WorldWideScience

Sample records for arctic vegetation types

  1. Accuracy assessment of airphoto interpretation of vegetation types and disturance levels on winter seismic trails, Arctic National Wildlife Refuge, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An accuracy assessment was conducted to evaluate the photointerpretation of vegetation types and disturbance levels along seismic trails in the Arctic National...

  2. Accuracy assessment of airphoto interpretation of vegetation types and disturance levels on winter seismic trails, Arctic National Wildlife Refuge, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — An accuracy assessment was conducted to evaluate the photo-interpretation of vegetation types and disturbance levels along seismic trails in the Arctic National...

  3. Identifying nitrogen limitations to organic sediments accumulation in various vegetation types of arctic tundra (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, G.; Wojtuń, B.; Hua, Q.; Richter, D.; Jakubas, D.; Wojczulanis-Jakubas, K.; Samecka-Cymerman, A.

    2015-12-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types in the Fuglebekken catchment (Hornsund Fjord, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (colonially breeding, planktivorous Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by N2-fixation. The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced substantial negative environmental pressure associated with climate change, it would adversely influence the tundra N-budget [1]. The growth rates and the sediment thickness (climatic conditions but also by birds' contribution to the tundra N-pool. [1] Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015. Diversification of nitrogen sources in various tundra vegetation types in the high Arctic. PLoS ONE (in review).

  4. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  5. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  6. New views on changing Arctic vegetation

    Science.gov (United States)

    Kennedy, Robert E.

    2012-03-01

    ). While the USGS archive has been dominated by imagery from the United States, recent efforts by the USGS to repatriate data stored in international archives are adding new historical images to the archive every day. With persistence and the goodwill of collaborating countries, this effort may someday allow analyses similar to that of Fraser et al across broader expanses of the Earth, providing further insights into the mechanisms and manifestations of climate change. References Chapin F S et al 2000 Arctic and boreal ecosystems of western North America as components of the climate system Glob. Change Biol. 6 211-23 Coops N C and Waring R H 2011 A process-based approach to estimate lodgepole pine (Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change Clim. Change 105 313-28 de Beurs K M and Henebry G M 2010 A land surface phenology assessment of the northern polar regions using MODIS reflectance time series Can. J. Remote Sens. 36 S87-110 Forbes B C, Fauria M M and Zetterberg P 2010 Russian Arctic warming and 'greening' are closely tracked by tundra shrub willows Glob. Change Biol. 16 1542-54 Fraser R H et al 2011 Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive Environ. Res. Lett. 6 045502 Goodwin N R, Magnussen S, Coops N C and Wulder M A 2010 Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation Int. J. Remote Sens. 31 3263-71 Hais M, Jonášová M, Langhammer J and Kuèera T 2009 Comparison of two types of forest disturbance using multitemporal Landsat TM/ETMC imagery and field vegetation data Remote Sens. Environ. 113 835-45 Hansen M C, Stehman S V and Potapov P V 2010 Quantification of global gross forest cover loss Proc. Natl Acad. Sci. 107 8650-5 Huang C, Goward S N, Masek J G, Thomas N, Zhu Z and Vogelmann J E 2010 An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks Remote Sens

  7. Description of vegetation types

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document provides descriptions of five vegetation types found in Iowa- oak savannah, mature hardwoods, floodplain woods, scrub woods, and riparian woods. Oak...

  8. Expansion of vegetated coastal ecosystems in the future Arctic

    Directory of Open Access Journals (Sweden)

    Dorte eKrause-Jensen

    2014-12-01

    Full Text Available Warming occurs particularly fast in the Arctic and exerts profound effects on arctic ecosystems. Sea ice-associated ecosystems are projected to decline but reduced arctic sea ice cover also increases the solar radiation reaching the coastal seafloors with the potential for expansion of vegetated habitats, i.e. kelp forests and seagrass meadows. These habitats support key ecosystem functions, some of which may mitigate effects of climate change. Therefore, the likely expansion of vegetated coastal habitats in the Arctic will generate new productive ecosystems, offer habitat for a number of invertebrate and vertebrate species, including provision of refugia for calcifiers from possible threats from ocean acidification, contribute to enhance CO2 sequestration and protect the shoreline from erosion. The development of models allowing quantitative forecasts of the future of vegetated arctic ecosystems requires that key hypotheses underlying such forecasts be tested. Here we propose a set of three key testable hypotheses along with a research agenda for testing them using a broad diversity of approaches, including analyses of paleo-records, space for-time substitutions and experimental studies. The research agenda proposed would provide a solid underpinning to guide forecasts on the spread of marine macrophytes onto the Arctic with climate change and contribute to balance our understanding of climate change impacts on the arctic ecosystem through a focus on the role of engineering species. Anticipating these changes in ecosystem structure and function is key to develop managerial strategies to maximize these ecosystem services in a future warmer Arctic.

  9. Arctic Browning: vegetation damage and implications for carbon balance.

    Science.gov (United States)

    Treharne, Rachael; Bjerke, Jarle; Emberson, Lisa; Tømmervik, Hans; Phoenix, Gareth

    2016-04-01

    'Arctic browning' is the loss of biomass and canopy in Arctic ecosystems. This process is often driven by climatic and biological extreme events - notably extreme winter warm periods, winter frost-drought and severe outbreaks of defoliating insects. Evidence suggests that browning is becoming increasingly frequent and severe at the pan-arctic scale, a view supported by observations from more intensely observed regions, with major and unprecedented vegetation damage reported at landscape (>1000km2) and regional (Nordic Arctic Region) scales in recent years. Critically, the damage caused by these extreme events is in direct opposition to 'Arctic greening', the well-established increase in productivity and shrub abundance observed at high latitudes in response to long-term warming. This opposition creates uncertainty as to future anticipated vegetation change in the Arctic, with implications for Arctic carbon balance. As high latitude ecosystems store around twice as much carbon as the atmosphere, and vegetation impacts are key to determining rates of loss or gain of ecosystem carbon stocks, Arctic browning has the potential to influence the role of these ecosystems in global climate. There is therefore a clear need for a quantitative understanding of the impacts of browning events on key ecosystem carbon fluxes. To address this, field sites were chosen in central and northern Norway and in Svalbard, in areas known to have been affected by either climatic extremes or insect outbreak and subsequent browning in the past four years. Sites were chosen along a latitudinal gradient to capture both conditions already causing vegetation browning throughout the Norwegian Arctic, and conditions currently common at lower latitudes which are likely to become more damaging further North as climate change progresses. At each site the response of Net Ecosystem CO2 Exchange to light was measured using a LiCor LI6400 Portable Photosynthesis system and a custom vegetation chamber with

  10. Tundra vegetation effects on pan-Arctic albedo

    International Nuclear Information System (INIS)

    Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m-2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

  11. Vegetation, plant biomass, and net primary productivity patterns in the Canadian Arctic

    Science.gov (United States)

    Gould, W. A.; Raynolds, M.; Walker, D. A.

    2003-01-01

    We have developed maps of dominant vegetation types, plant functional types, percent vegetation cover, aboveground plant biomass, and above and belowground annual net primary productivity for Canada north of the northern limit of trees. The area mapped covers 2.5 million km2 including glaciers. Ice-free land covers 2.3 million km2 and represents 42% of all ice-free land in the Circumpolar Arctic. The maps combine information on climate, soils, geology, hydrology, remotely sensed vegetation classifications, previous vegetation studies, and regional expertise to define polygons drawn using photo-interpretation of a 1:4,000,000 scale advanced very high resolution radiometer (AVHRR) color infrared image basemap. Polygons are linked to vegetation description, associated properties, and descriptive literature through a series of lookup tables in a graphic information systems (GIS) database developed as a component of the Circumpolar Arctic Vegetation Map (CAVM) project. Polygons are classified into 20 landcover types including 17 vegetation types. Half of the region is sparsely vegetated (<50% vegetation cover), primarily in the High Arctic (bioclimatic subzones A-C). Whereas most (86%) of the estimated aboveground plant biomass (1.5 × 1015 g) and 87% of the estimated above and belowground annual net primary productivity (2.28 × 1014 g yr-1) are concentrated in the Low Arctic (subzones D and E). The maps present more explicit spatial patterns of vegetation and ecosystem attributes than have been previously available, the GIS database is useful in summarizing ecosystem properties and can be easily updated and integrated into circumpolar mapping efforts, and the derived estimates fall within the range of current published estimates.

  12. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    Science.gov (United States)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  13. Arctic climate change with a 2C global warming. Timing, climate patterns and vegetation change

    International Nuclear Information System (INIS)

    The signatories to United Nations Framework Convention on Climate Change are charged with stabilizing the concentrations of greenhouse gases in the atmosphere at a level that prevents dangerous interference with the climate system. A number of nations, organizations and scientists have suggested that global mean temperature should not rise over 2C above preindustrial levels. However, even a relatively moderate target of 2C has serious implications for the Arctic, where temperatures are predicted to increase at least 1.5 to 2 times as fast as global temperatures. High latitude vegetation plays a significant role in the lives of humans and animals, and in the global energy balance and carbon budget. These ecosystems are expected to be among the most strongly impacted by climate change over the next century. To investigate the potential impact of stabilization of global temperature at 2C, we performed a study using data from six Global Climate Models (GCMs) forced by four greenhouse gas emissions scenarios, the BIOME4 biogeochemistry-biogeography model, and remote sensing data. GCM data were used to predict the timing and patterns of Arctic climate change under a global mean warming of 2C. A unified circumpolar classification recognizing five types of tundra and six forest biomes was used to develop a map of observed Arctic vegetation. BIOME4 was used to simulate the vegetation distributions over the Arctic at the present and for a range of 2C global warming scenarios. The GCMs simulations indicate that the earth will have warmed by 2C relative to preindustrial temperatures by between 2026 and 2060, by which stage the area-mean annual temperature over the Arctic (60-90N) will have increased by between 3.2 and 6.6C. Forest extent is predicted by BIOME4 to increase in the Arctic on the order of 3 x 106 km2 or 55% with a corresponding 42% reduction in tundra area. Tundra types generally also shift north with the largest reductions in the prostrate dwarf-shrub tundra

  14. Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data

    Science.gov (United States)

    Liu, Nanfeng; Treitz, Paul

    2016-10-01

    In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR - RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx - Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2's ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.

  15. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems

    Science.gov (United States)

    Loranty, Michael M.; Liberman-Cribbin, Wil; Berner, Logan T.; Natali, Susan M.; Goetz, Scott J.; Alexander, Heather D.; Kholodov, Alexander L.

    2016-09-01

    In arctic tundra and boreal forest ecosystems vegetation structural and functional influences on the surface energy balance can strongly influence permafrost soil temperatures. As such, vegetation changes will likely play an important role in permafrost soil carbon dynamics and associated climate feedbacks. Processes that lead to changes in vegetation, such as wildfire or ecosystem responses to rising temperatures, are of critical importance to understanding the impacts of arctic and boreal ecosystems on future climate. Yet these processes vary within and between ecosystems and this variability has not been systematically characterized across the arctic-boreal region. Here we quantify the distribution of vegetation productivity trends, wildfire, and near-surface soil carbon, by vegetation type, across the zones of continuous and discontinuous permafrost. Siberian larch forests contain more than one quarter of permafrost soil carbon in areas of continuous permafrost. We observe pervasive positive trends in vegetation productivity in areas of continuous permafrost, whereas areas underlain by discontinuous permafrost have proportionally less positive productivity trends and an increase in areas exhibiting negative productivity trends. Fire affects a much smaller proportion of the total area and thus a smaller amount of permafrost soil carbon, with the vast majority occurring in deciduous needleleaf forests. Our results indicate that vegetation productivity trends may be linked to permafrost distribution, fire affects a relatively small proportion of permafrost soil carbon, and Siberian larch forests will play a crucial role in the strength of the permafrost carbon climate feedback.

  16. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity from 2000-2013 tracked with cameras

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund;

    2016-01-01

    The changes in vegetation seasonality at northern latitudes, resulting from changes in atmospheric temperatures and precipitation, are still not well understood. In this study we used 13 years of time lapse camera data and climate data from high-Arctic Northeast Greenland to assess the seasonal...... response of three vegetation types (dwarf shrub heath, grassland, and fen) to changes in snow cover, soil moisture, and air and soil temperatures. Based on the camera data, we computed a greenness index, which was subsequently used to analyze transition dates in vegetation seasonality. Snow cover...

  17. Quantifying snow and vegetation interactions in the high arctic based on Ground Penetrating Radar (GPR)

    DEFF Research Database (Denmark)

    Gacitua, Guisella; Bay, Christian; Pedersen, Maria Rask;

    2013-01-01

    Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  18. Crustal types of the Circumpolar Arctic

    Science.gov (United States)

    Kashubin, Sergey; Pavlenkova, Ninel; Petrov, Oleg; Milshtein, Evgenia; Shokalsky, Sergey; Erinchek, Yuri

    2016-04-01

    Deep seismic studies revealed unusual crustal structure in the Arctic Ocean. The thin (about 10 km) oceanic crust with seismic velocities Vp= 6.8-7.2 km/s is observed only in the narrow mid-oceanic ridge zone (the Gakkel ridge). The thick (25-35 km) continental crust covers the whole continental margins and the central part of the ocean. The continental type of the magnetic field with large local anomalies of different signs and irregular shapes is also observed in this area. However, the crust of the central Arctic (the Lomonosov, Mendeleev and Alpha ridges) differ from the crust of the Eurasia by the lower thickness of the upper granite-gneiss layer (velocities Vp=6.0-6.6 km/s): it is only 5-7 km in comparison with 15-20 km in the continent. The origin of such crust may be explained in two ways. Most frequently it is accounted for by the destruction and transformation of the continental crust by the basification that implies the enrichment of the crust by the rocks of basic composition from the mantle and the metamorphization of the continental rocks at the higher temperature and pressure. But in the central part of the Arctic Ocean the crust looks as an original one. The regular form of the large ridges and the continental type magnetic field were not destroyed by the basification processes which are usually irregular and most intensive in some local zones. The basification origin may be proposed for the Canadian and the South-Barents deep sedimentary basins with "suboceanic" crust (10-15 km of sediments and 10-15 km of the lower crust with Vp= 6.8-7.2 km/s). The other basins which stretch along fault zones outlined the central deep water part of the Arctic Ocean have the ''subcontinental' crust: the thickness of the granite-gneiss layer decreases in these basins and sometimes the high velocity intrusions are observed in the lower parts. The different crustal types are observed in the North Atlantic where the oceanic crust with linear magnetic anomalies is

  19. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    Science.gov (United States)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  20. Regional-Scale Vegetation Dynamics in Patterned-Ground Ecosystems of Arctic Tundra

    Science.gov (United States)

    Epstein, H. E.; Kelley, A. M.; Walker, D. A.; Jia, G. J.; Raynolds, M. K.

    2006-12-01

    Regional-scale patterns of vegetation have been analyzed along a number of climate gradients throughout the world; these spatial dynamics provide important insights into the controlling factors of vegetation and the potential plant responses to environmental change. Only a few studies to date have collectively examined the vegetation biomass and production of arctic tundra ecosystems and their relationships to broadly ranging climate variables. No prior study has taken a systematic and consistent approach to examining vegetation biomass patterns along the full temperature gradient of the arctic biome. An additional complicating factor for studying vegetation of arctic tundra is the high spatial variability associated with small patterned-ground features (e.g. non-sorted circles and small non-sorted polygons), resulting from intense freeze-thaw processes. In this study, we sampled and analyzed the aboveground plant biomass components of patterned-ground ecosystems in the Arctic of northern Alaska and Canada along an 1800-km north-south gradient that spans approximately 11 degrees C of mean July temperatures. At each of ten locations along the regional temperature gradient, we ran several 50-m transects and harvested the aboveground biomass of three 20 x 50 cm plots for each transect. Vegetation biomass was dried, sorted by plant functional groups and tissue types, weighed, and analyzed as functions of the summer warmth index (SWI sum of mean monthly temperatures > 0). The absolute biomass (g/m2) of shrubs and graminoids increased exponentially with SWI, whereas forb and lichen biomass showed no change along the gradient. Moss biomass increased linearly with SWI, but with greater variabiliy than the other types. Relative aboveground biomass (% of total) of shrubs and graminoids increased with SWI, whereas percent lichen biomass decreased, and forbs again exhibited no significant change. Percentage of moss biomass was a parabolic function of SWI, with high relative

  1. Simulating the effects of temperature and precipitation change on vegetation composition in Arctic tundra ecosystems

    OpenAIRE

    Van Der Kolk, H; M. M. P. D. Heijmans; Van Huissteden, J.; Pullens, J. W. M.; Berendse, F.

    2016-01-01

    Over the past decades, vegetation has changed significantly along with climatic changes in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid dominated wetland. Which mechanisms drive vegetation changes in the tundra ecosystem is still not sufficiently clear. In this study, the dynamic tundra vegetation model NUCOM-tundra was used to e...

  2. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

    OpenAIRE

    Polyakov, Igor V; Tucker, Compton J.; Pinzon, Jorge E; Epstein, Howard E.; Comiso, Josefino C; Peter A. Bieniek; Walker, Donald A.; Raynolds, Martha K.; Bhatt, Uma S.

    2013-01-01

    Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS) Maximum Normalized Difference Vegetation Index (MaxNDVI), Special Sensor ...

  3. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect

    OpenAIRE

    Swann, Abigail L.; Fung, Inez Y.; Levis, Samuel; BONAN, GORDON B.; Doney, Scott C.

    2010-01-01

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high ...

  4. The Drabo corymbosae-Papaveretea dahliani − a new vegetation class of the High Arctic polar deserts

    OpenAIRE

    Daniëls Fred J. A.; Elvebakk Arve; Matveyeva Nadezhda V.; Mucina Ladislav

    2016-01-01

    A new class and a new order (Drabo corymbosae-Papaveretea dahliani and Saxifrago oppositifoliae-Papaveretalia dahliani) have been described, and the Papaverion dahliani validated. This is vegetation of zonal habitats in lowlands of the High Arctic subzone A (or Arctic herb, cushion forb or polar desert subzone) and of ecologically equivalent sites at high altitudes on the mountain plateaus of the High Arctic. The new class spans three continents – North America (Canadian Arctic Archipelago an...

  5. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000-11)

    Science.gov (United States)

    Dutrieux, L. P.; Bartholomeus, H.; Herold, M.; Verbesselt, J.

    2012-12-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000-11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr-1) and warming (+0.27% yr-1) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting factors

  6. Circumpolar Dynamics of Arctic Tundra Vegetation in Relation to Temperature Trends

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Raynolds, M. K.; Walker, D. A.; Reichle, L.

    2015-12-01

    Arctic tundra vegetation has generally exhibited a "greening" trend for at least the past three decades. However, these temporal trends in tundra vegetation are highly heterogeneous in space across different arctic regions, as well as showing variability over time. The factors controlling this variability are likely numerous with complex interactions, however, a first approach is to examine how vegetation dynamics relate to trends in temperature. We used a 32-year record (1982-2013) of the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperatures from Advanced Very High Resolution Radiometer (AVHRR) sensors onboard NOAA satellites (GIMMS 3g dataset) to analyze observed changes in both aboveground tundra vegetation and surface temperatures. We divided the circumpolar dataset into two continental regions (North America and Eurasia), as well as by tundra subzone (A-E) sensu the Circumpolar Arctic Vegetation Map (CAVM). We 1) compared temporal trends in both MaxNDVI (peak values) and TI-NDVI (seasonally integrated values) with those of the Summer Warmth Index (SWI - sum of mean monthly temperatures > 0 °C); 2) assessed how the detrended interannual variabilities in NDVI compared to those of SWI; and 3) analyzed current and prior year SWI, as well as prior year NDVI, as controls on current year NDVI. Interannual coefficients of variation for SWI were 2.0 - 2.5 times greater than those for NDVI, and the temporal trendlines for NDVI were much "tighter" with greater r² values than those for SWI. Interannual variability in NDVI was greatest in the "Mid-Low" Arctic, whereas interannual variability in SWI was greatest in the most southern Arctic. Surprisingly, the observed relative rates of change in NDVI were greater than those of SWI for the warmer subzones for both North America and Eurasia. Finally, the change in NDVI from one year to the next was only weakly correlated with current year SWI. These results suggest that 1) there are clearly factors

  7. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... measurements in this thesis were performed using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analyzed by gas chromatography-mass spectrometry following thermal desorption. Also modifications in leaf anatomy in response to the studied effects of climate change were assessed...... common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...

  8. How will the greening of the Arctic affect an important prey species and disturbance agent? Vegetation effects on arctic ground squirrels.

    Science.gov (United States)

    Wheeler, H C; Chipperfield, J D; Roland, C; Svenning, J-C

    2015-07-01

    Increases in terrestrial primary productivity across the Arctic and northern alpine ecosystems are leading to altered vegetation composition and stature. Changes in vegetation stature may affect predator-prey interactions via changes in the prey's ability to detect predators, changes in predation pressure, predator identity and predator foraging strategy. Changes in productivity and vegetation composition may also affect herbivores via effects on forage availability and quality. We investigated if height-dependent effects of forage and non-forage vegetation determine burrowing extent and activity of arctic ground squirrels (Urocitellus parryii). We collected data on burrow networks and activity of arctic ground squirrels across long-term vegetation monitoring sites in Denali National Park and Preserve, Alaska. The implications of height-specific cover of potential forage and non-forage vegetation on burrowing behaviour and habitat suitability for arctic ground squirrels were investigated using hierarchical Bayesian modelling. Increased cover of forbs was associated with more burrows and burrow systems, and higher activity of systems, for all forb heights. No other potential forage functional group was related to burrow distribution and activity. In contrast, height-dependent negative effects of non-forage vegetation were observed, with cover over 50-cm height negatively affecting the number of burrows, systems and system activity. Our results demonstrate that increases in vegetation productivity have dual, potentially counteracting effects on arctic ground squirrels via changes in forage and vegetation stature. Importantly, increases in tall-growing woody vegetation (shrubs and trees) have clear negative effects, whereas increases in forb should benefit arctic ground squirrels. PMID:25666700

  9. Vegetation shifts observed in arctic tundra 17 years after fire

    NARCIS (Netherlands)

    Barret, K.; Rocha, A.V.; Weg, van de M.J.; Shaver, G

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the N

  10. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    International Nuclear Information System (INIS)

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  11. Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Science.gov (United States)

    Walker, D. A.; Daniëls, F. J. A.; Alsos, I.; Bhatt, U. S.; Breen, A. L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L. A.; Edwards, M. E.; Ehrich, D.; Epstein, H. E.; Gould, W. A.; Ims, R. A.; Meltofte, H.; Raynolds, M. K.; Sibik, J.; Talbot, S. S.; Webber, P. J.

    2016-05-01

    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation.

  12. Understanding Pan-Arctic Tundra Vegetation Change Through Long-term Remotely Sensed Data

    Science.gov (United States)

    Bhatt, U.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2012-12-01

    The goal of this paper is to present an analysis of the seasonality of tundra vegetation variability and change using long-term remotely sensed data as well as ground based measurements and reanalyses. An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI). Coherent variability between NDVI, springtime coastal sea ice (passive microwave) and land surface temperatures (AVHRR) has also been established. Satellite based snow and cloud cover data sets are being incorporated into this analysis. The Arctic tundra is divided into domains based on Treshnikov divisions that are modified based on floristic provinces. There is notable heterogeneity in Pan-Arctic vegetation and climate trends, which necessitates a regional analysis. This study uses remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2010. The GIMMS NDVI3g data has been corrected for biases during the spring and fall, with special focus on the Arctic. Trends of Maximum NDVI (MaxNDVI), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), and open water area are calculated for the Pan Arctic. Remotely sensed snow data trends suggest varying patterns throughout the Arctic and may in part explain the heterogeneous MaxNDVI trends. Standard climate data (station, reanalysis, and model data) and ground observations are used in the analysis to provide additional support for hypothesized mechanisms. Overall, we find that trends over the 30-year record are changing as evidenced by the following examples from recent years. The sea ice decline has increased in Eurasia and slowed in North America. The weekly AVHRR landsurface temperatures reveal that there has been summer cooling over Eurasia and that the warming over North America has slowed. The MaxNDVI rates of change have diverged between N. America and Eurasia

  13. Vegetation-Soil-Active Layer Relationships Along a Low-Arctic Bioclimate Gradient, Alaska

    Science.gov (United States)

    Walker, D. A.; Jia, G. J.; Epstein, H. E.; Shiklomanov, N.; Nelson, F.; Hinzman, L. D.; Romanovsky, V. E.

    2002-12-01

    Northern Alaska has three of five Arctic bioclimate subzones, which are representative of the circumpolar Low Arctic. This portion of the Arctic has more or less continuous tundra plant cover and well-developed moss canopies. We examined the biomass and remotely sensed spectral properties of the vegetation canopy, active-layer thickness, and the soil properties at 21 sites on the Arctic Slope and Seward Peninsula of Alaska. The sites were grouped into three bioclimate subzones according the summer warmth at the sites. The summer warmth index (SWI) is the sum of the mean monthly temperatures greater than 0 degrees C. Subzone C, the coldest subzone, occurs in a narrow strip along the northern coast of the Alaska. Subzone D covers most of the Arctic Coastal Plain and the northwest portion of the Seward Peninsula, and Subzone E covers most of the Foothills and most of the unforested portion of the Seward Peninsula. The SWIs in Subzones C, D, and E are generally less than 10-15 degrees C, 15-25 degrees C, and 25-35 degrees C respectively. The average active layer depths were 44, 55, and 47 cm respectively The shallow active layer in Subzone E is to a large degree a response to the denser vegetation canopies in Subzone E. Total plant biomass in Subzone C, D, and E averaged 421 g m-2, 503 g m-2, and 1178 g m-2 respectively. The much higher biomass in Subzone E was due primarily to woody shrubs (40 g m-2 in Subzone C, 51 g m-2 in Subzone D, and 730 g m-2 in Subzone E). The normalized difference vegetation index (NDVI) is one measure of greenness. Highest NDVI values were obtained from acidic tundra regions in Subzone E, and the lowest NDVI values were obtained in the nonacidic areas of Subzone C. In summary, the insulative properties of the vegetation play a very important role controlling the thickness of the active layer, and the amount of vegetation biomass differs according to summer warmth and soil properties. Acidic soils in the warmest parts of the Arctic (Subzone E

  14. Ecosystem-Vegetation Dynamics in sub-arctic Stordalen Mire, Sweden

    Science.gov (United States)

    Mugnani, M. P.; Varner, R. K.; Steele, K.; Frey, S. D.; Crill, P. M.

    2012-12-01

    Increased global temperatures have contributed to the thaw of permafrost and a subsequent atmospheric release of stored methane (CH4) from sub-arctic ecosystems. Palsas, small frost uplifted mounds that support specialized dry-tolerant vegetation species, degrade when permafrost thaws, allowing other species such a Sphagnum and Eriophorum to encroach on the microhabitats and outcompete other species, altering the carbon feedback into the thin arctic soil. Other climate change-related events including increased precipitation, seasonal temperature abnormalities and changes in humidity and nutrient availability may alter vegetation dynamics in terms of diversity and abundance in sub-arctic regions. During July 2012, measurements of vegetation composition and species abundance estimates were made in Stordalen Mire (68° 21' N, 19° 03' E), Abisko Sweden, two hundred kilometers north of the Arctic Circle. The mire is an area of discontinuous permafrost populated by micro-ecosystems that vary in vegetation species and abundance depending on growth conditions. All ecosystems provide beneficial services to support a range of life forms including rodents, birds, insects and reindeer. Five representative ecosystems of the mire were chosen to conduct studies on vegetation diversity and percent cover-based abundance: palsa, Eriophorum-dominated fen, Sphagnum-dominated peatland, lakeshore edge and lakeside heath. In each ecosystem vegetation species were recorded in six transects with quadrats along with a corresponding percent cover estimation and scale number based on the Braun-Blanquet percent cover method. To determine nutrient dynamics between ecosystems, soil peat samples were also taken at random from all ecosystem transects. These were analyzed for carbon and inorganic nitrogen as well as ammonium and nitrate. In the vegetation data analysis, the Shannon-Wiener Diversity Index showed that the lakeside heath ecosystem was the most diverse and even in species distribution

  15. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

    Directory of Open Access Journals (Sweden)

    Igor V. Polyakov

    2013-08-01

    Full Text Available Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS Maximum Normalized Difference Vegetation Index (MaxNDVI, Special Sensor Microwave Imager (SSM/I sea-ice concentrations, and Advanced Very High Resolution Radiometer (AVHRR radiometric surface temperatures. Spring sea ice is declining everywhere except in the Bering Sea, while summer open water area is increasing throughout the Arctic. Summer Warmth Index (SWI—sum of degree months above freezing trends from 1982 to 2011 are positive around Beringia but are negative over Eurasia from the Barents to the Laptev Seas and in parts of northern Canada. Eastern North America continues to show increased summer warmth and a corresponding steady increase in MaxNDVI. Positive MaxNDVI trends from 1982 to 2011 are generally weaker compared to trends from 1982–2008. So to better understand the changing trends, break points in the time series were quantified using the Breakfit algorithm. The most notable break points identify declines in SWI since 2003 in Eurasia and 1998 in Western North America. The Time Integrated NDVI (TI-NDVI, sum of the biweekly growing season values of MaxNDVI has declined since 2005 in Eurasia, consistent with SWI declines. Summer (June–August sea level pressure (slp averages from 1999–2011 were compared to those from 1982–1998 to reveal higher slp over Greenland and the western Arctic and generally lower pressure over the continental Arctic in the recent period. This suggests that the large-scale circulation is likely a key contributor to the cooler temperatures over Eurasia through increased summer cloud

  16. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Hansen, Birger;

    2013-01-01

    vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid...... and GPP (R2 = 0.85, p remote Arctic regions....

  17. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)

    International Nuclear Information System (INIS)

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000–11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr−1) and warming (+0.27% yr−1) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting

  18. Feedbacks Between Microenvironment and Plant Functional Type and Implications for CO2 Flux in Arctic Ecosystems

    Science.gov (United States)

    Squires, E.; Rodenheizer, H.; Natali, S.; Mann, P.

    2013-12-01

    Future climate models predict a warmer, drier Arctic, with resultant shifts in vegetative composition and implications for ecosystem carbon budgets. The impact of vegetation change, however, may depend on which plant functional groups are favored in a warming Arctic. Physiological and functional differences between plant groups influence both the local microenvironment and, on a broader scale, whole-ecosystem CO2 flux. We examined the interactions between plants and their microenvironment, and analyzed the effect of these interactions on both soil microbial communities and CO2 flux across different functional groups. Physical and biological aspects of the microenvironment differed between plant functional groups. Lichen patches were characterized by deeper thaw depths, lower soil moisture, greater thermal conductivity, and a thinner organic layer than mosses. To better understand the development of these plant-environment interactions, we conducted a reciprocal transplant experiment, switching multiple lichen and moss patches. Temporal changes in environmental parameters at these sites will demonstrate how different plants modify their environment and will help identify associated implications for soil microbial communities and CO2 flux. We measured CO2 flux and used Biolog assays to examine soil microbial communities in undisturbed patches of mosses, lichens, and shrubs. Patches of birch shrubs had more negative net ecosystem exchange, signifying a carbon sink. Soils from alder shrubs and mosses hosted more active microbial communities than soils under birch shrubs and lichens. These results suggest a strong link between environment, plant functional type, and C cycling. Understanding how this relationship differs among plant functional types is an important part of predicting ecosystem carbon budgets as Arctic vegetation composition shifts in response to climate change.

  19. Plant co-existence patterns and High-Arctic vegetation composition in three common plant communities in north-east Greenland

    Directory of Open Access Journals (Sweden)

    Oriol Grau

    2014-09-01

    Full Text Available Arctic regions are expected to experience substantial changes in climate in the coming decades. In order to predict potential changes of Arctic vegetation, it is important to understand the distinct role of life forms of plants and of individual species in relation to plant co-existence patterns. Our aim is to investigate if three common Arctic plant patch types dominated by contrasting life forms (by the dwarf shrubs Salix arctica or Dryas octopetala×intermedia or by mosses are related (a to the co-existence of vascular plants and species richness at patch scale and (b to the floristic composition in three distinct plant communities (Salix snowbed, Dryas heath and fell-field associated with contrasting abiotic regimes. The study was conducted at Zackenberg, in north-east Greenland. Dryas patches showed a clear negative effect on small-scale plant richness and co-existence in the fell-field. Salix and moss patches showed a similar pattern in all the plant communities, although the number of individuals growing in Salix patches was lower than in moss patches. Salix and mosses in the fell-fields hosted a high number of species in spite of the much less vegetated aspect of this harsh, upper zone. The floristic composition varied between plant communities, but it did not change substantially between patch types within each community. This study provides novel background knowledge of plant co-existence patterns at patch scale and of the structure of contrasting Arctic plant communities, which will help to better assess the potential effects of varying abiotic stress regimes on Arctic vegetation.

  20. Large herbivore grazing affects the vegetation structure and greenhouse gas balance in a high arctic mire

    International Nuclear Information System (INIS)

    Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33–44%) and Eriophorum scheuchzeri (51–53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future. (letter)

  1. Inclusion of Additional Plant Species and Trait Information in Dynamic Vegetation Modeling of Arctic Tundra and Boreal Forest Ecosystem

    Science.gov (United States)

    Euskirchen, E. S.; Patil, V.; Roach, J.; Griffith, B.; McGuire, A. D.

    2015-12-01

    Dynamic vegetation models (DVMs) have been developed to model the ecophysiological characteristics of plant functional types in terrestrial ecosystems. They have frequently been used to answer questions pertaining to processes such as disturbance, plant succession, and community composition under historical and future climate scenarios. While DVMs have proved useful in these types of applications, it has often been questioned if additional detail, such as including plant dynamics at the species-level and/or including species-specific traits would make these models more accurate and/or broadly applicable. A sub-question associated with this issue is, 'How many species, or what degree of functional diversity, should we incorporate to sustain ecosystem function in modeled ecosystems?' Here, we focus on how the inclusion of additional plant species and trait information may strengthen dynamic vegetation modeling in applications pertaining to: (1) forage for caribou in northern Alaska, (2) above- and belowground carbon storage in the boreal forest and lake margin wetlands of interior Alaska, and (3) arctic tundra and boreal forest leaf phenology. While the inclusion of additional information generally proved valuable in these three applications, this additional detail depends on field data that may not always be available and may also result in increased computational complexity. Therefore, it is important to assess these possible limitations against the perceived need for additional plant species and trait information in the development and application of dynamic vegetation models.

  2. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    DEFF Research Database (Denmark)

    Stewart, L.; Alsos, Inger G.; Bay, Christian;

    2016-01-01

    correlated with each other, and both showed a positive relationship with landscape age. Plot species richness showed differing responses for vascular plants, bryophytes and lichens. At this finer scale, the richness of vascular plants was not significantly related to landscape age, which had a small effect...... size compared to the models of bryophyte and lichen richness. Main conclusion Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag...

  3. Vegetation biomass, leaf area index, and NDVI patterns and relationships along two latitudinal transects in arctic tundra

    Science.gov (United States)

    Epstein, H. E.; Walker, D. A.; Raynolds, M. K.; Kelley, A. M.; Jia, G.; Ping, C.; Michaelson, G.; Leibman, M. O.; Kaarlejärvi, E.; Khomutov, A.; Kuss, P.; Moskalenko, N.; Orekhov, P.; Matyshak, G.; Forbes, B. C.; Yu, Q.

    2009-12-01

    Analyses of vegetation properties along climatic gradients provide first order approximations as to how vegetation might respond to a temporally dynamic climate. Until recently, no systematic study of tundra vegetation had been conducted along bioclimatic transects that represent the full latitudinal extent of the arctic tundra biome. Since 1999, we have been collecting data on arctic tundra vegetation and soil properties along two such transects, the North American Arctic Transect (NAAT) and the Yamal Arctic Transect (YAT). The NAAT spans the arctic tundra from the Low Arctic of the North Slope of Alaska to the polar desert of Cape Isachsen on Ellef Ringnes Island in the Canadian Archipelago. The Yamal Arctic Transect located in northwest Siberia, Russia, presently ranges from the forest-tundra transition at Nadym to the High Arctic tundra on Belyy Ostrov off the north coast of the Yamal Peninsula. The summer warmth indices (SWI - sum of mean monthly temperatures greater than 0°C) range from approximately 40 °C months to 3 °C months from south to north. For largely zonal sites along these transects, we systematically collected leaf area index (LAI-2000 Plant Canopy Analyzer), normalized difference vegetation index (NDVI - PSII hand-held spectro-radiometer), and vegetation biomass (clip harvests). Site-averaged LAI ranges from 1.08 to 0 along the transects, yet can be highly variable at the landscape scale. Site-averaged NDVI ranges from 0.67 to 0.26 along the transects, and is less variable than LAI at the landscape scale. Total aboveground live biomass ranges from approximately 700 g m-2 to < 50 g m-2 along the NAAT, and from approximately 1100 g m-2 to < 400 g m-2 along the YAT (not including tree biomass at Nadym). LAI and NDVI are highly correlated logarithmically (r = 0.80) for the entire dataset. LAI is significantly related to total aboveground (live plus dead) vascular plant biomass, although there is some variability in the data (r = 0.63). NDVI is

  4. A Survey of Submerged Aquatic Vegetation in Three Sub-arctic Lakes near Abisko, Sweden

    Science.gov (United States)

    Sampson, J.; Stilson, K.; Varner, R. K.; Crill, P. M.; Wik, M.; Crawford, M.

    2014-12-01

    We surveyed the submerged aquatic vegetation (SAV) in three sub-arctic lakes (Mellan Harrsjön, Inre Harrsjön, and Villasjön) located near Abisko in northern Sweden. Samples were collected using an extended rake, after which they were photographed and the plants identified. We also collected environmental data including temperature, dissolved oxygen, and secchi depth. Percent cover of SAV was taken twice using a 0.5 m. quadrat in shallow areas to track the changes in vegetation growth over time. In addition, we tested surface sediment samples for grain size and carbon, hydrogen, nitrogen, and sulfur composition. The percent cover of SAV in Mellan Harrsjön varied from 36%-49% and in Inre Harrsjön it averaged 19%. Across all three lakes, the average percent clay, silt, and sand was 3.8%, 50.1%, 46%, respectively. Because little research similar to this has been conducted in the area in such a comprehensive manner, these results are important to establish a baseline. Furthermore, these data will help establish how the SAV and environmental data may contribute to methane production and emission in these sub-arctic lakes.

  5. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  6. Vegetation Feedbacks Explain Recent High-latitude Summer Warming in Alaskan Arctic and Boreal Ecosystems

    Science.gov (United States)

    Chapin, F. S.; Beringer, J.; Copass, C.; Epstein, H.; Lloyd, A.; Lynch, A.; McGuire, A. D.; Sturm, M.

    2002-12-01

    Although General Circulation Models predict the observed winter and spring warming at high latitudes, there is no obvious physical mechanism in the climate system that can account for the significant increase in summer temperatures that has occurred at high latitudes during the past 30 years. We demonstrate that vegetation-induced feedbacks in snow properties and summer energy exchange with the atmosphere explain this recent summer warming. A combination of stand-age reconstructions, repeat photography, and satellite measures of vegetation greenness demonstrate an expansion of the distribution and an infilling of shrubs in moist tundra and of trees in forest tundra. These vegetation changes increase the depth and thermal resistance of the snow pack, causing a 3oC increase in winter soil temperature and an increase in winter decomposition and nutrient mineralization, which enhance plant growth. These vegetation changes also increase summer heat transport to the atmosphere by increasing radiation absorption (lower albedo) and the proportion of absorbed energy that is transferred to the atmosphere as sensible heat. The resulting increase in atmospheric heating, on a unit-area basis, is similar to effects of a doubling of atmospheric carbon dioxide or a 2% change in solar constant, such as occurred at the last glacial-interglacial boundary. Simulations with the regional climate model ARCSyM indicate that a change from shrubless tundra to shrub-dominated tundra on the North Slope of Alaska would increase July mean temperature by 1.5 to 3.5 degrees C, with the warming effects extending south into the boreal forest of interior Alaska. If these vegetation feedbacks to regional warming are widespread, as suggested by indigenous knowledge and the satellite record, they are of sufficient magnitude to explain the summer warming that has recently been observed in northern Alaska and other regions of the circumpolar Arctic.

  7. Two Types of Arctic Oscillation and Their Associated Dynamic Features

    Institute of Scientific and Technical Information of China (English)

    SHI Ning; BUEH Cholaw

    2011-01-01

    In this paper, the dynamical evolutions of two types of Arctic Oscillation (AO), the stratospheric (S) and tropospheric (T) types, have been investigated on an intermediate time scale in terms of transient eddy feedback forcing and three-dimensional Rossby wave propagation. S-Type (T-type) events are characterized by an anomalous stratospheric polar vortex that is in phase (out of phase) with its tropospheric counterpart. Approximately onethird of AO events, both positive and negative, are T-type events. For the positive phase of a T-type event, the formation and maintenance of stratospheric positive anomalies over the polar cap are associated with an upward propagation of Rossby wave packets originating from the near-tropopause altitude over northeastern Asia. However, such upward propagating features are not found for S-type events. In the troposphere, transient eddy feedback forcing is primarily responsible for the meridional seesaw structure of both the S- and T-type events, with an addi- tional contribution from Rossby wave propagation.

  8. Three-Dimensional Dynamic Features of Two Arctic Oscillation Types

    Institute of Scientific and Technical Information of China (English)

    SHI Ning; BUEH Cholaw

    2013-01-01

    We investigated the differences between stratospheric (S-type) and tropospheric (T-type) Arctic Oscillation (AO) events on the intraseasonal time scale,in terms of their influences on surface air temperature (SAT) over the Northern Hemisphere and the dynamic features associated with their spatial structures.S-type AO events showed a stratosphere-troposphere coupled structure,while T-type events exhibited a stratosphere-troposphere uncoupled structure.The annular SAT anomalies over the Northern Hemisphere were found to be associated with S-type AO events,whereas such an annular feature was substantially destructed in T-type AO events.The different horizontal structures in the troposphere of the two types could mainly be attributed to transient eddy feedback forcing.As for the vertically uncoupled structure of Ttype events,the underlying dynamical features that differentiate them from S-type events lie in the vertical propagation of zonally confined Rossby waves.In T-type events,the zonally confined Rossby wave packets can emanate from the significant height anomalies over Northeast Asia,where one vertical waveguide exists,and then propagate upward into the stratosphere.In contrast,such a vertical propagation was not evident for S-type events.The stratospheric anomalies associated with the upward injection of the zonally confined Rossby waves from the troposphere in T-type events can further induce the anomalous vertical propagation of planetary waves (PWs) through the interference between the climatological-mean PWs and anomalous PWs,leading to the final stratosphere-troposphere uncoupled structure of T-type events.

  9. Impact of interactive vegetation phenology on the simulated pan-Arctic land surface state

    Science.gov (United States)

    Teufel, Bernardo; Sushama, Laxmi

    2016-04-01

    The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the 21st century. This can have important impacts on the regional climate and hydrology through various feedbacks, including vegetation-related feedbacks. In this study, the impact of interactive phenology on the land surface state, including near-surface permafrost, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS) - one with interactive phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are performed for the 1979-2012 period, using atmospheric forcing from ECMWF's ERA-Interim reanalysis. The impact of interactive phenology on projected changes to the land surface state are also assessed by comparing two simulations of CLASS (with and without interactive phenology), spanning the 1961-2100 period, driven by atmospheric forcing from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation with available observational estimates of plant area index, primary productivity, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the general distribution of vegetation and permafrost. Significant differences in evapotranspiration, leading to differences in runoff, soil temperature and active layer thickness are noted when comparing CLASS simulations with and without interactive phenology. Furthermore, the CLASS simulations with and without interactive phenology for RCP8.5 show extensive near-surface permafrost degradation by the end of the 21st century, with slightly accelerated degradation of permafrost in the simulation with interactive phenology, pointing towards a positive feedback of changes in

  10. Effects of aquatic vegetation type on denitrification

    NARCIS (Netherlands)

    Veraart, A.J.; Bruijne, de W.J.J.; Peeters, E.T.H.M.; Klein, de J.J.M.; Scheffer, M.

    2011-01-01

    In a microcosm 15N enrichment experiment we tested the effect of floating vegetation (Lemna sp.) and submerged vegetation (Elodea nuttallii) on denitrification rates, and compared it to systems without macrophytes. Oxygen concentration, and thus photosynthesis, plays an important role in regulating

  11. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)

    OpenAIRE

    Dutrieux, L.P.; Bartholomeus, H.; Herold, M.; Verbesselt, J.

    2012-01-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data...

  12. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.;

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...

  13. The role of seasonality and large-scale climate drivers in recent Pan-Arctic tundra vegetation variability and change

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P. A.; Raynolds, M. K.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.

    2011-12-01

    An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI) and a coherent variability between NDVI, springtime coastal sea ice and land surface temperatures has been shown. The goal of this paper is to understand the forcing factors of this change and variability better through an analysis of the seasonality of these remotely sensed variables as well as long-term climate data sets. This study uses remotely sensed submonthly 25-km sea ice concentration, surface temperature, and NDVI from 1982 to 2010. The NDVI3g data has been corrected for biases in the spring and fall. Standard climate data (station, reanalysis, and model data) and ground observations are also examined. For overall trends, we find that summer time open water area has increased most in the Beaufort, and Siberian Seas. The seasonality of SWI trends display distinct heterogeneity across the Arctic, with maximum warming in August for most regions (Figure 1). The monthly time integrated NDVI trends display the largest positive values for most of the Arctic in July, with the exception of the E. Bering and Kara regions, which show declines during most months (Figure 2). The largest magnitude increases in Max-NDVI tend to be in subzones that are inland, particularly in the Beaufort and Chukchi regions. NDVI has increased more during spring in Eurasia and more during peak vegetation activity (July) over North America. The analysis suggests that local atmospheric circulation as well as other local factors likely plays an important role in vegetation productivity.

  14. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    Science.gov (United States)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  15. Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation

    Directory of Open Access Journals (Sweden)

    K. A. Luus

    2013-11-01

    Full Text Available Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1 insights into the present-day linkages between snow and growing-season land surface characteristics; and (2 the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE, and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity. Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE, as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions

  16. INFLUENCE OF THE SOIL ON GROWING TYPES OF WOOD VEGETATION

    OpenAIRE

    Irkovsky E. R.; Odnoralov G. A.; Kharchenko N. A.

    2013-01-01

    The article reflects influences of soil conditions on growing types of wood vegetation. The carried-out chemical analyses show quantity of chemical elements which have to arrive to the soil with tree waste, and also acidity of the soil

  17. Classification of vegetation types in military region

    Science.gov (United States)

    Gonçalves, Miguel; Silva, Jose Silvestre; Bioucas-Dias, Jose

    2015-10-01

    In decision-making process regarding planning and execution of military operations, the terrain is a determining factor. Aerial photographs are a source of vital information for the success of an operation in hostile region, namely when the cartographic information behind enemy lines is scarce or non-existent. The objective of present work is the development of a tool capable of processing aerial photos. The methodology implemented starts with feature extraction, followed by the application of an automatic selector of features. The next step, using the k-fold cross validation technique, estimates the input parameters for the following classifiers: Sparse Multinomial Logist Regression (SMLR), K Nearest Neighbor (KNN), Linear Classifier using Principal Component Expansion on the Joint Data (PCLDC) and Multi-Class Support Vector Machine (MSVM). These classifiers were used in two different studies with distinct objectives: discrimination of vegetation's density and identification of vegetation's main components. It was found that the best classifier on the first approach is the Sparse Logistic Multinomial Regression (SMLR). On the second approach, the implemented methodology applied to high resolution images showed that the better performance was achieved by KNN classifier and PCLDC. Comparing the two approaches there is a multiscale issue, in which for different resolutions, the best solution to the problem requires different classifiers and the extraction of different features.

  18. Future vegetation types and related main processes for Olkiluoto site

    International Nuclear Information System (INIS)

    This working report summarizes current knowledge of the land up-lift induced vegetation succession and future vegetation types on Olkiluoto Island and its surroundings. The report is based on generic literature and site-specific studies concerning Olkiluoto Island. Current vegetation on Olkiluoto Island and typical succession lines on different soil types are described, as well as main factors affecting the succession. Most relevant materials on hand are listed. Some problems and possible areas to be emphasized before using the data in modelling work are pointed out. (orig.)

  19. Trends in the normalized difference vegetation index (NDVI) associated with urban development in arctic and subarctic Western Siberia

    Science.gov (United States)

    Outten, S.; Miles, V.; Ezau, I.

    2015-12-01

    Changes in normalized difference vegetation index (NDVI) in the high Arctic have been reliably documented, with widespread "greening" (increase in NDVI), specifically along the northern rim of Eurasia and Alaska. Whereas in West Siberia south of 65N, widespread "browning" (decrease in NDVI) has been noted, although the causes remain largely unclear. In this study we report results of statistical analysis of the spatial and temporal changes in NDVI around 28 major urban areas in the arctic and subarctic Western Siberia. Exploration and exploitation of oil and gas reserves has led to rapid industrialization and urban development in the region. This development has significant impact on the environment and particularly in the vegetation cover in and around the urbanized areas. The analysis is based on 15 years (2000-2014) of high-resolution (250 m) Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired for summer months (June through August) over the entire arctic and subarctic Western Siberian region. The analysis shows that the NDVI background trends are generally in agreement with the trends reported in previous coarse-resolution NDVI studies. Our study reveals greening over the arctic (tundra and tundra-forest) part of the region. Simultaneously, the southern (boreal taiga forest) part is browning, with the more densely vegetation areas or areas with highest NDVI, particularly along Ob River showing strong negative trend. The unexpected and interesting finding of the study is statistically robust indication of the accelerated increase of NDVI ("greening") in the older urban areas. Many Siberian cities become greener even against the decrease in the NDVI background. Moreover, interannual variations of urban NDVI are not coherent with the NDVI background variability. We also find that in tundra zones, NDVI values are higher in a 5-10 km buffer zone around the city edge than in rural areas (40 km distance from the city edge), and in taiga in a 5-10 km

  20. Effect of vegetation on rock and soil type discrimination

    Science.gov (United States)

    Siegal, B. S.; Goetz, A. F. H.

    1977-01-01

    The effect of naturally occurring vegetation on the spectral reflectance of earth materials in the wavelength region of 0.45 to 2.4 microns is determined by computer averaging of in situ acquired spectral data. The amount and type of vegetation and the spectral reflectance of the ground are considered. Low albedo materials may be altered beyond recognition with only ten per cent green vegetation cover. Dead or dry vegetation does not greatly alter the shape of the spectral reflectance curve and only changes the albedo with minimum wavelength dependency. With increasing amounts of vegetation the Landsat MSS band ratios 4/6, 4/7, 5/6, and 5/7 are significantly decreased whereas MSS ratios 4/5 and 6/7 remain entirely constant.

  1. CARD-FISH analysis of prokaryotic community composition and abundance along small-scale vegetation gradients in a dry arctic tundra ecosystem

    OpenAIRE

    Ushio, Masayuki; Makoto, Kobayashi; Klaminder, Jonatan; Nakano, Shin-ichi

    2013-01-01

    The size and composition of soil microbial communities have important influences on terrestrial ecosystem processes such as soil decomposition. However, compared with studies of aboveground plant communities, there are relatively few studies on belowground microbial communities and their interactions with aboveground vegetations in the arctic region. In this study, we conducted the first investigation of the abundance and composition of prokaryotic communities along small-scale vegetation gra...

  2. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  3. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  4. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  5. Qualitative parameters of non-traditional types of vegetables

    Directory of Open Access Journals (Sweden)

    Eva Kudrnáčová

    2015-08-01

    Full Text Available The main aim of this study was to determine selected quality indicators of non-traditional types of leafy vegetables. Mizuna (Brassica rapa japonica, Chinese mustard (Brassica juncea, edible chrysanthemum (Chrysanthemum coronarium and arugula (Eruca sativa belonged among the selected species of vegetables. During the one-year experiment, spring and autumn sowing was carried out for these species of vegetables. The measured quality parameters were the content of nitrates and ascorbic acid. Sampling was done in the morning and in the laboratory, the samples were further processed according to the type of determination. To determine the content of nitrates and ascorbic acid, leaves were removed from plants. The filtrate from the leaves was then prepared. Determination of nitrates and ascorbic acid was carried out using a special test strip and device Rqflex plus 10. The results of measurement of both sowing varieties were compared. Total nitrate content was higher up to 22% in plants sown in the autumn except edible chrysanthemum (Chrysanthemum coronarium. The highest content was recorded in arugula (Eruca sativa, which was recently implemented to the studies of the European Union and for which there were set the limits of nitrates. Overall, the nitrate content ranged from 221 to 334 ppm in spring varieties and from 249 to 384 mg/kg in autumn varieties. Ascorbic acid content was very high in Chinese mustard (Brassica juncea, edible chrysanthemum (Chrysanthemum coronarium and arugula (Eruca sativa in both spring and autumn varieties. Values of ascorbic acid ranged from 839 in autumn sowing up to 2909 mg/kg in spring sowing. These non-traditional types of leafy vegetables could be included among the other importants sources of vitamin C in the future.  

  6. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  7. Effects of winter seismic exploration on vegetation and soil of the Coastal Plain of the Arctic National Wildlife Refuge, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — When winter seismic exploration was conducted on the coastal plain of the Arctic National Wildlife Refuge Arctic NWR, little data were available on the longterm...

  8. Effects of large herbivores on biodiversity of vegetation and soil microarthropods in low Arctic Greenland

    DEFF Research Database (Denmark)

    Aastrup, Peter; Raundrup, Katrine; Feilberg, Jon;

    , and soil temperature. Data provide a significant basis for understanding the interaction between large herbivores and vegetation in Greenland. The report contains documentation of data collected in 2009 and 2012 as well as documentation of data from 1984-2004 made available by Jon Feilberg....

