidly changing climate in the Arctic is limited by a lack of understanding of underlying strong feedback mechanisms that are specific to the Arctic. Progress in this field can only be obtained by process-level observations; this is the motivation for intensive ice-breaker-based campaigns such as the Arctic Summer Cloud-Ocean Study (ASCOS, described here. However, detailed field observations also have to be put in the context of the larger-scale meteorology, and short field campaigns have to be analysed within the context of the underlying climate state and temporal anomalies from this.

    To aid in the analysis of other parameters or processes observed during this campaign, this paper provides an overview of the synoptic-scale meteorology and its climatic anomaly during the ASCOS field deployment. It also provides a statistical analysis of key features during the campaign, such as key meteorological variables, the vertical structure of the lower troposphere and clouds, and energy fluxes at the surface. In order to assess the representativity of the ASCOS results, we also compare these features to similar observations obtained during three earlier summer experiments in the Arctic Ocean: the AOE-96, SHEBA and AOE-2001 expeditions.

    We find that these expeditions share many key features of the summertime lower troposphere. Taking ASCOS and the previous expeditions together, a common picture emerges with a large amount of low-level cloud in a well-mixed shallow boundary layer, capped by a weak to moderately strong inversion where moisture, and sometimes also cloud top, penetrate into the lower parts of the inversion. Much of the boundary-layer mixing is due to cloud-top cooling and subsequent buoyant overturning of the cloud. The cloud layer may, or may not, be connected with surface processes depending on the depths of the cloud and surface-based boundary layers and on the relative strengths of surface-shear and

  7. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  8. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    Science.gov (United States)

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  9. Geographic heterogeneity in cycling under various weather conditions: Evidence from Greater Rotterdam

    NARCIS (Netherlands)

    Helbich, M.; Böcker, L.; Dijst, M.J.

    2014-01-01

    With its sustainability, health and accessibility benefits, cycling has nowadays been established on research and policy agendas. Notwithstanding the decision to cycle is closely related to local weather conditions and interwoven with the geographical context, research dealing with both aspects is

  10. Increasing Alkalinity Export from Large Russian Arctic Rivers

    Science.gov (United States)

    Drake, T.; Zhulidov, A. V.; Gurtovaya, T. Y.; Spencer, R. G.

    2017-12-01

    Riverine carbonate alkalinity (HCO3- and CO32-) sourced from chemical weathering of minerals on land represents a significant sink for atmospheric CO2 over geologic timescales. The flux of alkalinity from rivers in the Arctic depends on precipitation, permafrost extent and thaw, groundwater flow paths, and surface vegetation, all of which are changing under a warming climate. Here we show that over the past four decades, the export of alkalinity from the Ob' and Yenisei Rivers has more than doubled. The increase is likely due to a combination of increasing precipitation and permafrost thaw in the watersheds, which lengthens hydrologic flow paths and increases residence time in soils. These trends have broad implications for the rate of carbon sequestration on land and the delivery of buffering capacity to the Arctic Ocean.

  11. Inuit Perspectives on Arctic Environmental Change': A Traveling Exhibition

    Science.gov (United States)

    Sheffield, E. M.; Hakala, J. S.; Gearheard, S.

    2006-12-01

    The Inuit of Nunavut, Canada, have an intimate relationship with their surroundings. As a culture that relies on knowledge of sea ice, snow, and weather conditions for success in hunting, fishing, and healthy wellbeing, Inuit have observed and studied environmental patterns for generations. An ongoing study into their traditional knowledge and their observations of environmental change is being conducted by researcher Dr. Shari Gearheard, who has worked with Inuit communities in Nunavut for over a decade. The results of the research have been published in scientific journals, and to communicate the results to a broader audience, Dr. Gearheard designed an interactive CD-ROM displaying photographs, maps, and interview videos of Inuit Elders' perspectives on the changes they have witnessed. Receiving immediate popularity since its release in 2004, copies of `When the Weather is Uggianaqtuq: Inuit Observations of Environmental Change' have been distributed worldwide, to indigenous peoples, social science and climate change researchers, teachers, students, and the general public. To further disseminate the information contained on the CD-ROM, the National Snow and Ice Data Center and the Museum of Natural History, both of the University of Colorado, are partnering to create an exhibition which will open at the Museum during the International Polar Year in April 2008. The exhibit, tentatively titled `Inuit Perspectives on Arctic Environmental Change,' will feature photographs, graphics, and text in both English and Inuktitut describing environmental change in the North. The goals are to make the information and interpretation contained on the CD-ROM available and more accessible to a broad audience and to raise awareness about Arctic climate change and the important contribution of Inuit knowledge. Following exhibition at the Museum, the exhibit will travel throughout the United States, Alaska, and Nunavut, through a network of museums, schools, libraries, tribal

  12. Do Wind Turbines Affect Weather Conditions?: A Case Study in Indiana

    Directory of Open Access Journals (Sweden)

    Meghan F. Henschen

    2011-01-01

    Full Text Available Wind turbines are becoming increasingly widespread in the United States as the world looks for cleaner sources of energy. Scientists, policymakers, and citizens have strong opinions regarding the positive and negative effects of wind energy projects, and there is a great deal of misinformation about wind energy circulating on the Web and other media sources. The purpose of this study is to gain a better understanding of how the rotation of hundreds of turbines can influence local weather conditions within a wind farm and in the surrounding areas. This experiment measures temperature, atmospheric pressure, wind speed, wind direction, relative humidity, and evaporation with five weather instruments at Meadow Lake Wind Farm located in White, Jasper, and Benton Counties, Indiana, from November 4 through November 18, 2010. The data show that as wind passes throughout the wind farm, the air warms during the overnight and early morning hours and cools during daytime hours. Observed lower humidity rates and higher evaporation rates downwind also demonstrate that the air dries out as it travels through the wind farm. Further research over multiple seasons is necessary to examine the effects of warmer nighttime temperatures and drier conditions progressively downwind of the installation. Nevertheless, wind turbines did not negatively affect local weather patterns in our small-scale research and may actually prevent frost, which could have important positive implications for farmers by potentially prolonging the growing season.

  13. Understanding, representing and communicating earth system processes in weather and climate within CNRCWP

    Science.gov (United States)

    Sushama, Laxmi; Arora, Vivek; de Elia, Ramon; Déry, Stephen; Duguay, Claude; Gachon, Philippe; Gyakum, John; Laprise, René; Marshall, Shawn; Monahan, Adam; Scinocca, John; Thériault, Julie; Verseghy, Diana; Zwiers, Francis

    2017-04-01

    The Canadian Network for Regional Climate and Weather Processes (CNRCWP) provides significant advances and innovative research towards the ultimate goal of reducing uncertainty in numerical weather prediction and climate projections for Canada's Northern and Arctic regions. This talk will provide an overview of the Network and selected results related to the assessment of the added value of high-resolution modelling that has helped fill critical knowledge gaps in understanding the dynamics of extreme temperature and precipitation events and the complex land-atmosphere interactions and feedbacks in Canada's northern and Arctic regions. In addition, targeted developments in the Canadian regional climate model, that facilitate direct application of model outputs in impact and adaptation studies, particularly those related to the water, energy and infrastructure sectors will also be discussed. The close collaboration between the Network and its partners and end users contributed significantly to this effort.

  14. Integrating K-means Clustering with Kernel Density Estimation for the Development of a Conditional Weather Generation Downscaling Model

    Science.gov (United States)

    Chen, Y.; Ho, C.; Chang, L.

    2011-12-01

    In previous decades, the climate change caused by global warming increases the occurrence frequency of extreme hydrological events. Water supply shortages caused by extreme events create great challenges for water resource management. To evaluate future climate variations, general circulation models (GCMs) are the most wildly known tools which shows possible weather conditions under pre-defined CO2 emission scenarios announced by IPCC. Because the study area of GCMs is the entire earth, the grid sizes of GCMs are much larger than the basin scale. To overcome the gap, a statistic downscaling technique can transform the regional scale weather factors into basin scale precipitations. The statistic downscaling technique can be divided into three categories include transfer function, weather generator and weather type. The first two categories describe the relationships between the weather factors and precipitations respectively based on deterministic algorithms, such as linear or nonlinear regression and ANN, and stochastic approaches, such as Markov chain theory and statistical distributions. In the weather type, the method has ability to cluster weather factors, which are high dimensional and continuous variables, into weather types, which are limited number of discrete states. In this study, the proposed downscaling model integrates the weather type, using the K-means clustering algorithm, and the weather generator, using the kernel density estimation. The study area is Shihmen basin in northern of Taiwan. In this study, the research process contains two steps, a calibration step and a synthesis step. Three sub-steps were used in the calibration step. First, weather factors, such as pressures, humidities and wind speeds, obtained from NCEP and the precipitations observed from rainfall stations were collected for downscaling. Second, the K-means clustering grouped the weather factors into four weather types. Third, the Markov chain transition matrixes and the

  15. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    Science.gov (United States)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  16. Environmental contaminants in arctic foxes (Alopex lagopus) in Svalbard: Relationships with feeding ecology and body condition

    Energy Technology Data Exchange (ETDEWEB)

    Fuglei, E. [Norwegian Polar Institute, Polar Environmental Centre, N-9296 Tromso (Norway)]. E-mail: eva.fuglei@npolar.no; Bustnes, J.O. [Norwegian Institute for Nature Research, Division of Arctic Ecology, Polar Environmental Centre, N-9296 Tromso (Norway); Hop, H. [Norwegian Polar Institute, The Polar Environmental Centre, N-9296 Tromso (Norway); Mork, T. [National Veterinary Institute, Regional Laboratory, N-9292 Tromso (Norway); Bjoernfoth, H. [MTM Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden); Bavel, B. van [MTM Research Centre, Department of Natural Sciences, Orebro University, 701 82 Orebro (Sweden)

    2007-03-15

    Adipose tissues from 20 arctic foxes (Alopex lagopus) of both sexes from Svalbard were analysed for polybrominated diphenyl ether (PBDE), polychlorinated biphenyl (PCB), p,p'-dichlorodiphenyltrichloroethane (DDE), chlordane, and hexachlorobenzene (HCB) concentrations. Gender (0.43 < p < 0.97) and age (0.15 < p < 0.95) were not significantly related to any of the organohalogen groups. Body condition showed a significant inverse relationship with {sigma}PBDE, {sigma}Chlordane and HCB, suggesting that increased tissue contaminant concentrations are associated with depletion of adipose tissue. The seasonal cyclic storage and mobilisation of adipose tissue, characteristic in Arctic wildlife, may then provide increased input of contaminants to sensitive, vital effect organs. Trophic position was estimated by {delta} {sup 15}N from muscle samples and showed significantly positive relationship with all contaminants, with the exception of HCB concentrations. This indicates that foxes feeding at high trophic levels had higher tissue contaminant levels as a result of bioaccumulation in the food chain. - High contaminant concentrations in the coastal ecotype of arctic fox may cause toxic health effects due to huge annual cyclic variation in storage and mobilisation of adipose tissue.

  17. The Conditions of Creation and Prospects of Weather Derivatives Development on the Domestic Market

    Directory of Open Access Journals (Sweden)

    Piotr Binkowski

    2008-06-01

    Full Text Available Analysing the possibility of creations and prospects of weather derivatives development on the domestic market the first of all should be identify the business areas that are strongly exposed for weather risk, which are: energy, agricultural, building and transportation. The specificity of the Polish climate is the high volatility of the major weather factors like temperature or precipitations. Similar to other European countries where weather derivatives markets already exist (e.g.: Germany, France, and United Kingdom. Having in mind dynamic grow of companies with regards to management processes, used technologies and marketing strategies, the exposure for weather risk is getting higher. Therefore, there is a strong pressure for creation of mechanisms and instruments that will allow reducing that kind of risks. Currently in Poland there are no conditions for development of weather derivatives market due to lack of demand. That situation is caused by low level of awareness regarding to possibilities of reducing weather risks. Within a few years the demand for such the instruments will appear ñ together with growing awareness. Once the demand for weather derivative will appear, the existing infrastructure of financial sector is ready for its implementation. Of course it is hard to say what will be the direction of whether derivatives grow on the domestic financial market but taking into consideration its dynamic grow and strong correlations with global markets, there is a small probability that weather derivatives will not appear on the Polish market ñ it is only the matter of time.

  18. Analysis of winter weather conditions and their potential impact on wind farm operations

    Science.gov (United States)

    Novakovskaia, E.; Treinish, L. A.; Praino, A.

    2009-12-01

    Severe weather conditions have two primary impacts on wind farm operations. The first relates to understanding potential damage to the turbines themselves and what actions are required to mitigate the effects. The second is recognizing what conditions may lead to a full or partial shutdown of the wind farm with sufficient lead time to determine the likely inability to meet energy generation committments. Ideally, wind forecasting suitable for wind farm operations should be of sufficient fidelity to resolve features within the boundary layer that lead to either damaging conditions or useful power generation. Given the complexity of the site-specific factors that effect the boundary layer at the scale of typical land-based wind farm locations such as topography, vegetation, land use, soil conditions, etc., which may vary with turbine design and layout within the farm, enabling reliable forecasts of too little or too much wind is challenging. A potential solution should involve continuous updates of alert triggering criteria through analysis of local wind patterns and probabilistic risk assessment for each location. To evaluate this idea, we utilize our operational mesoscale prediction system, dubbed “Deep Thunder”, developed at the IBM Thomas J. Watson Research Center. In particular, we analyze winter-time near-surface winds in upstate New York, where four similar winds farms are located. Each of these farms were built at roughly the same time and utilize similar turbines. Given the relative uncertainty associated with numerical weather prediction at this scale, and the difference in risk assessment due to the two primary impacts of severe weather, probabilistic forecasts are a prerequisite. Hence, we have employed ensembles of weather scenarios, which are based on the NCAR WRF-ARW modelling system. The set of ensemble members was composed with variations in the choices of physics and parameterization schemes, and source of background fields for initial

  19. Propaganda, News, or Education: Reporting Changing Arctic Sea Ice Conditions

    Science.gov (United States)

    Leitzell, K.; Meier, W.

    2010-12-01

    The National Snow and Ice Data Center provides information on Arctic sea ice conditions via the Arctic Sea Ice News & Analysis (ASINA) website. As a result of this effort to explain climatic data to the general public, we have attracted a huge amount of attention from our readers. Sometimes, people write to thank us for the information and the explanation. But people also write to accuse us of bias, slant, or outright lies in our posts. The topic of climate change is a minefield full of political animosity, and even the most carefully written verbiage can appear incomplete or biased to some audiences. Our strategy has been to report the data and stick to the areas in which our scientists are experts. The ASINA team carefully edits our posts to make sure that all statements are based on the science and not on opinion. Often this means using some technical language that may be difficult for a layperson to understand. However, we provide concise definitions for technical terms where appropriate. The hope is that by communicating the data clearly, without an agenda, we can let the science speak for itself. Is this an effective strategy to communicate clearly about the changing climate? Or does it downplay the seriousness of climate change? By writing at a more advanced level and avoiding oversimplification, we require our readers to work harder. But we may also maintain the attention of skeptics, convincing them to read further and become more knowledgeable about the topic.

  20. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  1. A Preliminary Assessment of Daily Weather Conditions in Nuclear Site for Development of Effective Emergency Plan

    International Nuclear Information System (INIS)

    Han, Seok Jung; Ahn, Kwang Il

    2012-01-01

    A radiological emergency preparedness for nuclear sites is recognized as an important measure against anticipated severe accidents with environmental releases of radioactive materials. While there are many individual means in the emergency preparedness for nuclear accidents, one of most important means is to make a decision of evacuation or shelter of the public residents with the emergency plan zone (EPZ) of a nuclear site. In order to prepare an effective strategy for the evacuation as a basis of the emergency preparedness, it may need the understanding of atmospheric dispersion characteristics of radiation releases to the environment, mainly depending upon the weather conditions of a radiation releases location, i.e., a nuclear site. As a preliminary study for the development of an effective emergency plan, the basic features of the weather conditions of a specific site were investigated. A main interest of this study is to identify whether or not the site weather conditions have specific features helpful for a decision making of evacuation of the public residents

  2. Assimilation of old carbon by stream food webs in arctic Alaska

    Science.gov (United States)

    O'Donnell, J. A.; Carey, M.; Xu, X.; Koch, J. C.; Walker, J. C.; Zimmerman, C. E.

    2017-12-01

    Permafrost thaw in arctic and sub-arctic region is mobilizing old carbon (C) from perennially frozen soils, driving the release of old C to the atmosphere and to aquatic ecosystems. Much research has focused on the transport and lability of old dissolved organic C (DOC) as a possible feedback to the climate system following thaw. However, little is known about the role of old C as a source to aquatic food webs in watersheds underlain by thawing permafrost. To quantify the contributions of old C to Arctic stream food-webs, we measured the radiocarbon (Δ14C) and stable isotope (δ13C, δ15N) contents of periphyton, macroinvertebrates, and resident fish species (Arctic Grayling (Thymallus arcticus) and Dolly Varden (Salvelinus malma)). We also characterized the isotopic composition of possible C sources, including DOC, dissolved inorganic carbon (DIC), and soil organic matter. Samples were collected across 10 streams in Arctic Alaska, draining watersheds underlain by varying parent material and ground-ice content, from ice-poor bedrock to ice-rich loess (i.e. Yedoma). Fraction modern (FM) values for Arctic Grayling and Dolly Varden ranged from 0.6720 to 1.0101 (3195 years BP to modern) across all streams, and closely tracked spatial variation in Δ14C content of periphyton. Parent material and ground-ice content appear to govern the age and form of dissolved C sources to stream biota. For instance, in watersheds underlain by ice-poor bedrock, old DIC (< 5000 years BP) was the dominant C source to stream biota, reflecting contributions from carbonate weathering and soil respiration. In streams draining ice-rich Yedoma, high concentrations of younger DOC were the primary C source to stream biota, reflecting leaching of DOC from saturated, peaty soils of the active layer. These findings highlight the importance of permafrost characteristics as a control on subsurface hydrology and the delivery of aged C to surface waters. Given the large stores Pleistocene-aged organic

  3. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  4. Cloudiness and weather variation in central Svalbard in July 2013 as related to atmospheric circulation

    Czech Academy of Sciences Publication Activity Database

    Láska, K.; Chládová, Zuzana; Ambrožová, K.; Husák, J.

    2013-01-01

    Roč. 3, č. 2 (2013), s. 184-195 ISSN 1805-0689 Institutional support: RVO:68378289 Keywords : atmospheric circulation * climate * cloudiness * weather * Svalbard * Arctic Subject RIV: DO - Wilderness Conservation http://www.sci.muni.cz/CPR/6cislo/Laska.pdf

  5. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du

    2016-08-01

    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  6. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    residents speak in eloquent terms of the changes they see around them, manifested in new patterns of vegetation, the melting of permafrost and the absence of game species that used to be abundant. Meanwhile, new satellites and more sophisticated sensors on the ground and in the ice, add scientific testimony that seems to support and even extend native perceptions. Live from the Arctic will unify both perspectives, and use todays most powerful and effective communications media to connect young people and general audiences all across America to researchers and communities living and working in the Arctic. During IPY there will be a level of interest in the Polar regions unprecedented in a generation. Live from the Arctic offers unique resources to satisfy that curiosity, and encourage active participation and engagement in understanding some of Earths most significant peoples, places and rapidly changing conditions.

  7. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    Science.gov (United States)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation

  8. The 2016 Arctic Winter Games: “Now we do what we do best”

    DEFF Research Database (Denmark)

    Ren, Carina Bregnholm; Thomsen, Robert Chr.

    2016-01-01

    A few days before the opening ceremony of the 2016 Arctic Winter Games (AWG) in Nuuk, Greenland, weather reports looked bleak. A spring blizzard was on its way and expected to peak the day prior to the opening ceremony. That very Saturday, 1250 participants were set to fly to Greenland’s capital...... city – the highest number of civilians arriving in one day by aircraft in the island’s history. Now, however, bad weather was jeopardizing this milestone in Greenlandic aviation history and, along with that, the successful execution of the upcoming games....

  9. Arctic Islands LNG

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, W.

    1977-01-01

    Trans-Canada Pipe Lines Ltd. made a feasibility study of transporting LNG from the High Arctic Islands to a St. Lawrence River Terminal by means of a specially designed and built 125,000 cu m or 165,000 cu m icebreaking LNG tanker. Studies were made of the climatology and of ice conditions, using available statistical data as well as direct surveys in 1974, 1975, and 1976. For on-schedule and unimpeded (unescorted) passage of the LNG carriers at all times of the year, special navigation and communications systems can be made available. Available icebreaking experience, charting for the proposed tanker routes, and tide tables for the Canadian Arctic were surveyed. Preliminary design of a proposed Arctic LNG icebreaker tanker, including containment system, reliquefaction of boiloff, speed, power, number of trips for 345 day/yr operation, and liquefaction and regasification facilities are discussed. The use of a minimum of three Arctic Class 10 ships would enable delivery of volumes of natural gas averaging 11.3 million cu m/day over a period of a year to Canadian markets. The concept appears to be technically feasible with existing basic technology.

  10. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    Science.gov (United States)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  11. Field guide for the protection and cleanup of oiled Arctic shorelines

    International Nuclear Information System (INIS)

    Owens, E.H.

    1996-01-01

    Practical suggestions for the protection, treatment and cleanup of oiled shorelines during summer and open-water conditions are described. This manual was developed as a field guide to be used during spill response operations for the rapid identification of shoreline response options. Special attention is given to techniques that are normally available and appropriate for shoreline types and coastal environmental setting that are typical of Arctic regions. The guide is divided into four main sections: (1) shoreline protection, (2) treatment strategy by shoreline type, (3) treatment or cleanup methods, and (4) response strategies for specific environments. The importance of the type and volume of oil spilled, and the environmental factors that should be taken into account in the event of a spill (time of year, weather, ice and wave conditions) are stressed. The presence of sensitive resources such as wildlife, fish stocks, plant communities and human-use activities are also considered. tabs., figs

  12. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  13. Droplet spectrum of a spray nozzle under different weather conditions

    Directory of Open Access Journals (Sweden)

    Christiam Felipe Silva Maciel

    Full Text Available ABSTRACT The application of pesticides is always susceptible to losses through evaporation and drift of the spray droplets. With these losses, a smaller amount of pesticide reaches the target, possibly impairing the efficiency of phytosanitary control. Due to these concerns, the aim of this study was to evaluate the interference of weather conditions in the droplet spectrum produced by hydraulic spraying. To carry out the work, it was necessary to build an experimental system. This consisted of a laser particle-size analyser, hydraulic nozzle (Jacto JSF 11002, stationary sprayer, gas heater, wind tunnel, climate chamber (with the aim of maintaining the internal psychrometry similar to that of the air exiting the wind tunnel, collector, and temperature and RH sensors. The weather conditions for the study included vapour pressure deficits (VPD of 5, 9.4, 20, 30.6 and 35 hPa, and air velocities of 2, 3.6, 7.4, 11.2 and 12.8 km h-1. A Rotatable Central Composite Design was used, and the data related using Response Surface Methodology. The wind caused such a sharp drift in the fine droplets, that it greatly affected the behaviour of the entire droplet spectrum, as well as hiding the effect of the VPD. However, the conclusion is that drift and evaporation both act on the coarser droplets.

  14. Synoptic weather conditions during BOBMEX

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    sions when the strong wind field appeared spread over the peninsula and central India. This was also seen both in OLR and in vertical velocity fields prepared by National Centre for Medium. Range Weather Forecasting (NCMRWF). A band of low OLR (150–160watts/sqm) could be seen in the south and adjoining central ...

  15. Post-harvest quality model of pineapple guava fruit according to storage and weather conditions of cultivation

    Directory of Open Access Journals (Sweden)

    Alfonso Parra-Coronado

    Full Text Available ABSTRACT The post-harvest quality of pineapple guava fruit is determined by the storage and prevailing weather conditions during growth and development. This study proposes a model for post-harvest fruit quality according to the storage and weather conditions in the pineapple guava growing region. Physiologically ripe fruit were collected during two harvests from two locations within the Department of Cundinamarca (Colombia: Tenjo and San Francisco de Sales. The fruits were stored at 18 ± 1 °C (76 ± 5% relative humidity (RH, over 11 days and at 5 ± 1 °C (87 ± 5% RH, over 31 days, and the quality attributes were evaluated every two days. Models of the most significant physio-chemical quality characteristics of the post-harvest fruit were developed by using the Excel® Solver tool for all data obtained in the two crop periods. The results showed that storage and prevailing weather conditions, which differed according to the altitude of the growing site, had considerable impacts on the physio-chemical characteristics of the fruit throughout the post-harvest ripening process.

  16. Evaluating Weather Research and Forecasting Model Sensitivity to Land and Soil Conditions Representative of Karst Landscapes

    Science.gov (United States)

    Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun

    2018-03-01

    Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant

  17. Evaluating the biodegradability and effects of dispersed oil using Arctic test species and conditions: phase 2 activities

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlin, Kelly M.; Perkins, Robert A. [University of Alaska Fairbanks (United States)], email: raperkins@alaska.edu; Gardiner, William W.; Word, Jack D. [NewFields NorthWest (United States)

    2011-07-01

    In the event of a marine oil spill, managers have to make correct and rapid decisions, weighing a number of possibilities, which include natural attenuation, mechanical recovery, in situ burning, and/or chemical dispersion. To do this, the relative toxicity of physically and chemically dispersed fresh oil and the rates of biodegradation for fresh and weathered oil need to be understood in advance. A joint industry program was established in 2008 to research and discuss these areas. Phase 1 activities included determining the species relevant to the Beaufort and Chukchi Sea ecosystems, creating and setting up a toxicity and biodegradation laboratory with a cold room in Barrow, Alaska, developing collection and culture methods for test organisms, and developing toxicity and biodegradation test protocols. The second phase of this now completed research is discussed in this paper. It consisted of toxicity testing of the local environmentally significant species, the copepod (C. glacialis), Arctic cod (B. saida), and larval sculpin (Myoxocephalus sp.).

  18. Peculiarities of metal welding process modelling for the Arctic

    Science.gov (United States)

    Lagunov, Alexey; Fofanov, Andrey; Losunov, Anton

    2017-09-01

    M etal being rather tough has been used in the Arctic for a long time. In severe weather conditions metal construction is subject to strong corrosion and erosion. These processes affect the welds particular strongly. Violation of weld integrity leads to the different industrial accidents. Therefore, the welding quality is given such a strong focus. M ost high-quality welding is obtained if welding zone is provided with gas what eliminates the influence of oxygen on the process. But in this case it is very difficult to find the right concentration, gas pressure, direction of the jet. Study of the welding process using video and photography is expensive, in terms of money and time. Mathematical modelling of welding process using the program FlowVision enables to solve this issue at less cost. It's essential that obtained results qualitatively conform to the experimental ones and can be used in real application.

  19. Lidar Measurements of Tropospheric Ozone in the Arctic

    Directory of Open Access Journals (Sweden)

    Seabrook Jeffrey

    2016-01-01

    Full Text Available This paper reports on differential absorption lidar (DIAL measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  20. Intermittent Flooding of Arctic Lagoon Wet Sedge Areas: an investigation of past and future conditions at Arey Lagoon, Eastern Arctic Alaska

    Science.gov (United States)

    Gibbs, A.; Erikson, L. H.; Richmond, B. M.

    2017-12-01

    Arctic lagoons and mainland coasts support highly productive ecosystems, where soft substrate and coastal wet sedge fringing the shores act as feeding grounds and nurseries for a variety of marine fish and waterfowl. Much tundra vegetation is intolerant to saltwater flooding, but some vegetation cherished by geese for example, is maintained by flooding one to two times per month. The balance of northern ecosystems such as these may be in jeopardy as the Arctic climate is rapidly changing. In this study, sea level rise and 21st century storms are simulated with a numerical model to evaluate changes in ocean-driven flooding of low-lying tundra and coastal wet sedge that fringe the shores of Arey Lagoon, located in eastern Arctic Alaska. Numerically modeled extreme surge levels are projected to increase from a historical range of 0.5 m - 1.3 m (1976-2010) to 1.0 m - 2.0 m by end-of-century (2011-2100). The maximum storm surge of the projected time-period translates to > 6 km2 of flooded tundra, much of which consists of salt-intolerant vegetation. Monthly flood extents that might be expected to maintain halophytic vegetation were calculated by extracting the maximum monthly water levels of months that had more than 21 days ( 70%) of ice-free conditions. Median monthly water levels are shown to range from 0.46 m in 1981-1990 to 0.91 m by the final decades of the 21st century. The temporal trend is strongly linear (r2 = 0.82). An overlay of these water elevations onto a 10 m resolution elevation model shows that monthly flood extents will increase by 26% by the end of the century compared to the present decade (2011 to 2020) (from 2.86 km2 to 3.60 km2). The rate at which the flood extents are projected to increase will dictate if inland succession of salt-tolerant vegetation will survive. By combining the frequency and magnitude of extreme storm surge events with the progression of modeled monthly inland flood extents, it might be possible to identify areas along this

  1. Arctic Storms and Their Influence on Surface Climate in the Chukchi-Beaufort Seas

    Science.gov (United States)

    Yang, Y.; Zhang, X.; Rinke, A.; Zhang, J.

    2017-12-01

    Increases in the frequency and intensity of Arctic storms and resulting weather hazards may endanger the offshore environment, coastal community, and energy infrastructure in the Arctic as sea ice retreats. Advancing ability to identify fine-scale variations in surface climate produced by progressively stronger storm would be extremely helpful to resources management and sustainable development for coastal community. In this study, we analyzed the storms and their impacts on surface climate over the Beaufort-Chukchi seas by employing the date sets from both the hindcast simulations of the coupled Arctic regional climate model HIRHAM-NAOSIM and the recently developed Chukchi-Beaufort High-resolution Atmospheric Reanalysis (CBHAR). Based on the characteristics of spatial pattern and temporal variability of the Arctic storm activity, we categorized storms to three groups with their different origins: the East Siberia Sea, Alaska and the central Arctic Ocean. The storms originating from the central Arctic Ocean have the strongest intensity in winter with relatively less storm number. Storms traveling from Alaska to the Beaufort Sea most frequently occurred in autumn with weaker intensity. A large portion of storms originated from the East Siberia Sea region in summer. Further statistical analysis suggests that increase in surface air temperature and wind speed could be attributed to the increased frequency of storm occurrence in autumn (September to November) along the continental shelf in the Beaufort Sea.

  2. The interdecadal worsening of weather conditions affecting aerosol pollution in the Beijing area in relation to climate warming

    Science.gov (United States)

    Zhang, Xiaoye; Zhong, Junting; Wang, Jizhi; Wang, Yaqiang; Liu, Yanju

    2018-04-01

    The weather conditions affecting aerosol pollution in Beijing and its vicinity (BIV) in wintertime have worsened in recent years, particularly after 2010. The relation between interdecadal changes in weather conditions and climate warming is uncertain. Here, we analyze long-term variations of an integrated pollution-linked meteorological index (which is approximately and linearly related to aerosol pollution), the extent of changes in vertical temperature differences in the boundary layer (BL) in BIV, and northerly surface winds from Lake Baikal during wintertime to evaluate the potential contribution of climate warming to changes in meteorological conditions directly related to aerosol pollution in this area; this is accomplished using NCEP reanalysis data, surface observations, and long-term vertical balloon sounding observations since 1960. The weather conditions affecting BIV aerosol pollution are found to have worsened since the 1960s as a whole. This worsening is more significant after 2010, with PM2.5 reaching unprecedented high levels in many cities in China, particularly in BIV. The decadal worsening of meteorological conditions in BIV can partly be attributed to climate warming, which is defined by more warming in the higher layers of the boundary layer (BL) than the lower layers. This worsening can also be influenced by the accumulation of aerosol pollution, to a certain extent (particularly after 2010), because the increase in aerosol pollution from the ground leads to surface cooling by aerosol-radiation interactions, which facilitates temperature inversions, increases moisture accumulations, and results in the extra deterioration of meteorological conditions. If analyzed as a linear trend, weather conditions have worsened by ˜ 4 % each year from 2010 to 2017. Given such a deterioration rate, the worsening of weather conditions may lead to a corresponding amplitude increase in PM2.5 in BIV during wintertime in the next 5 years (i.e., 2018 to 2022

  3. Melting in the Arctic: Preparing Now for Possibilities in the Future

    Science.gov (United States)

    2016-04-04

    threats. 15. SUBJECT TERMS: Arctic, South China Sea, U.S. Military, Russia , China 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...lines. Investments in cold weather technology, security, search and rescue, disaster prevention and relief, and infrastructure support for such...disputes remain between nations; and Russia is building up presence and power in the region every day. Eventually Russian presence and power may have

  4. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    Science.gov (United States)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  5. State of the Arctic Environment

    International Nuclear Information System (INIS)

    1990-01-01

    The Arctic environment, covering about 21 million km 2 , is in this connection regarded as the area north of the Arctic Circle. General biological and physical features of the terrestrial and freshwater environments of the Arctic are briefly described, but most effort is put into a description of the marine part which constitutes about two-thirds of the total Arctic environment. General oceanography and morphological characteristics are included; e.g. that the continental shelf surrounding the Arctic deep water basins covers approximately 36% of the surface areas of Arctic waters, but contains only 2% of the total water masses. Blowout accident may release thousands of tons of oil per day and last for months. They occur statistically very seldom, but the magnitude underlines the necessity of an efficient oil spill contingency as well as sound safety and quality assurance procedures. Contingency plans should be coordinated and regularly evaluated through simulated and practical tests of performance. Arctic conditions demand alternative measures compared to those otherwise used for oil spill prevention and clean-up. New concepts or optimization of existing mechanical equipment is necessary. Chemical and thermal methods should be evaluated for efficiency and possible environmental effects. Both due to regular discharges of oil contaminated drilled cuttings and the possibility of a blowout or other spills, drilling operations in biological sensitive areas may be regulated to take place only during the less sensitive parts of the year. 122 refs., 8 figs., 8 tabs

  6. Weather Augmented Risk Determination (WARD) System

    Science.gov (United States)

    Niknejad, M.; Mazdiyasni, O.; Momtaz, F.; AghaKouchak, A.

    2017-12-01

    Extreme climatic events have direct and indirect impacts on society, economy and the environment. Based on the United States Bureau of Economic Analysis (BEA) data, over one third of the U.S. GDP can be considered as weather-sensitive involving some degree of weather risk. This expands from a local scale concrete foundation construction to large scale transportation systems. Extreme and unexpected weather conditions have always been considered as one of the probable risks to human health, productivity and activities. The construction industry is a large sector of the economy, and is also greatly influenced by weather-related risks including work stoppage and low labor productivity. Identification and quantification of these risks, and providing mitigation of their effects are always the concerns of construction project managers. In addition to severe weather conditions' destructive effects, seasonal changes in weather conditions can also have negative impacts on human health. Work stoppage and reduced labor productivity can be caused by precipitation, wind, temperature, relative humidity and other weather conditions. Historical and project-specific weather information can improve better project management and mitigation planning, and ultimately reduce the risk of weather-related conditions. This paper proposes new software for project-specific user-defined data analysis that offers (a) probability of work stoppage and the estimated project length considering weather conditions; (b) information on reduced labor productivity and its impacts on project duration; and (c) probabilistic information on the project timeline based on both weather-related work stoppage and labor productivity. The software (WARD System) is designed such that it can be integrated into the already available project management tools. While the system and presented application focuses on the construction industry, the developed software is general and can be used for any application that involves

  7. Model Development for Risk Assessment of Driving on Freeway under Rainy Weather Conditions.

    Directory of Open Access Journals (Sweden)

    Xiaonan Cai

    Full Text Available Rainy weather conditions could result in significantly negative impacts on driving on freeways. However, due to lack of enough historical data and monitoring facilities, many regions are not able to establish reliable risk assessment models to identify such impacts. Given the situation, this paper provides an alternative solution where the procedure of risk assessment is developed based on drivers' subjective questionnaire and its performance is validated by using actual crash data. First, an ordered logit model was developed, based on questionnaire data collected from Freeway G15 in China, to estimate the relationship between drivers' perceived risk and factors, including vehicle type, rain intensity, traffic volume, and location. Then, weighted driving risk for different conditions was obtained by the model, and further divided into four levels of early warning (specified by colors using a rank order cluster analysis. After that, a risk matrix was established to determine which warning color should be disseminated to drivers, given a specific condition. Finally, to validate the proposed procedure, actual crash data from Freeway G15 were compared with the safety prediction based on the risk matrix. The results show that the risk matrix obtained in the study is able to predict driving risk consistent with actual safety implications, under rainy weather conditions.

  8. Role of different weather conditions on the incidence and development of american bollworm

    International Nuclear Information System (INIS)

    Khaliq, A.; Subhani, M.N.; Hassan, S.W.; Murtaza, M.A.

    2008-01-01

    Studies were conducted at Nuclear Institute for Agriculture and biology (NIAB). Faisalabad on ten advance genotypes of cotton Viz,. BH-121, NIAB KRISHMA, DNH-137, VH-142, BH-125. MNH-635, SLH-267, FNH-245, CRIS-467 and CRIS-82, to see the role of different weather condition on the incidence and development of American bollworm (Heliothis armigera) infestation and coefficient of correlation among these factors and American bollworm infestation. Trial were laid out using Randomized Complete Block Design (RCBD) with four replications. Finally data were subject to the statistical analysis and for correlation studies between weather factors and percent American boll temperature infestation. Temperature and relative humidity were correlated positively and rainfall effected negatively to the infestation of American bollworm on squares and for green bolls temperature was positively correlated while relative humidity and rainfall negatively with the percent American bollworm infestation in advance -genotypes of cotton under unsprayed condition. (author)

  9. Building an archive of Arctic-Boreal animal movements and links to remote sensing data

    Science.gov (United States)

    Bohrer, G.; Handler, M.; Davidson, S. C.; Boelman, N.

    2017-12-01

    Climate is changing in the Arctic and Boreal regions of North America more quickly than anywhere else on the planet. The impact of climate changes on wildlife in the region is difficult to assess, as they occur over decades, while wildlife monitoring programs have been in place for relatively short periods, have used a variety of data collection methods, and are not integrated across studies and governmental agencies. Further, linking wildlife movements to measures of weather and climate is impeded by the challenge of accessing environmental data products and differences in spatiotemporal scale. To analyze the impact of long-term changes in weather and habitat conditions on wildlife movements, we built an archive of avian, predator and ungulate movements throughout the Arctic-Boreal region. The archive is compiled and hosted in Movebank, a free, web-based service for managing animal movement data. Using Movebank allows us to securely manage data within a single database while supporting project-specific terms of use and access rights. By importing the data to the Movebank database, they are converted to a standard data format, reviewed for quality and completeness, and made easily accessible for analysis through the R package 'move'. In addition, the Env-DATA System in Movebank allows easy annotation of these and related time-location records with hundreds of environmental variables provided by global remote sensing and weather data products, including MODIS Land, Snow and Ice products, the ECMWF and NARR weather reanalyses, and others. The ABoVE Animal Movement Archive includes 6.6 million locations of over 3,000 animals collected by 50 programs and studies, contributed by over 25 collaborating institutions, with data extending from 1988 to the present. Organizing the data on Movebank has enabled collaboration and metaanalysis and has also improved their quality and completeness. The ABoVE Animal Movement Archive provides a platform actively used by data

  10. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Science.gov (United States)

    Screen, James A.; Deser, Clara; Smith, Doug M.; Zhang, Xiangdong; Blackport, Russell; Kushner, Paul J.; Oudar, Thomas; McCusker, Kelly E.; Sun, Lantao

    2018-03-01

    The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.

  11. Handbook for Nuclear Weapons Effects under Arctic Conditions. Sanitized.

    Science.gov (United States)

    1980-04-30

    Atmos- phere Symposium at Oslo, July 1956, Sutcliffe, R.C., Ed., Pergamon Press, Almsford, NY, 1958, UNCLASSIFIED. Nakonechny, Basil V., The Arctic...venting prior to emision of the first S bubble pulse. If the detonation occurs close enough to the surface so that ice melt is involved in the initial

  12. Transmitter Spatial Diversity for FSO Uplink in Presence of Atmospheric Turbulence and Weather Conditions for Different IM Schemes

    Science.gov (United States)

    Viswanath, Anjitha; Kumar Jain, Virander; Kar, Subrat

    2017-12-01

    We investigate the error performance of an earth-to-satellite free space optical uplink using transmitter spatial diversity in presence of turbulence and weather conditions, using gamma-gamma distribution and Beer-Lambert law, respectively, for on-off keying (OOK), M-ary pulse position modulation (M-PPM) and M-ary differential PPM (M-DPPM) schemes. Weather conditions such as moderate, light and thin fog cause additional degradation, while dense or thick fog and clouds may lead to link failure. The bit error rate reduces with increase in the number of transmitters for all the schemes. However, beyond a certain number of transmitters, the reduction becomes marginal. Diversity gain remains almost constant for various weather conditions but increases with increase in ground-level turbulence or zenith angle. Further, the number of transmitters required to improve the performance to a desired level is less for M-PPM scheme than M-DPPM and OOK schemes.

  13. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  14. Trends in aerosol optical depth in the Russian Arctic and their links with synoptic climatology

    International Nuclear Information System (INIS)

    Shahgedanova, Maria; Lamakin, Mikhail

    2005-01-01

    anticyclonic conditions result in high atmospheric turbidity. The frequency of this weather type has declined significantly since the early 1980s in the Kara-Laptev sector, which partly explains the decline in summer AOD values

  15. A distributed atmosphere-sea ice-ocean observatory in the central Arctic Ocean: concept and first results

    Science.gov (United States)

    Hoppmann, Mario; Nicolaus, Marcel; Rabe, Benjamin; Wenzhöfer, Frank; Katlein, Christian; Scholz, Daniel; Valcic, Lovro

    2017-04-01

    To understand the current evolution of the Arctic Ocean towards a less extensive, thinner and younger sea ice cover is one of the biggest challenges in climate research. Especially the lack of simultaneous in-situ observations of sea ice, ocean and atmospheric properties leads to significant knowledge gaps in their complex interactions, and how the associated processes impact the polar marine ecosystem. Here we present a concept for the implementation of a long-term strategy to monitor the most essential climate- and ecosystem parameters in the central Arctic Ocean, year round and synchronously. The basis of this strategy is the development and enhancement of a number of innovative autonomous observational platforms, such as rugged weather stations, ice mass balance buoys, ice-tethered bio-optical buoys and upper ocean profilers. The deployment of those complementing platforms in a distributed network enables the simultaneous collection of physical and biogeochemical in-situ data on basin scales and year round, including the largely undersampled winter periods. A key advantage over other observatory systems is that the data is sent via satellite in near-real time, contributing to numerical weather predictions through the Global Telecommunication System (GTS) and to the International Arctic Buoy Programme (IABP). The first instruments were installed on ice floes in the Eurasian Basin in spring 2015 and 2016, yielding exceptional records of essential climate- and ecosystem-relevant parameters in one of the most inaccessible regions of this planet. Over the next 4 years, and including the observational periods of the Year of Polar Prediction (YOPP, 2017-2019) and the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC, 2020), the distributed observatory will be maintained by deployment of additional instruments in the central Arctic each year, benefitting from international logistical efforts.

  16. Hydrochemical Atlas of the Arctic Ocean (NODC Accession 0044630)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present Hydrochemical Atlas of the Arctic Ocean is a description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical...

  17. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard.

    Science.gov (United States)

    Strzelecki, M C; Kasprzak, M; Lim, M; Swirad, Z M; Jaskólski, M; Pawłowski, Ł; Modzel, P

    2017-12-31

    This paper presents the results of an investigation into the processes controlling development of a cryo-conditioned rock coast system in Hornsund, Svalbard. A suite of nested geomorphological and geophysical methods have been applied to characterise the functioning of rock cliffs and shore platforms influenced by lithological control and geomorphic processes driven by polar coast environments. Electrical resistivity tomography (ERT) surveys have been used to investigate permafrost control on rock coast dynamics and reveal the strong interaction with marine processes in High Arctic coastal settings. Schmidt hammer rock tests, demonstrated strong spatial control on the degree of rock weathering (rock strength) along High Arctic rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the ice foot through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between the shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). The results are synthesised to propose a new conceptual model of High Arctic rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of polar rock coasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Atmospheric transport of pollution to the Arctic

    International Nuclear Information System (INIS)

    Iversen, T.

    1984-01-01

    If the atmospheric processes are assumed to be nearly adiabatic, the conclusion is that the possible source areas of Arctic air pollution detected at ground level have to be situated in areas with almost the same temperature as observed in the Arctic itself. Sources south of the polar front system can only contribute to high-altitude (or upper level) Arctic pollution. The amplitude and phase of long, planetary waves are important since they determine the position of the polar front, and provide conditions for meridional transport of air at certain longitudes

  19. Complementary biomarker-based methods for characterising Arctic sea ice conditions: A case study comparison between multivariate analysis and the PIP25 index

    Science.gov (United States)

    Köseoğlu, Denizcan; Belt, Simon T.; Smik, Lukas; Yao, Haoyi; Panieri, Giuliana; Knies, Jochen

    2018-02-01

    The discovery of IP25 as a qualitative biomarker proxy for Arctic sea ice and subsequent introduction of the so-called PIP25 index for semi-quantitative descriptions of sea ice conditions has significantly advanced our understanding of long-term paleo Arctic sea ice conditions over the past decade. We investigated the potential for classification tree (CT) models to provide a further approach to paleo Arctic sea ice reconstruction through analysis of a suite of highly branched isoprenoid (HBI) biomarkers in ca. 200 surface sediments from the Barents Sea. Four CT models constructed using different HBI assemblages revealed IP25 and an HBI triene as the most appropriate classifiers of sea ice conditions, achieving a >90% cross-validated classification rate. Additionally, lower model performance for locations in the Marginal Ice Zone (MIZ) highlighted difficulties in characterisation of this climatically-sensitive region. CT model classification and semi-quantitative PIP25-derived estimates of spring sea ice concentration (SpSIC) for four downcore records from the region were consistent, although agreement between proxy and satellite/observational records was weaker for a core from the west Svalbard margin, likely due to the highly variable sea ice conditions. The automatic selection of appropriate biomarkers for description of sea ice conditions, quantitative model assessment, and insensitivity to the c-factor used in the calculation of the PIP25 index are key attributes of the CT approach, and we provide an initial comparative assessment between these potentially complementary methods. The CT model should be capable of generating longer-term temporal shifts in sea ice conditions for the climatically sensitive Barents Sea.

  20. The emergence of modern sea ice cover in the Arctic Ocean.

    Science.gov (United States)

    Knies, Jochen; Cabedo-Sanz, Patricia; Belt, Simon T; Baranwal, Soma; Fietz, Susanne; Rosell-Melé, Antoni

    2014-11-28

    Arctic sea ice coverage is shrinking in response to global climate change and summer ice-free conditions in the Arctic Ocean are predicted by the end of the century. The validity of this prediction could potentially be tested through the reconstruction of the climate of the Pliocene epoch (5.33-2.58 million years ago), an analogue of a future warmer Earth. Here we show that, in the Eurasian sector of the Arctic Ocean, ice-free conditions prevailed in the early Pliocene until sea ice expanded from the central Arctic Ocean for the first time ca. 4 million years ago. Amplified by a rise in topography in several regions of the Arctic and enhanced freshening of the Arctic Ocean, sea ice expanded progressively in response to positive ice-albedo feedback mechanisms. Sea ice reached its modern winter maximum extension for the first time during the culmination of the Northern Hemisphere glaciation, ca. 2.6 million years ago.

  1. Building Resilience and Adaptation to Manage Arctic Change

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, F. Stuart III [Univ. of Alaska, Fairbanks (United States). Inst. of Arctic Biology; Hoel, Michael [Oslo Univ. (Norway). Dept. of Economics; Carpenter, Steven R. [Wisconsin Univ., Madison, WI, (US). Center for Limnology] (and others)

    2006-06-15

    Unprecedented global changes caused by human actions challenge society's ability to sustain the desirable features of our planet. This requires proactive management of change to foster both resilience (sustaining those attributes that are important to society in the face of change) and adaptation (developing new socio- ecological configurations that function effectively under new conditions). The Arctic may be one of the last remaining opportunities to plan for change in a spatially extensive region where many of the ancestral ecological and social processes and feedbacks are still intact. If the feasibility of this strategy can be demonstrated in the Arctic, our improved understanding of the dynamics of change can be applied to regions with greater human modification. Conditions may now be ideal to implement policies to manage Arctic change because recent studies provide the essential scientific understanding, appropriate international institutions are in place, and Arctic nations have the wealth to institute necessary changes, if they choose to do so.

  2. The Arctic Vortex in March 2011: A Dynamical Perspective

    Science.gov (United States)

    Hurwitz, Margaret M.; Newman, Paul A.; Garfinkel,Chaim I.

    2011-01-01

    Despite the record ozone loss observed in March 2011, dynamical conditions in the Arctic stratosphere were unusual but not unprecedented. Weak planetary wave driving in February preceded cold anomalies in t he polar lower stratosphere in March and a relatively late breakup of the Arctic vortex in April. La Nina conditions and the westerly phas e of the quasi-biennial oscillation (QBO) were observed in March 201 1. Though these conditions are generally associated with a stronger vortex in mid-winter, the respective cold anomalies do not persist t hrough March. Therefore, the La Nina and QBO-westerly conditions cannot explain the observed cold anomalies in March 2011. In contrast, po sitive sea surface temperature anomalies in the North Pacific may ha ve contributed to the unusually weak tropospheric wave driving and s trong Arctic vortex in late winter 2011.

  3. Characterization of the cloud conditions at Ny-Ålesund using sensor synergy and representativeness of the observed clouds across Arctic sites

    Science.gov (United States)

    Nomokonova, Tatiana; Ebell, Kerstin; Löhnert, Ulrich; Maturilli, Marion

    2017-04-01

    Clouds are one of the crucial components of the hydrological and energy cycles and thus affecting the global climate. Their special importance in Arctic regions is defined by cloud's influence on the radiation budget. Arctic clouds usually occur at low altitudes and often contain highly concentrated tiny liquid drops. During winter, spring, and autumn periods such clouds tend to conserve the long-wave radiation in the atmosphere and, thus, produce warming of the Arctic climate. In summer though clouds efficiently scatter the solar radiation back to space and, therefore, induce a cooling effect. An accurate characterization of the net effect of clouds on the Arctic climate requires long-term and precise observations. However, only a few measurement sites exist which perform continuous, vertically resolved observations of clouds in the Arctic, e.g. in Alaska, Canada, and Greenland. These sites typically make use of a combination of different ground-based remote sensing instruments, e.g. cloud radar, ceilometer and microwave radiometer in order to characterize clouds. Within the Transregional Collaborative Research Center (TR 172) "Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC)3" comprehensive observations of the atmospheric column are performed at the German-French Research Station AWIPEV at Ny-Ålesund, Svalbard. Ny-Ålesund is located in the warmest part of the Arctic where climate is significantly influenced by adiabatic heating from the warm ocean. Thus, measurements at Ny-Ålesund will complement our understanding of cloud formation and development in the Arctic. This particular study is devoted to the characterization of the cloud macro- and microphysical properties at Ny-Ålesund and of the atmospheric conditions, under which these clouds form and develop. To this end, the information of the various instrumentation at the AWIPEV observatory is synergistically analysed: information about the thermodynamic

  4. 2nd International Arctic Ungulate Conference

    Directory of Open Access Journals (Sweden)

    A. Anonymous

    1996-01-01

    Full Text Available The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. The United States, Canada, and Norway had the largest representation. The conference included invited lectures; panel discussions, and about 125 contributed papers. There were five technical sessions on Physiology and Body Condition; Habitat Relationships; Population Dynamics and Management; Behavior, Genetics and Evolution; and Reindeer and Muskox Husbandry. Three panel sessions discussed Comparative caribou management strategies; Management of introduced, reestablished, and expanding muskox populations; and Health risks in translocation of arctic ungulates. Invited lectures focused on the physiology and population dynamics of arctic ungulates; contaminants in food chains of arctic ungulates and lessons learned from the Chernobyl accident; and ecosystem level relationships of the Porcupine Caribou Herd.

  5. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions

    Energy Technology Data Exchange (ETDEWEB)

    An, Hye Yeon; Kang, Yoon Hee; Kim, Yoo Keun [Pusan National University, Busan (Korea, Republic of); Song, Sang Keun [Jeju National University, Jeju (Korea, Republic of)

    2016-12-15

    This study evaluated the atmospheric dispersion of radioactive material according to local weather conditions and emission conditions. Local weather conditions were defined as 8 patterns that frequently occur around the Kori Nuclear Power Plant and emission conditions were defined as 6 patterns from a combination of emission rates and the total number of particles of the {sup 137}Cs, using the WRF/HYSPLIT modeling system. The highest mean concentration of {sup 137}Cs occurred at 0900 LST under the ME4{sub 1} (main wind direction: SSW, daily average wind speed: 2.8 ms{sup -1}), with a wide region of its high concentration due to the continuous wind changes between 0000 and 0900 LST; under the ME3 (NE, 4.1 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 1500 and 2100 LST with a narrow dispersion along a strong northeasterly wind. In the case of ME4{sub 4} (S, 2.7 ms{sup -1}), the highest mean concentration of {sup 137}Cs occurred at 0300 LST because {sup 137}Cs stayed around the KNPP under low wind speed and low boundary layer height. As for the emission conditions, EM1{sub 3} and EM2{sub 3} that had the maximum total number of particles showed the widest dispersion of {sup 137}Cs, while its highest mean concentration was estimated under the EM1{sub 1} considering the relatively narrow dispersion and high emission rate. This study showed that even though an area may be located within the same radius around the Kori Nuclear Power Plant, the distribution and levels of {sup 137}Cs concentration vary according to the change in time and space of weather conditions (the altitude of the atmospheric boundary layer, the horizontal and vertical distribution of the local winds, and the precipitation levels), the topography of the regions where {sup 137}Cs is dispersed, the emission rate of {sup 137}Cs, and the number of emitted particles.

  6. Arctic research vessel design would expand science prospects

    Science.gov (United States)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  7. Review of technology for Arctic offshore oil and gas recovery. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  8. Does Reality Matter? Social and Science Bases of Public Beliefs about Arctic Change

    Science.gov (United States)

    Walker, D. A.; Schaefer, K. M.; Schaeffer, K. P.; Schaefer, K. M.; Hamilton, L.

    2015-12-01

    Surveys of public perceptions about trends in Arctic sea ice find that over two-thirds are aware of the multi-decade decrease. This awareness differs sharply across ideological and educational subgroups, however. It does not appear to shift in response to scientific and media discussion following a September with unusually low (2012) or somewhat higher (2013) sea ice extent. Other perceptions about Arctic change, such as impacts on mid-latitude weather, follow similar patterns with sharp ideological difference and limited response to external events, including science reports. On the other hand, public accuracy on basic factual questions that do not by themselves imply directional change (such as location of the North Pole) may be very low, and among some subgroups accurate knowledge shows an oddly negative correlation with self-confidence about understanding of climate change. These results from 13 surveys over 2011-2015 suggest that biased assimilation filters the acceptance of information about Arctic change, with implications for science communication.

  9. Offshore Variability in Critical Weather Conditions in Large-Scale Wind Based Danish Power System

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Litong-Palima, Marisciel; Sørensen, Poul Ejnar

    2013-01-01

    of the variability for the 2020 Danish power system, one can see that in the worst case, up to 1500 MW of power can be lost in 30 minutes. We present results showing how this issue is partially solved by the new High Wind Storm Controller presented by Siemens in the TWENTIES project.......Offshore wind power has a significant development potential, especially in North Europe. The geographical concentration of offshore wind power leads to increased variability and in the case of critical weather conditions it may lead to sudden and considerable loss of production. In this context......, the chances of losing several GW of wind power due to critical weather conditions in a very short time period could potentially jeopardize the whole system’s reliability and stability. Forecasting such events is not trivial and the results so far are not encouraging. When assessing the impact...

  10. SAP FLOW RESPONSE OF CHERRY TREES TO WEATHER CONDITION

    Directory of Open Access Journals (Sweden)

    Á. JUHÁSZ

    2011-03-01

    Full Text Available Sap flow response of cherry trees to weather condition. Themain goal of our study is to measure water-demand of cherry trees budded ontodifferent rootstocks by sapflow equipment and to study the sap flow response to themeteorological factors. The investigations are carried out in Soroksár in Hungary at‘Rita’ sweet cherry orchard. The pattern of sapflow was analyzed in relation ofsolar radiation, vapour pressure deficit and air temperature. Between solar radiationand sap flow was found a parabolic relation, daily pattern of sapflow is in closerelation (cubic also to vapour pressure deficit. No significant relationship existedbetween sapflow and air temperature. The sapflow performance of sweet cherrytrees on different rootstocks showed typical daily characters.

  11. Predicting favorable conditions for early leaf spot of peanut using output from the Weather Research and Forecasting (WRF) model

    Science.gov (United States)

    Olatinwo, Rabiu O.; Prabha, Thara V.; Paz, Joel O.; Hoogenboom, Gerrit

    2012-03-01

    Early leaf spot of peanut ( Arachis hypogaea L.), a disease caused by Cercospora arachidicola S. Hori, is responsible for an annual crop loss of several million dollars in the southeastern United States alone. The development of early leaf spot on peanut and subsequent spread of the spores of C. arachidicola relies on favorable weather conditions. Accurate spatio-temporal weather information is crucial for monitoring the progression of favorable conditions and determining the potential threat of the disease. Therefore, the development of a prediction model for mitigating the risk of early leaf spot in peanut production is important. The specific objective of this study was to demonstrate the application of the high-resolution Weather Research and Forecasting (WRF) model for management of early leaf spot in peanut. We coupled high-resolution weather output of the WRF, i.e. relative humidity and temperature, with the Oklahoma peanut leaf spot advisory model in predicting favorable conditions for early leaf spot infection over Georgia in 2007. Results showed a more favorable infection condition in the southeastern coastline of Georgia where the infection threshold were met sooner compared to the southwestern and central part of Georgia where the disease risk was lower. A newly introduced infection threat index indicates that the leaf spot threat threshold was met sooner at Alma, GA, compared to Tifton and Cordele, GA. The short-term prediction of weather parameters and their use in the management of peanut diseases is a viable and promising technique, which could help growers make accurate management decisions, and lower disease impact through optimum timing of fungicide applications.

  12. The Impact of Organo-Mineral Complexation on Mineral Weathering in the Soil Zone under Unsaturated Conditions

    Science.gov (United States)

    Michael, H. A.; Tan, F.; Yoo, K.; Imhoff, P. T.

    2017-12-01

    While organo-mineral complexes can protect organic matter (OM) from biodegradation, their impact on soil mineral weathering is not clear. Previous bench-scale experiments that focused on specific OM and minerals showed that the adsorption of OM to mineral surfaces accelerates the dissolution of some minerals. However, the impact of natural organo-mineral complexes on mineral dissolution under unsaturated conditions is not well known. In this study, soil samples prepared from an undisturbed forest site were used to determine mineral weathering rates under differing conditions of OM sorption to minerals. Two types of soil samples were generated: 1) soil with OM (C horizon soil from 84-100cm depth), and 2) soil without OM (the same soil as in 1) but with OM removed by heating to 350°for 24 h). Soil samples were column-packed and subjected to intermittent infiltration and drainage to mimic natural rainfall events. Each soil sample type was run in duplicate. The unsaturated condition was created by applying gas pressure to the column, and the unsaturated chemical weathering rates during each cycle were calculated from the effluent concentrations. During a single cycle, when applying the same gas pressure, soils with OM retained more moisture than OM-removed media, indicating increased water retention capacity under the impact of OM. This is consistent with the water retention data measured by evaporation experiments (HYPROP) and the dew point method (WP4C Potential Meter). Correspondingly, silicon (Si) denudation rates indicated that dissolution of silicate minerals was 2-4 times higher in OM soils, suggesting that organo-mineral complexes accelerate mineral dissolution under unsaturated conditions. When combining data from all cycles, the results showed that Si denudation rates were positively related to soil water content: denundation rate increased with increasing water content. Therefore, natural mineral chemical weathering under unsaturated conditions, while

  13. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  14. Siberian and North American Biomass Burning Contributions to the Processes that Influenced the 2008 Arctic Aircraft and Satellite Field Campaigns

    Science.gov (United States)

    Soja, A. J.; Stocks, B. J.; Carr, R.; Pierce, R. B.; Natarajan, M.; Fromm, M.

    2009-05-01

    Current climate change scenarios predict increases in biomass burning in terms of increases in fire frequency, area burned, fire season length and fire season severity, particularly in boreal regions. Climate and weather control fire danger, which strongly influences the severity of fire events, and these in turn, feed back to the climate system through direct and indirect emissions, modifying cloud condensation nuclei and altering albedo (affecting the energy balance) through vegetative land cover change and deposition. Additionally, fire emissions adversely influence air quality and human health downwind of burning. The boreal zone is significant because this region stores the largest reservoir of terrestrial carbon, globally, and will experience climate change impacts earliest. Boreal biomass burning is an integral component to several of the primary goals of the ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) and ARCPAC (Aerosol, Radiation, and Cloud Processes affecting Arctic Climate) 2008 field campaigns, which include its implication for atmospheric composition and climate, aerosol radiative forcing, and chemical processes with a focus on ozone and aerosols. Both the spring and summer phases of ARCTAS and ARCPAC offered substantial opportunities for sampling fresh and aged biomass burning emissions. However, the extent to which spring biomass burning influenced arctic haze was unexpected, which could inform our knowledge of the formation of arctic haze and the early deposition of black carbon on the icy arctic surface. There is already evidence of increased extreme fire seasons that correlate with warming across the circumboreal zone. In this presentation, we discuss seasonal and annual fire activity and anomalies that relate to the ARCTAS and ARCPAC spring (April 1 - 20) and summer (June 18 - July 13) periods across Siberia and North America, with particular emphasis on fire danger and fire behavior as they relate

  15. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  16. Driving Roles of Tropospheric and Stratospheric Thermal Anomalies in Intensification and Persistence of the Arctic Superstorm in 2012

    Science.gov (United States)

    Tao, Wei; Zhang, Jing; Fu, Yunfei; Zhang, Xiangdong

    2017-10-01

    Intense synoptic-scale storms have been more frequently observed over the Arctic during recent years. Specifically, a superstorm hit the Arctic Ocean in August 2012 and preceded a new record low Arctic sea ice extent. In this study, the major physical processes responsible for the storm's intensification and persistence are explored through a series of numerical modeling experiments with the Weather Research and Forecasting model. It is found that thermal anomalies in troposphere as well as lower stratosphere jointly lead to the development of this superstorm. Thermal contrast between the unusually warm Siberia and the relatively cold Arctic Ocean results in strong troposphere baroclinicity and upper level jet, which contribute to the storm intensification initially. On the other hand, Tropopause Polar Vortex (TPV) associated with the thermal anomaly in lower stratosphere further intensifies the upper level jet and accordingly contributes to a drastic intensification of the storm. Stacking with the enhanced surface low, TPV intensifies further, which sustains the storm to linger over the Arctic Ocean for an extended period.

  17. ARCTIC, SOME OF THE PROBLEMS OF INTENSIVE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    V. Sutyagin

    2015-01-01

    Full Text Available The intensive development of the Russian Arctic (CBA provided a signifi cant amount of administrative territories, has a unique mineral resources, implemented in a complex international environment. The intersection points of mutual economic and political interests of the founding members of the Arctic Council as a whole complicate the development of the international development of the Arctic zone (AZ. The complex political, economic and climatic conditions of the development of the CBA defi ne the need for a systematic management approach.

  18. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    Science.gov (United States)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  19. Synoptic weather types associated with critical fire weather

    Science.gov (United States)

    Mark J. Schroeder; Monte Glovinsky; Virgil F. Hendricks; Frank C. Hood; Melvin K. Hull; Henry L. Jacobson; Robert Kirkpatrick; Daniel W. Krueger; Lester P. Mallory; Albert G. Oeztel; Robert H. Reese; Leo A. Sergius; Charles E. Syverson

    1964-01-01

    Recognizing that weather is an important factor in the spread of both urban and wildland fires, a study was made of the synoptic weather patterns and types which produce strong winds, low relative humidities, high temperatures, and lack of rainfall--the conditions conducive to rapid fire spread. Such historic fires as the San Francisco fire of 1906, the Berkeley fire...

  20. Association of climatic factors with infectious diseases in the Arctic and subarctic region--a systematic review.

    Science.gov (United States)

    Hedlund, Christina; Blomstedt, Yulia; Schumann, Barbara

    2014-01-01

    The Arctic and subarctic area are likely to be highly affected by climate change, with possible impacts on human health due to effects on food security and infectious diseases. To investigate the evidence for an association between climatic factors and infectious diseases, and to identify the most climate-sensitive diseases and vulnerable populations in the Arctic and subarctic region. A systematic review was conducted. A search was made in PubMed, with the last update in May 2013. Inclusion criteria included human cases of infectious disease as outcome, climate or weather factor as exposure, and Arctic or subarctic areas as study origin. Narrative reviews, case reports, and projection studies were excluded. Abstracts and selected full texts were read and evaluated by two independent readers. A data collection sheet and an adjusted version of the SIGN methodology checklist were used to assess the quality grade of each article. In total, 1953 abstracts were initially found, of which finally 29 articles were included. Almost half of the studies were carried out in Canada (n=14), the rest from Sweden (n=6), Finland (n=4), Norway (n=2), Russia (n=2), and Alaska, US (n=1). Articles were analyzed by disease group: food- and waterborne diseases, vector-borne diseases, airborne viral- and airborne bacterial diseases. Strong evidence was found in our review for an association between climatic factors and food- and waterborne diseases. The scientific evidence for a link between climate and specific vector- and rodent-borne diseases was weak due to that only a few diseases being addressed in more than one publication, although several articles were of very high quality. Air temperature and humidity seem to be important climatic factors to investigate further for viral- and bacterial airborne diseases, but from our results no conclusion about a causal relationship could be drawn. More studies of high quality are needed to investigate the adverse health impacts of weather and

  1. The greenhouse effect and the Arctic ice

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2002-01-01

    The impact on the Arctic ice of global warming is important for many people and for the environment. Less ice means changed conditions for the Inuits, hard times for the polar bears and changed conditions for the fishing sector. There is at present some uncertainty about the thickness of the ice and what might be the cause of its oscillation. It was reported a few years ago that the thickness of the ice had almost been reduced by 50 per cent since the 1950s and some researchers suggested that within a few decades the ice would disappear during the summer. These measurements have turned out not to be representative for the whole Arctic region, and it now appears that a great deal of the measured thickness variation can be attributed to changes in the atmospheric circulation. The article discusses the Arctic Oscillation and the North Atlantic Oscillation in relation to the ice thickness, and climate models. Feedback mechanisms such as reduced albedo may have a big impact in the Arctic in a global greenhouse warming. Model simulations are at variance, and the scenarios for the future are uncertain

  2. Resilience, human agency and climate change adaptation strategies in the Arctic

    DEFF Research Database (Denmark)

    Sejersen, Frank

    2009-01-01

    and work with a number of barriers for resilience. The objective of the article is first to address the position of institutional barriers in the studies and strategies. Second the article analyses the role human agency is ascribed in proposed strategies and projects in Nunavut and Greenland. With a focus......  In the Arctic, indigenous peoples, researchers and governments are working to develop climate change adaptation strategies due to the rapid changes in sea ice extent, weather conditions and in the ecosystem as such. These strategies are often based on specific perceptions of vulnerability...... on institutions and human agency the question is not only ‘how do people manage to adapt?' but moreover ‘what constrains people in pursuing a given adaptation strategy?' The article introduces the concept of double agency which stresses two different aspects of human agency that can be used to understand...

  3. Adverse Weather Evokes Nostalgia.

    Science.gov (United States)

    van Tilburg, Wijnand A P; Sedikides, Constantine; Wildschut, Tim

    2018-03-01

    Four studies examined the link between adverse weather and the palliative role of nostalgia. We proposed and tested that (a) adverse weather evokes nostalgia (Hypothesis 1); (b) adverse weather causes distress, which predicts elevated nostalgia (Hypothesis 2); (c) preventing nostalgia exacerbates weather-induced distress (Hypothesis 3); and (d) weather-evoked nostalgia confers psychological benefits (Hypothesis 4). In Study 1, participants listened to recordings of wind, thunder, rain, and neutral sounds. Adverse weather evoked nostalgia. In Study 2, participants kept a 10-day diary recording weather conditions, distress, and nostalgia. We also obtained meteorological data. Adverse weather perceptions were positively correlated with distress, which predicted higher nostalgia. Also, adverse natural weather was associated with corresponding weather perceptions, which predicted elevated nostalgia. (Results were mixed for rain.) In Study 3, preventing nostalgia (via cognitive load) increased weather-evoked distress. In Study 4, weather-evoked nostalgia was positively associated with psychological benefits. The findings pioneer the relevance of nostalgia as source of comfort in adverse weather.

  4. Sustainable resilience in property maintenance: encountering changing weather conditions

    DEFF Research Database (Denmark)

    Cox, Rimante Andrasiunaite; Nielsen, Susanne Balslev

    2014-01-01

    Purpose: The purpose of the study is to develop a methodological approach for project management to integrate sustainability and resilience planning in property maintenance as an incremental strategy for upgrading existing properties to meet new standards for sustainable and climate resilient...... buildings. Background: Current maintenance practice is focused on the technical standard of buildings, with little consideration of sustainability and resilience. There is a need to develop tools for incorporating sustainable resilience into maintenance planning. Approach: The study is primarily theoretical......, developing the concept of sustainable resilience for changing weather conditions Results: The paper suggests a decision support methodology that quantifies sustainable resilience for the analytical stages of property maintenance planning. Practical Implications: The methodology is generic and expected users...

  5. Radioactivity in the Arctic Seas. Report for the International Arctic Seas Assessment Project (IASAP)

    International Nuclear Information System (INIS)

    1999-04-01

    This report provides comprehensive information on environmental conditions in the Arctic Seas as required for the study of possible radiological consequences from dumped high level radioactive wastes in the Kara Sea. The report describes the oceanography of the regions, with emphasis on the Kara and Barents Seas, including the East Novaya Zemlya Fjords. The ecological description concentrates on biological production, marine food-weds and fisheries in the Arctic Seas. The report presents data on radionuclide concentrations in the Kara and Barents Seas and uses these data to estimate the inventories of radionuclides currently in the marine environment of the Kara and Barents Seas

  6. Space Weather Services of Korea

    Science.gov (United States)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  7. Study on weathering index for improving the reliability of terrace correlation and chronology. Part 2. Understanding weathering condition of terrace gravel and induction of application requirement for correlation index

    International Nuclear Information System (INIS)

    Hamada, Takaomi

    2012-01-01

    Geomorphographic survey of fluvial terraces, geological exploration, borehole drilling and investigation, and analysis of weathering condition of terrace gravels were carried out in Chuetsu area, Niigata prefecture, where a great deal of geomorphostratigraphic and tephrostratigraphic data are available. The results of these surveys and investigations indicate that weathering degree of terrace gravels can be considered as an index of the terrace age, and also provide points to remember for sampling and method of sampling and observation. The effective porosity and the thickness of weathering rind of gravels, which are indexes for weathering degree evaluation, in boring core, increase above the depth of about 5m from the top of the hole. Weathering doesn't reach the deep portion, therefore, investigation and evaluation for the weathering degree of terrace gravels must be carried out on the upper portion. Weathering rind thickness and effective porosity of the gravels are dispersive. Dispersion of the weathering rind thickness can be reduced by confining to andesite, and dispersion of the effective porosity can be reduced by limiting range of gravel size. Reducing dispersion, increase trend with age becomes clear in change of the weathering rind thickness and the effective porosity in many of the studied area. It shows that weathering rind thickness and effective porosity are effective for terrace correlation. Dispersion of data in an outcrop isn't small, but data from neighboring terraces with the same age are not different each other. It indicates that weathering rind thickness and effective porosity can be quantitative indexes for terrace age evaluation. In area where weathering rind is effective for terrace correlation, the rate of the weathering rind formation of andesite gravels is about 0.04mm/1000 years. Therefore, MIS6 terraces and MIS8 terraces can be distinguished each other by means of thickness of the weathering rind. This formation rate falls inside the

  8. Municipalities' Preparedness for Weather Hazards and Response to Weather Warnings.

    Science.gov (United States)

    Mehiriz, Kaddour; Gosselin, Pierre

    2016-01-01

    The study of the management of weather-related disaster risks by municipalities has attracted little attention even though these organizations play a key role in protecting the population from extreme meteorological conditions. This article contributes to filling this gap with new evidence on the level and determinants of Quebec municipalities' preparedness for weather hazards and response to related weather warnings. Using survey data from municipal emergency management coordinators and secondary data on the financial and demographic characteristics of municipalities, the study shows that most Quebec municipalities are sufficiently prepared for weather hazards and undertake measures to protect the population when informed of imminent extreme weather events. Significant differences between municipalities were noted though. Specifically, the level of preparedness was positively correlated with the municipalities' capacity and population support for weather-related disaster management policies. In addition, the risk of weather-related disasters increases the preparedness level through its effect on population support. We also found that the response to weather warnings depended on the risk of weather-related disasters, the preparedness level and the quality of weather warnings. These results highlight areas for improvement in the context of increasing frequency and/or severity of such events with current climate change.