  9. Late Pliocene and Early Pleistocene vegetation history of northeastern Russian Arctic inferred from the Lake El'gygytgyn pollen record

    Science.gov (United States)

    Andreev, A. A.; Tarasov, P. E.; Wennrich, V.; Raschke, E.; Herzschuh, U.; Nowaczyk, N. R.; Brigham-Grette, J.; Melles, M.

    2014-05-01

    The 318 m thick lacustrine sediment record from Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities for the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments demonstrate their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.5-3.35 Myr BP, the vegetation at Lake El'gygytgyn, now an area of tundra was dominated by spruce-larch-fir-hemlock forests. After ca. 3.35 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental change took place ca. 3.31-3.28 Myr BP, corresponding to the Marine Isotope Stage (MIS) M2, when treeless tundra- and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.043-3.025, 2.935-2.912, and 2.719-2.698 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Peaks in observed green algae colonies (Botryococcus) around 2.53, 2.45, 2.32-2.305, 2.20 and 2.16-2.15 Myr BP suggest a spread of shallow water environments. A few intervals (i.e., 2.55-2.53, ca. 2.37, and 2.35-2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively short-term climate ameliorations during Early Pleistocene glacial periods.

  10. WETLAND TYPES AND ASSOCIATE VEGETATION IN NEPAL:AN OVERVIEW

    Institute of Scientific and Technical Information of China (English)

    Mohan Siwakoti

    2007-01-01

    Wetland is the transitional zone between the permanently wet and dry environment and shares the characteristics of the environment. Wetland is not yet to be classified unambiguously as either aquatic or terrestrial. However, the Ramsar Convention adopts an extremely broad approach in determining the wetland; as a result, several varieties of habitat types are included under the wetland definition. Wetlands are among the world's most productive ecosystems and provide a wide variety of goods and services. Nepal lies on the southern slopes of central Himalayas and occupies a total area of 147 181 km2 between the latitudes 26°22′ N and 30°27′ N and the longitudes 80°40′ E and 88°12′ E. The diverse landscape (60-8 848 m) and bioclimatic conditions (alpine to tropical) of the country provide a unique niche for different types of wetlands. These are distributed from high altitudinal glacial lakes to hot springs, ponds, ox-bow lakes to river floodplains, marshes and swamps. The country has 15 types of inland freshwater natural wetlands as classified by the Ramsar Convention. These wetlands house several species of rare and endangered flora and fauna. The present paper attempts to highlight the various types of wetlands in Nepal with associate vegetation.

  11. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    Science.gov (United States)

    Walker, D. A.; Leibman, M. O.; Epstein, H. E.; Forbes, B. C.; Bhatt, U. S.; Raynolds, M. K.; Comiso, J. C.; Gubarkov, A. A.; Khomutov, A. V.; Jia, G. J.; Kaarlejärvi, E.; Kaplan, J. O.; Kumpula, T.; Kuss, P.; Matyshak, G.; Moskalenko, N. G.; Orekhov, P.; Romanovsky, V. E.; Ukraientseva, N. G.; Yu, Q.

    2009-10-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  12. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    International Nuclear Information System (INIS)

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  13. Community Food Store Types Availability is Associated with Fruit and Vegetable Consumption in North Carolina

    OpenAIRE

    Adu-Nyako, Kofi; Okafor, Ralph

    2011-01-01

    Despite the nutritional guidelines promoting consumption of fruits and vegetables, the level of fruits and vegetable consumption is drastically below the recommended levels nationally, as well as at the state levels. Among factors that may influence consumption of fruits and vegetables, it is held that factors within the food environment such as the availability of retail types that are conducive for easy access to fruits and vegetables within communities may be presenting barriers to purchas...

  14. Long term effects of winter seismic exploration on the vegetation of the coastal plain of the Arctic Nationa Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — When winter seismic exploration was conducted on the coastal plain of the Arctic National Wildlife Refuge ANWR, little data was available on the longterm effects of...

  15. Vegetation geographical patterns as a key to the past, with emphasis on the dry vegetation types of South Africa

    Directory of Open Access Journals (Sweden)

    M. J. A. Werger

    1983-12-01

    Full Text Available Southern Africa is characterized by a highly diversified vegetational cover with extremes as contrasting as desert, tropical forest, alpine grassland, or mediterranean type scrub, and many other types in between. This vegetational pattern is strongly correlated to the climatological pattern. It is therefore likely that past changes in climate can still be partly traced in the vegetational pattern, particularly in geographical anomalies, and that study of these patterns provides complementary evidence to palynological research. The following anomalies in the vegetational pattern are briefly discussed: 1. island-wise occurrence of Afro-montane vegetation on mesic, sheltered sites in the southern Sudano- Zambezian Region, in particular in the Highveld grassland/False Karoo transition area; 2. similar westward occurrence of Sudano-Zambezian scrub patches in the Karoo-Namib Region near the Orange/Vaal confluence; 3. scattered occurrence of Sudano-Zambezian woody species in a matrix of Karoo-Namib vegetation in the marginal Karoo-Namib Region; 4. island-wise occurrence of frost-tolerant, dry, karroid dwarf shrub vegetation of predominantly C,-plants on isolated peaks in the winter rainfall area of Namaqualand; 5. peculiar patchy distribution of some succulents in wide areas of climatically rather homogeneous, succulent dwarf shrub vegetation of predominantly CAM-plants in the escarpment area of Namaqualand. a pattern reminiscent of that in many Cape fynbos species. Interpretation of these patterns logically leads to the conclusion that these result from a previously wetter, a previously cooler, or a previously wetter and cooler climate, respectively, over the parts of southern Africa under discussion. This conclusion is compared with published palynological views.

  16. Vertical and Horizontal Vegetation Structure across Natural and Modified Habitat Types at Mount Kilimanjaro.

    Directory of Open Access Journals (Sweden)

    Gemma Rutten

    Full Text Available In most habitats, vegetation provides the main structure of the environment. This complexity can facilitate biodiversity and ecosystem services. Therefore, measures of vegetation structure can serve as indicators in ecosystem management. However, many structural measures are laborious and require expert knowledge. Here, we used consistent and convenient measures to assess vegetation structure over an exceptionally broad elevation gradient of 866-4550 m above sea level at Mount Kilimanjaro, Tanzania. Additionally, we compared (human-modified habitats, including maize fields, traditionally managed home gardens, grasslands, commercial coffee farms and logged and burned forests with natural habitats along this elevation gradient. We distinguished vertical and horizontal vegetation structure to account for habitat complexity and heterogeneity. Vertical vegetation structure (assessed as number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover displayed a unimodal elevation pattern, peaking at intermediate elevations in montane forests, whereas horizontal structure (assessed as coefficient of variation of number, width and density of vegetation layers, maximum canopy height, leaf area index and vegetation cover was lowest at intermediate altitudes. Overall, vertical structure was consistently lower in modified than in natural habitat types, whereas horizontal structure was inconsistently different in modified than in natural habitat types, depending on the specific structural measure and habitat type. Our study shows how vertical and horizontal vegetation structure can be assessed efficiently in various habitat types in tropical mountain regions, and we suggest to apply this as a tool for informing future biodiversity and ecosystem service studies.

  17. Dynamic surface soil components of land and vegetation types in Kebbi State Nigeria

    Directory of Open Access Journals (Sweden)

    Suleiman Usman

    2016-04-01

    Full Text Available Land and vegetation are important components of soil and provides many benefits to surface soil including protection against erosion, climate change impact and unacceptable degradation of soil particles. Visual Soil Assessment was used as a mechanism to assess and classify the land and vegetation types of some agricultural sites in Kebbi State, Nigeria. The aim was to get better understanding of the environmental soil function for sustainable crop production in dryland and fadama areas of the State. The assessment was able to put together combinations of different vegetation types and land age classes. It is valued that the land age classes possessed the characteristics of Holocene-natural, Holocene-anthropogeomorphic, Holocene-young-natural, young-anthropogeomorphic, very-young anthropogeomorphic and very-young natural. However, the vegetation types could be related to evergreen forest, short medium forest (scattered clustered, dwarf vegetation (scattered isolated, grass vegetation, thick vegetation, stony-grass vegetation (scattered sparse and short-length vegetation. The assessment provides an improve understanding of the current status of land and vegetation conditions of the study area and suggested regular soil management for sustainable crop production in the State.

  18. Water retention and evapotranspiration of green roofs and possible natural vegetation types

    NARCIS (Netherlands)

    Metselaar, K.

    2012-01-01

    Matching vegetation to growing conditions on green roofs is one of the options to increase biodiversity in cities. A hydrological model has been applied to match the hydrological requirements of natural vegetation types to roof substrate parameters and to simulate moisture stress for specific substr

  19. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    OpenAIRE

    Sang-Hoon Hong; Hyun-Ok Kim; Shimon Wdowinski; Emanuelle Feliciano

    2015-01-01

    The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol) synthetic aperture radar (PolSAR) data for classifying wetland vegetation in the Everglades. We ...

  20. Influence of seasonality and vegetation type on suburban microclimates

    OpenAIRE

    Peters, Emily B.; McFadden, Joseph P.

    2010-01-01

    Urbanization is responsible for some of the fastest rates of land-use change around the world, with important consequences for local, regional, and global climate. Vegetation, which represents a significant proportion of many urban and suburban landscapes, can modify climate by altering local exchanges of heat, water vapor, and CO2. To determine how distinct urban forest communities vary in their microclimate effects over time, we measured stand-level leaf area index, soil temperature, infrar...

  1. Using Dehydrated Vegetables in Some Brown Bread Types

    Directory of Open Access Journals (Sweden)

    Simona Man

    2013-11-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 Expanding the range of bakery products in terms of producing supplemented or dietetic products has been an increasingly important trend in contemporary baking. Bakery products as basic and popular food, could be used in the prevention of nutritive deficiencies of many important nutrients, by supplementing the products with biologically valuable ingredients. Such ingredients are dehydrated vegetables in the form of powder. For establishing the bread quality, a special importance shows it’s chemical composition, because the substances that enter in it’s constitution serve to obtaining the energy necessary to the human body. Beside the chemical composition, the bread quality and alimentary use, respectively, depends a large measure on a series of signs: flavor and taste, external appearance, crumb porosity and texture, breads’ volume. This paper belongs to a more complex study, which aims are obtaining some bread assortments with high nutritional value, and improving their sensorial and rheological features, by adding dehydrated vegetables at different levels 4% potato flakes, 2% dehydrated onion, 0.5% dehydrated garlic and 2% dehydrated leek.

  2. What are the most important factors determining different vegetation types in the Chapada Diamantina, Brazil?

    Science.gov (United States)

    Neves, S P S; Funch, R; Conceição, A A; Miranda, L A P; Funch, L S

    2016-06-01

    A transect was used to examine the environmental and biological descriptors of a compact vegetation mosaic in the Chapada Diamantina in northeastern Brazil, including the floristic composition, spectrum of plant life forms, rainfall, and soil properties that defined areas of cerrado (Brazilian savanna), caatinga (seasonally dry tropical forest thorny, deciduous shrub/arboreal vegetation) and cerrado-caatinga transition vegetation. The floristic survey was made monthly from April/2009 to March/2012. A dendrogram of similarity was generated using the Jaccard Index based on a matrix of the species that occurred in at least two of the vegetation types examined. The proportions of life forms in each vegetation type were compared using the chi-square test. Composite soil samples were analyzed by simple variance (ANOVA) to examine relationships between soil parameters of each vegetation type and the transition area. The monthly precipitation levels in each vegetation type were measured and compared using the chi-square test. A total of 323 species of angiosperms were collected distributed in 193 genera and 54 families. The dendrogram demonstrated strong difference between the floristic compositions of the cerrado and caatinga, sharing 2% similarity. The chi-square test did not demonstrate any significant statistical differences between the monthly values of recorded rainfall. The organic matter and clay contents of the soilsin the caatinga increased while sand decreased, and the proportions of therophyte, hemicryptophyte, and chamaephyte life forms decreased and phanerophytes increased. We can therefore conclude that the floristic composition and the spectrum of life forms combined to define the cerrado and caatinga vegetation along the transect examined, with soil being the principal conditioning factor determining the different vegetation types, independent of precipitation levels. PMID:26934155

  3. Does vegetation type matter? Plant-soil interactions change urban rain garden hydrology

    Science.gov (United States)

    Johnston, M. R.; Balster, N. J.

    2009-12-01

    Residential infiltration basins or rain gardens are being installed at an ever-increasing rate across the urban landscape, yet their impact on the urban hydrologic cycle remains largely untested. Specifically, because rain garden design varies considerably, we know little about how plant-soil dynamics control their hydrologic function. In a controlled field experiment with closed-system rain gardens, we tested the hydrologic response of three vegetation treatments common in rain garden design (shrubs, wet-mesic prairie, turfgrass). We used a complete, randomized block design in which each vegetative treatment was replicated three times. Each rain garden represented 17% of a contributing roof area where stormwater was collected and then applied following precipitation events. We continuously monitored stormwater input, soil water content, and soil exfiltration to assess differences in the hydrologic function of each rain garden. Overall, vegetation type significantly changed the magnitude and timing of the hydrologic response. During the months of June and July, 2009, the rain gardens planted with shrubs, prairie, and turfgrass all reduced the volume of soil exfiltration by 50%, 30%, and 17%, respectively, relative to the non-vegetated controls. Similarly, depending on storm magnitude and antecedent soil moisture, vegetation type significantly decreased the mean peak flow rate of exfiltration (p vegetative-mediated responses in hydrology relative to differences in infiltration, aboveground dry mass, root dynamics, and transpirative loss. Our data suggest that changing the vegetation type of urban rain gardens yields marked differences in the hydrologic budget via shifts in ecohydrological processes.

  4. Wave Velocity Attenuation and Sediment Retention among Different Vegetation Types in a Pacific Northwest Estuary

    Science.gov (United States)

    Lemein, T.; Cox, D. T.; Albert, D.; Blackmar, P.

    2012-12-01

    Feedbacks between vegetation, wave climate, and sedimentation create stable ecosystem states within estuaries that provide ecosystem services such as wildlife habitat, erosion control, and pollution filtration. Flume and field studies conducted with cordgrass (Spartina spp.) and sea grasses (Zostera spp., Halodule spp.) have demonstrated that the presence of vegetation reduces wave energy and increases sediment retention. Since the spatial distribution of plant species and the presence of unique plant species differ between estuaries, there is a need to understand how individual plant species, or groups of species with similar morphology, influence wave characteristics and sedimentation. Within Tillamook Bay, Oregon, three species of emergent vascular vegetation species (Carex lyngbyei, Eleocharis sp., Schoenoplectus pungens) and one species of submergent vascular vegetation species (Zostera marina) are present in the high wave energy portion of the estuary at the border of open water and the start of vegetation. These species represent three distinct growth forms (emergent reeds, emergent grasses, submergent grasses) and occur at varying densities relative to each other, as well as within the estuary. Using paired acoustic Doppler velocimeters (ADVs), we quantify the relative attenuation of wave velocity between vegetation types and densities within the estuary and compare these results with published attenuation rates from flume and field studies in different environments. The effect of decreased wave velocity on sediment retention is measured using permanent sediment markers within and outside of vegetation stands and paired with ADV data. Sediment retention is predicted to vary seasonally with seasonal vegetation composition changes and remain constant in unvegetated areas. From this experiment we expect to identify like groups of plant species whose attenuation characteristics are the same, allowing for models of wave-vegetation-sediment interaction to be

  5. Divergent Impacts of Two Cattle Types on Vegetation in Coastal Meadows: Implications for Management

    Science.gov (United States)

    Laurila, Marika; Huuskonen, Arto; Pesonen, Maiju; Kaseva, Janne; Joki-Tokola, Erkki; Hyvärinen, Marko

    2015-11-01

    The proportion of beef cattle in relation to the total number of cattle has increased in Europe, which has led to a higher contribution of beef cattle in the management of semi-natural grasslands. Changes in vegetation caused by this change in grazers are virtually unexplored so far. In the present study, the impacts of beef and dairy cattle on vegetation structure and composition were compared on Bothnian Bay coastal meadows. Vegetation parameters were measured in seven beef cattle, six dairy heifer pastures, and in six unmanaged meadows. Compared to unmanaged meadows, vegetation in grazed meadows was significantly lower in height and more frequently colonized by low-growth species. As expected, vegetation grazed by beef cattle was more open than that on dairy heifer pastures where litter cover and proportion of bare ground were in the same level as in the unmanaged meadows. However, the observed differences may have in part arisen from the higher cattle densities in coastal meadows grazed by beef cattle than by dairy heifers. The frequencies of different species groups and the species richness values of vegetation did not differ between the coastal meadows grazed by the two cattle types. One reason for this may be the relatively short management history of the studied pastures. The potential differences in grazing impacts of the two cattle types on vegetation structure can be utilized in the management of coastal meadows for species with divergent habitat requirements.

  6. Divergent Impacts of Two Cattle Types on Vegetation in Coastal Meadows: Implications for Management.

    Science.gov (United States)

    Laurila, Marika; Huuskonen, Arto; Pesonen, Maiju; Kaseva, Janne; Joki-Tokola, Erkki; Hyvärinen, Marko

    2015-11-01

    The proportion of beef cattle in relation to the total number of cattle has increased in Europe, which has led to a higher contribution of beef cattle in the management of semi-natural grasslands. Changes in vegetation caused by this change in grazers are virtually unexplored so far. In the present study, the impacts of beef and dairy cattle on vegetation structure and composition were compared on Bothnian Bay coastal meadows. Vegetation parameters were measured in seven beef cattle, six dairy heifer pastures, and in six unmanaged meadows. Compared to unmanaged meadows, vegetation in grazed meadows was significantly lower in height and more frequently colonized by low-growth species. As expected, vegetation grazed by beef cattle was more open than that on dairy heifer pastures where litter cover and proportion of bare ground were in the same level as in the unmanaged meadows. However, the observed differences may have in part arisen from the higher cattle densities in coastal meadows grazed by beef cattle than by dairy heifers. The frequencies of different species groups and the species richness values of vegetation did not differ between the coastal meadows grazed by the two cattle types. One reason for this may be the relatively short management history of the studied pastures. The potential differences in grazing impacts of the two cattle types on vegetation structure can be utilized in the management of coastal meadows for species with divergent habitat requirements.

  7. Simulation of maximum light use efficiency for some typical vegetation types in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Maximum light use efficiency (εmax) is a key parameter for the estimation of net primary productivity (NPP) derived from remote sensing data. There are still many divergences about its value for each vegetation type. The εmax for some typical vegetation types in China is simulated using a modified least squares function based on NOAA/AVHRR remote sensing data and field-observed NPP data. The vegetation classification accuracy is introduced to the process. The sensitivity analysis of εmax to vegetation classification accuracy is also conducted. The results show that the simulated values of εmax are greater than the value used in CASA model, and less than the values simulated with BIOME-BGC model. This is consistent with some other studies. The relative error of εmax resulting from classification accuracy is -5.5%―8.0%. This indicates that the simulated values of εmax are reliable and stable.

  8. Effects of Spatial Heterogeneity in Rainfall and Vegetation Type on Soil Moisture and Evapotranspiration

    OpenAIRE

    Puma, Michael J.; Celia, Michael A.; Rodriguez-Iturbe, Ignacio; Nordbotten, Jan M.; Guswa, Andrew J.; Kavetski, Dmitri

    2016-01-01

    Nonlinear plant-scale interactions controlling the soil-water balance are generally not valid at larger spatial scales due to spatial heterogeneity in rainfall and vegetation type. The relationships between spatially averaged variables are hysteretic even when unique relationships are imposed at the plant scale. The characteristics of these hysteretic relationships depend on the size of the averaging area and the spatial properties of the soil, vegetation, and rainfall. We upscale the plant-s...

  9. Satellite Remote Sensing of Pan-arctic Vegetation Productivity, Soil Respiration and net CO2 Exchange Using MODIS and AMSR-E Data

    Science.gov (United States)

    Nirala, M. L.; Heinsch, F. A.; Kimball, J. S.; Zhao, M.; Running, S.; Oechel, W.; McDonald, K.; Njoku, E.

    2005-05-01

    We have developed an approach for regional assessment and monitoring of land-atmosphere carbon dioxide (CO2) exchange, soil heterotrophic respiration (Rh) and vegetation productivity for arctic tundra using global satellite remote sensing at optical and microwave wavelengths. We use C- and X-band brightness temperatures from AMSR-E to extract surface wetness and temperature, and MODIS data to derive land cover, Leaf Area Index (LAI) and Net Primary Production (NPP) information. Calibration and validation activities involve comparisons between satellite remote sensing and tundra CO2 eddy flux tower and biophysical measurement networks and hydro-ecological process model simulations. We analyze spatial and temporal anomalies and environmental drivers of land-atmosphere net CO2 exchange at weekly and annual time steps. Surface soil moisture status and temperature as detected from satellite remote sensing observations are found to be major drivers spatial and temporal patterns of tundra net CO2 exchange and photosynthetic and respiration processes. We also find that satellite microwave measurements are capable of capturing seasonal variations and regional patterns in tundra soil heterotrophic respiration and CO2 exchange, while our ability to extract spatial patterns at the scale of surface heterogeneity is limited by the coarse spatial scale of the satellite remote sensing footprint. Our results also indicate that carbon cycle response to climate change is non-linear and strongly coupled to arctic surface hydrology. This work was performed at The University of Montana and Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  10. Delayed responses of an Arctic ecosystem to an extreme summer: impacts on net ecosystem exchange and vegetation functioning

    Science.gov (United States)

    Zona, D.; Lipson, D. A.; Richards, J. H.; Phoenix, G. K.; Liljedahl, A. K.; Ueyama, M.; Sturtevant, C. S.; Oechel, W. C.

    2014-10-01

    The importance and consequences of extreme events on the global carbon budget are inadequately understood. This includes the differential impact of extreme events on various ecosystem components, lag effects, recovery times, and compensatory processes. In the summer of 2007 in Barrow, Arctic Alaska, there were unusually high air temperatures (the fifth warmest summer over a 65-year period) and record low precipitation (the lowest over a 65-year period). These abnormal conditions were associated with substantial desiccation of the Sphagnum layer and a reduced net Sphagnum CO2 sink but did not affect net ecosystem exchange (NEE) from this wet-sedge arctic tundra ecosystem. Microbial biomass, NH4+ availability, gross primary production (GPP), and ecosystem respiration (Reco) were generally greater during this extreme summer. The cumulative ecosystem CO2 sink in 2007 was similar to the previous summers, suggesting that vascular plants were able to compensate for Sphagnum CO2 uptake, despite the impact on other functions and structure such as desiccation of the Sphagnum layer. Surprisingly, the lowest ecosystem CO2 sink over a five summer record (2005-2009) was observed during the 2008 summer (~70% lower), directly following the unusually warm and dry summer, rather than during the extreme summer. This sink reduction cannot solely be attributed to the potential damage to mosses, which typically contribute ~40% of the entire ecosystem CO2 sink. Importantly, the return to a substantial cumulative CO2 sink occurred two summers after the extreme event, which suggests a substantial resilience of this tundra ecosystem to at least an isolated extreme event. Overall, these results show a complex response of the CO2 sink and its sub-components to atypically warm and dry conditions. The impact of multiple extreme events requires further investigation.

  11. Delayed responses of an Arctic ecosystem to an extremely dry summer: impacts on net ecosystem exchange and vegetation functioning

    Science.gov (United States)

    Zona, D.; Lipson, D. A.; Richards, J. H.; Phoenix, G. K.; Liljedahl, A. K.; Ueyama, M.; Sturtevant, C. S.; Oechel, W. C.

    2013-12-01

    The importance and mode of action of extreme events on the global carbon budget are inadequately understood. This includes the differential impact of extreme events on various ecosystem components, lag effects, recovery times, and compensatory processes. Summer 2007 in Barrow, Arctic Alaska, experienced unusually high air temperatures (fifth warmest over a 65 yr period) and record low precipitation (lowest over a 65 yr period). These abnormal conditions resulted in strongly reduced net Sphagnum CO2 uptake, but no effect neither on vascular plant development nor on net ecosystem exchange (NEE) from this arctic tundra ecosystem. Gross primary production (GPP) and ecosystem respiration (Reco) were both generally greater during most of this extreme summer. Cumulative ecosystem C uptake in 2007 was similar to the previous summers, showing the capacity of the ecosystem to compensate in its net ecosystem exchange (NEE) despite the impact on other functions and structure such as substantial necrosis of the Sphagnum layer. Surprisingly, the lowest ecosystem C uptake (2005-2009) was observed during the 2008 summer, i.e the year directly following the extremely summer. In 2008, cumulative C uptake was ∼70% lower than prior years. This reduction cannot solely be attributed to mosses, which typically contribute with ∼40% - of the entire ecosystem C uptake. The minimum summer cumulative C uptake in 2008 suggests that the entire ecosystem experienced difficulty readjusting to more typical weather after experiencing exceptionally warm and dry conditions. Importantly, the return to a substantial cumulative C uptake occurred two summers after the extreme event, which suggest a high resilience of this tundra ecosystem. Overall, these results show a highly complex response of the C uptake and its sub-components to atypically dry conditions. The impact of multiple extreme events still awaits further investigation.

  12. [Reproductive phenology of three vegetation types from a coastal plain of Paraguana Penninsula, Venezuela].

    Science.gov (United States)

    Lemus-Jiménez, Luis José; Ramírez, Nelson

    2002-01-01

    Reproductive phenology of 51 plant species was evaluated according to life form and vegetation types in a coastal plain of the Paraguaná Peninsula, Estado Falcón, Venezuela. Plant species distribution according to three vegetation types (herbaceous littoral, herbaceous psamophil, and mangrove area) was determined. Life form frequency was different according to vegetation type. Herbaceous littoral and herbaceous psamophil vegetation were dominated by herbaceous species; woody species were mostly frequent in the mangrove vegetation. Phenological data revealed that 14 (27.5%) plant species flower and fruit year-round; 23 (45.1%) plant species flower and fruit at the beginning of the wet season; seven (13.7%) plant species flower at the end of wet season, and seven (13.7%) more flower at the beginning of the dry season. Flowsring and fruiting phenology showed similar frequency distribution during the year; reproductive phenology was independent of life forms. Flowering and fruiting peaks occurred during the rainy season and the beginning of the dry season for trees and perennial herbs, and from one to three months later for shrubs and annual herbs. The lowest proportion of flowering and fruiting occurred before rain increase for all life forms. Flowering and fruiting phenologies were similar for the three vegetation types evaluated: flowering peak occurred during the lowest value of precipitation, three to four months after precipitation peak, and fruiting peak occurred four months later from the precipitation peak. These results suggest that flowering and fruiting phenology were not affected by life form and vegetation types. The peaks of flowering and fruiting during the lowest values of precipitation may be considered as a slow and late response to the precipitation maximum, and to the proximity between maximum and minimum of precipitation.

  13. Differences in hydrological responses for different vegetation types on a steep slope on the Loess Plateau, China

    Science.gov (United States)

    Duan, Liangxia; Huang, Mingbin; Zhang, Luodan

    2016-06-01

    Extensive vegetation restoration practices have been implemented to control soil erosion on the Loess Plateau, China. However, no strict guidelines are available to determine the most suitable plant species for vegetation restoration within a given area. The objective of this study was to quantify the changes of each component (soil water storage, surface runoff, and actual evapotranspiration) of a water balance model and soil loss over time under eight different vegetation types, and to further determine the optimal vegetation type for soil and water conservation and sustainable ecological restoration on the steep slopes (>25°) on the Loess Plateau. The results indicated that vegetation type substantially affected soil water storage and that the greatest soil water storage in both the shallow (0-2 m) and the deep soil layers (2-5 m) occurred under Bothriochloa ischaemum L. (BOI). Vegetation type also affected surface runoff and soil losses. The most effective vegetation types for reducing soil erosion were BOI and Sea-buckthorn (Hippophae rhamnoides L.), while Chinese pine (Pinus tabulaeformis Carr.) and Chinese pine + Black locust (Robinia pseudoacacia L.) were the most ineffective types. Soil water dynamics and evapotranspiration varied considerably among the different vegetation types. A soil water surplus was only found under BOI, while insufficient water replenishment existed under the other seven vegetation types. The higher water consumption rates of the seven vegetation types could result in soil desiccation, which could lead to severe water stresses that would adversely affect plant growth. This study suggested that both vegetation type and its effect on controlling soil erosion should be considered when implementing vegetation restoration and that BOI should be highly recommended for vegetation restoration on the steep slopes of the Loess Plateau. A similar approach to the one used in this study could be applied to other regions of the world confronted

  14. Mapping Arctic Plant Functional Type Distributions in the Barrow Environmental Observatory Using WorldView-2 and LiDAR Datasets

    Directory of Open Access Journals (Sweden)

    Zachary Langford

    2016-09-01

    Full Text Available Multi-scale modeling of Arctic tundra vegetation requires characterization of the heterogeneous tundra landscape, which includes representation of distinct plant functional types (PFTs. We combined high-resolution multi-spectral remote sensing imagery from the WorldView-2 satellite with light detecting and ranging (LiDAR-derived digital elevation models (DEM to characterize the tundra landscape in and around the Barrow Environmental Observatory (BEO, a 3021-hectare research reserve located at the northern edge of the Alaskan Arctic Coastal Plain. Vegetation surveys were conducted during the growing season (June–August of 2012 from 48 1 m × 1 m plots in the study region for estimating the percent cover of PFTs (i.e., sedges, grasses, forbs, shrubs, lichens and mosses. Statistical relationships were developed between spectral and topographic remote sensing characteristics and PFT fractions at the vegetation plots from field surveys. These derived relationships were employed to statistically upscale PFT fractions for our study region of 586 hectares at 0.25-m resolution around the sampling areas within the BEO, which was bounded by the LiDAR footprint. We employed an unsupervised clustering for stratification of this polygonal tundra landscape and used the clusters for segregating the field data for our upscaling algorithm over our study region, which was an inverse distance weighted (IDW interpolation. We describe two versions of PFT distribution maps upscaled by IDW from WorldView-2 imagery and LiDAR: (1 a version computed from a single image in the middle of the growing season; and (2 a version computed from multiple images through the growing season. This approach allowed us to quantify the value of phenology for improving PFT distribution estimates. We also evaluated the representativeness of the field surveys by measuring the Euclidean distance between every pixel. This guided the ground-truthing campaign in late July of 2014 for

  15. Soil Respiration Responses to Variation in Temperature Treatment and Vegetation Type

    Science.gov (United States)

    Liu, S.; Pavao-zuckerman, M.

    2013-12-01

    Complex linkages exist between terrestrial vegetation, soil moisture, soil organic matter (SOM), local climate, and soil microorganisms. Thus, large-scale changes in vegetation, such as the woody plant encroachment observed in many historically semiarid and arid grasslands worldwide, could potentially alter the flux of carbon from soil reserves to the atmosphere. Mathematical models that attempt to project the long-term impact of vegetative shifts on soil fluxes largely rely on assumptions such as first-order donor control rather than incorporate the biological aspects of soil respiration such as microbial activity. To examine the impact of vegetation type on soil physicochemical properties and soil microbial respiration and provide experimental data to refine existing predictive models, we compared soil (ground basalt from northern Arizona) in mesocosms established with no vegetation, velvet mesquites (Prosopis velutina; woody shrub), or sideoats gramas (Bouteloua curtipendula; grass) for 2 years, The temperature sensitivity of soil respiration was examined by incubating soil (0-10 and 10-30 cm depth fractions) from each vegetation treatment at 10, 20, 30, and 40 °C for 24 hours. Vegetated soils contained more SOM (~0.1% for mesquite and grass mesocosms) than non-vegetated soils (~0.02%). Respiration rates were generally highest from grass-established soils, intermediate from mesquite-established soils, and lowest from non-vegetated soils. Respiration rates of samples incubated without the addition of substrate peaked at approximately 30 °C, whereas respiration rates of samples incubated with dextrose were highest at 40 °C. Further, the respiration assays suggest that while respiration rates are overall higher in grass-established soils, mesquite-established soils are more temperature sensitive which may have significant implications in the context of global warming and current fire management practices.

  16. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    DEFF Research Database (Denmark)

    Barber, D.; Ehn, J.; Pucko, M.;

    2014-01-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater...... formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers...

  17. THE FORMATION OF ENTS ADAPTIVE REACTIONS DEPENDING ON THE TYPE OF PSYCHO-VEGETATIVE REGULATION

    Directory of Open Access Journals (Sweden)

    E. M. Kazin

    2014-01-01

    Full Text Available The purpose of the students (12 to 15 years old examination was to identify the integrative criteria of assessing the nature of the functional relationships between the parameters of the psychosocial and physiological adaptation of students, depending on age, individual-typological peculiarities of vegetative regulation, personal potential at different stages of school education.The study of the characteristics of vegetative regulation of the cardiovascular system was made with a help of an automatic cardiac-rhythm programs. The research of psychophysiological parameters was fulfiled using an automatic complex. The measurement of the speed of simple visual-motor reaction (PSMR, reaction to a moving object (WFD, the level of functional mobility of nervous processes (WFP and health brain (DDM were made before. Features psychosocial adaptation was analyzed using 8-color Luscher test.All examinee were divided into three groups on the basis of the statistical characteristics of the cardiac rhythm by the tone source autonomic tone: “vagotonia” (with a predominance of parasympathetic sistems, “somatotonic” (with domination of the sympatholytic effects, “atonic” (balanced type of vegetative nervous system.Based on the analysis of psychodynamic, neurodynamic and vegetative functions showed that students with initial vagotonies tone are characterized by high levels of situational and personal anxiety, low psychosocial adaptation, decreased activity of neurodynamic functions and psychodynamic processes in the learning dynamics, whereas the individuals with dominance of sympatotonics type regulation have high level of neurodynamic processes, psychosocial adaptation, against the background of significant stress mechanisms of vegetative regulation.Students with initial vegetative tone demonstrate a sufficient level of psychosocial adaptation, activity psychodynamic and neuromotor processes, accompanied by the preservation of the functionality of

  18. Changes in woody plant composition of three vegetation types exposed to a similar fire regime for over 46 years

    NARCIS (Netherlands)

    Nangendo, G.; Stein, A.; Steege, ter H.; Bongers, F.J.J.M.

    2005-01-01

    The effect of regular burning of woodland vegetation in Africa over an extended period (46 years) was studied in the Murchison Falls National Park, Uganda. Areas identified as having different vegetation types in 1958 were revisited to analyze vegetation changes and to test the prediction that conve

  19. Effects of Spatial Heterogeneity in Rainfall and Vegetation Type on Soil Moisture and Evapotranspiration

    CERN Document Server

    Puma, Michael J; Rodriguez-Iturbe, Ignacio; Nordbotten, Jan M; Guswa, Andrew J; Kavetski, Dmitri

    2016-01-01

    Nonlinear plant-scale interactions controlling the soil-water balance are generally not valid at larger spatial scales due to spatial heterogeneity in rainfall and vegetation type. The relationships between spatially averaged variables are hysteretic even when unique relationships are imposed at the plant scale. The characteristics of these hysteretic relationships depend on the size of the averaging area and the spatial properties of the soil, vegetation, and rainfall. We upscale the plant-scale relationships to the scale of a regional land-surface model based on simulation data obtained through explicit representation of spatial heterogeneity in rainfall and vegetation type. The proposed upscaled function improves predictions of spatially averaged soil moisture and evapotranspiration relative to the effective-parameter approach for a water-limited Texas shrubland. The degree of improvement is a function of the scales of heterogeneity and the size of the averaging area. We also find that single-valued functi...

  20. Three-year vegetation change in the Arctic environment as observed in a permanent plot in Ny-Alesund, Svalbard

    OpenAIRE

    Satoru, Kojima

    2004-01-01

    A permanent plot was established in 1997 to monitor vegetation development in a recently abandoned coal mine in Ny-_lesund, Svalbard. A 1 mx1 m quadrat was set up and further divided into one hundred small 10 cmx10 cm cells. All the vascular plants occurring in the plot were recorded for each of the 100 cells. In 1999, the plot was revisited and examined for occurrences of vascular plants. Further, in 2002, the plot was re-surveyed and all the vascular plants were measured for their coverage....

  1. Comparison of the Continuity of Vegetation Indices Derived from Landsat 8 OLI and Landsat 7 ETM+ Data among Different Vegetation Types

    Directory of Open Access Journals (Sweden)

    Xiaojun She

    2015-10-01

    Full Text Available Landsat 8, the most recently launched satellite of the series, promises to maintain the continuity of Landsat 7. However, in addition to subtle differences in sensor characteristics and vegetation index (VI generation algorithms, VIs respond differently to the seasonality of the various types of vegetation cover. The purpose of this study was to elucidate the effects of these variations on VIs between Operational Land Imager (OLI and Enhanced Thematic Mapper Plus (ETM+. Ground spectral data for vegetation were used to simulate the Landsat at-senor broadband reflectance, with consideration of sensor band-pass differences. Three band-geometric VIs (Normalized Difference Vegetation Index (NDVI, Soil-Adjusted Vegetation Index (SAVI, Enhanced Vegetation Index (EVI and two band-transformation VIs (Vegetation Index based on the Universal Pattern Decomposition method (VIUPD, Tasseled Cap Transformation Greenness (TCG were tested to evaluate the performance of various VI generation algorithms in relation to multi-sensor continuity. Six vegetation types were included to evaluate the continuity in different vegetation types. Four pairs of data during four seasons were selected to evaluate continuity with respect to seasonal variation. The simulated data showed that OLI largely inherits the band-pass characteristics of ETM+. Overall, the continuity of band-transformation derived VIs was higher than band-geometry derived VIs. VI continuity was higher in the three forest types and the shrubs in the relatively rapid growth periods of summer and autumn, but lower for the other two non-forest types (grassland and crops during the same periods.

  2. [Influence of three types of riparian vegetation on fluvial erosion control in Pantanos de Centla, Mexico].

    Science.gov (United States)

    Sepúlveda-Lozada, Alejandra; Geissen, Violette; Ochoa-Gaona, Susana; Jarquín-Sánchez, Aarón; de la Cruz, Simón Hernández; Capetillo, Edward; Zamora-Cornelio, Luis Felipe

    2009-12-01

    Wetlands constitute very important ecological areas. The aim of this study was to quantify the soil losses due to fluvial erosion from 2006 to 2008 in two riverbanks under three types of vegetal coverage dominated by Haematoxylum campechianum, Dalbergia brownei and Brachiaria mutica, in the Pantanos de Centla Biosphere Reserve, SE Mexico. The relationship between the texture, organic matter and pH of soils and soil losses was evaluated. We used erosion sticks to estimate soil losses in 18 plots (three plots per type, three vegetation types, two riverbanks). Soil loss decreased in this order: H. campechianum>B. mutica>D. brownei indicating that D. brownei scrubland has the most potential to retain soil. The higher erosive impact within H. campechianum sites can be related with the low density of these trees in the study areas, as well as the lack of association with other types of vegetation that could reinforce the rooting of the soil profile. Furthermore, soil losses in H. campechianum sites were dependent on soil texture. The soils under this type of vegetal coverage were mainly sandy, which are more vulnerable to the erosive action in comparison with fine textured soils or soils with higher clay content, like the ones found in D. brownei and B. mutica sites. Soil losses of 100 % in the second year (B. mutica plots) can be attributed to the distribution of roots in the upper soil layer and also to livestock management along riverbanks. This study recognizes the importance of D. brownei scrublands in riverbank soil retention. Nevertheless it is necessary to consider the role of an entire vegetal community in future research. PMID:20073341

  3. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic

    Science.gov (United States)

    Walker, D. A.; Epstein, H. E.; Jia, G. J.; Balser, A.; Copass, C.; Edwards, E. J.; Gould, W. A.; Hollingsworth, J.; Knudson, J.; Maier, H. A.; Moody, A.; Raynolds, M. K.

    2003-01-01

    We examined the effects of summer warmth on leaf area index (LAI), total aboveground phytomass (TAP), and normalized difference vegetation index (NDVI) across the Arctic bioclimate zone in Alaska and extrapolated our results to the circumpolar Arctic. Phytomass, LAI, and within homogeneous areas of vegetation on acidic and nonacidic soils were regressed against the total summer warmth index (SWI) at 12 climate stations in northern Alaska (SWI = sum of mean monthly temperatures greater than 0°C). SWI varies from 9°C at Barrow to 37°C at Happy Valley. A 5°C increase in the SWI is correlated with about a 120 g m-2 increase in the aboveground phytomass for zonal vegetation on acidic sites and about 60 g m-2 on nonacidic sites. Shrubs account for most of the increase on acidic substrates, whereas mosses account for most of the increase on nonacidic soils. LAI is positively correlated with SWI on acidic sites but not on nonacidic sites. The NDVI is positively correlated with SWI on both acidic and nonacidic soils, but the NDVI on nonacidic parent material is consistently lower than the NDVI on acidic substrates. Extrapolation to the whole Arctic using a five-subzone zonation approach to stratify the circumpolar NDVI and phytomass data showed that 60% of the aboveground phytomass is concentrated in the low-shrub tundra (subzone 5), whereas the high Arctic (subzones 1-3) has only 9% of the total. Estimated phytomass densities in subzones 1-5 are 47, 256, 102, 454, and 791 g m-2, respectively. Climate warming will likely result in increased phytomass, LAI, and NDVI on zonal sites. These changes will be most noticeable in acidic areas with abundant shrub phytomass.

  4. A quantitative assessment of the vegetation types on the island of St. Eustatius, Dutch Caribbean

    Directory of Open Access Journals (Sweden)

    Tinde van Andel

    2016-07-01

    Full Text Available Caribbean dry forests are among the most endangered tropical ecosystems on earth. Several studies exist on their floristic composition and their recovery after natural or man-made disturbances, but little is known on the small Dutch Caribbean islands. In this study, we present quantitative data on plant species richness and abundance on St. Eustatius, one of the smallest islands of the Lesser Antilles. We collected and identified trees, shrubs, lianas and herbs in 11 plots of 25 x 25 m in different vegetation types. We compared their floristic composition and structure to vegetation surveys from roughly the same locations in the 1990s and 1950s. We found substantial differences among our 11 plots: vegetation types varied from evergreen forests to deciduous shrubland and open woodland. The number of tree species ≥10 cm DBH ranged between one and 17, and their density between three and 82 per plot. In spite that all plots were subject to grazing by free roaming cattle, canopy height and floristic diversity have increased in the last decades. Invasive species are present in the open vegetation types, but not under (partly closed canopy. Comparison with the earlier surveys showed that the decline of agriculture and conservation efforts resulted in the regeneration of dry forests between the 1950s and 2015. This process has also been reported from nearby islands and offers good opportunities for the future conservation of Caribbean dry forests.

  5. An approach for detecting five typical vegetation types on the Chinese Loess Plateau using Landsat TM data.

    Science.gov (United States)

    Wang, Zhi-Jie; Jiao, Ju-Ying; Lei, Bo; Su, Yuan

    2015-09-01

    Remote sensing can provide large-scale spatial data for the detection of vegetation types. In this study, two shortwave infrared spectral bands (TM5 and TM7) and one visible spectral band (TM3) of Landsat 5 TM data were used to detect five typical vegetation types (communities dominated by Bothriochloa ischaemum, Artemisia gmelinii, Hippophae rhamnoides, Robinia pseudoacacia, and Quercus liaotungensis) using 270 field survey data in the Yanhe watershed on the Loess Plateau. The relationships between 200 field data points and their corresponding radiance reflectance were analyzed, and the equation termed the vegetation type index (VTI) was generated. The VTI values of five vegetation types were calculated, and the accuracy was tested using the remaining 70 field data points. The applicability of VTI was also tested by the distribution of vegetation type of two small watersheds in the Yanhe watershed and field sample data collected from other regions (Ziwuling Region, Huangling County, and Luochuan County) on the Loess Plateau. The results showed that the VTI can effectively detect the five vegetation types with an average accuracy exceeding 80 % and a representativeness above 85 %. As a new approach for monitoring vegetation types using remote sensing at a larger regional scale, VTI can play an important role in the assessment of vegetation restoration and in the investigation of the spatial distribution and community diversity of vegetation on the Loess Plateau.

  6. Impact of climate and vegetation type on evapotranspiration from green roofs

    Science.gov (United States)

    Sia, M. E.; Robinson, C. E.; O'Carroll, D. M.; Voogt, J. A.; Smart, C. C.; Way, D. A.

    2015-12-01

    Green roofs are an increasingly popular low impact development tool used to mitigate the adverse effects of urbanization and the loss of vegetated spaces. The benefits of green roofs include reducing stormwater volume and peak flows, reducing building energy loads, and mitigating the urban heat island effect. Evapotranspiration (ET) is a key process fundamental to hydrologic and thermal performance of green roofs. For example, ET governs the water storage volume available in the soil medium and thus the ability of the green roof to retain and attenuate stormwater. Green roof design considerations such as soil medium depth and plant type impact ET rates. Additionally, climate has a strong impact on ET rates. To date, the influence between climate and green roof design factors (e.g. vegetation type and soil medium depth) on ET rates have not been well quantified. We performed a field study to evaluate the impact of climate, vegetation type, and soil medium depth on ET rates from extensive modular green roofs over prolonged drying periods. Three Canadian cities with distinct climates were chosen as field sites: London, ON, Calgary, AB, and Halifax, NS. At each site, daily module weights were recorded from May to August in 2013 and 2014 for approximately 40 green roof modules. These modules were divided into four vegetation treatments (three single species and one mixed species), and each treatment was divided into two groups of soil medium depth (10 cm or 15 cm). Daily ET rates and seasonal moisture loss were calculated and compared for the modules to determine which treatment provided the highest ET rates. The root depth profile, leaf area index, and stomatal resistance were also measured. On average, daily ET rates among the vegetation treatments did not vary greatly, however, observations on plant survival indicate which plant types are best suited for each site. In all three sites, mixed species in 15 cm of soil medium had higher seasonal moisture loss compared to

  7. Vegetable but not fruit consumption reduces the risk of type 2 diabetes in Chinese women.

    Science.gov (United States)

    Villegas, Raquel; Shu, Xiao Ou; Gao, Yu-Tang; Yang, Gong; Elasy, Tom; Li, Honglan; Zheng, Wei

    2008-03-01

    We examined associations between fruit and vegetable intake and the incidence of type 2 diabetes (T2D) in a population-based prospective study of 64,191 women with no history of T2D or other chronic diseases at study recruitment and with valid dietary information. Dietary intake was assessed by in-person interviews using a validated FFQ. During 297,755 person-years of follow-up, 1608 new cases of T2D were documented. We used a Cox regression model to evaluate the association of fruit and vegetable intake (g/d) with the risk of T2D. Quintiles of vegetable intake and T2D were inversely associated. The relative risk for T2D for the upper quintile relative to the lower quintile of vegetable intake was 0.72 (95%CI: 0.61-0.85; P Fruit intake was not associated with the incidence of diabetes in this population. Our data suggest that vegetable consumption may protect against the development of T2D.

  8. Long-Term Arctic Peatland Dynamics, Vegetation and Climate History of the Pur-Taz Region, Western Siberia

    Science.gov (United States)

    Peteet, Dorothy; Andreev, Andrei; Bardeen, William; Mistretta, Francesca

    1998-01-01

    Stratigraphic analyses of peat composition, LOI, pollen, spores, macrofossils, charcoal, and AMS ages are used to reconstruct the peatland, vegetation and climatic dynamics in the Pur-Taz region of western Siberia over 5000 years (9300 - 4500 BP). Section stratigraphy shows many changes from shallow lake sediment to different combinations of forested or open sedge, moss, and Equisetum fen and peatland environments. Macrofossil and pollen data indicate that Larix sibirica and Betula pubescens trees were first to arrive, followed by Picea obovata. The dominance of Picea macrofossils 6000-5000 BP in the Pur-Taz peatland along with regional Picea pollen maxima indicate warmer conditions and movement of the spruce treeline northward at this time. The decline of pollen and macrofossils from all of these tree species in uppermost peats suggests a change in the environment less favorable for their growth, perhaps cooler temperatures and/or less moisture. Of major significance is the evidence for old ages of the uppermost peats in this area of Siberia, suggesting a real lack of peat accumulation in recent millennia or recent oxidation of uppermost peat.

  9. Assessing climate refugia from a terrestrial vegetation vulnerability assessment for 29 types in California.

    Science.gov (United States)

    Thorne, J. H.; Bjorkman, J.; Boynton, R.; Stewart, J.; Holguin, A.; Schwartz, M.; Albright, W.

    2015-12-01

    We assessed the climate vulnerability of 29 terrestrial macrogroup vegetation types in the National Vegetation Classification Scheme covering 99% of California. Using a 2015 landcover map, we defined current and future climate exposure of each type by assessing conditions at all known locations. This approach identifies both areas of expected high stress and of climate refugia. Species distribution models of the vegetation types proved to over-predict the extent of occupied lands, compared to their mapped extents. Trait based components of the vulnerability assessment were far less influential on level of vulnerability than climate projection. Various cutoffs can be selected to describe refugia. Here we classed refugia as the 20% of climate conditions most frequently occupied by a type. Under CNRM CM5 RCP 4.5, of 70,143 km2 that are the most climate-insulated locations, 46,420 km2 move to higher levels of climate exposure. At the other extreme of climate projections tested, MIROC ESM RCP 8.5, 59,137 km2 are lost. Four macrogroups lose their refugia under CNRM 4.5: Pacific Northwest Conifer Forests, Mountain Riparian Scrub and Wet Meadow, Salt Marsh, and Great Basin Upland Scrub. Under MIROC 8.5 and additional 8 macrogroups lose the most commonly experienced climate: Subalpine Aspen Forests & Pine Woodlands, Non-Native Forest and Woodlands, North Coast Deciduous Scrub and Terrace Prairie, Coastal Dune and Bluff Scrub, Freshwater Marsh, Wet Mountain Meadow, Big Sagebrush Scrub, and Alpine Vegetation. These results raise interesting questions regarding the definition of refugia. We review the results and ask how appropriate they are for different ecosystem types.

  10. Effect of vegetative filter strips on herbicide runoff under various types of rainfall.

    Science.gov (United States)

    Otto, Stefan; Cardinali, Alessandra; Marotta, Ester; Paradisi, Cristina; Zanin, Giuseppe

    2012-06-01

    Narrow vegetative filter strips proved to effectively reduce herbicide runoff from cultivated fields mainly due to the ability of vegetation to delay surface runoff, promote infiltration and adsorb herbicides. A field trial was conducted from 2007 to 2009 in north-east Italy in order to evaluate the effectiveness of various types of vegetative filter strips to reduce spring-summer runoff of the herbicides mesotrione, metolachlor and terbuthylazine, widely used in maize, and to evaluate the effect of the rainfall characteristics on the runoff volume and concentration. Results show that without vegetative filter strip the herbicide load that reaches the surface water is about 5-6 g ha(-1)year(-1) for metolachlor and terbuthylazine (i.e. 0.5-0.9% of the applied rate), confirming that runoff from flat fields as in the Po Valley can have a minor effect on the water quality, and that most of the risk is posed by a few, or even just one extreme rainfall event with a return period of about 25-27 years, causing runoff with a maximum concentration of 64-77 μg L(-1). Mesotrione instead showed rapid soil disappearance and was observed at a concentration of 1.0-3.8 μg L(-1) only after one extreme (artificial) rainfall. Vegetative filter strips of any type are generally effective and can reduce herbicide runoff by 80-88%. Their effectiveness is steady even under severe rainfall conditions, and this supports their implementation in an environmental regulatory scheme at a catchment or regional scale.

  11. Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, mid-Holocene, and present

    Science.gov (United States)

    Bigelow, N.H.; Brubaker, L.B.; Edwards, M.E.; Harrison, S.P.; Prentice, I.C.; Anderson, P.M.; Andreev, A.A.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Kaplan, J.O.; Lozhkin, A.V.; Matveyeva, N.V.; Murray, D.F.; McGuire, A.D.; Razzhivin, V.Y.; Ritchie, J.C.; Smith, B.; Walker, D. A.; Gajewski, K.; Wolf, V.; Holmqvist, B.H.; Igarashi, Y.; Kremenetskii, K.; Paus, A.; Pisaric, M.F.J.; Volkova, V.S.

    2003-01-01

    A unified scheme to assign pollen samples to vegetation types was used to reconstruct vegetation patterns north of 55??N at the last glacial maximum (LGM) and mid-Holocene (6000 years B.P.). The pollen data set assembled for this purpose represents a comprehensive compilation based on the work of many projects and research groups. Five tundra types (cushion forb tundra, graminoid and forb tundra, prostrate dwarf-shrub tundra, erect dwarf-shrub tundra, and low- and high-shrub tundra) were distinguished and mapped on the basis of modern pollen surface samples. The tundra-forest boundary and the distributions of boreal and temperate forest types today were realistically reconstructed. During the mid-Holocene the tundra-forest boundary was north of its present position in some regions, but the pattern of this shift was strongly asymmetrical around the pole, with the largest northward shift in central Siberia (???200 km), little change in Beringia, and a southward shift in Keewatin and Labrador (???200 km). Low- and high-shrub tundra extended farther north than today. At the LGM, forests were absent from high latitudes. Graminoid and forb tundra abutted on temperate steppe in northwestern Eurasia while prostrate dwarf-shrub, erect dwarf-shrub, and graminoid and forb tundra formed a mosaic in Beringia. Graminoid and forb tundra is restricted today and does not form a large continuous biome, but the pollen data show that it was far more extensive at the LGM, while low- and high-shrub tundra were greatly reduced, illustrating the potential for climate change to dramatically alter the relative areas occupied by different vegetation types.

  12. Characteristic of Soil Hydro-Physical Properties and Water Dynamics under Different Vegetation Restoration Types

    Institute of Scientific and Technical Information of China (English)

    MA Zelong; GONG Yuanbo; HU Tingxing

    2006-01-01

    By combining the observation of the soil profile at field and the chemical and physical analysis in laboratory, a study on the hydro-physical properties of soil in six different vegetation types and the dynamics of water content after rain was conducted in Wanchanggou, Guangyuan City to find out the vegetation types with effective water-conservation functions in order to serve the ecological restoration in the low hill heavy rain area upper the Jialing River. Results showed that:the hydro-physical properties of soil in the mixed Alnus cremastogyne and Cupressua Leyland forest (AcCl) were best. But in the depth of 0-20 cm. The properties of soil in the abandoned cropland (Fm) was better than that in the AcCl. The soil bulk densities varied significantly between the layers of 0-20 cm and 20-40 cm in all the six vegetation types except that in the Robinia pseudoacacia shrub forest (RpⅡ), and the changes of the maximum and the capillary moisture capacity between layers were significant only in the Fm and in the AcCl. Of these stands, the AcCl had the shortest water-absorbing period and the strongest moisture changes in the upper layer (0-15 cm). In the same stand, the deeper the soil layer, the slighter the soil moisture varied, and the longer the soil moisture accumulating process lasted.