  9. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variations

    NARCIS (Netherlands)

    Tulp, I.; Schekkerman, H.

    2008-01-01

    Of all climatic zones on earth, Arctic areas have experienced the greatest climate change in recent decades. Predicted changes, including a continuing rise in temperature and precipitation and a reduction in snow cover, are expected to have a large impact on Arctic life. Large numbers of birds breed

  10. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra Arthropods using weather and seasonal variation

    NARCIS (Netherlands)

    Tulp, I.Y.M.; Schekkerman, H.

    2008-01-01

    Of all climatic zones on earth, Arctic areas have experienced the greatest climate change in recent decades. Predicted changes, including a continuing rise in temperature and precipitation and a reduction in snow cover, are expected to have a large impact on Arctic life. Large numbers of birds breed

  11. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds

    Science.gov (United States)

    Weiser, Emily L.; Lanctot, Richard B.; Brown, Stephen C.; Gates, H. River; Bentzen, Rebecca L.; Bêty, Joël; Boldenow, Megan L.; English, Willow B.; Franks, Samantha E.; Koloski, Laura; Kwon, Eunbi; Lamarre, Jean-Francois; Lank, David B.; Liebezeit, Joseph R.; McKinnon, Laura; Nol, Erica; Rausch, Jennie; Saalfeld, Sarah T.; Senner, Nathan R.; Ward, David H.; Woodard, Paul F.; Sandercock, Brett K.

    2018-01-01

    Many Arctic shorebird populations are declining, and quantifying adult survival and the effects of anthropogenic factors is a crucial step toward a better understanding of population dynamics. We used a recently developed, spatially explicit Cormack–Jolly–Seber model in a Bayesian framework to obtain broad-scale estimates of true annual survival rates for 6 species of shorebirds at 9 breeding sites across the North American Arctic in 2010–2014. We tested for effects of environmental and ecological variables, study site, nest fate, and sex on annual survival rates of each species in the spatially explicit framework, which allowed us to distinguish between effects of variables on site fidelity versus true survival. Our spatially explicit analysis produced estimates of true survival rates that were substantially higher than previously published estimates of apparent survival for most species, ranging from S = 0.72 to 0.98 across 5 species. However, survival was lower for the arcticolasubspecies of Dunlin (Calidris alpina arcticola; S = 0.54), our only study taxon that migrates through the East Asian–Australasian Flyway. Like other species that use that flyway, arcticola Dunlin could be experiencing unsustainably low survival rates as a result of loss of migratory stopover habitat. Survival rates of our study species were not affected by timing of snowmelt or summer temperature, and only 2 species showed minor variation among study sites. Furthermore, although previous reproductive success, predator abundance, and the availability of alternative prey each affected survival of one species, no factors broadly affected survival across species. Overall, our findings of few effects of environmental or ecological variables suggest that annual survival rates of adult shorebirds are generally robust to conditions at Arctic breeding sites. Instead, conditions at migratory stopovers or overwintering sites might be driving adult survival rates and should be the

  12. Modeling of light absorbing particles in atmosphere, snow and ice in the Arctic

    Science.gov (United States)

    Sobhani, N.; Kulkarni, S.; Carmichael, G. R.

    2015-12-01

    Long-range transport of atmospheric particles from mid-latitude sources to the Arctic is the main contributor to the Arctic aerosol loadings and deposition. Black Carbon (BC), Brown Carbon (BrC) and dust are considered of great climatic importance and are the main absorbers of sunlight in the atmosphere. Furthermore, wet and dry deposition of light absorbing particles (LAPs) on snow and ice cause reduction of snow and ice albedo. LAPs have significant radiative forcing and effect on snow albedo. There are high uncertainties in estimating radiative forcing of LAPs. We studied the potential effect of LAPs from different emission source regions and sectors on snow albedo in the Arctic. The transport pathway of LAPs to the Arctic is studies for different high pollution episodes. In this study a modeling framework including Weather Research and Forecasting Model (WRF) and the University of Iowa's Sulfur Transport and dEpostion model(STEM) is used to predict the transport of LAPs from different geographical sources and sectors (i.e. transportation, residential, industry, biomass burning and power) to the Arctic. For assessing the effect of LAP deposition on snow single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online) model was used to derive snow albedo values for snow albedo reduction causes by BC deposition. To evaluate the simulated values we compared the BC concentration in snow with observed values from previous studies including Doherty et al. 2010.

  13. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    Science.gov (United States)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  14. Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Directory of Open Access Journals (Sweden)

    Anderson Hugh

    2007-04-01

    Full Text Available Abstract Background The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies. Methods The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered. Results Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6th 2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology. Conclusion The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.

  15. Climate and man in the Arctic

    International Nuclear Information System (INIS)

    1997-01-01

    The ever-changing climate shapes the Arctic landscape, influences life conditions for plants and animals and alters the availability of the living resources that play such and important part in the economy of Arctic peoples. It is essential that we try to understand the nature of climatic change and its effects on man and his environment. Only this way can we hope to be able to predict future changes that may have great consequences for the well-being of northern residents. In recent years many research projects have been addressing the subject and important advances have been made. At the same time it has become increasingly evident that the complexity of the whole issue calls for an integration of scientific approaches and for interdisciplinary collaboration. The seminar 'Climate and Man in the Arctic' provided an opportunity both to highlight important areas of climate related research and to discuss more general aspects of arctic research. Eight papers presented at the seminar are published in this volume. (au) 22 refs

  16. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  17. Wireless sensor network for monitoring soil moisture and weather conditions

    Science.gov (United States)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  18. Survival of ship biofouling assemblages during and after voyages to the Canadian Arctic.

    Science.gov (United States)

    Chan, Farrah T; MacIsaac, Hugh J; Bailey, Sarah A

    2016-01-01

    Human-mediated vectors often inadvertently translocate species assemblages to new environments. Examining the dynamics of entrained species assemblages during transport can provide insights into the introduction risk associated with these vectors. Ship biofouling is a major transport vector of nonindigenous species in coastal ecosystems globally, yet its magnitude in the Arctic is poorly understood. To determine whether biofouling organisms on ships can survive passages in Arctic waters, we examined how biofouling assemblage structure changed before, during, and after eight round-trip military voyages from temperate to Arctic ports in Canada. Species richness first decreased (~70% loss) and then recovered (~27% loss compared to the original assemblages), as ships travelled to and from the Arctic, respectively, whereas total abundance typically declined over time (~55% total loss). Biofouling community structure differed significantly before and during Arctic transits as well as between those sampled during and after voyages. Assemblage structure varied across different parts of the hull; however, temporal changes were independent of hull location, suggesting that niche areas did not provide protection for biofouling organisms against adverse conditions in the Arctic. Biofouling algae appear to be more tolerant of transport conditions during Arctic voyages than are mobile, sessile, and sedentary invertebrates. Our results suggest that biofouling assemblages on ships generally have poor survivorship during Arctic voyages. Nonetheless, some potential for transporting nonindigenous species to the Arctic via ship biofouling remains, as at least six taxa new to the Canadian Arctic, including a nonindigenous cirripede, appeared to have survived transits from temperate to Arctic ports.

  19. Depositional History of the Western Amundsen Basin, Arctic Ocean, and Implications for Neogene Climate and Oceanographic Conditions

    Science.gov (United States)

    Hopper, J. R.; Castro, C. F.; Knutz, P. C.; Funck, T.

    2017-12-01

    Seismic reflection data collected in the western Amundsen Basin as part of the Law of the Sea program for the Kingdom of Denmark show a uniform and continuous cover of sediments over oceanic basement. An interpretation of seismic facies units shows that the depositional history of the basin reflects changing tectonic, climatic, and oceanographic conditions throughout the Cenozoic. In this contribution, the Miocene to present history is summarized. Two distinct changes in the depositional environment are proposed, first in response to the development of a deep water connection between the Arctic and North Atlantic, and the second in response to the onset of perennial sea ice cover in the Arctic. In the early to mid-Miocene, a buildup of contourite deposits indicates a distinct change in sedimentation that is particularly well developed near the flank of the Lomonosov Ridge. It is suggested that this is a response to the opening of the Fram Strait and the establishment of geostrophic bottom currents that flowed from the Laptev Sea towards Greenland. These deposits are overlain by a seismic facies unit characterized by buried channels and erosional features. These include prominent basinward levee systems that suggest a channel morphology maintained by overbank deposition of muddy sediments carried by suspension currents periodically spilling over the channel pathway. These deposits indicate a change to a much higher energy environment that is proposed to be a response to brine formation associated with the onset of perennial sea ice cover in the Arctic Ocean. This interpretation implies that the development of extensive sea ice cover results in a significant change in the energy environment of the ocean that is reflected in the depositional and erosional patterns observed. The lack of similar high energy erosional features and the presence of contourite deposits throughout most of the Miocene may indicate the Arctic Ocean was relatively ice-free until the very latest

  20. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  1. Does a Relationship Between Arctic Low Clouds and Sea Ice Matter?

    Science.gov (United States)

    Taylor, Patrick C.

    2016-01-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these elements of the Arctic climate system, and these interactions create the potential for Arctic cloud-climate feedbacks. To further our understanding of potential Arctic cloudclimate feedbacks, the goal of this paper is to quantify the influence of atmospheric state on the surface cloud radiative effect (CRE) and its covariation with sea ice concentration (SIC). We build on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, there is a weak covariation between CRE and SIC for most atmospheric conditions. Third, the results show statistically significant differences in the average surface CRE under different SIC values in fall indicating a 3-5 W m(exp -2) larger LW CRE in 0% versus 100% SIC footprints. Because systematic changes on the order of 1 W m(exp -2) are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback, under certain meteorological conditions, that could delay the fall freeze-up and influence the variability in sea ice extent and volume. Lastly, a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  2. Weather forecast

    CERN Document Server

    Courtier, P

    1994-02-07

    Weather prediction is performed using the numerical model of the atmosphere evolution.The evolution equations are derived from the Navier Stokes equation for the adiabatic part but the are very much complicated by the change of phase of water, the radiation porocess and the boundary layer.The technique used operationally is described. Weather prediction is an initial value problem and accurate initial conditions need to be specified. Due to the small number of observations available (105 ) as compared to the dimension of the model state variable (107),the problem is largely underdetermined. Techniques of optimal control and inverse problems are used and have been adapted to the large dimension of our problem. our problem.The at mosphere is a chaotic system; the implication for weather prediction is discussed. Ensemble prediction is used operationally and the technique for generating initial conditions which lead to a numerical divergence of the subsequent forecasts is described.

  3. The variability and controls of rock strength along rocky coasts of central Spitsbergen, High Arctic

    Science.gov (United States)

    Strzelecki, Mateusz Czesław

    2017-09-01

    This paper presents the results of the Schmidt Hammer Rock Tests (SHRTs) across a range of rocky coastal landforms. Northern Billefjorden (central Spitsbergen), represents typical High Arctic microtidal fjord environment. Sheltered location and prolonged sea-ice conditions limit wave action. Coastal cliffs, shore platforms and skerries are developed in various rock types including limestone, sandstone, anhydrite/gypsum, dolomite and metamorphic outcrops. SHRT demonstrated a broad variety of relationships between rock strength and distance from shoreline, presence of sediment cover, distribution of snow patches and icefoot, and accumulations of seaweed and driftwood. In general, rock cliff surfaces were the most resistant in their lower and middle zones, that are thermally insulated by thick winter snowdrifts. More exposed cliff tops were fractured and weathered. The differences in rock strength observed along the shore platforms were highly dependent on thickness of sediment cover and shoreline configuration promoting stronger rock surfaces in areas exposed to the longest wave fetch and washed from gravel deposits. Rock strength of skerry islands is influenced by tidal action controlling the duration of tide inundation and movement of sea-ice scratching boulder surfaces. The results presented in this paper emphasize the richness of rock coast geomorphology and processes operating in High Arctic settings.

  4. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand...... and influence policies relating to the Arctic. But each country’s approach is quite different, writes Aki Tonami....

  5. Weather and emotional state

    Science.gov (United States)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions

  6. Periodic variations of atmospheric electric field on fair weather conditions at YBJ, Tibet

    Science.gov (United States)

    Xu, Bin; Zou, Dan; Chen, Ben Yuan; Zhang, Jin Ye; Xu, Guo Wang

    2013-05-01

    Observations of atmospheric electric field on fair weather conditions from the plateau station, YBJ, Tibet (90°31‧50″ E, 30°06‧38″ N), over the period from 2006 to 2011, are presented in this work. Its periodic modulations are analyzed in frequency-domain by Lomb-Scargle Periodogram method and in time-domain by folding method. The results show that the fair weather atmospheric electric field intensity is modulated weakly by annual cycle, solar diurnal cycle and its several harmonic components. The modulating amplitude of annual cycle is bigger than that of solar diurnal cycle. The annual minimum/maximum nearly coincides with spring/autumn equinox. The detailed spectrum analysis show that the secondary peaks (i.e. sidereal diurnal cycle and semi-sidereal diurnal cycle) nearly disappear along with their primary peaks when the primary signals are subtracted from electric field data sequence. The average daily variation curve exhibits dual-fluctuations, and has obviously seasonal dependence. The mean value is bigger in summer and autumn, but smaller in spring and winter. The daytime fluctuation is affected by the sunrise and sunset effect, the occurring time of which have a little shift with seasons. However, the nightly one has a great dependence on season conditions.

  7. Arctic climate change in an ensemble of regional CORDEX simulations

    Directory of Open Access Journals (Sweden)

    Torben Koenigk

    2015-03-01

    Full Text Available Fifth phase Climate Model Intercomparison Project historical and scenario simulations from four global climate models (GCMs using the Representative Concentration Pathways greenhouse gas concentration trajectories RCP4.5 and RCP8.5 are downscaled over the Arctic with the regional Rossby Centre Atmosphere model (RCA. The regional model simulations largely reflect the circulation bias patterns of the driving global models in the historical period, indicating the importance of lateral and lower boundary conditions. However, local differences occur as a reduced winter 2-m air temperature bias over the Arctic Ocean and increased cold biases over land areas in RCA. The projected changes are dominated by a strong warming in the Arctic, exceeding 15°K in autumn and winter over the Arctic Ocean in RCP8.5, strongly increased precipitation and reduced sea-level pressure. Near-surface temperature and precipitation are linearly related in the Arctic. The wintertime inversion strength is reduced, leading to a less stable stratification of the Arctic atmosphere. The diurnal temperature range is reduced in all seasons. The large-scale change patterns are dominated by the surface and lateral boundary conditions so future response is similar in RCA and the driving global models. However, the warming over the Arctic Ocean is smaller in RCA; the warming over land is larger in winter and spring but smaller in summer. The future response of winter cloud cover is opposite in RCA and the GCMs. Precipitation changes in RCA are much larger during summer than in the global models and more small-scale change patterns occur.

  8. Modelling the perception of weather conditions by users of outdoor public spaces

    Science.gov (United States)

    Andrade, H.; Oliveira, S.; Alcoforado, M.-J.

    2009-09-01

    Outdoor public spaces play an important role for the quality of life in urban areas. Their usage depends, among other factors, on the bioclimatic comfort of the users. Climate change can modify the uses of outdoor spaces, by changing temperature and rainfall patterns. Understanding the way people perceive the microclimatic conditions is an important tool to the design of more comfortable outdoor spaces and in anticipating future needs to cope with climate change impacts. The perception of bioclimatic comfort by users of two different outdoor spaces was studied in Lisbon. A survey of about one thousand inquires was carried out simultaneously with weather measurements (air temperature, wind speed, relative humidity and solar and long wave radiation), during the years 2006 and 2007. The aim was to assess the relationships between weather variables, the individual characteristics of people (such as age and gender, among others) and their bioclimatic comfort. The perception of comfort was evaluated through the preference votes of the interviewees, which consisted on their answers concerning the desire to decrease, maintain or increase the values of the different weather parameters, in order to improve their comfort at the moment of the interview. The perception of the atmospheric conditions and of the bioclimatic comfort are highly influenced by subjective factors, which are difficult to integrate in a model. Nonetheless, the use of the multiple logistic regression allows the definition of patterns in the quantitative relation between preference votes and environmental and personal parameters. The thermal preference depends largely on the season and is associated with wind speed. Comfort in relation to wind depends not only on the speed but also on turbulence: a high variability in wind speed is generally perceived as uncomfortable. It was also found that the acceptability of warmer conditions is higher than for cooler conditions and the majority of people declared

  9. Computational problems in Arctic Research

    International Nuclear Information System (INIS)

    Petrov, I

    2016-01-01

    This article is to inform about main problems in the area of Arctic shelf seismic prospecting and exploitation of the Northern Sea Route: simulation of the interaction of different ice formations (icebergs, hummocks, and drifting ice floes) with fixed ice-resistant platforms; simulation of the interaction of icebreakers and ice- class vessels with ice formations; modeling of the impact of the ice formations on the underground pipelines; neutralization of damage for fixed and mobile offshore industrial structures from ice formations; calculation of the strength of the ground pipelines; transportation of hydrocarbons by pipeline; the problem of migration of large ice formations; modeling of the formation of ice hummocks on ice-resistant stationary platform; calculation the stability of fixed platforms; calculation dynamic processes in the water and air of the Arctic with the processing of data and its use to predict the dynamics of ice conditions; simulation of the formation of large icebergs, hummocks, large ice platforms; calculation of ridging in the dynamics of sea ice; direct and inverse problems of seismic prospecting in the Arctic; direct and inverse problems of electromagnetic prospecting of the Arctic. All these problems could be solved by up-to-date numerical methods, for example, using grid-characteristic method. (paper)

  10. Adjustment of corn nitrogen in-season fertilization based on soil texture and weather conditions: a Meta-analysis of North American trials

    Science.gov (United States)

    Soil properties and weather conditions are known to affect soil nitrogen (N) availability and plant N uptake. However, studies examining N response as affected by soil and weather sometimes give conflicting results. Meta-analysis is a statistical method for estimating treatment effects in a series o...

  11. Can the Weather Affect My Child's Asthma?

    Science.gov (United States)

    ... English Español Can the Weather Affect My Child's Asthma? KidsHealth / For Parents / Can the Weather Affect My ... Asthma? Print Can the Weather Affect My Child's Asthma? Yes. Weather conditions can bring on asthma symptoms. ...

  12. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  13. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  14. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes

    OpenAIRE

    Kumar, Vikas; Kutschera, Verena E.; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    Background The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated...

  15. Persistent maritime traffic monitoring for the Canadian Arctic

    Science.gov (United States)

    Ulmke, M.; Battistello, G.; Biermann, J.; Mohrdieck, C.; Pelot, R.; Koch, W.

    2017-05-01

    This paper presents results of the Canadian-German research project PASSAGES (Protection and Advanced Surveillance System for the Arctic: Green, Efficient, Secure)1 on an advanced surveillance system for safety and security of maritime operations in Arctic areas. The motivation for a surveillance system of the Northwest Passage is the projected growth of maritime traffic along Arctic sea routes and the need for securing Canada's sovereignty by controlling its arctic waters as well as for protecting the safety of international shipping and the intactness of the arctic marine environment. To ensure border security and to detect and prevent illegal activities it is necessary to develop a system for surveillance and reconnaissance that brings together all related means, assets, organizations, processes and structures to build one homogeneous and integrated system. The harsh arctic conditions require a new surveillance concept that fuses heterogeneous sensor data, contextual information, and available pre-processed surveillance data and combines all components to efficiently extract and provide the maximum available amount of information. The fusion of all these heterogeneous data and information will provide improved and comprehensive situation awareness for risk assessment and decision support of different stakeholder groups as governmental authorities, commercial users and Northern communities.

  16. Insurance against weather risk : use of heating degree-days from non-local stations for weather derivatives

    NARCIS (Netherlands)

    Asseldonk, van M.A.P.M.

    2003-01-01

    Weather derivatives enable policy-holders to safeguard themselves against extreme weather conditions. The effectiveness and the efficiency of the risk transfer is determined by the spatial risk basis, which is the stochastic dependency of the local weather outcome being insured and the outcome of

  17. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  18. Differences in the importance of weather and weather-based decisions among campers in Ontario parks (Canada)

    Science.gov (United States)

    Hewer, Micah J.; Scott, Daniel J.; Gough, William A.

    2017-10-01

    Parks and protected areas represent an important resource for tourism in Canada, in which camping is a common recreational activity. The important relationship between weather and climate with recreation and tourism has been widely acknowledged within the academic literature. Howbeit, the need for activity-specific assessments has been identified as an on-going need for future research in the field of tourism climatology. Furthermore, very little is known about the interrelationships between personal characteristics and socio-demographics with weather preferences and behavioural thresholds. This study uses a stated climate preferences approach (survey responses) to explore differences in the importance of weather and related weather-based decisions among summer campers in Ontario parks. Statistically significant differences were found among campers for each of the four dependent variables tested in this study. Physically active campers placed greater importance on weather but were still more tolerant of adverse weather conditions. Older campers placed greater importance on weather. Campers travelling shorter distances placed greater importance on weather and were more likely to leave the park early due to adverse weather. Campers staying for longer periods of time were less likely to leave early due to weather and were willing to endure longer durations of adverse weather conditions. Beginner campers placed greater importance on weather, were more likely to leave early due to weather and recorded lower temporal weather thresholds. The results of this study contribute to the study of tourism climatology by furthering understanding of how personal characteristics such as gender, age, activity selection, trip duration, distance travelled, travel experience and life cycles affect weather preferences and decisions, focusing this time on recreational camping in a park tourism context.

  19. The Arctic Turn

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2018-01-01

    In October 2006, representatives of the Arctic governments met in Salekhard in northern Siberia for the biennial Arctic Council ministerial meeting to discuss how the council could combat regional climate change, among other issues. While most capitals were represented by their foreign minister......, a few states – Canada, Denmark, and the United States – sent other representatives. There was nothing unusual about the absence of Per Stig Møller, the Danish foreign minister – a Danish foreign minister had only once attended an Arctic Council ministerial meeting (Arctic Council 2016). Møller......’s nonappearance did, however, betray the low status that Arctic affairs had in the halls of government in Copenhagen. Since the end of the Cold War, where Greenland had helped tie Denmark and the US closer together due to its geostrategically important position between North America and the Soviet Union, Arctic...

  20. Evaluation of operational numerical weather predictions in relation to the prevailing synoptic conditions

    Science.gov (United States)

    Pytharoulis, Ioannis; Tegoulias, Ioannis; Karacostas, Theodore; Kotsopoulos, Stylianos; Kartsios, Stergios; Bampzelis, Dimitrios

    2015-04-01

    The Thessaly plain, which is located in central Greece, has a vital role in the financial life of the country, because of its significant agricultural production. The aim of DAPHNE project (http://www.daphne-meteo.gr) is to tackle the problem of drought in this area by means of Weather Modification in convective clouds. This problem is reinforced by the increase of population and the water demand for irrigation, especially during the warm period of the year. The nonhydrostatic Weather Research and Forecasting model (WRF), is utilized for research and operational purposes of DAPHNE project. The WRF output fields are employed by the partners in order to provide high-resolution meteorological guidance and plan the project's operations. The model domains cover: i) Europe, the Mediterranean sea and northern Africa, ii) Greece and iii) the wider region of Thessaly (at selected periods), at horizontal grid-spacings of 15km, 5km and 1km, respectively, using 2-way telescoping nesting. The aim of this research work is to investigate the model performance in relation to the prevailing upper-air synoptic circulation. The statistical evaluation of the high-resolution operational forecasts of near-surface and upper air fields is performed at a selected period of the operational phase of the project using surface observations, gridded fields and weather radar data. The verification is based on gridded, point and object oriented techniques. The 10 upper-air circulation types, which describe the prevailing conditions over Greece, are employed in the synoptic classification. This methodology allows the identification of model errors that occur and/or are maximized at specific synoptic conditions and may otherwise be obscured in aggregate statistics. Preliminary analysis indicates that the largest errors are associated with cyclonic conditions. Acknowledgments This research work of Daphne project (11SYN_8_1088) is co-funded by the European Union (European Regional Development Fund

  1. Geography and Weather: Mountain Meterology.

    Science.gov (United States)

    Mogil, H. Michael; Collins, H. Thomas

    1990-01-01

    Provided are 26 ideas to help children explore the effects of mountains on the weather. Weather conditions in Nepal and Colorado are considered separately. Nine additional sources of information are listed. (CW)

  2. Weather conditions influence the number of psychiatric emergency room patients

    Science.gov (United States)

    Brandl, Eva Janina; Lett, Tristram A.; Bakanidze, George; Heinz, Andreas; Bermpohl, Felix; Schouler-Ocak, Meryam

    2017-12-01

    The specific impact of weather factors on psychiatric disorders has been investigated only in few studies with inconsistent results. We hypothesized that meteorological conditions influence the number of cases presenting in a psychiatric emergency room as a measure of mental health conditions. We analyzed the number of patients consulting the emergency room (ER) of a psychiatric hospital in Berlin, Germany, between January 1, 2008, and December 31, 2014. A total of N = 22,672 cases were treated in the ER over the study period. Meteorological data were obtained from a publicly available data base. Due to collinearity among the meteorological variables, we performed a principal component (PC) analysis. Association of PCs with the daily number of patients was analyzed with autoregressive integrated moving average model. Delayed effects were investigated using Granger causal modeling. Daily number of patients in the ER was significantly higher in spring and summer compared to fall and winter (p psychiatric patients consulting the emergency room. In particular, our data indicate lower patient numbers during very cold temperatures.

  3. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    Science.gov (United States)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  4. Arctic Climate and Climate Change with a Focus on Greenland

    DEFF Research Database (Denmark)

    Stendel, Martin; Christensen, Jens Hesselbjerg; Petersen, Dorthe

    2008-01-01

    Paleoclimatic evidence suggests that the Arctic presently is warmer than during the last 125,000 years, and it is very likely11The term "likelihood" is used here as in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4). According to the definition in this rep...... Ice Sheet, the fate of arctic sea ice and a possible weakening of the thermohaline circulation (THC) under future warming conditions have led to increased research activities, including an assessment of arctic climate and climate change (ACIA, 2005), the fourth assessment report (AR4...

  5. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    Science.gov (United States)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  6. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  7. An Analytical Approach for Performance Enhancement of FSO Communication System Using Array of Receivers in Adverse Weather Conditions

    Science.gov (United States)

    Nagpal, Shaina; Gupta, Amit

    2017-08-01

    Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.

  8. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  9. Triticale in the years with extreme weather conditions

    Directory of Open Access Journals (Sweden)

    Nožinić Miloš

    2009-01-01

    Full Text Available Unlike other grain crops, the area under triticale in the Republic of Srpska has been expanding every year. Since the introduction of this plant species in the broad production began a few years ago, the finding of the optimal variety agrotechnique in different environmental conditions has great importance. This paper deals with the results of the trials from seven locations in two very extreme vegetation seasons (2002/03, 2006/07. High yield of triticale on the location Banja Luka (150 m alt. with five triticale varieties in four sowing rates in the replication trial in very unfavorable weather conditions in 2003, points to emphasized triticale tolerance to high temperatures and drought. High grain yield of triticale in the trials on the locations Banja Luka, Butmir (460 m alt. and Živince (230 m alt. was obtained in 2007 too, when all vegetation months had higher mean temperature than long term average, what is a unique appearance in the entire 'meteorological history'. In the paper the appearance of the earliest triticale heading is described and explained. It happened at one production trial on Manjača (250 m alt. in the first decade of March in 2007. On the another location on Manjača (450 m alt., in the macrotrial, rye showed much higher tolerance to extreme soil acidity, than triticale. Obtained results and unusual appearances on triticale are helpful for the further research of the stability and adaptability of more important triticale traits. .

  10. 49 CFR 195.224 - Welding: Weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Weather. 195.224 Section 195.224 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.224 Welding: Weather. Welding must be protected from weather conditions that...

  11. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    Science.gov (United States)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  12. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    Science.gov (United States)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  13. Patterns and processes influencing helminth parasites of Arctic coastal communities during climate change.

    Science.gov (United States)

    Galaktionov, K V

    2017-07-01

    This review analyses the scarce available data on biodiversity and transmission of helminths in Arctic coastal ecosystems and the potential impact of climate changes on them. The focus is on the helminths of seabirds, dominant parasites in coastal ecosystems. Their fauna in the Arctic is depauperate because of the lack of suitable intermediate hosts and unfavourable conditions for species with free-living larvae. An increasing proportion of crustaceans in the diet of Arctic seabirds would result in a higher infection intensity of cestodes and acanthocephalans, and may also promote the infection of seabirds with non-specific helminths. In this way, the latter may find favourable conditions for colonization of new hosts. Climate changes may alter the composition of the helminth fauna, their infection levels in hosts and ways of transmission in coastal communities. Immigration of boreal invertebrates and fish into Arctic seas may allow the circulation of helminths using them as intermediate hosts. Changing migratory routes of animals would alter the distribution of their parasites, facilitating, in particular, their trans-Arctic transfer. Prolongation of the seasonal 'transmission window' may increase the parasitic load on host populations. Changes in Arctic marine food webs would have an overriding influence on the helminths' circulation. This process may be influenced by the predicted decreased of salinity in Arctic seas, increased storm activity, coastal erosion, ocean acidification, decline of Arctic ice, etc. Greater parasitological research efforts are needed to assess the influence of factors related to Arctic climate change on the transmission of helminths.

  14. Weather conditions drive dynamic habitat selection in a generalist predator

    DEFF Research Database (Denmark)

    Sunde, Peter; Thorup, Kasper; Jacobsen, Lars B.

    2014-01-01

    Despite the dynamic nature of habitat selection, temporal variation as arising from factors such as weather are rarely quantified in species-habitat relationships. We analysed habitat use and selection (use/availability) of foraging, radio-tagged little owls (Athene noctua), a nocturnal, year...... and quadratic effects of temperature. Even when controlling for the temporal context, both land cover types were used more evenly than predicted from variation in availability (functional response in habitat selection). Use of two other land cover categories (pastures and moist areas) increased linearly...... with temperature and was proportional to their availability. The study shows that habitat selection by generalist foragers may be highly dependent on temporal variables such as weather, probably because such foragers switch between weather dependent feeding opportunities offered by different land cover types...

  15. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    Science.gov (United States)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  16. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    DEFF Research Database (Denmark)

    Eitzinger, J; Thaler, S; Schmid, E

    2013-01-01

    the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing...

  17. RECONSTRUCTION AND ANALYSIS OF HISTORICAL CHANGES IN CARBON STORAGE IN ARCTIC TUNDRA

    Science.gov (United States)

    Surface air temperature in arctic regions has increased since pre-industrial times, raising concerns that warmer and possibly drier conditions have increased soil decomposition rates, thereby stimulating the release to the atmosphere of the large stores of carbon (C) in arctic so...

  18. Climate strategies: thinking through Arctic examples.

    Science.gov (United States)

    Bodenhorn, Barbara; Ulturgasheva, Olga

    2017-06-13

    Frequent and unpredictable extreme weather events in Siberia and Alaska destroy infrastructure and threaten the livelihoods of circumpolar peoples. Local responses are inventive and flexible. However, the distinct politics of post-Soviet Siberia and Alaska play a key role in the pragmatics of strategic planning. The Arctic is a planetary climate driver, but also holds the promise of massive resources in an ice-free future, producing tensions between 'environmental' and 'development' goals. Drawing on material from Siberia and Alaska we argue: (i) that extreme events in the Arctic are becoming normal; material demands are in a state of flux making it difficult to assess future material needs. We must consider material substitutions as much as material reduction; (ii) local-level responsive strategies should be taken into account. Core/periphery thinking tends to assume that answers come from 'the centre'; this is, in our view, limited; (iii) we suggest that 'flexibility' may become a core survival value that is as important for city planners and public health officials as it is for Siberian reindeer herders. In this, we see not only the simultaneous need for mitigation and adaptation policies, but also for a concerted effort in promoting such capacities in young people.This article is part of the themed issue 'Material demand reduction'. © 2017 The Author(s).

  19. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  20. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine

    International Nuclear Information System (INIS)

    Amarillo, Ana C.; Carreras, Hebe A.

    2012-01-01

    We studied the effect of estimated PM 10 on respiratory infections in children from Cordoba, Argentine as well as the influence of weather factors, socio-economic conditions and education. We analyzed upper and lower respiratory infections and applied a time-series analysis with a quasi-Poisson distribution link function. To control for seasonally varying factors we fitted cubic smoothing splines of date. We also examined community-specific parameters and differences in susceptibility by sex. We found a significant association between particles and respiratory infections. This relationship was affected by mean temperature, atmospheric pressure and wind speed. These effects were stronger in fall, winter and spring for upper respiratory infections while for lower respiratory infections the association was significant only during spring. Low socio-economic conditions and low education levels increased the risk of respiratory infections. These findings add useful information to understand the influence of airborne particles on children health in developing countries. - Highlights: ► Few information is available on children respiratory health from developing countries. ► We modeled the association between PM 10 and children's respiratory infections. ► We checked the influence of weather factors, socio-economic conditions, education and sex. ► Temperature, pressure and wind speed modified the effect of particles. ► Low socio-economic conditions and low education levels increased the risk of infections. - The concentration of airborne particles as well as low socio-economic conditions and low education levels are significant risk factors for upper and lower respiratory infections in children from Cordoba, Argentine.

  1. Performance of a polymer sealant coating in an arctic marine environment

    International Nuclear Information System (INIS)

    Moskowitz, P.; Cowgill, M.; Griffith, A.; Chernaenko, L.; Diashev, A.; Nazarian, A.

    2001-01-01

    The feasibility of using a polymer-based coating, Polibrid 705, to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment has been successfully demonstrated using a combination of field and laboratory testing. A mobile, self-sufficient spraying device was developed to specifications provided by the Russian Northern Navy and deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading dock. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors, exposed to the full annual Arctic weather cycle. The 12 months of field testing gave rise to little degradation of the sealant coating, except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. The field tests were accompanied by a series of laboratory qualification tests carried out at a research laboratory in St. Petersburg. The laboratory tests examined a variety of properties, including bond strength between the coating and the substrate, thermal cycling resistance, wear resistance, flammability, and ease of decontamination. The Polibrid 705 coating met all the Russian Navy qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities

  2. Arctic Ocean circulation during the anoxic Eocene Azolla event

    Science.gov (United States)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  3. Atmospheric conditions and weather regimes associated with extreme winter dry spells over the Mediterranean basin

    Science.gov (United States)

    Raymond, Florian; Ullmann, Albin; Camberlin, Pierre; Oueslati, Boutheina; Drobinski, Philippe

    2018-06-01

    Very long dry spell events occurring during winter are natural hazards to which the Mediterranean region is extremely vulnerable, because they can lead numerous impacts for environment and society. Four dry spell patterns have been identified in a previous work. Identifying the main associated atmospheric conditions controlling the dry spell patterns is key to better understand their dynamics and their evolution in a changing climate. Except for the Levant region, the dry spells are generally associated with anticyclonic blocking conditions located about 1000 km to the Northwest of the affected area. These anticyclonic conditions are favourable to dry spell occurrence as they are associated with subsidence of cold and dry air coming from boreal latitudes which bring low amount of water vapour and non saturated air masses, leading to clear sky and absence of precipitation. These extreme dry spells are also partly related to the classical four Euro-Atlantic weather regimes are: the two phases of the North Atlantic Oscillation, the Scandinavian "blocking" or "East-Atlantic", and the "Atlantic ridge". Only the The "East-Atlantic", "Atlantic ridge" and the positive phase of the North Atlantic Oscillation are frequently associated with extremes dry spells over the Mediterranean basin but they do not impact the four dry spell patterns equally. Finally long sequences of those weather regimes are more favourable to extreme dry spells than short sequences. These long sequences are associated with the favourable prolonged and reinforced anticyclonic conditions

  4. Charts for Guiding Adjustments of Irrigation Interval to Actual Weather Conditions

    International Nuclear Information System (INIS)

    Kipkorir, E.C.