  13. Suspended Matter, Chl-a, CDOM, Grain Sizes, and Optical Properties in the Arctic Fjord-Type Estuary, Kangerlussuaq, West Greenland During Summer

    DEFF Research Database (Denmark)

    Lund-Hansen, L. C.; Andersen, T. J.; Nielsen, Morten Holtegaard;

    2010-01-01

    Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66A degrees) in August 2007 along with optical properties. These comprised diffuse...

  14. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    2013-07-01

    Full Text Available Conservation biological control (CBC is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina and the olive moth (Prays oleae. Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems.

  15. Role of vegetation type on hydraulic conductivity in urban rain gardens

    Science.gov (United States)

    Schott, K.; Balster, N. J.; Johnston, M. R.

    2009-12-01

    Although case studies report improved control of urban stormwater within residential rain gardens, the extent to which vegetation type (shrub, turf, prairie) affects the saturated hydraulic conductivity (Ksat) of these depressions has yet to be investigated in a controlled experiment. We hypothesized that there would be significant differences in hydraulic conductivity by vegetation type due to differences in soil physical characteristics and rooting dynamics such that Ksat of shrub gardens would exceed that of prairie, followed by turf. To test this hypothesis, we measured changes in Ksat relative to the above vegetation types as well as non-vegetative controls, each of which were replicated three times for a total of 12 rain gardens. Ksat was calculated using a published method for curve-fitting to single-ring infiltration with a two-head approach where the shape factor is independent of ponding depth. Constant-head infiltration rates were measured at two alternating ponding depths within each garden twice over the growing season. Root core samples were also taken to qualify belowground characteristics including soil bulk density and rooting dynamics relative to differences in Ksat. We found the control and shrub gardens had the lowest mean Ksat of 3.56 (SE = 0.96) and 3.73 (1.22) cm3 hr-1, respectively. Prairie gardens had the next highest mean Ksat of 12.18 (2.26) cm3 hr-1, and turf had the highest mean value of 23.63 (1.81) cm3 hr-1. These data suggest that a denser rooting network near the soil surface may influence saturated hydraulic conductivity. We applied our observed flow rates to a Glover solution model for 3-dimensional flow, which revealed considerably larger discrepancies in turf gardens than beneath prairie or shrub. This indicated that lateral flow conditions in the turf plots could be the explanation for our observed infiltration rates.

  16. The effect of abrupt permafrost thaw on the water table, vegetation and carbon feedback: results from a sub-arctic peatland

    Science.gov (United States)

    Malhotra, A.; Roulet, N. T.

    2015-12-01

    Uncertainty in estimating the carbon loss from thawing ice-rich permafrost is attributed, in part, to the abrupt changes in ecosystem structure and function after thaw. In a thawing peat plateau in the discontinuous permafrost zone (Stordalen, Mire, Sweden; ST), we tested for the occurrence of abrupt changes in hydrology and the effects of these changes on the water table and vegetation feedback. Using a chronosequence approach along three transects that capture several transitional thaw stages, we found abrupt hydrological changes following thaw, wherein adjacent areas (1 m apart) had unrelated water table depth (WTD) fluctuations. Despite these abrupt changes, surprisingly, the same Gaussian model of plant abundance explained by WTD could be applied to data from both ST and an undisturbed ombrotrophic peatland (Mer Bleue Bog, Canada; MB). However, the Gaussian model fit was better at MB than at ST. Furthermore, explanatory power of the model at ST decreased with increasing permafrost thaw. While water table and vegetation feedback in a thawing landscape is similar to that of a peatland without transitional land cover types, the vegetation and carbon feedback is complicated by non-linear shifts in the partitioning of gaseous effluxes between CO2 and CH4. These results will be presented along with key implications for modeling carbon loss from thawing landscapes.

  17. Comparison of satellite imagery and infrared aerial photography as vegetation mapping methods in an arctic study area: Jameson Land, East Greenland

    DEFF Research Database (Denmark)

    Hansen, Birger Ulf; Mosbech, Anders

    1994-01-01

    Remote Sensing, vegetation mapping, SPOT, Landsat TM, aerial photography, Jameson Land, East Greenland......Remote Sensing, vegetation mapping, SPOT, Landsat TM, aerial photography, Jameson Land, East Greenland...

  18. Effects of winter seismic trails on visual resources, vegetation, and surface stability of the coastal plain of the Arctic National Wildlife Refuge, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Winter seismic exploration in 1984 and 1985 left visible trails on the coastal plain of the Arctic National Wildlife Refuge. Thirtyfour permanent intensive study...

  19. The Influence of Vegetation Type on the Surface Water and Energy Balance in Semiarid Ecosystems

    Science.gov (United States)

    Kurc, S. A.; Small, E. E.

    2001-12-01

    The transition from semiarid grassland to shrubland occurs over a distance of ~1 km in the Sevilleta Wildlife Refuge in New Mexico. The spatial variability of precipitation, incident shortwave radiation, and other factors is minimal across the ecotone because the transition zone spans such a short distance. Therefore, we assume that the type of vegetation is the primary factor controlling the spatial variations of water and energy cycling at this location. We examine fluxes in the grassland, shrubland, and the intermediate mixed environment to isolate the influence of vegetation type on the exchange of water and energy between the land surface and the atmosphere. Three micrometeorology sites span this shrub-grass ecotone. The Bowen Ratio-Energy Balance method is used at two of the sites and an eddy covariance system is used at the third site. We have intercompared the Bowen ratio and eddy covariance methods at each site. The differences introduced by using these two different methods are negligible compared to the observed spatial and temporal variability. We present data from two summer monsoon seasons. The response to precipitation events is dramatic and similar at all three sites across the vegetation gradient. The latent heat flux at midday changes from nearly 0 when the soil is dry to greater than 250 W m-2 for several days following rainfall. These temporal fluctuations are much greater than the spatial differences associated with vegetation cover observed under either wet or dry conditions. However, the drydown following rainfall, and the attendant variations in water and energy fluxes, is different across the ecotone. In the shrubland, soil moisture and evapotranspiration decrease more quickly than in the grassland.

  20. Stable Isotopes Indicate Nitrogen Sources in Pinguicula vulgaris Across Contrasting Habitat Types in Sub-Arctic Sweden

    Science.gov (United States)

    Ackerman, D.; Hobbie, E. A.; Varner, R. K.; Steele, K.

    2012-12-01

    Like most carnivorous plant species, Pinguicula vulgaris (common butterwort) obtains nitrogen from both soil pools and insect prey. Prior studies have estimated percent prey-derived nitrogen (%PDN) for the entire plant, but it may be expected that %PDN varies between plant parts. By measuring stable isotopic ratios in the soil, plants, and naturally captured prey, this study estimated %PDN in both foliage and roots. Plants, soil and insects were collected during July 2012 in sub-arctic Sweden across two habitat types: dry heath and moist sphagnum. Insect samples were homogenized for each site, and all samples were cleaned, dried, and measured for δ15N in an isotope ratio mass spectrometer. Roots showed consistent %PDN in both habitat types, whereas foliage in moist sphagnum sites had significantly greater %PDN than foliage in dry heath sites. Amount of captured prey did not differ significantly between habitat types. These results provide the framework for a rough model of the differential distribution of prey- and soil-derived nitrogen in P. vulgaris, where root nitrogen is split approximately evenly between the two sources, and foliar nitrogen varies by site, possibly dependent on the accessibility of nitrogen in the soil pool.

  1. Relation of MODIS EVI and LAI across time, vegetation types and hydrological regimes

    Science.gov (United States)

    Alexandridis, Thomas; Ovakoglou, George

    2015-04-01

    Estimation of the Leaf Area Index (LAI) of a landscape is considered important to describe the ecosystems activity and is used as an important input parameter in hydrological and biogeochemical models related to water and carbon cycle, desertification risk, etc. The measurement of LAI in the field is a laborious and costly process and is mainly done by indirect methods, such as hemispherical photographs that are processed by specialized software. For this reason there have been several attempts to estimate LAI with multispectral satellite images, using theoretical biomass development models, or empirical equations using vegetation indices and land cover maps. The aim of this work is to study the relation of MODIS EVI and LAI across time, vegetation type, and hydrological regime. This was achieved by studying 120 maps of EVI and LAI which cover a hydrological year and five hydrologically diverse areas: river Nestos in Greece, Queimados catchment in Brazil, Rijnland catchment in The Netherlands, river Tamega in Portugal, and river Umbeluzi in Mozambique. The following Terra MODIS composite datasets were downloaded for the hydrological year 2012-2013: MOD13A2 "Vegetation Indices" and MCD15A2 "LAI and FPAR", as well as the equivalent quality information layers (QA). All the pixels that fall in a vegetation land cover (according to the MERIS GLOBCOVER map) were sampled for the analysis, with the exception of those that fell at the border between two vegetation or other land cover categories, to avoid the influence of mixed pixels. Using linear regression analysis, the relationship between EVI and LAI was identified per date, vegetation type and study area. Results show that vegetation type has the highest influence in the variation of the relationship between EVI and LAI in each study area. The coefficient of determination (R2) is high and statistically significant (ranging from 0.41 to 0.83 in 90% of the cases). When plotting the EVI factor from the regression equation

  2. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  3. River flooding as a driver of polygon dynamics: modern vegetation data and a millennial peat record from the Anabar River lowlands (Arctic Siberia

    Directory of Open Access Journals (Sweden)

    R. Zibulski

    2013-08-01

    Full Text Available The spatial and temporal variability of a low-centred polygon on the eastern floodplain area of the lower Anabar River (72.070° N, 113.921° E; northern Yakutia, Siberia has been investigated using a multi-method approach. The present-day vegetation in each square metre was analysed, revealing a community of Larix, shrubby Betula, and Salix on the polygon rim, a dominance of Carex and Andromeda polifolia in the rim-to-pond transition zone, and a predominantly monospecific Scorpidium scorpioides coverage within the pond. The total organic carbon (TOC content, TOC / TN (total nitrogen ratio, grain size, vascular plant macrofossils, moss remains, diatoms, and pollen were analysed for two vertical sections and a sediment core from a transect across the polygon. Radiocarbon dating indicates that the formation of the polygon started at least 1500 yr ago; the general positions of the pond and rim have not changed since that time. Two types of pond vegetation were identified, indicating two contrasting development stages of the polygon. The first was a well-established moss association, dominated by submerged or floating Scorpidium scorpioides and/or Drepanocladus spp. and overgrown by epiphytic diatoms such as Tabellaria flocculosa and Eunotia taxa. This stage coincides temporally with a period in which the polygon was only drained by lateral subsurface water flow, as indicated by mixed grain sizes. A different moss association occurred during times of repeated river flooding (indicated by homogeneous medium-grained sand that probably accumulated during the annual spring snowmelt, characterized by an abundance of Meesia triquetra and a dominance of benthic diatoms (e.g. Navicula vulpina, indicative of a relatively high pH and a high tolerance of disturbance. A comparison of the local polygon vegetation (inferred from moss and macrofossil spectra with the regional vegetation (inferred from pollen spectra indicated that the moss association with

  4. River flooding as a driver of polygon dynamics: modern vegetation data and a millennial peat record from the Anabar River lowlands (Arctic Siberia

    Directory of Open Access Journals (Sweden)

    R. Zibulski

    2013-03-01

    Full Text Available The spatial and temporal variability of a low-centred polygon on the eastern floodplain area of the lower Anabar River (72.070° N, 113.921° E, northern Yakutia, Siberia has been investigated using a multi-method approach. The present-day vegetation in each square metre was analysed revealing a community of Larix shrubby Betula and Salix on the polygon rim, a dominance of Carex and Andromeda polifolia in the rim-to-pond transition zone, and a predominantly monospecific Scorpidium scorpioides coverage within the pond. The TOC content, TOC/TN ratio, grain-size, vascular plant macrofossils, moss remains, diatoms, and pollen were analysed for two vertical sections and a sediment core from a transect across the polygon. Radiocarbon dating indicates that the formation of the polygon started at least 1500 yr ago; the general positions of the pond and rim have not changed since that time. Two types of pond vegetation were identified, indicating two contrasting development stages of the polygon. The first was a well-established moss association dominated by submerged or floating Scorpidium scorpioides and/or Drepanocladus spp. and overgrown by epiphytic diatoms such as Tabellaria flocculosa and Eunotia taxa. This stage coincides temporally with a period in which the polygon was only drained by lateral subsurface water flow, as indicated by mixed grain sizes. A different moss association occurred during times of repeated river flooding (indicated by homogeneous medium-grained sand that probably accumulated during the annual spring snow melt, characterized by an abundance of Meesia triquetra and a dominance of benthic diatoms (e.g. Navicula vulpina, indicative of a relatively high pH and a high tolerance of disturbance. A comparison of the local polygon vegetation (inferred from moss and macrofossil spectra with the regional vegetation (inferred from pollen spectra indicated that the moss association with Scorpidium scorpioides became established during

  5. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    Science.gov (United States)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry

  6. Major Vegetation Types of the Soutpansberg Conservancy and the Blouberg Nature Reserve, South Africa

    Directory of Open Access Journals (Sweden)

    Theo H.C. Mostert

    2008-05-01

    Full Text Available The Major Megetation Types (MVT and plant communities of the Soutpansberg Centre of Endemism are described in detail, with special reference to the Soutpansberg Conservancy and the Blouberg Nature Reserve. Phytosociological data from 442 sample plots were ordinated using a DEtrended CORrespondence ANAlysis (DECORANA and classified using TWo-Way INdicator SPecies ANalysis (TWINSPAN. The resulting classification was further refined with table-sorting procedures based on the Braun–Blanquet floristic–sociological approach of vegetation classification using MEGATAB. Eight MVT’s were identified and described as Eragrostis lehmanniana var. lehmanniana–Sclerocarya birrea subsp. caffra Blouberg Northern Plains Bushveld, Euclea divinorum–Acacia tortilis Blouberg Southern Plains Bushveld, Englerophytum magalismontanum–Combretum molle Blouberg Mountain Bushveld, Adansonia digitata–Acacia nigrescens Soutpansberg Arid Northern Bushveld, Catha edulis–Flueggia virosa Soutpansberg Moist Mountain Thickets, Diplorhynchus condylocarpon–Burkea africana Soutpansberg Leached Sandveld, Rhus rigida var. rigida–Rhus magalismontanum subsp. coddii Soutpansberg Mistbelt Vegetation and Xymalos monospora–Rhus chirendensis Soutpansberg Forest Vegetation.

  7. Using vegetation cover type to predict and scale peatland methane dynamics.

    Science.gov (United States)

    McArthur, K. J.; McCalley, C. K.; Palace, M. W.; Varner, R. K.; Herrick, C.; DelGreco, J. L.

    2015-12-01

    Permafrost ecosystems contain about 50% of the global soil carbon. As these northern ecosystems experience warmer temperature, permafrost thaws and may result in an increase in atmospheric methane. We examined a thawing and discontinuous permafrost boundary at Stordalen Mire, in Northern Sweden, in an effort to better understand methane emissions. Stable isotope analysis of methane in peatland porewater can give insights into the pathway of methane production. By measuring δ13CH4 we can predict whether a system is dominated by either hydrogenotrophic or acetaclastic methane production. Currently, it is a challenge to scale these isotopic patterns, thus, atmospheric inversion models simply assume that acetoclastic production dominates. We analyzed porewater samples collected across a range of vegetation cover types for δ13CH4 using a QCL (Quantum Cascade Laser Spectrometer) in conjunction with highly accurate GPS (3-10cm) measurements and high-resolution UAV imaging. We found δ13CH4 values ranging from -88‰ to -41‰, with averages based on cover type and other vegetation features showing differences of up to -15‰. We then used a computer neural network to predict cover types across Stordalen Mire from UAV imagery based on field-based plot measurements and training samples.. This prediction map was used to scale methane flux and isotope measurements. Our results suggest that the current values used in atmospheric inversion studies may oversimplify the relationship between plant and microbial communities in complex permafrost landscapes. As we gain a deeper understanding of how vegetation relates to methanogenic communities, understanding the spatial component of ecosystem methane metabolism and distribution will be increasingly valuable.

  8. Abundance and Dynamics of Soil Labile Carbon Pools Under Different Types of Forest Vegetation

    Institute of Scientific and Technical Information of China (English)

    JIANG Pei-Kun; XU Qiu-Fang

    2006-01-01

    Soil organic matter (SOM) in forest ecosystems is not only important to global carbon (C) storage but also to sustainable management of forestland with vegetation types, being a critical factor in controlling the quantity and dynamics of SOM. In this field experiment soil plots with three replicates were selected from three forest vegetation types: broadleaf,Masson pine (Pinus massoniana Lamb.), and Chinese fir (Cunninghamia lanceolata Hook.). Soil total organic C (TOC),two easily oxidizable C levels (EOC1 and EOC2, which were oxidized by 66.7 mmol L-1 K2Cr2O7 at 130-140 ℃ and333 mmol L-1 KMnO4 at 25 ℃, respectively), microbial biomass C (MBC), and water-soluble organic C (WSOC)were analyzed for soil samples. Soil under the broadleaf forest stored significantly higher TOC (P ≤ 0.05). Because of its significantly larger total soil C storage, the soil under the broadleaf forest usually had significantly higher levels (P ≤ 0.05)of the different labile organic carbons, EOC1, EOC2, MBC, and WSOC; but when calculated as a percentage of TOC each labile C fraction of the broadleaf forest was significantly lower (P ≤ 0.05) than one of the other two forests. Under all the three vegetation types temperature as well as quality and season of litter input generally affected the dynamics of different organic C fractions in soils, with EOC1, EOC2, and MBC increasing closely following increase in temperature,whereas WSOC showed an opposite trend.

  9. [Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].

    Science.gov (United States)

    Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang

    2007-03-01

    The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots. PMID:17552181

  10. Types of fruits and vegetables used in commercial baby foods and their contribution to sugar content.

    Science.gov (United States)

    Garcia, Ada Lizbeth; McLean, Kimberley; Wright, Charlotte M

    2016-10-01

    Fruits and vegetables (F&V) are often featured in names of commercial baby foods (CBFs). We aimed to survey all available CBFs in the UK market with F&V included in the food name in order to describe the amount and types of F&V used in CBF and their contribution to total sugar content. Food labels were used to identify F&V and total sugar content. Fruits were more common than vegetables in names of the 329 CBFs identified. The six most common F&V in the names were all relatively sweet: apple, banana, tomato, mango, carrot and sweet potato. The percentage of F&V in the foods ranged from a median of 94% for sweet-spoonable to 13% for dry-savoury products. Fruit content of sweet foods (n = 177) was higher than vegetable content of savoury foods (n = 152) with a median (IQR) of 64.0 g/100 g (33.0-100.0) vs. 46.0 g/100 g (33-56.7). Fruit juice was added to 18% of products. The proportion of F&V in CBF correlated significantly with sugar content for all the food types except dry-savoury food (sweet-spoonable r = 0.24, P = 0.006; savoury-spoonable r = 0.65, P < 0.001; sweet-dry r = 0.81, P < 0.001; savoury-dry r = 0.51, P = 0.06) and explained up to two-thirds of the variation in sugar content. The F&V content of CBFs mainly consists of fruits and relatively sweet vegetables which are unlikely to encourage preferences for bitter-tasting vegetables or other non-sweet foods. F&V contribute significantly to the total sugar content, particularly of savoury foods.

  11. Variations of deep soil moisture under different vegetation types and influencing factors in a watershed of the Loess Plateau, China

    Science.gov (United States)

    Fang, Xuening; Zhao, Wenwu; Wang, Lixin; Feng, Qiang; Ding, Jingyi; Liu, Yuanxin; Zhang, Xiao

    2016-08-01

    Soil moisture in deep soil layers is a relatively stable water resource for vegetation growth in the semi-arid Loess Plateau of China. Characterizing the variations in deep soil moisture and its influencing factors at a moderate watershed scale is important to ensure the sustainability of vegetation restoration efforts. In this study, we focus on analyzing the variations and factors that influence the deep soil moisture (DSM) in 80-500 cm soil layers based on a soil moisture survey of the Ansai watershed in Yan'an in Shanxi Province. Our results can be divided into four main findings. (1) At the watershed scale, higher variations in the DSM occurred at 120-140 and 480-500 cm in the vertical direction. At the comparable depths, the variation in the DSM under native vegetation was much lower than that in human-managed vegetation and introduced vegetation. (2) The DSM in native vegetation and human-managed vegetation was significantly higher than that in introduced vegetation, and different degrees of soil desiccation occurred under all the introduced vegetation types. Caragana korshinskii and black locust caused the most serious desiccation. (3) Taking the DSM conditions of native vegetation as a reference, the DSM in this watershed could be divided into three layers: (i) a rainfall transpiration layer (80-220 cm); (ii) a transition layer (220-400 cm); and (iii) a stable layer (400-500 cm). (4) The factors influencing DSM at the watershed scale varied with vegetation types. The main local controls of the DSM variations were the soil particle composition and mean annual rainfall; human agricultural management measures can alter the soil bulk density, which contributes to higher DSM in farmland and apple orchards. The plant growth conditions, planting density, and litter water holding capacity of introduced vegetation showed significant relationships with the DSM. The results of this study are of practical significance for vegetation restoration strategies, especially

  12. Effects of Vegetable Oil Type and Lipophilic Emulsifiers on the Induction Period of Fat Crystallization.

    Science.gov (United States)

    Miyagawa, Yayoi; Ogawa, Takenobu; Nakagawa, Kyuya; Adachi, Shuji

    2015-01-01

    The induction period of crystallization, which is defined as the time required for oil to start to crystallize, is useful indicator of the freeze-thaw stability of food emulsions such as mayonnaise. We investigated the induction period of vegetable oils with low melting points, such as rapeseed and soybean oils, which are commonly employed for mayonnaise production. The induction period was measured by monitoring the temperature of a specimen during storage at low temperature. The induction period depended on the type of oil and lipophilic emulsifier, emulsifier concentration, and storage temperature. The effect of the oil type on the induction period depended on the composition of the oil. Differential scanning calorimetry (DSC) analyses of the lipophilic emulsifiers suggested that the melting trend of the emulsifier is strongly related to the induction period.

  13. The effect of vegetation type and fire on permafrost thaw: An empirical test of a process based model

    Science.gov (United States)

    Thierry, Aaron; Estop-Aragones, Cristian; Fisher, James; Hartley, Iain; Murton, Julian; Phoenix, Gareth; Street, Lorna; Williams, Mathew

    2015-04-01

    As conditions become more favourable for plant growth in the high latitudes, most models predict that these areas will take up more carbon during the 21st century. However, vast stores of carbon are frozen in boreal and arctic permafrost, and warming may result in some of this carbon being released to the atmosphere. The recent inclusion of permafrost thaw in large-scale model simulations has suggested that the permafrost feedback could potentially substantially reduce the predicted global net uptake of carbon by terrestrial ecosystems, with major implications for the rate of climate change. However, large uncertainties remain in predicting rates of permafrost thaw and in determining the impacts of thaw in contrasting ecosystems, with many of the key processes missing from carbon-climate models. The role that different plant communities play in insulating soils and protecting permafrost is poorly quantified, with key groups such as mosses absent in many models. But it is thought that they may play a key role in determining permafrost resilience. In order to test the importance of these ecological processes we use a new specially acquired dataset from sites in the Canadian arctic to develop, parameterise and evaluate a detailed process-based model of vegetation-soil-permafrost interactions which includes an insulating moss understory. We tested the sensitivity of modelled active layer depth to a series of factors linked to fire disturbance, which is common in boreal permafrost areas. We show how simulations of active layer depth (ALD) respond to removals of (i) vascular vegetation, (ii) moss cover, and (iii) organic soil layers. We compare model responses to observed patterns from Canada. We also describe the sensitivity of our modelled ALD to changes in temperature and precipitation. We found that four parameters controlled most of the sensitivity in the modelled ALD, linked to conductivity of organic soils and mosses.

  14. THE EFFECT OF DIFFERENT TYPES OF STRAW MULCHES ON WEED-CONTROL IN VEGETABLES CULTIVATION

    Directory of Open Access Journals (Sweden)

    Edyta Kosterna

    2014-10-01

    Full Text Available The experiment was carried out in 2010–2012. The effect of different kinds of straw and its dose applied to soil mulching on the amount and fresh mass of weeds and yield level of broccoli and tomato was investigated. The type of straw mulch applied to the soil mulching influenced number and fresh mass of weeds. This effect could be the result of the properties of the mulch (colour, structure, etc. or the allelopathic effect on the germination and growth of individual weed species. The most efficient for limiting infestation was mulch from buckwheat and rye straw. Soil mulching, regardless of its kind, causes a decrease in the number and mass of weeds at the beginning of growing period of vegetables. The application of straw at a dose of 20 t∙ha-1 had higher weed-suppressing effect than at a dose of 10 t∙ha-1. When assessing the infestation before harvest the influence of straw mulch was lower but still significant. The application in higher dose of rye and buckwheat straw in broccoli, corn and rape in tomato cultivation reduced a number of weeds compared to dose of 10 t∙ha-1. The better yielding effect in both vegetable species had soil mulching with straw at a dose of 10 t∙ha-1.

  15. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    Science.gov (United States)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  16. Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland.

    Directory of Open Access Journals (Sweden)

    Guangxuan Han

    Full Text Available Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively. During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m(-2 s(-1, followed by the Suaeda salsa site (0.77 µmol CO2 m(-2 s(-1 and the bare soil site (0.41 µmol CO2 m(-2 s(-1. The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland.

  17. Burn Severities, Fire Intensities, and Impacts to Major Vegetation Types from the Cerro Grande Fire

    Energy Technology Data Exchange (ETDEWEB)

    Balice, Randy G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, Kathryn D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2004-12-15

    The Cerro Grande Fire resulted in major impacts and changes to the ecosystems that were burned. To partially document these effects, we estimated the acreage of major vegetation types that were burned at selected burn severity levels and fire intensity levels. To accomplish this, we adopted independently developed burn severity and fire intensity maps, in combination with a land cover map developed for habitat management purposes, as a basis for the analysis. To provide a measure of confidence in the acreage estimates, the accuracies of these maps were also assessed. In addition, two other maps of comparable quality were assessed for accuracy: one that was developed for mapping fuel risk and a second map that resulted from a preliminary application of an evolutionary computation software system, called GENIE.

  18. Impacts of grassland types and vegetation cover changes on surface air temperature in the regions of temperate grassland of China

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui; Li, Guangdi; Yu, Pujia; Zhou, Daowei

    2016-10-01

    The sensitivity of surface air temperature response to different grassland types and vegetation cover changes in the regions of temperate grassland of China was analyzed by observation minus reanalysis (OMR) method. The basis of the OMR approach is that reanalysis data are insensitive to local surface properties, so the temperature differences between surface observations and reanalysis can be attributed to land effects. Results showed that growing-season air temperature increased by 0.592 °C/decade in the regions of temperate grassland of China, with about 31 % of observed warming associated with the effects of grassland types and vegetation cover changes. For different grassland types, the growing-season OMR trend was the strongest for temperate desert steppe (0.259 °C/decade) and the weakest for temperate meadow (0.114 °C/decade). Our results suggest that the stronger intraseasonal changes of grassland vegetation are present, the more sensitive the OMR trend responds to the intraseasonal vegetation cover changes. In August and September, the OMR of temperate meadow showed a weak cooling trend. For temperate meadow, about 72.2 and 72.6 % of surface cooling were explained by both grassland type and increase of vegetation cover for August and September, respectively. For temperate steppe and temperate desert steppe, due to the limited soil moisture and little evaporative cooling feedback, the vegetation changes have no significant effect on the surface air temperature. These results indicate that the impact of grassland types and vegetation cover changes should be considered when projecting further climate change in the temperate grassland region of China.

  19. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    . At the end of winter, within several days of snowmelt, gross ecosystem photosynthesis rates were of a similar magnitude to ecosystem respiration, resulting in significant net carbon gain in some instances. Finally, climate and vegetation type were also strong interactive controls on total wintertime...... in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient...

  20. Reflectance properties of selected arctic-boreal land cover types: field measurements and their application in remote sensing

    Science.gov (United States)

    Peltoniemi, J. I.; Suomalainen, J.; Puttonen, E.; Näränen, J.; Rautiainen, M.

    2008-03-01

    We developed a mobile remote sensing measurement facility for spectral and anisotropic reflectance measurements. We measured reflection properties (BRF) of over 100 samples from most common land cover types in boreal and subarctic regions. This extensive data set serves as a unique reference opportunity for developing interpretation algorithms for remotely sensed materials as well as for modelling climatic effects in the boreal and subarctic zones. Our goniometric measurements show that the reflectances of the most common land cover types in the boreal and subarctic region can differ from each other by a factor of 100. Some types are strong forward scatterers, some backward scatterers, some reflect specularly, some have strong colours, some are bright in visual, some in infrared. We noted that spatial variations in reflectance, even among the same type of vegetation, can be well over 20%, diurnal variations of the same order and seasonal variation often over a factor of 10. This has significant consequences on the interpretation of satellite and airborne images and on the development of radiation regime models in both optical remote sensing and climate change research. We propose that the accuracy of optical remote sensing can be improved by an order of magnitude, if better physical reflectance models can be introduced. Further improvements can be reached by more optimised design of sensors and orbits/flight lines, by the effective combining of several data sources and better processing of atmospheric effects. We conclude that more extensive and systematic laboratory experiments and field measurements are needed, with more modelling effort.

  1. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  2. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand an...

  3. Effects of Vegetation Type and Management Practice on Soil Respiration of Grassland in Northern Japan

    Directory of Open Access Journals (Sweden)

    Minaco Adachi

    2013-01-01

    Full Text Available Soil respiration rate in two types of grassland dominated with Zoysia japonica and Miscanthus sinensis, respectively, and under two management practices (undisturbed and intentionally burned for the M. sinensis grassland was investigated for understanding the effects of grassland vegetation type and management practices on the relationship between soil temperature and soil respiration in northern Japan. Soil temperatures at depth of 1 cm in the Z. japonica (ZJ and burned M. sinensis (MSb plots had a larger temporal variation than that in the control M. sinensis (MSc plot prior to early July. However, the coefficient of temperature sensitivity ( values, based on soil respiration rates and soil temperatures at 5 cm depth in the ZJ and MSb plots, were 1.3 and 2.9. These rates were lower than that in the MSc plot (4.3, meaning that soil respiration showed lower activity to an increase in soil temperature in the ZJ and MSb plots. In addition, monthly carbon fluxes from soil in these plots were smaller than that in the MSc plot. These results suggested that artificial disturbance would decrease soil microbial or/and plant root respiration, and it would contribute to the plant productivity. Future studies should examine the effects of the intensity and period of management on the soil respiration rate.

  4. Seasonal variations in the biomass, quantity and quality of agar, from the reproductive and vegetative stages of Gracilaria (verrucosa type)

    Energy Technology Data Exchange (ETDEWEB)

    Whyte, J.N.C.; Englar, J.R.; Saunders, R.G.; Lindsay, J.C.

    1981-09-01

    Optimum growth of Gracilaria (verrucosa type) in British Columbia occurred between 5 and 6 meters below mean field level and correlated with solar radiation throughout the season. Vegetative populations declined with a consequent increase in reproductive forms to a maximum in July. Tetrasporophytes dominated the reproductive population and in July attained the greatest seasonal biomass of all forms of the alga. Maximum population and biomass were attained by carposporophytes in July and by male gametophytes one month earlier. An inverse relationship between biomass and yield of agar was apparent only for the vegetative and tetrasporic forms of the alga. Variations in yields, gel strengths, and gelation characteristics of the agars isolated, were demonstrated to be dependent on time of season and life stages of the alga. Ranked in the following decreasing order of merit as a source of agar were the cystocarpic, tetrasporic, vegetative and male gametophytic forms of Gracilaria (verrucosa type).

  5. Effects of different vegetation types on the shear strength of root-permeated soils

    Science.gov (United States)

    Yildiz, Anil; Graf, Frank; Rickli, Christian; Springman, Sarah M.

    2016-04-01

    The effects of vegetation and, in particular, of forests on the stability of slopes are well recognized and have been widely studied in recent decades. However, there is still a lack of understanding of the underlying processes that occur prior to triggering superficial failures in root-permeated soil. Thus, appropriate quantification of the vegetation effects on the shear strength of soil is crucial in order to be able to evaluate the stability of a vegetated slope. Direct shear testing is widely employed to determine the shearing response of root-permeated soil. However, mechanical aspects of direct shear apparatuses may affect the shear strength parameters derived, which often remains unnoticed and hampers direct comparison between different studies. A robust Inclinable Large-scale Direct Shear Apparatus (ILDSA), with dimensions of 500x500x400 mm, was built in order to shear root-permeated soil specimens and to analyse the influence of the machine setup on the results, too. Two different sets of planted specimens were prepared using moraine (SP-SM) from a recent landslide area in Central Switzerland: a first set consisting of Alnus incana, Trifolium pratense, Poa pratensis and a second set, consisting of these three species complemented with Salix appendiculata, Achillea millefolium, Anthyllis vulneraria. Direct shear tests were conducted on specimens planted with the different vegetation types, at a constant rate of horizontal displacement of 1 mm/min up to a maximum horizontal displacement of 190 mm, and under three different applied normal stresses: 6 kPa, 11 kPa and 16 kPa. Artificial rainfall was applied at a constant intensity (100 mm/h) prior to shearing. Tensiometers had been installed close to the shear surface and were monitored continuously to obtain the matric suction during the saturation process. Suctions were reduced as close to 0 kPa as possible, in order to simulate the loss of strength after a heavy period of rainfall. The analyses of the above

  6. Arctic Climate and Terrestrial Vegetation Responses During the Middle to Late Eocene and Early Oligocene: Colder Winters Preceded Cool-Down.

    Science.gov (United States)

    Greenwood, D. R.; Eldrett, J.

    2006-12-01

    The late Eocene to early Oligocene is recognized as an interval of substantial change in the global climate, with isotopic proxies of climate indicating a significant drop in sea surface temperatures. Other studies have shown, however that at middle latitudes that terrestrial mean annual temperature did not change significantly over this interval, and that the major change was likely a shift towards a greater range of seasonal temperatures; colder winters and warmer summers. Previous analyses of high latitude (Arctic) middle Eocene climate using both leaf physiognomic analysis and qualitative analysis of identified nearest living relatives of terrestrial floras indicated upper microthermal environments (mean annual temp. or MAT ca 10°C but perhaps as high as 15°C, coldest month mean temp. or CMMT ca 0°C) for Axel Heiberg Island in the Arctic Archipelago, but did not address precipitation nor provide data on the Eocene-Oligocene transition in the Arctic. Presented here are new estimates of temperature and precipitation (annual and season amounts) for the Arctic based on NLR analysis of terrestrial plant palynomorphs (spores and pollen) from the ODP 913B and 985 cores from near Greenland. The record of climate for the Greenland cores show a similar climate in the middle Eocene to that previously estimated for Axel Heiberg Island further to the west, with MAT 10- 15°C but with CMMT >5°C. Precipitation was high (mean annual precip. or MAP >180 cm/yr), although with large uncertainties attached to the estimate. The climate proxy record for the late Eocene to early Oligocene shows a lack of change in MAT and MAP over the time interval. Consistent with other published records at middle latitudes, however, winter temperatures (as CMMT) show greater variability leading up to the E-O boundary, and consistently cooler values in the early Oligocene (CMMT 5°C). Plant groups sensitive to freezing such as palms and the floating water fern Azolla were present in the warm

  7. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2005-01-01

    for positive feedbacks from high-latitude ecosystems to CO2-induced climate change will require the development of ecosystem-level physiological models of net carbon exchange that differentiate the responses of major C pools, that account for effects of vegetation type, and that integrate over summer...

  8. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis

    NARCIS (Netherlands)

    Cooper, A.J.; Forouhi, N.G.; Ye, Z.; Buijsse, B.; Feskens, E.J.M.

    2012-01-01

    Fruit and vegetable intake (FVI) may reduce the risk of type 2 diabetes (T2D), but the epidemiological evidence is inconclusive. The aim of this study is to examine the prospective association of FVI with T2D and conduct an updated meta-analysis. In the European Prospective Investigation into Cancer

  9. Arctic Watch

    Science.gov (United States)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  10. Regular, high, and moderate intake of vegetables rich in antioxidants may reduce cataract risk in Central African type 2 diabetics

    Directory of Open Access Journals (Sweden)

    Mvitu M

    2012-06-01

    Full Text Available Moise Mvitu,1 Benjamin Longo-Mbenza,2 Dieudonné Tulomba,3 Augustin Nge31Department of Ophthalmology, University of Kinshasa, Democratic Republic of Congo; 2Faculty of Health Sciences, Walter Sisulu University, South Africa; 3Biostatistics Unit, Lomo Medical Center and Heart of Africa Center of Cardiology, Kinshasa, Democratic Republic of CongoBackground: Antioxidant nutrients found in popularly consumed vegetables, including red beans, are thought to prevent diabetic complications. In this study, we assessed the frequency and contributing factors of intake of fruits and vegetables rich in antioxidants, and we determined their impact on the prevention of diabetes-related cataract extraction.Methods: This was a cross-sectional study, run in Congo among 244 people with type 2 diabetes mellitus. An intake of ≥three servings of vegetables rich in antioxidants/day, intake of red beans, consumption of fruit, and cataract extraction were considered as dependent variables.Results: No patient reported a fruit intake. Intake of red beans was reported by 64 patients (26.2%, while 77 patients (31.6% reported ≥three servings of vegetables rich in antioxidants. High socioeconomic status (OR = 2.3; 95% CI: 1.1–12.5; P = 0.030 and moderate alcohol intake (OR = 4; 95% CI: 1.1–17.4; P = 0.049 were the independent determinants of eating ≥three servings of vegetables rich in antioxidants. Red beans intake (OR = 0.282; 95% CI: 0.115–0.687; P > 0.01 and eating ≥three servings of vegetables rich in antioxidants (OR = 0.256; 95% CI: 0.097–0.671; P = 0.006 were identified as independent and protective factors against the presence of cataracts (9.8% n = 24, whereas type 2 diabetes mellitus duration ≥3 years was the independent risk factor for cataract extraction (OR = 6.3; 95% CI: 2.1–19.2; P > 0.001 in the model with red beans intake and OR = 7.1; 95% CI: 2.3–22.2; P > 0.001 in the model with ≥three servings of vegetables rich in antioxidants

  11. Reflectance properties of selected arctic-boreal land cover types: field measurements and their application in remote sensing

    Directory of Open Access Journals (Sweden)

    J. I. Peltoniemi

    2008-03-01

    Full Text Available We developed a mobile remote sensing measurement facility for spectral and anisotropic reflectance measurements. We measured reflection properties (BRF of over 100 samples from most common land cover types in boreal and subarctic regions. This extensive data set serves as a unique reference opportunity for developing interpretation algorithms for remotely sensed materials as well as for modelling climatic effects in the boreal and subarctic zones.

    Our goniometric measurements show that the reflectances of the most common land cover types in the boreal and subarctic region can differ from each other by a factor of 100. Some types are strong forward scatterers, some backward scatterers, some reflect specularly, some have strong colours, some are bright in visual, some in infrared. We noted that spatial variations in reflectance, even among the same type of vegetation, can be well over 20%, diurnal variations of the same order and seasonal variation often over a factor of 10. This has significant consequences on the interpretation of satellite and airborne images and on the development of radiation regime models in both optical remote sensing and climate change research.

    We propose that the accuracy of optical remote sensing can be improved by an order of magnitude, if better physical reflectance models can be introduced. Further improvements can be reached by more optimised design of sensors and orbits/flight lines, by the effective combining of several data sources and better processing of atmospheric effects. We conclude that more extensive and systematic laboratory experiments and field measurements are needed, with more modelling effort.

  12. In Situ burning of Arctic marine oil spills:Ignitability of various oil types weathered at different ice conditions. A combined laboratory and field study

    OpenAIRE

    Fritt-Rasmussen, Janne

    2010-01-01

    Oil spills in ice filled and Arctic waters pose other challenges for oil spill response compared to open and temperate waters. In situ burning has been proven to be an effective oil spill response method for oil spills in ice filled waters. This thesis presents results from laboratory and field experiments where the ignitability of oil spill as a function of oil type and weathering conditions (time/ice) was tested. The results show that the composition of the oil and the ice cover is importan...

  13. Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types

    Directory of Open Access Journals (Sweden)

    András Zlinszky

    2014-08-01

    Full Text Available There is increasing demand for reliable, high-resolution vegetation maps covering large areas. Airborne laser scanning data is available for large areas with high resolution and supports automatic processing, therefore, it is well suited for habitat mapping. Lowland hay meadows are widespread habitat types in European grasslands, and also have one of the highest species richness. The objective of this study was to test the applicability of airborne laser scanning for vegetation mapping of different grasslands, including the Natura 2000 habitat type lowland hay meadows. Full waveform leaf-on and leaf-off point clouds were collected from a Natura 2000 site in Sopron, Hungary, covering several grasslands. The LIDAR data were processed to a set of rasters representing point attributes including reflectance, echo width, vegetation height, canopy openness, and surface roughness measures, and these were fused to a multi-band pseudo-image. Random forest machine learning was used for classifying this dataset. Habitat type, dominant plant species and other features of interest were noted in a set of 140 field plots. Two sets of categories were used: five classes focusing on meadow identification and the location of lowland hay meadows, and 10 classes, including eight different grassland vegetation categories. For five classes, an overall accuracy of 75% was reached, for 10 classes, this was 68%. The method delivers unprecedented fine resolution vegetation maps for management and ecological research. We conclude that high-resolution full-waveform LIDAR data can be used to detect grassland vegetation classes relevant for Natura 2000.

  14. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  15. Satellite-based analysis of clouds and radiation properties of different vegetation types in the Brazilian Amazon region

    OpenAIRE

    Schneider, Nadine; Quaas, Johannes; Claussen, Martin; Reick, Christian

    2015-01-01

    Land-use changes impact the energy balance of the Earth system, and feedbacks in the Earth system can dampen or amplify this perturbation. We analyze here from satellite data the response of clouds and subsequently radiation to a change of land use for the example of deforestation in the Amazon Basin. In this region, the characteristics of different cloud types over two vegetation types (forest and crop-/grasslands) were calculated for a time period of five years by using satellite data...

  16. Functional analysis and modelling of vegetation: plant functional types in a mesocosmos experiment and a mechanistic model

    OpenAIRE

    Lehsten, Veiko

    2005-01-01

    The focus of this thesis lies on the functional analysis and modelling of vegetation. A statistical method for the optimisation of plant functional types is developed in the first part. The fourth corner method by Pierre Legendre et al. was adapted to the task of grouping of plant functional types. New null models are developed for this randomisation method and their statistical properties are investigated. The mechanistical model LEGOMODEL is used to simulate the succession of plant function...

  17. Factors Affecting Distribution of Vegetation Types on Abandoned Cropland in the Hilly-Gullied Loess Plateau Region of China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A study was conducted in the forest-steppe region of the Loess Plateau to provide insight into the factors affecting the process of vegetation establishment,and to provide recommendations for the selection of indigenous species in order to speed up the succession process and to allow the establishment of vegetation more resistant to soil erosion.Four distinctive vegetation types were identified,and their distribution was affected not only by the time since abandonment but also by other environmental factors,mainly soil water and total P in the upper soil layers.One of the vegetation types,dominated by Artemisia scoparia,formed the early successional stage after abandonment while the other three types formed later successional stages with their distribution determined by the soil water content and total P.It can be concluded that the selection of appropriate species for introduction to accelerate succession should be determined by the local conditions and especially the total P concentration and soil water content.

  18. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages.

    Science.gov (United States)

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-Ii

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12% olive oil + 4% canola oil). Proximate analysis showed significant (psausages. Furthermore, replacement with vegetable oil mixtures significantly decreased the ash content (psausages. Also, cholesterol content in T6 was significantly lower than T2 (psausages were significantly (poil mixtures replacement. On the contrary, cohesiveness and springiness in the T4 group were similar to those of group T1. The unsaturated fatty acid content in emulsion-type pork sausages was increased by vegetable oil mixtures replacement. Replacement of pork fat with mixed vegetable oils had no negative effects on the quality properties of emulsion-type pork sausages, and due to its reduced saturated fatty acid composition, the product had the quality characteristics of the healthy meat products desired by consumers.

  19. 植被和气候对阿拉斯加和加拿大北部北极苔原地区多年冻土活动层厚度的影响%Role of Vegetation and Climate in Permafrost Active Layer Depth in Arctic Tundra of Northern Alaska and Canada

    Institute of Scientific and Technical Information of China (English)

    Alexia M. Kelley; Howard E. Epstein; Donald A. Walker

    2004-01-01

    The active layer is the top layer of permafrost soils that thaws during the summer season due to increased ambient temperatures and solar radiation inputs. This layer is important because almost all biological activity takes place there luring the summer. The depth of active layer thaw is influenced by climatic conditions. Vegetation has also been found to have a strong impact on active layer thaw, because it can intercept incoming radiation, thereby insulating the soil from ambient conditions. In order to look at the role of vegetation and climate on active layer thaw, we measured thaw depth and the Normalized Difference Vegetation Index (NDVI; a proxy for aboveground plant biomass) along a latitudinal temperature gradient in arctic Alaska and Canada. At each site several measurements of thaw and NDVI were taken in areas with high amounts of vegetation and areas with little to no vegetation. Results show that the warmest regions, which had the greatest levels of NDVI, had relatively shallow thaw depths, and the coldest regions, which had the lowest levels of NDVI, also had relatively shallow thaw depths. The intermediate regions, which had moderate levels of NDVI and air temperature, had the greatest depth of thaw. These results indicate that temperature and vegetation interact to control the depth of the active layer across a range of arctic ecosystems. By developing a relationship to explain thaw depth through NDVI and temperature or latitude, the possibility exists to extrapolate thaw depth over large scales via remote sensing applications.

  20. Seasat synthetic aperture radar ( SAR) response to lowland vegetation types in eastern Maryland and Virginia.

    Science.gov (United States)

    Krohn, M.D.; Milton, N.M.; Segal, D.B.

    1983-01-01

    Examination of Seasat SAR images of eastern Maryland and Virginia reveals botanical distinctions between vegetated lowland areas and adjacent upland areas. Radar returns from the lowland areas can be either brighter or darker than returns from the upland forests. Scattering models and scatterometer measurements predict an increase of 6 dB in backscatter from vegetation over standing water. This agrees with the 30-digital number (DN) increase observed in the digital Seasat data. The density, morphology, and relative geometry of the lowland vegetation with respect to standing water can all affect the strength of the return L band signal.-from Authors

  1. Comparison of interception and initial retention of wet-deposited contaminants on leaves of different vegetation types

    Science.gov (United States)

    Owen Hoffman, F.; Thiessen, Kathleen M.; Rael, Rolando M.

    Simulated rain containing both soluble radionuclides and insoluble particles labeled with a radionuclide was manually applied to several kinds of vegetation, including a conifer, a broad-leafed tree, and several herbaceous species. The fraction of each radioactive material intercepted and initially retained by the vegetation was determined for each plant type. This fraction was determined both as the mass interception factor, r/Y, and the leaf area interception fraction, LAIF. Mean values of r/Y ranged from 0.16 to 2.9 m 2 kg -1 and of the LAIF, from 0.011 to 0.16. There was a greater range in mean retention values among radionuclide types than among plant species; the range among plant types tended to be less with the LAIF than the r/Y. Significantly less interception and initial retention was measured for anions than for cations or the insoluble particles.

  2. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  3. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie;

    2015-01-01

    Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold...... season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... vegetation types, but the leaf sizes were unchanged. Leaves of Bistorta and Luzula were significantly larger but only significantly so in one moist vegetation type. Increased N and chlorophyll concentrations in leaves indicate a potential for increased growth (C uptake), supported by large leaf sizes...

  4. Vegetation Cover Types of St. Vincent Island N.W.R.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objectives of this vegetative study on St. Vincent National Wildlife Refuge were to: (1) identify and describe the major plant communities and associations on...

  5. THE FORMATION OF ENTS ADAPTIVE REACTIONS DEPENDING ON THE TYPE OF PSYCHO-VEGETATIVE REGULATION

    OpenAIRE

    E. M. Kazin

    2014-01-01

    The purpose of the students (12 to 15 years old) examination was to identify the integrative criteria of assessing the nature of the functional relationships between the parameters of the psychosocial and physiological adaptation of students, depending on age, individual-typological peculiarities of vegetative regulation, personal potential at different stages of school education.The study of the characteristics of vegetative regulation of the cardiovascular system was made with a help of an ...

  6. Grazing effects on species composition in different vegetation types (La Palma, Canary Islands)

    Science.gov (United States)

    Arévalo, J. R.; de Nascimento, L.; Fernández-Lugo, S.; Mata, J.; Bermejo, L.

    2011-05-01

    Grazing management is probably one of the most extensive land uses, but its effects on plant communities have in many cases been revealed to be contradictory. Some authors have related these contradictions to the stochastic character of grazing systems. Because of that, it is necessary to implement specific analyses of grazing effects on each community, especially in natural protected areas, in order to provide the best information to managers. We studied the effects of grazing on the species composition of the main vegetation types where it takes place (grasslands, shrublands and pine forests) on the island of La Palma, Canary Islands. We used the point-quadrat intersect method to study the species composition of grazed and ungrazed areas, which also were characterized by their altitude, distance to farms, distance to settlements, year of sampling, herbaceous aboveground biomass and soil organic matter. The variables organic matter, productivity and species richness were not significantly affected by grazing. The species composition of the analyzed plant communities was affected more by variables such as altitude or distance to farms than by extensive grazing that has been traditionally carried out on the island of La Palma involving certain practices such as continuous monitoring of animals by goat keepers, medium stocking rates adjusted to the availability of natural pastures, supplementation during the dry season using local forage shrubs or mown pastures and rotating animals within grazing areas Although some studies have shown a negative effect of grazing on endangered plant species, these results cannot be freely extrapolated to the traditional grazing systems that exert a low pressure on plant communities (as has been found in this study). We consider extensive grazing as a viable way of ensuring sustainable management of the studied ecosystems.

  7. Trophodynamics of current use pesticides and ecological relationships in the Bathurst region vegetation-caribou-wolf food chain of the Canadian Arctic.

    Science.gov (United States)

    Morris, Adam D; Muir, Derek C G; Solomon, Keith R; Teixeira, Camilla; Duric, Mark; Wang, Xiaowa

    2014-09-01

    The bioaccumulation of current use pesticides (CUPs) and stable isotopes of carbon and nitrogen were investigated in vegetation-caribou-wolf food chain in the Bathurst region (Nunavut, Canada). Volumetric bioconcentration factors (BCF(v)) in vegetation were generally greatest for dacthal (10-12) ≥ endosulfan sulfate (10-11) > ß-endosulfan (>9.0-9.7) ≥ pentachloronitrobenzene (PCNB; 8.4-9.6) > α-endosulfan (8.3-9.3) > chlorpyrifos (8.0-8.7) >chlorothalonil (7.6-8.3). The BCF(v) values in vegetation were significantly correlated with the logarithm of the octanol-air partition coefficients (log K(OA)) of CUPs (r(2)  = 0.90, p = 0.0040), although dacthal was an outlier and not included in this relationship. Most biomagnification factors (BMFs) for CUPs in caribou:diet comparisons were significantly less than 1. Similarly, the majority of wolf:caribou BMFs were either significantly less than 1 or were not statistically greater than 1. Significant trophic magnification factors (TMFs) were all less than 1, indicating that these CUPs exhibit trophic dilution through this terrestrial food chain. The log K(OA) reasonably predicted bioconcentration in vegetation for most CUPs but was not correlated with BMFs or TMFs in mammals. Our results, along with those of metabolic studies, suggest that mammals actively metabolize these CUPs, limiting their biomagnification potential despite entry into the food chain through effective bioconcentration in vegetation.

  8. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  9. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    Soils play a key role in the carbon geochemical cycle because they can either emit large quantities of CO2 or on the contrary they can act as a store for carbon. Agriculture and forestry are the only activities that can achieve this effect through photosynthesis and the carbon incorporation into carbohydrates (Parras-Alcántara et al., 2013). The Mediterranean evergreen oak Woodland (MEOW - dehesa) is a type of pasture with scattered evergreen and deciduous oak stands in which cereals are often grown under the tree cover. It is a system dedicated to the combined production of Iberian swine, sheep, fuel wood, coal and cork as well as to hunting. These semi-natural areas still preserve some of the primitive vegetation of the Mediterranean oak forests. The dehesa is a pasture where the herbaceous layer is comprised of either cultivated cereals such as oat, barley and wheat or native vegetation dominated by annual species, which are used as grazing resources. These Iberian open woodland rangelands (dehesas) have been studied from different points of view: hydrologically, with respect to soil organic matter content, as well as in relation to gully erosion, topographical thresholds, soil erosion and runoff production, soil degradation and management practices…etc, among others. The soil organic carbon stock capacity depends not only on abiotic factors such as the mineralogical composition and the climate, but also on soil use and management (Parras et al., 2014 and 2015). In Spanish soils, climate, use and management strongly affect the carbon variability, mainly in soils in dry Mediterranean climates characterized by low organic carbon content, weak structure and readily degradable soils. Hontoria et al. (2004) emphasized that the climate and soil use are two factors that greatly influence carbon content in the Mediterranean climate. This research sought to analyze the SOC stock (SOCS) variability in MEOW - dehesa with cereals, olive grove and Mediterranean oak forest

  10. The hydrological responses of different land cover types in a re-vegetation catchment area of the Loess Plateau, China

    Directory of Open Access Journals (Sweden)

    S. Wang

    2012-05-01

    Full Text Available The impact of re-vegetation on soil moisture dynamics was investigated by comparing five land cover types. Soil moisture and temperature variations under grass (Andropogon, subshrub (Artemisia scoparia, shrub (Spiraea pubescens, tree (Robinia pseudoacacia, and crop (Zea mays vegetation were monitored in an experiment performed during the growing season of 2011. There were more than 10 soil moisture pulses during the period of data collection, and the surface soil moisture of all of the land cover types showed an increasing trend. Corn cover was associated with consistently higher soil moisture readings than the other surfaces. Grass and subshrubs showed an intermediate moisture level, with that of grass being slightly higher than that of subshrub most of the time. Shrubs and trees were characterized by lower soil moisture readings, with the shrub levels consistently being slightly higher than those of the trees. With the exception of the corn land cover type, the average soil temperature showed the same regime as the average moisture content, but exhibiting a downward trend throughout the observation period. Three typical decreasing periods were chosen to compare the differences in water losses. In periods of both relatively lower and higher water soil moisture contents, subshrubs lost the largest amount of water. The daily water loss associated with corn was most variable. The tree and shrub sites presented an intermediate level, with that of tree being slightly higher compared to shrub; the daily water loss trends of these two land cover types were similar and were more stable than those of the other types. The amount of water loss related to the grass land cover type is determined by the initial moisture content. Soil under subshrubs acquired and retained soil moisture resources more efficiently than the other cover types, representing an adaptive vegetation type in this area.

  11. Identification of Forest Vegetation Using Vegetation Indices

    Institute of Scientific and Technical Information of China (English)

    Yuan Jinguo; Wang Wei

    2004-01-01

    Spectral feature of forest vegetation with remote sensing techniques is the research topic all over the world, because forest plays an important role in human beings' living environment. Research on vegetation classification with vegetation index is still very little recently. This paper proposes a method of identifying forest types based on vegetation indices,because the contrast of absorbing red waveband with reflecting near-infrared waveband strongly for different vegetation types is recognized as the theoretic basis of vegetation analysis with remote sensing. Vegetation index is highly related to leaf area index, absorbed photosynthetically active radiation and vegetation cover. Vegetation index reflects photosynthesis intensity of plants and manifests different forest types. According to reflectance data of forest canopy and soil line equation NIR=1.506R+0.0076 in Jingyuetan, Changchun of China, many vegetation indices are calculated and analyzed. The result shows that the relationships between vegetation indices and forest types are that perpendicular vegetation index (PVI) identifies broadleaf forest and coniferous forest the most easily;the next is transformed soil-adjusted vegetation index(TSVI) and modified soil-adjusted vegetation index(MSVI), but their calculation is complex. Ratio vegetation index (RVT) values of different coniferous forest vary obviously, so RVI can classify conifers.Therefore, the combination of PVI and RVI is evaluated to classify different vegetation types.

  12. The Effect of Latitude, Litter and Vegetation type on the Performance of the Invasive Species Impatiens glandulifera

    OpenAIRE

    Mujuni, Nelson

    2015-01-01

    Background and Aims Impatiens glandulifera is a blacklisted invasive alien plant species that exhibits high phenotypic variation along latitudinal gradients in its invaded range in Europe, with a preference for riparian, roadside and other moist or disturbed habitats. However, limited information exists on how different latitudinal populations perform in contrasting vegetation types. Furthermore, the impact of I. glandulifera litter on the performance of co-occurring species within different...

  13. The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: a direct gradient approach

    OpenAIRE

    Ponge, Jean-François; Sartori, Giacomo; Garlato, Adriano; Ungaro, Fabrizio; Zanella, Augusto; Jabiol, Bernard; Obber, Silvia

    2014-01-01

    The impact of geology, climate, soil type and vegetation on forest humus forms was studied in the Veneto Region (northern Italy). A total of 352 study sites were compared by Redundancy Analysis (RDA). Humus forms were described by the structure (micro-, meso-, or macro-aggregated) of the organo-mineral A horizon, by the thickness of litter horizons and by their nomenclature, which followed the morpho-functional classification recently proposed for inclusion in the WRB-FAO. The size of aggrega...

  14. Root Effect of Three Vegetation Types on Shoreline Stabilization of Chongming Island, Shanghai

    Institute of Scientific and Technical Information of China (English)

    DU Qin; ZHONG Qi-Cheng; WANG Kai-Yun

    2010-01-01

    Coastal erosion is currently a major problem along the southern coast of Chongming Island, Shanghai. To enhance the erosion protection ability of coastal shelterbelts, two woody tree species, Taxodium ascendens and Salix babylonica, were planted separately into Phragmites australis + Scirpus mariqueter communities in 2006. Two years later, we investigated whether either of these experiments reduced erosion and increased stability in the native herbaceous plant community. We also examined soil stability and root length density under T. ascendens added, S. babylonica added and native herbaceous vegetation conditions along an intertidal gradient from the soil surface to a depth of 40 cm in each experiment, thus to determine the capacity of T. ascendens and S. babylonica to contribute to shoreline stabilization. Topsoil under the native vegetation had greater stability at the middle and higher intertidal zones because its soil stability index and root length density were significantly higher than in the T. ascendens or S. babylonica planted communities. The effect of T.ascendens on soil stability was not generally better than that of the native vegetation. Only at the 20-30 cm soil depth of the middle intertidal zone and in the 10-20 cm layer of the higher intertidal zone the soil stability index and root length densities under the T. ascendens added condition were significantly higher (P < 0.05) than those of the native vegetation.The S. babylonica planted soil had greater stability in the deeper soil layer than the soil under either the native vegetation or the T. ascendens added condition, and its soil stability index and root length density were significant higher (P < 0.05) than those of other vegetation conditions at the 30-40 cm soil depth for the lower intertidal zone and at the 20-40 cm layer for middle and higher intertidal zones.

  15. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evennessof utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.

  16. Evaluation of vegetation types in the West Zagros (Beiranshahr region as a case study, in Lorestan Province, Iran

    Directory of Open Access Journals (Sweden)

    ATENA ESLAMI FAROUJI

    2016-04-01

    Full Text Available Farouji AE, Khodayari H. 2016. Evaluation of vegetation types in the West Zagros (Beiranshahr region as a case study, in Lorestan Province, Iran. Biodiversita 17: 1-10. The accurate identification of plant communities and their distribution are classical tools for mapping and classification of plants. Plants are strongly sensitive against changing environmental conditions. Moreover, Iran has a special position in Asia which has been creating a diverse ecosystem. Close floristic studies are necessary for precise determination of diversity and uniformity. To determine plant species in different vegetation types in Beiran shahr region, modified multi-scale Whittaker plots were constructed. This studied area was about 20000 ha and located in Northwest to Southwest of Iran. Eighty-nine plots were made in different longitude and latitudes. The minimum and maximum heights were 1101 and 2489 m asl., respectively. Within each modified multi-scale plots, each species was explored. Of 608 species, 498 and 97 are belonging to dicotyledons and monocotyledons, and remained 13 species were Pteridophytes. As measured, Therophyte and Champhyte are the dominant and recessive form of life in studied area. Based on species of each plot and subplots, mean Jaccard's coefficient, number of unique species and mean unique species/plot were estimated for each vegetation type. It is obvious that there is a clear correlation between Slopes of the species-log area curve and Mean number of unique species per plot.

  17. Vegetation Map and Vegetation Monographs of China

    Institute of Scientific and Technical Information of China (English)

    GUO Ke

    2010-01-01

    @@ Vegetation Map of China As the most significant component of an ecosystem,vegetation plays the most important role in maintaining biodiversity and providing the necessary resources for human beings.A vegetation map shows the major vegetation types of a region and their geographic distribution patterns.

  18. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  19. Wieslander Vegetation

    Data.gov (United States)

    California Department of Resources — Digital version of the 1945 California Vegetation Type Maps by A. E. Wieslander of the U.S. Forest Service. Source scale of maps are 1:100,000. These compiled maps...

  20. Predictors of College-Student Food Security and Fruit and Vegetable Intake Differ by Housing Type

    Science.gov (United States)

    Mirabitur, Erica; Peterson, Karen E.; Rathz, Colleen; Matlen, Stacey; Kasper, Nicole

    2016-01-01

    Objective: We assessed whether college-student characteristics associate with food security and fruit and vegetable (FV) intake and whether these associations differ in students in housing with and without food provision. Participants: 514 randomly-sampled students from a large, Midwestern, public university in 2012 and 2013 Methods: Ordered…

  1. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  2. Physical rehabilitation of students of medical groups with the disease vegetative-vascular dystonia for mixed type.

    Directory of Open Access Journals (Sweden)

    Оlchovik Alina Vitalievna

    2011-10-01

    Full Text Available Consider the problem of declining levels of health of students I-II courses that are assigned to special medical group. Substantiated the importance of including health improvement-rehabilitation program for students with the disease vegetative-vascular dystonia of mixed type. Define oriented content rehabilitation programs for this group of individuals. The program improves the functional and psychological status of students, to carry out prevention of autonomic crises. Proved the prevalence and increase with each passing year the number of people with vascular dystonia of mixed type of students - 50-55%.

  3. Stratospheric ozone depletion during the 1995–1996 Arctic winter: 3-D simulations on the potential role of different PSC types

    Directory of Open Access Journals (Sweden)

    J. Hendricks

    Full Text Available The sensitivity of modelled ozone depletion in the winter Arctic stratosphere to different assumptions of prevalent PSC types and PSC formation mechanisms is investigated. Three-dimensional simulations of the winter 1995/96 are performed with the COlogne Model of the Middle Atmosphere (COMMA by applying different PSC microphysical schemes. Model runs are carried out considering either liquid or solid PSC particles or a combined microphysical scheme. These simulations are then compared to a model run which only takes into account binary sulfate aerosols. The results obtained with the three-dimensional model agree with trajectory-box simulations performed in previous studies. The simulations suggest that conditions appropriate for type Ia PSC existence (T < TNAT occur over longer periods and cover larger areas when compared to conditions of potential type Ib PSC existence. Significant differences in chlorine activation and ozone depletion occur between the simulations including only either liquid or solid PSC particles. The largest differences, occurring over large spatial scales and during prolonged time periods, are modelled first, when the stratospheric temperatures stay below TNAT , but above the threshold of effective liquid particle growth and second, in the case of the stratospheric temperatures remaining below this threshold, but not falling below the ice frost point. It can be generally concluded from the present study that differences in PSC microphysical schemes can cause significant fluctuations in ozone depletion modelled for the winter Arctic stratosphere.

    Key words. Atmospheric composition and structure (aerosols and particles; cloud physics and chemistry; middle atmosphere composition and chemistry

  4. Methan Dynamics in an Arctic Wetland

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Skov

    Rising temperatures in the Arctic have the potential to increase methane (CH4) emissions from arctic wetlands due to increased decomposition, changes in vegetation cover, and increased substrate input from vegetation and thawing permafrost. The effects of warming and changes in vegetation cover on...... be used to oxidize CH4. The over all effect of the presence of sedges on the CH4 budget is unknown for most arctic species. Here the effects of warming and changes in plant cover on CH4 dynamics and emissions in a wetland in Blæsedalen, Disko Island, W. Greenland were investigated. The importance of...... CH4 oxidation in the rhizosphere of Carex aquatilis ssp. stans and Eriophorum angustifolium was quantified using a 13CH4 tracer. The results showed that rhizospheric CH4 oxidation mediated less than 2% of ecosystem CH4 emissions. No significant effects of warming or shrub removal on ecosystem CH4...

  5. Analysis of fern spore banks from the soil of three vegetation types in the central region of Mexico.

    Science.gov (United States)

    Ramírez-Trejo, María Del Rosario; Pérez-García, Blanca; Orozco-Segovia, Alma

    2004-05-01

    The vertical structure of fern spore banks was studied in a xerophilous shrubland, montane rain forest, and pine-oak forest in Hidalgo, Mexico, using the emergence method. Soil samples were collected in April 1999 at depths of 0-10, 10-20, and 20-30 cm. Viable spores decreased significantly with depth in all vegetation types, and the highest number of prothallia and sporophytes was found in the uppermost layer. The montane rain forest and the xerophilous shrubland had the largest and the richest banks, respectively. Twenty-three fern taxa were registered in the aboveground vegetation, 12 in the soil banks, and 43.5% were in both. Aboveground and in the soil bank, the xerophilous shrubland, the montane rain forest, and the pine-oak forest had, 17 and 7, 1 and 6, and 7 and 3 taxa, respectively. These were distributed differentially in relation to depth. The Sørensen index indicated a similarity of 61.5% between the xerophilous shrubland and the montane rain forest, and the Czeckanovsky index indicated 19.75%. The presence of viable spores in the soil of all vegetation types confirmed the existence of natural spore banks. Long-distance dispersal was an important factor determining the specific composition of the xerophilous shrubland and the pine-oak forest. PMID:21653423

  6. Millennial-scale vegetation changes in the north-eastern Russian Arctic during the Pliocene/Pleistocene transition (2.7-2.5 Ma) inferred from the pollen record of Lake El'gygytgyn

    Science.gov (United States)

    Andreev, Andrei A.; Tarasov, Pavel E.; Wennrich, Volker; Melles, Martin

    2016-09-01

    The sediment record of Lake El'gygytgyn (67°30‧N, 172°05‧E) spans the past 3.6 Ma and provides unique opportunities for qualitative and quantitative reconstructions of the regional paleoenvironmental history of the terrestrial Arctic. Millennial-scale pollen studies of the sediments that accumulated during the Late Pliocene and Early Pleistocene (ca. 2.7 to 2.5 Ma) demonstrate orbitally-driven vegetation and climate changes during this transitional interval. Pollen spectra show a significant vegetation shift at the Pliocene/Pleistocene boundary that is, however, delayed by a few thousand years compared to lacustrine response. About 2.70-2.68 Ma the vegetation at Lake El'gygytgyn, currently a tundra area was mostly dominated by larch forests with some shrub pine, shrub alder and dwarf birch in understory. During the marine isotope stages G3 and G1, ca. 2.665-2.647 and 2.625-2.617 Ma, some spruce trees grew in the local larch-pine forests, pointing to relatively warm climate conditions. At the beginning of the Pleistocene, around 2.588 Ma, a prominent climatic deterioration led to a change from larch-dominated forests to predominantly treeless steppe- and tundra-like habitats. Between ca. 2.56-2.53 Ma some climate amelioration is reflected by the higher presence of coniferous taxa (mostly pine and larch, but probably also spruce) in the area. After 2.53 Ma a relatively cold and dry climate became dominant again, leading to open steppe-like and shrubby environments followed by climate amelioration between ca. 2.510 and 2.495 Ma, when pollen assemblages show that larch forests with dwarf birch and shrub alder still grew in the lake's vicinity. Increased contents of green algae colonies (Botryococcus) remains and Zygnema cysts around 2.691-2.689, 2.679-2.677, 2.601-2.594, 2.564-2.545, and 2.532-2.510 Ma suggest a spread of shallow-water environments most likely due to a lake-level lowering. These events occurred simultaneously with dry climate conditions inferred

  7. Study on Types and Features of Urban Vegetation in Urumqi%乌鲁木齐城市植被类型及其特点

    Institute of Scientific and Technical Information of China (English)

    尹林克; 南伟疆; 严成; 王蕾; 姜逢清; 昝勤

    2011-01-01

    根据人为干扰程度、群落功能以及优势建群种,将乌鲁木齐市城市植被划分为自然植被、半自然植被和人工植被3个植被类、13个植被组和125个植被型。自然植被类划分为7个植被组82个植被型;半自然植被类划分为4个植被组33个植被型;人工植被类划分为2个植被组10个植被型。乌鲁木齐自然植被类谱系完整,旱生和超旱生灌木、半灌木及多年生草本优势明显。半自然植被类由于人类活动的扰动,植物群落物种数量较自然植被明显增多,乔灌木比例加大,上层乔灌木种类大部分为人工栽培种,草本组多为原生和外来的野生植物种,部分物种呈斑块状分布并沿灌溉带呈线状分布,物种多样性指数较高。人工植被类中园林绿地破碎度较高,呈点、块、条状散布于城市中心,覆盖率低,种群间和群落间关联度小。其中,以防护林绿地为主,群落中引入归化种和外来种的比例过高;受市场经济影响,农业植被组以粮食、蔬菜和油料为主。%According to the degree of human disturbance,community functions and advantages of the dominant and constructive species,in this paper,urban vegetation in Urumqi was divided into three parts,i.e.the natural vegetation,semi-natural vegetation and artificial vegetation,including 3 vegetation races,13 vegetation groups and 125 vegetation types.Natural vegetation race is classified into 7 vegetation groups,i.e.the coniferous forest vegetation group,broadleaf forest vegetation group,shrub vegetation group,desert vegetation group,meadow vegetation group,steppe vegetation group and alpine vegetation group with 82 vegetation types;semi-natural vegetation race is divided into 4 vegetation groups,i.e.the broadleaf forest vegetation group,shrub vegetation group,herbaceous vegetation group and partner person vegetation group with 33 vegetation types;artificial vegetation race is classified into 2 vegetation groups

  8. Feed intake and activity level of two broiler genotypes foraging different types of vegetation in the finishing period

    DEFF Research Database (Denmark)

    Almeida, Gustavo Fonseca; Hinrichsen, Lena Karina; Horsted, Klaus;

    2012-01-01

    A study was performed with 2 broiler genotypes (slow and medium growth) restricted in supplementary feed and foraging 2 different mixed vegetations (grass/clover or chicory) to identify possible benefits of herbage on nutrition during the finishing period (80 to 113 d of age). Three hundred birds...... were included in a 2 × 2 factorial design with groups of 25 birds replicated 3 times. The use of outdoor areas, performance, and forage intake were investigated. To identify possible differences in foraging activity, the use of the range was monitored one day per week at 4 different times of the day....... Feed intake from foraging was estimated by killing 4 birds per plot (2 males and 2 females) in the morning and in the evening on 3 d during the experiment and measuring crop content. Vegetation type did not influence broiler use of the free-range area, feed intake, or performance. Differences...

  9. Wild fire effects on floristic diversity in three thermo-Mediterranean vegetation types in a small islet of eastern Aegean sea

    Science.gov (United States)

    Abraham, Eleni; Kyriazopoulos, Apostolos; Korakis, George; Parissi, Zoi; Chouvardas, Dimitrios

    2014-05-01

    Sclerophyllus scrub formations, the main vegetation type in many islands of the Aegean area, are characterized by their high biodiversity. Dominant shrub species of sclerophyllus formations are well adapted to dry season conditions by various anatomical and physiological mechanisms. As a result, their biomass acts as very flammable fine fuel, and consequently wild fires are very common in these ecosystems. Wildfire effects on vegetation and biodiversity in the Mediterranean basin have been studied and the results are diverse depending mainly on vegetation type and frequency of fire. The aim of this study was to evaluate the effects of wildfire on floristic diversity and species composition in three thermo-Mediterranean vegetation types 1) Sacropoterium spinosum phrygana, 2) low formations of Cistus creticus and 3) low formations of Cistus creticus in abandoned terraces. The research was conducted in Enoussa islet, which is located northeastern of Chios Island, in May 2013 (one year after the fire). Vegetation sampling was performed along five transects placed in recently burned and in adjacent unburned sites of each vegetation type. The plant cover and the floristic composition were measured, while diversity, evenness and dominance indices were determined for the vegetation data. Vegetation cover and the floristic diversity were significant lower and higher respectively in burned areas in comparison to the unburned. The woody species followed by the annual grasses and the annual forbs dominated in both burned and unburned areas. However, the woody species were significantly decreased in the burned areas in all vegetation types, while the annual grasses only in the burned areas of Sacropoterium spinosum phrygana and Cistus creticus in abandoned terraces. Inversely, the annual forbs significantly increased in the burned sites of Cistus creticus formations. The highest value of Morisita-Horn Index of similarity between burned and unburned sites (beta diversity) was

  10. Type utilization of baked-smashed sweet potato and vegetables on patisserie product

    Science.gov (United States)

    Ana; Subekti, S.; Sudewi; Perdani, E. N.; Hanum, F.; Suciani, T.; Tania, V.

    2016-04-01

    The research was an experimental study in Green Skill Patisserie Course using Project-Based Learning model. It aims to complete the project development of pie named guramnis rainbow pie. Several experiments were carried out to produce a pie dough crust mixed with baked-smashed sweet potato and added with vegetables extract as the food coloring. The experiment method in order to make a better appearance or an attractive shape and to have more nutrition. In addition, the pie was filled with a mixture of sweet and sour gurame as Indonesian traditional food. By applying an organoleptic test to 10 respondents, the result shows that pie dough recipe using flour substituted by baked-smashed sweet potato with 2:1 of a ratio. Coloring pie dough adding extract vegetables (carrots, beets and celery) as color. We found that pie dough has more interesting pie color (90%) and the texture of the pie with a quite level of crispness (60%). Moreover, the pie taste is fairly (70%) and tasty (70%). Nutritional analysis results show that per size, serving guramnis rainbow pie contains energy as much as 81.72 calories, carbohydrates 12.5 grams, fat 2.32 grams and 2.77 grams of protein. The main findings are the pie appearance and taste was different compared to the previous pies because of the pie was served with gurame asam manis as the filling and had flour and cilembu sweet potato as the basic ingredients. The color of guramnis rainbow pie was resulted not only from food coloring but also from vegetables extract namely carrot (orange), bit (red), and salary (green). Thus, it had many benefits for health and adds the nutrition. The researchers recommend a further study in order to make pie dough with baked sweet potato and vegetables extract having an optimal level of crispness.

  11. Strategic metal deposits of the Arctic Zone

    Science.gov (United States)

    Bortnikov, N. S.; Lobanov, K. V.; Volkov, A. V.; Galyamov, A. L.; Vikent'ev, I. V.; Tarasov, N. N.; Distler, V. V.; Lalomov, A. V.; Aristov, V. V.; Murashov, K. Yu.; Chizhova, I. A.; Chefranov, R. M.

    2015-11-01

    Mineral commodities rank high in the economies of Arctic countries, and the status of mineral resources and the dynamics of their development are of great importance. The growing tendency to develop strategic metal resources in the Circumarctic Zone is outlined in a global perspective. The Russian Arctic Zone is the leading purveyor of these metals to domestic and foreign markets. The comparative analysis of tendencies in development of strategic metal resources of the Arctic Zone in Russia and other countries is crucial for the elaboration of trends of geological exploration and research engineering. This paper provides insight into the development of Arctic strategic metal resources in global perspective. It is shown that the mineral resource potential of the Arctic circumpolar metallogenic belt is primarily controlled by large and unique deposits of nonferrous, noble, and rare metals. The prospective types of economic strategic metal deposits in the Russian Arctic Zone are shown.

  12. Landscape object-based analysis of wetland plant functional types: the effects of spatial scale, vegetation classes and classifier methods

    Science.gov (United States)

    Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.

    2011-12-01

    Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because

  13. Effect of Replacing Pork Fat with Vegetable Oils on Quality Properties of Emulsion-type Pork Sausages

    OpenAIRE

    Lee, Hyun-Jin; Jung, Eun-Hee; Lee, Sang-Hwa; Kim, Jong-Hee; Lee, Jae-Joon; Choi, Yang-II

    2015-01-01

    This study was conducted to evaluate the quality properties of emulsion-type pork sausages when pork fat is replaced with vegetable oil mixtures during processing. Pork sausages were processed under six treatment conditions: T1 (20% pork fat), T2 (10% pork fat + 2% grape seed oil + 4% olive oil + 4% canola oil), T3 (4% grape seed oil + 16% canola oil), T4 (4% grape seed oil + 4% olive oil + 12% canola oil), T5 (4% grape seed oil + 8% olive oil + 8% canola oil), and T6 (4% grape seed oil + 12%...

  14. Intakes of Dietary Fiber, Vegetables, and Fruits and Incidence of Cardiovascular Disease in Japanese Patients With Type 2 Diabetes

    OpenAIRE

    Tanaka, Shiro; Yoshimura, Yukio; Kamada, Chiemi; Tanaka, Sachiko; Horikawa, Chika; Okumura, Ryota; ITO, Hideki; Ohashi, Yasuo; Akanuma, Yasuo; Yamada, Nobuhiro; Sone, Hirohito; ,

    2013-01-01

    OBJECTIVE Foods rich in fiber, such as vegetables and fruits, prevent cardiovascular disease (CVD) among healthy adults, but such data in patients with diabetes are sparse. We investigated this association in a cohort with type 2 diabetes aged 40–70 years whose HbA1c values were ≥ 6.5% in Japan Diabetes Society values. RESEARCH DESIGN AND METHODS In this cohort study, 1,414 patients were analyzed after exclusion of patients with history of CVDs and nonresponders to a dietary survey. Primary o...

  15. Impacts of the variability of second-year ice types on the decline of the Arctic perennial sea-ice cover

    Science.gov (United States)

    Comiso, Josefino C.

    The observed rapid decline in the Arctic perennial ice cover is one of the most remarkable signals of change in the Arctic region. Updated data now show an even higher rate of decline of 9.8% decade -1 (1978-2005) than the previous report of 8.9% decade -1 (1978-2000). To gain insights into this decline, the variability of the second-year ice, which is the relatively thin component of the perennial ice cover, is studied. The perennial ice cover in the 1990s was observed to be highly variable, leading to relatively high production of second-year ice that may in part explain the observed ice thinning during the period and have triggered further decline. The microwave signature of second-year ice is shown to be different from that of the older multi-year ice types and, surprisingly, more similar to that of first-year ice. This in part explains why previous estimates of the area of multi-year ice during the winter period are considerably lower than the area of the perennial ice cover during the preceding summer. Analysis of multichannel cluster maps in conjunction with submarine ice-draft data indicates ability to detect regions covered primarily by second-year ice and hence to infer ice-thickness information from the microwave data. The periodic increase of second-year ice in the 1990s was apparently followed by continuous decline due in part to anomolously warm temperatures during the latter period that shortened the ice season and kept first-year ice from getting thick enough to survive the summer and become second year ice.

  16. Arctic Ocean

    Science.gov (United States)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  17. Arctic Shipping

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian;

    maritime industries (including shipping, offshore energy, ports, and maritime service and equipment suppliers) as well as addresses topics that cut across maritime industries (regulation and competitiveness). The topics and narrower research questions addressed in the initiative were developed in close......, the latter aiming at developing key concepts and building up a basic industry knowledge base for further development of CBS Maritime research and teaching. This report attempts to map the opportunities and challenges for the maritime industry in an increasingly accessible Arctic Ocean...

  18. An expert system shell for inferring vegetation characteristics: Changes to the historical cover type database (Task F)

    Science.gov (United States)

    1993-01-01

    All the options in the NASA VEGetation Workbench (VEG) make use of a database of historical cover types. This database contains results from experiments by scientists on a wide variety of different cover types. The learning system uses the database to provide positive and negative training examples of classes that enable it to learn distinguishing features between classes of vegetation. All the other VEG options use the database to estimate the error bounds involved in the results obtained when various analysis techniques are applied to the sample of cover type data that is being studied. In the previous version of VEG, the historical cover type database was stored as part of the VEG knowledge base. This database was removed from the knowledge base. It is now stored as a series of flat files that are external to VEG. An interface between VEG and these files was provided. The interface allows the user to select which files of historical data to use. The files are then read, and the data are stored in Knowledge Engineering Environment (KEE) units using the same organization of units as in the previous version of VEG. The interface also allows the user to delete some or all of the historical database units from VEG and load new historical data from a file. This report summarizes the use of the historical cover type database in VEG. It then describes the new interface to the files containing the historical data. It describes minor changes that were made to VEG to enable the externally stored database to be used. Test runs to test the operation of the new interface and also to test the operation of VEG using historical data loaded from external files are described. Task F was completed. A Sun cartridge tape containing the KEE and Common Lisp code for the new interface and the modified version of the VEG knowledge base was delivered to the NASA GSFC technical representative.

  19. Effect of Different Vegetation Types on the Rhizosphere Soil Microbial Community Structure in the Loess Plateau of China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao; LIU Guo-bin; XUE Sha; and XIAO Lie

    2013-01-01

    The Loess Plateau in China is one of the most eroded areas in the world. Accordingly, vegetation restoration has been implemented in this area over the past two decades to remedy the soil degradation problem. Understanding the microbial community structure is essential for the sustainability of ecosystems and for the reclamation of degraded arable land. This study aimed to determine the effect of different vegetation types on microbial processes and community structure in rhizosphere soils in the Loess Plateau. The six vegetation types were as follows:two natural grassland (Artemisia capillaries and Heteropappus altaicus), two artificial grassland (Astragalus adsurgens and Panicum virgatum), and two artificial shrubland (Caragana korshinskii and Hippophae rhamnoides) species. The microbial community structure and functional diversity were examined by analyzing the phospholipid fatty acids (PLFAs) and community-level physiological profiles. The results showed that rhizosphere soil sampled from the H. altaicus and A. capillaries plots had the highest values of microbial biomass C, average well color development of carbon resources, Gram-negative (G-) bacterial PLFA, bacterial PLFA, total PLFA, Shannon richness, and Shannon evenness, as well as the lowest metabolic quotient. Soil sampled from the H. rhamnoides plots had the highest metabolic quotient and Gram-positive (G+) bacterial PLFA, and soil sampled from the A. adsurgens and A. capillaries plots had the highest fungal PLFA and fungal:bacterial PLFA ratio. Correlation analysis indicated a signiifcant positive relationship among the microbial biomass C, G- bacterial PLFA, bacterial PLFA, and total PLFA. In conclusion, plant species under arid climatic conditions signiifcantly affected the microbial community structure in rhizosphere soil. Among the studied plants, natural grassland species generated the most favorable microbial conditions.

  20. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China.

    Science.gov (United States)

    Niu, Xiang; Gao, Peng; Wang, Bing; Liu, Yu

    2015-12-01

    Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD) and soil water retention curve (WRC) under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1) the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM) > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM) > Pinus thunbergii Parl. (PTP) > Juglans rigia Linn. (JRL) > abandoned grassland (ABG); (2) the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL) were significantly higher than that in ABG, and mixed forests (QRM and PPM) were higher than that in pure forests (PTP and JRL); (3) the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4) the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure.

  1. Fractal Characteristics of Soil Retention Curve and Particle Size Distribution with Different Vegetation Types in Mountain Areas of Northern China

    Directory of Open Access Journals (Sweden)

    Xiang Niu

    2015-12-01

    Full Text Available Based on fractal theory, the fractal characteristics of soil particle size distribution (PSD and soil water retention curve (WRC under the five vegetation types were studied in the mountainous land of Northern China. Results showed that: (1 the fractal parameters of soil PSD and soil WRC varied greatly under each different vegetation type, with Quercus acutissima Carr. and Robina pseudoacacia Linn. mixed plantation (QRM > Pinus thunbergii Parl. and Pistacia chinensis Bunge mixed plantation (PPM > Pinus thunbergii Parl. (PTP > Juglans rigia Linn. (JRL > abandoned grassland (ABG; (2 the soil fractal dimensions of woodlands (QRM, PPM, PTP and JRL were significantly higher than that in ABG, and mixed forests (QRM and PPM were higher than that in pure forests (PTP and JRL; (3 the fractal dimension of soil was positively correlated with the silt and clay content but negatively correlated with the sand content; and (4 the fractal dimension of soil PSD was positively correlated with the soil WRC. These indicated that the fractal parameters of soil PSD and soil WRC could act as quantitative indices to reflect the physical properties of the soil, and could be used to describe the influences of the Return Farmland to Forests Projects on soil structure.

  2. Influence of animal fat substitution by vegetal fat on Mortadella-type products formulated with different hydrocolloids

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2015-12-01

    Full Text Available Meat has played a crucial role in human evolution and is an important component of a healthy and well-balanced diet on account of its nutritional properties, its high biological value as a source of protein, and the vitamins and minerals it supplies. We studied the effects of animal fat reduction and substitution by hydrogenated vegetal fat, sodium alginate and guar gum. Fatty acid composition, lipid oxidation, color and instrumental texture as well as the sensorial difference between low, substituted-fat and the traditional formulations for mortadella-type products were analyzed. Both substitution and reduction of animal fat decreased the saturated fatty acids percentage from 40% down to 31%. A texture profile analysis showed differences between the formulations. Furthermore, lipid oxidation values were not significant for treatments as regards the type and quantity of fat used while the use of sodium alginate and guar gum reduced the amounts of liquid released after cooking. Animal fat substitution does cause, however, a difference in overall sensorial perception compared with non-substituted products. The results confirm the viability of substituting vegetal fat for animal fat.

  3. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation

    Science.gov (United States)

    Byrd, Kristin B.; O'Connell, Jessica L.; Di Tommaso, Stefania; Kelly, Maggi

    2014-01-01

    There is a need to quantify large-scale plant productivity in coastal marshes to understand marsh resilience to sea level rise, to help define eligibility for carbon offset credits, and to monitor impacts from land use, eutrophication and contamination. Remote monitoring of aboveground biomass of emergent wetland vegetation will help address this need. Differences in sensor spatial resolution, bandwidth, temporal frequency and cost constrain the accuracy of biomass maps produced for management applications. In addition the use of vegetation indices to map biomass may not be effective in wetlands due to confounding effects of water inundation on spectral reflectance. To address these challenges, we used partial least squares regression to select optimal spectral features in situ and with satellite reflectance data to develop predictive models of aboveground biomass for common emergent freshwater marsh species, Typha spp. and Schoenoplectus acutus, at two restored marshes in the Sacramento–San Joaquin River Delta, California, USA. We used field spectrometer data to test model errors associated with hyperspectral narrowbands and multispectral broadbands, the influence of water inundation on prediction accuracy, and the ability to develop species specific models. We used Hyperion data, Digital Globe World View-2 (WV-2) data, and Landsat 7 data to scale up the best statistical models of biomass. Field spectrometer-based models of the full dataset showed that narrowband reflectance data predicted biomass somewhat, though not significantly better than broadband reflectance data [R2 = 0.46 and percent normalized RMSE (%RMSE) = 16% for narrowband models]. However hyperspectral first derivative reflectance spectra best predicted biomass for plots where water levels were less than 15 cm (R2 = 0.69, %RMSE = 12.6%). In species-specific models, error rates differed by species (Typha spp.: %RMSE = 18.5%; S. acutus: %RMSE = 24.9%), likely due to the more vertical structure and

  4. Tidal saline wetland regeneration of sentinel vegetation types in the Northern Gulf of Mexico: An overview

    Science.gov (United States)

    Jones, Scott F; Stagg, Camille L.; Krauss, Ken W.; Hester, Mark W.

    2016-01-01

    Tidal saline wetlands in the Northern Gulf of Mexico (NGoM) are dynamic and frequently disturbed systems that provide myriad ecosystem services. For these services to be sustained, dominant macrophytes must continuously recolonize and establish after disturbance. Macrophytes accomplish this regeneration through combinations of vegetative propagation and sexual reproduction, the relative importance of which varies by species. Concurrently, tidal saline wetland systems experience both anthropogenic and natural hydrologic alterations, such as levee construction, sea-level rise, storm impacts, and restoration activities. These hydrologic alterations can affect the success of plant regeneration, leading to large-scale, variable changes in ecosystem structure and function. This review describes the specific regeneration requirements of four dominant coastal wetland macrophytes along the NGoM (Spartina alterniflora, Avicennia germinans, Juncus roemerianus, and Batis maritima) and compares them with current hydrologic alterations to provide insights into potential future changes in dominant ecosystem structure and function and to highlight knowledge gaps in the current literature that need to be addressed.

  5. Tidal saline wetland regeneration of sentinel vegetation types in the Northern Gulf of Mexico: An overview

    Science.gov (United States)

    Jones, Scott F.; Stagg, Camille L.; Krauss, Ken W.; Hester, Mark W.

    2016-06-01

    Tidal saline wetlands in the Northern Gulf of Mexico (NGoM) are dynamic and frequently disturbed systems that provide myriad ecosystem services. For these services to be sustained, dominant macrophytes must continuously recolonize and establish after disturbance. Macrophytes accomplish this regeneration through combinations of vegetative propagation and sexual reproduction, the relative importance of which varies by species. Concurrently, tidal saline wetland systems experience both anthropogenic and natural hydrologic alterations, such as levee construction, sea-level rise, storm impacts, and restoration activities. These hydrologic alterations can affect the success of plant regeneration, leading to large-scale, variable changes in ecosystem structure and function. This review describes the specific regeneration requirements of four dominant coastal wetland macrophytes along the NGoM (Spartina alterniflora, Avicennia germinans, Juncus roemerianus, and Batis maritima) and compares them with current hydrologic alterations to provide insights into potential future changes in dominant ecosystem structure and function and to highlight knowledge gaps in the current literature that need to be addressed.

  6. Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981-2008)

    Institute of Scientific and Technical Information of China (English)

    Jahan KARIYEVA; Willem J.D.van LEEUWEN; Connie A.WOODHOUSE

    2012-01-01

    Time-series of land surface phenology (LSP)data offer insights about vegetation growth patterns.They can be generated by exploiting the temporal and spectral reflectance properties of land surface components.Interannual and seasonal LSP data are important for understanding and predicting an ecosystem's response to variations caused by natural and anthropogenic drivers.This research examines spatio-temporal change patterns and interactions between terrestrial phenology and 28 years of climate dynamics in Central Asia.Long-term (1981-2008) LSP records such as timing of the start,peak and length of the growing season and vegetation productivity were derived from remotely sensed vegetation greenness data.The patterns were analyzed to identify and characterize the impact of climate drivers at regional scales.We explored the relationships between phenological and precipitation and temperature variables for three generalized land use types that were exposed to decadelong regional drought events and intensified land and water resource use:rainfed agriculture,irrigated agriculture,and non-agriculture.To determine whether and how LSP dynamics are associated with climate patterns,a series of simple linear regression analyses between these two variables was executed.The three land use classes showed unique phenological responses to climate variation across Central Asia.Most of the phenological response variables were shown to be positively correlated to precipitation and negatively correlated to temperature.The most substantial climate variable affecting phenological responses of all three land use classes was a spring temperature regime.These results indicate that future higher temperatures would cause earlier and longer growing seasons.

  7. The impact of greenhouse vegetable farming duration and soil types on phytoavailability of heavy metals and their health risk in eastern China.

    Science.gov (United States)

    Yang, Lanqin; Huang, Biao; Hu, Wenyou; Chen, Yong; Mao, Mingcui; Yao, Lipeng

    2014-05-01

    Heavy metal contamination in vegetables from greenhouse vegetable production (GVP) in China requires major attention. For GVP sustainability at a large regional level, 441 surface GVP soil and 132 corresponding greenhouse vegetable samples were collected from six typical GVP bases in eastern China to systematically evaluate the impact of GVP duration and soil types (Anthrosols and Cambosols) on phytoavailability of four major metals, Cd, Cu, Zn, and Pb, and their health risk. The results revealed high Cd accumulation in leaf vegetables grown in Anthrosols, which might pose potential health risk. Regardless of soil types in the study region, greenhouse farming lowered soil pH and enhanced metal availability with rising GVP duration, which might exacerbate Cd phytoavailability and vegetable Cd contamination as well as potential health risk. Also, increased GVP soil organic matter contents over time, found in some locations, affected crop-depending Cu and Zn uptakes. Furthermore, due to GVP, the annual decrease rate of soil pH and increase rates of soil available metal concentrations were generally much greater in Anthrosols than those in Cambosols, which contributed a lot to high Cd uptake by leaf vegetables grown in Anthrosols and their potential health risk. From sustainable GVP perspective, fertilization strategy with reduced frequency and rate is especially important and effective for abating soil and vegetable contamination by heavy metals under greenhouse farming.

  8. Arctic Diatoms

    DEFF Research Database (Denmark)

    Tammilehto, Anna

    shellfish poisoning (ASP). This thesis showed that three most abundant mesozooplankton species (Calanus finmarchicus, C. glacialis and C. hyperboreus and copepodite stages C3 and C4) in the study area (Disko Bay, western Greenland) feed upon toxic P. seriata and retain the toxin, and may therefore act...... as vectors for DA to higher levels in the arctic marine food web, posing a possible risk also to humans. DA production in P. seriata was, for the first time, found to be induced by chemical cues from C. finmarchicus, C. hyperboreus and copepodite stages C3 and C4, suggesting that DA may be related to defense...

  9. An atmosphere-ocean GCM modelling study of the climate response to changing Arctic seaways in the early Cenozoic.

    Science.gov (United States)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2008-12-01

    The report of fossil Azolla (a freshwater aquatic fern) in sediments from the Lomonosov Ridge suggests low salinity conditions occurred in the Arctic Ocean in the early Eocene. Restricted passages between the Arctic Ocean and the surrounding oceans are hypothesized to have caused this Arctic freshening. We investigate this scenario using a water-isotope enabled atmosphere-ocean general circulation model with Eocene boundary conditions including 4xCO2, 7xCH4, altered bathymetry and topography, and an estimated distribution of Eocene vegetational types. In one experiment, oceanic exchange between the Arctic Ocean and other ocean basins was restricted to two shallow (~250 m) seaways, one in the North Atlantic, the Greenland-Norwegian seaway, and the second connecting the Arctic Ocean with the Tethys Ocean, the Turgai Straits. In the restricted configuration, the Greenland-Norwegian seaway was closed and exchange through the Turgai Straits was limited to a depth of ~60 m. The simulations suggest that the severe restriction of Arctic seaways in the early Eocene may have been sufficient to freshen Arctic Ocean surface waters, conducive to Azolla blooms. When exchange with the Arctic Ocean is limited, salinities in the upper several hundred meters of the water column decrease by ~10 psu. In some regions, surface salinity is within 2-3 psu of the reported maximum modern conditions tolerated by Azolla (~5 psu). In the restricted scenario, salt is stored preferentially in the North Atlantic and Tethys oceans, resulting in enhanced meridional overturning, increased poleward heat transport in the North Atlantic western boundary current, and warming of surface and intermediate waters in the North Atlantic by several degrees. Increased sensible and latent heat fluxes from the North Atlantic Ocean, combined with a reduction in cloud albedo, also lead to an increase in surface air temperature of over much of North America, Greenland and Eurasia. Our work is consistent with

  10. Natural vegetation inventory

    Science.gov (United States)

    Schrumpf, B. J.

    1973-01-01

    Unique characteristics of ERTS imagery can be used to inventory natural vegetation. While satellite images can seldom be interpreted and identified directly in terms of vegetation types, such types can be inferred by interpretation of physical terrain features and through an understanding of the ecology of the vegetation.

  11. Vegetables and PUFA-rich plant oil reduce DNA strand breaks in individuals with type 2 diabetes

    DEFF Research Database (Denmark)

    Müllner, Elisabeth; Brath, Helmut; Pleifer, Simone;

    2013-01-01

    SCOPE: Type 2 diabetes is a multifactorial disease associated with increased oxidative stress, which may lead to increased DNA damage. The aim of this study was to investigate the effect of a healthy diet on DNA oxidation in diabetics and nondiabetics. METHODS AND RESULTS: Seventy-six diabetic......Guo excretion remained unchanged in both groups. CONCLUSIONS: This study provides evidence that a healthy diet rich in antioxidants reduces levels of DNA strand breaks in diabetic individuals....... and 21 nondiabetic individuals participated in this study. All subjects received information about the benefits of a healthy diet, while subjects randomly assigned to the intervention group received additionally 300 g of vegetables and 25 mL PUFA-rich plant oil per day. DNA damage in mononuclear cells...

  12. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    Science.gov (United States)

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land garden plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on

  13. Latent heat exchange in the boreal and arctic biomes.

    Science.gov (United States)

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need

  14. [Consumption of nuts and vegetal oil in people with type 1 diabetes mellitus].

    Science.gov (United States)

    Ferrer-García, Juan Carlos; Granell Vidal, Lina; Muñoz Izquierdo, Amparo; Sánchez Juan, Carlos

    2015-06-01

    Introducción: estudios recientes han demostrado los beneficios cardiovasculares de la dieta mediterránea enriquecida con aceite de oliva y frutos secos. Las personas con diabetes, que tienen un mayor riesgo de complicaciones cardiovasculares, podrían beneficiarse en gran medida de seguir ese tipo de patrón alimentario. Objetivos: análisis de la ingesta de grasas vegetales procedentes de frutos secos y aceites vegetales en pacientes con diabetes mellitus tipo 1 (DM1). Métodos: estudio transversal descriptivo que compara 60 personas con DM1 y 60 sujetos sanos. Se recoge la frecuencia de consumo de aceites vegetales y de frutos secos y se calcula el aporte procedente de estos alimentos en ácidos grasos mono y poliinsaturados (ácido oleico, linoleico y -linolénico). Se utilizó un cuestionario de frecuencia de consumo diseñado de forma específica. Se recogen variables antropométricas, factores de riesgo cardiovascular y variables relacionadas con la diabetes. Resultados: el consumo total de grasa vegetal procedente de aceites vegetales fue similar en los pacientes con DM1 frente a los sujetos control (3,02 ± 1,14 vs. 3,07 ± 1,27 Raciones (R)/día, P = 0,822) y de frutos secos (1,35 ± 2,24 vs. 1,60 ± 2,44 R/semana, P = 0,560). El grupo DM1 consumió menos aceite de oliva que el grupo control (2,55 ± 1,17 vs. 3,02 ± 1,34 R/día, P = 0,046). Se detectó un menor consumo de ácido -linolénico respecto al grupo control (1,13 ± 2,06 vs. 2,64 ± 4,37 g/día, P = 0,018), mientras que no hubo diferencias en el resto de ácidos grasos (oleico 28,30 ± 18,13 vs. 29,53 ± 16,90 g/día, P = 0,703; linoleico 13,70 ± 16,80 vs. 15,45 ± 19,90 g/día, P = 0,605). En los DM1 no se demostró una influencia del consumo de las grasas vegetales procedentes de aceites y frutos secos en los parámetros antropométricos, metabólicos y variables específicas de la diabetes. Conclusiones: en las personas con DM1 el consumo total de aceites vegetales y frutos secos no

  15. Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland

    DEFF Research Database (Denmark)

    Funder, Svend Visby

    1978-01-01

    by emergence curves showing the patterns of isostatic uplift. From c. 10100-10400 to 9400 yr BP the major fjord glaciers showed oscillatory retreat with abundant moraine formation, the period of the Milne Land Moraines. The vegetation in the ice free areas was a sparse type of fell field vegetation...... areas, and a 'poor' heath dominated by the high arctic Salix Arctica and Cassiope tetragona expanded. These two species, which are now extremely common, apparently did not grow in the area until c. 6000 yrBP. In lakes in the coastal area minerogenic sedimentation at c. 2800 yr BP, reflecting the general...

  16. Vegetation type modifies the cycling and aromaticity of DOC and N in small-scale urban stormwater basins

    Science.gov (United States)

    Nocco, M. A.; Dolliver, H.; Balster, N. J.

    2012-12-01

    Urban land use can cause ecological degradation of surface waters through stormwater inputs of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN). Green infrastructure practices such as small-scale (m2) vegetated stormwater basins (e.g. bioretention basins, rain gardens, bioswales) have been implemented for the past 20 years to reduce stormwater quantity and improve water quality in urban ecosystems. Although the efficacy of these practices rests on an ecological assumption that plant-soil interactions will alter the C and N cycles relative to surrounding urban infrastructure, the impact of vegetation type on the biogeochemistry of urban stormwater basins is not well understood. We hypothesized that the two most prevalent types of vegetation planted in stormwater basins in the Midwestern United States, native prairie and woody shrubs, differ in their cycling and export of C and N due to differences in relative woody and parenchymatic tissue inputs to soil organic matter, root morphology, and root exudation. We tested this hypothesis in an open-air field laboratory consisting of 9 vegetated mesocosms (3 native prairie, 3 woody shrub, 3 bare soil) designed in 2005 according to WI-DNR specifications for residential stormwater basin construction. During precipitation events in July-October 2011, we collected stormwater runoff from an adjacent tin roof (417 m2) and conducted 9 runoff applications that mimicked the rate and intensity of runoff that would be received by a small-scale (5.9 m2) stormwater basin in the urban environment during a 2.54 cm rain event. We instrumented each mesocosm to quantify (1) first flush and peak flow concentration of DOC and TDN during gravitational soil water flux (2) DOC and TDN concentration in soil pore space after gravitational water flux ceased, and (3) SUVA254 as an optical proxy for aromaticity in the first flush and peak flow of gravitational soil water flux. Results show significant differences (p<0.05) in both DOC

  17. Nitrogen–use efficiency in different vegetation type at Cikaniki Research Station, Halimun-Salak Mountain National Park, West Java

    Directory of Open Access Journals (Sweden)

    SUHARNO

    2007-10-01

    Full Text Available A research about nitrogen–use efficiency (NUE and trees identification was conducted at different vegetation type at Cikaniki, Halimun-Salak National Park, West Java. Plot quadrate methods (20 x 50 m was used to analyze trees vegetation and Kjeldahl methods was used to analyze leaf nitrogen. The width and length of the leaf was also measured to obtain the leaf surface area. The result showed that there are 61 individual trees which consisted of 24 species was identified. The species which have 5 highest important value are Altingia excelsa (64,657, Castanopsis javanica (39,698, Platea latifolia (27,684, Garcinia rostrata (21,151, and Schima walichii (16,049. Futhermore Eugenia lineata (13,967, Melanochyla caesa (12,241, Quercus lineata (10,766, platea excelsa (10,766 have lower important value. Other trees have important value less than 10. Morphological and nitrogen content analyze were done on 4 species : Quercus lineata, G. rostrata, A. excelsa, and E. lineata. Among them, Quercus lineata has highest specific leaf area (SLA (0,01153, followed by G. rostrata (0,00821, A. excelsa (0,00579, and E. lineata (0,00984 g/cm2. The highest number of stomata was found on A. excelsa (85,10/mm2, followed by E. lineata (74,40/mm2, Q. lineata (53,70/mm2, and G. rostrata (18,4 /mm2. The emergent species (A. excelsa and Q. lineata have higher nitrogen content than the underlayer species (G. rostrata and E. lineata. A. excelsa have highest nitrogen use efficiency (28,19% compare to E. lineata (23,81% , Q. lineata (19,09%, and G. rostrata (14,87%. Although not significant, emergen species have higher NUE than underlayer species.

  18. Spatial-seasonal variation of soil denitrification under three riparian vegetation types around the Dianchi Lake in Yunnan, China.

    Science.gov (United States)

    Wang, Shaojun; Cao, Zilin; Li, Xiaoying; Liao, Zhouyu; Hu, Binghui; Ni, Jie; Ruan, Honghua

    2013-05-01

    Outbreaks of nuisance cyanobacterial bloom are predicted to occur frequently under the effect of severe eutrophication in the water body of Lake Dianchi since the 1990s. Riparian buffers are now well recognized for their roles in the removal of inorganic nitrogen mainly via denitrification. Little is known, however, about the mechanisms of nitrate removal in the riparian buffers of Lake Dianchi. We investigated the wet and dry seasonal dynamics of denitrification rate (DNR) in the soil profiles along the topographic gradient in three riparian buffers with different vegetation types (i.e. forest, open forest, and grass). A strong vertical pattern was observed in soil organic C and N concentrations (i.e. total N, DON, NO3-N, and NH4-N) along the soil layers. We also found significantly higher in situ denitrification activity in the upper horizon along each topohydrosequence while the activities of soil denitrification could be detected down to deeper soil horizons (0.1 to 0.8 mg N per kg dry soil per day), which may contribute significantly to the reduction of the ground water nitrate. Meanwhile, the DNR in the zones near the lake was significantly higher than that in zones near the border with the upland terrace, and also in the wet seasons than in dry seasons. Denitrification rates in the forest, open forest and grass sites were significantly different only in wet seasons. Especially, we found soil organic C had a strong correlation with denitrification in all sites, despite the large intersite variability of soil and vegetation. Our data suggested spatial heterogeneity of substrate availability along a hydrologic and topographic gradient can be the primary control on spatial-seasonal patterns of denitrification in riparian buffers.

  19. Unmanned Platforms Monitor the Arctic Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs; Ivey, Mark D.; Schmid, Beat; McFarlane, Sally A.; Petty, Rickey C.

    2016-02-22

    In the Arctic, drones and tethered balloons can make crucial atmospheric measurement to provide a unique perspective on an environment particularly vulnerable to climate change. Climate is rapidly changing all over the globe, but nowhere is that change faster than in the Arctic. The evidence from recent years is clear: Reductions in sea ice (Kwok and Unstersteiner, 2011) and permafrost (Romanovsky et al., 2002), in addition to modification of the terriestrial ecosystem through melting permafrost and shifting vegetation zones (burek et al., 2008; Sturm, et al., 2001), all point to a rapidly evolving.