    2002-01-01

    Major problems in irrigation management at short time-step during the season are unreliability of rainfall and absence of guidance. By considering the climate of region, crop and soil characteristics, the irrigation method and local irrigation practices, this paper presents the concept of irrigation charts. The charts are based on soil water technique. As an example irrigation chart for a typical irrigation system located in the semi-arid area in Naivasha, Kenya is presented. The chart guides the user in adjustment of irrigation interval to the actual weather conditions throughout the growing season. It is believed that the simplicity of the chart makes it a useful tool for a better utilisation of the limited irrigation water

  5. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions

    DEFF Research Database (Denmark)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2014-01-01

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks...... (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D...... of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets...

  6. Convection Weather Detection by General Aviation Pilots with Convectional and Data-Linked Graphical Weather Information Sources

    Science.gov (United States)

    Chamberlain, James P.; Latorella, Kara A.

    2001-01-01

    This study compares how well general aviation (GA) pilots detect convective weather in flight with different weather information sources. A flight test was conducted in which GA pilot test subjects were given different in-flight weather information cues and flown toward convective weather of moderate or greater intensity. The test subjects were not actually flying the aircraft, but were given pilot tasks representative of the workload and position awareness requirements of the en route portion of a cross country GA flight. On each flight, one test subject received weather cues typical of a flight in visual meteorological conditions (VMC), another received cues typical of flight in instrument meteorological conditions (IMC), and a third received cues typical of flight in IMC but augmented with a graphical weather information system (GWIS). The GWIS provided the subject with near real time data-linked weather products, including a weather radar mosaic superimposed on a moving map with a symbol depicting the aircraft's present position and direction of track. At several points during each flight, the test subjects completed short questionnaires which included items addressing their weather situation awareness and flight decisions. In particular, test subjects were asked to identify the location of the nearest convective cells. After the point of nearest approach to convective weather, the test subjects were asked to draw the location of convective weather on an aeronautical chart, along with the aircraft's present position. This paper reports preliminary results on how accurately test subjects provided with these different weather sources could identify the nearest cell of moderate or greater intensity along their route of flight. Additional flight tests are currently being conducted to complete the data set.

  7. The Arctic

    International Nuclear Information System (INIS)

    Petersen, H.; Meltofte, H.; Rysgaard, S.; Rasch, M.; Jonasson, S.; Christensen, T.R.; Friborg, T.; Soegaard, H.; Pedersen, S.A.

    2001-01-01

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  8. Active molecular iodine photochemistry in the Arctic.

    Science.gov (United States)

    Raso, Angela R W; Custard, Kyle D; May, Nathaniel W; Tanner, David; Newburn, Matt K; Walker, Lawrence; Moore, Ronald J; Huey, L G; Alexander, Liz; Shepson, Paul B; Pratt, Kerri A

    2017-09-19

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2 ) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I - ) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I - measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I - /Na + , consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.

  9. Active molecular iodine photochemistry in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Angela R.; Custard, Kyle D.; May, Nathaniel W.; Tanner, David; Newburn, Matthew K.; Walker, Lawrence R.; Moore, Ronald J.; Huey, L. G.; Alexander, Lizabeth; Shepson, Paul B.; Pratt, Kerri A.

    2017-09-05

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.

  10. Arctic whaling : proceedings of the International Symposium Arctic Whaling February 1983

    NARCIS (Netherlands)

    Jacob, H.K. s'; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the

  11. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    Science.gov (United States)

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  12. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    Science.gov (United States)

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The "Physical feedbacks of Arctic PBL, Sea ice, Cloud and AerosoL (PASCAL)" campaign during the Arctic POLARSTERN expedition PS106 in spring 2017.

    Science.gov (United States)

    Macke, A.

    2017-12-01

    The Polar regions are important components in the global climate system. The widespread surface snow and ice cover strongly impacts the surface energy budget, which is tightly coupled to global atmospheric and oceanic circulations. The coupling of sea ice, clouds and aerosol in the transition zone between Open Ocean and sea ice is the focus of the PASCAL investigations to improve our understanding of the recent dramatic reduction in Arctic sea-ice. A large variety of active/passive remote sensing, in-situ-aerosol observation, and spectral irradiance measurements have been obtained during the German research icebreaker POLARSTERN expedition PS106, and provided detailed information on the atmospheric spatiotemporal structure, aerosol and cloud chemical and microphysical properties as well as the resulting surface radiation budget. Nearly identical measurements at the AWIPEV Base (German - French Research Base) in Ny-Ålesund close to the Open Ocean and collocated airborne activities of the POLAR 5 and POLAR 6 AWI aircraft in the framework of the ACLOUD project have been carried out in parallel. The airborne observations have been supplemented by observations of the boundary layer structure (mean and turbulent quantities) from a tethered balloon reaching up to 1500 m, which was operated at an ice floe station nearby POLARSTERN for two weeks. All observational activities together with intense modelling at various scales are part of the German Collaborative Research Cluster TR 172 "Arctic Amplification" that aims to provide an unprecedented picture of the complex Arctic weather and climate system. The presentation provides an overview of the measurements on-board POLARSTERN and on the ice floe station during PASCAL from May 24 to July 21 2017. We conclude how these and future similar measurements during the one-year ice drift of POLARSTERN in the framework of MOSAiC help to reduce uncertainties in Arctic aerosol-cloud interaction, cloud radiative forcing, and surface

  14. Weather Risk Management in Agriculture

    Directory of Open Access Journals (Sweden)

    Martina Bobriková

    2016-01-01

    Full Text Available The paper focuses on valuation of a weather derivative with payoffs depending on temperature. We use historical data from the weather station in the Slovak town Košice to obtain unique prices of option contracts in an incomplete market. Numerical examples of prices of some contracts are presented, using the Burn analysis. We provide an example of how a weather contract can be designed to hedge the financial risk of a suboptimal temperature condition. The comparative comparison of the selected option hedging strategies has shown the best results for the producers in agricultural industries who hedges against an unfavourable weather conditions. The results of analysis proved that by buying put option or call option, the farmer establishes the highest payoff in the case of temperature decrease or increase. The Long Straddle Strategy is the most expensive but is available to the farmer who hedges against a high volatility in temperature movement. We conclude with the findings that weather derivatives could be useful tools to diminish the financial losses for agricultural industries highly dependent for temperature.

  15. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  16. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  17. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  18. The effects of boreal forest expansion on the summer Arctic frontal zone

    Energy Technology Data Exchange (ETDEWEB)

    Liess, Stefan; Snyder, Peter K.; Harding, Keith J. [University of Minnesota, Department of Soil, Water, and Climate, Saint Paul, MN (United States)

    2012-05-15

    Over the last 100 years, Arctic warming has resulted in a longer growing season in boreal and tundra ecosystems. This has contributed to a slow northward expansion of the boreal forest and a decrease in the surface albedo. Corresponding changes to the surface and atmospheric energy budgets have contributed to a broad region of warming over areas of boreal forest expansion. In addition, mesoscale and synoptic scale patterns have changed as a result of the excess energy at and near the surface. Previous studies have identified a relationship between the positioning of the boreal forest-tundra ecotone and the Arctic frontal zone in summer. This study examines the climate response to hypothetical boreal forest expansion and its influence on the summer Arctic frontal zone. Using the Weather Research and Forecasting model over the Northern Hemisphere, an experiment was performed to evaluate the atmospheric response to expansion of evergreen and deciduous boreal needleleaf forests into open shrubland along the northern boundary of the existing forest. Results show that the lower surface albedo with forest expansion leads to a local increase in net radiation and an average hemispheric warming of 0.6 C at and near the surface during June with some locations warming by 1-2 C. This warming contributes to changes in the meridional temperature gradient that enhances the Arctic frontal zone and strengthens the summertime jet. This experiment suggests that continued Northern Hemisphere high-latitude warming and boreal forest expansion might contribute to additional climate changes during the summer. (orig.)

  19. Nonlinear threshold behavior during the loss of Arctic sea ice.

    Science.gov (United States)

    Eisenman, I; Wettlaufer, J S

    2009-01-06

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  20. Collaboration across the Arctic

    DEFF Research Database (Denmark)

    Huppert, Verena Gisela; Chuffart, Romain François R.

    2017-01-01

    The Arctic is witnessing the rise of a new paradigm caused by an increase in pan-Arctic collaborations which co-exist with the region’s traditional linkages with the South. Using an analysis of concrete examples of regional collaborations in the Arctic today in the fields of education, health...... and infrastructure, this paper questions whether pan-Arctic collaborations in the Arctic are more viable than North-South collaborations, and explores the reasons behind and the foreseeable consequences of such collaborations. It shows that the newly emerging East-West paradigm operates at the same time...... as the traditional North-South paradigm, with no signs of the East-West paradigm being more viable in the foreseeable future. However, pan-Arctic collaboration, both due to pragmatic reasons and an increased awareness of similarities, is likely to increase in the future. The increased regionalization process...

  1. Combating bad weather part I rain removal from video

    CERN Document Server

    Mukhopadhyay, Sudipta

    2015-01-01

    Current vision systems are designed to perform in normal weather condition. However, no one can escape from severe weather conditions. Bad weather reduces scene contrast and visibility, which results in degradation in the performance of various computer vision algorithms such as object tracking, segmentation and recognition. Thus, current vision systems must include some mechanisms that enable them to perform up to the mark in bad weather conditions such as rain and fog. Rain causes the spatial and temporal intensity variations in images or video frames. These intensity changes are due to the

  2. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  3. Atmospheric Bromine in the Arctic

    International Nuclear Information System (INIS)

    Berg, W.W.; Sperry, P.D.; Rahn, K.A.; Gladney, E.S.

    1983-01-01

    We report the first measurements of both particulate and gas phase bromine in the Arctic troposphere. Data from continuous sampling of the Arctic aerosol over a period of 4 years (1976--1980) indicate that the bromine content in the aerosol averages 6 +- 4 ngBr/SCM (5 +- 3 pptm Br) for 9 months of every year. During the 3-month period between February 15 and May 15, however, we observed an annual sharp maximum in particulate bromine with levels exceeding 100 ngBr/SCM (82 pptm Br). The Arctic aerosol showed no bromine enrichment relative to seawater except for this 3 month peak period. During the bromine maximum, enrichment factors reached 40 with average values near 10. Calculations of the amount of excess bromine in the Arctic aerosol showed that over 90% of the peak bromine had an origin other than from direct bulk seawater injection. Total levels of gas phase bromine in the Arctic troposphere found during the peak aerosol period averaged 422 +- 48 ngBr/SCM (118 +- 14 pptv). Total bromine content during this period averaged 474 +- 49 ngBr/SCM with gas-to-particle ratios ranging from 7 to 18. A measurement under nonpeak conditions showed total bromine levels at <25 ngBr/SCM. The possibility that local contamination contributed to the seasonal development of the 3-month bromine peak was carefully considered and ruled out. Elevated particualte bromine levels, with peak values ranging from 22 to 30 ngBr/SCM, were also found at Ny-Alesund, Spitsbergen (Norway). The apparent seasonal nature of this bromine peak suggests that the large bromine maximum observed at Barrow is not an isolated or unique phenomenon characteristic of that sampling location

  4. Fire Danger and Fire Weather Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Weather Service (formerly Weather Bureau) and Forest Service developed a program to track meteorological conditions conducive to forest fires, resulting...

  5. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  6. Arctic-Mid-Latitude Linkages in a Nonlinear Quasi-Geostrophic Atmospheric Model

    Directory of Open Access Journals (Sweden)

    Dörthe Handorf

    2017-01-01

    Full Text Available A quasi-geostrophic three-level T63 model of the wintertime atmospheric circulation of the Northern Hemisphere has been applied to investigate the impact of Arctic amplification (increase in surface air temperatures and loss of Arctic sea ice during the last 15 years on the mid-latitude large-scale atmospheric circulation. The model demonstrates a mid-latitude response to an Arctic diabatic heating anomaly. A clear shift towards a negative phase of the Arctic Oscillation (AO− during low sea-ice-cover conditions occurs, connected with weakening of mid-latitude westerlies over the Atlantic and colder winters over Northern Eurasia. Compared to reanalysis data, there is no clear model response with respect to the Pacific Ocean and North America.

  7. Arctic Security

    DEFF Research Database (Denmark)

    Wang, Nils

    2013-01-01

    The inclusion of China, India, Japan, Singapore and Italy as permanent observers in the Arctic Council has increased the international status of this forum significantly. This chapter aims to explain the background for the increased international interest in the Arctic region through an analysis...

  8. Arctic Sea Ice, Eurasia Snow, and Extreme Winter Haze in China

    Science.gov (United States)

    Zou, Y.; Wang, Y.; Xie, Z.; Zhang, Y.; Koo, J. H.

    2017-12-01

    Eastern China is experiencing more severe haze pollution in winter during recent years. Though the environmental deterioration in this region is usually attributed to the high intensity of anthropogenic emissions and large contributions from secondary aerosol formation, the impact of climate variability is also indispensable given its significant influence on regional weather systems and pollution ventilation. Here we analyzed the air quality related winter meteorological conditions over Eastern China in the last four decades and showed a worsening trend in poor regional air pollutant ventilation. Such variations increased the probability of extreme air pollution events, which is in good agreement with aerosol observations of recent years. We further identified the key circulation pattern that is conducive to the weakening ventilation and investigated the relationship between synoptic circulation changes and multiple climate forcing variables. Both statistical analysis and numerical sensitivity experiments suggested that the poor ventilation condition is linked to boreal cryosphere changes including Arctic sea ice in preceding autumn and Eurasia snowfall in earlier winter. We conducted comprehensive dynamic diagnosis and proposed a physical mechanism to explain the observed and simulated circulation changes. At last, we examined future projections of winter extreme stagnation events based on the CMIP5 projection data.

  9. Weather conditions and voter turnout in Dutch national parliament elections, 1971-2010.

    Science.gov (United States)

    Eisinga, Rob; Te Grotenhuis, Manfred; Pelzer, Ben

    2012-07-01

    While conventional wisdom assumes that inclement weather on election day reduces voter turnout, there is remarkably little evidence available to support truth to such belief. This paper examines the effects of temperature, sunshine duration and rainfall on voter turnout in 13 Dutch national parliament elections held from 1971 to 2010. It merges the election results from over 400 municipalities with election-day weather data drawn from the nearest weather station. We find that the weather parameters indeed affect voter turnout. Election-day rainfall of roughly 25 mm (1 inch) reduces turnout by a rate of one percent, whereas a 10-degree-Celsius increase in temperature correlates with an increase of almost one percent in overall turnout. One hundred percent sunshine corresponds to a one and a half percent greater voter turnout compared to zero sunshine.

  10. Annual distributions and variations of dust weather occurrence over the Tarim Basin, China

    Science.gov (United States)

    Zhao, Yong; Zhou, Yang; Wang, Minzhong; Huo, Wen; Huang, Anning; Yang, Xinhua; Yang, Fan

    2018-04-01

    The annual distribution and variations in dust weather occurrence (DWO) have been analyzed using monthly DWO data from 26 stations over the Tarim Basin during the period of 1961 to 2010. The results show that the DWO presents a significant decreasing trend for different parts of the Tarim Basin in recent decades. The monthly DWO has two peaks in the east and west. In the first half of the year, the peak is in April, but in the second half of the year, the peak is in September. According to the concentration period and concentration degree (CD) of DWO, we can find that the maximum DWO occurs in April in the eastern, western, and northern parts of the basin, but it occurs in May in the southern part. The dust weather season is shorter for the northern and eastern parts of the basin than those of the remaining parts. On average, the dust weather season initiates in April in the northeast and in May for the rest of the region. As an indicator for the length of dust weather season, the CD is significantly related to DWO, with a correlation coefficient of -0.51, revealing an interesting feature of regional climate change with declining DWO and declining dust weather season over the Tarim Basin. The correlation analysis exhibits that all the Arctic Oscillation, Antarctic Oscillation, and North Atlantic Oscillation have a negative relation with the DWO but a positive relation with the length of dust weather season.

  11. Effects of Arctic Alaska oil development on Brant and snow geese

    Energy Technology Data Exchange (ETDEWEB)

    Truett, J. C. [Truett Research, Glenwood, NM (United States); Miller, M. E. [Colorado Univ., Boulder, CO (United States). Dept. of Geography; Kertell, K. [SWCA Inc., Tucson, AZ (United States)

    1997-06-01

    The potential impact of Arctic Alaskan oil development on black brant and lesser snow geese were investigated. Release of contaminants, alteration of tundra surfaces, creation of impoundments and human activities were considered as most likely to affect geese directly (e.g. through oil spills), or indirectly (e.g. by altering food supplies or predator populations). To date, no evidence of changes in the distribution, abundance or reproduction of these geese have been found that could be clearly attributed to development; indeed, the number and recruitment of geese in the oilfields responded, as elsewhere, to weather and predation. It is suggested, however, that three known predators -arctic foxes, glaucous gulls, and grizzly bears- may have increased in abundance as a result of development. The common raven has been observed to have recently established a small nesting population, apparently because of development, and birds from this population have preyed on goose eggs. Other than the action of these predators, the environmental impacts of development in Alaska oil fields are currently unknown. 55 refs., 2 figs.

  12. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  13. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  14. Diurnal Thermal Behavior of Photovoltaic Panel with Phase Change Materials under Different Weather Conditions

    Directory of Open Access Journals (Sweden)

    Jae-Han Lim

    2017-12-01

    Full Text Available The electric power generation efficiency of photovoltaic (PV panels depends on the solar irradiation flux and the operating temperature of the solar cell. To increase the power generation efficiency of a PV system, this study evaluated the feasibility of phase change materials (PCMs to reduce the temperature rise of solar cells operating under the climate in Seoul, Korea. For this purpose, two PCMs with different phase change characteristics were prepared and the phase change temperatures and thermal conductivities were compared. The diurnal thermal behavior of PV panels with PCMs under the Seoul climate was evaluated using a 2-D transient thermal analysis program. This paper discusses the heat flow characteristics though the PV cell with PCMs and the effects of the PCM types and macro-packed PCM (MPPCM methods on the operating temperatures under different weather conditions. Selection of the PCM type was more important than the MMPCM methods when PCMs were used to enhance the performance of PV panels and the mean operating temperature of PV cell and total heat flux from the surface could be reduced by increasing the heat transfer rate through the honeycomb grid steel container for PCMs. Considering the mean operating temperature reduction of 4 °C by PCM in this study, an efficiency improvement of approximately 2% can be estimated under the weather conditions of Seoul.

  15. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    Science.gov (United States)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  16. Political risks of hydrocarbon deposit development in the Arctic seas of the Russian Federation

    International Nuclear Information System (INIS)

    Bolsunovskaya, Y A; Boyarko, G Yu; Bolsunovskaya, L M

    2014-01-01

    Nowadays the process of Arctic development has a long-term international cooperation character. Economic and geopolitical interests of both arctic and non-arctic countries meet in the region. Apart from resource development issues, there are problems concerning security, sustainable development and some others issues conditioned by climate and geographical characteristics of the region. Strategic analysis of political risks for the Russian Federation is carried out. The analysis reveals that political risks of hydrocarbon deposits development in the RF arctic seas appear as lack of coordination with arctic countries in solving key regional problems, failure to follow international agreements. Such inconsistency may lead to political risks, which results in strained situation in the region

  17. Arctic Forecasts Available from Polar Bear Exhibit as an Example of Formal/Informal Collaboration

    Science.gov (United States)

    Landis, C. E.; Cervenec, J.

    2012-12-01

    A subset of the general population enjoys and frequents informal education venues, offering an opportunity for lifelong learning that also enhances and supports formal education efforts. The Byrd Polar Research Center (BPRC) at The Ohio State University collaborated with the Columbus Zoo & Aquarium (CZA) in the development of their Polar Frontier exhibit, from its initial planning to the Grand Opening of the exhibit, through the present. Of course, the addition to the Zoo of polar bears and Arctic fox in the Polar Frontier has been very popular, with almost a 7% increase in visitors in 2010 when the exhibit opened. The CZA and BPRC are now investigating ways to increase the climate literacy impact of the exhibit, and to increase engagement with the topics through follow-on activities. For example, individuals or classes anywhere in the world can check forecasts from the Polar Weather and Research Forecasting model and compare them to observed conditions-- allowing deep investigation into changes in the Arctic. In addition, opportunities exist to adapt the Zoo School experience (affecting several Central Ohio school districts) and/or to enable regular participation through social media such as Facebook, Twitter, and other forms of digital communication. BPRC's sustained engagement with the CZA is an example of a trusted and meaningful partnership where open dialogue exists about providing the best learning experience for visitors. This presentation will share some of the lessons learned from this unique partnership, and strategies that are adopted to move it forward.

  18. 49 CFR 192.231 - Protection from weather.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Protection from weather. 192.231 Section 192.231 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... weather. The welding operation must be protected from weather conditions that would impair the quality of...

  19. Forest ecosystem as a source of CO2 during growing season: relation to weather conditions

    Czech Academy of Sciences Publication Activity Database

    Taufarová, Klára; Havránková, Kateřina; Dvorská, Alice; Pavelka, Marian; Urbaniak, M.; Janouš, Dalibor

    2014-01-01

    Roč. 28, č. 2 (2014), s. 239-249 ISSN 0236-8722 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk(CZ) EE2.4.31.0056; GA MŠk(CZ) LM2010007 Institutional support: RVO:67179843 Keywords : net ecosystem production * CO2 source days * eddy covariance * weather conditions * Norway spruce Subject RIV: EH - Ecology, Behaviour Impact factor: 1.117, year: 2014

  20. Biogeochemistry and nitrogen cycling in an Arctic, volcanic ecosystem

    Science.gov (United States)

    Fogel, M. L.; Benning, L.; Conrad, P. G.; Eigenbrode, J.; Starke, V.

    2007-12-01

    As part of a study on Mars Analogue environments, the biogeochemistry of Sverrefjellet Volcano, Bocfjorden, Svalbard, was conducted and compared to surrounding glacial, thermal spring, and sedimentary environments. An understanding of how nitrogen might be distributed in a landscape that had extinct or very cold adapted, slow- growing extant organisms should be useful for detecting unknown life forms. From high elevations (900 m) to the base of the volcano (sea level), soil and rock ammonium concentrations were uniformly low, typically less than 1- 3 micrograms per gm of rock or soil. In weathered volcanic soils, reduced nitrogen concentrations were higher, and oxidized nitrogen concentrations lower. The opposite was found in a weathered Devonian sedimentary soil. Plants and lichens growing on volcanic soils have an unusually wide range in N isotopic compositions from -5 to +12‰, a range rarely measured in temperate ecosystems. Nitrogen contents and isotopic compositions of volcanic soils and rocks were strongly influenced by the presence or absence of terrestrial herbivores or marine avifauna with higher concentrations of N and elevated N isotopic compositions occurring as patches in areas immediately influenced by reindeer, Arctic fox ( Alopex lagopus), and marine birds. Because of the extreme conditions in this area, ephemeral deposition of herbivore feces results in a direct and immediate N pulses into the ecosystem. The lateral extent and distribution of marine- derived nitrogen was measured on a landscape scale surrounding an active fox den. Nitrogen was tracked from the bones of marine birds to soil to vegetation. Because of extreme cold, slow biological rates and nitrogen cycling, a mosaic of N patterns develops on the landscape scale.

  1. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  2. Modelling of 10 Gbps Free Space Optics Communication Link Using Array of Receivers in Moderate and Harsh Weather Conditions

    Science.gov (United States)

    Gupta, Amit; Shaina, Nagpal

    2017-08-01

    Intersymbol interference and attenuation of signal are two major parameters affecting the quality of transmission in Free Space Optical (FSO) Communication link. In this paper, the impact of these parameters on FSO communication link is analysed for delivering high-quality data transmission. The performance of the link is investigated under the influence of amplifier in the link. The performance parameters of the link like minimum bit error rate, received signal power and Quality factor are examined by employing erbium-doped fibre amplifier in the link. The effects of amplifier are visualized with the amount of received power. Further, the link is simulated for moderate weather conditions at various attenuation levels on transmitted signal. Finally, the designed link is analysed in adverse weather conditions by using high-power laser source for optimum performance.

  3. Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions

    Science.gov (United States)

    Wu, Yanling

    2018-05-01

    In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.

  4. AMOP (Arctic Marine Oil Spill Program) studies reviewed

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-05

    A discussion of the Arctic Marine Oil Spill Program organized in 1976 by the Canadian Federal Government includes: an Arctic Atlas compiled by Fenco Consultants Ltd. to give background information necessary for developing marine oil spill countermeasures for the Arctic north of 60/sup 0/ including the west Greenland coast and the Labrador shelf (geology, meteorology and oceanography, ice conditions, biology, and social factors); program in emergency transport of spill-combatting equipment; and the factors which influence the choice of conveyance, i.e., accessibility of the site, urgency for response, and quantity of material required; laboratory studies involving the release of oil under artificial sea ice in simulated ice formation and decay purposes to determine the interaction of crude oil and first-year sea ice; inability of companies and government to control a major spill in the Labrador Sea because of poor and inadequate transport facilities, communications, and navigational aids, severe environmental conditions, and logistics problems; and studies on the effects of oil-well blowouts in deep water, including formation of oil and gas hydrates, design of oil skimmers, the use of hovercraft, and specifications for an airborne multisensor system for oil detection in ice-infested waters.

  5. Sea-ice, clouds and atmospheric conditions in the arctic and their interactions as derived from a merged C3M data product

    Science.gov (United States)

    Nag, Bappaditya

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aimed to explore the atmospheric conditions in the Arctic on an unprecedented spatial coverage spanning 70°N to 80°N through the use of a merged data product, C3MData (derived from NASA's A-Train Series). The following three topics provide outline on how this dataset can be used to accomplish a detailed analysis of the Arctic environment and provide the modelling community with first information to update their models aimed at better forecasts. (1)The three properties of the Arctic climate system to be studied using the C3MData are sea-ice, clouds, and the atmospheric conditions. The first topic is to document the present states of the three properties and also their time evolutions or their seasonal cycles. (2)The second topic is aimed at the interactions or the feedbacks processes among the three properties. For example, the immediate alteration in the fluxes and the feedbacks arising from the change in the sea-ice cover is investigated. Seasonal and regional variations are also studied. (3)The third topics is aimed at the processes in native spatial resolution that drive or accompany with sea ice melting and sea ice growth. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally

  6. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial.

    Science.gov (United States)

    Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit

    2017-08-29

    Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea ice was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.

  7. An energy efficient building for the Arctic climate

    DEFF Research Database (Denmark)

    Vladyková, Petra

    through the building envelope in the winter due to the pressure difference, strong winds and low water ratio in the outdoor air. The Arctic is also defined by different conditions such as building techniques and availability of the materials and energy supply. The passive house uses the basic idea......The Arctic is climatically very different from a temperate climate. In the Arctic regions, the ambient temperature reaches extreme values and it has a direct large impact on the heat loss through the building envelope and it creates problems with the foundation due to the permafrost. The solar...... influence the infiltration heat loss through the building envelope. The wind patterns have large influences on the local microclimate around the building and create the snowdrift and problems with thawing, icing and possible condensation in the building envelope. The humidity in the interior is driven out...

  8. Biological Chlorine Cycling in Arctic Peat Soils

    Science.gov (United States)

    Zlamal, J. E.; Raab, T. K.; Lipson, D.

    2014-12-01

    Soils of the Arctic tundra near Barrow, Alaska are waterlogged and anoxic throughout most of the profile due to underlying permafrost. Microbial communities in these soils are adapted for the dominant anaerobic conditions and are capable of a surprising diversity of metabolic pathways. Anaerobic respiration in this environment warrants further study, particularly in the realm of electron cycling involving chlorine, which preliminary data suggest may play an important role in arctic anaerobic soil respiration. For decades, Cl was rarely studied outside of the context of solvent-contaminated sites due to the widely held belief that it is an inert element. However, Cl has increasingly become recognized as a metabolic player in microbial communities and soil cycling processes. Organic chlorinated compounds (Clorg) can be made by various organisms and used metabolically by others, such as serving as electron acceptors for microbes performing organohalide respiration. Sequencing our arctic soil samples has uncovered multiple genera of microorganisms capable of participating in many Cl-cycling processes including organohalide respiration, chlorinated hydrocarbon degradation, and perchlorate reduction. Metagenomic analysis of these soils has revealed genes for key enzymes of Cl-related metabolic processes such as dehalogenases and haloperoxidases, and close matches to genomes of known organohalide respiring microorganisms from the Dehalococcoides, Dechloromonas, Carboxydothermus, and Anaeromyxobacter genera. A TOX-100 Chlorine Analyzer was used to quantify total Cl in arctic soils, and these data were examined further to separate levels of inorganic Cl compounds and Clorg. Levels of Clorg increased with soil organic matter content, although total Cl levels lack this trend. X-ray Absorption Near Edge Structure (XANES) was used to provide information on the structure of Clorg in arctic soils, showing great diversity with Cl bound to both aromatic and alkyl groups

  9. A pan-Arctic Assessment of Hydraulic Geometry

    Science.gov (United States)

    Chen, H. Z. D.; Gleason, C. J.

    2016-12-01

    Arctic Rivers are a crucial part of the global hydrologic cycle, especially as our climate system alters toward an uncertain future. These rivers have many ecological and societal functions, such as funneling meltwater to the ocean and act as critical winter transport for arctic communities. Despite this importance, their fluvial geomorphology, in particular their hydraulic geometry (HG) is not fully understood due to their often remote locations. HG, including at-a-station (AHG), downstream (DHG), and the recently discovered At-many-stations (AMHG), provides the empirical basis between gauging measurements and how rivers respond to varying flow conditions, serving as an indicator to the critical functions mentioned above. Hence, a systematic cataloging of the AHG, DHG, and AMHG, of Arctic rivers is needed for a pan-Arctic view of fluvial geomorphic behavior. This study will document the width-based AHG, DHG, and AMHG for rivers wider than 120m with an Arctic Ocean drainage and gauge data with satellite records. First, we will make time-series width measurements from classified imagery at locations along all such rivers from Landsat archive since 1984, accessed within the Google Earth Engine cloud computing environment. Second, we will run available gauge data for width-based AHG, DHG, and AMHG over large river reaches. Lastly, we will assess these empirical relationships, seek regional trends, and changes in HG over time as climate change has on the Arctic system. This is part of an ongoing process in the larger scope of data calibration/validation for the Surface Water and Ocean Topography (SWOT) satellite planned for 2020, and HG mapping will aid the selection of field validation sites. The work showcase an unprecedented opportunity to process and retrieve scientifically significant HG data in the often inaccessible Arctic via Google Earth Engine. This unique platform makes such broad scale study possible, providing a blueprint for future large-area HG research.

  10. Arctic Ice Melting: National Security Implications

    Science.gov (United States)

    2011-02-01

    be a curse rather than a good, and under no conditions can it either lead into freedom or constitute a proof for its existence. - Hannah ... Arendt 39 How will the domestic or foreign economic policies of the United States be affected by Arctic ice melting? Increased access to the

  11. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    Science.gov (United States)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in

  12. Arctic daily temperature and precipitation extremes: Observed and simulated physical behavior

    Science.gov (United States)

    Glisan, Justin Michael

    Simulations using a six-member ensemble of Pan-Arctic WRF (PAW) were produced on two Arctic domains with 50-km resolution to analyze precipitation and temperature extremes for various periods. The first study used a domain developed for the Regional Arctic Climate Model (RACM). Initial simulations revealed deep atmospheric circulation biases over the northern Pacific Ocean, manifested in pressure, geopotential height, and temperature fields. Possible remedies to correct these large biases, such as modifying the physical domain or using different initial/boundary conditions, were unsuccessful. Spectral (interior) nudging was introduced as a way of constraining the model to be more consistent with observed behavior. However, such control over numerical model behavior raises concerns over how much nudging may affect unforced variability and extremes. Strong nudging may reduce or filter out extreme events, since the nudging pushes the model toward a relatively smooth, large-scale state. The question then becomes---what is the minimum spectral nudging needed to correct biases while not limiting the simulation of extreme events? To determine this, we use varying degrees of spectral nudging, using WRF's standard nudging as a reference point during January and July 2007. Results suggest that there is a marked lack of sensitivity to varying degrees of nudging. Moreover, given that nudging is an artificial forcing applied in the model, an important outcome of this work is that nudging strength apparently can be considerably smaller than WRF's standard strength and still produce reliable simulations. In the remaining studies, we used the same PAW setup to analyze daily precipitation extremes simulated over a 19-year period on the CORDEX Arctic domain for winter and summer. We defined these seasons as the three-month period leading up to and including the climatological sea ice maximum and minimum, respectively. Analysis focused on four North American regions defined using

  13. Does Arctic sea ice reduction foster shelf-basin exchange?

    Science.gov (United States)

    Ivanov, Vladimir; Watanabe, Eiji

    2013-12-01

    The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter sea ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic sea ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic seas. We have used a simplified model for estimating how increased ice production influences shelf-basin exchange associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical sea ice divergence associated with lateral advection accounts for a significant part of the interannual variations in sea ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of

  14. Collaborations for Arctic Sea Ice Information and Tools

    Science.gov (United States)

    Sheffield Guy, L.; Wiggins, H. V.; Turner-Bogren, E. J.; Rich, R. H.

    2017-12-01

    The dramatic and rapid changes in Arctic sea ice require collaboration across boundaries, including between disciplines, sectors, institutions, and between scientists and decision-makers. This poster will highlight several projects that provide knowledge to advance the development and use of sea ice knowledge. Sea Ice for Walrus Outlook (SIWO: https://www.arcus.org/search-program/siwo) - SIWO is a resource for Alaskan Native subsistence hunters and other interested stakeholders. SIWO provides weekly reports, during April-June, of sea ice conditions relevant to walrus in the northern Bering and southern Chukchi seas. Collaboration among scientists, Alaskan Native sea-ice experts, and the Eskimo Walrus Commission is fundamental to this project's success. Sea Ice Prediction Network (SIPN: https://www.arcus.org/sipn) - A collaborative, multi-agency-funded project focused on seasonal Arctic sea ice predictions. The goals of SIPN include: coordinate and evaluate Arctic sea ice predictions; integrate, assess, and guide observations; synthesize predictions and observations; and disseminate predictions and engage key stakeholders. The Sea Ice Outlook—a key activity of SIPN—is an open process to share and synthesize predictions of the September minimum Arctic sea ice extent and other variables. Other SIPN activities include workshops, webinars, and communications across the network. Directory of Sea Ice Experts (https://www.arcus.org/researchers) - ARCUS has undertaken a pilot project to develop a web-based directory of sea ice experts across institutions, countries, and sectors. The goal of the project is to catalyze networking between individual investigators, institutions, funding agencies, and other stakeholders interested in Arctic sea ice. Study of Environmental Arctic Change (SEARCH: https://www.arcus.org/search-program) - SEARCH is a collaborative program that advances research, synthesizes research findings, and broadly communicates the results to support

  15. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  16. Redefining U.S. Arctic Strategy

    Science.gov (United States)

    2015-05-15

    responsibility shifts 21 Barno, David and Nora Bensahel. The Anti-Access Challenge you’re not thinking...International Affairs 85, no. 6 (2009). 38 Barno, David and Nora Bensahel. THE ANTI-ACCESS CHALLENGE YOU’RE NOT THINKING ABOUT, 05 May 2015...and Rescue in the Arctic, 22 June 2011. Arctic Council Secretariat. About the Arctic Council, Arctic Council, 2011. Barno, David and Nora

  17. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    Science.gov (United States)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    Arctic sea-ice extent has rapidly declined over the past few decades, and most climate models project a continuation of this trend during the 21st century in response to greenhouse gas forcing. A number of recent studies have shown that this sea-ice loss induces vertically propagating Rossby waves, which weaken the stratospheric polar vortex and increase the frequency of sudden stratospheric warmings (SSWs). SSWs have been shown to increase the probability of a negative NAO in the following weeks, thereby driving anomalous weather conditions over Europe and other mid-latitude regions. In contrast, other studies have shown that Arctic sea-ice loss strengthens the polar vortex, increasing the probability of a positive NAO. Sun et al. (2015) suggest these conflicting results may be due to the region of sea-ice loss considered. They find that if only regions within the Arctic Circle are considered in sea-ice projections, the polar vortex weakens; if only regions outwith the Arctic Circle are considered, the polar vortex strengthens. This is because the anomalous Rossby waves forced in the former/latter scenario constructively/destructively interfere with climatological Rossby waves, thus enhancing/suppressing upward wave propagation. In this study, we investigate whether Sun et al.'s results are robust to a different model. We also divide the regions of sea-ice loss they considered into further sub-regions, in order to examine the regional differences in more detail. We do this by using the intermediate complexity climate model, IGCM4, which has a well resolved stratosphere and does a good job of representing stratospheric processes. Several simulations are run in atmosphere only mode, where one is a control experiment and the others are perturbation experiments. In the control run annually repeating historical mean surface conditions are imposed at the lower boundary, whereas in each perturbation run the model is forced by SST perturbations imposed in a specific

  18. Influence of Special Weather on Output of PV System

    Science.gov (United States)

    Zhang, Zele

    2018-01-01

    The output of PV system is affected by different environmental factors, therefore, it is important to study the output of PV system under different environmental conditions. Through collecting data on the spot, collecting the output of photovoltaic panels under special weather conditions, and comparing the collected data, the output characteristics of the photovoltaic panels under different weather conditions are obtained. The influence of weather factors such as temperature, humidity and irradiance on the output of photovoltaic panels was investigated.