  20. Measurement-based upscaling of Pan Arctic Net Ecosystem Exchange: the PANEEx project

    Science.gov (United States)

    Njuabe Mbufong, Herbert; Kusbach, Antonin; Lund, Magnus; Persson, Andreas; Christensen, Torben R.; Tamstorf, Mikkel P.; Connolly, John

    2016-04-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple pan Arctic NEE (PANEEx) model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide (CO2) data from 12 Arctic tundra sites. The model input parameters (Fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency, respectively. LAI and air temperature were respectively estimated from empirical relationships with remotely sensed normalized difference vegetation index (NDVI) and land surface temperature (LST). These are available as MODIS Terra product MOD13Q1 and MOD11A1 respectively. Therefore, no specific knowledge of the vegetation type is required. The PANEEx model captures the spatial heterogeneity of the Arctic tundra and was effective in simulating 77% of the measured fluxes (r2 = 0.72, p < 0.001) at the 12 sites used in the calibration of the model. Further, the model effectively estimates NEE in three disparate Alaskan ecosystems (heath, tussock and fen) with an estimation ranging between 10 - 36% of the measured fluxes. We suggest that the poor agreement between the measured and modeled NEE may result from the disparity between ground-based measured LAI (used in model calibration) and remotely sensed LAI (estimated from NDVI and used in NEE estimation). Moreover, our results suggests that using simple linear regressions may be inadequate as parameters estimated

  1. Underestimation of mid-Holocene Arctic warming in PMIP simulations

    Science.gov (United States)

    Zhang, Qiong; Muschitiello, Francesco

    2016-04-01

    Due to the orbital forcing, Arctic is warmer during mid-Holocene (~ 6 kyr BP) in summer because the region received more insolation and also warmer in winter because of strong feedbacks, leads to an annual mean temperature warming. Existing proxy reconstructions show that the Arctic can be two degrees warmer than pre-industrial. However, not all the climate models can capture the warming, and the amplitude is about 0.5 degree less than that seen from proxy data. One possible reason is that these simulations did not take into account a fact of 'Green Sahara', where the large area of Sahara region is covered by vegetation instead of desert as it is today. By using a fully coupled climate model EC-Earth with about 100 km resolution, we have run a series of sensitivity experiments by changing the surface type, as well as accompanied change in dust emission over the northern Sahara. The results show that a green sahara not only results in local climate response such as the northward extension and strengthening of African monsoon, but also affect the large scale circulation and corresponding meridional heat transport. The combination of green sahara and reduced dust entails a general strengthening of the mid-latitude Westerlies, results in a change to more positive North Atlantic Oscillation-like conditions, and more heat transport from lower latitudes to high latitudes both in atmosphere and ocean, eventually leads to a shift towards warmer conditions over the North Atlantic and Arctic regions. This mechanism would explain the sign of rapid hydro-climatic perturbations recorded in several reconstructions from high northern latitudes after the termination of the African Humid Period around 5.5 - 5.0 kyr BP, suggesting that these regions are sensitive to changes in Saharan land cover during the present interglacial. This is central in the debate surrounding Arctic climate amplification and future projections for subtropical precipitation changes and related surface type

  2. Differences in Fine-Root Biomass of Trees and Understory Vegetation among Stand Types in Subtropical Forests.

    Science.gov (United States)

    Fu, Xiaoli; Wang, Jianlei; Di, Yuebao; Wang, Huimin

    2015-01-01

    Variation of total fine-root biomass among types of tree stands has previously been attributed to the characteristics of the stand layers. The effects of the understory vegetation on total fine-root biomass are less well studied. We examined the variation of total fine-root biomass in subtropical tree stands at two sites of Datian and Huitong in China. The two sites have similar humid monsoon climate but different soil organic carbon. One examination compared two categories of basal areas (high vs. low basal area) in stands of single species. A second examination compared single-species and mixed stands with comparable basal areas. Low basal area did not correlate with low total fine-root biomass in the single-species stands. The increase in seedling density but decrease in stem density for the low basal area stands at Datian and the quite similar stand structures for the basal-area contrast at Huitong helped in the lack of association between basal area and total fine-root biomass at the two sites, respectively. The mixed stands also did not yield higher total fine-root biomasses. In addition to the lack of niche complementarity between tree species, the differences in stem and seedling densities and the belowground competition between the tree and non-tree species also contributed to the similarity of the total fine-root biomasses in the mixed and single-species stands. Across stand types, the more fertile site Datian yielded higher tree, non-tree and total fine-root biomasses than Huitong. However, the contribution of non-tree fine-root biomass to the total fine-root biomass was higher at Huitong (29.4%) than that at Datian (16.7%). This study suggests that the variation of total fine-root biomass across stand types not only was associated with the characteristics of trees, but also may be highly dependent on the understory layer.

  3. Growth potential of Salmonella spp. and Listeria monocytogenes in nine types of ready-to-eat vegetables stored at variable temperature conditions during shelf-life.

    Science.gov (United States)

    Sant'Ana, Anderson S; Barbosa, Matheus S; Destro, Maria Teresa; Landgraf, Mariza; Franco, Bernadette D G M

    2012-06-15

    Growth potential (δ) is defined as the difference between the population of a microorganism at the end of shelf-life of specific food and its initial population. The determination of δ of Salmonella and Listeria monocytogenes in RTE vegetables can be very useful to determine likely threats to food safety. However, little is known on the behavior of these microorganisms in several RTE vegetables. Therefore, the aim of this study was to determine the δ of both pathogens in nine different types of RTE vegetables (escarole, collard green, spinach, watercress, arugula, grated carrot, green salad, and mix for yakisoba) stored at refrigeration (7°C) and abuse temperature (15°C). The population of aerobic microorganisms and lactic acid bacteria, including those showing antimicrobial activity has been also determined. Results indicated that L. monocytogenes was able to grow (δ≥0.5 log(10)) in more storage conditions and vegetables than Salmonella. Both microorganisms were inhibited in carrots, although a more pronounced effect has been observed against L. monocytogenes. The highest δ values were obtained when the RTE vegetables were stored 15°C/6days in collard greens (δ=3.3) and arugula (δ=3.2) (L. monocytogenes) and arugula (δ=4.1) and escarole (δ=2.8) (Salmonella). In most vegetables and storage conditions studied, the counts of total aerobic microorganisms raised significantly independent of the temperature of storage (p<0.05). Counts of lactic acid bacteria were higher in vegetables partially or fully stored at abuse temperature with recovery of isolates showing antimicrobial activity. In conclusion, the results of this study show that Salmonella and L. monocytogenes may grow and reach high populations in RTE vegetables depending on storage conditions and the definition of effective intervention strategies are needed to control their growth in these products.

  4. Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data

    Directory of Open Access Journals (Sweden)

    Xiaolong Liu

    2015-11-01

    Full Text Available The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and temporal land surface reflectance dataset by blending MODIS (Moderate Resolution Imaging Spectroradiometer and ETM+ (Enhanced Thematic Mapper Plus data. The blended data exhibited a high correlation (R2 = 0.88 with the satellite derived ETM+ data. The time-series NDVI (Normalized Difference Vegetation Index data were then generated using the blended high spatio-temporal resolution data to capture the phenological differences between the C3 and C4 vegetation. The time-series NDVI revealed that the C3 vegetation turns green earlier in spring than the C4 vegetation, and senesces later in autumn than the C4 vegetation. C4 vegetation has a higher NDVI value than the C3 vegetation during summer time. Based on the distinguished characteristics, the time-series NDVI was used to extract the C3 and C4 classification features. Five features were selected from the 18 classification features according to the ground investigation data, and subsequently used for the C3 and C4 classification. The overall accuracy of the C3 and C4 vegetation classification was 85.75% with a kappa of 0.725 in our study area.

  5. Reconstructing Past Vegetation Types During the Late Holocene Using Stable Carbon Isotopes of Leporids from Archaeological Sites in the American Southwest

    Science.gov (United States)

    Mauldin, R. P.; Munoz, C.; Kemp, L.; Hard, R.

    2012-12-01

    Stable carbon isotopes (δ13C) from bone collagen in leporids provide high-resolution vegetation reconstruction. Leporids [e.g., cottontails (Sylvilagus sp.), jackrabbits (Lepus sp.)] die young (ca. 2 years) and use small home ranges (diet, and their bone collagen, provides a high-resolution view of the carbon isotopic values present in their local plant community. Here we provide an example of the use of leporid bone collagen for reconstruction of past vegetation types using data from several archaeological sites as well as modern collections. All samples are from a basin and range setting within the Chihuahuan Desert in far west Texas and southern New Mexico, USA. The sites span a period back to roughly 1350 BP. Isotopic patterns in leporid collagen show clear evidence of change in vegetation from around 775 BP to the modern period, with a dramatic shift of 4.2‰ in median δ13C values over this period in jackrabbit collagen and a 7.3‰ decrease in median carbon isotopic values in cottontail rabbits. These data suggest a significant increase in C3 plants in leporid diet, and by extension a relative increase in these plant types in the local environment sampled by leporids. This shift is consistent with historic accounts of more C3 mesquite, possibly because of historic land use and ranching practices in the 1800s. However, while this shift may have been accelerated by historic land use changes, our data suggest that the vegetation shift began several hundred years earlier during the prehistoric period. The prehistoric collagen isotopic record also shows increased sample variability through time in both species, suggesting that year-to-year variability in vegetation may have increased late in that sequence. Our results, then, clearly show the potential of leporids for high resolution tracking of vegetation shifts. As leporids are common in paleontological and archaeological sites throughout the temperate zones, their use as a vegetation and climate proxy has

  6. SOIL EMISSIONS OF N2O, NO AND CO2 IN BRAZILIAN SAVANNAS: EFFECTS OF VEGETATION TYPE, SEASONALITY, AND PRESCRIBED FIRES

    Science.gov (United States)

    Using closed chamber techniques, soil fluxes of NO, N20 and C02 were measured from September 1999 through October 2000 in savanna areas in central Brazil (Cerrado) subjected to prescribed fires. Our studies focused on two vegetation types, cerrado stricto sensu (20-50% canopy cov...

  7. Effect of oil type and fatty acid composition on dynamic and steady shear rheology of vegetable oils.

    Science.gov (United States)

    Yalcin, Hasan; Toker, Omer Said; Dogan, Mahmut

    2012-01-01

    In this study, effect of fatty acid composition on dynamic and steady shear rheology of oils was studied. For this aim, different types of vegetable oils (soybean, sunflower, olive, hazelnut, cottonseed and canola), were used. Rheological properties of oil samples were identified by rheometer (Thermo-Haake) at 25°C and fatty acid composition of oils was determined by GC (Agilent 6890). Steady shear rheological properties of oil samples were measured at shear rate range of 0.1-100 s⁻¹. Viscosity of olive, hazelnut, cottonseed, canola, soybean and sunflower was 61.2 mPa.s, 59.7 mPa.s, 57.3 mPa.s, 53.5 mPa.s, 48.7 mPa.s and 48.2 mPa.s, respectively. There was a significant difference between viscosity of oils except soybean and sunflower. As a result it was seen that there was a correlation between viscosity and monounsaturated (R=0.89), polyunsaturated (R=-0.97) fatty acid composition of oils, separately. Equation was found to predict viscosity of the oils based on mono and polyunsaturation composition of oils. In addition the dynamic rheological properties of oils were also examined. G', G'' and tan δ (G''/G') values were measured at 0.3 Pa (in viscoelastic region) and 0.1-1 Hz. As a result of multiple regression analysis another equations were found between tan δ, viscosity and polyunsaturated fatty acids.

  8. Comparing vegetation types and anthropic disturbance levels in the Atlantic forest: how do Pentatomoidea (Hemiptera: Heteroptera) assemblages respond?

    Science.gov (United States)

    Bianchi, F M; Mendonça, M S; Campos, L A

    2014-12-01

    The Atlantic Forest (AF) is considered the most fragmented and endangered Brazilian biome. The diversity of phytophagous insects increases after disturbances in forests, and it was hypothesized the Pentatomidae can furnish ecologically reliable information in terms of diversity in response to the changes occurring in AF. Our aim was to quantify the response of assemblages of Pentatomoidea to gradient of human disturbance in two vegetation types of the AF-dense ombrophilous forest (DOF) and mixed ombrophilous forest (MOF). Twelve transects were grouped into environmental classes, namely open, intermediate, and closed. Overall, 1,017 pentatomoids were sampled, representing 64 species. The open environment was more abundant than closed environment, though it is expected that Pentatomoidea respond with increasing abundance when under light or moderate disturbance. The MOF was more abundant than DOF, and the composition differed between both of them. Given the differences in composition between MOF and DOF, abiotic variables are important factors acting as environmental filters for Pentatomoidea, not just directly on the insects, but probably also on the nutritional support of their host plants. PMID:25369568

  9. Time-effect Relationship of Acupuncture in Improving Cardiac Vegetative Nerve Function in Patients with Type Ⅱ DM

    Institute of Scientific and Technical Information of China (English)

    CHEN You-mei; SI Hui; ZHANG Ya-xi; KONG Li-hong; XIAO Yuan-chun

    2004-01-01

    Forty cases of type Ⅱ diabetes mellitus were treated by puncturing point Neiguan (PC 6), and the effect on their cardiac vegetative nerve functions were observed at 20 min, 40 min and 60 min after acupuncture respectively. The findings showed that all heart rate variables improved remarkably at the three time periods after acupuncture treatment, with significant differences (P<0.01); but there was no significant difference in the curative effects among the three time periods.%对40例已确诊Ⅱ型糖尿病患者,给予针刺内关穴治疗,分别观察针刺20 min,40 min和60min不同时段对其心脏植物神经功能的影响.检测短时心率变异诸项指标,结果不同针刺时间均能改善各项指标,针刺前后疗效有非常显著性差异(P<0.01).3组组间疗效没有显著性差异(P>0.05).

  10. Soil Organic Carbon and Its Fractions Across Vegetation Types: Effects of Soil Mineral Surface Area and Microaggregates

    Institute of Scientific and Technical Information of China (English)

    WU Qing-Biao; WANG Xiao-Ke; OUYANG Zhi-Yun

    2009-01-01

    Soil organic carbon (SOC) can act as a sink or source of atmospheric carbon dioxide;therefore,it is important to understand the amount and composition of SOC in terrestrial ecosystems,the spatial variation in SOC,and the underlying mechanisms that stabilize SOC.In this study,density fractionation and acid hydrolysis were used to assess the spatial variation in SOC,the heavy fraction of organic carbon (HFOC),and the resistant organic carbon (ROC) in soils of the southern Hulun Buir region,northeastern China,and to identify the major factors that contribute to this variation.The results showed that as the contents of clay and silt particles (0-50 μm) increased,both methylene blue (MB) adsorption by soil minerals and microaggregate contents increased in the 0-20 and 20-40 cm soil layers (P<0.05).Although varying with vegetation types,SOC,HFOC,and ROC contents increased significantly with the content of clay and silt particles,MB adsorption by soil minerals,and microaggregate content (P<0.05),suggesting that soil texture,the MB adsorption by soil minerals,and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulun Buir region.

  11. The biome reconstruction approach as a tool for interpretation of past vegetation and climate changes: application to modern and fossil pollen data from Lake El'gygytgyn, Far East Russian Arctic

    Directory of Open Access Journals (Sweden)

    P. E. Tarasov

    2013-06-01

    Full Text Available The modern and fossil pollen data obtained under the framework of the multi-disciplinary international "El'gygytgyn Drilling Project" represent a unique archive that allows the testing of a range of pollen-based reconstruction approaches and the deciphering of changes in the regional vegetation and climate since ~3.58 Ma. In the current study we provide details of the biome reconstruction method applied to the late Pliocene and Quaternary pollen records from Lake El'gygytgyn. All terrestrial pollen taxa identified in the spectra from Lake El'gygytgyn were assigned to major vegetation types (biomes, which today occur near the lake and in the broader region of eastern and northern Asia and, thus, could potentially have been present in this region during the past. When applied to the modern surface pollen spectra from the lake, the method shows a dominance of the tundra biome that currently characterizes the Lake El'gygytgyn area. When applied to the pollen spectra from the middle Pleistocene to present, the method suggests (1 a predominance of tundra during the Holocene, (2 a short interval during the marine isotope stage (MIS 5.5 interglacial distinguished by cold deciduous forest, and (3 a long phase of taiga dominance during MIS 31 and, particularly, MIS 11.3. These two latter interglacials seem to be some of the longest and warmest intervals within the past million years. During the late Pliocene–early Pleistocene interval (i.e., ~3.562–2.200 Ma, there is good correspondence between the millennial-scale vegetation changes documented in the Lake El'gygytgyn record and the alternation of cold and warm marine isotope stages, which reflect changes in the global ice volume and sea level. The biome reconstruction demonstrates changes in the regional vegetation which suggest a step-like transition from generally warmer/wetter environments of the earlier (i.e., Pliocene interval towards colder/drier environments of the Pleistocene. The

  12. Collembola populations under sclerophyllous coppices in Provence (France): comparison between two types of vegetation, Quercus ilex L. and Quercus coccifera L.

    Science.gov (United States)

    Cortet, Jérôme; Poinsot-Balaguer, Nicole

    1998-10-01

    A comparative analysis of soil Collembola using two types of sclerophyllous vegetation ( Quercus ilex and Quercus coccifera) was performed at a calcareous site in Provence (France). Collembola populations were examined over a one-year period (11 successive months) in three different soil layers. Although no statistically significant differences could be observed for Collembola abundance and diversity, multivariate analyses (FCA) differentiated the two coppices. Phenologies of some species showed specific responses to the microclimate induced by edaphic conditions. Even though the two coppices were sclerophyllous, the structure of each vegetation, the quantity and quality of litter, which were different, could influence environmental conditions and thus the dynamics of collembolan populations.

  13. Observations on the vegetation and vascular plants of Hopen

    OpenAIRE

    Skye, Erik

    1986-01-01

    The vascular plant flora of the small arctic island of Hopen, located in the Barents Sea. was inventoried during a visit in the summer of 1982. Eighteen vascular plant species were observed and mapped. and the vegetation described.

  14. Vegetation dynamics using AVHRR/NDVI: Regional climate, carbon dioxide fertilization and crop yield relations

    Science.gov (United States)

    Lim, Chai Kyung

    Vegetation development is closely related to climate factors, and, therefore, it is important to understand how it responds to global climate changes. For the last two decades it has been possible to monitor vegetation development at continental or global scales utilizing remote sensing Normalized Difference Vegetation Index (NDVI) data. We have developed a frequency analysis method to investigate land's vegetation greenness change and its response to the El Nino Southern Oscillation (ENSO). We found an ENSO influence on a tropical forest, southern semi-deciduous forest and a northeastern mixed forest. Our analysis shows the annual trends in vegetation greenness respond more sensitively than averaging methods. Atmospheric CO2 increase is another concern for climate change, for which fertilization effect on land vegetation has been suggested. Atmospheric CO2 and NDVI have a seasonal pattern of negative correlation, which makes it difficult to discern any positive influence of CO2 on vegetation. We adopted the concept of the rate of change in atmospheric CO2 concentration and NDVI to overcome this set pattern, and to reveal undergoing fluctuations. We found evidence that suggests a CO2 fertilization effect in some arctic and sub arctic regions and northern and inland parts of the eastern humid temperate zones in North America. Although NDVI reveals the vegetation greenness only at a fixed time and location, we have transformed NDVI effectively to describe the vegetation growth dynamics in the form of a new index, Normalized Growth Index (NGI). Utilizing NGI, we found the vegetation growth during the growing season is highly negatively correlated with the initial minimum vegetation greenness. One needs to be careful when comparing Net Primary Production (NPP) using NDVI between different types of vegetation, because the same NDVI value can imply the existence of different biomass due to different Leaf Area Index (LAI). To overcome this difficulty we have developed

  15. Distribution and drivers of ectomycorrhizal fungal communities across the North American Arctic

    OpenAIRE

    Timling, Ina; Dahlberg, Anders; Walker, D. A.; Gardes, M; Charcosset, J.Y.; Welker, J.; Taylor, D. L.

    2012-01-01

    Ectomycorrhizal fungi (EMF) form symbioses with a few plant species that comprise a large fraction of the arctic vegetation. Despite their importance, the identity, abundance and distribution of EMF in the Arctic, as well as the key drivers controlling their community composition are poorly understood. In this study, we investigated the diversity and structure of EMF communities across a bioclimatic gradient spanning much of the North American Arctic. We collected roots from two principal arc...

  16. Fuel Consumption and Fire Emissions Estimates in Siberia: Impact of Vegetation Types, Meteorological Conditions, Forestry Practices and Fire Regimes

    Science.gov (United States)

    Kukavskaya, Elena; Conard, Susan; Ivanova, Galina; Buryak, Ludmila; Soja, Amber; Zhila, Sergey

    2015-04-01

    Boreal forests play a crucial role in carbon budgets with Siberian carbon fluxes and pools making a major contribution to the regional and global carbon cycle. Wildfire is the main ecological disturbance in Siberia that leads to changes in forest species composition and structure and in carbon storage, as well as direct emissions of greenhouse gases and aerosols to the atmosphere. At present, the global scientific community is highly interested in quantitative and accurate estimates of fire emissions. Little research on wildland fuel consumption and carbon emission estimates has been carried out in Russia until recently. From 2000 to 2007 we conducted a series of experimental fires of varying fireline intensity in light-coniferous forest of central Siberia to obtain quantitative and qualitative data on fire behavior and carbon emissions due to fires of known behavior. From 2009 to 2013 we examined a number of burned logged areas to assess the potential impact of forest practices on fire emissions. In 2013-2014 burned areas in dark-coniferous and deciduous forests were examined to determine fuel consumption and carbon emissions. We have combined and analyzed the scarce data available in the literature with data obtained in the course of our long-term research to determine the impact of various factors on fuel consumption and to develop models of carbon emissions for different ecosystems of Siberia. Carbon emissions varied drastically (from 0.5 to 40.9 tC/ha) as a function of vegetation type, weather conditions, anthropogenic effects and fire behavior characteristics and periodicity. Our study provides a basis for better understanding of the feedbacks between wildland fire emissions and changing anthropogenic disturbance patterns and climate. The data obtained could be used by air quality agencies to calculate local emissions and by managers to develop strategies to mitigate negative smoke impacts on the environmentand human health.

  17. The Greening of the Arctic IPY Project

    Science.gov (United States)

    Walker, D. A.; Bhatt, U. S.; Epstein, H. E.

    2008-12-01

    In 2007, Arctic sea ice extent declined to the lowest level in recorded history, 24 percent lower than the previous record in 2005. If the Arctic continues to warm over the next few decades as predicted by most arctic scientists, large changes in vegetation biomass will occur and will have important consequences to many components of the Arctic system including status of the permafrost, hydrological cycles, wildlife, and human occupation. There will also be important feedbacks to climate through changes in albedo and carbon fluxes. Changes in biomass are already happening. In Arctic Alaska from 1981 to 2001, the greenness of the landscapes as measured by satellite-derived values of the normalized difference vegetation index (NDVI) increased by 17 percent. It is uncertain what this remarkable change in greenness means with respect to plant biomass, but current NDVI-biomass relationships suggest that an average of over 100 g m-2 have been added to the tundra of northern Alaska within the past twenty years. Other studies have shown a major increase of shrub cover across northern Alaska during the past 50 years. If the Arctic Ocean becomes ice- free during the summer, some of the largest percentage increases could occur in the coldest parts of the Arctic. The three major objectives of this project are: (1) establish baseline ground observations along two transects in North American and Eurasia that traverse the entire Arctic bioclimate gradient; (2) use remote sensing and climate change analysis to determine how changes in sea ice concentrations affect land-surface temperature and the NDVI, (3) use vegetation-change models to predict how vegetation will change in the future. Strong correlations exist between sea-ice concentrations, land-surface temperatures, and the maximum and integrated NDVI). The changes in greening have been strongest in the Beaufort Sea region. Between 1982 and 2007, sea ice in the 50-km coastal strip of Beaufort Sea area during the period 18 June

  18. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  19. Is climate change affecting wolf populations in the high arctic?

    Energy Technology Data Exchange (ETDEWEB)

    Mech, L.D. [Northern Prairie Wildlife Research Center, Biological Resources Division, U.S. Geological Survey, 8711-37th St., SE, 58401-7317 Jamestown, North Dakota (United States)

    2004-11-01

    Global climate change may affect wolves in Canadas High Arctic (80{sup o} N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northwest Arctic, Alaska: HABITATS (Habitat Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for submerged aquatic vegetation (SAV) in Northwest Arctic, Alaska. Vector polygons in this data set...

  1. Pleistocene graminoid-dominated ecosystems in the Arctic

    Science.gov (United States)

    Blinnikov, Mikhail S.; Gaglioti, Benjamin V.; Walker, Donald A.; Wooller, Matthew J.; Zazula, Grant D.

    2011-10-01

    We review evidence obtained from analyses of multiple proxies (floristics, mammal remains, paleoinsects, pollen, macrofossils, plant cuticles, phytoliths, stable isotopes, and modeling) that elucidate the composition and character of the graminoid-dominated ecosystems of the Pleistocene Arctic. The past thirty years have seen a renewed interest in this now-extinct biome, sometimes referred to as "tundra-steppe" (steppe-tundra in North American sources). While many questions remain, converging evidence from many new terrestrial records and proxies coupled with better understanding of paleoclimate dynamics point to the predominance of xeric and cold adapted grassland as the key former vegetation type in the Arctic confirming earlier conjectures completed in the 1960s-1980s. A variety of still existing species of grasses and forbs played key roles in the species assemblages of the time, but their mixtures were not analogous to the tundras of today. Local mosaics based on topography, proximity to the ice sheets and coasts, soil heterogeneity, animal disturbance, and fire regimes were undoubtedly present. However, inadequate coverage of terrestrial proxies exist to resolve this spatial heterogeneity. These past ecosystems were maintained by a combination of dry and cold climate and grazing pressure/disturbance by large (e.g., mammoth and horse) and small (e.g., ground squirrels) mammals. Some recent studies from Eastern Beringia (Alaska) suggest that more progress will be possible when analyses of many proxies are combined at local scales.

  2. Shrub expansion and climate feedbacks in Arctic tundra

    Science.gov (United States)

    Loranty, Michael M.; Goetz, Scott J.

    2012-03-01

    covered by the snowpack for part of the year. These results support evidence that shrub expansion in Arctic tundra will feed back positively to ongoing climate warming but, perhaps more importantly, illustrate the significance of shrub height in dictating the feedback strength. While differences in albedo associated with vegetation stature have been previously documented in these ecosystems (Loranty et al 2011, Sturm et al 2005a), the magnitudes of the feedbacks on regional climate were unknown. These findings highlight a pressing need to understand the rate and spatial extent at which shrub expansion is occurring. While increases in vegetation productivity inferred from satellite data have been observed across the Arctic (Bunn and Goetz 2006, Goetz et al 2005, Walker et al 2009), recent analyses suggest that the observed trends are a result of general increases in productivity across all vegetation types (Beck and Goetz 2011). Another important finding reported by Bonfils et al (2012) is the positive correlation between shrub height and modeled active layer depth (i.e. permafrost thaw). Results from a field study (Blok et al 2010) showed that the shading effects of shrub canopies reduce ground heat flux, which in turn leads to a decrease in active layer depth. Bonfils et al's (2012) results indicate that regional warming as a consequence of albedo and ET feedbacks will offset the local cooling effects of increased shrub cover, thus the net climate feedback associated with shrub expansion could be greater than reported (owing to biogeochemical processes and related feedbacks). A similar study by Lawrence and Swenson (2011) found that snow redistribution to shrub covered areas (Sturm et al 2005b) simultaneously reduced the albedo feedback by covering shrubs with snow and introduced a soil warming feedback through insulation provided by additional snow cover, with a net result of increased active layer depth under shrubs. When shrub cover (1 m tall canopy) was increased by

  3. Analysis of heavy metals in different soil types and the vegetables%不同类型土壤及蔬菜中的重金属分析

    Institute of Scientific and Technical Information of China (English)

    谢娟; 田恬; 王莉平; 韩融; 陈爱侠; 何克; 王柱命; 张江华

    2015-01-01

    为了研究不同类型土壤及种植蔬菜中重金属含量,选择两块试验田,种植不同品种蔬菜,分析了土壤及蔬菜中的重金属含量. 试验结果表明:土壤深度为0~80 cm时,两种类型土壤中的重金属Pb、Cu、Zn、Cd、Cr含量随着土壤深度的增加而减小;A区土壤Pb、Cu、Zn含量比B区高;种植的小青菜、小白菜中Pb、Cd、Cr含量A区大于B区;果实类蔬菜对重金属的累积量小于叶菜类.本研究成果可为土壤污染治理提供参考,为人体健康提供依据.%In order to study the content of heavy metals in different soil types and the vegetables planted,this pa-per chooses two plots to plant different varieties of vegetables,and analyzes the heavy metals content in the soil and vegetables.The results show that within the scope of 0 cm to 80 cm,the concentration of heavy metals Pb,Cu,Zn,Cd, Cr in two types of soil decreases with the soil depth.The content of heavy metals Pb,Cu,Zn in A area is higher than B area.The content of heavy metals Pb,Cd,Cr in small brassinca chinensis and small cabbages planted in A area is more than that in B area.Heavy metals accumulation amount in fruit vegetables is less than leaf vegetables.This study pro-vides reference for the soil pollution control and the basis for human health management.

  4. Arctic Climate Tipping Points

    OpenAIRE

    Lenton, Timothy M.

    2012-01-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the A...

  5. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  6. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  7. Long-term recovery patterns of arctic tundra after winter seismic exploration.

    Science.gov (United States)

    Jorgenson, Janet C; Ver Hoef, Jay M; Jorgenson, M T

    2010-01-01

    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska's North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of

  8. Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant functional types and land-cover types) in Europe suitable for climate modelling

    NARCIS (Netherlands)

    A.K. Trondman; M.-J. Gaillard; F. Mazier; S. Sugita; R. Fyfe; A.B. Nielsen; C. Twiddle; P. Barratt; H.J.B. Birks; A.E. Bjune; L. Björkman; A. Broström; C. Caseldine; R. David; J. Dodson; W. Dörfler; E. Fischer; B. van Geel; T. Giesecke; T. Hultberg; L. Kalnina; M. Kangur; P. van der Knaap; T. Koff; P. Kuneš; P. Lagerås; M. Latałowa; J. Lechterbeck; C. Leroyer; M. Leydet; M. Lindbladh; L. Marquer; F.J.G. Mitchell; B.V. Odgaard; S.M. Peglar; T. Persson; A. Poska; M. Rösch; H. Seppä; S. Veski; L. Wick

    2014-01-01

    We present quantitative reconstructions of regional vegetation cover in north-western Europe, western Europe north of the Alps, and eastern Europe for five time windows in the Holocene [around 6k, 3k, 0.5k, 0.2k, and 0.05k calendar years before present (bp)] at a 1° × 1° spatial scale with the objec

  9. Comparative study of the net exchange of CO2 in 3 types of vegetation ecosystems on the Qinghai-Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liang; LI Yingnian; ZHAO Xinquan; XU Shixiao; TANG Yanhong; YU Guirui; GU Song; DU Mingyuan; WANG Qinxue

    2005-01-01

    Using the eddy covariance method,from 1 July 2003 to 30 June 2004, we conducted the observation and analysis of ecosystem CO2 flux in 3 types of alpine meadow vegetation (Kobresia humilis, Potentilla fruticosa shrub and Kobresia tibetica swamp meadows) on the Qinghai-Tibetan Plateau. The results show that the Kobresia humilis meadow, the shrub meadow and the swamp meadow's highest CO2 uptake rates are 16.78, 10.42 and 16.57 μmol·m-2·s-1 respectively, while their highest CO2 release rates are 8.22, 7.73 and 18.67 μmol·m-2·s-1 respectively. The Kobresia humilis meadow and shrub meadow's annual atmospheric uptakes are 282 g CO2/m2 and 53 g CO2/m2, respectively, while swamp meadow's annual atmospheric release is 478 g CO2/m2. This proves that the Kobresia humilis meadow and the shrub meadow on the Qinghai-Tibetan Plateau have relatively low potential for CO2 uptake and release compared to C4 grasslands, a number of lowland grasslands, and forests. Moreover, swamp meadow has relatively high release potential. This, in turn, reveals clear differences in carbon source/sink between different types of vegetation in the Qinghai-Tibetan Plateau alpine meadow ecosystem. These differences are mainly brought by differences in the vegetations' photosynthetic capacity and soil respiration.

  10. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    Science.gov (United States)

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D. A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  11. PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways): Introduction and overview

    Science.gov (United States)

    Ó Cofaigh, Colm; Briner, Jason P.; Kirchner, Nina; Lucchi, Renata G.; Meyer, Hanno; Kaufman, Darrell S.

    2016-09-01

    This special issue relates to the Second International Conference of the PAST Gateways (Palaeo-Arctic Spatial and Temporal Gateways) network which was held in Trieste, Italy in 2014. Twenty five papers are included and they address topics under four main themes: (1) The growth and decay of Arctic ice sheets; (2) Arctic sea ice and palaeoceanography; (3) Terrestrial Arctic environments and permafrost change; and (4) Holocene Arctic environmental change. Geographically the focus is circum-Arctic; the special issue includes detailed regional studies from Greenland, Scandinavia, Russia, and Arctic North America and the adjoining seas, as well as a series of synthesis-type, review papers on Fennoscandian Ice Sheet deglaciation and Holocene Arctic palaeo-climate change. The methodologies employed are diverse and include marine sediment core and geophysical investigations, terrestrial glacial geology and geomorphology, isotopic analysis of ground ice, palaeo-ecological analysis of lacustrine and terrestrial sedimentary archives, geochronology and numerical ice sheet modeling.

  12. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    method.For oceanographic purposes, the altimetric record over the Arctic Ocean is inferiorin quality to that of moderate latitudes, but nonetheless an invaluable set of observations. During this project, newly processed Arctic altimetry from the ERS-1/-2 and Envisat missions has become available......Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...

  13. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  14. Vegetation type and the presence of ash as factors in the evolution of soil water repellency after a forest fire

    OpenAIRE

    P. Jiménez-Pinilla; E. Lozano; Mataix-Solera, J.; V. Arcenegui; L.M. Zavala; Jordán, A.; A. Morugan-Coronado

    2013-01-01

    After wildfires, burning may induce the occurrence of soil water repellency. Soil water repellency may vary in space and time in function of vegetation, the presence of ash and soil moisture. This study analyzes the evolution of fire-induced soil water repellency in function of these factors, and proposes measures to promote the restoration of fire-affected soils. Burnt and unburnt (control) soil plots under pine and shrub from a recently burned area (Gorga, Alicante, SE Spain) were establish...

  15. Regular, high, and moderate intake of vegetables rich in antioxidants may reduce cataract risk in Central African type 2 diabetics

    OpenAIRE

    Mvitu M; Longo-Mbenza B; Tulomba D; Nge A

    2012-01-01

    Moise Mvitu,1 Benjamin Longo-Mbenza,2 Dieudonné Tulomba,3 Augustin Nge31Department of Ophthalmology, University of Kinshasa, Democratic Republic of Congo; 2Faculty of Health Sciences, Walter Sisulu University, South Africa; 3Biostatistics Unit, Lomo Medical Center and Heart of Africa Center of Cardiology, Kinshasa, Democratic Republic of CongoBackground: Antioxidant nutrients found in popularly consumed vegetables, including red beans, are thought to prevent diabetic complications....

  16. Influence of animal fat substitution by vegetal fat on Mortadella-type products formulated with different hydrocolloids

    OpenAIRE

    Erick Saldaña; Ana Lúcia da Silva Corrêa Lemos; Miriam Mabel Selani; Fernanda Papa Spada; Marcio Aurélio de Almeida; Carmen Josefina Contreras-Castillo

    2015-01-01

    Meat has played a crucial role in human evolution and is an important component of a healthy and well-balanced diet on account of its nutritional properties, its high biological value as a source of protein, and the vitamins and minerals it supplies. We studied the effects of animal fat reduction and substitution by hydrogenated vegetal fat, sodium alginate and guar gum. Fatty acid composition, lipid oxidation, color and instrumental texture as well as the sensorial difference between low, su...

  17. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands: A case study in the Yellow River wetland in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Tongqian; XU Huashan; HE Yuxiao; TAI Chao; MENG Hongqi; ZENG Fanfu; XING Menglin

    2009-01-01

    Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Lima, 0.036 mg/g for Scirpus triqueter Liun, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K15NO3 to the tested vegetation, nitrogen content was 77.78% for P. Communis Trin, 68.75% for T. Angustifolia, and 8.33% for S. Triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. Communis Trin, 72.22% for S. Triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. Communis Trin (9.731 mg/g)>old P. Communis Trin (4.939 mg/g)>S. Triqueter (0.620 mg/g)>T. Angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.

  18. Ice-Free Arctic Ocean?

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    The current warming trends in the Arctic may shove the Arctic system into a seasonally ice-free state not seen for more than one million years, according to a new report. The melting is accelerating, and researchers were unable to identify any natural processes that might slow the deicing of the Arctic. "What really makes the Arctic different from…

  19. Evaluating observed and projected future climate changes for the Arctic using the Koeppen-Trewartha climate classification

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Song [University of Nebraska-Lincoln, School of Natural Resources, Lincoln, NE (United States); Ho, Chang-Hoi; Jeong, Su-Jong [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea, Republic of); Hu, Qi; Oglesby, Robert J. [University of Nebraska-Lincoln, School of Natural Resources, Lincoln, NE (United States); University of Nebraska-Lincoln, Department of Earth and Atmospheric Sciences, Lincoln, NE (United States); Kim, Baek-Min [Korea Polar Research Institute, Incheon (Korea, Republic of)

    2012-04-15

    The ecosystems in the Arctic region are known to be very sensitive to climate changes. The accelerated warming for the past several decades has profoundly influenced the lives of the native populations and ecosystems in the Arctic. Given that the Koeppen-Trewartha (K-T) climate classification is based on reliable variations of land-surface types (especially vegetation), this study used the K-T scheme to evaluate climate changes and their impact on vegetation for the Arctic (north of 50 N) by analyzing observations as well as model simulations for the period 1900-2099. The models include 16 fully coupled global climate models from the Intergovernmental Panel on Climate Change Fourth Assessment. By the end of this century, the annual-mean surface temperature averaged over Arctic land regions is projected to increase by 3.1, 4.6 and 5.3 C under the Special Report on Emissions Scenario (SRES) B1, A1b, and A2 emission scenarios, respectively. Increasing temperature favors a northward expansion of temperate climate (i.e., Dc and Do in the K-T classification) and boreal oceanic climate (i.e., Eo) types into areas previously covered by boreal continental climate (i.e., Ec) and tundra; and tundra into areas occupied by permanent ice. The tundra region is projected to shrink by -1.86 x 10{sup 6} km{sup 2} (-33.0%) in B1, -2.4 x 10{sup 6} km{sup 2} (-42.6%) in A1b, and -2.5 x 10{sup 6} km{sup 2} (-44.2%) in A2 scenarios by the end of this century. The Ec climate type retreats at least 5 poleward of its present location, resulting in -18.9, -30.2, and -37.1% declines in areal coverage under the B1, A1b and A2 scenarios, respectively. The temperate climate types (Dc and Do) advance and take over the area previously covered by Ec. The area covered by Dc climate expands by 4.61 x 10{sup 6} km{sup 2} (84.6%) in B1, 6.88 x 10{sup 6} km{sup 2} (126.4%) in A1b, and 8.16 x 10{sup 6} km{sup 2} (149.6%) in A2 scenarios. The projected redistributions of K-T climate types also differ

  20. The sensitivity of simulated competition between different plant functional types to subgrid-scale representation of vegetation in a land surface model

    Science.gov (United States)

    Shrestha, R. K.; Arora, V. K.; Melton, J. R.

    2016-03-01

    The Canadian Land Surface Scheme coupled to the Canadian Terrestrial Ecosystem Model is used to simulate competition between the model's seven non-crop plant functional types (PFTs) for available space. Our objective is to assess if the model is successfully able to reproduce the observed mix of PFTs and their fractional coverages and to what extent the simulated competition is affected by the manner in which the subgrid-scale variability of vegetation is represented. The model can be run either in a composite (single tile) configuration, where structural vegetation attributes of PFTs are aggregated for use in grid-averaged energy and water balance calculations, or a mosaic (multiple tiles) configuration, where separate energy and water balance calculations are performed for each PFT. The model realistically simulates the fractional coverages of trees, grasses, and bare ground, as well as that of individual tree and grass PFTs and their succession patterns. Our results show that the model is not overly sensitive to the manner in which subgrid-scale variability of vegetation is represented. Of the seven sites chosen across the globe to illustrate the difference between the two configurations, the simulated fractional coverage of PFTs are generally very similar (root-mean-square difference, RMSD, 5%).

  1. Vegetation type and the presence of ash as factors in the evolution of soil water repellency after a forest fire

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Pinilla

    2013-05-01

    Full Text Available After wildfires, burning may induce the occurrence of soil water repellency. Soil water repellency may vary in space and time in function of vegetation, the presence of ash and soil moisture. This study analyzes the evolution of fire-induced soil water repellency in function of these factors, and proposes measures to promote the restoration of fire-affected soils. Burnt and unburnt (control soil plots under pine and shrub from a recently burned area (Gorga, Alicante, SE Spain were established. Three treatments were applied: in some of the plots, the original ash layer was kept on the ground; in a second group, the ash layer was removed for simulating the effects of erosion; finally, in a third group, percolating irrigation was conducted to simulate a possible good input of water into the soil profile after burning, that could occur if the first rains were with high quantity but low intensity. During the dry season, soil moisture content was significantly lower in burned plots due to fire-induced water repellency and reduced vegetation cover. During the wet season, soil moisture decreased in the control unburnt plots due to direct evaporation of water intercepted by vegetation and consumption by roots. Fire increased soil water repellency only in plots under pine. Water repellency decreased during the wet season, disappearing in January and reappearing after declining rainfalls. This baseline recovery of soil water repellency was lower where ash removal was simulated. In unburned plots, seasonal fluctuations were less important. In general, ash removal promotes a rapid reduction of water repellency, since it can induce washing of hydrophobic compounds. Irrigation performed immediately after the fire also contributed to decreased water repellency.

  2. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  3. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    Science.gov (United States)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  4. On the potential of long wavelength imaging radars for mapping vegetation types and woody biomass in tropical rain forests

    Science.gov (United States)

    Rignot, Eric J.; Zimmermann, Reiner; Oren, Ram

    1995-01-01

    In the tropical rain forests of Manu, in Peru, where forest biomass ranges from 4 kg/sq m in young forest succession up to 100 kg/sq m in old, undisturbed floodplain stands, the P-band polarimetric radar data gathered in June of 1993 by the AIRSAR (Airborne Synthetic Aperture Radar) instrument separate most major vegetation formations and also perform better than expected in estimating woody biomass. The worldwide need for large scale, updated biomass estimates, achieved with a uniformly applied method, as well as reliable maps of land cover, justifies a more in-depth exploration of long wavelength imaging radar applications for tropical forests inventories.

  5. Study on Climatic Variation and Its Effect on Vegetable Type Soybean Genotypes at Khumaltar, Lalitpur in the Last Ten Years

    Directory of Open Access Journals (Sweden)

    Santosh Raj Tripathi

    2015-03-01

    Full Text Available Soybean (Glycine max L. Merril is widely grown in the mid hills as intercrop with maize or in paddy bunds, while it is gaining popularity as sole crop in terai and inner terai. Mean temperature at Khumaltar during soybean growing period was mostly fluctuating; but we observed an increasing trend in temperature. Amount of rainfall was not changed dramatically but number of rainy days was decreased during study period. Rainfall during germination time increase soil moisture which also increase germination and found higher early stand. Days from sowing to 50% flowering and 90% maturity were short in the case of higher minimum temperature and low rainfall. Among the genotypes, AGS-377, AGS-378, AGS-379 and Tarkari Bhattmas-1 were more sensitive. However, seed yield decreased in the case of higher temperatures and low rainfall. Cool night temperatures and high moisture increased disease incidence in soybean which, eventually reduced yield. In last three years, plant suffered from moisture stress during early vegetative stage and high moisture during late vegetative stage which reduced seed yield and seed weight. In conclusion, we found that genotypes like AGS- 360, Sathiya and Tarkari Bhatmas-1 are very sensitive to climatic variation.

  6. Pan-arctic land cover mapping and fire assessment for the ESA Data User Element Permafrost

    NARCIS (Netherlands)

    Urban, M.; Hese, S.; Herold, M.; Pöcking, S.; Schmullius, C.

    2010-01-01

    The paper presents first results of a pan-boreal scale land cover harmonization and classification. A methodology is presented that combines global and regional vegetation datasets to extract percentage cover information for different vegetation physiognomy and barren for the pan-arctic region withi

  7. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    NARCIS (Netherlands)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M.P.D.; Schaepman-Strub, Gabriela

    2016-01-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing.

  8. Conflict Resolution Practices of Arctic Aboriginal Peoples

    NARCIS (Netherlands)

    R. Gendron; C. Hille

    2013-01-01

    This article presents an overview of the conflict resolution practices of indigenous populations in the Arctic. Among the aboriginal groups discussed are the Inuit, the Aleut, and the Saami. Having presented the conflict resolution methods, the authors discuss the types of conflicts that are current

  9. Arctic Shipping Emissions in the Changing Climate

    OpenAIRE

    Vihanninjoki, Vesa

    2014-01-01

    Due to the Arctic climate change and the related diminishing of Arctic sea ice cover, the general conditions for Arctic shipping are changing. The retreat of Arctic sea ice opens up new routes for maritime transportation, both trans-Arctic passages and new alternatives within the Arctic region. Hence the amount of Arctic shipping is presumed to increase. Despite the observed development, the sailing conditions in the Arctic waters will remain challenging. Thus particular attention will be ...

  10. Seasonal Dynamics of Soil Labile Organic Carbon and Enzyme Activities in Relation to Vegetation Types in Hangzhou Bay Tidal Flat Wetland.

    Directory of Open Access Journals (Sweden)

    Xuexin Shao

    Full Text Available Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC and dissolved organic carbon (DOC, excepting for that of microbial biomass carbon (MBC. The P. australis soil was with the highest content of both SOC (7.86 g kg-1 and DOC (306 mg kg-1, while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1, and the bare mudflat was with the lowest content of DOC (270 mg kg-1. Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1, and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1 and invertase (9.81 mg g-1 24h-1; however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1, β-glycosidase (2.87 mg kg-1 h-1, and invertase (8.02 mg g-1 24h-1. Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands.

  11. Seasonal Dynamics of Soil Labile Organic Carbon and Enzyme Activities in Relation to Vegetation Types in Hangzhou Bay Tidal Flat Wetland.

    Science.gov (United States)

    Shao, Xuexin; Yang, Wenying; Wu, Ming

    2015-01-01

    Soil labile organic carbon and soil enzymes play important roles in the carbon cycle of coastal wetlands that have high organic carbon accumulation rates. Soils under three vegetations (Phragmites australis, Spartina alterniflora, and Scirpusm mariqueter) as well as bare mudflat in Hangzhou Bay wetland of China were collected seasonally. Seasonal dynamics and correlations of soil labile organic carbon fractions and soil enzyme activities were analyzed. The results showed that there were significant differences among vegetation types in the contents of soil organic carbon (SOC) and dissolved organic carbon (DOC), excepting for that of microbial biomass carbon (MBC). The P. australis soil was with the highest content of both SOC (7.86 g kg-1) and DOC (306 mg kg-1), while the S. mariqueter soil was with the lowest content of SOC (6.83 g kg-1), and the bare mudflat was with the lowest content of DOC (270 mg kg-1). Soil enzyme activities were significantly different among vegetation types except for urease. The P. australis had the highest annual average activity of alkaline phosphomonoesterase (21.4 mg kg-1 h-1), and the S. alterniflora had the highest annual average activities of β-glycosidase (4.10 mg kg-1 h-1) and invertase (9.81 mg g-1 24h-1); however, the bare mudflat had the lowest activities of alkaline phosphomonoesterase (16.2 mg kg-1 h-1), β-glycosidase (2.87 mg kg-1 h-1), and invertase (8.02 mg g-1 24h-1). Analysis also showed that the soil labile organic carbon fractions and soil enzyme activities had distinct seasonal dynamics. In addition, the soil MBC content was significantly correlated with the activities of urease and β-glucosidase. The DOC content was significantly correlated with the activities of urease, alkaline phosphomonoesterase, and invertase. The results indicated that vegetation type is an important factor influencing the spatial-temporal variation of soil enzyme activities and labile organic carbon in coastal wetlands. PMID:26560310

  12. Improvement of boreal vegetation modelling and climate interactions through the introduction of new bryophyte and artic-shrub plant functional types in a land surface model.

    Science.gov (United States)

    Druel, Arsène; Krinner, Gerhard; Peylin, Philippe; Ciais, Philippe; Viovy, Nicolas; Peregon, Anna

    2016-04-01

    Boreal and tundra vegetation, which represents 22% of the global land area, has had a significant impact on climate through changes of albedo, snow cover, soil thermal dynamics, etc. However, it is frequently poorly represented in earth system models used for climate predictions. We improved the description of high-latitude vegetation and its interactions with the environment in the ORCHIDEE land surface model by creating new plant functional types with specific biogeochemical and biophysical properties: boreal shrubs, bryophytes (mosses and lichens) and boreal C3 grasses. The introduction of shrub specificities allows for an intermediate stratum between trees and grasses, with a new carbon allometry within the plant, inducing new interactions between wooden species and their environment, especially the complex snow-shrubs interaction. Similarly, the introduction of non-vascular plants (i.e. bryophytes) involves numerous changes both in physical and biological processes, such as the response of photosynthesis to surface humidity, the decomposition of carbon and the soil thermal conductivity. These changes in turn lead to new processes and interactions between vegetation and moisture (soil and air), carbon cycle, energy balance, etc. For the boreal C3 grasses we did not include new processes compared to the generic C3 grass PFT, but improved the realism of the carbon and water budgets with new boreal adjusted parameters. We assess the performance of the modified ORCHIDEE land surface model and in particular its ability to represent the new plant types (their phenology etc.), and evaluate the effects of these new PFTs on the simulated energy, water and carbon balances of boreal ecosystems. The potential impact of these refinements on future climate simulations will be discussed.

  13. Arctic Bathymetry (batharcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The digitally compiled map includes geology, oil and gas field centerpoints, and geologic provinces of the Arctic (North Pole area encircled by 640 N Latitude). The...

  14. Arctic_Bathymetry

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be...

  15. Arctic Geology (geoarcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The digitally compiled map includes geology, oil and gas field centerpoints, and geologic provinces of the Arctic (North Pole area encircled by 640 N Latitude). The...

  16. Arctic survey, 1957

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a survey and game patrol conducted to twelve villages in the Arctic from April 24 to May 2 1957. The report covers animals take for income...

  17. Ground-Based Hyperspectral Characterization of Alaska Tundra Vegetation along Environmental Gradients

    OpenAIRE

    Marcel Schwieder; Epstein, Howard E.; Raynolds, Martha K.; Marcel Buchhorn; Walker, Donald A.; Birgit Heim

    2013-01-01

    Remote sensing has become a valuable tool in monitoring arctic environments. The aim of this paper is ground-based hyperspectral characterization of Low Arctic Alaskan tundra communities along four environmental gradients (regional climate, soil pH, toposequence, and soil moisture) that all vary in ground cover, biomass, and dominating plant communities. Field spectroscopy in connection with vegetation analysis was carried out in summer 2012, along the North American Arctic Transect (NAAT). S...

  18. Multiyear Arctic Ice Classification Using ASCAT and SSMIS

    OpenAIRE

    David B. Lindell; Long, David G.

    2016-01-01

    The concentration, type, and extent of sea ice in the Arctic can be estimated based on measurements from satellite active microwave sensors, passive microwave sensors, or both. Here, data from the Advanced Scatterometer (ASCAT) and the Special Sensor Microwave Imager/Sounder (SSMIS) are employed to broadly classify Arctic sea ice type as first-year (FY) or multiyear (MY). Combining data from both active and passive sensors can improve the performance of MY and FY ice classification. The class...

  19. Influence of the type of vegetable oil on the drug release profile from lipid-core nanocapsules and in vivo genotoxicity study.

    Science.gov (United States)

    Rigo, Lucas Almeida; Frescura, Viviane; Fiel, Luana; Coradini, Karine; Ourique, Aline Ferreira; Emanuelli, Tatiana; Quatrin, Andréia; Tedesco, Solange; Silva, Cristiane B da; Guterres, Silvia Staniçuaski; Pohlmann, Adriana Raffin; Beck, Ruy Carlos Ruver

    2014-11-01

    The use of rice bran (RB), soybean (SB) or sunflower seed (SF) oils to prepare lipid-core nanocapsules (LNCs) as controlled drug delivery systems was investigated. LNCs were prepared by interfacial deposition using the preformed polymer method. All formulations showed negative zeta potential and adequate nanotechnological characteristics (particle size 220-230  nm, polydispersity index oils did not present genotoxic potential. Clobetasol propionate (CP) was selected as a model drug to evaluate the influence of the type of vegetable oil on the control of the drug release from LNCs. Biphasic drug release profiles were observed for all formulations. After 168  h, the concentration of drug released from the formulation containing SF oil was lower (0.36  mg/mL) than from formulations containing SB (0.40  mg/mL) or RB oil (0.45  mg/mL). Good correlations between the consistency indices for the LNC cores and the burst and sustained drug release rate constants were obtained. Therefore, the type of the vegetal oil was shown as an important factor governing the control of drug release from LNCs.

  20. Arctic freshwater synthesis: Introduction

    Science.gov (United States)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  1. Greening of the Arctic: Partitioning Warming Versus Reindeer Herbivory for Willow Populations on Yamal Peninsula, Northwest Siberia

    Science.gov (United States)

    Forbes, B. C.; Macias-Fauria, M.; Zetterberg, P.; Kumpula, T.

    2012-12-01

    Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea-ice decline and thus to the sea-ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice, tundra vegetation and herbivores remain poorly understood. Recently we revealed a 50-year growth response over a >100,000 km2 area to a rise in summer temperature for willow (Salix lanata), one the most abundant shrub genera at and north of the continental treeline and an important source of reindeer forage in spring, summer and autumn. We demonstrated that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate was important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation was especially responsive to temperature in early summer. However, the role of herbivory was not addressed. The present data set explores the relationship between long-term herbivory and growth trends of shrubs experiencing warming in recent decades. Semi-domestic reindeer managed by indigenous Nenets nomads occur at high densities in summer on exposed ridge tops and graze heavily on prostrate and low erect willows. A few meters away in moderately sloped landslides tall willows remain virtually ungrazed as their canopies have grown above the browse line of ca. 180 cm. Here we detail the responses of neighboring shrub populations with and without intensive herbivory yet subject to the same decadal warming trend.

  2. Antioxidant properties of Brassica vegetables

    OpenAIRE

    Soengas Fernández, María del Pilar; Sotelo Pérez, Tamara; Velasco Pazos, Pablo; Cartea González, María Elena

    2011-01-01

    Brassica vegetables include some economically interesting crops such as cabbage, broccoli, cauliflower, Brussels sprouts, kale and turnip, which are consumed all over the world. A high intake of Brassica vegetables reduces the risk of age-related chronic illness such as cardiovascular health and other degenerative diseases and reduces the risk of several types of cancer, thanks in part to the antioxidant properties of different compounds. Compared to other vegetables, Brassica vegetables have...