  19. An evaluation of Arctic cloud and radiation processes during the SHEBA year

    DEFF Research Database (Denmark)

    Wyser, K.; Jones, C. G.; Du, P.

    2008-01-01

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred...... on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated...... budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic....

  20. The joint Russia-US-Sweden studies in the East-Siberian Arctic Shelf (ESAS) during the last decade (1999-2009): an overview

    Science.gov (United States)

    Sergienko, Valentin; Shakhova, Natalia; Dudarev, Oleg; Gustafsson, Orjan; Anderson, Leif; Semiletov, Igor

    2010-05-01

    The Arctic Ocean is surrounded by permafrost, which is being degraded at an increasing rate under conditions of warming which are most pronounced in Siberia and Alaska . A major constraint on our ability to understand linkages between the Arctic Ocean and the global climate system is the scarcity of observational data in the Siberian Arctic marginal seas where major fresh water input and terrestrial CNP fluxes exist. The East-Siberian Sea has never been investigated by modern techniques despite the progress that has been made in new technologies useful for measuring ocean characteristics of interest. In this multi-year international project which joins scientists from 3 nations (Russia-USA-Sweden), and in cooperation with scientists from other countries (UK, Netherlands) we focus on he ESAS which is poorly explored areas located west from the U.S.-Russia boundary. In this report we overview the main field activities and present some results obtained during the last decade (1999-2009). Siberian freshwater discharge to the Arctic Ocean is expected to increase with increasing temperatures, potentially resulting in greater river export of old terrigenous organic carbon to the ocean. We suggest that rivers integrate variability in the components of the hydrometeorological regime, including soil condition, permafrost seasonal thaw, and thermokarst development, all the variables that determine atmospheric and ground water supply for the rivers and chemical weathering in their watershed.. It has been found that 1) carbon dioxide and methane fluxes are significant (and non-counted) components of the carbon cycling in the Arctic Ocean; 2) transport of eroded terrestrial material plays a major role in the accumulation of carbon in the ESAS (Dudarev et al., Gustafsson et al., Vonk et al., Sanchez-Garcia et al., Charkin et al., Semiletov et al., this session) ; 3) the seabed is a major CH4 source over the ESAS (N.Shakhova et al., this session); 3) eroded carbon is biodegradable

  1. INTERNATIONAL EXPERIENCE AND TRENDS OF INNOVATIVE DEVELOPMENT OF ARCTIC TERRITORIES

    Directory of Open Access Journals (Sweden)

    M. Dudin

    2015-01-01

    Full Text Available In this article and summarized the regularities of formation of foreign experience and trends of development of Arctic territories. Set out the important points predetermine orientation and specificity of manifestations of national interests – potential participants of the subsoil in the Arctic zone. On the basis of the illuminated materials were obtained the following conclusions: Signifi cant interest in the Arctic show today, not only the fi ve countries (Russia, USA, Canada, Norway, Denmark, who own Arctic territories, but also polar state (Iceland, Sweden, Finland, the European Union and Asia. As a consequence of that, it is expected that in the XXI century the Arctic region will be the focus of attention as an official Arctic 45, and a number of states whose territory is quite removed from it; For Russia, given the current, acute political conditions (sanctions, confrontation with the West, Ukrainian crisis and war in the Middle East development of Arctic territories, some moved away, moved on tomorrow and the day after tomorrow on the agenda. This approach is fundamentally fl awed and fraught with a number of threats, because other countries do not decrease, but only increase their interest in this issue; Territorial opposition to all those involved in the topic of causing instability in the Arctic region, but does not represent a real threat for the emergence of large-scale conflict. Therefore, making the choice between the hard pressure of national interests and the interests of harmonization of the Arctic states, Russia must be based on international cooperationand mutual consideration of interests in the development of its Arctic strategy; Considering the cooperation of the countries of the Arctic Council and their cooperation in the framework of a global economic forum G8, there are prerequisites for the decision of the Arctic confl ict through negotiation and compromise. In this context it is very important to develop

  2. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, Courtney [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Walter, Katey [Univ. of Alaska, Fairbanks, AK (United States)

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  3. Extreme weather events and infectious disease outbreaks.

    Science.gov (United States)

    McMichael, Anthony J

    2015-01-01

    Human-driven climatic changes will fundamentally influence patterns of human health, including infectious disease clusters and epidemics following extreme weather events. Extreme weather events are projected to increase further with the advance of human-driven climate change. Both recent and historical experiences indicate that infectious disease outbreaks very often follow extreme weather events, as microbes, vectors and reservoir animal hosts exploit the disrupted social and environmental conditions of extreme weather events. This review article examines infectious disease risks associated with extreme weather events; it draws on recent experiences including Hurricane Katrina in 2005 and the 2010 Pakistan mega-floods, and historical examples from previous centuries of epidemics and 'pestilence' associated with extreme weather disasters and climatic changes. A fuller understanding of climatic change, the precursors and triggers of extreme weather events and health consequences is needed in order to anticipate and respond to the infectious disease risks associated with human-driven climate change. Post-event risks to human health can be constrained, nonetheless, by reducing background rates of persistent infection, preparatory action such as coordinated disease surveillance and vaccination coverage, and strengthened disaster response. In the face of changing climate and weather conditions, it is critically important to think in ecological terms about the determinants of health, disease and death in human populations.

  4. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas.

    Science.gov (United States)

    Matthiessen, Jens; Knies, Jochen; Vogt, Christoph; Stein, Ruediger

    2009-01-13

    The Pliocene is important in the geological evolution of the high northern latitudes. It marks the transition from restricted local- to extensive regional-scale glaciations on the circum-Arctic continents between 3.6 and 2.4Ma. Since the Arctic Ocean is an almost land-locked basin, tectonic activity and sea-level fluctuations controlled the geometry of ocean gateways and continental drainage systems, and exerted a major influence on the formation of continental ice sheets, the distribution of river run-off, and the circulation and water mass characteristics in the Arctic Ocean. The effect of a water mass exchange restricted to the Bering and Fram Straits on the oceanography is unknown, but modelling experiments suggest that this must have influenced the Atlantic meridional overturning circulation. Cold conditions associated with perennial sea-ice cover might have prevailed in the central Arctic Ocean throughout the Pliocene, whereas colder periods alternated with warmer seasonally ice-free periods in the marginal areas. The most pronounced oceanographic change occurred in the Mid-Pliocene when the circulation through the Bering Strait reversed and low-salinity waters increasingly flowed from the North Pacific into the Arctic Ocean. The excess freshwater supply might have facilitated sea-ice formation and contributed to a decrease in the Atlantic overturning circulation.

  5. Characterization of distinct Arctic aerosol accumulation modes and their sources

    Science.gov (United States)

    Lange, R.; Dall'Osto, M.; Skov, H.; Nøjgaard, J. K.; Nielsen, I. E.; Beddows, D. C. S.; Simo, R.; Harrison, R. M.; Massling, A.

    2018-06-01

    In this work we use cluster analysis of long term particle size distribution data to expand an array of different shorter term atmospheric measurements, thereby gaining insights into longer term patterns and properties of Arctic aerosol. Measurements of aerosol number size distributions (9-915 nm) were conducted at Villum Research Station (VRS), Station Nord in North Greenland during a 5 year record (2012-2016). Alongside this, measurements of aerosol composition, meteorological parameters, gaseous compounds and cloud condensation nuclei (CCN) activity were performed during different shorter occasions. K-means clustering analysis of particle number size distributions on daily basis identified several clusters. Clusters of accumulation mode aerosols (main size modes > 100 nm) accounted for 56% of the total aerosol during the sampling period (89-91% during February-April, 1-3% during June-August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking in February-April, with highest loadings of sulfate and black carbon concentrations. (2) Accumulation mode Bimodal aerosol shows two modes, at 38 nm and 150 nm, peaking in June-August, with the highest ratio of organics to sulfate concentrations. (3) Aged accumulation mode aerosol shows a single mode at 213 nm, peaking in September-October and is associated with cloudy and humid weather conditions during autumn. The three aerosol clusters were considered alongside CCN concentrations. We suggest that organic compounds, that are likely marine biogenic in nature, greatly influence the Bimodal cluster and contribute significantly to its CCN activity. This stresses the importance of better characterizing the marine ecosystem and the aerosol-mediated climate effects in the

  6. Winter temperature affects the prevalence of ticks in an Arctic seabird.

    Directory of Open Access Journals (Sweden)

    Sébastien Descamps

    Full Text Available The Arctic is rapidly warming and host-parasite relationships may be modified by such environmental changes. Here, I showed that the average winter temperature in Svalbard, Arctic Norway, explained almost 90% of the average prevalence of ticks in an Arctic seabird, the Brünnich's guillemot Uria lomvia. An increase of 1°C in the average winter temperature at the nesting colony site was associated with a 5% increase in the number of birds infected by these ectoparasites in the subsequent breeding season. Guillemots were generally infested by only a few ticks (≤5 and I found no direct effect of tick presence on their body condition and breeding success. However, the strong effect of average winter temperature described here clearly indicates that tick-seabird relationships in the Arctic may be strongly affected by ongoing climate warming.

  7. Lacking Community Out-Reach of Chinese Mining Investors in the Arctic

    DEFF Research Database (Denmark)

    Zeuthen, Jesper Willaing

    Lacking Community Out-Reach of Chinese Mining Investors in the Arctic Despite China’s bad reputation as a mining investor, in a context of dramatically falling mineral prices, Chinese investments seem to be needed in order to realize most new mining projects across the globe. In Greenland...... and Arctic Canada, potential Chinese investors have been met with even more suspicion than elsewhere. National governments are worried about what state owned Chinese investors will mean for their control over national resources while local governments and the public fear what Chinese investors will mean...... for labour conditions and local environment. They fear a lack of social corporate responsibility (CSR) from Chinese investors. This paper assumes that the possible interest in Arctic mineral resources by the Chinese state combined with a strong demand from Greenland and Canada would make the Arctic a most...

  8. NSF Antarctic and Arctic Data Consortium; Scientific Research Support & Data Services for the Polar Community

    Science.gov (United States)

    Morin, P. J.; Pundsack, J. W.; Carbotte, S. M.; Tweedie, C. E.; Grunow, A.; Lazzara, M. A.; Carpenter, P.; Sjunneskog, C. M.; Yarmey, L.; Bauer, R.; Adrian, B. M.; Pettit, J.

    2014-12-01

    The U.S. National Science Foundation Antarctic & Arctic Data Consortium (a2dc) is a collaboration of research centers and support organizations that provide polar scientists with data and tools to complete their research objectives. From searching historical weather observations to submitting geologic samples, polar researchers utilize the a2dc to search andcontribute to the wealth of polar scientific and geospatial data.The goals of the Antarctic & Arctic Data Consortium are to increase visibility in the research community of the services provided by resource and support facilities. Closer integration of individual facilities into a "one stop shop" will make it easier for researchers to take advantage of services and products provided by consortium members. The a2dc provides a common web portal where investigators can go to access data and samples needed to build research projects, develop student projects, or to do virtual field reconnaissance without having to utilize expensive logistics to go into the field.Participation by the international community is crucial for the success of a2dc. There are 48 nations that are signatories of the Antarctic Treaty, and 8 sovereign nations in the Arctic. Many of these organizations have unique capabilities and data that would benefit US ­funded polar science and vice versa.We'll present an overview of the Antarctic & Arctic Data Consortium, current participating organizations, challenges & opportunities, and plans to better coordinate data through a geospatial strategy and infrastructure.

  9. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man

    2006-01-01

    Arctic peoples are spread over eight countries and comprise 3.74 million residents, of whom 9% are indigenous. The Arctic countries include Canada, Finland, Greenland (Denmark), Iceland, Norway, Russia, Sweden and the United States. Although Arctic peoples are very diverse, there are a variety...... of environmental and health issues that are unique to the Arctic regions, and research exploring these issues offers significant opportunities, as well as challenges. On July 28-29, 2004, the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research co-sponsored a working group...... entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...

  10. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  11. Quantifying Permafrost Extent, Condition, and Degradation at Department of Defense Installations in the Arctic

    Science.gov (United States)

    Edlund, C. A.

    2017-12-01

    The Department of Defense (DoD) is planning over $500M in military construction on Eielson Air Force Base (AFB) within the next three fiscal years. This construction program will expand the footprint of facilities and change the storm water management scheme, which will have second order effects on the underlying permafrost layer. These changes in permafrost will drive engineering decision making at local and regional levels, and help shape the overall strategy for military readiness in the Arctic. Although many studies have attempted to predict climate change induced permafrost degradation, very little site-specific knowledge exists on the anthropogenic effects to permafrost at this location. In 2016, the permafrost degradation rates at Eielson AFB were modeled using the Geophysics Institute Permafrost Laboratory (GIPL) 2.1 model and limited available geotechnical and climate data. Model results indicated a degradation of the discontinuous permafrost layer at Eielson AFB of up to 7 meters in depth over the next century. To further refine an understanding of the geophysics at Eielson AFB and help engineers and commanders make more informed decisions on engineering and operations in the arctic, this project established two permafrost monitoring stations near the future construction sites. Installation of the stations occurred in July 2017. Permafrost was located and characterized using two Electrical Resistivity Tomography surveys, as well as direct frost probe measurements. Using this data, the research team optimized the placement location and depth of two long term ground temperature monitoring stations, and then installed the stations for data collection. The data set generated by these stations are the first of their kind at Eielson AFB, and represent the first systematic effort in the DoD to quantify permafrost condition before, during, and after construction and other anthropogenic activities in order to fully understand the effects of that activity in the

  12. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  13. Tactical Versus Strategic Behavior: General Aviation Piloting in Convective Weather Scenarios

    Science.gov (United States)

    Latorella, Kara A.; Chamberlain, James P.

    2002-01-01

    We commonly describe environments and behavioral responses to environmental conditions as 'tactical' and 'strategic.' However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.

  14. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    Science.gov (United States)

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  15. Dynamic Weather Routes: A Weather Avoidance Concept for Trajectory-Based Operations

    Science.gov (United States)

    McNally, B. David; Love, John

    2011-01-01

    The integration of convective weather modeling with trajectory automation for conflict detection, trial planning, direct routing, and auto resolution has uncovered a concept that could help controllers, dispatchers, and pilots identify improved weather routes that result in significant savings in flying time and fuel burn. Trajectory automation continuously and automatically monitors aircraft in flight to find those that could potentially benefit from improved weather reroutes. Controllers, dispatchers, and pilots then evaluate reroute options to assess their suitability given current weather and traffic. In today's operations aircraft fly convective weather avoidance routes that were implemented often hours before aircraft approach the weather and automation does not exist to automatically monitor traffic to find improved weather routes that open up due to changing weather conditions. The automation concept runs in real-time and employs two keysteps. First, a direct routing algorithm automatically identifies flights with large dog legs in their routes and therefore potentially large savings in flying time. These are common - and usually necessary - during convective weather operations and analysis of Fort Worth Center traffic shows many aircraft with short cuts that indicate savings on the order of 10 flying minutes. The second and most critical step is to apply trajectory automation with weather modeling to determine what savings could be achieved by modifying the direct route such that it avoids weather and traffic and is acceptable to controllers and flight crews. Initial analysis of Fort Worth Center traffic suggests a savings of roughly 50% of the direct route savings could be achievable.The core concept is to apply trajectory automation with convective weather modeling in real time to identify a reroute that is free of weather and traffic conflicts and indicates enough time and fuel savings to be considered. The concept is interoperable with today

  16. Accelerated laboratory weathering of acrylic lens materials

    Science.gov (United States)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  17. Travel in adverse winter weather conditions by blind pedestrians.

    Science.gov (United States)

    2015-08-31

    Winter weather creates many orientation and mobility (O&M) challenges for people who are visually impaired. Getting the cane tip stuck is one of the noticeable challenges when traveling in snow, particularly when the walking surface is covered in dee...

  18. The Arctic: between climatic change, economic development and security issues

    International Nuclear Information System (INIS)

    Degeorges, Damien

    2016-01-01

    The Arctic is a perfect illustration of how climate change is impacting international relations, in particular because it triggers new economic and safety issues. Since every major economic power has interests in the region, it has now become the stage of many rivalries, including between China and the United-States. Whether it is because its extreme climate conditions or the growing international pressure, the Arctic sets a new challenge for investors: securing a sustainable economic growth in the region

  19. Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts

    NARCIS (Netherlands)

    Bokhorst, Stef; Pedersen, Stine Højlund; Brucker, Ludovic; Anisimov, Oleg; Bjerke, Jarle W.; Brown, Ross D.; Ehrich, Dorothee; Essery, Richard L. H.; Heilig, Achim; Ingvander, Susanne; Johansson, Cecilia; Johansson, Margareta; Jónsdóttir, Ingibjörg Svala; Inga, Niila; Luojus, Kari; Macelloni, Giovanni; Mariash, Heather|info:eu-repo/dai/nl/41327697X; Mclennan, Donald; Rosqvist, Gunhild Ninis; Sato, Atsushi; Savela, Hannele; Schneebeli, Martin; Sokolov, Aleksandr; Sokratov, Sergey A.; Terzago, Silvia; Vikhamar-schuler, Dagrun; Williamson, Scott; Qiu, Yubao; Callaghan, Terry V.

    2016-01-01

    Snow is a critically important and rapidly changing feature of the Arctic. However, snow-cover and snowpack conditions change through time pose challenges for measuring and prediction of snow. Plausible scenarios of how Arctic snow cover will respond to changing Arctic climate are important for

  20. New Technologies for Weather Accident Prevention

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., Jr.; Daniels, Taumi S.; Martzaklis, Konstantinos S.; Jarrell, Michael A.; Bogue, Rodney K.

    2005-01-01

    Weather is a causal factor in thirty percent of all aviation accidents. Many of these accidents are due to a lack of weather situation awareness by pilots in flight. Improving the strategic and tactical weather information available and its presentation to pilots in flight can enhance weather situation awareness and enable avoidance of adverse conditions. This paper presents technologies for airborne detection, dissemination and display of weather information developed by the National Aeronautics and Space Administration (NASA) in partnership with the Federal Aviation Administration (FAA), National Oceanic and Atmospheric Administration (NOAA), industry and the research community. These technologies, currently in the initial stages of implementation by industry, will provide more precise and timely knowledge of the weather and enable pilots in flight to make decisions that result in safer and more efficient operations.

  1. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  2. Technology-derived storage solutions for stabilizing insulin in extreme weather conditions I: the ViViCap-1 device.

    Science.gov (United States)

    Pfützner, Andreas; Pesach, Gidi; Nagar, Ron

    2017-06-01

    Injectable life-saving drugs should not be exposed to temperatures 30°C/86°F. Frequently, weather conditions exceed these temperature thresholds in many countries. Insulin is to be kept at 4-8°C/~ 39-47°F until use and once opened, is supposed to be stable for up to 31 days at room temperature (exception: 42 days for insulin levemir). Extremely hot or cold external temperature can lead to insulin degradation in a very short time with loss of its glucose-lowering efficacy. Combined chemical and engineering solutions for heat protection are employed in ViViCap-1 for disposable insulin pens. The device works based on vacuum insulation and heat consumption by phase-change material. Laboratory studies with exposure of ViViCap-1 to hot outside conditions were performed to evaluate the device performance. ViViCap-1 keeps insulin at an internal temperature phase-change process and 'recharges' the device for further use. ViViCap-1 performed within its specifications. The small and convenient device maintains the efficacy and safety of using insulin even when carried under hot weather conditions.

  3. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  4. Formation of halloysite from feldspar: Low temperature, artificial weathering versus natural weathering

    Science.gov (United States)

    Parham, Walter E.

    1969-01-01

    Weathering products formed on surfaces of both potassium and plagioclase feldspar (An70), which were continuously leached in a Soxhlet extraction apparatus for 140 days with 7.21 of distilled water per day at a temperature of approximately 78°C, are morphologically identical to natural products developed on potassium feldspars weathered under conditions of good drainage in the humid tropics. The new products, which first appear as tiny bumps on the feldspar surface, start to develop mainly at exposed edges but also at apparently random sites on flat cleavage surfaces. As weathering continues, the bumps grow outward from the feldspar surface to form tapered projections, which then develop into wide-based thin films or sheets. The thin sheets of many projections merge laterally to form one continuous flame-shaped sheet. The sheets formed on potassium feldspars may then roll to form tubes that are inclined at a high angle to the feldspar surface. Etch pits of triangular outline on the artificially weathered potassium feldspars serve as sites for development of continuous, non-rolled, hollow tubes. It is inferred from its morphology that this weathering product is halloysite or its primitive form. The product of naturally weathered potassium feldspars is halloysite . 4H2O.The flame-shaped films or sheets formed on artificially weathered plagioclase feldspar do not develop into hollow tubes, but instead give rise to a platy mineral that is most probably boehmite. These plates form within the flame-shaped films, and with continued weathering are released as the film deteriorates. There is no indication from this experiment that platy pseudohexagonal kaolinite forms from any of these minerals under the initial stage of weathering.

  5. Plane-parallel biases computed from inhomogeneous Arctic clouds and sea ice

    Science.gov (United States)

    Rozwadowska, Anna; Cahalan, Robert F.

    2002-10-01

    Monte Carlo simulations of the expected influence of nonuniformity in cloud structure and surface albedo on shortwave radiative fluxes in the Arctic atmosphere are presented. In particular, plane-parallel biases in cloud albedo and transmittance are studied for nonabsorbing, low-level, all-liquid stratus clouds over sea ice. The "absolute bias" is defined as the difference between the cloud albedo or transmittance for the uniform or plane-parallel case, and the albedo or transmittance for nonuniform conditions with the same mean cloud optical thickness and the same mean surface albedo, averaged over a given area (i.e., bias > 0 means plane-parallel overestimates). Ranges of means and standard deviations of input parameters typical of Arctic conditions are determined from the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment Artic Cloud Experiment (FIRE/ACE)/Surface Heat Budget of the Arctic Ocean (SHEBA)/Atmospheric Radiation Measurement Program (ARM) experiment, a cooperative effort of the Department of Energy, NASA, NSF, the National Oceanic and Atmospheric Administration, the Office of Naval Research, and the Atmospheric Environment Service. We determine the sensitivity of the bias with respect to the following: domain averaged means and spatial variances of cloud optical thickness and surface albedo, shape of the surface reflectance function, presence of a scattering layer under the clouds, and solar zenith angle. The simulations show that the biases in Arctic conditions are generally lower than in subtropical stratocumulus. The magnitudes of the absolute biases are unlikely to exceed 0.02 for albedo and 0.05 for transmittance. The "relative bias" expresses the absolute bias as a percentage of the actual cloud albedo or transmittance. The magnitude of the relative bias in albedo is typically below 2% over the reflective Arctic surface, while the magnitude of the relative bias in transmittance can exceed 10%.

  6. On-site ocean horizontal aerosol extinction coefficient inversion under different weather conditions on the Bo-hai and Huang-hai Seas

    Science.gov (United States)

    Zeng, Xianjiang; Xia, Min; Ge, Yinghui; Guo, Wenping; Yang, Kecheng

    2018-03-01

    In this paper, we explore the horizontal extinction characteristics under different weather conditions on the ocean surface with on-site experiments on the Bo-hai and Huang-hai Seas in the summer of 2016. An experimental lidar system is designed to collect the on-site experimental data. By aiming at the inhomogeneity and uncertainty of the horizontal aerosol in practice, a joint retrieval method is proposed to retrieve the aerosol extinction coefficients (AEC) from the raw data along the optical path. The retrieval results of both the simulated and the real signals demonstrate that the joint retrieval method is practical. Finally, the sequence observation results of the on-site experiments under different weather conditions are reported and analyzed. These results can provide the attenuation information to analyze the atmospheric aerosol characteristics on the ocean surface.

  7. Microbiological composition of untreated water during different weather conditions

    Directory of Open Access Journals (Sweden)

    Adna Bešić

    2011-09-01

    Full Text Available Introduction: Water can support the growth of different microorganisms which may result in contamination. Therefore, the microbiological examination is required for testing the hygienic probity of water. In the study of microbial composition of untreated, natural spring and mineral water differences in the presence and number of bacteria during the two periods, winter and summer, are detectable.Methods: In our study, we analyzed and compared the following parameters, specified in the Rulebook: total bacteria and total aerobic bacteria (ml/22 and 37°C, total Coliform bacteria and Coliforms of fecalorigin (MPN/100ml, fecal streptococci as Streptococcus faecalis  (MPN/100ml, Proteus spp (MPN/100ml, and Pseudomonas aeruginosa (MPN/100 ml Sulphoreducing Clostridia (cfu / ml. The paper is a retrospective study in which we processed data related to the period of 2005-2009 year. While working, we used the descriptive-analytical comparative statistical treatment.Results: The obtained results show statistically significant differences in the microbial composition of untreated water in the two observed periods,Conclusions: Findings were consequence of different weather conditions in these periods, which imply a number of other variable factors.

  8. [Effect of weather on odontogenic abscesses].

    Science.gov (United States)

    Nissen, G; Schmidseder, R

    1978-11-01

    An increased frequency of odontogenous abcesses was observed on certain days in the course of routine clinical practice. We therefore investigated the possibility of a statistically significant weather-related odontogenous soft-tissue purulence originating from chronic apical periodontitis. Medical reports of patients treated between 1970 and 1977 were used. Our study indicated that the frequency of odontogenous abcesses was significantly higher with cyclonic weather conditions, i.e., weather with low barometric pressure.

  9. Arctic sea-ice melting: Effects on hydroclimatic variability and on UV-induced carbon cycling

    Science.gov (United States)

    Sulzberger, Barbara

    2016-04-01

    Since 1980 both the perennial and the multiyear central Arctic sea ice areas have declined by approximately 13 and 15% per decade, respectively (IPCC, 2013). Arctic sea-ice melting has led to an increase in the amplitude of the Northern Hemisphere jet stream and, as a consequence, in more slowly moving Rossby waves which results in blocking of weather patterns such as heat waves, droughts, cold spells, and heavy precipitation events (Francis and Vavrus, 2012). Changing Rossby waves account for more than 30% of the precipitation variability over several regions of the northern middle and high latitudes, including the US northern Great Plains and parts of Canada, Europe, and Russia (Schubert et al., 2011). From 2007 to 2013, northern Europe experienced heavy summer precipitation events that were unprecedented in over a century, concomitant with Arctic sea ice loss (Screen, 2013). Heavy precipitation events tend to increase the runoff intensity of terrigenous dissolved organic matter (tDOM) (Haaland et al., 2010). In surface waters tDOM is subject to UV-induced oxidation to produce atmospheric CO2. Mineralization of DOM also occurs via microbial respiration. However, not all chemical forms of DOM are available to bacterioplankton. UV-induced transformations generally increase the bioavailability of tDOM (Sulzberger and Durisch-Kaiser, 2009). Mineralization of tDOM is an important source of atmospheric CO2 and this process is likely to contribute to positive feedbacks on global warming (Erickson et al., 2015). However, the magnitudes of these potential feedbacks remain unexplored. This paper will discuss the following items: 1.) Links between Arctic sea-ice melting, heavy precipitation events, and enhanced tDOM runoff. 2.) UV-induced increase in the bioavailability of tDOM. 3.) UV-mediated feedbacks on global warming. References Erickson, D. J. III, B. Sulzberger, R. G. Zepp, A. T. Austin (2015), Effects of stratospheric ozone depletion, solar UV radiation, and climate

  10. Dynamical downscaling with the fifth-generation Canadian regional climate model (CRCM5) over the CORDEX Arctic domain: effect of large-scale spectral nudging and of empirical correction of sea-surface temperature

    Science.gov (United States)

    Takhsha, Maryam; Nikiéma, Oumarou; Lucas-Picher, Philippe; Laprise, René; Hernández-Díaz, Leticia; Winger, Katja

    2017-10-01

    As part of the CORDEX project, the fifth-generation Canadian Regional Climate Model (CRCM5) is used over the Arctic for climate simulations driven by reanalyses and by the MPI-ESM-MR coupled global climate model (CGCM) under the RCP8.5 scenario. The CRCM5 shows adequate skills capturing general features of mean sea level pressure (MSLP) for all seasons. Evaluating 2-m temperature (T2m) and precipitation is more problematic, because of inconsistencies between observational reference datasets over the Arctic that suffer of a sparse distribution of weather stations. In our study, we additionally investigated the effect of large-scale spectral nudging (SN) on the hindcast simulation driven by reanalyses. The analysis shows that SN is effective in reducing the spring MSLP bias, but otherwise it has little impact. We have also conducted another experiment in which the CGCM-simulated sea-surface temperature (SST) is empirically corrected and used as lower boundary conditions over the ocean for an atmosphere-only global simulation (AGCM), which in turn provides the atmospheric lateral boundary conditions to drive the CRCM5 simulation. This approach, so-called 3-step approach of dynamical downscaling (CGCM-AGCM-RCM), which had considerably improved the CRCM5 historical simulations over Africa, exhibits reduced impact over the Arctic domain. The most notable positive effect over the Arctic is a reduction of the T2m bias over the North Pacific Ocean and the North Atlantic Ocean in all seasons. Future projections using this method are compared with the results obtained with the traditional 2-step dynamical downscaling (CGCM-RCM) to assess the impact of correcting systematic biases of SST upon future-climate projections. The future projections are mostly similar for the two methods, except for precipitation.

  11. Oil spill cleanup in severe weather and open ocean conditions

    International Nuclear Information System (INIS)

    Kowalski, T.

    1993-01-01

    Most serious oil spills occur in open water under severe weather conditions. At first the oil stays on the surface, where it is spread by winds and water currents. The action of the waves then mixes the oil into the water column. With time the light elements of crude oil evaporate. The remaining residue is of very low commercial value, but of significant environmental impact. The oil spill can move either out to sea or inshore, where it ends up on the beaches. Normal procedures are to let outbound oil disperse by evaporation and mixing into the water column, and to let the inbound oil collect on the beaches, where the cleanup operations are concentrated. The reason for this is that there is no capability to clean the surface of the water in wave conditions-present-day oil skimmers are ineffective in waves approaching 4 ft in height. It would be simpler, more effective and environmentally more beneficial to skim the oil right at the spill location. This paper describes a method to do this. In the case of an oil spill in open water and high wave conditions, it is proposed to reduce the height of the ocean waves by the use of floating breakwaters to provide a relatively calm area. In such protected areas existing oil skimmers can be used to recover valuable oil and clean up the spill long before it hits the beaches. A floating breakwater developed at the University of Rhode Island by the author can be of great benefit in oil spill cleanup for open ocean conditions. This breakwater is constructed from scrap automobile tires. It is built in units of 20 tires each, which are easily transportable and can be connected together at the spill site to form any desired configuration

  12. Longing for Clouds - Does Beautiful Weather have to be Fine?

    Directory of Open Access Journals (Sweden)

    Mădălina Diaconu

    2016-01-01

    Full Text Available Any attempt to outline a meteorological aesthetics centered on so-called beautiful weather has to overcome several difficulties: In everyday life, the appreciation of the weather is mostly related to practical interests or reduced to the ideal of stereotypical fine weather that is conceived according to blue-sky thinking irrespective of climate diversity. Also, an aesthetics of fine weather seems, strictly speaking, to be impossible given that such weather conditions usually allow humans to focus on aspects other than weather, which contradicts the autotelic character of beauty. The unreflective equation of beautiful weather with moderately sunny weather and a cloudless sky also collides with the psychological need for variation: even living in a “paradisal” climate would be condemned to end in monotony. Finally, whereas fine weather is related in modern realistic literature to cosmic harmony and a universal natural order, contemporary literary examples show that in the age of the climate change, fine weather may be deceitful and its passive contemplation, irresponsible. This implies the necessity of a reflective aesthetic attitude on weather, as influenced by art, literature, and science, which discovers the poetics of bad weather and the wonder that underlies average weather conditions.

  13. Weather impacts on leisure activities in Halifax, Nova Scotia

    Science.gov (United States)

    Spinney, Jamie E. L.; Millward, Hugh

    2011-03-01

    The aim of this study was to investigate the impact of daily atmospheric weather conditions on daily leisure activity engagement, with a focus on physically active leisure. The methods capitalize on time diary data that were collected in Halifax, Nova Scotia to calculate objective measures of leisure activity engagement. Daily meteorological data from Environment Canada and daily sunrise and sunset times from the National Research Council of Canada are used to develop objective measures of the natural atmospheric environment. The time diary data were merged with the meteorological data in order to quantify the statistical association between daily weather conditions and the type, participation rate, frequency, and duration of leisure activity engagement. The results indicate that inclement and uncomfortable weather conditions, especially relating to thermal comfort and mechanical comfort, pose barriers to physically active leisure engagement, while promoting sedentary and home-based leisure activities. Overall, daily weather conditions exhibit modest, but significant, effects on leisure activity engagement; the strongest associations being for outdoor active sports and outdoor active leisure time budgets. In conclusion, weather conditions influence the type, participation rate, frequency, and duration of leisure activity engagement, which is an important consideration for health-promotion programming.

  14. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome.

    Science.gov (United States)

    Joli, Nathalie; Monier, Adam; Logares, Ramiro; Lovejoy, Connie

    2017-06-01

    Prasinophytes occur in all oceans but rarely dominate phytoplankton populations. In contrast, a single ecotype of the prasinophyte Micromonas is frequently the most abundant photosynthetic taxon reported in the Arctic from summer through autumn. However, seasonal dynamics of prasinophytes outside of this period are little known. To address this, we analyzed high-throughput V4 18S rRNA amplicon data collected from November to July in the Amundsen Gulf Region, Beaufort Sea, Arctic. Surprisingly during polar sunset in November and December, we found a high proportion of reads from both DNA and RNA belonging to another prasinophyte, Bathycoccus. We then analyzed a metagenome from a December sample and the resulting Bathycoccus metagenome assembled genome (MAG) covered ~90% of the Bathycoccus Ban7 reference genome. In contrast, only ~20% of a reference Micromonas genome was found in the metagenome. Our phylogenetic analysis of marker genes placed the Arctic Bathycoccus in the B1 coastal clade. In addition, substitution rates of 129 coding DNA sequences were ~1.6% divergent between the Arctic MAG and coastal Chilean upwelling MAGs and 17.3% between it and a South East Atlantic open ocean MAG in the B2 Clade. The metagenomic analysis also revealed a winter viral community highly skewed toward viruses targeting Micromonas, with a much lower diversity of viruses targeting Bathycoccus. Overall a combination of Micromonas being relatively less able to maintain activity under dark winter conditions and viral suppression of Micromonas may have contributed to the success of Bathycoccus in the Amundsen Gulf during winter.

  15. Arctic Research Plan: FY2017-2021

    Science.gov (United States)

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  16. A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Taehong Sung

    2015-07-01

    Full Text Available A mathematical model of hourly solar radiation with weather variability is proposed based on the simple sky model. The model uses a superposition of trigonometric functions with short and long periods. We investigate the effects of the model variables on the clearness (kD and the probability of persistence (POPD indices and also evaluate the proposed model for all of the kD-POPD weather classes. A simple solar organic Rankine cycle (SORC system with thermal storage is simulated using the actual weather conditions, and then, the results are compared with the simulation results using the proposed model and the simple sky model. The simulation results show that the proposed model provides more accurate system operation characteristics than the simple sky model.

  17. Winter Weather Checklists

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  18. Winter Weather: Frostbite

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  19. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    Science.gov (United States)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence

  20. Summer in the Arctic National Wildlife Refuge

    Science.gov (United States)

    2001-01-01

    This colorful image of the Arctic National Wildlife Refuge and the Beaufort Sea was acquired by the Multi-angle Imaging SpectroRadiometer's nadir (vertical-viewing) camera on August 16, 2000, during Terra orbit 3532. The swirling patterns apparent on the Beaufort Sea are small ice floes driven by turbulent water patterns, or eddies, caused by the interactions of water masses of differing salinity and temperature. By this time of year, all of the seasonal ice which surrounds the north coast of Alaska in winter has broken up, although the perennial pack ice remains further north. The morphology of the perennial ice pack's edge varies in response to the prevailing wind. If the wind is blowing strongly toward the perennial pack (that is, to the north), the ice edge will be more compact. In this image the ice edge is diffuse, and the patterns reflected by the ice floes indicate fairly calm weather.The Arctic National Wildlife Refuge (often abbreviated to ANWR) was established by President Eisenhower in 1960, and is the largest wildlife refuge in the United States. Animals of the Refuge include the 130,000-member Porcupine caribou herd, 180 species of birds from four continents, wolves, wolverine, polar and grizzly bears, muskoxen, foxes, and over 40 species of coastal and freshwater fish. Although most of ANWR was designated as wilderness in 1980, the area along the coastal plain was set aside so that the oil and gas reserves beneath the tundra could be studied. Drilling remains a topic of contention, and an energy bill allowing North Slope oil development to extend onto the coastal plain of the Refuge was approved by the US House of Representatives on August 2, 2001.The Refuge encompasses an impressive variety of arctic and subarctic ecosystems, including coastal lagoons, barrier islands, arctic tundra, and mountainous terrain. Of all these, the arctic tundra is the landscape judged most important for wildlife. From the coast inland to an average of 30-60 kilometers

  1. Moisture transport and Atmospheric circulation in the Arctic

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo

    2013-04-01

    Cyclones are an important feature of the Mid-Latitudes and Arctic Climates. They are a main transporter of warm moist energy from the sub tropics to the poles. The Arctic Winter is dominated by highly stable conditions for most of the season due to a low level temperature inversion caused by a radiation deficit at the surface. This temperature inversion is a ubiquitous feature of the Arctic Winter Climate and can persist for up to weeks at a time. The inversion can be destroyed during the passage of a cyclone advecting moisture and warming the surface. In the absence of an inversion, and in the presence of this warm moist air mass, clouds can form quite readily and as such influence the radiative processes and energy budget of the Arctic. Wind stress caused by a passing cyclones also has the tendency to cause break-up of the ice sheet by induced rotation, deformation and divergence at the surface. For these reasons, we wish to understand the mechanisms of warm moisture advection into the Arctic from lower latitudes and how these mechanisms are controlled. The body of work in this area has been growing and gaining momentum in recent years (Stramler et al. 2011; Morrison et al. 2012; Screen et al. 2011). However, there has been no in depth analysis of the underlying dynamics to date. Improving our understanding of Arctic dynamics becomes increasingly important in the context of climate change. Many models agree that a northward shift of the storm track is likely in the future, which could have large impacts in the Arctic, particularly the sea ice. A climatology of six-day forward and backward trajectories starting from multiple heights around 70 N is constructed using the 22 year ECMWF reanalysis dataset (ERA-INT). The data is 6 hourly with a horizontal resolution of 1 degree on 16 pressure levels. Our methodology here is inspired by previous studies examining flow patterns through cyclones in the mid-latitudes. We apply these earlier mid-latitude methods in the

  2. Analysis of the Warmest Arctic Winter, 2015-2016

    Science.gov (United States)

    Cullather, Richard I.; Lim, Young-Kwon; Boisvert, Linette N.; Brucker, Ludovic; Lee, Jae N.; Nowicki, Sophie M. J.

    2016-01-01

    December through February 2015-2016 defines the warmest winter season over the Arctic in the observational record. Positive 2m temperature anomalies were focused over regions of reduced sea ice cover in the Kara and Barents Seas and southwestern Alaska. A third region is found over the ice-covered central Arctic Ocean. The period is marked by a strong synoptic pattern which produced melting temperatures in close proximity to the North Pole in late December and anomalous high pressure near the Taymyr Peninsula. Atmospheric teleconnections from the Atlantic contributed to warming over Eurasian high-latitude land surfaces, and El Niño-related teleconnections explain warming over southwestern Alaska and British Columbia, while warm anomalies over the central Arctic are associated with physical processes including the presence of enhanced atmospheric water vapor and an increased downwelling longwave radiative flux. Preconditioning of sea ice conditions by warm temperatures affected the ensuing spring extent.

  3. Atmospheric Circulation Response to Episodic Arctic Warming in an Idealized Model

    Science.gov (United States)

    Hell, M. C.; Schneider, T.; Li, C.

    2017-12-01

    Recent Arctic sea ice loss has drawn attention as a potential driver of fall/winter circulation changes. Past work has shown that sea ice loss can be related to a stratospheric polar vortex breakdown, with the result of long-delayed surface weather phenomena in late winter/early spring. In this study, we separate the atmospheric dynamic components and mean timescales to episodic polar surface heat fluxes using large ensembles of an idealized GCM in absence of continents and seasons. The atmospheric ensemble-mean response is linear related to the surface forcing strength and insensitive to the forcing symmetry. Analyses in the Transformed Eulerian Mean show that the responses can be separated into 1) an in-phase thermal adjustment, and 2) a lagged, eddy-driven component invoking long-standing anomalies in the lower stratosphere. The mid-latitude adjustment to the episodically reduced baroclinity leads to stratosphere-directed eddy-heat fluxes, establishing a stratospheric temperature anomaly responsible for vortex break down. In addition, we discuss the dependence on the background state via correlation in ensemble member space. Thus, we range the role of arctic perturbations in the transient large-scale circulation.

  4. “An Arctic Great Power”? Recent Developments in Danish Arctic Policy

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2016-01-01

    Denmark has been a firm advocate for Arctic cooperation in the recent decade, most importantly as the initiator of the 2008 Ilulissat meeting. Two new strategic publications – a foreign policy report (Danish Diplomacy and Defence in a Time of Change) and a defense report (The Ministry of Defence......’s Future Activities in the Arctic), which were published in May and June 2016 –highlight the Kingdom of Denmark’s status as “an Arctic great power” and the importance of pursuing Danish interests, which could indicate a shift away from a cooperation-oriented policy. This article investigates whether...... the documents represent a break in Danish Arctic policy. It argues that the two documents represent continuation, rather than change. They show that the High North continues to become steadily more important on the Danish foreign policy agenda, although the region remains just one of several regional priorities...

  5. Effects of Weather on Tourism and its Moderation

    Science.gov (United States)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  6. Relationship between weather conditions and admissions for ischemic stroke and subarachnoid hemorrhage.

    Science.gov (United States)

    Tarnoki, Adam D; Turker, Acar; Tarnoki, David L; Iyisoy, Mehmet S; Szilagyi, Blanka K; Duong, Hoang; Miskolczi, Laszlo

    2017-02-28

    To assess impacts of different weather conditions on hospitalizations of patients with ischemic strokes and subarachnoid hemorrhages (SAH) in South Florida. Diagnostic data of patients with spontaneous SAH and strokes were recorded between June 2010 and July 2013. Daily synchronous forecast charts were collected from the National Weather Service and the whole data were matched prospectively. The incidence rate ratio (IRR) was calculated. Increased incidence rate of ischemic stroke was consistent with the daily lowest and highest air pressure (IRR 1.03, P=0.128 and IRR 0.98, P=0.380, respectively), highest air temperature (IRR 0.99, P=0.375), and presence of hurricanes or storms (IRR 0.65, P=0.054). Increased incidence of SAH cases was consistent with daily lowest and highest air pressure (IRR 0.87, P<0.001 and IRR 1.08, P=0.019, respectively) and highest air temperature (IRR 0.98, P<0.001). Presence of hurricanes and/or tropical storms did not influence the frequency of SAH. We found no relationship between the presence of fronts and the admissions for ischemic stroke or SAH. Higher number of ischemic stroke and SAH cases can be expected with the daily lowest and highest air pressure, highest air temperature. Presence of hurricanes or tropical storms increased the risk of ischemic stroke but not the SAH. These findings can help to develop preventive health plans for cerebrovascular diseases.

  7. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  8. High latitude stratospheric electrical measurements in fair and foul weather under various solar conditions

    International Nuclear Information System (INIS)

    Holzworth, R.H.

    1981-01-01

    Stratospheric electric field and conductivity measurements during a wide variety of weather and solar conditions are presented. These data are all from high latitude sites in the months of either April or August. The vector electric field is determined by orthogonal double probes connected through high impedance inputs to differential electrometers. The direct conductivity measurement involves determining the relaxation time constant of the medium after refloating a shorted pair of separated probes. Vertical electric field data from several balloon flights with average duration of 18 h at ceiling in fair weather are shown to be well modeled by a simple exponential altitude dependent equation. Examples of solar flare and magnetospheric effects on stratospheric electric fields are shown. Data collected over electrified clouds and thunderstorms are presented along with a discussion of the thunderstorm related electric currents. Lightning stroke signatures in the stratosphere during a large thunderstorm are identified in the electric field data. Current surges through the stratosphere due to DC currents as well as the sferic are calculated. In nearly 1000 h of balloon data no direct solar influence is identified in these data except during major flares. (author)

  9. Adverse weather impact on aviation safety, investigation and oversight

    Science.gov (United States)

    Smith, M. J.

    1985-01-01

    A brief review of the weather factors that effect aviation safety with respect to U.S. Coast Guard operations is presented. Precise meteorological information is an absolute necessity to the Coast Guard which must conduct life saving and rescue operations under the worst of weather conditions. Many times the weather conditions in which they operate are the cause of or a contributing factor to the predicament from which they must execute a rescue operation.

  10. Determination of a Critical Sea Ice Thickness Threshold for the Central Arctic Ocean

    Science.gov (United States)

    Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.

    2017-12-01

    While sea ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic sea ice pack, determining the spatial variability of sea ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick sea ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface air temperature, responds to sea ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where sea ice transitions from the thickest multi-year ice to the very thin marginal ice seas. This provides an ideal location to simulate how the diminishing Arctic sea ice interacts with a warming atmosphere. Scenarios include both fixed sea surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface air temperature increase as sea ice thickness transitions from perennial ice to seasonal ice. While models predict a sea ice free Arctic at the end of the warm season in future decades, sea ice will continue to transform

  11. Weather effects on the success of longleaf pine cone crops

    Science.gov (United States)

    Daniel J. Leduc; Shi-Jean Susana Sung; Dale G. Brockway; Mary Anne Sword Sayer

    2016-01-01

    We used National Oceanic and Atmospheric Administration weather data and historical records of cone crops from across the South to relate weather conditions to the yield of cones in 10 longleaf pine (Pinus palustris Mill.) stands. Seed development in this species occurs over a three-year time period and weather conditions during any part of this...

  12. Genomics of Arctic cod

    Science.gov (United States)

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  13. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification

    NARCIS (Netherlands)

    Lameris, T.K.; Scholten, Ilse; Bauer, S.; Cobben, M.M.P.; Ens, B.J.; Nolet, B.A.

    2017-01-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset

  14. Increased LNG into North America may threaten northern/Arctic gas development

    International Nuclear Information System (INIS)

    Howard, P.

    2006-01-01

    Since 2000, liquefied natural gas (LNG) has attracted considerable attention in response to record high price, high demand and tight supply of natural gas. LNG trade is expected to be 18 per cent of North American gas supply by 2020. The natural gas market is also affected by demand dominated by gas-fired power generation. The balance between supply and demand, combined with external factors of economic upsets and weather, has resulted in a volatile market place. LNG can currently be landed in North American at prices that compete with the average continental well head price. In January 2006, there were more than 60 competing LNG regasification projects proposed to access the North American gas market. This presentation listed the proposed facilities to import LNG and emphasized the need for a comprehensive analysis of gas development, given the degree of uncertainty regarding significant investment in gas supply, demand, pipelines and LNG projects. While only a few of the proposed projects will actually be constructed, they will more than double the existing output by 2010. The many possible changes in regional marketplace conditions were discussed with particular attention to the effects on the economic viability of natural gas developments; the impacts of LNG imports on capacities and flows in natural gas pipeline corridors; and, the influence of increased natural gas supplies on local and regional prices. It was noted that since conventional resources in Canada and the United States have reached a plateau, the next logical supply sources are Alaska, the Beaufort Sea, the Mackenzie Delta and the Arctic Islands. However, the development of northern and Arctic gas resources may be delayed if the level of LNG imports is sufficient to fill the deficiency in supply and demand. tabs., figs

  15. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  16. Weathering processes under various moisture conditions in a lignite mine spoil from As Pontes (N.W. Spain)

    International Nuclear Information System (INIS)

    Seoane, S.; Leiros, M.C.

    1997-01-01

    Processes contributing to acid release/consumption during weathering of a lignite mine spoil (2.3% w/w S as sulfides) from As Pontes (N.W. Spain) were studied under three moisture conditions (at field capacity or under alternate wetting-drying or forced percolation), which were simulated in laboratory experiments. Oxidation of sulfides to sulfates was favoured under all three moisture conditions, releasing most acid in spoil kept at field capacity. Hydroxysulfates formed in spoil kept at field capacity or under alternate wetting-drying conditions, thereby contributing to acid release. Acid consumption by dissolution of clay minerals, especially micas, was favoured under all three moisture conditions, but was particularly intense in spoil at field capacity. Dissolution of aluminium oxides was also favoured under all the moisture conditions studied. 27 refs., 8 figs., 6 tabs

  17. Evidence and implications of recent climate change in Northern Alaska and other Arctic regions

    Science.gov (United States)

    Hinzman, L.D.; Bettez, N.D.; Bolton, W.R.; Chapin, F.S.; Dyurgerov, M.B.; Fastie, C.L.; Griffith, B.; Hollister, R.D.; Hope, A.; Huntington, H.P.; Jensen, A.M.; Jia, G.J.; Jorgenson, T.; Kane, D.L.; Klein, D.R.; Kofinas, G.; Lynch, A.H.; Lloyd, A.H.; McGuire, A.D.; Nelson, Frederick E.; Oechel, W.C.; Osterkamp, T.E.; Racine, C.H.; Romanovsky, V.E.; Stone, R.S.; Stow, D.A.; Sturm, M.; Tweedie, C.E.; Vourlitis, G.L.; Walker, M.D.; Walker, D.A.; Webber, P.J.; Welker, J.M.; Winker, K.S.; Yoshikawa, K.

    2005-01-01

    The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth system and how humans will need to adapt. Our holistic review presents a broad array of evidence that illustrates convincingly; the Arctic is undergoing a system-wide response to an altered climatic state. New extreme and seasonal surface climatic conditions are being experienced, a range of biophysical states and processes influenced by the threshold and phase change of freezing point are being altered, hydrological and biogeochemical cycles are shifting, and more regularly human sub-systems are being affected. Importantly, the patterns, magnitude and mechanisms of change have sometimes been unpredictable or difficult to isolate due to compounding factors. In almost every discipline represented, we show how the biocomplexity of the Arctic system has highlighted and challenged a paucity of integrated scientific knowledge, the lack of sustained observational and experimental time series, and the technical and logistic constraints of researching the Arctic environment. This study supports ongoing efforts to strengthen the interdisciplinarity of arctic system science and improve the coupling of large scale experimental manipulation with sustained time series observations by incorporating and integrating novel technologies, remote sensing and modeling. ?? Springer 2005.

  18. Environmental contaminants in arctic foxes (Alopex lagopus) in Svalbard: Relationships with feeding ecology and body condition

    International Nuclear Information System (INIS)

    Fuglei, E.; Bustnes, J.O.; Hop, H.; Mork, T.; Bjoernfoth, H.; Bavel, B. van

    2007-01-01

    Adipose tissues from 20 arctic foxes (Alopex lagopus) of both sexes from Svalbard were analysed for polybrominated diphenyl ether (PBDE), polychlorinated biphenyl (PCB), p,p'-dichlorodiphenyltrichloroethane (DDE), chlordane, and hexachlorobenzene (HCB) concentrations. Gender (0.43 15 N from muscle samples and showed significantly positive relationship with all contaminants, with the exception of HCB concentrations. This indicates that foxes feeding at high trophic levels had higher tissue contaminant levels as a result of bioaccumulation in the food chain. - High contaminant concentrations in the coastal ecotype of arctic fox may cause toxic health effects due to huge annual cyclic variation in storage and mobilisation of adipose tissue

  19. Marine Invasive Species Management: Adapting in the Arctic

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    The rapid pace of climate change and increased human disturbance of ecosystems in the Arctic is bringing urgency to concern over non-native species introductions and their potential threats to the marine environment and its economic productivity, where before environmental conditions served...

  20. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  1. Observing Arctic Sea Ice from Bow to Screen: Introducing Ice Watch, the Data Network of Near Real-Time and Historic Observations from the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)

    Science.gov (United States)

    Orlich, A.; Hutchings, J. K.; Green, T. M.

    2013-12-01

    The Ice Watch Program is an open source forum to access in situ Arctic sea ice conditions. It provides the research community and additional stakeholders a convenient resource to monitor sea ice and its role in understanding the Arctic as a system by implementing a standardized observation protocol and hosting a multi-service data portal. International vessels use the Arctic Shipborne Sea Ice Standardization Tool (ASSIST) software to report near-real time sea ice conditions while underway. Essential observations of total ice concentration, distribution of multi-year ice and other ice types, as well as their respective stage of melt are reported. These current and historic sea ice conditions are visualized on interactive maps and in a variety of statistical analyses, and with all data sets available to download for further investigation. The summer of 2012 was the debut of the ASSIST software and the Ice Watch campaign, with research vessels from six nations reporting from a wide spatio-temporal scale spanning from the Beaufort Sea, across the North Pole and Arctic Basin, the coast of Greenland and into the Kara and Barents Seas during mid-season melt and into the first stages of freeze-up. The 2013 summer field season sustained the observation and data archiving record, with participation from some of the same cruises as well as other geographic and seasonal realms covered by new users. These results are presented to illustrate the evolution of the program, increased participation and critical statistics of ice regime change and record of melt and freeze processes revealed by the data. As an ongoing effort, Ice Watch/ASSIST aims to standardize observations of Arctic-specific sea ice features and conditions while utilizing nomenclature and coding based on the World Meteorological Organization (WMO) standards and the Antarctic Sea Ice and Processes & Climate (ASPeCt) protocol. Instigated by members of the CliC Sea Ice Working Group, the program has evolved with

  2. Cold Weather and Cardiovascular Disease

    Science.gov (United States)

    ... Venous Thromboembolism Aortic Aneurysm More Cold Weather and Cardiovascular Disease Updated:Sep 16,2015 Th is winter ... and procedures related to heart disease and stroke. Cardiovascular ConditionsConditions Home • Arrhythmia and Atrial Fibrillation • Cardiac ...

  3. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  4. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    Science.gov (United States)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  5. Thermal performance evaluation of a massive brick wall under real weather conditions via the Conduction Transfer function method

    Directory of Open Access Journals (Sweden)

    Emilio Sassine

    2017-12-01

    Full Text Available The reliable estimation of buildings energy needs for cooling and heating is essential for any eventual thermal improvement of the envelope or the HVAC equipment. This paper presents an interesting method to evaluate the thermal performance of a massive wall by using the frequency-domain regression (FDR method to calculate CTF coefficients by means of the Fourier transform. The method is based on the EN ISO 13786 (2007 procedure by using the Taylor expansion for the elements of the heat matrix. Numerical results were validated through an experimental heating box with stochastic boundary conditions on one side of the wall representing real weather conditions and constant temperature profile on the other side representing the inside ambiance in real cases. Finally, a frequency analysis was performed in order to assess the validity and accuracy of the method used. The results show that development to the second order is sufficient to predict the thermal behavior of the studied massive wall in the range of frequencies encountered in the building applications (one hour time step. This method is useful for thermal transfer analysis in real weather conditions where the outside temperature is stochastic; it also allows the evaluation of the thermal performance of a wall through a frequency analysis.

  6. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  7. Vehicular-networking- and road-weather-related research in Sodankylä

    Science.gov (United States)

    Sukuvaara, Timo; Mäenpää, Kari; Ylitalo, Riika

    2016-10-01

    Vehicular-networking- and especially safety-related wireless vehicular services have been under intensive research for almost a decade now. Only in recent years has road weather information also been acknowledged to play an important role when aiming to reduce traffic accidents and fatalities via intelligent transport systems (ITSs). Part of the progress can be seen as a result of the Finnish Meteorological Institute's (FMI) long-term research work in Sodankylä within the topic, originally started in 2006. Within multiple research projects, the FMI Arctic Research Centre has been developing wireless vehicular networking and road weather services, in co-operation with the FMI meteorological services team in Helsinki. At the beginning the wireless communication was conducted with traditional Wi-Fi type local area networking, but during the development the system has evolved into a hybrid communication system of a combined vehicular ad hoc networking (VANET) system with special IEEE 802.11p protocol and supporting cellular networking based on a commercial 3G network, not forgetting support for Wi-Fi-based devices also. For piloting purposes and further research, we have established a special combined road weather station (RWS) and roadside unit (RSU), to interact with vehicles as a service hotspot. In the RWS-RSU we have chosen to build support to all major approaches, IEEE 802.11, traditional Wi-Fi and cellular 3G. We employ road weather systems of FMI, along with RWS and vehicle data gathered from vehicles, in the up-to-date localized weather data delivered in real time. IEEE 802.11p vehicular networking is supported with Wi-Fi and 3G communications. This paper briefly introduces the research work related to vehicular networking and road weather services conducted in Sodankylä, as well as the research project involved in this work. The current status of instrumentation, available services and capabilities are presented in order to formulate a clear general view of

  8. Active microwave measurements of sea ice under fall conditions: The RADARSAT/FIREX fall experiment. [in the Canadian Arctic

    Science.gov (United States)

    Onstott, R. G.; Kim, Y. S.; Moore, R. K.

    1984-01-01

    A series of measurements of the active microwave properties of sea ice under fall growing conditions was conducted. Ice in the inland waters of Mould Bay, Crozier Channel, and intrepid inlet and ice in the Arctic Ocean near Hardinge Bay was investigated. Active microwave data were acquired using a helicopter borne scatterometer. Results show that multiyear ice frozen in grey or first year ice is easily detected under cold fall conditions. Multiyear ice returns were dynamic due to response to two of its scene constituents. Floe boundaries between thick and thin ice are well defined. Multiyear pressure ridge returns are similar in level to background ice returns. Backscatter from homogeneous first year ice is seen to be primarily due to surface scattering. Operation at 9.6 GHz is more sensitive to the detailed changes in scene roughness, while operation at 5.6 GHz seems to track roughness changes less ably.

  9. Poor weather conditions and flight operations: Implications for air ...

    African Journals Online (AJOL)

    This paper examined various weather hazards which include thunderstorm, fog, dust haze and line squall that affect flight operation such as flight delays, diversion and cancellation. The study revealed that fog accounted for 13.2% of flight cancellation at the airport and line squall similarly accounted for 10.1% of delays, ...

  10. Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

    Czech Academy of Sciences Publication Activity Database

    Eitzinger, Josef; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rötter, R.; Kersebaum, K. C.; Olesen, J. E.; Patil, R. H.; Saylan, L.; Çaldag, B.; Caylak, O.

    2013-01-01

    Roč. 151, č. 6 (2013), s. 813-835 ISSN 0021-8596 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : crop models * weather conditions * winter wheat * Austria Subject RIV: EH - Ecology, Behaviour Impact factor: 2.891, year: 2013

  11. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions

    DEFF Research Database (Denmark)

    Mansfield, K.L.; Racloz, V.; McElhinney, L.M.

    2006-01-01

    We report a Molecular epidemiological study of rabies in Arctic Countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies Virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from...... sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating ill the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group...... in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders....

  12. Modeling Relevant to Safe Operations of U.S. Navy Vessels in Arctic Conditions: Physical Modeling of Ice Loads

    Science.gov (United States)

    2016-06-01

    Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, 1–6 July, Rio de Janeiro , Brazil, 6:495–505. New York...Arctic Engineering, 1–6 July, Rio de Janeiro , Brazil, 6:495–505. New York, NY: American Society of Mechanical Engineers. doi:10.1115/OMAE2012-83927...of ice impacts with Navy ships. These large-scale tests will provide important benchmark data to support the de - velopment of numerical testbeds

  13. Seasonal variability in Arctic temperatures during the early Eocene

    Science.gov (United States)

    Eberle, J. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, H.

    2009-12-01

    As a deep time analog for today’s rapidly warming Arctic region, early Eocene (~53 Ma) rocks on Ellesmere Island, Arctic Canada (~79° N.) preserve evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions that at present, quantitative estimates of Eocene Arctic climate are rare. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we provide estimates of early Eocene Arctic temperature, including mean annual temperature (MAT) of ~ 8° C, mean annual range in temperature (MART) of ~ 16.5° C, warm month mean temperature (WMMT) of 16 - 19° C, and cold month mean temperature (CMMT) of 0 - 1° C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, unusually high estimates of early Eocene Arctic MAT and sea surface temperature (SST) by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and marine Crenarchaeota fall within our range of WMMT, suggesting a bias towards summer values. Consequently, caution should be taken when using these methods to infer MAT and SST that, in turn, are used to constrain climate models. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although in both of these reptiles, past temperature tolerances were greater than in their living descendants.

  14. A Flexible Socioeconomic Scenarios Framework for the Study of Plausible Arctic Futures

    Science.gov (United States)

    Reissell, A. K.; Peters, G. P.; Riahi, K.; Kroglund, M.; Lovecraft, A. L.; Nilsson, A. E.; Preston, B. L.; van Ruijven, B. J.

    2016-12-01

    Future developments of the Arctic region are associated with different drivers of change - climate, environmental, and socio-economic - and their interactions, and are highly uncertain. The uncertainty poses challenges for decision-making, calling for development of new analytical frameworks. Scenarios - coherent narratives describing potential futures, pathways to futures, and drivers of change along the way - can be used to explore the consequences of the key uncertainties, particularly in the long-term. In a participatory scenarios workshop, we used both top-down and bottom-up approaches for the development of a flexible socioeconomic scenarios framework. The top-down approach was linked to the global Integrated Assessment Modeling framework and its Shared Socio-Economic Pathways (SSPs), developing an Arctic extension of the set of five storylines on the main socioeconomic uncertainties in global climate change research. The bottom-up approach included participatory development of narratives originating from within the Arctic region. For extension of global SSPs to the regional level, we compared the key elements in the global SSPs (Population, Human Development, Economy & Lifestyle, Policies & Institutions, Technology, and Environment & Natural Resources) and key elements in the Arctic. Additional key elements for the Arctic scenarios include, for example, seasonal migration, the large role of traditional knowledge and culture, mixed economy, nested governance structure, human and environmental security, quality of infrastructure. The bottom-up derived results suggested that the scenarios developed independent of the SSPs could be mapped back to the SSPs to demonstrate consistency with respect to representing similar boundary conditions. The two approaches are complimentary, as the top-down approach can be used to set the global socio-economic and climate boundary conditions, and the bottom-up approach providing the regional context. One key uncertainty and

  15. The Prevailing Weather and Traffic Conditions in the Evaluation of a Future ECA in the Mediterranean Sea. A view into the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    Marcella Castells i Sanabra

    2014-03-01

    Full Text Available Appendix III of MARPOL's Annex VI sets out the criteria and procedures for designating an emission control area (ECA.These criteria includes: a clear delineation of the proposed ECA; types of emissions proposed for control, land and sea areas at risk; emission quantification and impact assessment; prevailing weather conditions; data and quality on marine traffic; land based measures concurrent with the ECA adoption and the relative costs of reducing emissions from ships. This paper analyses the climate parameter together with traffic conditions: prevailing weather conditions as a parameter to be kept in mind for the adoption of a future ECA in the Mediterranean Sea. Preliminary results would show how marine emissions coming from existing traffic will impact the sea and land ecology in the Mediterranean area.

  16. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    Science.gov (United States)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  17. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  18. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  19. U.S. Arctic research in a technological age

    International Nuclear Information System (INIS)

    Johnson, P.L.

    1993-01-01

    The United States Arctic Research Commission was established in 1984 primarily as an advisory agency. An Interagency Arctic Research Policy Committee is one of the main recipients of the Commission's recommendations. The Committee formulated an Arctic research policy calling for research focused on national security concerns, regional development with minimal environmental or adverse social impact, and scientific research on Arctic phenomena and processes. In basic science, emphasis is placed on the need to understand Arctic processes as part of the global earth system. These processes include those that affect and are affected by climatic change. A new research program in Arctic systems science has three components: paleoenvironmental studies on ice core from Greenland; ocean-atmosphere interactions; and land-atmosphere interactions. The Commission also recognizes a need to focus on issues relevant to the Arctic as an integral component of the world economic system, since the Arctic is a significant source of petroleum and minerals. The Commission recommended that the Committee develop an Arctic engineering research plan with emphasis on such topics as oil spill prevention, waste disposal, small-scale power generation, and Arctic construction techniques. The USA is also cooperating in international Arctic research through the International Arctic Science Committee, the Arctic Environmental Protection Strategy, and the North Pacific Marine Science Organization

  20. Delayed responses of an Arctic ecosystem to an extremely dry summer: impacts on net ecosystem exchange and vegetation functioning

    Science.gov (United States)

    Zona, D.; Lipson, D. A.; Richards, J. H.; Phoenix, G. K.; Liljedahl, A. K.; Ueyama, M.; Sturtevant, C. S.; Oechel, W. C.

    2013-12-01

    The importance and mode of action of extreme events on the global carbon budget are inadequately understood. This includes the differential impact of extreme events on various ecosystem components, lag effects, recovery times, and compensatory processes. Summer 2007 in Barrow, Arctic Alaska, experienced unusually high air temperatures (fifth warmest over a 65 yr period) and record low precipitation (lowest over a 65 yr period). These abnormal conditions resulted in strongly reduced net Sphagnum CO2 uptake, but no effect neither on vascular plant development nor on net ecosystem exchange (NEE) from this arctic tundra ecosystem. Gross primary production (GPP) and ecosystem respiration (Reco) were both generally greater during most of this extreme summer. Cumulative ecosystem C uptake in 2007 was similar to the previous summers, showing the capacity of the ecosystem to compensate in its net ecosystem exchange (NEE) despite the impact on other functions and structure such as substantial necrosis of the Sphagnum layer. Surprisingly, the lowest ecosystem C uptake (2005-2009) was observed during the 2008 summer, i.e the year directly following the extremely summer. In 2008, cumulative C uptake was ∼70% lower than prior years. This reduction cannot solely be attributed to mosses, which typically contribute with ∼40% - of the entire ecosystem C uptake. The minimum summer cumulative C uptake in 2008 suggests that the entire ecosystem experienced difficulty readjusting to more typical weather after experiencing exceptionally warm and dry conditions. Importantly, the return to a substantial cumulative C uptake occurred two summers after the extreme event, which suggest a high resilience of this tundra ecosystem. Overall, these results show a highly complex response of the C uptake and its sub-components to atypically dry conditions. The impact of multiple extreme events still awaits further investigation.

  1. THE INFLUENCE OF WEATHER CONDITIONS OF EASTERN POLAND ON SWEET CORN YIELDS AND LENGTH OF GROWING SEASON

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2016-09-01

    Full Text Available The aim of the study was to determine the effect of weather components (air temperature, precipitation on the growth, yield and the length of the growing season of sweet corn cultivated in eastern Poland. The results come from a field experiment conducted in 2006–2011. Weather conditions in the successive years of the study significantly modified the yield of ears, weight and number of formatted ears, high of plants and the length of the growing season of sweet corn. Good yielding of sweet corn favoured years with moderate air temperatures in July and uniform distribution of precipitation during the growing season. The highest yield of ears was found in 2011, the lowest in the very difficult in terms of weather 2006. The shortest growing season was characterized corn grown in the years 2006 and 2010 with the high air temperatures in July and August, the longest in the years 2009 and 2011, in which the temperatures in the period June-August were the lowest of all the years of research. Irrespective of the year of study, cv ‘Sheba F1’ was formatted eras with higher weight than cv ‘Sweet Nugget F1’.

  2. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  3. Effects of weather conditions on emergency ambulance calls for acute coronary syndromes

    Science.gov (United States)

    Vencloviene, Jone; Babarskiene, Ruta; Dobozinskas, Paulius; Siurkaite, Viktorija

    2015-08-01

    The aim of this study was to evaluate the relationship between weather conditions and daily emergency ambulance calls for acute coronary syndromes (ACS). The study included data on 3631 patients who called the ambulance for chest pain and were admitted to the department of cardiology as patients with ACS. We investigated the effect of daily air temperature ( T), barometric pressure (BP), relative humidity, and wind speed (WS) to detect the risk areas for low and high daily volume (DV) of emergency calls. We used the classification and regression tree method as well as cluster analysis. The clusters were created by applying the k-means cluster algorithm using the standardized daily weather variables. The analysis was performed separately during cold (October-April) and warm (May-September) seasons. During the cold period, the greatest DV was observed on days of low T during the 3-day sequence, on cold and windy days, and on days of low BP and high WS during the 3-day sequence; low DV was associated with high BP and decreased WS on the previous day. During June-September, a lower DV was associated with low BP, windless days, and high BP and low WS during the 3-day sequence. During the warm period, the greatest DV was associated with increased BP and changing WS during the 3-day sequence. These results suggest that daily T, BP, and WS on the day of the ambulance call and on the two previous days may be prognostic variables for the risk of ACS.

  4. Globalising the Arctic Climate:

    DEFF Research Database (Denmark)

    Corry, Olaf

    2017-01-01

    This chapter uses an object-oriented approach to explore how the Arctic is being constituted as an object of global governance within an emerging ‘global polity’, partly through geoengineering plans and political visions ('imaginaries'). It suggests that governance objects—the socially constructed...... on world politics. The emergence of the Arctic climate as a potential target of governance provides a case in point. The Arctic climate is becoming globalised, pushing it up the political agenda but drawing it away from its local and regional context....

  5. The Evolving Arctic: Current State of U.S. Arctic Policy

    Science.gov (United States)

    2013-09-01

    to advance national interests. The U.S. has not yet acceded to UNCLOS, and trails its Arctic neighbors in regards to national policy and direction...maritime transportation, and maritime tourism are expanding exponentially. As commercial opportunities increase in the region, the U.S. needs an...UNCLOS without having ratified it, it trails behind the remainder of the Arctic states on its policy and in asserting its

  6. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    Science.gov (United States)

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  7. Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies

    Science.gov (United States)

    Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.

    2012-04-01

    Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.

  8. The Arctic zone: possibilities and risks of development

    Science.gov (United States)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  9. Tracking Biological and Ecosystem Responses to Changing Environmental Conditions in the Pacific Arctic

    Science.gov (United States)

    Grebmeier, J. M.; Cooper, L. W.; Frey, K. E.; Moore, S. E.