  3. Spatial Vegetation Data for Gateway National Recreation Area Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Vegetation map of Gateway National Recreation Area provides local names for vegetation types, as well as crosswalks to the National Vegetation Classification System...

  4. High-latitude steppe vegetation and the mineral nutrition of Pleistocene herbivores

    Science.gov (United States)

    Davydov, S. P.; Davydova, A.; Makarevich, R.; Loranty, M. M.; Boeskorov, G.

    2014-12-01

    High-latitude steppes were widespread and zonal in the Late Pleistocene and formed a landscape basis for the Mammoth Biome. Now the patches of these steppes survived on steep slopes under southern aspects. These steppes serve as unique information sources about the Late Pleistocene "Mammoth" steppe. Numerous data obtained by palynological, carpological, and DNA analysis of plant remains from feces and stomach contents of Pleistocene herbivore mummies, as well as from buried soils and enclosing deposits show that they are similar to modern steppe plant assemblage in taxa composition. Plant's nutrient concentrations are of fundamental importance across Pleistocene grass-rich ecosystems because of their role in the support of large herbivores. The average weight of an adult mammoth skeleton (about 0.5 tons) and of a woolly rhinoceros (about 0.2 tons) clearly suggests this. Detailed studies on fossil bone remains showed mineral deficiency in large Pleistocene herbivores. A three-year study of ash and mineral contents of two types of relict steppe vegetation at the Kolyma Lowland, Arctic Siberia has been carried out. Nowadays refugia of similar vegetation are located not far (1 - 15km) from the Yedoma permafrost outcrops were abundant fossil remains are found. Dominant species of the steppe vegetation were sampled. Preliminary studies indicate that the ash-content varied 1.5-2 times in speceies of steppe herbs. The Ca, P, Mg, K element contents was higher for most steppe species than in the local herbaceous vegetation, especially in Ca and P. One of the most important elements of the mineral nutrition, the phosphorus, was always found in higher concentrations in the steppe vegetation than in plants of recently dominant landscapes of the study area. It should be noted that the mineral nutrient content of the modern steppe vegetation of Siberian Arctic is comparable to that of the recent zonal steppe of Transbaikal Region. This study supports the hypothesis that

  5. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  6. Atmospheric heat transfer to the Arctic under main synoptic processes

    Science.gov (United States)

    Yurova, Alla; Gnatiuk, Natalia; Bobylev, Leonid; Zhu, Yali

    2016-04-01

    Arctic - mid-latitude teleconnections are operating in both ways and behind them are potentially some causes of the enhanced Arctic warming (e.g., through heat transfer from lower to higher latitudes) and the feedbacks from the Arctic climate to the mid-latitude weather patterns. In order to explain the variability of the surface air temperature in the Arctic, we aim to analyse the typical synoptic situations that, we hypothesize, are characterized by a specific patterns of heat exchange between the Arctic and mid-latitudes. According to classification of synoptic processes in the Arctic developed at the Arctic and Antarctic Research Institute (AARI) in St. Petersburg major typical groups of synoptic situations in the Arctic are few (six). They correspond to position and intensity of low- and high-pressure centres. Therefore, the whole data sample for the winter period for the entire period of instrumental observations (archive exists back to 1939) can be split into six groups that sub-sample each of six groups/types of synoptic situations. Then heat transfer to the Arctic can be estimated as the divergence of the horizontal (advective) heat flux (the product of wind speed and temperature gradient) within each vertical atmospheric layer, which is calculated based on the ERA Interim Reanalysis data for the winter season (1979-now). Mapping heat divergence fields will reveal the main mid-latitude sources of heat transported to the Arctic, average for the whole data sample and for each of the six main groups of synoptic situations. This work was supported by RFBR grants 16-55-53031

  7. A Generic, Computer-assisted Method for Rapid Vegetation Classification and Survey: Tropical and Temperate Case Studies

    Directory of Open Access Journals (Sweden)

    Andrew N. Gillison

    2002-12-01

    Full Text Available Standard methods of vegetation classification and survey tend to be either too broad for management purposes or too reliant on local species to support inter-regional comparisons. A new approach to this problem uses species-independent plant functional types with a wide spectrum of environmental sensitivity. By means of a rule set, plant functional types can be constructed according to specific combinations from within a generic set of 35 adaptive, morphological plant functional attributes. Each combination assumes that a vascular plant individual can be described as a "coherent" functional unit. When used together with vegetation structure, plant functional types facilitate rapid vegetation assessment that complements species-based data and makes possible uniform comparisons of vegetation response to environmental change within and between countries. Recently developed user-friendly software (VegClass facilitates data entry and the analysis of biophysical field records from a standardized, rapid, survey pro forma. Case studies are presented at a variety of spatial scales and for vegetation types ranging from species-poor arctic tundra to intensive, multitaxa, baseline biodiversity assessments in complex, humid tropical forests. These demonstrate how such data can be rapidly acquired, analyzed, and communicated to conservation managers. Sample databases are linked to downloadable software and a training manual.

  8. Vegetation type and age drive changes in soil properties, nitrogen and carbon sequestration in urban parks under cold climate

    Directory of Open Access Journals (Sweden)

    Heikki Martti Setälä

    2016-08-01

    Full Text Available Urban green spaces provide ecosystem properties fundamental to the provision of ecosystem services, such as the sequestration of carbon and nutrients and serving as a reservoir for organic matter. Although urban vegetation influences soil physico-chemical properties, it remains unknown whether ecosystem properties depend on plant species portfolios. We tested the influence of three common functional plant groups (evergreen trees, deciduous trees, grass/lawn for their ability to modify soils in parks of various ages under cold climatic conditions in Finland. We hypothesized that (i plant functional groups affect soils differently resulting in divergent ecosystem properties, and (ii that these ecosystem properties also depend on park age. We included 41 urban parks of varying ages (10, 50 and > 100 years and additional control forests. Park soils were sampled for physico-chemical parameters up to 50 cm depth. Our data indicate that plant functional groups modify soils differently, especially between the evergreen and lawn treatments at 50 and > 100 year old parks. Soils under evergreen trees had the lowest pH and generally the highest percentage organic matter, percentage total carbon and percentage total nitrogen. Soil pH remained the same, whereas concentrations of organic matter, total carbon and total nitrogen declined by depth. Soils in the reference forests had lower pH but higher percentages organic matter, total carbon and total nitrogen than those in parks. We estimate that old parks with evergreen trees can store 35.5 kg C m-2 and 2.3 kg N m-2 – considerably more than in urban soils in warmer climates. Our data suggest that plant-soil interactions in urban parks, in spite of being constructed environments, are surprisingly similar to those in natural forests.

  9. Applicability of a carbamate insecticide multiresidue method for determining additional types of pesticides in fruits and vegetables.

    Science.gov (United States)

    Krause, R T; August, E M

    1983-03-01

    Several fruits and vegetables were fortified at a low (0.02-0.5 ppm) and at a high (0.1-5 ppm) level with pesticides and with a synergist, and recoveries were determined. Analyses were performed by using 3 steps of a multiresidue method for determining N-methylcarbamates in crops: methanol extraction followed by removal of plant co-extractives by solvent partitioning and chromatography with a charcoal-silanized Celite column. Eleven compounds were determined by using a high performance liquid chromatograph equipped with a reverse phase column and a fluorescence detector. Twelve additional compounds were determined by using a gas-liquid chromatograph equipped with a nonpolar packed column and an electron capture or flame photometric detector. Recoveries of 10 pesticides (azinphos ethyl, azinphos methyl, azinphos methyl oxygen analog, carbaryl, carbofuran, naphthalene acetamide, naphthalene acetic acid methyl ester, napropamide, phosalone, and phosalone oxygen analog) and the synergist piperonyl butoxide, which were determined by high performance liquid chromatography, averaged 100% (range 86-117) at the low fortification level and 102% (range 93-115) at the high fortification level. Quantitative recovery of naphthalene acetamide through the method required that an additional portion of eluting solution be passed through the charcoal column. Recoveries of 7 additional pesticides (dimethoate, malathion, methyl parathion, mevinphos, parathion, phorate oxygen analog, and pronamide), which were determined by gas-liquid chromatography (GLC), averaged 108% (range 100-120) at the low fortification level and 107% (range 99-122) at the high fortification level. DDT, diazinon, dieldrin, phorate, and pirimiphos ethyl, which were determined by GLC, were not quantitatively recovered. PMID:6853408

  10. Fruit and vegetable intake and risk of incident of type 2 diabetes: results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES)

    OpenAIRE

    Mamluk, L; O'Doherty, M G; Orfanos, P; Saitakis, G.; Woodside, J.V.; Liao, L. M.; Sinha, R.; Boffetta, P.; Trichopoulou, A.; Kee, F.

    2016-01-01

    BACKGROUND/OBJECTIVES: There is limited information to support definitive recommendations concerning the role of diet in the development of type 2 Diabetes mellitus (T2DM). The results of the latest meta-analyses suggest that an increased consumption of green leafy vegetables may reduce the incidence of diabetes, with either no association or weak associations demonstrated for total fruit and vegetable intake. Few studies have, however, focused on older subjects.SUBJECTS/METHODS: The relation...

  11. A comparison of annual and seasonal carbon dioxide effluxes between subarctic Sweden and high-arctic Svalbard

    DEFF Research Database (Denmark)

    Björkman, Mats P.; Morgner, Elke; Björk, Robert G.;

    2010-01-01

    effluxes between snow regimes or vegetation types, indicating that spatial variability in winter soil CO2 effluxes are not directly linked to snow cover thickness or soil temperatures. Total winter emissions (0.004– 0.248 kg CO2 m–2) were found to be in the lower range of those previously described......Recent climate change predictions suggest altered patterns of winter precipitation across the Arctic. It has been suggested that the presence, timing and quantity of snow all affect microbial activity, thus influencing CO2 production in soil. In this study annual and seasonal emissions of CO2 were...... in order to evaluate the effect of snow depth on winter CO2 effluxes. Total annual emissions of CO2 from the sub-Arctic site (0.662–1.487 kg CO2 m–2 yr–1) were found to be more than double the emissions from the High-Arctic site (0.369–0.591 kg CO2 m–2 yr–1). There were no significant differences in winter...

  12. More Arctic research needed

    Science.gov (United States)

    Bush, Susan

    The desire to achieve a balance between Arctic and Antarctic study was the message of the Senate Committee on Commerce, Science, and Transportation, which heard testimony on the need for more Arctic research on April 24. Ted Stevens (R-Alaska) noted that since 1986, study in the area has not increased as the National Science Foundation has claimed, but rather, owing to inflation, has merely kept pace. Robert Correll, assistant director of geosciences at NSF and chair of the Interagency Arctic Oceans Working Group, gave several reasons why the Arctic is an important area for study by the scientific community. Its unique environment, he said, makes it a natural laboratory. And due to its environmental sensitivity, it may provide one of the earliest indicators of global climate change. Also, its geographic location makes it a “window on space,” some of the world's largest mineral and petroleum resources are in the Arctic, and the region has great strategic and military importance.

  13. Enrichment Difference of Different Types of Vegetables to Heavy Metals%不同种类蔬菜对土壤重金属的富集差异

    Institute of Scientific and Technical Information of China (English)

    韩峰; 高雪; 陈海燕

    2014-01-01

    To explore the feasibility of planting vegetaldes on the land with heavy metal content above the national standard,a field contrast experiment was conducted to analyze the contents of heavy metals (Cd,Hg,As,Pb)in 12 vegetable variety samples planted in soils with heavy metals exceed standard,and the pollution levels were evaluated in the paper.The results indicated that cucumber had the strongest enrichment capacity for Cd,celery had the strongest enrichment capacity for Hg,all vegetables had weak enrichment capability on As and Pb.Single factor pollution index Cd in cucumber,cabbage,lettuce, radish and kidney beans were 3.260,3.140,2.900,2.520,and 1.900,respectively,which were moderate and above pollution level.Hg reached severe and above polluted in celery,radish,carrot,eggplant, lettuce loofah,and cabbage.Whereas,both As and Pb had no significant effect on quality in different vegetable varieties,which reached clean level.Therefore,it was suggested that under the detection of heavy metal contents in the soil,and according to the differences of heavy metal absorption in different vegetables,selectively plant different vegetables types to avoid the exceed of heavy metal contents,and to expand the planting areas of vegetables in Guizhou.%为探索重金属含量超标的耕地种植蔬菜的可行性,通过田间种植对比试验,分析了 Cd、Hg、As、Pb 超标土壤上12个蔬菜品种中的重金属含量,并对污染程度进行了评价。结果表明:黄瓜、芹菜分别对 Hg、Cd 的富集能力最强,各类蔬菜均对 As 和 Pb 富集能力较弱。黄瓜、大白菜、生菜、萝卜和棒豆中 Cd的单因子污染指数分别为3.260、3.140、2.900、2.520和1.900,达中度及以上污染水平;Hg 达到重度污染水平以上的蔬菜品种有芹菜、萝卜、胡萝卜、茄子、生菜、丝瓜和大白菜;As 和 Pb 均达清洁水平,对不同蔬菜品种质量均无显著影响。在 As、Pb

  14. Thermo-erosion gullies boost the transition from wet to mesic tundra vegetation

    Science.gov (United States)

    Perreault, Naïm; Lévesque, Esther; Fortier, Daniel; Lamarque, Laurent J.

    2016-03-01

    Continuous permafrost zones with well-developed polygonal ice-wedge networks are particularly vulnerable to climate change. Thermo-mechanical erosion can initiate the development of gullies that lead to substantial drainage of adjacent wet habitats. How vegetation responds to this particular disturbance is currently unknown but has the potential to significantly disrupt function and structure of Arctic ecosystems. Focusing on three major gullies of Bylot Island, Nunavut, we estimated the impacts of thermo-erosion processes on plant community changes. We explored over 2 years the influence of environmental factors on plant species richness, abundance and biomass in 62 low-centered wet polygons, 87 low-centered disturbed polygons and 48 mesic environment sites. Gullying decreased soil moisture by 40 % and thaw-front depth by 10 cm in the center of breached polygons within less than 5 years after the inception of ice wedge degradation, entailing a gradual yet marked vegetation shift from wet to mesic plant communities within 5 to 10 years. This transition was accompanied by a five times decrease in graminoid above-ground biomass. Soil moisture and thaw-front depth changed almost immediately following gullying initiation as they were of similar magnitude between older (> 5 years) and recently (lag-time in vegetation response to the altered physical environment with plant species richness and biomass differing between the two types of disturbed polygons. To date (10 years after disturbance), the stable state of the mesic environment cover has not been fully reached yet. Our results illustrate that wetlands are highly vulnerable to thermo-erosion processes, which drive landscape transformation on a relative short period of time for High Arctic perennial plant communities (5 to 10 years). Such succession towards mesic plant communities can have substantial consequences on the food availability for herbivores and carbon emissions of Arctic ecosystems.

  15. Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra.

    Science.gov (United States)

    Boelman, Natalie T; Gough, Laura; Wingfield, John; Goetz, Scott; Asmus, Ashley; Chmura, Helen E; Krause, Jesse S; Perez, Jonathan H; Sweet, Shannan K; Guay, Kevin C

    2015-04-01

    Climate warming is affecting the Arctic in multiple ways, including via increased dominance of deciduous shrubs. Although many studies have focused on how this vegetation shift is altering nutrient cycling and energy balance, few have explicitly considered effects on tundra fauna, such as the millions of migratory songbirds that breed in northern regions every year. To understand how increasing deciduous shrub dominance may alter breeding songbird habitat, we quantified vegetation and arthropod community characteristics in both graminoid and shrub dominated tundra. We combined measurements of preferred nest site characteristics for Lapland longspurs (Calcarius lapponicus) and Gambel's White-crowned sparrows (Zonotrichia leucophrys gambelii) with modeled predictions for the distribution of plant community types in the Alaskan arctic foothills region for the year 2050. Lapland longspur nests were found in sedge-dominated tussock tundra where shrub height does not exceed 20 cm, whereas White-crowned sparrows nested only under shrubs between 20 cm and 1 m in height, with no preference for shrub species. Shrub canopies had higher canopy-dwelling arthropod availability (i.e. small flies and spiders) but lower ground-dwelling arthropod availability (i.e. large spiders and beetles). Since flies are the birds' preferred prey, increasing shrubs may result in a net enhancement in preferred prey availability. Acknowledging the coarse resolution of existing tundra vegetation models, we predict that by 2050 there will be a northward shift in current White-crowned sparrow habitat range and a 20-60% increase in their preferred habitat extent, while Lapland longspur habitat extent will be equivalently reduced. Our findings can be used to make first approximations of future habitat change for species with similar nesting requirements. However, we contend that as exemplified by this study's findings, existing tundra modeling tools cannot yet simulate the fine-scale habitat

  16. Presettlement Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Presettlement vegetation of Minnesota based on Marschner's original analysis of Public Land Survey notes and landscape patterns. Marschner compiled his results in...

  17. Response of Coprophagus Beetles (Coleoptera: Scarabaeidae on changes of vegetation structure in various habitat types at Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    CHRISTIAN H. SCHULZE

    2007-01-01

    Full Text Available This study analysed the response of dung beetles − a group of beetles which play a major role in decomposition of dung and animal carcasses − to changes of vegetation structure due to forest conversion to different human-made habitat types at the margin of Lore Lindu National Park. Therefore, dung beetles were sampled at natural forest, cacao agroforestry systems and open area. A total of 28 species of coprophagus beetle species were recorded from the sampled sites. Species richness and abundance of dung beetles, particularly of large species, decreased from forest towards agroforestry systems and open areas. However, more than 80 % of the species recorded in natural forest were found in cacao agroforestry systems Of the measured habitat parameters, particularly the number of tree species, air temperature, and canopy cover had a significant power for explaining changes in dung beetle ensembles along the gradient of land-use intensity.

  18. Seasonal variation and controlling factors of soil carbon effluxes in six vegetation types in southeast of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Tagesson, Torbern (Dept. of Physical Geography and Ecosystem Analysis, Lund Univ., Lund (SE))

    2007-11-15

    Soil carbon effluxes of a pine stand, a spruce stand, a lichen rock, two oak stands and a meadow in the Laxemar investigation area in south-eastern Sweden (57 deg 5 N, 16 deg 7 E) have been measured with the closed chamber technique at 14 occasions between 23 of March 2004 and 10th of March 2005. Soil temperature at 10 cm depth, air temperature, soil moisture and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate soil respiration between 15th of March 2004 and 14th of March 2005. A light response curve with Gross Primary Production (GPP) against PAR and a cubic regression with GPP against air temperature were used for modelling GPP in meadow for the growing season, 15th of March to 31st of October 2004. The exponential regressions with soil respiration against air and soil temperature explained on average 30.6% and 47.6% of the variation, respectively. Soil moisture had a linear limiting effect on soil respiration for all ecosystems but spruce, where soil moisture was the limiting factor above a threshold value of about 50%vol. In the forest ecosystems, GPP of the ground vegetation were not reducing soil carbon effluxes, while in meadow it was. In meadow, the light response curve with GPP against PAR explained 32.7% of the variation in GPP while the cubic regression against air temperature explained 33.9%. No significant effect of soil moisture on GPP was detected. The exponential regression equations with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The light response curve with GPP against PAR and the cubic regression with GPP against air temperature could also be used for temporal extrapolation. From the modelled soil respiration, annual soil respiration for the ecosystems in Laxemar, during 15th of March 2004 to 14th of March 2005, were estimated to be between 0.56 and 1

  19. Seasonal variation and controlling factors of soil carbon effluxes in six vegetation types in southeast of Sweden

    International Nuclear Information System (INIS)

    Soil carbon effluxes of a pine stand, a spruce stand, a lichen rock, two oak stands and a meadow in the Laxemar investigation area in south-eastern Sweden (57 deg 5 N, 16 deg 7 E) have been measured with the closed chamber technique at 14 occasions between 23 of March 2004 and 10th of March 2005. Soil temperature at 10 cm depth, air temperature, soil moisture and photosynthetically active radiation (PAR) were also measured. Exponential regressions with soil respiration against air and soil temperature were used to estimate soil respiration between 15th of March 2004 and 14th of March 2005. A light response curve with Gross Primary Production (GPP) against PAR and a cubic regression with GPP against air temperature were used for modelling GPP in meadow for the growing season, 15th of March to 31st of October 2004. The exponential regressions with soil respiration against air and soil temperature explained on average 30.6% and 47.6% of the variation, respectively. Soil moisture had a linear limiting effect on soil respiration for all ecosystems but spruce, where soil moisture was the limiting factor above a threshold value of about 50%vol. In the forest ecosystems, GPP of the ground vegetation were not reducing soil carbon effluxes, while in meadow it was. In meadow, the light response curve with GPP against PAR explained 32.7% of the variation in GPP while the cubic regression against air temperature explained 33.9%. No significant effect of soil moisture on GPP was detected. The exponential regression equations with air and soil temperature against soil respiration could be used to temporally extrapolate the occasional field measurements. The light response curve with GPP against PAR and the cubic regression with GPP against air temperature could also be used for temporal extrapolation. From the modelled soil respiration, annual soil respiration for the ecosystems in Laxemar, during 15th of March 2004 to 14th of March 2005, were estimated to be between 0.56 and 1

  20. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    DEFF Research Database (Denmark)

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda;

    , satellites and manned aircraft are the traditional platforms on which scientists gather data of the atmosphere, sea ice, glaciers, fauna and vegetation. However, significant data gaps still exist over much of the Arctic because there are few research stations, satellites are often hindered by cloud cover......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS......, technical and logistical challenges facing scientists intending to use UAS in their arctic work. Future planned campaigns and science goals under the Coordinated Investigation of Climate-Cryosphere Interactions (CICCI) umbrella will be outlined. A new AMAP report on conducting safe UAS operations...

  1. Tundra Rehabilitation in Alaska's Arctic

    Science.gov (United States)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  2. Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types.

    Science.gov (United States)

    Mitchell, Patrick J; O'Grady, Anthony P; Hayes, Keith R; Pinkard, Elizabeth A

    2014-04-01

    Increases in drought and temperature stress in forest and woodland ecosystems are thought to be responsible for the rise in episodic mortality events observed globally. However, key climatic drivers common to mortality events and the impacts of future extreme droughts on tree survival have not been evaluated. Here, we characterize climatic drivers associated with documented tree die-off events across Australia using standardized climatic indices to represent the key dimensions of drought stress for a range of vegetation types. We identify a common probabilistic threshold associated with an increased risk of die-off across all the sites that we examined. We show that observed die-off events occur when water deficits and maximum temperatures are high and exist outside 98% of the observed range in drought intensity; this threshold was evident at all sites regardless of vegetation type and climate. The observed die-off events also coincided with at least one heat wave (three consecutive days above the 90th percentile for maximum temperature), emphasizing a pivotal role of heat stress in amplifying tree die-off and mortality processes. The joint drought intensity and maximum temperature distributions were modeled for each site to describe the co-occurrence of both hot and dry conditions and evaluate future shifts in climatic thresholds associated with the die-off events. Under a relatively dry and moderate warming scenario, the frequency of droughts capable of inducing significant tree die-off across Australia could increase from 1 in 24 years to 1 in 15 years by 2050, accompanied by a doubling in the occurrence of associated heat waves. By defining commonalities in drought conditions capable of inducing tree die-off, we show a strong interactive effect of water and high temperature stress and provide a consistent approach for assessing changes in the exposure of ecosystems to extreme drought events.

  3. Dissolved inorganic nitrogen pools and surface flux under different brackish marsh vegetation types, common reed (Phragmites australis) and salt hay (Spartina patens)

    Science.gov (United States)

    Windham-Myers, L.

    2005-01-01

    The current expansion of Phragmites australis into the high marsh shortgrass (Spartina patens, Distichlis spicata) communities of eastern U.S. salt marshes provided an opportunity to identify the influence of vegetation types on pools and fluxes of dissolved inorganic nitrogen (DIN). Two brackish tidal marshes of the National Estuarine Research Reserve system were examined, Piermont Marsh of the Hudson River NERR in New York and Hog Island in the Jacques Coustaeu NERR of New Jersey. Pools of DIN in porewater and rates of DIN surface flux were compared in replicated pairs of recently-expanded P. australis and neighboring S. patens-dominated patches on the high marsh surface. Both marshes generally imported nitrate (NO3-) and exported ammonium (NH4+), such that overall DIN was exported. No differences in surface exchange of NO3- or NH4+ were observed between vegetation types. Depth-averaged porewater NH4+ concentrations over the entire growing season were 56% lower under P. australis than under S. patens (average 1.4 vs. 3.2 mg NH4+ L-1) with the most profound differences in November. Porewater profiles showed an accumulation of NH4+ at depth in S. patens and constant low concentrations in P. australis from the soil surface to 50 cm depth, with no significant differences in porewater salinity. Despite these profound differences in porewater, NH 4+ diffusion from soils of P. australis and S. patens were not measurably different, were similar to other published rates, and were well below estimated rates based on passive diffusion alone. Rapid adsorption and uptake by litter and microbes in surface soils of both communities may buffer NH4+ loss to flooding tides in both communities, thereby reducing the impact of P. australis invasion on NH4+ flux to flooding waters. ?? Springer 2005.

  4. Analyses on types and characteristics of community of urban semi-natural vegetation in Urumqi%乌鲁木齐城市半自然植被群落类型及特征分析

    Institute of Scientific and Technical Information of China (English)

    南伟疆; 昝勤; 姜逢清; 王蕾; 严成; 尹林

    2011-01-01

    Based on previous study results and combined with investigation of typical sampling plots,community types of urban semi-natural vegetation in Urumqi were classified, and characteristics of community structure, species composition and plant growth-form spectrum were analyzed. The results show that types of urban semi-natural vegetation in Urumqi can be divided into four vegetation races,thirty-three vegetation types and thirty-eight association groups. In which, broadleaved forest vegetation race includes eight vegetation types and eleven association groups; shrub vegetation race does twelve vegetation types and twelve association groups; herb vegetation race does ten vegetation types and eleven association groups; vegetation race associated with human does three vegetation types and four association groups. The number of vegetation types and association groups in shrub vegetation race are the most,while those in vegetation race associated with human are the fewest. In the urban semi-natural vegetation community, the synusium of broadleaved forest vegetation race are two- and three- layers, that of shrub vegetation race mainly two-layer, those of herb vegetation race and vegetation race associated with human one-layer. The synusium types mainly are single herb type, arbor-shrub type and shrub-herb type. There are eighty-eight species of spermatophyte belonging to seventy-four genera of twenty-four families in the urban semi-natural vegetation community, the dominant families are Gramineae, Chenopodiaceae,Leguminosae, Compositae, Rosaceae and Cruciferae, containing forty-seven genera and fifty-seven species accounting for 63.51% and 64.77% of total number of genera and species of spermatophyte respectively in the community. In the community, annual and perennial herbs and perennial semishrub species are more with a percentage of 29.55%, 34.10% and 17.04% of total species, respectively.According to related results, the differences between the urban semi

  5. Cobertura vegetal do estado de São Paulo: I - Levantamento por fotointerpretação das áreas cobertas com cerrado, cerradão e campo, em 1962 Vegetation covering the state of São Paulo: I - Survey in 1962 by means of photo-interpretation of the areas covered by various types of vegetation

    Directory of Open Access Journals (Sweden)

    Mário Borgonovi

    1965-01-01

    Full Text Available Foi realizado, com base em fotografias aéreas, o levantamento da cobertura vegetal de cerrado no Estado de São Paulo, em 1962. Separaram-se as áreas com o cerrado pròpriamente dito (tipo da savana brasileira, cerradão (tipo de cerrado mais alto e mais denso e de campo (tipo de vegetação herbácea. Na caracterização dessas coberturas, levaram-se em conta apenas as áreas ainda sem utilização agrícola e com a vegetação pouco alterada pelo homem. A fotointerpretação foi feita com base na caracterização das texturas por amostragem de campo. O trabalho mostrou a situação seguinte: cerradão. 724.900, cerrado 2.668.000, e campo, 458.600 ha, representando, respectivamente, 2,9, 10,8 e 1,7% da área do Estado.A survey was achieved in 1962 based on aerial photographs covering the whole area of the state of São Paulo and areas were separated, by photo-interpretation, according to the type of vegetation, as follows: the «cerrado» which is a type of Brazilian savanna, the «cerradão», a type of shrubbery, mostly tall and rather dense, and grasslands, a type of herbaceous vegetation. In the characterization of the latter were considered just those areas that had not been under cultivation as yet or with but a little interference by man, altering somewhat their texture. Photo-interpretation was performed on a basis of characterization of texture by field sampling. This paper shows the situation with regard to the various types of plants covering the areas: «cerrado» covered 724,900 ha, «cerradão» 2,668,000 and grasslands 458,600 ha, these figures representing 2.9, 10.8 and 1.8% of the total area of the state.

  6. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.

    Science.gov (United States)

    DeMarco, Jennie; Mack, Michelle C; Bret-Harte, M Syndonia

    2014-07-01

    Climate warming in arctic tundra may shift dominant vegetation from graminoids to deciduous shrubs, whose functional traits could, in turn, alter biotic and abiotic controls over biogeochemical cycling of carbon (C) and nitrogen (N). We investigated whether shrub-induced changes in microclimate have stronger effects on litter decomposition and nutrient release than changes in litter quality and quantity. In arctic tundra near Toolik Lake, Alaska, USA, we incubated a common substrate in a snow-addition experiment to test whether snow accumulation around arctic deciduous shrubs altered the environment enough to increase litter decomposition rates. We compared the influence of litter quality on the rate of litter and N loss by decomposing litter from four different plant functional types in a common site. We used aboveground net primary production values and estimated decay constant (k) values from our decomposition experiments to calculate community-weighted mass loss for each site. Snow addition had no effect on decomposition of the common substrate, and the site with the highest abundance of shrubs had the lowest decomposition rates. Species varied in their decomposition rates, with species from the same functional type not always following similar patterns. Community-weighted mass loss was 1.5 times greater in the high shrub site, and only slightly decreased when adjusted for soil environment, suggesting that litter quality and quantity are the primary drivers of community decomposition. Our findings suggest that on a short time scale, the changes in soil environment associated with snow trapping by shrubs are unlikely to influence litter nutrient turnover enough to drive positive snow-shrub feedbacks. The mechanisms driving shrub expansion are more likely to do with shrub-litter feedbacks, where the higher growth rates and N uptake by shrubs allows them to produce more leaves, resulting in a larger litter N pool and faster internal cycling of nutrients. PMID

  7. Arctic Ecologies: The Politics and Poetics of Northern Literary Environments

    OpenAIRE

    Athens, Allison Katherine

    2013-01-01

    Allison K. Athens"Arctic Ecologies: The Politics and Poetics of Northern Literary Environments" This dissertation examines the lives of humans and animals in the North American Arctic and the types of narrative modes used to describe them. My project seeks to elucidate the poetics of place, or how language creates and shapes the specificity of social and ecological environments in the north. This poetics is not neutral, however, as language, chiefly the language of writing but also that of fi...

  8. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian; N. Mikkelsen, Teis; Ro-Poulsen, Helge

    -B was demonstrated to decrease photosynthesis and shift carbon allocation from shoots to roots. Moreover, ambient UV-B increased plant stress with detrimental effects on electron processing in the photosynthetic apparatus. Plant responses did not lead to clear changes in the amount of fungal root symbionts...... on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg...

  9. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    The peak of biological activities in Arctic ecosystems is characterized by a relative short and intense period between the start of snowmelt until the onset of frost. Recent climate changes have induced larger seasonal variation in both timing of snowmelt as well as changes mean temperatures and ...... and resources. This poster will present the conceptual framework for this project focusing on species resilience......., an extensive monitoring program has been conducted in the North Eastern Greenland National Park, the Zackenberg Basic. The objective of the program is to provide long time series of data on the natural innate oscillations and plasticity of a High Arctic ecosystem. With offset in the data provided through...

  10. Mercury mobilisation from soils and ashes after a wildfire and rainfall events: effects of vegetation type and fire severity

    Science.gov (United States)

    Campos, Isabel; Abrantes, Nelson; Keizer, Jan Jacob; Vale, Carlos; Serpa, Dalila; Pereira, Patrícia

    2016-04-01

    Wildfire is a major disturbance of forests worldwide, with huge environmental impacts. The number of catastrophic wildfires is increasing over the past few decades mainly due to a combined effect of climate change and poor land-use management. Interestingly, wildfires have an important role in contaminants production and mobilization and, thus, on their biogeochemical cycles. For instance, trace elements could be mobilized during a wildfire from burnt vegetation and ashes and may eventually achieve the aquatic systems upon a rainfall period. In this regard, wildfires represent a relevant diffuse source of trace elements to aquatic systems that has, so far, been poorly investigated. The current study aims to mitigate such lack of knowledge for mercury, a well-recognized persistent toxicant with potential harmful impacts on the environment and on human health. Thus, a field study was conducted in two Portuguese forests (Ermida and S. Pedro do Sul, North-centre of Portugal) with distinct fire severity. Fire was classified as moderate in Ermida and moderate to high severity in S. Pedro do Sul. In Ermida, soil samples and ashes were collected in the seven hillslopes (three burnt eucalypt, three burnt pine and one unburnt eucalypt) immediately and 4 months after the fire, the latter following an episode of intense rainfall. In S. Pedro do Sul, sampling took place immediately after the fire in four hillslopes (one burnt eucalypt and three burnt pine). Mercury analysis was performed in an Hg analyser in which samples were thermally decomposed by controlled heating. The final decomposition products were passed through an Hg amalgamator heated to 700 °C and Hg(0) was released and detected by absorption spectrometry at 254 nm. Burnt soil samples showed significantly lower levels of mercury than non-burnt soil, confirming the potential of a forest fire to release accumulated mercury in soil prior to the burning. Such process could be particularly relevant for this element due

  11. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.;

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  12. Airborne Spectral BRDF of Various Surface Types (Ocean, Vegetation, Snow, Desert, Wetlands, Cloud Decks, Smoke Layers) for Remote Sensing Applications

    Science.gov (United States)

    Gatebe, Charles K.; King, Michael D.

    2016-01-01

    In this paper we describe measurements of the bidirectional reflectance-distribution function (BRDF) acquired over a 30-year period (1984-2014) by the National Aeronautics and Space Administration's (NASA's) Cloud Absorption Radiometer (CAR). Our BRDF database encompasses various natural surfaces that are representative of many land cover or ecosystem types found throughout the world. CAR's unique measurement geometry allows a comparison of measurements acquired from different satellite instruments with various geometrical configurations, none of which are capable of obtaining such a complete and nearly instantaneous BRDF. This database is therefore of great value in validating many satellite sensors and assessing corrections of reflectances for angular effects. These data can also be used to evaluate the ability of analytical models to reproduce the observed directional signatures, to develop BRDF models that are suitable for sub-kilometer-scale satellite observations over both homogeneous and heterogeneous landscape types, and to test future spaceborne sensors. All of these BRDF data are publicly available and accessible in hierarchical data format (http:car.gsfc.nasa.gov/).

  13. Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots.

    Science.gov (United States)

    Zhang, Ruojie; Zhang, Zipei; Zou, Liqiang; Xiao, Hang; Zhang, Guodong; Decker, Eric Andrew; McClements, David Julian

    2015-12-01

    The influence of the nature of the lipid phase in excipient emulsions on the bioaccessibility and transformation of carotenoid from carrots was investigated using a gastrointestinal tract (GIT) model. Excipient emulsions were fabricated using whey protein as an emulsifier and medium-chain triglycerides (MCT), fish oil, or corn oil as the oil phase. Changes in particle size, charge, and microstructure were measured as the carrot-emulsion mixtures were passed through simulated mouth, stomach, and small intestine regions. Carotenoid bioaccessibility depended on the type of lipids used to form the excipient emulsions (corn oil > fish oil ≫ MCT), which was attributed to differences in the solubilization capacity of mixed micelles formed from different lipid digestion products. The transformation of carotenoids was greater for fish oil and corn oil than for MCT, which may have been due to greater oxidation or isomerization. The bioaccessibility of the carotenoids was higher from boiled than raw carrots, which was attributed to greater disruption of the plant tissue facilitating carotenoid release. In conclusion, excipient emulsions are highly effective at increasing carotenoid bioaccessibility from carrots, but lipid type must be optimized to ensure high efficacy. PMID:26585671

  14. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO2 environments. The increased vegetation activities over high latitudes under a 2xCO2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  15. BRDF characteristics of tundra vegetation communities in Yamal, Western Siberia

    Science.gov (United States)

    Buchhorn, Marcel; Heim, Birgit; Walker, Donald A. Skip; Epstein, Howard; Leibman, Marina

    2013-04-01

    (NASA Yamal-LCLUC) transects and réleves at Laboravaya (southern Yamal) and Vaskiny Dachi (central Yamal), and at the Circumpolar Active Layer Monitoring (CALM) site in Vaskiny Dachi. The LCLUC plots are Greening of the Arctic (GOA) sites established in 2007 by Walker et al. (2009). The Circumpolar Active Layer Monitoring (CALM) site was established by M. Leibman (ECI) in 1993. BRDF processing for the tundra test sites demonstrate the mirror asymmetry in relative azimuth with respect to the principal plane. It also showed that the maximum scattering appears in the backward direction, but that there is no minimal forward scattering. Instead, the forward scattering is characterized by similar to higher reflectance values compared to the nadir position. Moreover, the analysis of the anisotropic behaviour of moss-dominated tundra types with 10 to 15% vascular plant cover show that the BRDF influence on vegetation indices (VI) of low-growing arctic vegetation communities can be up to 15% of the nadir value. The low sun elevation at the arctic latitudes prevents hotspot-effects, but a BRDF normalization still should be taken into account for the development of tundra-adapted vegetation indices. Walker, D.A. et al. (2009): Data Report of the 2007 and 2008 Yamal Expeditions. AGC Data Report. 133.

  16. Investigating the effects of arctic dietary intake on lung health

    DEFF Research Database (Denmark)

    Baines, K J; Backer, V; Gibson, P G;

    2015-01-01

    BACKGROUND/OBJECTIVE: Preservation of lung health requires understanding the modifiable risk factors of airflow limitation. This study investigates the association between diet and lung function in a population of Greenland Inuit residing in the Arctic (Greenland) or Western Europe (Denmark...... assessed using multiple linear regression models. RESULTS: The dietary composition differed significantly in the two regions, with higher whale, seal and wild meat intake and lower fruit and vegetable intake in the Arctic regions compared with Denmark. Consumption of vegetables (P=0.004) and whale and....../or seal (Pfruit intake was included in the statistical models; however, it did not reach statistical significance (FEV1: P=0.053; FVC: P=0.055). CONCLUSIONS: High...

  17. Evidence and Implications of Recent Climate Change in Terrestrial Regions of the Arctic

    Science.gov (United States)

    Hinzman, L. D.; Bettez, N.; Chapin, F. S.; Dyurgerov, M.; Fastie, C.; Griffith, D. B.; Hope, A.; Huntington, H. P.; Jensen, A.; Kane, D. L.; Kofinas, G.; Lynch, A.; Lloyd, A.; McGuire, A. D.; Nelson, F. E.; Osterkamp, T.; Oechel, W. C.; Racine, C.; Romanovsky, V. E.; Schimel, J.; Stow, D.; Sturm, M.; Tweedie, C. E.; Vourlitis, G.; Walker, M.; Webber, P. J.; Welker, J.; Winker, K.; Yoshikawa, K.

    2002-12-01

    Are changes occurring in the polar terrestrial regime? Is the distribution of permafrost and Arctic region freeze and thaw changing? Is the hydrology of Arctic terrestrial regions changing? Are significant changes occurring in the distribution and productivity of high-latitude vegetation? If one examines any individual scientific discipline, evidence of climate change in arctic regions offers only pieces of the puzzle. Here we present a broad array of evidence to provide a convincing case of change in the arctic climate and a system-wide response of terrestrial processes. The thermal regime of the Arctic holds unique characteristics and consequently will display marked changes in response to climate warming. In many cases, threshold changes will occur in physical systems proceeding from permanently frozen to periodically thawed. Dramatic changes also accompany biological systems adapting to an evolving environment. In the last 25 to 400 years a wide range of changes in the Arctic have been detected. In many cases, these changes started, or accelerated, in the mid-1970s. Some of the changes, like later freeze-up and earlier break-up of arctic rivers and lakes, mirror arctic-wide and even global increases in air temperature. Others document more subtle or complex responses of the arctic system as it adapts to current and longer-term trends in climate. Since the arctic system is particularly sensitive to changes in rain- and snowfall, timing of freeze-up and break-up, and the intensity of storm activity, it is likely that much of what has been documented to date, and will be observed in the future, arises from changes in these forcing fields. Unfortunately, compared with temperature, they are poorly known. Regardless of the driving forces, however, the combined observations and documentation offer diffuse but substantial evidence that the arctic system may be entering a state not seen before in recent history.

  18. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  19. Vegetation survey of Sengwa

    Directory of Open Access Journals (Sweden)

    G. C. Craig

    1983-12-01

    Full Text Available The approach and initial results of a vegetation survey of the Sengwa Wildlife Area are outlined. The objectives were to produce a vegetation classification and map sufficiently detailed to serve as a base for the management of the natural vegetation. The methods adopted consist of (a stratification of the area into homogeneous units using 1:10 000 colour aerial photographs; (b plotless random sampling of each stratum by recording cover abundance on the Braun-Blaunquet scale for all woody species; and (c analysis of the data by indicator species analysis using the computer programme 'Twinspan’. The classification produced is successful in achieving recognizable vegetation types which tie in well with known environmental features.

  20. Arctic ecosystem functional zones: identification and quantification using an above and below ground monitoring strategy

    Science.gov (United States)

    Hubbard, Susan S.; Ajo-Franklin, Jonathan B.; Dafflon, Baptiste; Dou, Shan; Kneafsey, Tim J.; Peterson, John E.; Tas, Neslihan; Torn, Margaret S.; Phuong Tran, Anh; Ulrich, Craig; Wainwright, Haruko; Wu, Yuxin; Wullschleger, Stan

    2015-04-01

    to characterize and monitor ecosystem functioning - within and across permafrost, active layer and land-surface compartments and as a function of geomorphology and seasonal dynamics (thaw, growing season, freeze-up, and winter seasons). The second construct uses statistical approaches with the rich datasets to identify Arctic functional zones. Functional zones are regions in the landscape that have unique assemblages of above- and below-ground properties relevant to ecosystem functioning. Results demonstrate the strong co-variation of above and below ground properties in this Arctic ecosystem, particularly highlighting the critical influence of soil moisture on vegetation dynamics and redox-based active-layer biogeochemistry important for carbon cycling. The results also indicate that polygon types (low centered, high centered) have more power to explain the variations in properties than polygon features (trough, rim, center). This finding allows delineation of functional zones through grouping contiguous, similar types of polygons using remote sensing and surface geophysical datasets. Applied to the tundra NGEE study site, the functional zone approach permitted aggregation of critical properties associated with ~1350 polygons and their individual features, which vary over centimeter-to-meter length scales, into a few functional zones having suites of co-varying properties that were tractably defined over ~hundred meter length scales. The developed above-and-below ground monitoring strategy and functional zone approach are proving to be extremely valuable for gaining new insights about a complex Arctic ecosystem and for characterizing the system properties at high resolution and yet with spatial extents relevant for informing models focused on simulating ecosystem-climate feedbacks.

  1. Some discussions on Arctic vortex

    Institute of Scientific and Technical Information of China (English)

    Li Hai; Sun Lantao; Wu Huiding; Li Xiang

    2006-01-01

    The Arctic vortex is a persistent large-scale cyclonic circulation in the middle and upper troposphere and the stratosphere. Its activity and variation control the semi-permanent active centers of Pan-Arctic and the short-time cyclone activity in the subarctic areas. Its strength variation, which directly relates to the atmosphere, ocean, sea ice and ecosystem of the Arctic, can affect the lower atmospheric circulation, the weather of subarctic area and even the weather of middle latitude areas. The 2003 Chinese Second Arctic Research Expedition experienced the transition of the stratosphereic circulation from a warm anticyclone to a cold cyclone during the ending period of Arctic summertime, a typical establishing process of the polar vortex circulation. The impact of the polar vortex variation on the low-level circulation has been investigated by some scientists through studying the coupling mechanisms of the stratosphere and troposphere. The impact of the Stratospheric Sudden Warming (SFW) events on the polar vortex variation was drawing people's great attention in the fifties of the last century. The Arctic Oscillation (AO) , relating to the variation of the Arctic vortex, has been used to study the impact of the Arctic vortex on climate change. The recent Arctic vortex studies are simply reviewed and some discussions on the Arctic vertex are given in the paper. Some different views and questions are also discussed.

  2. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  3. Kuchler Vegetation

    Data.gov (United States)

    California Department of Resources — Digital version of potential natural plant communites as compiled and published on 'Map of the Natural Vegetation of California' by A. W. Kuchler, 1976. Source map...

  4. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  5. Measuring diurnal cycles of plant transpiration fluxes in the Arctic with an automated clear chamber

    Science.gov (United States)

    Cohen, L. R.; Raz Yaseef, N.; Curtis, J. B.; Rahn, T. A.; Young, J. M.; Newman, B. D.

    2013-12-01

    Evapotranspiration is an important greenhouse gas and a major component of the hydrological cycle, but methodological challenges still limit our knowledge of this flux. Measuring evapotranspiration is even more difficult when aiming to partition plant transpiration and soil evaporation. Information on this process for arctic systems is very limited. In order to decrease this gap, our objective was to directly measure plant transpiration in Barrow, Alaska (71.3°N 156.7°W). A commercial system allows measuring carbon soil respiration fluxes with an automated clear chamber connected to an infrared gas-analyzer (Licor 8100), and while it simultaneously measures water concentrations, it is not calibrated to measure vapor fluxes. We calibrated the clear chamber against a previously established method based on a Licor 6400 soil chamber, and we developed a code to calculate fluxes. We performed laboratory comparisons in New Mexico and field comparisons in the Arctic, suggesting that this is a valid tool for a large range of climates. In the field we found a strong correlation between the two instruments with R2 of 0.79. Even with 24 hours of daylight in the Arctic, the system captures a clear diurnal transpiration flux, peaking at 0.9 mmol m-2 s-1 and showing no flux at the lowest points. This new method should be a powerful approach for long term measurements of specific vegetation types or surface features. Such Data can also be used to help understand controls on larger scale eddy covariance tower measurements of evapotranspiration.

  6. FUNCTIONAL VEGETABLE SALADS WITH ALGAE

    OpenAIRE

    Козонова, Ю.О.; Авдєєва, А.А.

    2015-01-01

    Now on the Ukrainian market frozen vegetable salads are well represented. They contain a small amount of protein and have an unbalanced composition nutrientny. Adding algae to the vegetable salads composition allows to resolve this contradiction. In this paper the functional vegetable salads expanding assortment possibilities are represented. The product components composition was designed. It is advisable to add different types of algae (kelp, spirulina and fucus) to the quick-frozen functio...

  7. Comprimento da estaca e tipo de substrato na propagação vegetativa de atroveran Shoot cutting length and substrate types on vegetative propagation of atroveran

    Directory of Open Access Journals (Sweden)

    Larissa Corrêa do Bomfim Costa

    2007-08-01

    Full Text Available A propagação vegetativa de espécies medicinais vem despertando interesse das pesquisas agronômicas, uma vez que se constitui no ponto de partida e em ferramenta básica para qualquer cultivo em escala comercial. Este trabalho objetivou determinar o comprimento de estaca e o tipo de substrato mais adequados para a propagação vegetativa de atroveran. Em condições de casa de vegetação sob nebulização intermitente, foram testados dois comprimentos de estacas (10 e 20cm e três substratos (areia lavada, casca de arroz carbonizada e substrato comercial Plantmax®, em delineamento experimental em blocos casualizados, com quatro repetições e cinco estacas por parcela. Aos trinta e cinco dias, foram avaliados a porcentagem de enraizamento, o comprimento da maior raiz (cm e a biomassa seca das folhas e das raízes (mg. Os resultados indicaram que a propagação vegetativa de atroveran por meio de estaquia é viável, uma vez que o seu enraizamento médio ficou acima de 70%. As mudas de atroveran obtidas de estacas com 20cm apresentaram maior biomassa seca das folhas e das raízes, apesar de o comprimento da estaca não ter afetado a porcentagem de enraizamento e o comprimento da raiz. Os tipos de substrato não proporcionaram efeito sobre o desenvolvimento das estacas de atroveran. Recomenda-se a produção de mudas de atroveran com estacas de 20cm de comprimento, utilizando-se qualquer um dos três substratos testados.The vegetative propagation of medicinal species is in increasing agronomic interest because it is the starting point and a basic tool for any cultivation in commercial scale. The objective of this work was to determine the best shoot cutting length and the best substrate for vegetative propagation of Ocimum selloi. Cuttings were placed in greenhouse conditions under intermittent mist. Two cutting sizes (10 and 20cm and three substrate types (washed sand, carbonized rice hulls and commercial substrate Plantmax® were tested

  8. The relationship between vegetables and fruits intake and glycosylated hemoglobin values, lipids profiles and nitrogen status in type II inactive diabetic patients

    Directory of Open Access Journals (Sweden)

    Marjan Tabesh

    2013-01-01

    Conclusions : Intake of vegetables and fruits may reduce the glycosylated hemoglobin, therefore choosing the appropriate diet with high fruits and vegetables may help to develop antioxidant defense and reduce the HbA1C in diabetic patients but it did not have any impact on lipids profiles, BUN/creatinine and urine protein 24 h.

  9. Arctic River organic matter transport

    Science.gov (United States)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  10. Past and future scenarios of the effect of carbon dioxide on plant growth and transpiration for three vegetation types of southwestern France

    Directory of Open Access Journals (Sweden)

    J.-C. Calvet

    2007-04-01

    Full Text Available The sensitivity of an operational CO2-responsive land surface model (the ISBA-A-gs model of Météo-France to the atmospheric CO2 concentration, [CO2], is investigated for 3 vegetation types (winter wheat, irrigated corn, coniferous forest. Past (1960 and future (2050 scenarios of [CO2] corresponding to 320 ppm and 550 ppm, respectively, are explored. The sensitivity study is performed for 4 annual cycles presenting contrasting conditions of precipitation regime and air temperature, based on continuous measurements performed on the SMOSREX site near Toulouse, in southwestern France. A significant CO2-driven reduction of canopy conductance is simulated for the irrigated corn and the coniferous forest. The reduction is particularly large for corn, from 2000 to 2050 (–18%, and triggers a drop in optimum irrigation (–30 mm y−1. In the case of wheat, the response is more complex, with an equal occurrence of enhanced or reduced canopy conductance.

  11. The Arctic Circle Revisited

    CERN Document Server

    Colomo, F

    2007-01-01

    The problem of limit shapes in the six-vertex model with domain wall boundary conditions is addressed by considering a specially tailored bulk correlation function, the emptiness formation probability. A closed expression of this correlation function is given, both in terms of certain determinant and multiple integral, which allows for a systematic treatment of the limit shapes of the model for full range of values of vertex weights. Specifically, we show that for vertex weights corresponding to the free-fermion line on the phase diagram, the emptiness formation probability is related to a one-matrix model with a triple logarithmic singularity, or Triple Penner model. The saddle-point analysis of this model leads to the Arctic Circle Theorem, and its generalization to the Arctic Ellipses, known previously from domino tilings.

  12. Summer Arctic sea fog

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Synchronous or quasi-synchronous sea-land-air observations were conducted using advanced sea ice, atmospheric and marine instruments during China' s First Arctic Expedition. Based on the Precious data from the expedition, it was found that in the Arctic Ocean, most part of which is covered with ice or is mixed with ice, various kinds of sea fog formed such as advection fog, radiation fog and vapor fog. Each kind has its own characteristic and mechanics of creation. In the southern part of the Arctic Ocean, due to the sufficient warm and wet flow there, it is favorable for advection fog to form,which is dense and lasts a long time. On ice cap or vast floating ice, due to the strong radiation cooling effect, stable radiating fog is likely to form. In floating ice area there forms vapor fog with the appearance of masses of vapor from a boiling pot, which is different from short-lasting land fog. The study indicates that the reason why there are many kinds of sea fog form in the Arctic Ocean is because of the complicated cushion and the consequent sea-air interaction caused by the sea ice distribution and its unique physical characteristics. Sea fog is the atmospheric phenomenon of sea-air heat exchange. Especially, due to the high albedo of ice and snow surface, it is diffcult to absorb great amount of solar radiation during the polar days. Besides, ice is a poor conductor of heat; it blocks the sea-air heat exchange.The sea-air exchange is active in floating ice area where the ice is broken. The sea sends heat to the atmosphere in form of latent heat; vapor fog is a way of sea-air heat exchange influencing the climate and an indicator of the extent of the exchange. The study also indicates that the sea also transports heat to the atmosphere in form of sensible heat when vapor fog occurs.

  13. Disparities in Arctic Health

    Centers for Disease Control (CDC) Podcasts

    2008-02-04

    Life at the top of the globe is drastically different. Harsh climate devoid of sunlight part of the year, pockets of extreme poverty, and lack of physical infrastructure interfere with healthcare and public health services. Learn about the challenges of people in the Arctic and how research and the International Polar Year address them.  Created: 2/4/2008 by Emerging Infectious Diseases.   Date Released: 2/20/2008.

  14. Diabetes, obesity, and recommended fruit and vegetable consumption in relation to food environment sub-types: a cross-sectional analysis of Behavioral Risk Factor Surveillance System, United States Census, and food establishment data

    OpenAIRE

    Frankenfeld, Cara L; Leslie, Timothy F; Makara, Matthew A

    2015-01-01

    Background Social and spatial factors are an important part of individual and community health. The objectives were to identify food establishment sub-types and evaluate prevalence of diabetes, obesity, and recommended fruit and vegetable consumption in relation to these sub-types in the Washington DC metropolitan area. Methods A cross-sectional study design was used. A measure of retail food environment was calculated as the ratio of number of sources of unhealthier food options (fast food, ...