    2014-12-01

    Changing seasonal sea ice conditions and seawater temperatures strongly influence biological processes and marine ecosystems at high latitudes. In the Pacific Arctic, persistent regions termed "hotspots", are localized areas with high benthic macroinfaunal biomass that have been documented over four decades (see Figure). These regions are now being more formally tracked to relate physical forcing and ecosystem response as an Arctic Distributed Biological Observatory (DBO) supported by the US National Ocean Policy Implementation Plan and international partners. These hotspots are important foraging areas for upper trophic level benthic feeders, such as marine mammals and seabirds. South of St. Lawrence Island (SLI) in the northern Bering Sea, benthic feeding spectacled eiders, bearded seals and walruses are important winter consumers of infauna, such as bivalves and polychaetes. Gray whales have historically been a major summer consumer of benthic amphipods in the Chirikov Basin to the north of SLI, although summertime sightings of gray whales declined in the Chirikov from the 1980s up until at least 2002. The SE Chukchi Sea hotspot, as are the other hotspots, is maintained by export of high chlorophyll a that is produced locally as well as advected by water masses transiting northward through the system. Both walrus and gray whales are known to forage in this hotspot seasonally on high biomass levels of benthic prey. Notably the center of the highest benthic biomass regions has shifted northward in three of the DBO hotspots in recent years. This has coincided with changing sediment grain size, an indicator of current speed, and is also likely a response to changes in primary production in the region. Studies of these broad biological responses to changing physical drivers have been facilitated through development of the DBO cooperative effort by both US and international scientists. The DBO includes a series of coordinated, multi-trophic level observations that

  10. Effects of intraday weather changes on asset returns and volatilities

    Directory of Open Access Journals (Sweden)

    Hyein Shim

    2017-12-01

    Full Text Available Analyzing the intraday dataset on weather and market information with the use of the extended GJR-GARCH framework, this study explores in depth the weather effects on the asset returns and volatilities of the Korean stock and derivatives markets. Our intraday analyses contribute to the existing literature by going beyond the attempt of prior studies to capture the weather effects using the average daily observations alone. The empirical results document a modest presence of the weather effect on the returns and volatilities, though the significance of its impact is found to vary across different market conditions and indices. We also find that the return and volatility respond asymmetrically to extremely good and bad weather conditions. The intraday analyses show that the weather effect on the returns and volatilities is more statistically significant at the beginning of the working day or the lunch break, indicating the intraday weather effects on the financial market.

  11. Regional cooperation and sustainable development: The Arctic

    International Nuclear Information System (INIS)

    Vartanov, R.V.

    1993-01-01

    The Arctic is one of the regions most alienated from sustainable development, due to consequences of nuclear testing, long-range pollution transport, large-scale industrial accidents, irrational use of natural resources, and environmentally ignorant socio-economic policies. Revelations of the state of the USSR Arctic shows that air quality in northern cities is below standard, fish harvests are declining, pollution is not being controlled, and native populations are being affected seriously. The presence of immense resources in the Arctic including exploitable offshore oil reserves of 100-200 billion bbl and the prospect of wider utilization of northern sea routes should stimulate establishment of a new international regime of use, research, and protection of Arctic resources in favor of sustainable development in the region. The Arctic marine areas are the key component of the Arctic ecosystem and so should receive special attention. A broad legal framework has already been provided for such cooperation. Included in such cooperation would be native peoples and non-Arctic countries. Specifics of the cooperation would involve exchanging of scientific and technical information, promotion of ecologically sound technologies, equipping Arctic regions with means to control environmental quality, harmonizing environmental protection legislation, and monitoring Arctic environmental quality

  12. THE APPLICABILITY OF EXISTING COMPUTER TECHNOLOGY TO AUTOMATE FUZZY SYNTHESIS OF TRAFFIC LIGHT UAV IN ADVERSE WEATHER CONDITIONS

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2014-01-01

    Full Text Available The results of the analysis of the applicability of known application software systems for automated synthesis of fuzzy control traffic light UAV during its flight in adverse weather conditions. The solution is based on a previously formulated and put into consideration the principle of permissible limited a priori estimation of the uncertainty of aerodynamic characteristics of UAVs.

  13. Arctic Ocean surface geostrophic circulation 2003–2014

    Directory of Open Access Journals (Sweden)

    T. W. K. Armitage

    2017-07-01

    Full Text Available Monitoring the surface circulation of the ice-covered Arctic Ocean is generally limited in space, time or both. We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean derived from satellite radar altimetry and characterise their seasonal to decadal variability from 2003 to 2014, a period of rapid environmental change in the Arctic. Geostrophic currents around the Arctic basin increased in the late 2000s, with the largest increases observed in summer. Currents in the southeastern Beaufort Gyre accelerated in late 2007 with higher current speeds sustained until 2011, after which they decreased to speeds representative of the period 2003–2006. The strength of the northwestward current in the southwest Beaufort Gyre more than doubled between 2003 and 2014. This pattern of changing currents is linked to shifting of the gyre circulation to the northwest during the time period. The Beaufort Gyre circulation and Fram Strait current are strongest in winter, modulated by the seasonal strength of the atmospheric circulation. We find high eddy kinetic energy (EKE congruent with features of the seafloor bathymetry that are greater in winter than summer, and estimates of EKE and eddy diffusivity in the Beaufort Sea are consistent with those predicted from theoretical considerations. The variability of Arctic Ocean geostrophic circulation highlights the interplay between seasonally variable atmospheric forcing and ice conditions, on a backdrop of long-term changes to the Arctic sea ice–ocean system. Studies point to various mechanisms influencing the observed increase in Arctic Ocean surface stress, and hence geostrophic currents, in the 2000s – e.g. decreased ice concentration/thickness, changing atmospheric forcing, changing ice pack morphology; however, more work is needed to refine the representation of atmosphere–ice–ocean coupling in models before we can fully

  14. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  15. Weather derivatives: Business hedge instrument from weather risks

    Directory of Open Access Journals (Sweden)

    Đorđević Bojan S.

    2014-01-01

    Full Text Available In the late 1990s, a new financial market was developed - a market for weather derivatives, so that the risk managers could hedge their exposure to weather risk. After a rather slow start, the weather derivatives market had started to grow rapidly. Risk managers could no longer blame poor financial results on the weather. Weather risk could now be removed by hedging procedure. This paper will explain briefly what the weather derivatives are and will point out at some of the motives for use of derivatives. Thereafter we will look at the history of the weather risk market, how the weather derivatives market has developed in recent years and also who are the current and potential players in the weather derivatives market.

  16. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  17. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  18. Exploring the mobility of cryoconite on High-Arctic glaciers

    Science.gov (United States)

    Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.

    2010-12-01

    There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest

  19. Constraining estimates of methane emissions from Arctic permafrost regions with CARVE

    Science.gov (United States)

    Chang, R. Y.; Karion, A.; Sweeney, C.; Henderson, J.; Mountain, M.; Eluszkiewicz, J.; Luus, K. A.; Lin, J. C.; Dinardo, S.; Miller, C. E.; Wofsy, S. C.

    2013-12-01

    Permafrost in the Arctic contains large carbon pools that are currently non-labile, but can be released to the atmosphere as polar regions warm. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents in-situ measurements of methane made on board an aircraft during the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), which sampled over the permafrost regions of Alaska. Using measurements from May to September 2012, seasonal emission rate estimates of methane from tundra are constrained using the Stochastic Time-Inverted Lagrangian Transport model, a Lagrangian particle dispersion model driven by custom polar-WRF fields. Preliminary results suggest that methane emission rates have not greatly increased since the Arctic Boundary Layer Experiment conducted in southwest Alaska in 1988.

  20. Acquiring Marine Data in the Canada Basin, Arctic Ocean

    Science.gov (United States)

    Hutchinson, Deborah R.; Jackson, H. Ruth; Shimeld, John W.; Chapman, C. Borden; Childs, Jonathan R.; Funck, Thomas; Rowland, Robert W.

    2009-06-01

    Despite the record minimum ice extent in the Arctic Ocean for the past 2 years, collecting geophysical data with towed sensors in ice-covered regions continues to pose enormous challenges. Significant parts of the Canada Basin in the western Arctic Ocean have remained largely unmapped because thick multiyear ice has limited access even by research vessels strengthened against ice [Jackson et al., 1990]. Because of the resulting paucity of data, the western Arctic Ocean is one of the few areas of ocean in the world where major controversies still exist with respect to its origin and tectonic evolution [Grantz et al., 1990; Lawver and Scotese, 1990; Lane, 1997; Miller et al., 2006]. This article describes the logistical challenges and initial data sets from geophysical seismic reflection, seismic refraction, and hydrographic surveys in the Canada Basin conducted by scientists with U.S. and Canadian government agencies (Figure 1a) to fulfill the requirements of the United Nations Convention on the Law of the Sea to determine sediment thickness, geological origin, and basin evolution in this unexplored part of the world. Some of these data were collected using a single ship, but the heaviest ice conditions necessitated using two icebreakers, similar to other recent Arctic surveys [e.g., Jokat, 2003].

  1. Prevalence of weather sensitivity in Germany and Canada

    Science.gov (United States)

    Mackensen, Sylvia; Hoeppe, Peter; Maarouf, Abdel; Tourigny, Pierre; Nowak, Dennis

    2005-01-01

    Several studies have shown that atmospheric conditions can affect well-being or disease, and that some individuals seem to be more sensitive to weather than others. Since epidemiological data on the prevalence of weather-related health effects are lacking, two representative weather sensitivity (WS) surveys were conducted independently in Germany and Canada. The objectives of this paper are: (1) to identify the prevalence of WS in Germany and Canada, (2) to describe weather-related symptoms and the corresponding weather conditions, and (3) to compare the findings in the two countries. In Germany 1,064 citizens (age >16 years) were interviewed in January 2001, and in Canada 1,506 persons (age >18 years) were interviewed in January 1994. The results showed that 19.2% of the German population thought that weather affected their health “to a strong degree,” 35.3% that weather had “some influence on their health” (sum of both = 54.5% weather sensitive), whereas the remaining 45.5% did not consider that weather had an effect on their health status. In Canada 61% of the respondents considered themselves to be sensitive to the weather. The highest prevalence of WS (high + some influence) in Germans was found in the age group older than 60 years (68%), which was almost identical in the Canadian population (69%). The highest frequencies of weather-related symptoms were reported in Germany for stormy weather (30%) and when it became colder (29%). In Canada mainly cold weather (46%), dampness (21%) and rain (20%) were considered to affect health more than other weather types. The most frequent symptoms reported in Germany were headache/migraine (61%), lethargy (47%), sleep disturbances (46%), fatigue (42%), joint pain (40%), irritation (31%), depression (27%), vertigo (26%), concentration problems (26%) and scar pain (23%). Canadian weather-sensitive persons reported colds (29%), psychological effects (28%) and painful joints, muscles or arthritis (10%). In Germany 32

  2. Arctic tipping points in an Earth system perspective.

    Science.gov (United States)

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  3. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    Science.gov (United States)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  4. THE ARCTIC: A DIALOGUE FOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Yury Mazurov

    2010-01-01

    Full Text Available In September 2010, Moscow hosted the International Arctic Forum “The Arctic—Territory of Dialogue.” The Arctic Forum focused its attention on elements of sustainable development in the Arctic region, i.e., ecology, economics, infrastructure, social services, security, and geopolitics. Many Russian experts and many well-known politicians and experts from leading research centers of the Arctic countries (Canada, Denmark, Finland, Iceland, Norway, Sweden, and USA, as well as by participants from France, Germany, Netherlands, and other countries attended the forum. Scholars and public figures from the European countries, representatives of the NATO, the Organization for Security and Cooperation in Europe and other institutions were also present at the conference. In his key-note speech the Chairman of the Board of Trustees of the Russian Geographical Society (RGS, Prime Minister of the Russian Federation, Vladimir V. Putin formulated the principles of Russian national policy in the Arctic. Russian and foreign participants supported the idea of continuing dialogue on the Arctic under the RGS’s aegis and the transformation of the Arctic Forum into a permanent platform for discussions on the most urgent issues of the region.

  5. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.F.; Braune, B.M.; O' Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G

    2003-04-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by {delta}{sup 15}N) is positively correlated with increasing {delta}{sup 13}C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls ({sigma}PCB) > chlordane-related compounds ({sigma}CHLOR) > hexachlorocyclohexane ({sigma}HCH) > total toxaphene (TOX) {>=}chlorobenzenes ({sigma}ClBz) > DDT-related isomers ({sigma}DDT). In liver, {sigma}CHLOR was the most abundant OC group, followed by {sigma}PCB > TOX > {sigma}HCH > {sigma}ClBz > {sigma}DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of {delta}{sup 15}N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While {sigma}PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  6. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    International Nuclear Information System (INIS)

    Hoekstra, P.F.; Braune, B.M.; O'Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G.

    2003-01-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by δ 15 N) is positively correlated with increasing δ 13 C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (ΣPCB) > chlordane-related compounds (ΣCHLOR) > hexachlorocyclohexane (ΣHCH) > total toxaphene (TOX) ≥chlorobenzenes (ΣClBz) > DDT-related isomers (ΣDDT). In liver, ΣCHLOR was the most abundant OC group, followed by ΣPCB > TOX > ΣHCH > ΣClBz > ΣDDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of δ 15 N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While ΣPCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs

  7. Atlantic water heat transfer through the Arctic Gateway (Fram Strait) during the Last Interglacial

    Science.gov (United States)

    Zhuravleva, Anastasia; Bauch, Henning A.; Spielhagen, Robert F.

    2017-10-01

    The Last Interglacial in the Arctic region is often described as a time with warmer conditions and significantly less summer sea ice than today. The role of Atlantic water (AW) as the main oceanic heat flux agent into the Arctic Ocean remains, however, unclear. Using high-resolution stable isotope and faunal records from the only deep Arctic Gateway, the Fram Strait, we note for the upper water column a diminished influence of AW and generally colder-than-Holocene surface ocean conditions. After the main Saalian deglaciation had terminated, a first intensification of northward-advected AW happened ( 124 ka). However, an intermittent sea surface cooling, triggered by meltwater release at 122 ka, caused a regional delay in the further development towards peak interglacial conditions. Maximum AW heat advection occurred during late MIS 5e (118.5-116 ka) and interrupted a longer-term cooling trend at the sea surface that started from about 120 ka on. Such a late occurrence of the major AW-derived near-surface warming in the Fram Strait - this is in stark contrast to an early warm peak in the Holocene - compares well in time with upstream records from the Norwegian Sea, altogether implying a coherent development of south-to-north ocean heat transfer through the eastern Nordic Seas and into the high Arctic during the Last Interglacial.

  8. Collaborative Research: Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Melillo, Jerry [Marine Biological Lab., Woods Hole, MA (United States)

    2017-12-12

    Our overall goal in this research was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal was motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we tested the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming. In collaboration with our Purdue and MIT colleagues, we have attempted to quantify global climate warming effects on land-atmosphere interactions, land-river network interactions, permafrost degradation, vegetation shifts, and land use influence water, carbon, and nitrogen fluxes to and from terrestrial ecosystems in the pan-arctic along with their

  9. Detecting and Understanding Changing Arctic Carbon Emissions

    Science.gov (United States)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  10. Occupational accidents in Russia and the Russian Arctic.

    Science.gov (United States)

    Dudarev, Alexey A; Karnachev, Igor P; Odland, Jon Øyvind

    2013-01-01

    According to official statistics, the rate of occupational accidents (OAs) and fatal injuries in Russia decreased about 5-fold and 2-fold, respectively, from 1975 to 2010, but working conditions during this period had the opposite trend; for example, the number of people who work in unfavourable and hazardous conditions (particularly since 1991) has increased significantly. This review summarises the results of a search of the relevant peer-reviewed literature published in Russia and official statistics on OAs and occupational safety in Russia and the Russian Arctic in 1980-2010. The occupational safety system in Russia has severely deteriorated in the last 2 decades, with legislators tending to promote the interests of industry and business, resulting in the neglect of occupational safety and violation of workers' rights. The majority of workers are employed in conditions that do not meet rules of safety and hygiene. More than 60% of OAs can be attributed to management practices--violation of safety regulations, poor organisation of work, deficiency of certified occupational safety specialists and inadequate personnel training. Research aimed at improving occupational safety and health is underfunded. There is evidence of widespread under-reporting of OAs, including fatal accidents. Three federal agencies are responsible for OAs recording; their data differ from each other as they use different methodologies. The rate of fatal OAs in Russia was 3-6 times higher than in Scandinavian countries and about 2 times higher compared to United States and Canada in 2001. In some Russian Arctic regions OAs levels are much higher. Urgent improvement of occupational health and safety across Russia, especially in the Arctic regions, is needed.

  11. Occupational accidents in Russia and the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Alexey A. Dudarev

    2013-03-01

    Full Text Available Background. According to official statistics, the rate of occupational accidents (OAs and fatal injuries in Russia decreased about 5-fold and 2-fold, respectively, from 1975 to 2010, but working conditions during this period had the opposite trend; for example, the number of people who work in unfavourable and hazardous conditions (particularly since 1991 has increased significantly. Methods. This review summarises the results of a search of the relevant peer-reviewed literature published in Russia and official statistics on OAs and occupational safety in Russia and the Russian Arctic in 1980–2010. Results. The occupational safety system in Russia has severely deteriorated in the last 2 decades, with legislators tending to promote the interests of industry and business, resulting in the neglect of occupational safety and violation of workers’ rights. The majority of workers are employed in conditions that do not meet rules of safety and hygiene. More than 60% of OAs can be attributed to management practices – violation of safety regulations, poor organisation of work, deficiency of certified occupational safety specialists and inadequate personnel training. Research aimed at improving occupational safety and health is underfunded. There is evidence of widespread under-reporting of OAs, including fatal accidents. Three federal agencies are responsible for OAs recording; their data differ from each other as they use different methodologies. The rate of fatal OAs in Russia was 3–6 times higher than in Scandinavian countries and about 2 times higher compared to United States and Canada in 2001. In some Russian Arctic regions OAs levels are much higher. Conclusions. Urgent improvement of occupational health and safety across Russia, especially in the Arctic regions, is needed.

  12. Isolation and characterization of Arctic microorganisms decomposing bioplastics.

    Science.gov (United States)

    Urbanek, Aneta K; Rymowicz, Waldemar; Strzelecki, Mateusz C; Kociuba, Waldemar; Franczak, Łukasz; Mirończuk, Aleksandra M

    2017-12-01

    The increasing amount of plastic waste causes significant environmental pollution. In this study, screening of Arctic microorganisms which are able to degrade bioplastics was performed. In total, 313 microorganisms were isolated from 52 soil samples from the Arctic region (Spitsbergen). Among the isolated microorganisms, 121 (38.66%) showed biodegradation activity. The ability of clear zone formation on emulsified poly(butylene succinate-co-adipate) (PBSA) was observed for 116 microorganisms (95.87%), on poly(butylene succinate) (PBS) for 73 microorganisms (60.33%), and on poly(ɛ-caprolactone) (PCL) for 102 microorganisms (84.3%). Moreover, the growth of microorganisms on poly(lactic acid) (PLA) agar plates was observed for 56 microorganisms (46.28%). Based on the 16S rRNA sequence, 10 bacterial strains which showed the highest ability for biodegradation were identified as species belonging to Pseudomonas sp. and Rhodococcus sp. The isolated fungal strains were tested for polycaprolactone films and commercial corn and potato starch bags degradation under laboratory conditions. Strains 16G (based on the analysis of a partial 18S rRNA sequence, identified as Clonostachys rosea) and 16H (identified as Trichoderma sp.) showed the highest capability for biodegradation. A particularly high capability for biodegradation was observed for the strain Clonostachys rosea, which showed 100% degradation of starch films and 52.91% degradation of PCL films in a 30-day shake flask experiment. The main advantage of the microorganisms isolated from Arctic environment is the ability to grow at low temperature and efficient biodegradation under this condition. The data suggest that C. rosea can be used in natural and laboratory conditions for degradations of bioplastics.

  13. The physiological effects of oil, dispersant and dispersed oil on the bay mussel, Mytilus trossulus, in Arctic/Subarctic conditions.

    Science.gov (United States)

    Counihan, Katrina L

    2018-06-01

    Increasing oil development around Alaska and other Arctic regions elevates the risk for another oil spill. Dispersants are used to mitigate the impact of an oil spill by accelerating natural degradation processes, but the reduced hydrophobicity of dispersed oil may increase its bioavailability to marine organisms. There is limited research on the effect of dispersed oil on cold water species and ecosystems. Therefore, spiked exposure tests were conducted with bay mussels (Mytilus trossulus) in seawater with non-dispersed oil, Corexit 9500 and oil dispersed with different concentrations of Corexit 9500. After three weeks of exposure, acute and chronic physiological impacts were determined. The majority of physiological responses occurred during the first seven days of exposure, with mussels exhibiting significant cytochrome P450 activity, superoxide dismutase activity and heat shock protein levels. Mussels exposed to non-dispersed oil also experienced immune suppression, reduced transcription and higher levels of mortality. After 21 days, mussels in all treatments exhibited evidence of genetic damage, tissue loss and a continued stress response. Bay mussels are useful as indicators of ecosystem health and recovery, and this study was an important step in understanding how non-dispersed oil, dispersant and dispersed oil affect the physiology of this sentinel species in Arctic/subarctic conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  15. Arctic bioremediation -- A case study

    International Nuclear Information System (INIS)

    Smallbeck, D.R.; Ramert, P.C.; Liddell, B.V.

    1994-01-01

    This paper discusses the use of bioremediation as an effective method to clean up diesel-range hydrocarbon spills in northern latitudes. The results of a laboratory study of microbial degradation of hydrocarbons under simulated arctic conditions showed that bioremediation can be effective in cold climates and led to the implementation of a large-scale field program. The results of 3 years of field testing have led to a significant reduction in diesel-range hydrocarbon concentrations in the contaminated area

  16. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.

    2018-03-01

    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  17. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  18. Winter Weather: Indoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  19. Winter Weather: Outdoor Safety

    Science.gov (United States)

    ... Extreme Heat Older Adults (Aged 65+) Infants and Children Chronic Medical Conditions Low Income Athletes Outdoor Workers Pets Hot Weather Tips Warning Signs and Symptoms FAQs Social Media How to Stay Cool Missouri Cooling Centers Extreme ...

  20. Behavioral interactions of penned red and arctic foxes

    Science.gov (United States)

    Rudzinski, D.R.; Graves, H.B.; Sargeant, A.B.; Storm, G.L.

    1982-01-01

    Expansion of the geographical distribution of red foxes (Vulpes vulpes) into the far north tundra region may lead to competition between arctic (Alopex lagopus) and red foxes for space and resources. Behavioral interactions between red and arctic foxes were evaluated during 9 trials conducted in a 4.05-ha enclosure near Woodworth, North Dakota. Each trial consisted of introducing a male-female pair of arctic foxes into the enclosure and allowing them to acclimate for approximately a week before releasing a female red fox into the enclosure, followed by her mate a few days later. In 8 of 9 trials, red foxes were dominant over arctic foxes during encounters. Activity of the arctic foxes decreased upon addition of red foxes. Arctic foxes tried unsuccessfully to defend preferred den, resting, and feeding areas. Even though the outcome of competition between red and arctic foxes in the Arctic is uncertain, the more aggressive red fox can dominate arctic foxes in direct competition for den sites and other limited resources.

  1. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    International Nuclear Information System (INIS)

    COWGILL, M.G.; MOSKOWITZ, P.D.; CHERNAENKO, L.M.; NAZARIAN, A.; GRIFFITH, A.; DIASHEV, A.; ENGOY, T.

    2000-01-01

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  2. SOLID RADIOACTIVE WASTE STORAGE TECHNOLOGIES: PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    Energy Technology Data Exchange (ETDEWEB)

    COWGILL,M.G.; MOSKOWITZ,P.D.; CHERNAENKO,L.M.; NAZARIAN,A.; GRIFFITH,A.; DIASHEV,A.; ENGOY,T.

    2000-06-14

    This first project, under the auspices of the Arctic Military Environmental Cooperation (AMEC) forum, Project 1.4-1 Solid Radioactive Waste Storage Technologies, successfully demonstrated the feasibility of using a polymer-based coating to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment. A mobile, self-sufficient spraying device, was developed to specifications provided by the Russian Ministry of Defence Northern Navy and was deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings of Polibrid 705 were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading bay. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors and exposed to the full 12 month Arctic weather cycle. The field tests were accompanied by a series of laboratory qualification tests carried out at the research laboratory of ICC Nuclide in St. Petersburg. During the 12-month field tests, the sealant coating showed little sign of degradation except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. In the laboratory testing, Polibrid 705 met all the Russian qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities. The Russian technical experts from the Ministry of Defence quickly familiarized themselves with the equipment and were able to identify several areas of potential improvement as deployment of the equipment progressed. The prime among these was the desirability of extending the range of the equipment through enlarged gasoline tanks (to permit extended operational times) and longer

  3. Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer

    Directory of Open Access Journals (Sweden)

    J. B. Gilman

    2010-11-01

    Full Text Available The influence of halogen oxidation on the variabilities of ozone (O3 and volatile organic compounds (VOCs within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI, multi-year ice (MYI, and total ICE (FYI+MYI. O3 anti-correlated with the modeled total ICE tracer (r = −0.86 indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.

  4. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  5. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    Science.gov (United States)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  6. Factors controlling black carbon distribution in the Arctic

    Science.gov (United States)

    Qi, Ling; Li, Qinbin; Li, Yinrui; He, Cenlin

    2017-01-01

    We investigate the sensitivity of black carbon (BC) in the Arctic, including BC concentration in snow (BCsnow, ng g-1) and surface air (BCair, ng m-3), as well as emissions, dry deposition, and wet scavenging using the global three-dimensional (3-D) chemical transport model (CTM) GEOS-Chem. We find that the model underestimates BCsnow in the Arctic by 40 % on average (median = 11.8 ng g-1). Natural gas flaring substantially increases total BC emissions in the Arctic (by ˜ 70 %). The flaring emissions lead to up to 49 % increases (0.1-8.5 ng g-1) in Arctic BCsnow, dramatically improving model comparison with observations (50 % reduction in discrepancy) near flaring source regions (the western side of the extreme north of Russia). Ample observations suggest that BC dry deposition velocities over snow and ice in current CTMs (0.03 cm s-1 in the GEOS-Chem) are too small. We apply the resistance-in-series method to compute a dry deposition velocity (vd) that varies with local meteorological and surface conditions. The resulting velocity is significantly larger and varies by a factor of 8 in the Arctic (0.03-0.24 cm s-1), which increases the fraction of dry to total BC deposition (16 to 25 %) yet leaves the total BC deposition and BCsnow in the Arctic unchanged. This is largely explained by the offsetting higher dry and lower wet deposition fluxes. Additionally, we account for the effect of the Wegener-Bergeron-Findeisen (WBF) process in mixed-phase clouds, which releases BC particles from condensed phases (water drops and ice crystals) back to the interstitial air and thereby substantially reduces the scavenging efficiency of clouds for BC (by 43-76 % in the Arctic). The resulting BCsnow is up to 80 % higher, BC loading is considerably larger (from 0.25 to 0.43 mg m-2), and BC lifetime is markedly prolonged (from 9 to 16 days) in the Arctic. Overall, flaring emissions increase BCair in the Arctic (by ˜ 20 ng m-3), the updated vd more than halves BCair (by ˜ 20 ng m-3

  7. Effect of mixed vs single brine composition on salt weathering in porous carbonate building stones for different environmental conditions

    Czech Academy of Sciences Publication Activity Database

    Menéndez, B.; Petráňová, Veronika

    2016-01-01

    Roč. 210, August (2016), s. 124-139 ISSN 0013-7952 R&D Projects: GA MŠk(CZ) LO1219 Keywords : salt weathering * limestone * environmental conditions * sodium chloride * sodium sulphate * calcium sulphate * salt mixture Subject RIV: AL - Art, Architecture, Cultural Heritage Impact factor: 2.569, year: 2016 http://www.sciencedirect.com/science/article/pii/S0013795216301879

  8. ARCTIC «UPGRADE» OF V. V. PUTIN, PRESIDENT OF THE RUSSIAN FEDERATION

    Directory of Open Access Journals (Sweden)

    I. S. Zonn

    2017-01-01

    Full Text Available After establishment of the Soviet power the Arctic for seven decades had been in the focus of attention accomplishing the heroic, repressive, “educational”, economic, political and ideological functions. In 1930-1950 General Secretary of the Central Committee of the Bolshevik Communist Party I.V. Stalin created the first Soviet Arctic shield that included the economic and military strategic power, transport targeted to protection of entirety and security of the Soviet country. The Stalin’s large-scale project of Arctic development was made public in 1931 and was targeted to the enhanced protection of the polar waters by establishing the naval base on the Barents Sea. For implementation of this project the White Sea-Baltic canal was constructed. The Trust “Arktikugol” was established on the Spitsbergen Archipelago to supply coal to the Northern Navy Fleet. The sea expedition over the Northern Sea Route was also organized to prove the possibility of shipping along this route for one navigation season. Upon its successful completion the Chief Department “Sevmorput” was set up here. The epoch of airship construction was opened to explore the Arctic air expanses. Later on there were expeditions to the North Pole, deployment of army on the Chukotka Peninsula, new expeditions to high latitude terrains, construction of high-capacity icebreakers, aerodromes and military bases on the coast of the Arctic Ocean. Unfortunately, in the 1990s in the time of the Soviet Union breakup and perestroika many facilities of the Stalin’s Arctic Shield had been lost and ceased to exist.The early 21st century witnessed the second energetic and goal-oriented breakthrough into the Arctic region and establishment of the second Arctic Shield or bastion based on the key principles of the Soviet Arctic Shield or, in other words, its upgrade in the new conditions of the polycentric world, which is justly connected with the name of Russian President Putin

  9. Weather and children's physical activity; how and why do relationships vary between countries?

    Science.gov (United States)

    Harrison, Flo; Goodman, Anna; van Sluijs, Esther M F; Andersen, Lars Bo; Cardon, Greet; Davey, Rachel; Janz, Kathleen F; Kriemler, Susi; Molloy, Lynn; Page, Angie S; Pate, Russ; Puder, Jardena J; Sardinha, Luis B; Timperio, Anna; Wedderkopp, Niels; Jones, Andy P

    2017-05-30

    Globally most children do not engage in enough physical activity. Day length and weather conditions have been identified as determinants of physical activity, although how they may be overcome as barriers is not clear. We aim to examine if and how relationships between children's physical activity and weather and day length vary between countries and identify settings in which children were better able to maintain activity levels given the weather conditions they experienced. In this repeated measures study, we used data from 23,451 participants in the International Children's Accelerometry Database (ICAD). Daily accelerometer-measured physical activity (counts per minute; cpm) was matched to local weather conditions and the relationships assessed using multilevel regression models. Multilevel models accounted for clustering of days within occasions within children within study-cities, and allowed us to explore if and how the relationships between weather variables and physical activity differ by setting. Increased precipitation and wind speed were associated with decreased cpm while better visibility and more hours of daylight were associated with increased cpm. Models indicated that increases in these variables resulted in average changes in mean cpm of 7.6/h of day length, -13.2/cm precipitation, 10.3/10 km visibility and -10.3/10kph wind speed (all p European countries and Melbourne, Australia were the most active, and also better maintained their activity levels given the weather conditions they experienced compared to those in the US and Western Europe. We found variation in the relationship between weather conditions and physical activity between ICAD studies and settings. Children in Northern Europe and Melbourne, Australia were not only more active on average, but also more active given the weather conditions they experienced. Future work should consider strategies to mitigate the impacts of weather conditions, especially among young children, and

  10. Chromium isotope fractionation during oxidative weathering of a modern basaltic weathering profile

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Døssing, Lasse Nørbye; Frei, Robert

    Chromium can be used as a tracer of redox sensitive environmental processes. In soils Cr (III) is inert, immobile and resides predominantly in minerals, clays and oxides. Cr (VI) is toxic, soluble and mobile and is usually lost from the soil to local run off. Chromium isotopes have been shown...... to fractionate under both reducing and oxidizing conditions [1, 2]. Recent studies on d53Cr isotopes in laterite soils show that oxidative weathering of Cr-bearing rocks is accompanied by an isotopic fractionation, where by the lighter isotopes are retained in the residual soil and the heavier isotope...... is enriched in local runoff [1]. This study aims to quantify the stable Cr isotope composition of two modern basaltic weathering profiles, to help better understand the processes that oxidize inert Cr (III) to toxic Cr (VI). We sampled basaltic weathering profiles and associated river waters from areas of two...

  11. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    Directory of Open Access Journals (Sweden)

    Seongsuk Lee

    2016-12-01

    Full Text Available The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP F13 Special Sensor Microwave/Imagers (SSMI and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily and monthly sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole even during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA.

  12. Climate sensitivity to Arctic seaway restriction during the early Paleogene

    Science.gov (United States)

    Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.

    2009-09-01

    The opening and closing of ocean gateways affects the global distribution of heat, salt, and moisture, potentially driving climatic change on regional to global scales. Between 65 and 45 million years ago (Ma), during the early Paleogene, exchange between the Arctic and global oceans occurred through two narrow and shallow seaways, the Greenland-Norway seaway and the Turgai Strait. Sediments from the Arctic Ocean suggest that, during this interval, the surface ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions in the Paleogene Arctic remain uncertain. Here we show results from an isotope-enabled, atmosphere-ocean general circulation model, which indicate that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the Arctic seaways. We also present modelled estimates of seawater and calcite δ18O for the Paleogene. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~ 6 psu and warming of sea-surface temperatures by 2 °C in the North Atlantic and 5-10 °C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We propose that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates and supports a tectonic trigger hypothesis for the Paleocene Eocene Thermal Maximum (PETM).

  13. Challenges of climate change: an Arctic perspective.

    Science.gov (United States)

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  14. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  15. Bathymetric controls on Pliocene North Atlantic and Arctic sea surface temperature and deepwater production

    Science.gov (United States)

    Robinson, M.M.; Valdes, P.J.; Haywood, A.M.; Dowsett, H.J.; Hill, D.J.; Jones, S.M.

    2011-01-01

    The mid-Pliocene warm period (MPWP; ~. 3.3 to 3.0. Ma) is the most recent interval in Earth's history in which global temperatures reached and remained at levels similar to those projected for the near future. The distribution of global warmth, however, was different than today in that the high latitudes warmed more than the tropics. Multiple temperature proxies indicate significant sea surface warming in the North Atlantic and Arctic Oceans during the MPWP, but predictions from a fully coupled ocean-atmosphere model (HadCM3) have so far been unable to fully predict the large scale of sea surface warming in the high latitudes. If climate proxies accurately represent Pliocene conditions, and if no weakness exists in the physics of the model, then model boundary conditions may be in error. Here we alter a single boundary condition (bathymetry) to examine if Pliocene high latitude warming was aided by an increase in poleward heat transport due to changes in the subsidence of North Atlantic Ocean ridges. We find an increase in both Arctic sea surface temperature and deepwater production in model experiments that incorporate a deepened Greenland-Scotland Ridge. These results offer both a mechanism for the warming in the North Atlantic and Arctic Oceans indicated by numerous proxies and an explanation for the apparent disparity between proxy data and model simulations of Pliocene northern North Atlantic and Arctic Ocean conditions. Determining the causes of Pliocene warmth remains critical to fully understanding comparisons of the Pliocene warm period to possible future climate change scenarios. ?? 2011.

  16. An approach for prediction of petroleum production facility performance considering Arctic influence factors

    International Nuclear Information System (INIS)

    Gao Xueli; Barabady, Javad; Markeset, Tore

    2010-01-01

    As the oil and gas (O and G) industry is increasing the focus on petroleum exploration and development in the Arctic region, it is becoming increasingly important to design exploration and production facilities to suit the local operating conditions. The cold and harsh climate, the long distance from customer and suppliers' markets, and the sensitive environment may have considerable influence on the choice of design solutions and production performance characteristics such as throughput capacity, reliability, availability, maintainability, and supportability (RAMS) as well as operational and maintenance activities. Due to this, data and information collected for similar systems used in a normal climate may not be suitable. Hence, it is important to study and develop methods for prediction of the production performance characteristics during the design and operation phases. The aim of this paper is to present an approach for prediction of the production performance for oil and gas production facilities considering influencing factors in Arctic conditions. The proportional repair model (PRM) is developed in order to predict repair rate in Arctic conditions. The model is based on the proportional hazard model (PHM). A simple case study is used to demonstrate how the proposed approach can be applied.