  15. Experimentally determined temperature thresholds for Arctic plankton community metabolism

    Directory of Open Access Journals (Sweden)

    J. M. Holding

    2013-01-01

    Full Text Available Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 °C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half of its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase the rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rates and thus both the rate of primary production and respiration will increase. However, these predictions do not consider the specific metabolic balance of the communities. We tested, experimentally, the response of Arctic plankton communities to seawater temperature spanning from 1 °C to 10 °C. Two types of communities were tested, open-ocean Arctic communities from water collected in the Barents Sea and Atlantic influenced fjord communities from water collected in the Svalbard fjord system. Metabolic rates did indeed increase as suggested by metabolic theory, however these results suggest an experimental temperature threshold of 5 °C, beyond which the metabolism of plankton communities shifts from autotrophic to heterotrophic. This threshold is also validated by field measurements across a range of temperatures which suggested a temperature 5.4 °C beyond which Arctic plankton communities switch to heterotrophy. Barents Sea communities showed a much clearer threshold response to temperature manipulations than fjord communities.

  16. Changes to freshwater systems affecting Arctic infrastructure and natural resources

    Science.gov (United States)

    Instanes, Arne; Kokorev, Vasily; Janowicz, Richard; Bruland, Oddbjørn; Sand, Knut; Prowse, Terry

    2016-03-01

    The resources component of the Arctic Freshwater Synthesis focuses on the potential impact of future climate and change on water resources in the Arctic and how Arctic infrastructure and exploration and production of natural resources are affected. Freshwater availability may increase in the Arctic in the future in response to an increase in middle- and high-latitude annual precipitation. Changes in type of precipitation, its seasonal distribution, timing, and rate of snowmelt represent a challenge to municipalities and transportation networks subjected to flooding and droughts and to current industries and future industrial development. A reliable well-distributed water source is essential for all infrastructures, industrial development, and other sectorial uses in the Arctic. Fluctuations in water supply and seasonal precipitation and temperature may represent not only opportunities but also threats to water quantity and quality for Arctic communities and industrial use. The impact of future climate change is varying depending on the geographical area and the current state of infrastructure and industrial development. This paper provides a summary of our current knowledge related to the system function and key physical processes affecting northern water resources, industry, and other sectorial infrastructure.

  17. 牵引式小型钵体蔬菜移栽机的设计%The Design of Traction Type Small Pot Body Vegetable Transplanting Machine

    Institute of Scientific and Technical Information of China (English)

    范修文; 张云秀; 童飞特; 李传峰

    2014-01-01

    针对我国蔬菜移栽行业发展的现状和现有蔬菜移栽机存的投苗率低、伤苗率高及设备庞大等问题,设计开发了牵引式小型钵体蔬菜移栽机。该机型能满足农户的需求,提高作业效率,苗钵通用性强,并且移栽后行距、株距和直立度等性能良好。该小型蔬菜移栽机采用吊篮及鸭嘴装置移栽苗体,人工投苗,实现半自动移栽。该蔬菜移栽机在已经耕整过的土地上作业,无需开沟器,机型小巧灵活,设计结构合理,可实现多种蔬菜的移栽,为我国农作物移栽提供了技术支持。%Taking into account the present situations of the vegetable transplantation , the machine issues such as low see-ding rate , high seedling injury rate , large volume of the machine , this paper is aimed to design and develop small-type tractor bowl transplanter , which can meet the need of farmers , improve the operation efficiency , possess high versatility of seed bowl , and the seeds show acceptable line spacing , vertical spacing and so on .It will transplant seeds by suspen-ded basket and duckbill device , together with artificial seeding , which marks the semi-automatic transplantation .In terms of the components, it consists of assembly of traction frames , ground wheels, transplanters ,seed racks, gratifying-ly , it has been operated on the prepared soils without furrow opener , because of the compact and flexible design , reason-able structure , it can transplant a variety of vegetables , supporting crop transplantation at home technically .

  18. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  19. The relationship between phytomass, NDVI and vegetation communities on Svalbard

    Science.gov (United States)

    Johansen, Bernt; Tømmervik, Hans

    2014-04-01

    Several studies have shown a close relationship between vegetation fertility and different vegetation indices extracted from satellite data. The vegetation fertility in Arctic is at overall scales highly related to temperature. At lower scales surface material, snow cover, hydrology and anthropogenic effects (geese, reindeer) are determinant in constituting the different vegetation communities. The extent and occurrence of different vegetation communities are expressed in vegetation maps. On Svalbard a vegetation map covering the entire archipelago has recently been developed. The map is differentiated into 18 map units showing large areas of non- and sparsely vegetated ground. The most favorable vegetation is seen as productive marshes and moss tundra communities in the lowland. Various mathematical combinations of spectral channels in satellite images have been applied as sensitive indicators of the presence and condition of green vegetation. Today the normalized difference vegetation index (NDVI) is mostly used to display this information. NDVI is an indicator of the density of chlorophyll in leaf tissue calculated from the red and near infrared bands: NDVI = (NIR - RED)/(NIR + RED). NDVI gives values between -1 and +1 where vegetated areas in general yield high positive values, while non-vegetated ground is found on the negative side.

  20. A History of Coastal Research in the Arctic (Invited)

    Science.gov (United States)

    Walker, H. J.; McGraw, M.

    2009-12-01

    Laboratory in 1947. Although these organizations were broad based, they occasionally had research projects devoted to arctic shorelines. In the USSR, research by Felix Are on shore retreat in the Arctic set the pattern for detail. Because the concentration of people (native as well as non-native) in the Arctic tends to be along the coast(such as Barrow, Alaska and Tuktoyaktuk, Canada) or rivers, some of the earliest research dealt with erosion that threatened settlements. In the process, consideration was given to such factors as sea ice, ground ice and permafrost, sediment type, long-shore drift, tides, wave action, and river discharge. Although there were scattered relevant projects, it was not until the last quarter of the 20th century that teamwork on arctic coastal research began to make its mark. Especially notable are the Russian-German cooperative study of the Lena Delta in 1998 and the International Arctic Science Committee's project on Arctic Coastal Dynamics. The number of detailed studies from such initiatives has increased during the last two decades.

  1. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model.

    Science.gov (United States)

    Jiang, Yueyang; Zhuang, Qianlai; Schaphoff, Sibyll; Sitch, Stephen; Sokolov, Andrei; Kicklighter, David; Melillo, Jerry

    2012-03-01

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45(o)N and polewards) for the period 1900-2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of

  2. The soil microbial community composition and soil microbial carbon uptake are more affected by soil type than by different vegetation types (C3 and C4 plants) and seasonal changes

    Science.gov (United States)

    Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd

    2016-04-01

    This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.

  3. Mining in the European Arctic

    NARCIS (Netherlands)

    van Dam, Kim; Scheepstra, Annette; Gille, Johan; Stępień, Adam; Koivurova, Timo

    2014-01-01

    The European Arctic is currently experiencing an upsurge in mining activities, but future developments will be highly sensitive to mineral price fluctuations. The EU is a major consumer and importer of Arctic raw materials. As the EU is concerned about the security of supply, it encourages domestic

  4. Desempenho de uma semeadora-adubadora para plantio direto, em dois solos com diferentes tipos de cobertura vegetal Performance of a no-tillage seeder, in two soils with different types of vegetable coverages

    Directory of Open Access Journals (Sweden)

    MILSON LOPES DE OLIVEIRA

    2000-07-01

    Full Text Available O desempenho operacional de uma semeadora-adubadora de plantio direto, versão soja e milho, foi avaliado em um Podzólico Vermelho-Amarelo câmbico, fase terraço, e um Latossolo Vermelho-Amarelo, da Zona da Mata de Minas Gerais. A máquina foi testada em três tipos de cobertura do solo e em duas velocidades de trabalho. Por ocasião do plantio, foram avaliados a patinagem do trator e da semeadora-adubadora, o consumo de combustível e a potência exigida, a distribuição de fertilizante e o nível de danos às sementes. Depois do plantio, foram avaliados o número de sementes distribuídas, o estande final, a profundidade de plantio e a distribuição longitudinal da semente. A uniformidade de distribuição longitudinal foi avaliada pela porcentagem de espaçamentos aceitáveis, distribuição dupla e falhas na distribuição, e pelo coeficiente de variação dos espaçamentos entre sementes. A demanda de potência foi maior no Podzólico, por sua maior densidade e resistência à penetração. Independentemente do tratamento, o número de sementes distribuídas e o estande final não apresentaram diferenças significativas. As sementes distribuídas não tiveram sua qualidade afetada pelos dosadores da máquina. A análise de variância não indicou diferença significativa entre os porcentuais de espaçamentos aceitáveis, a distribuição dupla e as falhas.The performance of a no-tillage seeder, version soybean and corn was evaluated under two classes of soil, a cambic Red-Yellow Podzolic terrace phase and a Red-Yellow Latosol, at Zona da Mata, MG. The machine was tested under three different vegetable coverages in two work speeds. During test, tractor and planter slipping, fuel consumption and the power required by the machine, distribution fertilizer, and seeds damage were evaluated. After planting, the number of seeds by hectare, final stand, planting depth and seed longitudinal distribution, were also evaluated. The uniformity of

  5. Vegetation, soil and hydrology management influence denitrification activity and the composition of nirK-type denitrifier communities in a newly afforested riparian buffer.

    Science.gov (United States)

    Boz, Bruno; Mizanur Rahman, Md; Bottegal, Mariangela; Basaglia, Marina; Squartini, Andrea; Gumiero, Bruna; Casella, Sergio

    2013-09-25

    Soil microbial community composition and activity could be affected by suitable manipulation of the environment they live in. If correctly applied such an approach could become a very effective way to remediate excess of chemicals. The concentration of nitrogen, especially nitrate deriving from agricultural managements, is generally found to increase in water flow. Therefore, by forcing the water flow through a buffer strip specifically designed and possibly afforested with suitable plant species, may result effective in reducing high nitrogen contents. The management of a riparian buffer may definitely affect the soil microbial activities, including denitrification, as well as the composition of the community. The present study reports on the changes occurred in terms of denitrifying microbial community composition, as compared to that of a neighbouring agricultural area, as a consequence of hydraulic management coupled to the suspension of farming practices and to the development of the woody and herbaceous vegetation. With this aim, denitrification was repeatedly measured and the data obtained were related to those deriving from a specific analysis of bacterial groups involved in denitrification. nirK, encoding for nitrite reductase, an enzyme essential for the conversion of nitrite to nitric oxide and considered the key step in the denitrification process, was chosen as the target gene. The main results obtained indicated that denitrification activity changes in riparian buffer as compared to agricultural soil and it is strongly influenced by carbon availability and soil depth. Although no significant differences on the community composition between superficial (0-15 cm) and medium (40-55 cm) layers were observed, the nirK-type denitrifier community was shown to significantly differ between riparian and agricultural soils in both surface and medium layers.

  6. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  7. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  8. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  9. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    Science.gov (United States)

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. PMID:25156129

  10. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  11. a New Japanese Project for Arctic Climate Change Research - Grene Arctic - (Invited)

    Science.gov (United States)

    Enomoto, H.

    2013-12-01

    A new Arctic Climate Change Research Project 'Rapid Change of the Arctic Climate System and its Global Influences' has started in 2011 for a five years project. GRENE-Arctic project is an initiative of Arctic study by more than 30 Japanese universities and institutes as the flame work of GRENE (Green Network of Excellence) of MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). The GRENE-Arctic project set four strategic research targets: 1. Understanding the mechanism of warming amplification in the Arctic 2. Understanding the Arctic system for global climate and future change 3. Evaluation of the effects of Arctic change on weather in Japan, marine ecosystems and fisheries 4. Prediction of sea Ice distribution and Arctic sea routes This project aims to realize the strategic research targets by executing following studies: -Improvement of coupled general circulation models based on validations of the Arctic climate reproducibility and on mechanism analyses of the Arctic climate change and variability -The role of Arctic cryosphere in the global change -Change in terrestrial ecosystem of pan-Arctic and its effect on climate -Studies on greenhouse gas cycles in the Arctic and their responses to climate change -Atmospheric studies on Arctic change and its global impacts -Ecosystem studies of the Arctic ocean declining Sea ice -Projection of Arctic Sea ice responding to availability of Arctic sea route (* ** ***) *Changes in the Arctic ocean and mechanisms on catastrophic reduction of Arctic sea ice cover **Coordinated observational and modeling studies on the basic structure and variability of the Arctic sea ice-ocean system ***Sea ice prediction and construction of ice navigation support system for the Arctic sea route. Although GRENE Arctic project aims to product scientific contribution in a concentrated program during 2011-2016, Japanese Arctic research community established Japan Consortium for Arctic Environmental Research (JCAR) in May

  12. Desempenho de um trator operando em solo com diferentes tipos de cobertura vegetal Tractor performance in soil with different types of plants covering

    Directory of Open Access Journals (Sweden)

    Antonio Gabriel Filho

    2004-12-01

    Full Text Available A eficiência de um trator para desenvolver esforço tratório depende da interação entre o rodado e o solo, envolvendo um complexo conjunto de fatores: característica do rodado, patinagem, transferência de peso do trator, tipo de solo, umidade, estado de compactação, tipo de cobertura do solo, entre outros, que proporcionam diferentes condições de trabalho e interferem no desempenho do trator. Assim, conduziu-se o presente trabalho com o propósito de avaliar alguns desses fatores no desempenho de um trator agrícola, em área coberta com diferentes tipos de cobertura vegetal (aveia, ervilhaca, nabo, aveia e nabo e sem cobertura. O trator foi submetido a cargas por meio do acoplamento a um escarificador de arrasto e instrumentado para a obtenção da força de tração, velocidade de deslocamento, patinagem e consumo de combustível sendo os dados armazenados por meio de um sistema de aquisição de dados. A patinagem foi maior onde a massa de matéria seca era maior, porém não influenciou na potência requerida na barra de tração. A melhor eficiência de tração foi obtida nas parcelas sem cobertura. O coeficiente de tração foi maior nos tratamentos com cobertura de aveia, ervilhaca e nabo comparados com a área sem cobertura. Conclui-se que a cobertura do solo interfere na capacidade do trator em desenvolver esforço para tracionar máquinas e implementos e que o tipo de cobertura pode causar mudanças na patinagem e na eficiência tratória.The efficiency of a tractor to draft development depends on the interaction among the wheeled and the soil where it moves and it involves a complex group of factors, such as: characteristic of the tire, slip, the tractor weight transfer, soil type, water texture and soil compactation, type of soil covering, among others. The aim of this work was to evaluate the acting of an agricultural tractor in an area covered with different types of plants. It was used five types of soil covering (oat

  13. Arctic charr farming

    OpenAIRE

    Brännäs, Eva; Larsson, Stefan; Saether, Björn Steinar; Siikavuopio, Sten Ivar; Thorarensen, Helgi; Sigurgeirsson, Ólafur; Jeuthe, Henrik

    2011-01-01

    The Arctic charr (Salvelinus alpinus L.) is a holarctic salmonid fish species with both landlocked and anadromous populations. In Scandinavia it is mainly found in the mountain area, but it also appears in deep and large lake further south, i.e. in the Alps. It is the northernmost freshwater fish and A. charr is generally regarded as the most cold-adapted freshwater fish. A. charr has been commercially farmed since the early 90ths and today, the total production is 3000, 2300 and 700 tonnes/y...

  14. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man;

    2006-01-01

    entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...... sent representatives. Also attending were representatives from the International Union for Circumpolar Health (IUCH) and the National Indian Health Board. The working group developed a set of ten recommendations related to research opportunities in heart, lung, blood and sleep disorders; obstacles...

  15. Long-range transport of air pollution into the Arctic

    Science.gov (United States)

    Stohl, A.; Berg, T.; Breivik, K.; Burkhart, J. F.; Eckhardt, S.; Fjæraa, A.; Forster, C.; Herber, A.; Lunder, C.; McMillan, W. W.; None, N.; Manø, S.; Oltmans, S.; Shiobara, M.; Stebel, K.; Hirdman, D.; Stroem, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.; Andrews, E.; Kowal, D.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stone, R.; Hoch, S.; Wehrli, C.

    2007-12-01

    This paper presents an overview of air pollution transport into the Arctic. The major transport processes will be highlighted, as well as their seasonal, interannual, and spatial variability. The source regions of Arctic air pollution will be discussed, with a focus on black carbon (BC) sources, as BC can produce significant radiative forcing in the Arctic. It is found that Europe is the main source region for BC in winter, whereas boreal forest fires are the strongest source in summer, especially in years of strong burning. Two case studies of recent extreme Arctic air pollution events will be presented. In summer 2004, boreal forest fires in Alaska and Canada caused pan-Arctic enhancements of black carbon. The BC concentrations measured at Barrow (Alaska), Alert (Canada), Summit (Greenland) and Zeppelin (Spitsbergen) were all episodically elevated, as a result of the long-range transport of the biomass burning emissions. Aerosol optical depth was also episodically elevated at these stations, with an almost continuous elevation over more than a month at Summit. During the second episode in spring 2006, new records were set for all measured air pollutant species at the Zeppelin station (Spitsbergen) as well as for ozone in Iceland. At Zeppelin, BC, AOD, aerosol mass, ozone, carbon monoxide and other compounds all reached new record levels, compared to the long-term monitoring record. The episode was caused by transport of polluted air masses from Eastern Europe deep into the Arctic, a consequence of the unusual warmth in the European Arctic during the episode. While fossil fuel combustion sources certainly contributed to this episode, smoke from agricultural fires in Eastern Europe was the dominant pollution component. We also suggest a new revolatilization mechanism for persistent organic pollutants (POPs) stored in soils and vegetation by fires, as POPs were strongly elevated during both episodes. All this suggests a considerable influence of biomass burning on

  16. State of the Arctic Environment

    International Nuclear Information System (INIS)

    The Arctic environment, covering about 21 million km2, is in this connection regarded as the area north of the Arctic Circle. General biological and physical features of the terrestrial and freshwater environments of the Arctic are briefly described, but most effort is put into a description of the marine part which constitutes about two-thirds of the total Arctic environment. General oceanography and morphological characteristics are included; e.g. that the continental shelf surrounding the Arctic deep water basins covers approximately 36% of the surface areas of Arctic waters, but contains only 2% of the total water masses. Blowout accident may release thousands of tons of oil per day and last for months. They occur statistically very seldom, but the magnitude underlines the necessity of an efficient oil spill contingency as well as sound safety and quality assurance procedures. Contingency plans should be coordinated and regularly evaluated through simulated and practical tests of performance. Arctic conditions demand alternative measures compared to those otherwise used for oil spill prevention and clean-up. New concepts or optimization of existing mechanical equipment is necessary. Chemical and thermal methods should be evaluated for efficiency and possible environmental effects. Both due to regular discharges of oil contaminated drilled cuttings and the possibility of a blowout or other spills, drilling operations in biological sensitive areas may be regulated to take place only during the less sensitive parts of the year. 122 refs., 8 figs., 8 tabs

  17. Spatial Vegetation Data for Sagamore Hill National Historic Site Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — This shapefile is the final vegetation map of Sagamore Hill National Historic Site that provides local names for vegetation types, as well as crosswalks to the...

  18. Spatial Vegetation Data for Allegheny Portage Railroad National Historic Site Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Vegetation map of Allegheny Portage Railroad National Historic Site provides local park-specific names for vegetation types, as well as crosswalks to the National...

  19. Spatial Vegetation Data for Upper Delaware Scenic and Recreational River Vegetation Mapping Project

    Data.gov (United States)

    National Park Service, Department of the Interior — Vegetation map of the Upper Delaware Scenic and Recreational River provides local park-specific names for vegetation types, as well as crosswalks to the National...

  20. Electronic atlas of the Russian Arctic coastal zone: natural conditions and technogenic risk

    Science.gov (United States)

    Drozdov, D. S.; Rivkin, F. M.; Rachold, V.

    2004-12-01

    The Arctic coast is characterized by a diversity of geological-geomorphological structures and geocryological conditions, which are expected to respond differently to changes in the natural environment and in anthropogenic impacts. At present, oil fields are prospected and developed and permanent and temporary ports are constructed in the Arctic regions of Russia. Thus, profound understanding of the processes involved and measures of nature conservation for the coastal zone of the Arctic Seas are required. One of the main field of Arctic coastal investigations and database formation of coastal conditions is the mapping of the coasts. This poster presents a set of digital maps including geology, quaternary sediments, landscapes, engineering-geology, vegetation, geocryology and a series of regional sources, which have been selected to characterize the Russian Arctic coast. The area covered in this work includes the 200-km-wide band along the entire Russian Arctic coast from the Norwegian boundary in the west to the Bering Strait in the east. Methods included the collection of the majority of available hard copies of cartographic material and their digital formats and the transformation of these sources into a uniform digital graphic format. The atlas consists of environmental maps and maps of engineering-geological zoning. The set of environmental maps includes geology, quaternary sediments, landscapes and vegetation of the Russian Arctic coast at a scale of 1:4000000. The set of engineering-geocryological maps includes a map of engineering-geocryological zoning of the Russian Arctic coast, a map of the intensity of destructive coastal process and a map of industrial impact risk assessment ( 1:8000000 scale). Detailed mapping has been performed for key sites (at a scale of 1:100000) in order to enable more precise estimates of the intensity of destructive coastal process and industrial impact. The engineering-geocryological map of the Russian Arctic coast was

  1. The Polar Crust Project- BSC Diversity and Variability in the Arctic and Antarctica

    Science.gov (United States)

    Williams, Laura; Borchhardt, Nadine; Komisc-Buchmann, Karin; Becker, Burkhard; Karsten, Ulf; Büdel, Burkhard

    2015-04-01

    The Polar Crust Project is a newly funded DFG initiative that aims to provide a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in Biological Soil Crusts (BSC) isolated from the Antarctic Peninsula and Arctic Svalbard. This project will include a thorough investigation into the composition of BSC in the Polar regions, this especially is important for Svalbard due to the severe lack of any previous research on such communities in this area. During our expedition to Spitsbergen, Svalbard in August 2014 we were particularly surprised to find that the coverage of BSC is extremely high and is certainly the dominant vegetation type around Ny Ålesund. Due to this discovery the project has now been extended to include long term measurements of CO2 gas exchange in order to gain exact seasonal carbon fixation rates and therefore discovering how the BSC contributes to the ecosystems carbon balance. The research areas of Spitsbergen were centred around 2 localities: Ny-Ålesund is a research town, home to the AWIPEV station, on the Brøgger peninsula. Longyearbyen, which is the largest settlement on the island, is found in the valley Longyeardalen on the shore of Adventfjorden. Areas where BSC is the prevalent vegetation type were identified, 6 around Ny-Ålesund and 4 for Longyearbyen, and vegetation surveys were conducted. This entailed 625 single point measurements at each site and identifying the crust/or other cover type. For example, green algal lichen, cyanobacterial crust, higher plant, open soil. Samples were also taken at every location in order to study the green algal and cyanobacterial diversity. The vegetation survey will allow us to get a good overview of the BSC composition at the different sites. In January 2015 an expedition to the Antarctic Peninsular took place, here the sampling method was repeated and therefore both Polar Regions BSC composition can be described and compared. Here, we wish to introduce the Polar

  2. Fourfold higher tundra volatile emissions due to arctic summer warming

    Science.gov (United States)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  3. Temperature thresholds for Arctic plankton community metabolism: an experimental assessment

    Directory of Open Access Journals (Sweden)

    J. M. Holding

    2011-11-01

    Full Text Available Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 °C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rates and thus both the rate of primary production and respiration will increase. However, these predictions do not consider the specific metabolic balance of the communities. We tested experimentally the response of Arctic plankton communities to seawater temperature spanning from 1 °C to 10 °C. Two types of communities were tested, open-ocean Arctic communities from water collected in the Barents Sea and Atlantic influenced fjord communities from water collected in the Svalbard fjord system. Metabolic rates did indeed increase as suggested by metabolic theory, however these results suggest a temperature threshold of 5 °C, beyond which the metabolism of plankton communities shifts from autotrophic to heterotrophic. Barents Sea communities showed a much clearer threshold response to temperature manipulations than fjord communities.

  4. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands

    NARCIS (Netherlands)

    Garcia Mayor, Angeles; Goirán, Silvana B.; Vallejo, Ramón V.; Bautista, Susana

    2016-01-01

    Fire-prone Mediterranean shrublands may be seriously threatened by land degradation due to progressive opening of the vegetation cover driven by increasing drought and fire recurrence. However, information about the consequences of this opening process for critical ecosystem functions is scant. I

  5. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research...

  6. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  7. Acquatorialities of the Arctic Region

    DEFF Research Database (Denmark)

    Harste, Gorm

    2013-01-01

    In order to describe the Arctic system I propose using a concept functionally equivalent to territoriality, namely aquatoriality. Whether communicating about territoriality or aquatoriality, concepts and delimitations are both contingent to forms of communication systems. I will distinguish betwe...

  8. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    Science.gov (United States)

    Barry, R. G.; Newell, J. P.; Schweiger, A.; Crane, R. G.

    1986-01-01

    A set of cloud cover data were developed for the Arctic during the climatically important spring/early summer transition months. Parallel with the determination of mean monthly cloud conditions, data for different synoptic pressure patterns were also composited as a means of evaluating the role of synoptic variability on Arctic cloud regimes. In order to carry out this analysis, a synoptic classification scheme was developed for the Arctic using an objective typing procedure. A second major objective was to analyze model output of pressure fields and cloud parameters from a control run of the Goddard Institue for Space Studies climate model for the same area and to intercompare the synoptic climatatology of the model with that based on the observational data.

  9. Biogeophysical feedbacks enhance Arctic terrestrial carbon sink in regional Earth system dynamics

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2014-05-01

    Full Text Available Continued warming of the Arctic will likely accelerate terrestrial carbon (C cycling by increasing both uptake and release of C. There are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based an either stand-alone process-based models or coupled climate–C cycle general circulation models, in either case disregarding biogeophysical feedbacks of land surface changes to the atmosphere. To understand how biogeophysical feedbacks will impact on both climate and C budget over Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an GCMs CMIP5 climate projection under the RCP 8.5 scenario. We perform two simulations with or without interactive vegetation dynamics respectively to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until 2060s–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are considerable, around 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. Albedo feedback dominates over winter and spring season, amplifying the near-surface warming by up to 1.35 K in spring, while evapotranspiration feedback dominates over summer exerting the evaporative cooling by up to 0.81 K. Such feedbacks stimulate vegetation growth with an earlier onset of growing-season, leading to compositional changes in woody plants and vegetation

  10. Vegetation development on extensive vegetated green roofs

    OpenAIRE

    Emilsson, Tobias

    2008-01-01

    Technology for establishment of vegetated roofs (green roofs) has developed rapidly over recent years but knowledge about how these systems will develop over time is still limited. This study investigates vegetation development on unfertilised thin extensive vegetated roofs during a 3-year period. The vegetation systems investigated were designed to be low maintenance and had a saturated weight of 50 kg/m2, a thickness of 4 cm and drought-resistant succulent and bryophyte vegetation. Vegetati...

  11. Carbon dioxide and methane fluxes from arctic mudboils

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.S.; Humphreys, E.R.

    2010-08-15

    Carbon-rich ecosystems in the Arctic have large stores of soil carbon. However, small changes in climate have the potential to change the carbon (C) balance. This study examined how changes in ecosystem structure relate to differences in the exchange of greenhouse gases, notably carbon dioxide (CO{sub 2}) and methane (CH{sub 4}), between the atmosphere and soil. In particular, it examined low-center mudboils to determine the influence that this distinct form of patterned ground in the Arctic may have on the overall C balance of Tundra ecosystems. The net ecosystem exchange of carbon dioxide (NEE) was measured along with methane efflux along a 35-m transect intersecting two mudboils in a wet sedge fen in Canada's Southern Arctic during the summer of 2008. Mudboil features revealed significant variations in vegetation, soil temperature and thaw depth, and soil organic matter content along this transect. Variations in NEE were attributed to changes in the amount of vascular vegetation, but CO{sub 2} and CH{sub 4} effluxes were similar among the two mudboil and the sedge fen sampling areas. The study showed that vegetation played a key role in limiting temporal variations in CH{sub 4} effluxes through plant mediated transport in both mudboil and sedge fen sampling areas. The negligible vascular plant colonization in one of the mudboils was likely due to more active frost heave processes. Growth and decomposition of cryptogamic organisms along with inflow of dissolved organic C and warmer soil temperatures may have been the cause of the rather high CO{sub 2} and CH{sub 4} efflux in this mudboil area.

  12. Circumpolar Arctic greening: Relationships to summer sea-ice concentrations, land temperatures and disturbance regimes

    Science.gov (United States)

    Walker, D. A.; Bhatt, U. S.; Epstein, H. E.; Raynolds, M. K.; Frost, G. V.; Leibman, M. O.; Khomutov, A.; Jia, G.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.; Webber, P. J.; Tweedie, C. E.

    2009-12-01

    The global distribution of Arctic tundra vegetation is closely tied to the presence of summer sea ice. Models predict that the reduction of sea ice will cause large changes to summer land-surface temperatures. Warming combined with increased natural and anthropogenic disturbance are expected to greatly increase arctic tundra productivity. To examine where tundra productivity is changing most rapidly, we studied 1982-2008 trends of sea-ice concentrations, summer warmth index (SWI) and the annual Maximum Normalized Difference Vegetation Index (MaxNDVI). We summarize the results according to the tundra adjacent to 14 Arctic seas. Sea-ice concentrations have declined and summer land temperatures have increased in all parts of the Arctic coast. The overall percentage increase in Arctic MaxNDVI was +7%. The trend was much greater in North America (+11%) than in Eurasia (+4%). Large percentage increases of MaxNDVI occurred inland from Davis Straight (+20%), Baffin Bay (+18%), Canadian Archipelago (+14%), Beaufort Sea (+12%), and Laptev Sea (+8%). Declines occurred in the W. Chukchi (-6%) and E. Bering (-5%) seas. The changes in NDVI are strongly correlated to changes in summer ground temperatures. Two examples from a 900-km north-south Arctic transect in Russia and long-term observations at a High Arctic site in Canada provide insights to where the changes in productivity are occurring most rapidly. At tree line near Kharp in northwest Siberia, alder shrubs are expanding vigorously in fire-disturbed areas; seedling establishment is occurring primarily in areas with disturbed mineral soils, particularly nonsorted circles. In the Low Arctic tundra areas of the central Yamal Peninsula greening is concentrated in riparian areas and upland landslides associated with degrading massive ground ice, where low-willow shrublands replace the zonal sedge, dwarf-shrub tundra growing on nutrient-poor sands. In polar desert landscapes near the Barnes Ice Cap, Baffin Island, Canada

  13. Soil Characteristics of Different Forests with Different Vegetation Type in Xishui Natural Reserve, Guizhou%贵州习水自然保护区不同森林植被类型的土壤特性

    Institute of Scientific and Technical Information of China (English)

    吴鹏; 朱军; 陈骏; 姜霞

    2012-01-01

    为揭示贵州习水自然保护区不同森林植被类型与土壤特性的关系,为该保护区或类似森林土壤资源的科学评价与管理,森林植被的恢复与更新提供参考依据和基础数据,对贵州习水自然保护区内海拔高度基本相同的5种典型森林植被类型下的土壤理化性状进行了检测分析.结果表明:鹅掌楸(Liriodendron chinense)林下的土壤表层容重最小,孔隙度、持水量、初渗和稳渗速率表现最高,土壤平均有机质、氮素、磷素、速效钾的含量和阳离子交换量最高.说明,该森林植被类型下土壤较疏松、通气性能好,具有较高的水源涵养和水土保持功能,土壤的肥力状况最好.丝栗栲—山矾林(Castanopsis argesii-Symplocos sumuntia)在土壤的理化性状方面综合表现最差.%The soil physical and chemical characteristics of five typical forest vegetation types at similar elevation in Xishui Natural Preserve, Guizhou was determined to study the relationship between different forest vegetation types and soil characteristics, and to provide the scientific basis and basic data for evaluation and management of forest soil resources, and recovery and renewal of forest vegetation. The results showed that the bulk density of surface soil under L. Chinense was the lowest, its porosity, water-holding capacity, initial infiltration rate, stable infiltration rate, average contents of organic matter, nitrogen, phosphorus, available potassium, and cation exchange capacity were the highest in five forest vegetation types, which indicated that the soil under L. Chinense was of good aeration, high water restraint and water and soil conservation function, and best fertility. The physical and chemical characteristics of soil under Castanopsis fargesii-Symplocos sumuntia was the poorest in the five forest vegetation types.

  14. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.;

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination with ...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  15. Spatial Heterogeneity of Vegetation in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The spatial heterogeneity and ecological characteristics of 74 vegetation types and the lack of vegetation type within the 9.6 million km2 of Chinese territory were studied using data from the China vegetation map. The analysis used 877 large quadrats 10 mm×10 mm (actual size 100 km×100 km), which covered about 8.77 million km2. Each large-quadrat was divided into four small 5 mm×5 mm quadrats (actual size 50 km×50 km). The frequency of occurrence of all vegetation types was recorded in each small quadrat.The survey using the Shiyomi method of vegetation analysis based on the beta-binomial distribution was adopted to describe the frequency of occurrence and spatial heterogeneity for each kind of vegetation. The weighted average heterogeneity of all the vegetation types in the landscape provides a measure of the landscape level heterogeneity which describes the spatial intricacy of the existing vegetation composition.The maximum spatial vegetation heterogeneity was 0.8620 in the frigid-temperate coniferous forest of Larix(V1), which dominates cold moist northeast China. The minimum spatial heterogeneity with a low occurrence was the Caragana tibetica in the gravel desert in the western Yellow River Hetao area. The minimum occurrence with a low spatial heterogeneity was the Monsoon rainforest on rock in Guangxi and Yunnan Provinces. The vegetation types on the Qing-Zang Plateau were found to be representative of Chinese vegetation because of the very high occurrence and spatial heterogeneity of these vegetation types. The weighted average of the heterogeneity was 0.677, while the vegetation diversity index was 3.29.

  16. An Evaluation of the Romanian Fruits and Vegetables Producers Access to Different Types of Common Agricultural Policy Instruments. Is there Any Real Consistency with the Policy Objectives?

    Directory of Open Access Journals (Sweden)

    Nicu MARCU

    2015-04-01

    Full Text Available Fruits and vegetables sectors are considered to be strategic in the European Union due to their contribution to a better human health. Among others positive effects, their intake increase reduce mortality and obesity, assuring in the same time harmonised development for young children. The present study thus focused to reveal the consistency of the measure implemented in the Common Agricultural Policy to support fruits and vegetables production in Romania in liaison with the policy objectives. The country is one of the main ten important European producers of horticultural products in terms of production volumes and acreage. Results showed that over the last seven years (2007-2014, the sectorial production drawbacks have not been ameliorated very much. Both sectors are dominated by small-size farms that can produce only seasonally and mainly for short-market chains. In the same time, the greenhouses area shrink to levels that made the country extremely dependent to imports especially for tomatoes. The analysis of the pillar one payments schemes revealed that the fruits and vegetables producers could have access to only one payment that was half from European averages. Moreover, almost half of the producers had low sizes that left them outside the eligible criteria. The measures designed for the second pillar also penalized producers through the selection criteria. These results showed that for Romania there was not a real consistency between the actual policy measures and the objectives assumed by policy makers. The future measures (2014-2020 seem to correct these negative findings being better tailored to the situation of the local fruits and vegetables producers.

  17. Mechanism of seasonal Arctic sea ice evolution and Arctic amplification

    Science.gov (United States)

    Kim, Kwang-Yul; Hamlington, Benjamin D.; Na, Hanna; Kim, Jinju

    2016-09-01

    Sea ice loss is proposed as a primary reason for the Arctic amplification, although the physical mechanism of the Arctic amplification and its connection with sea ice melting is still in debate. In the present study, monthly ERA-Interim reanalysis data are analyzed via cyclostationary empirical orthogonal function analysis to understand the seasonal mechanism of sea ice loss in the Arctic Ocean and the Arctic amplification. While sea ice loss is widespread over much of the perimeter of the Arctic Ocean in summer, sea ice remains thin in winter only in the Barents-Kara seas. Excessive turbulent heat flux through the sea surface exposed to air due to sea ice reduction warms the atmospheric column. Warmer air increases the downward longwave radiation and subsequently surface air temperature, which facilitates sea surface remains to be free of ice. This positive feedback mechanism is not clearly observed in the Laptev, East Siberian, Chukchi, and Beaufort seas, since sea ice refreezes in late fall (November) before excessive turbulent heat flux is available for warming the atmospheric column in winter. A detailed seasonal heat budget is presented in order to understand specific differences between the Barents-Kara seas and Laptev, East Siberian, Chukchi, and Beaufort seas.

  18. Time varying arctic climate change amplification

    Energy Technology Data Exchange (ETDEWEB)

    Chylek, Petr [Los Alamos National Laboratory; Dubey, Manvendra K [Los Alamos National Laboratory; Lesins, Glen [DALLHOUSIE U; Wang, Muyin [NOAA/JISAO

    2009-01-01

    During the past 130 years the global mean surface air temperature has risen by about 0.75 K. Due to feedbacks -- including the snow/ice albedo feedback -- the warming in the Arctic is expected to proceed at a faster rate than the global average. Climate model simulations suggest that this Arctic amplification produces warming that is two to three times larger than the global mean. Understanding the Arctic amplification is essential for projections of future Arctic climate including sea ice extent and melting of the Greenland ice sheet. We use the temperature records from the Arctic stations to show that (a) the Arctic amplification is larger at latitudes above 700 N compared to those within 64-70oN belt, and that, surprisingly; (b) the ratio of the Arctic to global rate of temperature change is not constant but varies on the decadal timescale. This time dependence will affect future projections of climate changes in the Arctic.

  19. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.;

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf......Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past....... This information can be provided by proxy records fromthe Arctic Ocean floor and from the surrounding coasts. Although existing records are far from complete, they indicate that sea ice became a feature of the Arctic by 47 Ma, following a pronounced decline in atmospheric pCO2 after the Paleocene–Eocene Thermal...

  20. The Arctic policy of China and Japan

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    At the May 2013 Arctic Council Ministerial Meeting, five Asian states, namely China, Japan, India, Singapore and South Korea, were accepted to become new Permanent Observers at the Arctic Council. Nonetheless, little attention has been paid to the Asian states and their interest in the Arctic. Most...... discussions have focused on China and the assessment of China’s interest in the Arctic is divided. This paper attempts to fill this gap by presenting and comparing the various components of the Arctic policies of China and Japan. Referring to Putnam’s model of the “two-level game” and Young’s categorization...... of Arctic stakeholders’ interests, data from policy documents and interviews with relevant stakeholders were analysed. This analysis shows the Chinese and Japanese governments are in the gradual process of consolidating their Arctic policies, but both China and Japan see the Arctic less as a strategically...

  1. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  2. [Review of dynamic global vegetation models (DGVMs)].

    Science.gov (United States)

    Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun

    2014-01-01

    Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project. PMID:24765870

  3. The effect of permafrost, vegetation, and lithology on Mg and Si isotope composition of the Yenisey River and its tributaries at the end of the spring flood

    Science.gov (United States)

    Mavromatis, Vasileios; Rinder, Thomas; Prokushkin, Anatoly S.; Pokrovsky, Oleg S.; Korets, Mikhail A.; Chmeleff, Jérôme; Oelkers, Eric H.

    2016-10-01

    This work focuses on the behavior of the stable Mg and Si isotope compositions of the largest Arctic river, the Yenisey River and 28 of its major and minor tributaries during the spring flood period. Samples were collected along a 1500 km latitudinal profile covering a wide range of permafrost, lithology, and vegetation. Despite significant contrasts in the main physico-geographical, climate, and lithological parameters of the watersheds, the isotope composition of both dissolved Mg and Si was found to be only weakly influenced by the degree of the permafrost coverage, type of vegetation (forest vs. tundra), and lithology (granites, basalts, carbonates or terrigenous rocks). This observation is generally consistent with the lack of chemical uptake of Mg and Si by soil mineral formation and vegetation during the early spring. The radiogenic Sr isotope composition of the Yenisey and its tributaries varied within a narrow range (0.708 ⩽ 87Sr/86Sr ⩽ 0.711) reflecting the dominance of Phanerozoic rock weathering and/or atmospheric deposition on these compositions. The Mg and Si isotopic compositions of riverine samples reflect two main processes with distinct isotopic signatures. First, isotopically heavier Mg (δ26Mg = -1.0 ± 0.2‰) and isotopically lighter Si (δ30Si = 1.0 ± 0.25‰) are added to the waters by river suspended matter dissolution and leaching from vegetation biomass/topsoil litter. Second, isotopically lighter Mg (δ26Mg = -1.5 to -1.75‰) and isotopically heavier Si (δ30Si = 1.75-2.0‰) are delivered to the Yenisey's tributaries from deep underground water feeding the rivers via taliks. This lighter Mg and heavier Si isotopic composition is interpreted to originate from Precambrian dolomite dissolution and aluminosilicate dissolution coupled with authigenic mineral precipitation, respectively, in deep underground water reservoirs. Taking account of the isotopic composition evolution over the course of the year established earlier on mono

  4. In Brief: Arctic Report Card

    Science.gov (United States)

    Showstack, Randy

    2009-11-01

    The 2009 annual update of the Arctic Report Card, issued on 22 October, indicates that “warming of the Arctic continues to be widespread, and in some cases dramatic. Linkages between air, land, sea, and biology are evident.” The report, a collaborative effort of 71 national and international scientists initiated in 2006 by the Climate Program Office of the U.S. National Oceanic and Atmospheric Administration (NOAA), highlights several concerns, including a change in large-scale wind patterns affected by the loss of summer sea ice; the replacement of multiyear sea ice by first-year sea ice; warmer and fresher water in the upper ocean linked to new ice-free areas; and the effects of the loss of sea ice on Arctic plant, animal, and fish species. “Climate change is happening faster in the Arctic than any other place on Earth-and with wide-ranging consequences,” said NOAA administrator Jane Lubchenco. “This year“s Arctic Report Card underscores the urgency of reducing greenhouse gas pollution and adapting to climate changes already under way.”

  5. The type of fortificant and the leaf matrix both influence iron and zinc bioaccessibility in iron-fortified green leafy vegetable sauces from Burkina Faso.

    Science.gov (United States)

    Icard-Vernière, C; Picq, C; Courbis, L; Mouquet-Rivier, C

    2016-02-01

    Leafy vegetable sauces from Burkina Faso were assessed as a potential vehicle for food fortification. First, iron and zinc bioaccessibility were measured by dialysability method in amaranth and Jew's mallow sauces and in traditional whole dishes consisting of maize paste plus leafy vegetable sauces. Iron dialysability and solubility were higher in amaranth than in Jew's mallow sauce, pointing to a marked effect of the matrix. Iron dialysability was hardly affected by the maize paste contrary to zinc dialysability, which was reduced. Second, iron and zinc bioaccessibility was assessed in the same sauces fortified with NaFeEDTA or iron sulfate. Added iron, i.e. iron supplied by fortification, represented 60% of total iron at the low fortification level and 80% at high level. In amaranth sauces with the high level of fortification using NaFeEDTA and iron sulfate, fractional dialysable iron reached respectively 66% and 26% compared to only 8.1% in the unfortified sauce. Similarly, in Jew's mallow sauces, fractional dialysable iron was 57% and 5% respectively with NaFeEDTA and iron sulfate and less than 1% in the unfortified sauce. Concomitantly, fractional dialysable zinc increased by respectively 20% and 40% in amaranth and Jew's mallow sauces fortified with NaFeEDTA whereas it remained unchanged with iron sulfate. Iron fortification could be an efficient way to greatly increase the available iron content of green leafy vegetable sauces and for this purpose NaFeEDTA is more effective than iron sulfate whatever the food matrix. PMID:26787350

  6. Arctic Landscape Within Reach

    Science.gov (United States)

    2008-01-01

    This image, one of the first captured by NASA's Phoenix Mars Lander, shows flat ground strewn with tiny pebbles and marked by small-scale polygonal cracking, a pattern seen widely in Martian high latitudes and also observed in permafrost terrains on Earth. The polygonal cracking is believed to have resulted from seasonal contraction and expansion of surface ice. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude. This image was acquired at the Phoenix landing site by the Surface Stereo Imager on day 1 of the mission on the surface of Mars, or Sol 0, after the May 25, 2008, landing. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. 半干旱黄土丘陵区人工植被深层土壤干化效应%Soil desiccation in deep soil layers under different vegetation types in the semi-arid loess hilly region

    Institute of Scientific and Technical Information of China (English)

    杨磊; 卫伟; 陈利顶; 蔡国军; 贾福岩

    2012-01-01

    科学评估不同植被恢复模式的土壤干化效应是目前黄土高原生态恢复一个亟需解决的关键问题。本文以半干旱黄土丘陵区14种典型人工植被为例,通过构建土壤水分相对亏缺指数CSWDI和样地土壤水分相对亏缺指数PCSWDI,定量评估了不同植被深层土壤干化效应。研究发现:除农地和撂荒草地外,各植被深层土壤水分均随土层深度的增加而升高,深层土壤水分含量同土层深度之间呈一元线性关系。不同人工植被深层土壤相对干化程度存在差异,以油松林地最高,杨树侧柏混交林地最低。不同植被类型受其自身蒸腾耗水、根系特征和耕作等影响,土壤干化的程度在剖面上存在差异,但总体趋势为随深度增加而降低。针阔叶植被配置模式土壤水分状况要稍好于阔叶纯林的配置模式。%Artificial vegetation restoration as an effective way to control serious soil erosion and improve environment conditions has taken several positive environmental effects. However, serious soil desiccation as one of negative effects also appears associated with artificial vegetation restoration lack of scientific guidance, especially in deep soil layers. To recover the fragile ecosystem of the Loess Plateau and maintain sustainable development of this region, proper artificial vegetation types should be selected based on local soil water conditions. However, methods to quantitatively evaluate soil water effect based on local rainfall and soil water conditions is urgently needed to improve, which is one of the top priorities in current research. To quantitatively evaluate the soil desiccation degree in veg- etation types, 14 vegetation types were selected to analyze the eco-hydrological effect in deep soil layers in the typical semi-arid loess hilly region. Compared Soil Water Deficit In- dex (CSWDI) and Plot Compared Soil Water Deficit Index (PCSWDI) were induced to

  8. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic.

    Science.gov (United States)

    Timling, I; Walker, D A; Nusbaum, C; Lennon, N J; Taylor, D L

    2014-07-01

    Fungi are abundant and functionally important in the Arctic, yet comprehensive studies of their diversity in relation to geography and environment are not available. We sampled soils in paired plots along the North American Arctic Transect (NAAT), which spans all five bioclimatic subzones of the Arctic. Each pair of plots contrasted relatively bare, cryoturbated patterned-ground features (PGFs) and adjacent vegetated between patterned-ground features (bPGFs). Fungal communities were analysed via sequencing of 7834 ITS-LSU clones. We recorded 1834 OTUs - nearly half the fungal richness previously reported for the entire Arctic. These OTUs spanned eight phyla, 24 classes, 75 orders and 120 families, but were dominated by Ascomycota, with one-fifth belonging to lichens. Species richness did not decline with increasing latitude, although there was a decline in mycorrhizal taxa that was offset by an increase in lichen taxa. The dominant OTUs were widespread even beyond the Arctic, demonstrating no dispersal limitation. Yet fungal communities were distinct in each subzone and were correlated with soil pH, climate and vegetation. Communities in subzone E were distinct from the other subzones, but similar to those of the boreal forest. Fungal communities on disturbed PGFs differed significantly from those of paired stable areas in bPGFs. Indicator species for PGFs included lichens and saprotrophic fungi, while bPGFs were characterized by ectomycorrhizal and pathogenic fungi. Our results suggest that the Arctic does not host a unique mycoflora, while Arctic fungi are highly sensitive to climate and vegetation, with potential to migrate rapidly as global change unfolds. PMID:24689939

  9. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams

    Directory of Open Access Journals (Sweden)

    J. R. Larouche

    2015-03-01

    Full Text Available In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC to aquatic ecosystems, however the magnitude of these effects compared to the natural background variability of DOC at the watershed scale is not well known. We measured DOC quantity, composition, and biodegradability from 14 river and stream reaches (watershed sizes ranging from 1.5–167 km2 some of which were impacted by permafrost collapse (thermokarst and fire. We found that region had a significant impact on quantity and biodegradability of DOC, likely driven by landscape and watershed characteristics such as lithology, soil and vegetation type, elevation, and glacial age. However, contrary to our hypothesis, we found that streams disturbed by thermokarst and fire did not contain significantly altered labile DOC fractions compared to adjacent reference waters, potentially due to rapid ecosystem recovery after fire and thermokarst as well as the limited spatial extent of thermokarst. Overall, biodegradable DOC ranged from 4 to 46% and contrary to patterns of DOC biodegradability in large Arctic rivers, seasonal variation in DOC biodegradability showed no clear pattern between sites, potentially related to stream geomorphology and position along the river network. While thermokarst and fire can alter DOC quantity and biodegradability at the scale of the feature, we conclude that tundra ecosystems are resilient to these types of disturbance.

  10. Arctic char - friend or foe?: Climate driven seasonal variation in competitive impact of Arcticchar (Salvelinus alpinus L) on brown trout (Salmo truttaence L)

    OpenAIRE

    Ulvan, Eva Marita

    2010-01-01

    Here I test for climate driven seasonal effects on competition in lakes using brown trout (Salmo trutta L.) and Arctic char (Salvelinus alpinus L.) as model organisms. Winter and summer brown trout consumption rates were estimated by 1374 Cs tracer methodology using brown trout sampled in  allopatric (brown trout) and 10 sympatric (brown trout/Arctic char) lakes, located along an altitudinal gradient in central Scandinavia. Lake catchment area  vegetation properties ranged from southern borea...

  11. 城市森林主要植被类型碳储量研究——以崇明岛为例%Carbon Storage of Main Vegetation Types of Urban Forest, Chongming Island of China

    Institute of Scientific and Technical Information of China (English)

    王瑞静; 赵敏; 高峻

    2011-01-01

    In the context of global change, research on the terrestrial ecosystem carbon cycle has become a big trend. Due to human activities and the impact of urbanization, such native terrestrial ecosystem as Amazon is becoming less and less. On the contrary, such region as Chongming Island which has been seriously affected by human activities is getting more and more. In this study, the carbon storage of vegetation types in Chongming Island was studied based on an method combining field sampling survey and laboratory simulation. Firstly, stratified sampling method was used and randomly picked 234 sample plots with vegetation in Chongming Island; Secondly, biotic parameters (e. g. diameter at breast height DBH, tree height, etc. ) were investigated; Thirdly, the improved volume-derived biomass method was used to calculate the carbon storage of main vegetation types. The results showed that: 1 ) In Chongming island, the carbon storage among different forest type was different, coniferous forests ( e. g. , M. glyptostroboides, C. fortunei, and P. thunbergii ) had the higher carbon storage compared with the broadleaved forests ( e. g. , C. camphora). 2) The disparity of carbon storage in spatial distribution existed in Chongming Island, and vegetation carbon storage is mainly distributed in the river banks, both sides of roads, and residential areas. 3) The carbon storage of the main vegetation in Chongming Island is 491 212.16 mg, and mean vegetation carbon density is 18.70 mg/ha. And 4) the future work in this study area was explored based on this study results. Not only does this study provide a scientific method in studing peri-urban forest vegetation carbon issues, but also scientific data for building Chongming eco-island and managing "zero carbon emission" city.%以崇明岛为研究区域,采用野外样方调查和实验室模拟相结合方法,研究崇明岛主要植被类型碳储量.结果表明:(1)崇明岛不同森林植被类型其碳储量是不同,从大到

  12. Environmental radioactivity in the Arctic

    International Nuclear Information System (INIS)

    The conference considered several broad themes: (1) assessment of releases from landbased sources and river transport, (2) assessment of dumping of nuclear waste, (3) arctic radioecology, (4) assessment of impacts of nuclear explosions and accidents, (5) nuclear safety and consequences of nuclear accidents in the arctic, and (6) waste management. The presentations demonstrated that current levels of radioactivity in the Arctic are generally low. The two most important sources are global fallout from the nuclear weapons tests of the 1950's and 1960's, and discharges to the sea from reprocessing plants in Western Europe which are transported northward by prevailing currents. The conference was attended by scientists from 17 countries and served as a forum for collection and dissemination of information on the range of themes and described above. It is hoped that this will serve to increase awareness of areas of uncertainty and act as a stimulus to further research

  13. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    Science.gov (United States)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    decomposition rates; only Ledum roots decomposed slower than the other three species and the overall root litter respiration rates increased with the duration of the experiment (in contrast to leaf liter respiration). A fertilized environment had no effect on overall weight loss of the leaf or root litter within the time of our study, but leaf and root litter respiration rates were significantly larger at the end of the study in the fertilized tundra.The temperature sensitivity of leaf respiration was significantly lower for leaf litter respiration than root liter respiration after fist snow melt, but this difference disappeared throughout the first growing season and neither was influenced by species composition or fertilization with N+P. Overall, our results suggest that as arctic vegetation shifts towards shrub-dominated tundra, both species composition and seasonally dependent processes will determine effects of changing vegetation types on carbon turnover in arctic ecosystems.

  14. Intercomparison of satellite-derived cloud analyses for the Arctic Ocean in spring and summer

    Science.gov (United States)

    Mcguffie, K.; Barry, R. G.; Schweiger, A.; Newell, J.; Robinson, D. A.

    1988-01-01

    Several methods of deriving Arctic cloud information, primarily from satellite imagery, have been intercompared. The comparisons help in establishing what cloud information is most readily determined in polar regions from satellite data analysis. The analyses for spring-summer conditions show broad agreement, but subjective errors affecting some geographical areas and cloud types are apparent. The results suggest that visible and thermal infrared data may be insufficient for adequate cloud mapping over some Arctic surfaces.