  17. Geochemistry and Flux of Terrigenous Dissolved Organic Matter to the Arctic Ocean

    Science.gov (United States)

    Spencer, R. G.; Mann, P. J.; Hernes, P. J.; Tank, S. E.; Striegl, R. G.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2011-12-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC) and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is of key importance for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric dissolved organic matter (CDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  18. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  19. Arctic summer school onboard an icebreaker

    Science.gov (United States)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  20. Arctic Technology Evaluation 2014 Oil-in-Ice Demonstration Report

    Science.gov (United States)

    2015-03-01

    Security Class (This Report) UNCLAS//Public 20. Security Class (This Page) UNCLAS//Public 21. No of Pages 52 22. Price Arctic Technology...specifically manned for the surveillance system. Smaller aerostats and sUAS could be deployed on skimming vessels; however, under many conditions their

  1. The expedition ARCTIC `96 of RV `Polarstern` (ARK XII) with the Arctic Climate System Study (ACSYS). Cruise report; Die Expedition ARCTIC `96 des FS `Polarstern` (ARK XII) mit der Arctic Climate System Study (ACSYS). Fahrtbericht

    Energy Technology Data Exchange (ETDEWEB)

    Augstein, E.

    1997-11-01

    The multinational expedition ARCTIC `96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climte System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the Arctic Ocean and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. (orig.) [Deutsch] Die Expedition ARCTIC `96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, Grossbritannien, Irland, Kanada, Norwegen, Russland, Schweden und den Vereinigten Staaten von Amerika durchgefuehrt. Die physikalischen Projekte auf der POLARSTERN dienten ueberwiegend der Unterstuetzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungsprogramms, die auf die Erforschung der vorherrschenden ozeanischen, atmosphaerischen, kryosphaerischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. (orig.)

  2. Simulation of the modern arctic climate by the NCAR CCM1

    Science.gov (United States)

    Bromwich, David H.; Tzeng, Ren-Yow; Parish, Thomas, R.

    1994-01-01

    The National Center of Atmospheric Research (NCAR) Community Climate Model Version 1 (CCM1's) simulation of the modern arctic climate is evaluated by comparing a five-year seasonal cycle simulation with the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The sea level pressure (SLP), storm tracks, vertical cross section of height, 500-hPa height, total energy budget, and moisture budget are analyzed to investigate the biases in the simulated arctic climate. The results show that the model simulates anomalously low SLP, too much storm activity, and anomalously strong baroclinicity to the west of Greenland and vice versa to the east of Greenland. This bias is mainly attributed to the model's topographic representation of Greenland. First, the broadened Greenland topography in the model distorts the path of cyclone waves over the North Atlantic Ocean. Second, the model oversimulates the ridge over Greenland, which intensifies its blocking effect and steers the cyclone waves clockwise around it and hence produces an artificial circum-Greenland trough. These biases are significantly alleviated when the horizontal resolution increases to T42. Over the Arctic basin, the model simulates large amounts of low-level (stratus) clouds in winter and almost no stratus in summer, which is opposite to the observations. This bias is mainly due to the location of the simulated SLP features and the negative anomaly of storm activity, which prevent the transport of moisture into this region during summer but favor this transport in winter. The moisture budget analysis shows that the model's net annual precipitation (P-E) between 70 deg N and the North Pole is 6.6 times larger than the observations and the model transports six times more moisture into this region. The bias in the advection term is attributed to the positive moisture fixer scheme and the distorted flow pattern. However, the excessive moisture transport into the Arctic basin does not solely

  3. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  4. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    Science.gov (United States)

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  5. The Arctic policy of China and Japan

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    At the May 2013 Arctic Council Ministerial Meeting, five Asian states, namely China, Japan, India, Singapore and South Korea, were accepted to become new Permanent Observers at the Arctic Council. Nonetheless, little attention has been paid to the Asian states and their interest in the Arctic. Most...... discussions have focused on China and the assessment of China’s interest in the Arctic is divided. This paper attempts to fill this gap by presenting and comparing the various components of the Arctic policies of China and Japan. Referring to Putnam’s model of the “two-level game” and Young’s categorization...

  6. Utilization of Live Localized Weather Information for Sustainable Agriculture

    Science.gov (United States)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a

  7. Insight into American tourists’ experiences with weather in South Africa

    Directory of Open Access Journals (Sweden)

    Giddy Julia K.

    2017-12-01

    Full Text Available Weather and climate are often important factors determining the success of a tourism destination and resultant satisfaction among tourists. This is particularly true for South Africa due the predominance of outdoor tourist attractions. Increasing numbers of international tourists have visited South Africa since the fall of apartheid, particularly those from the United States (U.S., which is an important market for South African tourism. Therefore, this paper seeks to examine a sample of American tourists’ experience with day-to-day weather and climatic conditions in South Africa. The results show that although respondents did not feel that climatic conditions were an important factor in motivations to visit the country, the day-to-day weather did often impact the enjoyment of their visit. Most notably, weather controlled their ability to participate in outdoor activities. In correlating accounts of unpleasant weather conditions with the meteorological records, a close association emerged, particularly for excessively high temperatures. This indicates that the experiences of American tourists are an accurate indication of climatic unsuitability for tourism, which poses threats to the South African outdoor tourism sector.

  8. Radiative Impacts of Further Arctic Sea Ice Melt: Using past Observations to Inform Future Climate Impacts

    Science.gov (United States)

    Pistone, K.; Eisenman, I.; Ramanathan, V.

    2017-01-01

    The Arctic region has seen dramatic changes over the past several decades, from polar amplification of global temperature rise to ecosystem changes to the decline of the sea ice. While there has been much speculation as to when the world will see an ice-free Arctic, the radiative impacts of an eventual disappearance of the Arctic sea ice are likely to be significant regardless of the timing. Using CERES radiation and microwave satellite sea ice data, Pistone et al (2014) estimated the radiative forcing due to albedo changes associated with the Arctic sea ice retreat over the 30 years of the satellite data record. In this study, we found that the Arctic Ocean saw a decrease in all-sky albedo of 4% (from 52% to 48%), for an estimated increase in solar heating of 6.4 W/m(exp 2) between 1979 and 2011, or 0.21 W/m(exp 2) when averaged over the globe. This value is substantial--approximately 25% as large as the forcing due to the change in CO2 during the same period. Here we update and expand upon this previous work and use the CERES broadband shortwave observations to explore the radiative impacts of a transition to completely ice-free Arctic Ocean. We estimate the annually-averaged Arctic Ocean planetary albedo under ice-free and cloud-free conditions to be 14% over the region, or approximately 25% lower in absolute terms than the Arctic Ocean cloud-free albedo in 1979. However, the question of all-sky conditions (i.e. including the effects of clouds) introduces a new level of complexity. We explore several cloud scenarios and the resultant impact on albedo. In each of these cases, the estimated forcing is not uniformly distributed throughout the year. We describe the relative contributions of ice loss by month as well as the spatial distributions of the resulting changes in absorbed solar energy. The seasonal timing and location—in addition to magnitude—of the altered solar absorption may have significant implications for atmospheric and ocean dynamics in the

  9. Cryolithozone of Western Arctic shelf of Russia

    Science.gov (United States)

    Kholmyanskii, Mikhail; Vladimirov, Maksim; Snopova, Ekaterina; Kartashev, Aleksandr

    2017-04-01

    We propose a new original version of the structure of the cryolithozone of west Arctic seas of Russia. In contrast to variants of construction of sections and maps based on thermodynamic modeling, the authors have used electrometric, seismic, and thermal data including their own profile measurements by near-field transient electromagnetic technique and seismic profile observations by reflection method. As a result, we defined the spatial characteristics of cryolithozone and managed to differentiate it to several layers, different both in structure and formation time. We confirmed once again that the spatial boundary of cryolithozone, type and thickness of permafrost, chilled rocks and thawed ground are primarily determined by tectonic and oceanographic regimes of the Arctic Ocean and adjacent land in different geological epochs. Permafrost formed on the land in times of cold weather, turn to submarine during flooding and overlap, in the case of the sea transgression, by marine sediments accumulating in the period of warming. We have been able to establish a clear link between the permafrost thickness and the geomorphological structure of the area. This can be explained by the distribution of thermodynamic flows that change the temperature state of previously formed permafrost rocks. Formation in the outer parts of the shelf which took place at ancient conversion stage can be characterized by the structure: • permafrost table - consists of rocks, where the sea water with a temperature below 0 °C has replaced the melted ice; • middle horizon - composed of undisturbed rocks, and the rocks chilled through the lower sieving underlay; As a result of the interpretation and analysis of all the available data, the authors created a map of types of cryolithozone of the Western Arctic shelf of Russia. The following distribution areas are marked on the map: • single-layer cryolithozone (composed of sediments upper Pleistocene and Holocene); • monosyllabic relict

  10. Skywatch: The Western Weather Guide.

    Science.gov (United States)

    Keen, Richard A.

    The western United States is a region of mountains and valleys with the world's largest ocean next door. Its weather is unique. This book discusses how water, wind, and environmental conditions combine to create the climatic conditions of the region. Included are sections describing: fronts; cyclones; precipitation; storms; tornadoes; hurricanes;…

  11. Genetic signatures of adaptation revealed from transcriptome sequencing of Arctic and red foxes.

    Science.gov (United States)

    Kumar, Vikas; Kutschera, Verena E; Nilsson, Maria A; Janke, Axel

    2015-08-07

    The genus Vulpes (true foxes) comprises numerous species that inhabit a wide range of habitats and climatic conditions, including one species, the Arctic fox (Vulpes lagopus) which is adapted to the arctic region. A close relative to the Arctic fox, the red fox (Vulpes vulpes), occurs in subarctic to subtropical habitats. To study the genetic basis of their adaptations to different environments, transcriptome sequences from two Arctic foxes and one red fox individual were generated and analyzed for signatures of positive selection. In addition, the data allowed for a phylogenetic analysis and divergence time estimate between the two fox species. The de novo assembly of reads resulted in more than 160,000 contigs/transcripts per individual. Approximately 17,000 homologous genes were identified using human and the non-redundant databases. Positive selection analyses revealed several genes involved in various metabolic and molecular processes such as energy metabolism, cardiac gene regulation, apoptosis and blood coagulation to be under positive selection in foxes. Branch site tests identified four genes to be under positive selection in the Arctic fox transcriptome, two of which are fat metabolism genes. In the red fox transcriptome eight genes are under positive selection, including molecular process genes, notably genes involved in ATP metabolism. Analysis of the three transcriptomes and five Sanger re-sequenced genes in additional individuals identified a lower genetic variability within Arctic foxes compared to red foxes, which is consistent with distribution range differences and demographic responses to past climatic fluctuations. A phylogenomic analysis estimated that the Arctic and red fox lineages diverged about three million years ago. Transcriptome data are an economic way to generate genomic resources for evolutionary studies. Despite not representing an entire genome, this transcriptome analysis identified numerous genes that are relevant to arctic

  12. Arctic Amplification and the Northward shift of a new Greenland melting record

    Science.gov (United States)

    Tedesco, Marco; Mote, Thomas; Fettweis, Xavier; Hanna, Edward; Booth, James; Jeyaratnam, Jeyavinoth; Datta, Rajashree; Briggs, Kate

    2016-04-01

    Large-scale atmospheric circulation controls the mass and energy balance of the Greenland ice sheet through its impact on radiative budget, runoff and accumulation. Using reanalysis data and the outputs of a regional climate model, here we show that the persistence of an exceptional atmospheric ridge, centred over the Arctic Ocean was responsible for a northward shift of surface melting records over Greenland, and for increased accumulation in the south during the summer of 2015. Concurrently, new records of mean monthly zonal winds at 500 hPa and of the maximum latitude of ridge peaks of the 5700±50 m isohypse over the Arctic were also set. An unprecedented (1948 - 2015) and sustained jet stream easterly flow promoted enhanced runoff, increased surface temperatures and decreased albedo in northern Greenland, while inhibiting melting in the south. The exceptional 2015 summer Arctic atmospheric conditions are consistent with the anticipated effects of Arctic Amplification, including slower zonal winds and increased jet stream wave amplitude. Properly addressing the impact of Arctic Amplification on surface runoff of the Greenland ice sheet is crucial for rigorously quantifying its contribution to current and future sea level rise, and the relative impact of freshwater discharge on the surrounding ocean.

  13. Can preferred atmospheric circulation patterns over the North-Atlantic-Eurasian region be associated with arctic sea ice loss?

    Science.gov (United States)

    Crasemann, Berit; Handorf, Dörthe; Jaiser, Ralf; Dethloff, Klaus; Nakamura, Tetsu; Ukita, Jinro; Yamazaki, Koji

    2017-12-01

    In the framework of atmospheric circulation regimes, we study whether the recent Arctic sea ice loss and Arctic Amplification are associated with changes in the frequency of occurrence of preferred atmospheric circulation patterns during the extended winter season from December to March. To determine regimes we applied a cluster analysis to sea-level pressure fields from reanalysis data and output from an atmospheric general circulation model. The specific set up of the two analyzed model simulations for low and high ice conditions allows for attributing differences between the simulations to the prescribed sea ice changes only. The reanalysis data revealed two circulation patterns that occur more frequently for low Arctic sea ice conditions: a Scandinavian blocking in December and January and a negative North Atlantic Oscillation pattern in February and March. An analysis of related patterns of synoptic-scale activity and 2 m temperatures provides a synoptic interpretation of the corresponding large-scale regimes. The regimes that occur more frequently for low sea ice conditions are resembled reasonably well by the model simulations. Based on those results we conclude that the detected changes in the frequency of occurrence of large-scale circulation patterns can be associated with changes in Arctic sea ice conditions.

  14. Evaluating the lower-tropospheric COSMIC GPS radio occultation sounding quality over the Arctic

    Science.gov (United States)

    Yu, Xiao; Xie, Feiqin; Ao, Chi O.

    2018-04-01

    Lower-tropospheric moisture and temperature measurements are crucial for understanding weather prediction and climate change. Global Positioning System radio occultation (GPS RO) has been demonstrated as a high-quality observation technique with high vertical resolution and sub-kelvin temperature precision from the upper troposphere to the stratosphere. In the tropical lower troposphere, particularly the lowest 2 km, the quality of RO retrievals is known to be degraded and is a topic of active research. However, it is not clear whether similar problems exist at high latitudes, particularly over the Arctic, which is characterized by smooth ocean surface and often negligible moisture in the atmosphere. In this study, 3-year (2008-2010) GPS RO soundings from COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) over the Arctic (65-90° N) show uniform spatial sampling with average penetration depth within 300 m above the ocean surface. Over 70 % of RO soundings penetrate deep into the lowest 300 m of the troposphere in all non-summer seasons. However, the fraction of such deeply penetrating profiles reduces to only about 50-60 % in summer, when near-surface moisture and its variation increase. Both structural and parametric uncertainties of GPS RO soundings were also analyzed. The structural uncertainty (due to different data processing approaches) is estimated to be within ˜ 0.07 % in refractivity, ˜ 0.72 K in temperature, and ˜ 0.05 g kg-1 in specific humidity below 10 km, which is derived by comparing RO retrievals from two independent data processing centers. The parametric uncertainty (internal uncertainty of RO sounding) is quantified by comparing GPS RO with near-coincident radiosonde and European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim profiles. A systematic negative bias up to ˜ 1 % in refractivity below 2 km is only seen in the summer, which confirms the moisture impact on GPS RO quality.

  15. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P.

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  16. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  17. CAUSALITY OF WEATHER CONDITIONS IN AUSTRALIAN STOCK EQUITY RETURNS

    OpenAIRE

    Svetlana Vlady; Ekrem Tufan; Bahattin Hamarat

    2011-01-01

    This study investigates causality of weather and its impact on the The S&P/ASX All Australian 200 Index has been selected as a proxy for the Australian capital market. The index consists exclusively of Australian domiciled companies. Following previous research in behaviour finance in the area of environmental psychology, the data set covers temperature, quality temperature, wet bulb temperature, quality wet bulb temperature, humidity, pressure and vapour pressure variables. The data set is a...

  18. Evolution of biogeochemical cycling of phosphorus during 45~50 Ma revealed by sequential extraction analysis of IODP Expedition 302 cores from the Arctic Ocean

    Science.gov (United States)

    Hashimoto, S.; Yamaguchi, K. E.; Takahashi, K.

    2012-12-01

    The modern Arctic Ocean plays crucial roles in controlling global climate system with the driving force of global thermohaline circulation through the formation of dense deep water and high albedo due to the presence of perennial sea-ice. However, the Arctic sea-ice has not always existed in the past. Integrated Ocean Drilling Program (IODP) Expedition 302 Arctic Coring Expedition (ACEX) has clarified that global warming (water temperature: ca. 14~16○C) during 48~49 Ma Azolla Event induced the loss of sea-ice and desalination of surface ocean, and that sea-ice formed again some million years later (45 Ma). In the Arctic Ocean, warming and cooling events repeated over and over (e.g., Brinkhuis et al., 2006; Moran et al., 2006; März et al., 2010). Large variations in the extent of thermohaline circulation through time often caused stagnation of seawater and appearance of anaerobic environment where hydrogen sulfide was produced by bacterial sulfate reduction. Ogawa et al. (2009) confirmed occurrence of framboidal pyrite in the ACEX sediments, and suggested that the Arctic Ocean at the time was anoxic, analogous to the modern Black Sea, mainly based on sulfur isotope analysis. To further clarify the variations in the nutrient status of the Arctic Ocean, we focus on the geochemical cycle of phosphorus. We performed sequential extraction analysis of sedimentary phosphorus in the ACEX sediments, using the method that we improvped based on the original SEDEX method by Ruttenberg (1992) and Schenau et al. (2000). In our method, phosphorus fractions are divided into five forms; (1) absorbed P, (2) Feoxide-P, (4) carbonate fluorapatite (CFAP) + CaCO3-P + hydroxylapatite (HAP), (4) detrital P, and (5) organic P. Schenau et al. (2000) divided the (3) fraction into non-biological CFAP and biological HAP and CaCO3-P. When the Arctic Ocean was closed and in its warming period, the water mass was most likely stratified and an anaerobic condition would have prevailed where

  19. Icing Conditions Over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Arzhanova, N.; Groisman, P. Y.

    2013-12-01

    A general increase in atmospheric humidity is expected with global warming, projected with GCMs, reported with remote sensing and in situ observations (Trenberth et al. 2005; Dessler, and Davis 2010; IPCC 2007, Zhang et al. 2012.) In the Arctic this increase has been and will be especially prominent triggered by the dramatic retreat of the sea ice. In the warm season this retreat provides an abundant water vapor supply to the dry Arctic atmosphere. The contemporary sea ice changes are especially visible in the Eastern Hemisphere and after the two extremely anomalous low-ice years (2007 and 2012) it is right time to look for the impact of these changes in the high latitudinal hydrological cycle: first of all in the atmospheric humidity and precipitation changes. Usually, humidity (unless extremely high or low) does not critically affect the human activities and life style. However, in the high latitudes this characteristic has an additional facet: higher humidity causes higher ice condensation from the air (icing and hoar frost) on the infrastructure and transports in the absence of precipitation. The hoar frost and icing (in Russian: gololed) are measured at the Russian meteorological network and reports of icing of the wires are quantitative measurements. While hoar frost can be considered as a minor annoyance, icing may have important societal repercussions. In the Arctic icing occurs mostly during relatively warm months when atmosphere holds maximum amount of water vapor (and is projected to have more). Freezing rain and drizzle contribute to gololed formation and thus this variable (being above some thresholds) presents an important characteristic that can affect the infrastructure (communication lines elevated at the telegraph poles, antennas, etc.), became a Socially-Important climatic Variable (SIV). The former USSR observational program includes gololed among the documented weather phenomena and this allowed RIHMI to create Electronic Reference Book on

  20. Field comparison of solar water disinfection (SODIS) efficacy between glass and polyethylene terephalate (PET) plastic bottles under sub-Saharan weather conditions.

    Science.gov (United States)

    Asiimwe, J K; Quilty, B; Muyanja, C K; McGuigan, K G

    2013-12-01

    Concerns about photodegradation products leaching from plastic bottle material into water during solar water disinfection (SODIS) are a major psychological barrier to increased uptake of SODIS. In this study, a comparison of SODIS efficacy using glass and plastic polyethylene terephalate (PET) bottles was carried out under strong real sunlight and overcast weather conditions at Makerere University in central Uganda. Both clear and turbid natural water samples from shallow wells and open dug wells, respectively, were used. Efficacy was determined from the inactivation of a wild strain of Escherichia coli in solar-exposed contaminated water in both glass and PET bottles. The studies reveal no significant difference in SODIS inactivation between glass and PET bottles (95% CI, p > 0.05), for all water samples under the different weather conditions except for clear water under overcast conditions where there was a small but significant difference (95% CI, p = 0.047) with less viable bacterial counts in PET bottles at two intermediate time points but not at the end of the exposure. The results demonstrate that SODIS efficacy in glass under tropical field conditions is comparable to PET plastic. SODIS users in these regions can choose either of reactors depending on availability and preference of the user.

  1. Springtime Flood Risk Reduction in Rural Arctic: A Comparative Study of Interior Alaska, United States and Central Yakutia, Russia

    Directory of Open Access Journals (Sweden)

    Yekaterina Y. Kontar

    2018-03-01

    Full Text Available Every spring, riverine communities throughout the Arctic face flood risk. As the river ice begins to thaw and break up, ice jams—accumulation of chunks and sheets of ice in the river channel, force melt water and ice floes to back up for dozens of kilometers and flood vulnerable communities upstream. Via a comparative analysis between two flood-prone communities in Alaska and Yakutia (Siberia, this study examines key components of flood risk—hazards, exposure, and vulnerability, and existing practices in flood risk reduction in rural Arctic. The research sites are two rural communities—Galena (Yukon River and Edeytsy (Lena River, which sustained major ice-jam floods in May 2013. The data was acquired through a combination of direct observations on site, review of documents and archives, focus group discussions, and surveys. Five focus groups with US and Russian representatives from disaster management agencies revealed a few similar patterns as well as significant differences in flood risk reduction strategies. The main differences included higher reliance on mechanical and short-term ice jam and flood mitigation efforts (e.g., ice-jam demolition in the Russian Arctic, and lack of a centralized flood management model in the US. Surveys conducted among population at risk during the site visits to Edeytsy (November 2015 and Galena (March 2016 revealed higher satisfaction levels with the existing flood risk reduction efforts among Edeytsy residents. Survey respondents in Galena indicated the lack of ice jam removal and other flood prevention measures as the key drawback in the existing flood management. Historical analysis, conducted via the disaster Pressure and Release (PAR model, revealed that springtime flood risk in both regions results from complex interactions among a series of natural processes that generate conditions of hazard, and human actions that generate conditions of communities’ exposure and vulnerability. The analysis

  2. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone

    Science.gov (United States)

    Barber, David G.; Hop, Haakon; Mundy, Christopher J.; Else, Brent; Dmitrenko, Igor A.; Tremblay, Jean-Eric; Ehn, Jens K.; Assmy, Philipp; Daase, Malin; Candlish, Lauren M.; Rysgaard, Søren

    2015-12-01

    The Marginal Ice Zone (MIZ) of the Arctic Ocean is changing rapidly due to a warming Arctic climate with commensurate reductions in sea ice extent and thickness. This Pan-Arctic review summarizes the main changes in the Arctic ocean-sea ice-atmosphere (OSA) interface, with implications for primary- and secondary producers in the ice and the underlying water column. Changes in the Arctic MIZ were interpreted for the period 1979-2010, based on best-fit regressions for each month. Trends of increasingly open water were statistically significant for each month, with quadratic fit for August-November, illustrating particularly strong seasonal feedbacks in sea-ice formation and decay. Geographic interpretations of physical and biological changes were based on comparison of regions with significant changes in sea ice: (1) The Pacific Sector of the Arctic Ocean including the Canada Basin and the Beaufort, Chukchi and East Siberian seas; (2) The Canadian Arctic Archipelago; (3) Baffin Bay and Hudson Bay; and (4) the Barents and Kara seas. Changes in ice conditions in the Barents sea/Kara sea region appear to be primarily forced by ocean heat fluxes during winter, whereas changes in the other sectors appear to be more summer-autumn related and primarily atmospherically forced. Effects of seasonal and regional changes in OSA-system with regard to increased open water were summarized for photosynthetically available radiation, nutrient delivery to the euphotic zone, primary production of ice algae and phytoplankton, ice-associated fauna and zooplankton, and gas exchange of CO2. Changes in the physical factors varied amongst regions, and showed direct effects on organisms linked to sea ice. Zooplankton species appear to be more flexible and likely able to adapt to variability in the onset of primary production. The major changes identified for the ice-associated ecosystem are with regard to production timing and abundance or biomass of ice flora and fauna, which are related to

  3. An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models

    Energy Technology Data Exchange (ETDEWEB)

    Wyser, K.; Willen, U. [Rossby Centre, SMHI, Norrkoeping (Sweden); Jones, C.G.; Du, P.; Girard, E.; Laprise, R. [Universite du Quebec a Montreal, Canadian Regional Climate Modelling and Diagnostics Network, Montreal (Canada); Cassano, J.; Serreze, M.; Shaw, M.J. [University of Colorado, Cooperative Institute for Research in Environmental Sciences and Department of Atmospheric and Oceanic Sciences, Boulder, CO (United States); Christensen, J.H. [Danish Meteorological Institute, Copenhagen (Denmark); Curry, J.A. [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA (United States); Dethloff, K.; Rinke, A. [Alfred Wegener Institute for Polar and Marine Research, Research Unit, Potsdam (Germany); Haugen, J.-E.; Koeltzow, M. [Norwegian Meteorological Institute, Oslo (Norway); Jacob, D.; Pfeifer, S. [Max Planck Institute for Meteorology, Hamburg (Germany); Lynch, A. [Monash University, School of Geography and Environmental Science, Melbourne (Australia); Tjernstroem, M.; Zagar, M. [Stockholm University, Department of Meteorology, Stockholm (Sweden)

    2008-02-15

    Eight atmospheric regional climate models (RCMs) were run for the period September 1997 to October 1998 over the western Arctic Ocean. This period was coincident with the observational campaign of the Surface Heat Budget of the Arctic Ocean (SHEBA) project. The RCMs shared common domains, centred on the SHEBA observation camp, along with a common model horizontal resolution, but differed in their vertical structure and physical parameterizations. All RCMs used the same lateral and surface boundary conditions. Surface downwelling solar and terrestrial radiation, surface albedo, vertically integrated water vapour, liquid water path and cloud cover from each model are evaluated against the SHEBA observation data. Downwelling surface radiation, vertically integrated water vapour and liquid water path are reasonably well simulated at monthly and daily timescales in the model ensemble mean, but with considerable differences among individual models. Simulated surface albedos are relatively accurate in the winter season, but become increasingly inaccurate and variable in the melt season, thereby compromising the net surface radiation budget. Simulated cloud cover is more or less uncorrelated with observed values at the daily timescale. Even for monthly averages, many models do not reproduce the annual cycle correctly. The inter-model spread of simulated cloud-cover is very large, with no model appearing systematically superior. Analysis of the co-variability of terms controlling the surface radiation budget reveal some of the key processes requiring improved treatment in Arctic RCMs. Improvements in the parameterization of cloud amounts and surface albedo are most urgently needed to improve the overall performance of RCMs in the Arctic. (orig.)

  4. Correlated declines in Pacific arctic snow and sea ice cover

    Science.gov (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  5. An atmosphere-ocean GCM modelling study of the climate response to changing Arctic seaways in the early Cenozoic.

    Science.gov (United States)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2008-12-01

    The report of fossil Azolla (a freshwater aquatic fern) in sediments from the Lomonosov Ridge suggests low salinity conditions occurred in the Arctic Ocean in the early Eocene. Restricted passages between the Arctic Ocean and the surrounding oceans are hypothesized to have caused this Arctic freshening. We investigate this scenario using a water-isotope enabled atmosphere-ocean general circulation model with Eocene boundary conditions including 4xCO2, 7xCH4, altered bathymetry and topography, and an estimated distribution of Eocene vegetational types. In one experiment, oceanic exchange between the Arctic Ocean and other ocean basins was restricted to two shallow (~250 m) seaways, one in the North Atlantic, the Greenland-Norwegian seaway, and the second connecting the Arctic Ocean with the Tethys Ocean, the Turgai Straits. In the restricted configuration, the Greenland-Norwegian seaway was closed and exchange through the Turgai Straits was limited to a depth of ~60 m. The simulations suggest that the severe restriction of Arctic seaways in the early Eocene may have been sufficient to freshen Arctic Ocean surface waters, conducive to Azolla blooms. When exchange with the Arctic Ocean is limited, salinities in the upper several hundred meters of the water column decrease by ~10 psu. In some regions, surface salinity is within 2-3 psu of the reported maximum modern conditions tolerated by Azolla (~5 psu). In the restricted scenario, salt is stored preferentially in the North Atlantic and Tethys oceans, resulting in enhanced meridional overturning, increased poleward heat transport in the North Atlantic western boundary current, and warming of surface and intermediate waters in the North Atlantic by several degrees. Increased sensible and latent heat fluxes from the North Atlantic Ocean, combined with a reduction in cloud albedo, also lead to an increase in surface air temperature of over much of North America, Greenland and Eurasia. Our work is consistent with

  6. Science Partnerships for a Sustainable Arctic: the Marine Mammal Nexus (Invited)

    Science.gov (United States)

    Moore, S. E.

    2010-12-01

    Marine mammals are both icons of Arctic marine ecosystems and fundamental to Native subsistence nutrition and culture. Eight species are endemic to the Pacific Arctic, including the polar bear, walrus, ice seals (4 species), beluga and bowhead whales. Studies of walrus and bowheads have been conducted over the past 30 years, to estimate population size and elucidate patterns of movement and abundance. With regard to the three pillars of the SEARCH program, these long-term OBSERVATIONS provide a foundation for research seeking to UNDERSTAND and RESPOND to the effects of rapid climate change on the marine ecosystem. Specifically, research on the coastal ecosystem near Barrow, Alaska focuses on late-summer feeding habitat for bowheads in an area where whales are hunted in autumn. This work is a partnership among agency, academic and local scientists and the residents of Barrow, all of whom seek to better UNDERSTAND how recent dramatic changes in sea ice, winds and offshore industrial activities influence whale movements and behavior. In regard to RESPONDING to climate change, the nascent Sea Ice for Walrus Outlook (SIWO) is a science partnership that projects sea ice and wind conditions for five villages in the Bering Strait region. The objective of the SIWO is to provide information on physical conditions in the marine environment at spatial and temporal scales relevant to walrus hunters. Marine mammals are a strong and dynamic nexus for partnerships among scientists, Arctic residents, resource managers and the general public - as such, they are essential elements to any science plan for a sustainable Arctic.

  7. ArcticDEM Validation and Accuracy Assessment

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  8. Predicting Space Weather: Challenges for Research and Operations

    Science.gov (United States)

    Singer, H. J.; Onsager, T. G.; Rutledge, R.; Viereck, R. A.; Kunches, J.

    2013-12-01

    Society's growing dependence on technologies and infrastructure susceptible to the consequences of space weather has given rise to increased attention at the highest levels of government as well as inspired the need for both research and improved space weather services. In part, for these reasons, the number one goal of the recent National Research Council report on a Decadal Strategy for Solar and Space Physics is to 'Determine the origins of the Sun's activity and predict the variations in the space environment.' Prediction of conditions in our space environment is clearly a challenge for both research and operations, and we require the near-term development and validation of models that have sufficient accuracy and lead time to be useful to those impacted by space weather. In this presentation, we will provide new scientific results of space weather conditions that have challenged space weather forecasters, and identify specific areas of research that can lead to improved capabilities. In addition, we will examine examples of customer impacts and requirements as well as the challenges to the operations community to establish metrics that enable the selection and transition of models and observations that can provide the greatest economic and societal benefit.

  9. Capability of LOFT vital batteries to supply emergency power demands during severe cold weather conditions

    International Nuclear Information System (INIS)

    Yeates, J.A.

    1978-01-01

    This study evaluates the capability of the vital batteries (PPS) to provide electrical power via the vital DC-AC motor generator sets to the LOFT PPS loads during severe cold weather conditions. It is concluded that these batteries while at a temperature of 5 0 F will supply the necessary PPS electrical loads for a time in excess of the one hour permitted to start the diesel generators and are, therefore, adequate at this temperature. This Revision B of the LTR includes revised, more recent, and complete technical data relating to MG set efficiency, battery operating procedures and cold temperature derating. Revision B supersedes and replaces all previous issues

  10. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  11. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  12. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Science.gov (United States)

    Hamilton, Stephen G; Castro de la Guardia, Laura; Derocher, Andrew E; Sahanatien, Vicki; Tremblay, Bruno; Huard, David

    2014-01-01

    Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus) have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling. Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands. Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  13. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  14. Investigating the occurrence of persistent organic pollutants (POPs) in the arctic: their atmospheric behaviour and interaction with the seasonal snow pack

    International Nuclear Information System (INIS)

    Halsall, Crispin J.

    2004-01-01

    POPs in the Arctic are the focus of international concern due to their occurrence and accumulation in Arctic food webs. This paper presents an overview of the major pathways into the Arctic and details contemporary studies that have focused on the occurrence and transfer of POPs between the major Arctic compartments, highlighting areas where there is a lack of quantitative information. The behaviour of these chemicals in the Arctic atmosphere is scrutinised with respect to long-term trends and seasonal behaviour. Subtle differences between the PCBs and OC pesticides are demonstrated and related to sources outside of the Arctic as well as environmental processes within the Arctic. Unlike temperate regions, contaminant fate is strongly affected by the presence of snow and ice. A description of the high Arctic snow pack is given and the physical characteristics that determine chemical fate, namely the specific surface area of snow and wind driven ventilation, are discussed. Using a well-characterised fresh snow event observed at Alert (Canadian high Arctic) [Atmos. Environ. 36(2002) 2767] the flux of γ-HCH out of the snow is predicted following snow ageing. Under conditions of wind (10 m/s) it is estimated that ∼75% of the chemical may be re-emitted to the atmosphere within 24 h following snowfall, compared with just ∼5% under conditions of no wind. The implications of this are raised and areas of further research suggested. - The fluxes and fate of POPs in snowpacks are key to their behaviour in polar systems

  15. An exemplary case of a bromine explosion event linked to cyclone development in the Arctic

    Directory of Open Access Journals (Sweden)

    A.-M. Blechschmidt

    2016-02-01

    Full Text Available Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO are regularly observed by GOME-2 on board the MetOp-A satellite over Arctic sea ice in polar spring. These plumes are often transported by high-latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. However, only few studies have focused on the role of polar weather systems in the development, duration and transport of tropospheric BrO plumes during bromine explosion events. The latter are caused by an autocatalytic chemical chain reaction associated with tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. In this manuscript, a case study investigating a comma-shaped BrO plume which developed over the Beaufort Sea and was observed by GOME-2 for several days is presented. By making combined use of satellite data and numerical models, it is shown that the occurrence of the plume was closely linked to frontal lifting in a polar cyclone and that it most likely resided in the lowest 3 km of the troposphere. In contrast to previous case studies, we demonstrate that the dry conveyor belt, a potentially bromine-rich stratospheric air stream which can complicate interpretation of satellite retrieved tropospheric BrO, is spatially separated from the observed BrO plume. It is concluded that weather conditions associated with the polar cyclone favoured the bromine activation cycle and blowing snow production, which may have acted as a bromine source during the bromine explosion event.

  16. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  17. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    Science.gov (United States)

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  18. Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system

    Science.gov (United States)

    Chetty, S.; Field, L. A.

    2013-12-01

    The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4

  19. Development of pan-Arctic database for river chemistry

    Science.gov (United States)

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  20. Greenland and the international politics of a changing arctic

    DEFF Research Database (Denmark)

    Greenland and the International Politics of a Changing Arctic examines the international politics of semi-independent Greenland in a changing and increasingly globalised Arctic. Without sovereign statehood, but with increased geopolitical importance, independent foreign policy ambitions......, and a solidified self-image as a trailblazer for Arctic indigenous peoples’ rights, Greenland is making its mark on the Arctic and is in turn affected – and empowered – by Arctic developments. The chapters in this collection analyse how a distinct Greenlandic foreign policy identity shapes political ends and means...... for regional change in the Arctic. This is the first comprehensive and interdisciplinary examination of Greenland’s international relations and how they are connected to wider Arctic politics. It will be essential reading for students and scholars interested in Arctic governance and security, international...