  15. Modelling CH4 emissions from arctic wetlands: effects of hydrological parameterization

    Directory of Open Access Journals (Sweden)

    P. M. Crill

    2007-09-01

    Full Text Available This study compares the CH4 fluxes from two arctic wetland sites of different annual temperatures during 2004 to 2006. The PEATLAND-VU model was used to simulate the emissions. The CH4 module of PEATLAND-VU is based on the Walter-Heimann model. The first site is located in northeast Siberia, Indigirka lowlands, Kytalyk reserve (70° N, 147° E in a continuous permafrost region with mean annual temperatures of –14.3°C. The other site is Stordalen mire in the eastern part of Lake Torneträsk (68° N, 19° E, ten kilometres east of Abisko, northern Sweden. It is located in a discontinuous permafrost region. Stordalen has a sub arctic climate with a mean annual temperature of –0.7°C. Model input consisted of observed temperature, precipitation and snow cover data. In all cases, modelled CH4 emissions show a direct correlation between variations in water table and soil temperature variations. The differences in CH4 emissions between the two sites are caused by different climate, hydrology, soil physical properties, vegetation type and NPP. For Kytalyk the simulated CH4 fluxes show similar trends during the growing season, having average values for 2004 to 2006 between 1.29–2.09 mg CH4 m−2 h−1. At Stordalen the simulated fluxes show a slightly lower average value for the same years (3.52 mg CH4 m−2 h−1 than the observed 4.7 mg CH4 m−2 h−1. The effect of the longer growing season at Stordalen is simulated correctly. Our study shows that modelling of arctic CH4 fluxes is improved by adding a relatively simple hydrological model that simulates the water table position from generic weather data. We conclude that CH4 fluxes at these sites are less sensitive to temperature variation than to water table variations. Furthermore, parameter uncertainty at site level in wetland CH4 process models is an important factor in large scale modelling of CH4 fluxes.

  16. Research in remote sensing of vegetation

    Science.gov (United States)

    Schrumpf, Barry J.; Ripple, William J.; Isaacson, Dennis L.

    1988-01-01

    The research topics undertaken were primarily selected to further the understanding of fundamental relationships between electromagnetic energy measured from Earth orbiting satellites and terrestrial features, principally vegetation. Vegetation is an essential component in the soil formation process and the major factor in protecting and holding soil in place. Vegetation plays key roles in hydrological and nutrient cycles. Awareness of improvement or deterioration in the capacity of vegetation and the trends that those changes may indicate are, therefore, critical detections to make. A study of the relationships requires consideration of the various portions of the electromagnetic spectrum; characteristics of detector system; synergism that may be achieved by merging data from two or more detector systems or multiple dates of data; and vegetational characteristics. The vegetation of Oregon is sufficiently diverse as to provide ample opportunity to investigate the relationships suggested above several vegetation types.

  17. Circum-Arctic Map Compilation

    Science.gov (United States)

    Saltus, Richard W.; Gaina, Carmen

    2007-05-01

    Second Workshop of the Circum-Arctic Geophysical Maps Project, Trondheim, Norway, 12-13 February 2007 The eyes of the world are increasingly focused on the polar regions. Exploration and assessment of energy and mineral resources for the growing world economy are moving to high-latitude frontier areas. The effects of climatic changes are particularly pronounced at these ends of the Earth and have already attracted worldwide attention and concern. Many recent articles related to the International Polar Year underscore the importance of even basic mapping of the Arctic and Antarctic.

  18. New datasets for quantifying snow-vegetation-atmosphere interactions in boreal birch and conifer forests

    Science.gov (United States)

    Reid, T. D.; Essery, R.; Rutter, N.; Huntley, B.; Baxter, R.; Holden, R.; King, M.; Hancock, S.; Carle, J.

    2012-12-01

    Boreal forests exert a strong influence on weather and climate by modifying the surface energy and radiation balance. However, global climate and numerical weather prediction models use forest parameter values from simple look-up tables or maps that are derived from limited satellite data, on large grid scales. In reality, Arctic landscapes are inherently heterogeneous, with highly variable land cover types and structures on a variety of spatial scales. There is value in collecting detailed field data for different areas of vegetation cover, to assess the accuracy of large-scale assumptions. To address these issues, a consortium of researchers funded by the UK's Natural Environment Research Council have collected extensive data on radiation, meteorology, snow cover and canopy structure at two contrasting Arctic forest sites. The chosen study sites were an area of boreal birch forest near Abisko, Sweden in March/April 2011 and mixed conifer forest at Sodankylä, Finland in March/April 2012. At both sites, arrays comprising ten shortwave pyranometers and four longwave pyrgeometers were deployed for periods of up to 50 days, under forest plots of varying canopy structures and densities. In addition, downwelling longwave irradiance and global and diffuse shortwave irradiances were recorded at nearby open sites representing the top-of-canopy conditions. Meteorological data were recorded at all sub-canopy and open sites using automatic weather stations. Over the same periods, tree skin temperatures were measured on selected trees using contact thermocouples, infrared thermocouples and thermal imagery. Canopy structure was accurately quantified through manual surveys, extensive hemispherical photography and terrestrial laser scans of every study plot. Sub-canopy snow depth and snow water equivalent were measured on fine-scale grids at each study plot. Regular site maintenance ensured a high quality dataset covering the important Arctic spring period. The data have several

  19. Arctic West and North of Svalbard

    Energy Technology Data Exchange (ETDEWEB)

    Sundvor, E.; Austegard, A. (Bergen Univ. (Norway)) Myhre, A.M.; Eldholm, O. (Oslo Univ., (Norway) Dept. of Geology)

    1982-01-01

    Recent multichannel seismic data have revealed that the Svalbard passive margin has undergone a complex geological history which largely reflects the plate tectonic evolution of the Greenland Sea and the Arctic Ocean. On the western margin the continent-ocean boundary is located at or close to the Hornsund Fault Zone. In the late Paleocene/Early Eocene, the region between Svalbard and Northeast Greenland was subjected to regional shear movements associated with a transform system between the young Lofoten-Greenland Basin and the Arctic Ocean. Approximately 50My ago the spreading axis migrated northeastwards forming the passive margin between Bear Island and 76.5degN. At the time of the main reorganization of the plate motion the northern margin evolved and a continental fragment was possibly cut off from the Svalbard margin, appearing, today, as the submarine ridge associated with the Hovgaard Fracture Zone. The northern Svalbard margin is of a rifted type, though the seismic results indicate two structurally different regions: The Yermak Plateau and the Hinlopen Margin. A major problem in understanding the geology and evolution of the Yermak Plateau is the nature of the opaque acoustic basement. 12 drawings.

  20. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  1. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over

  2. Optical properties of melting first-year Arctic sea ice

    Science.gov (United States)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  3. Monitoring vegetation using DOAS satellite observations

    Science.gov (United States)

    Eigemeier, Ellen; Beirle, Steffen; Marbach, Thierry; Platt, Ulrich; Wagner, Thomas

    2010-05-01

    Vegetation-cycles are of general interest for many applications. Be it for harvest-predictions, global monitoring of climate-change or as input to atmospheric models. From novel spectrally resolving UV/vis satellite instruments (like GOME or SCIAMACHY) the spectral signatures of different types of vegetation can be identified and analysed. Although the spatial resolution of GOME and SCIAMACHY observations is much coarser than those of conventional satellite instruments for vegetation monitoring, our data sets on different vegetation types add new and useful information, not obtainable from other sources. Common vegetation indices are based on the fact that the difference between Red and Near Infrared reflection is higher than in any other material on Earth's surface. This gives a very high degree of confidence for vegetation-detection. The spectrally resolving data from GOME and SCIAMACHY provide the chance to concentrate on finer spectral features throughout the red and near infrared spectrum. We look at these features using a technique known as Differential Optical Absorption Spectroscopy (DOAS). Although originally developed to retrieve information on trace gases, it can also be used to gain information on vegetation. Another advantage is that this method automatically corrects for atmospheric effects. This renders the vegetation-information easily comparable over long time-spans. In addition, high-frequency-structures from vegetation also effect the retrieval of tropospheric trace-gases and aerosols. To optimize vegetation monitoring with DOAS we produce spectrally resolved reference spectra from different vegetation types using our own instrumentation. We analyze the effect of different Pigments on high-frequency-structures of the DOAS Retrieval. Applying these results we investigate how well we can distinguish vegetation types from space.

  4. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  5. Greenland soil bacteria & biogeochemistry: a vegetation cover proxy for climate warming effects

    Science.gov (United States)

    Dowdy, K. L.; Sistla, S.; Buckeridge, K. M.; Schimel, J.; Schaeffer, S. M.

    2013-12-01

    Climate warming in the high Arctic is expected to increase plant biomass, deepen thaw, and stimulate decomposition of soil organic matter. However, it remains unclear how warming, plant growth, and microbial processing will interact to drive Arctic carbon and nutrient cycling. For example, greater plant growth should increase carbon storage in the ecosystem; however, increasing plant C inputs and thawing permafrost carbon should stimulate microbial biomass, potentially causing soil respiration to outpace storage. Alternatively, greater plant cover may lower soil temperature through shading, potentially curtailing the predicted increase in microbial activity. To evaluate microbial responses to climate warming in the high Arctic, we characterized the soil bacterial community and related soil biogeochemical properties, including pH, temperature, moisture, bulk density, extractable nutrient pools, extractable organic carbon and nitrogen, and total microbial biomass along a vegetation cover gradient in northwest Greenland. Vegetation cover was classified using the Normalized Difference Vegetation Index (NDVI), and vegetation cover classes were used as a proxy for changes associated with warming. We found that soil moisture increased and soil temperature decreased significantly with vegetation cover; moisture and temperature were higher in organic than in mineral horizons. Extractable nutrients (NO3-, NH4+, PO43-) and extractable organic C and N generally increased with vegetation cover and are higher in organic than in mineral horizons within a given vegetation class, with the exception of NO3-, which was comparable between horizons. Despite increases in available carbon and nutrients, microbial biomass carbon in both horizons ultimately decreased with vegetation cover, as did microbial biomass nitrogen in the mineral horizon. Moreover, the relative proportion of microbial biomass carbon to extractable organic carbon decreased with vegetation cover, indicating that

  6. Vegetables, fruit, and cancer prevention: a review.

    Science.gov (United States)

    Steinmetz, K A; Potter, J D

    1996-10-01

    In this review of the scientific literature on the relationship between vegetable and fruit consumption and risk of cancer, results from 206 human epidemiologic studies and 22 animal studies are summarized. The evidence for a protective effect of greater vegetable and fruit consumption is consistent for cancers of the stomach, esophagus, lung, oral cavity and pharynx, endometrium, pancreas, and colon. The types of vegetables or fruit that most often appear to be protective against cancer are raw vegetables, followed by allium vegetables, carrots, green vegetables, cruciferous vegetables, and tomatoes. Substances present in vegetables and fruit that may help protect against cancer, and their mechanisms, are also briefly reviewed; these include dithiolthiones, isothiocyanates, indole-3-carbinol, allium compounds, isoflavones, protease inhibitors, saponins, phytosterols, inositol hexaphosphate, vitamin C, D-limonene, lutein, folic acid, beta carotene, lycopene, selenium, vitamin E, flavonoids, and dietary fiber. Current US vegetable and fruit intake, which averages about 3.4 servings per day, is discussed, as are possible noncancer-related effects of increased vegetable and fruit consumption, including benefits against cardiovascular disease, diabetes, stroke, obesity, diverticulosis, and cataracts. Suggestions for dietitians to use in counseling persons toward increasing vegetable and fruit intake are presented.

  7. Arctic Research Mapping Application 3D Geobrowser: Accessing and Displaying Arctic Information From the Desktop to the Web

    Science.gov (United States)

    Johnson, G. W.; Gonzalez, J.; Brady, J. J.; Gaylord, A.; Manley, W. F.; Cody, R.; Dover, M.; Score, R.; Garcia-Lavigne, D.; Tweedie, C. E.

    2009-12-01

    ARMAP 3D allows users to dynamically interact with information about U.S. federally funded research projects in the Arctic. This virtual globe allows users to explore data maintained in the Arctic Research & Logistics Support System (ARLSS) database providing a very valuable visual tool for science management and logistical planning, ascertaining who is doing what type of research and where. Users can “fly to” study sites, view receding glaciers in 3D and access linked reports about specific projects. Custom “Search” tasks have been developed to query by researcher name, discipline, funding program, place names and year and display results on the globe with links to detailed reports. ARMAP 3D was created with ESRI’s free ArcGIS Explorer (AGX) new build 900 providing an updated application from build 500. AGX applications provide users the ability to integrate their own spatial data on various data layers provided by ArcOnline (http://resources.esri.com/arcgisonlineservices). Users can add many types of data including OGC web services without any special data translators or costly software. ARMAP 3D is part of the ARMAP suite (http://armap.org), a collection of applications that support Arctic science tools for users of various levels of technical ability to explore information about field-based research in the Arctic. ARMAP is funded by the National Science Foundation Office of Polar Programs Arctic Sciences Division and is a collaborative development effort between the Systems Ecology Lab at the University of Texas at El Paso, Nuna Technologies, the INSTAAR QGIS Laboratory, and CH2M HILL Polar Services.

  8. Reconstruction of Holocene palaeoclimate and environment in the Khatanga region, Russian Arctic

    Science.gov (United States)

    Syrykh, Ludmila; Nazarova, Larisa

    2016-04-01

    Arctic regions are highly sensitive to changes in temperature and precipitation, and their Late Quaternary environmental history is very important for understanding of present and past climate trends. Though the timing of Holocene climate change is well established for wide parts of the Northern Hemisphere, suitable palaeoenvironmental records are still scarce in the Russian Siberian Arctic. Taimyr Peninsula (74oN, 100oE) is the northernmost part of Russia. Thus, this area is probably one of the most promising regions for the reconstruction of the Late Quaternary environment in dependence on changes in global and regional climate and the atmospheric circulation. (Andreev et al., 2004).The area is characterized by a continental climate with long, severe winters, and short summers. The modern temperatures are about 10-14oC in July, and - 32 to 34oC in January. Annual precipitation ranges from about 300-400 mm at low elevations to about 600-800 mm on the western slopes of the Putorana Plateau (Atlas Arktiki, 1985). The frost-free period is ca. 35 days. Almost all the territory is underlain by continues permafrost. Periglacial landscape is dominated by tundra and taiga vegetation. Aquatic organisms such as chironomids (Insecta: Diptera) are recognized as the best biological indicators for quantifying past changes in air temperature or lake chemistry (Letter et al., 1997; Brooks and Birks, 2000; Battarbee, 2000; Massaferro and Brooks, 2002; Solovieva et al., 2005). Chironomids belong to the most abundant group of fresh-water bottom-dwelling macroinvertebrates. Because of their short life cycle, chironomids quickly adapt to environmental changes and in global scale the distribution and abundance of chironomids are mostly limited by temperature (Walker and Mathewes, 1987; Warwick, 1989; Hann et al., 1992; Walker et al., 1992). Larval head capsules of chironomids preserved in lake sediment as subfossils are abundant, identifiable and serve as indicators of the

  9. Mining in the European Arctic

    NARCIS (Netherlands)

    van Dam, Karin; Scheepstra, Adriana; Gille, Johan; Stepien, Adam; Koivurova, Timo; Stepien, Adam; Koivurova, Timo; Kankaanpää, Paula

    2016-01-01

    The European Arctic has been recently experiencing an upsurge in mining activities. This is reflected in an on-going interest from the industry, regulators and the public. However, current and future prospects are highly sensitive to mineral price fluctuations. The EU is a major consumer and importe

  10. Color characterization of Arctic Biological Soil Crusts

    Science.gov (United States)

    Mele, Giacono; Gargiulo, Laura; Ventura, Stefano

    2015-04-01

    Global climate change makes large areas lacking the vegetation coverage continuously available to primary colonization by biological soil crusts (BSCs). This happens in many different environments, included high mountains and Polar Regions where new areas can become available due to glaciers retreat. Presence of BSCs leads to the stabilization of the substrate and to a possible development of protosoil, with an increase of fertility and resilience against erosion. Polar BSCs can exhibit many different proportions of cyanobacteria, algae, microfungi, lichens, and bryophytes which induce a large variability of the crust morphology and specific ecosystem functions. An effective and easy way for identifying the BSCs in the field would be very useful to rapidly recognize their development stage and help in understanding the overall impact of climate change in the delicate polar environments. Color analysis has long been applied as an easily measurable physical attribute of soil closely correlated with pedogenic processes and some soil functions. In this preliminary work we used RGB and CIE-L*a*b* color models in order to physically characterize fourteen different BSCs identified in Spitsbergen island of Svalbard archipelago in Arctic Ocean at 79° north latitude. We found that the "redness parameter "a*" of CIE-L*a*b* model was well correlated to the succession process of some BSCs at given geomorphology condition. Most of color parameters showed, moreover, a great potential to be correlated to photosynthetic activity and other ecosystem functions of BSCs.

  11. Effects of Wood Vinegar on the Growth of Vegetables in Several Types%木酢液对几种类型蔬菜生长调节效应的影响

    Institute of Scientific and Technical Information of China (English)

    姚志斌; 塔娜; 孙江; 戴伟; 马珣

    2011-01-01

    大棚种植了西红柿、辣椒、大白菜、黄瓜和萝卜等6种4类蔬菜.苗期时,喷施木酢液1000倍液;定植后,采用喷施200倍液、300倍液、400倍液、500倍液、600倍液等5个浓度处理,以此来分析施用木酢液对各类蔬菜产量、根长及株高的影响.结果表明:木酢液对不同类型的蔬菜都有一定的增产作用,但效果不同,300倍液适用面较广、200倍液对不同类型蔬菜都有生理毒害效应、600倍液对蔬菜的生长长势有明显的促进作用.总体看来,适宜浓度的木酢液能促进植株生长,提高蔬菜产量.%Tomatoes, peppers, cabbages, cucumbers and radishes were planted in the greenhouse. This protected ground experiment was conducted to study the effects of wood vinegar on output, root length and plant height of vegetables. The experiments sprayed P1000 (diluted wood vinegar 1000 times) in seedling stage and P200、P300、P400、P500、P600 in field planting stage. Results showed that the application of wood vinegar increased production spotty and P300 could be used in 2 types of vegetables. P200 evidently poisoned vegetables of different types. P600 promoted the growth of roots and stems significantly. In general, wood vinegar with proper concentration can raise the production and be suitable for vegetable growth.

  12. Comparative analysis of two vegetation types and its ecotone, Miranda - MS Análise comparativa de duas formações vegetacionais e de seu ecótono, Miranda - MS

    Directory of Open Access Journals (Sweden)

    Mariana Chaves Mota

    2011-12-01

    Full Text Available The Pantanal consists of different vegetation types, including the Paratudal, a monodominat floodable savanna, and Riparian vegetation. This study aimed to analyze diversity and similarity in samples ofthese two vegetations, and its ecotone. The study was developed in the region of Passo do Lontra, at the Miranda river margins. Five plots 10 x 10m, were allocated in each area, where all individuals above 1m height were counted and identified. Nine hundred and thirteen individuals were registered, distributed in 70 taxa, of which 60 were identified in species level. The Shannon diversity index (H’ was 2.715 with Pielou Eveness (J’ of 0.806 in Paratudal, 3.010 and 0.835 in Riparian vegetation, and 2.739 and 0.797 in ecotone, respectively. These results show highest diversity in the Riparian vegetation, as expected, since the Paratudal’s ambient conditions are more restrictive. The floristic similarity between the Paratudal and the Riparian vegetation, according to the Sorensen index, was of 0.2, what distinguish both environments. Therefore, this study evidences the distinction among Riparian vegetation andParatudal, as well the existence of an intermediary values with ecotone. O Pantanal é constituído por diferentes formações vegetacionais, entre elas o Paratudal e a Mata Ciliar. Este trabalho objetivou analisar comparativamente essas duas formações, e o ecótono entre elas, quanto à diversidade e similaridade. O estudo foi desenvolvido na região do Passo do Lontra, às margens do rio Miranda, MS. Foram estabelecidas cinco parcelas de 10 x 10m em cada área e nelas todos os indivíduos acima de 1m de altura foram contados e identificados. Foram registrados 913 indivíduos, distribuídos em 70 taxa, dos quais 60 foram identificados em nível de espécie. O índice de diversidade de Shannon (H’ foi 2,715 com equidade de Pielou (J’ de 0,806 no Paratudal; 3,010 e 0,835 na MataCiliar; e 2,739 e 0,797 no ecótono, respectivamente

  13. Types and soil conservation capacity of riparian vegetation at middle reach of Shiyang river%石羊河中游河岸植被及其护岸能力研究

    Institute of Scientific and Technical Information of China (English)

    郑庆钟; 刘世增; 刘虎俊; 袁宏波; 李银科; 郭春秀; 刘淑娟; 张莹花

    2012-01-01

    调查分析石羊河中游河岸植被及其保护河岸能力可为河岸管理与植被恢复提供参考。通过植被组成与结构以及河岸地貌调查,选用植被密度、覆盖度、根系主分布层深度计算河岸植被的保持土壤能力指数。结果表明:石羊河中游的植被可分为12个群丛。灌丛或灌丛+乔木群落成块状或条带状夹在其他植被类型之间,成为河岸植被的骨架。从河岸完整性以及群落保持土壤能力指数综合判断,沼泽化草甸以及盐化草甸+灌木的护岸能力较强,其次为灌丛,再次为灌丛+乔木。河岸植被保护石羊河中游两岸,使其形成限制性河床,不仅增加了河岸稳定性,而且提高了防治灾害能力。%Shiyang River basin is one of the inland river basins where the ecological environment is strongly disturbed by artificial action which leads to the degraded environment.It is signality to study the riparian vegetation of Shiyang River for management and protection of bank and returning to ecological environment.The element and structure of the riparian vegetation at middle reach of Shiyang River was investigated,and the density of plant,coverage ratio,the spreading depth of root density,vegetation type and biotype of dominant species were employed to comprehensively evaluate the riparian vegetation for protecting bank.The results are as follows: there are 11 associations.The shrubland or tree-shrub forest,which is the support of the riparian vegetation,thread amount others of vegetation.The number of coverage ratio and density of swamp-meadow are the biggest,but the depth of root is shallow and simple,so the meadow + shrub with second of coverage ratio and density and more depth of root have the strong capacity to protect the bank.The shrubland that is constituted of by Tamarix ramosissima or Salix lineaisriputlaris is stronger to protect bank than that of tree-land with Populus gansuensis or Elaiagnus angustifolia,and it is

  14. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    DEFF Research Database (Denmark)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode;

    2015-01-01

    experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...

  15. Analysis of Adenoid Vegetation Children with Different Types of Tympanograms and Secretory Otitis Media%腺样体肥大患儿鼓室导抗图与分泌性中耳炎的关系探讨

    Institute of Scientific and Technical Information of China (English)

    高永平; 田从哲; 刘会清; 孟胜环; 刘海燕

    2013-01-01

    目的:探讨腺样体肥大患儿的不同鼓室导抗图与分泌性中耳炎的关系。方法回顾性分析2009年1月~2011年6月收治的328例腺样体肥大患儿的临床资料,分析统计分泌性中耳炎的发病例(耳)数及声导抗测试诊断分泌性中耳炎的阳性率。结果328例腺样体肥大患儿中有104例(169耳)最终经鼓膜穿刺或鼓膜置管确诊为分泌性中耳炎(31.71%,104/328),其中鼓室导抗图为B型者89例152耳,最终确诊为分泌性中耳炎者为86例147耳,阳性率为96.71%(147/152);鼓室导抗图为C型(负压在-150 daPa以上)者33例49耳,最终确诊为分泌性中耳炎者为16例20耳,阳性率为40.82%(20/49);鼓室导抗图为A s型者2例2耳最终均确诊为分泌性中耳炎。结论腺样体肥大患儿无论有无听力下降主诉,均应行声导抗测试,B型鼓室导抗图对鼓室积液判断的准确率最高,C型次之,As型也有鼓室积液的可能。%Objective To explore the relationship between adenoid vegetation children with different types of tympanograms and secretory otitis media in children and diagnosis of secretory otitis media .Methods A retrospec-tive study was carried out among 328 cases with adenoid vegetation in children ,including simple adenoid vegetation and associated with chronic tonsillitis and tonsillar hypertrophy ,from August 2010 to May 2012 .The incidence of secretory otitis media and outcomes of tympanometry for the diagnosis were analyzed .Results 104 cases were diag-nosed with secretory otitis media by tympanic membrane puncture or tympanostomy tube in 328 cases with adenoid vegetation (32 .31% );86 cases (147 ears) were finally diagnosed as secretory otitis media among 89 cases (152 ears) with type B tympanogram (147/152 ,96 .63% );16 cases (20 ears) were finally diagnosed secretory otitis media among 33 cases (49 ears) with type C tympanogram (20/49 ,40 .82% );2 cases (2 ears) with

  16. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub cov

  17. Methane-derived carbon flow through microbial communities in arctic lake sediments.

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J; Pohlman, John W; Tiedje, James M; Leigh, Mary Beth

    2015-09-01

    Aerobic methane (CH4 ) oxidation mitigates CH4 release and is a significant pathway for carbon and energy flow into aquatic food webs. Arctic lakes are responsible for an increasing proportion of global CH4 emissions, but CH4 assimilation into the aquatic food web in arctic lakes is poorly understood. Using stable isotope probing (SIP) based on phospholipid fatty acids (PLFA-SIP) and DNA (DNA-SIP), we tracked carbon flow quantitatively from CH4 into sediment microorganisms from an arctic lake with an active CH4 seepage. When 0.025 mmol CH4 g(-1) wet sediment was oxidized, approximately 15.8-32.8% of the CH4 -derived carbon had been incorporated into microorganisms. This CH4 -derived carbon equated to up to 5.7% of total primary production estimates for Alaskan arctic lakes. Type I methanotrophs, including Methylomonas, Methylobacter and unclassified Methylococcaceae, were most active at CH4 oxidation in this arctic lake. With increasing distance from the active CH4 seepage, a greater diversity of bacteria incorporated CH4 -derived carbon. Actinomycetes were the most quantitatively important microorganisms involved in secondary feeding on CH4 -derived carbon. These results showed that CH4 flows through methanotrophs into the broader microbial community and that type I methanotrophs, methylotrophs and actinomycetes are important organisms involved in using CH4 -derived carbon in arctic freshwater ecosystems. PMID:25581131

  18. Detection of Vehicle Tracks and Vegetation Damages Caused by use of Snowmobiles in the Longyearbyen Area on Svalbard using Unmanned Aircraft

    Science.gov (United States)

    Storvold, R.; Karlsen, S. R.; Solbø, S. A.; Johansen, B.; Johansen, K.; Høgda, K. A.; Tømmervik, H.; Zmarz, A.; Joly, D.

    2013-12-01

    The study area in the surroundings of Longyearbyen on Svalbard, Arctic Norway, located at 71.2°N and 16°E is characterized by dry Arctic climate with a snow season of more than eight months, annual precipitation of less than 200mm, and a mean July temperature of about 6°C. Longyearbyen is the main settlement on Svalbard, with about 2000 inhabitants. During the last two decades the number of snowmobiles have increased from a few hundred to a number almost equals the number of inhabitants, and snowmobile trips are today the one of the main leisure activities. In addition, thousands of tourist visits every spring, and many of these go on organized snowmobile trips. Due to the often thin snow cover, and use of snowmobile even during the spring snow melt in May and early June, the rapid growth in use of snowmobile has made some damage to the vegetation. Damage on the fragile vegetation caused by the skids and belts of the snowmobile can be observed in most parts of the Adventdalen valley, close to Longyearbyen. The main aim of this study is to explore the feasibility and accuracy of using data from Unmanned Aircraft Systems (UAS) to identify vehicle tracks and damages on vegetation caused by the use of snowmobiles. Use of UAS give the opportunity to carry out research in a manner that minimizes the environmental footprint of the research activities. Small unmanned aircraft, combining both fixed wing multi rotor types allow us to collect image data for vegetation mapping without having any personnel walking into the field disturbing the sensitive High Arctic ecosystems. UAS used here are inexpensive and simple to operate. They are being developed with the goal of providing airborne capabilities for scientists at an affordable cost. The aircraft were instrumented with a normal Canon Powershot S100 RGB compact camera and a modified Canon Powershot SX230 NDVI camera. The fixed wing aircraft was taking pictures from 100 meters altitude with ground resolution of 2.5 cm

  19. Geologic Provinces of the Circum-Arctic, 2008 (north of the Arctic Circle)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This shapefile includes arcs and polygons that describe U.S. Geological Survey defined 33 geologic provinces of the Circum-Arctic (north of the Arctic Circle). Each...

  20. Influence of Watering with an enriched solution of surfactants on the soil properties and vegetation growth. Experimental model with two types of soils: district cambisol and calcaricum cambisol; Influencia del riego con solucion enriquecida en tensoactivos sobre las propiedades del suelo y el desarrollo vigetal

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Caravaca, M. T.; Crespo Alia, M. A. [Universidad Complutense. Madrid (Spain)

    2000-07-01

    A study done on the the influence of watering with an enriched solution of surfactants on the soil properties and vegetation growth using an experimental model with two types of soils, each one with different characteristic: district Cambisol and calcaricum Cambisol. The results show significant differences in conductivity, organic carbon content, clay content and in phosphates. As well, the sodium enrichment of the adjuvants components of the detergent employed significantly influence the content of free clay and the SAR values. The chosen vegetation was seen to be affected in these areas: sprouting, vegetal mass and principally in the amount of calcium foliage. (Author) 18 refs.

  1. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic.

    Science.gov (United States)

    Cooper, Elisabeth J; Dullinger, Stefan; Semenchuk, Philipp

    2011-01-01

    In tundra areas where the growing season is short, any delay in the start of summer may have a considerable effect on plant development, growth and reproductive success. Climate models suggest long-term changes in winter precipitation in the Arctic, which may lead to deeper snow cover and a resultant delay in date of snow melt. In this paper, we investigated the role of snow depth and melt out date on the phenological development and reproductive success of vascular plants in Adventdalen, Svalbard (78° 10'N, 16° 06'E). Effects of natural variations in snow accumulation were demonstrated using two vegetation types (snow depth: meadow 21 cm, heath 32 cm), and fences were used to experimentally increase snow depth by over 1m. Phenological delay was greatest directly after snowmelt in the earlier phenological phases, and had the largest effect on the early development of those species which normally green-up early (i.e. Dryas, Papaver, Salix, Saxifraga). Compressed growing seasons and length of the reproductive period led to a reduced reproductive success in some of the study species. There were fewer flowers, fewer plots with dispersing seeds, and lower germination rates. This can have consequences for plant establishment and community composition in the long-term.

  2. Arbuscular Mycorrhiza across Two Vegetation Types in Shangri-la Subalpine Areas of Northwest Yunnan%香格里拉亚高山两种植被类型主要植物的丛枝菌根研究

    Institute of Scientific and Technical Information of China (English)

    李晋; 景跃波; 张劲峰; 李勇鹏; 李荣波

    2012-01-01

    The arbuscular mycorrzhizal (AM) colonization and spore density in barren grassland and primary forest in Shangri-la subalpine areas of northwest Yunnan province were investigated. All the ten plant species in barren grassland and nine plant species in primary forest were found to be colonized by arbuscular mycorrhizal fungi (AMF) , and the average AMF spore density in two vegetation types were 674 ±221/100g soil and 290 ±72/100 g soil respectively. One-way analysis of variance ( ANOVA) showed that the AMF hypha colonization and spore density varied significantly between the two vegetation types. The plant species common to the two sampled sites had high AM fungal colonization in primary forest and high AMF spore density in barren grassland. No significant correlation between AM colonization and spore density was observed when vegetation types were either considered separately or together.%以滇西北香格里拉亚高山地区生态严重退化的荒草坡植被类型和基本实现恢复的近原生林地植被类型中主要植物的丛枝菌根真菌(AMF)作为研究对象,对这些植物根系的AMF感染率及其根际土壤中的AMF孢子密度进行了调查研究.结果表明,荒草坡的10种植物和近原生林地的9种植物,均形成典型的丛枝菌根(AM).荒草坡和近原生林植物根际土壤中的平均孢子密度分别为674±221(SE)个/100g(土)和290±72个/100g土.单因素方差分析表明,两植被类型的主要植物在根系AMF菌丝感染率以及根际土壤中AMF孢子密度方面的差异都极显著.同种植物在近原生林地具有较高的AMF感染率,而根际土壤中的孢子密度则是在荒草坡为高.相关性分析表明,所调查植物的根系AMF菌丝感染率与根际土壤中的AMF孢子密度间不存在相关性.

  3. 琅琊山不同植被枯落物下土壤性状调查与分析%Analysis on the Properties of Soil under Different Vegetation Types in the Langya Mountain

    Institute of Scientific and Technical Information of China (English)

    姜瑀

    2014-01-01

    Based on the flora of Langya mountain for reference,selected eleven typical Langya mountain veg-etation type,and collected soil samples. By using the method of field sampling and indoor test analysis, physicochemical properties of soil in different vegetation types in Langya mountain was analyzed. The re-sults show that:(1)The difference of soil physical properties under different types of vegetation is larger, from the content of soil moisture,the soil moisture of metasequoia is the maximal and the elderberry is the minimum;from the soil bulk density,the soil bulk density of elderberry is the maximal,and the german oak is the minimum. (2)From the chemical properties of soil,the pH of lycoris radiata is the maximal and the phyllostachys praecox is the minimum;the organic matter of Ulmus chenmoui is the maximal and the german oak is the minimum.%以琅琊山植物志为参考,选取11个典型的琅琊山植被类型,并采集土壤样本。利用野外采样与室内测试分析相结合的方法,对琅琊山不同植被类型下土壤的理化性质进行了分析。结果表明:(1)不同植被类型下土壤物理性质差异较大,从土壤含水量看,含水量最大的是水杉,最小的是接骨木;从土壤容重看,容重最大的是接骨木,最小的是麻栎。(2)从土壤化学性质看,pH值最大是石蒜,最小的是早竹;有机质含量最高的是金线松,最少的是麻栎。

  4. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Bareiss

    2009-08-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in an Arctic landscape. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formula currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an untypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that only the use of a hydrodynamic three-layer temperature-profile model achieves enough accuracy for heat flux calculations as it reliably reproduces the temporal variability of the surface temperature.

  5. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  6. Soil organic carbon storage and profile inventory in the different vegetation types of Luya Mountain%芦芽山典型植被土壤有机碳剖面分布特征及碳储量

    Institute of Scientific and Technical Information of China (English)

    武小钢; 郭晋平; 杨秀云; 田旭平

    2011-01-01

    The patterns and controls of soil organic carbon ( SOC) storage are critical for our understanding of the biosphere , given the importance of SOC for ecosystem process and feedback of this pool to atmospheric composition and the rate of climate change. Understanding the distribution of organic carbon inventories in soil profile is crucial for assessing regional, continental and global soil C storage and predicting and ameliorating the consequences of global change. This study was conducted to determine the soil organic carbon inventories of 0-1. 0m depth at 21 plots in four vegetation types from 1703m to 2756m in Luya Mountain. The four vegetation types were subalpine meadow ( SM) , cold-temperate needleleaf forest ( CNF) , coniferous and broad-leaved mixed forest ( CBF) and shrub-grassland ( SG) ( former cropland) .The results showed that the profile distribution of SOC was different under different vegetation types , indicating the effect of vegetation on SOC. The SOC storage in the profiles decreased generally with increasing depth under the four vegetation types, with sharp reduction at the depth of 20cm for SM, 50cm for CNF, 20cm for CBF and 40cm for SG. The maximum SOC storage occurred at the depth of 10-20cm in most cases. The four vegetation types had no significant difference for SOC storage at the 0-10cm soil profile. The SOC content of the SM was closer to that of SG at all the soil profiles, but was significantly higher than that of CBF and lower than that of CNF at the 20-50cm soil depth. The SOC storage was positively correlated with soil total nitrogen and water content, but negatively with bulk density. Soil organic carbon was significantly related with clay and silt content in deeper soil layers. The result of stepwise linear regression analysis showed that the SOC storage was correlated with total nitrogen, water content and bulk density for SM, with TN for CNF, TN and BD for CBF and BD for SG. Within 50 cm depth, the SOC storage was 13. 564 , 11

  7. Contributions to multiple element speciation in vegetable plants: Studies on the type of bonding of numerous elements, particularly zinc and cadmium

    International Nuclear Information System (INIS)

    In the first part of the study, the total contents and the solubility characteristics of Zn, Cd, Fe, Mn, Cu, Ca, Sr, K and Rb in 26 different vegetable plants, the majority of them commercially available, are reported, obtained by post-decomposition analyses. The data are given for avocados, bananas, cauliflower, chicory, Chinese cabbage, dill, ice lettuce (two specimens), endive, field salad, cucumbers, kohlrabi, lettuce, chard beet, carrots, peppers, leek, radish, red cabbage, loose leaved lettuce, celery (two specimens), spinach, topinambur, white cabbage, and parsley. Cell decomposition was done by treatment of the plant material with an electric dispersing apparatus (Ultra-Turrax) in buffer solution (liquid shearing). The homogenates were separated into supernatants (cytosoles)and pellets by means of centrifugation. Cell decomposition of the plants by crushing with quartz sand after lyophilization (solid shearing) required much more technical effort and for some elements created problems with the blind values. At least 50% on the average of the elements Zn, Cd, Rb, and K could be transferred to the solutions by the dispersing treatment with Ultra-Turrax. In many cases, the cytosole-borne detectable contents of these 5 elements were above 70%. The solubility of Zn and Cd was more strongly dependent on the plant species than that of Cu, Rb, and K. All five elements thus can be analysed by conventional methods for further enhanced speciation. Mn, Ca, and especially Fe and Sr for the most part were found to be bonded to solid cell constituents. However, the solubility characteristics of Ca and Mn and Sr in particular was very homogeneous. In some plants, the contents of Mn and Sr in the cytosoles was approx. 90%, so that comprehensive speciation of these elements is possible. (orig./AJ)

  8. Evolution of the Arctic Calanus complex: an Arctic marine avocado?

    OpenAIRE

    Berge, Jørgen; Gabrielsen, Tove M.; Mark A Moline; Renaud, Paul

    2012-01-01

    Before man hunted the large baleen whales to near extinction by the end of the nineteenth century, Arctic ecosystems were strongly influenced by these large predators. Their main prey were zooplankton, among which the calanoid copepod species of the genus Calanus, long considered key elements of polar marine ecosystems, are particularly abundant. These herbivorous zooplankters display a range of adaptations to the highly seasonal environments of the polar oceans, most notably extensive energy...

  9. Arctic whaling : proceedings of the International Symposium Arctic Whaling February 1983

    NARCIS (Netherlands)

    Jacob, H.K. s'; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the biol

  10. Global change and climate-vegetation classification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three phrases of the quantitative study of climate-vegetation classification and their characteristics are presented based on the review of advance in climate-vegetation interaction, a key issue of "global change and terrestrial ecosystems (GCTE)" which is the core project of International Geosphere-Biosphere Programme (IGBP): (ⅰ) characterized by the correlation between natural vegetation types and climate; (ⅱ) characterized by climatic indices which have obviously been restricted to plant ecophysiology; (ⅲ) characterized by coupling both structure and function of vegetation. Thus, the prospective of climate-vegetation classification for global change study in China was proposed, especially the study coupling climate-vegetation classification models with atmospheric general circulation models (GCMs) was emphasized.

  11. Sensitivity analysis of a wetland methane emission model based on temperate and arctic wetland sites

    Directory of Open Access Journals (Sweden)

    J. van Huissteden

    2009-12-01

    Full Text Available Modelling of wetland CH4 fluxes using wetland soil emission models is used to determine the size of this natural source of CH4 emission on local to global scale. Most process models of CH4 formation and soil-atmosphere CH4 transport processes operate on a plot scale. For large scale emission modelling (regional to global scale upscaling of this type of model requires thorough analysis of the sensitivity of these models to parameter uncertainty. We applied the GLUE (Generalized Likelihood Uncertainty Analysis methodology to a well-known CH4 emission model, the Walter-Heimann model, as implemented in the PEATLAND-VU model. The model is tested using data from two temperate wetland sites and one arctic site. The tests include experiments with different objective functions, which quantify the fit of the model results to the data.

    The results indicate that the model 1 in most cases is capable of estimating CH4 fluxes better than an estimate based on the data avarage, but does not clearly outcompete a regression model based on local data; 2 is capable of reproducing larger scale (seasonal temporal variability in the data, but not the small-scale (daily temporal variability; 3 is not strongly sensitive to soil parameters, 4 is sensitive to parameters determining CH4 transport and oxidation in vegetation, and the temperature sensitivity of the microbial population. The GLUE method also allowed testing of several smaller modifications of the original model.

    We conclude that upscaling of this plot-based wetland CH4 emission model is feasible, but considerable improvements of wetland CH4 modelling will result from improvement of wetland vegetation data.

  12. Carbon Source Utilization of Microbes in Saline Soil of Three Vegetation Types in Xinjiang, China%新疆盐渍土3种植被类型土壤微生物碳源利用

    Institute of Scientific and Technical Information of China (English)

    罗倩; 黄宝灵; 唐治喜; 来利明; 魏伟; 郑元润

    2013-01-01

    Soil microbial process plays an important role in the conversion of soil organic carbon into inorganic carbon, which is significant for the global carbon cycle. The aim of this study was to investigate the microbial functional diversity of carbon source utilization in three vegetation types under natural conditions along Sangong River basin in Fukang, Xinjiang, China. The three typical vegetation types were dominated by Haloxylon ammodendron, Reaumuria soongorica, and Cleistogenes chinensis, respectively. The soil type is saline soil in this area with varied alkalinity. BIOLOG method was used to determine capability of soil microorganisms in utilizing 31 types of single carbon source. Correlation between soil physicochemical property (pH, water content, total soluble salt) and AWCD (the average well color development), Shannon diversity index, richness value were analyzed. Microbial AWCD in H. ammodendron plot was significantly higher than that of the other two plots (P<0.01). pH value (pearson correlation=0.798, P<0.01) and total carbon content (pearson correlation=0.655, P<0.05) of the soil were closely associated with the value of AWCD, while the effect of water content and total soluble salt was not significant. In this study, the H. ammodendron vegetation had the highest soil total carbon content as well as the highest soil alkalinity while the ability of utilizing carbon source of its soil microbial community was higher than the other two vegetation types. The analysis of normalised optical density (OD) data with PCA (principal component analysis) showed that eleven carbon sources (five types of carbohydrates, two types of amino acid, four types of carboxylic acids) were well used by the soil microbes of H, ammodendron vegetation, six carbon sources (one of the carbohydrates, three of amino acid, two of carboxylic acids) were better metabolized in R. soongorica community. In addition, the soil microbes in C. chinensis vegetation only effectively utilized five

  13. Terrestrial transect study on driving mechanism of vegetation changes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In terms of Chinese climate-vegetation model based on the classification of plant functional types, to- gether with climatic data from 1951 to 1980 and two future climatic scenarios (SRES-A2 and SRES-B2) in China from the highest and the lowest emission scenarios of greenhouse gases, the distribution patterns of vegetation types and their changes along the Northeast China Transect (NECT) and the North-South Transect of Eastern China (NSTEC) were simulated in order to understand the driving mechanisms of vegetation changes under climatic change. The results indicated that the vegetation distribution patterns would change significantly under future climate, and the major factors driving the vegetation changes were water and heat. However, the responses of various vegetation types to the changes in water and heat factors were obviously different. The vegetation changes were more sensi- tive to heat factors than to water factors. Thus, in the future climate warming will significantly affect vegetation distribution patterns.

  14. Arctic shipping emissions inventories and future scenarios

    OpenAIRE

    J. J. Corbett; D. A. Lack; J. J. Winebrake; Harder, S; J. A. Silberman; Gold, M.

    2010-01-01

    The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon – a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understa...

  15. Arctic cephalopod distributions and their associated predators

    OpenAIRE

    Gardiner, Kathleen; Terry A Dick

    2010-01-01

    Cephalopods are key species of the eastern Arctic marine food web, both as prey and predator. Their presence in the diets of Arctic fish, birds and mammals illustrates their trophic importance. There has been considerable research on cephalopods (primarily Gonatus fabricii) from the north Atlantic and the west side of Greenland, where they are considered a potential fishery and are taken as a by-catch. By contrast, data on the biogeography of Arctic cephalopods are still incomplete. This stud...

  16. Shaping a Sustainability Strategy for the Arctic

    OpenAIRE

    Azcarate, Juan; Balfors, Berit; Destouni, Georgia; Bring, Arvid

    2011-01-01

    The development of the Arctic is shaped by the opportunities and constraints brought by climate change and technological advances. In the Arctic, warmer climate is expected to affect ecosystems, local communities and infrastructure due to a combination of effects like reduced sea ice and glaciers, thawing permafrost and increased frequency of floods. Less ice and new technologies mean openings to exploit natural resources in the Arctic. Fishing, mining, hydrocarbon extraction and vessel trans...

  17. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    Science.gov (United States)

    Stein, R.; Coakley, B.

    2009-04-01

    Nansen Arctic Drilling Program as well as by sponsorships from British Petroleum, ConocoPhillips, ExxonMobil, Norwegian Petroleum Directorate, StatoilHydro, and Shell International. The major targets of the workshop were: (1) to bring together an international group of Arctic scientists, young scientists and ocean drilling scientists to learn and exchange ideas, experience and enthusiasm about the Arctic Ocean; (2) to develop a scientific drilling strategy to investigate the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system; (3) to summarize the technical needs, opportunities, and limitations of drilling in the Arctic; (4) to define scientific and drilling targets for specific IODP-type campaigns in Arctic Ocean key areas to be finalized in the development of drilling proposals. Following overview presentations about the history of the Arctic Ocean, legacy of high-latitude ocean drilling, existing site-survey database, technical needs for high-latitude drilling, possibilities of collaboration with industry, and the process of developing ocean-drilling legs through IODP, the main part of the workshop was spent in thematic and regional break-out groups discussing the particular questions to be addressed by drilling and the particular targets for Arctic scientific drilling. Within the working groups, key scientific questions (related to the overall themes paleoceanography, tectonic evolution, petrology/geochemistry of basement, and gas hydrates) and strategies for reaching the overall goals were discussed and - as one of the main results - core groups for further developing drilling proposals were formed. Based on discussions at this workshop, approximately ten new pre-proposals are planned to be submitted to IODP for the April 01- 2009 deadline. We hope that the development of new scientific objectives through the pre-proposal process will help reshape plans for scientific ocean drilling beyond 2013 and direct

  18. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing...... of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic. The GPS measurements are compared with the Arctic tidal model AOTIM-5, which assimilates tide...

  19. Rossby Waves in the Arctic Ocean

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Schmith, Torben

    The Arctic Ocean has a characteristic stable stratification with fresh and cold water occupying the upper few hundred meters and the warm and more saline Atlantic waters underneath. These water masses are separated by the cold halocline. The stability of the cold halocline regulates the upward...... directed turbulent heat flux from the Atlantic water to the Arctic water. This heat flux is a part of the arctic energy budget and is important for large scale sea ice formation and melting. Due to the strong vertical stratification combined with its almost circular boundary, the Arctic Ocean supports...

  20. Plate tectonic history of the Arctic

    Science.gov (United States)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  1. [Effects of different fertilization regimes on abundance and community structure of the nirK-type denitrifying bacteria in greenhouse vegetable soils].

    Science.gov (United States)

    Zeng, Xi-Bai; Wang, Ya-Nan; Wang, Yu-Zhong; Bai, Ling-Yu; Li, Lian-Fang; Duan, Ran; Su, Shi-Ming; Wu, Cui-Xia

    2014-02-01

    The community structure and abundance of nirK-type denitrifying bacteria in different soil layers (0-20 cm and 20-40 cm) under various fertilization regimes in Wuwei, Gansu Province were investigated by the combination of terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR. Results showed that the nirK-type denitrifying bacteria community structure was significantly affected by fertilization regimes, especially for 70, 156 and 190 bp T-RFs that represented the dominant populations in greenhouse soil. Fertilization regimes significantly influenced the abundance of nirK gene in the 0-20 cm soil layer with the highest abundance of nirK gene copy number (2.16 x 10(7) copies x g(-1) soil) detected in the manure treatment (M), which was 2.04 and 2.02 times of that in the control (CK) and chemical fertilizer (NPK) treatments, respectively. Both the dominant population and abundance of nirK-type denitrifying bacteria in the greenhouse soil were significantly different between the 0-20 cm and 20-40 cm soil layers, and the nirK-type denitrifying bacteria community structure and abundance in the greenhouse soil were obviously different from that in the field. Soil pH, soil organic matter content and nitrate-N content had the greatest influence on the bacterial community composition. Phylogenetic analysis indicated that there were not only anaerobic nirK-type denitrifying bacteria in greenhouse soil, but also aerobic denitrifying bacteria, such as Rhizobium, Ochrobactrum, Agrobacterium. PMID:24830252

  2. 毛乌素沙地南缘不同植被恢复类型的土壤养分效应%Effects of Different Vegetation Restoration Types on Soil Nutrients in Southern Edge of Mu Us Sandy Land

    Institute of Scientific and Technical Information of China (English)

    杨越; 谷斯; 孙保平; 杜会石; 赵岩; 钟晓娟

    2012-01-01

    为了探讨植被恢复对土壤养分的影响,研究了毛乌素沙地南缘天然草地、人工封育草地、撂荒地、退耕还林地、固定沙地5种不同植被恢复类型区的土壤养分特征.结果表明:不同植被恢复类型对土壤有机质、全氮、有效氮、速效磷的影响存在明显差异;灌草结合的人工封育草地、退耕还林地、固定沙地土壤有机质、全氮、有效氮的含量高于以草本为主的天然草地和撂荒地,但土壤速效磷的含量刚好相反;植被对表层0~20 cm土壤养分的影响大于下层20~60 cm土壤,植被作用下土壤养分向表层富集;采用柠条进行退耕还林,能够充分发挥其根系特性,有利于改良深层土壤养分.%In order to discuss the effects of vegetation restoration on soil nutrient status, the variation characteristics of soil nutrients among S different vegetation restoration types (natural grassland, enclosed grassland, abandoned land, land as returning farmland to woodland, fixed sandy land) on soil nutrient status were studied in southern edge of Mu Us sandy land. The results showed that: the influence of different vegetation restoration types on soil organic matter, total nitrogen, available nitrogen and available phosphorus were conspicuously different. The contents of soil organic matter, total nitrogen and available nitrogen in these lands (enclosed grassland, land as returning farmland to woodland and fixed sandy land) which were the combination of shrub and herb, were higher than in those lands (natural grassland and abandoned land) with mainly herb. But just the opposite, the contents of soil available phosphorus in these were lower than in those. The influence of vegetation on the surface 0-20 cm soil nutrient was greater than that on the deep 20-60 cm soil, also the soil nutrient was to surface enrichment under the action of vegetation. Planting the species (Caragana korshinskh) for converting cropland to forest could

  3. Diversidad de reptiles en tres tipos de vegetación del estado de Hidalgo, México Diversity of reptiles in three vegetation types of the Hidalgo state, México

    Directory of Open Access Journals (Sweden)

    Raciel Cruz-Elizalde

    2012-06-01

    Full Text Available La zona sureste del estado de Hidalgo presenta diversos tipos de vegetación, como el bosque mesófilo de montaña, bosque de pino-encino y bosque de pino, con alta riqueza de reptiles. En este estudio, se analizó la diversidad alfa y beta de los reptiles en los 3 tipos de vegetación presentes en la zona sureste. Durante el periodo de recolección, de junio 2008 a agosto del 2009, se realizaron 12 salidas, 1 por mes, con duración de 3 días cada una. La diversidad de reptiles está compuesta por 25 especies, incluyendo un registro nuevo para el estado, la culebra Thamnophis scaliger. El bosque mesófilo de montaña (BMM presentó la mayor riqueza, con 15 especies, seguido del bosque de pino (BP, con 13, y el bosque de pino-encino (BPE, con 12. Las asociaciones realizadas entre el BMM-BP y BMM-BPE presentaron la más alta disimilitud en especies, y el menor valor fue para el BPE-BP. Este estudio muestra la riqueza y distribución de las especies de los reptiles en los diferentes tipos de vegetación del sureste del estado y presenta nuevos registros de especies para la entidad. El conocimiento de la riqueza de especies por tipos de vegetación de este estudio sienta las bases sobre la biodiversidad, lo que ayuda a plantear estudios dirigidos a la conservación de este grupo.The southeast of Hidalgo in Mexico includes various vegetation types, such as cloud forest, pine-oak forest and pine forest, all harbouring a high species richness of reptiles. In this study we analyzed the alpha and beta diversity of reptiles in 3 vegetation types in the southeast of the state. The field work period was from June 2008 to August 2009, comprising 12 sampling periods of 3 days, 1 per month. The diversity of reptiles is composed of 25 species, reporting the snake Thamnophis scaliger as a new record for the state. The cloud forest (CF has the highest richness, with 15 species, followed by pine forest (PF, with 13, and finally, the pine-oak forest (POF, with 12

  4. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.

    Science.gov (United States)

    Bokhorst, Stef; Phoenix, Gareth K; Berg, Matty P; Callaghan, Terry V; Kirby-Lambert, Christopher; Bjerke, Jarle W

    2015-11-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may

  5. Thermal properties for vegetation cover

    Science.gov (United States)

    Aleksyutina, D.; Motenko, R.

    2011-12-01

    Different samples of undisturbed vegetation cover were studied under laboratory conditions. Samples were collected from New Chara city, north of the Chita region. Vegetation cover in this area is represented by moss, lichen and tussock growth. Thermal properties were investigated by the I-st type regular mode method (a-calorimeter), the freezing temperature was studied by cryoscopic methods. The dry density of sampled specimens varies from 0.04 to 0.24 g/cm3, and humidity varies from 250 to 375 percent. The freezing temperature depends on moisture content and varies from -0.2 to 0 degrees centigrade. The vegetation cover had low thermal conductivities which varies from 0.05 to 0.46 W/(m*K) in unfrozen conditions, and from 0.07 to 1.14 W/(m*K) in frozen conditions, according to density and moisture content. Diffusivity of samples varies from 0.073*10-6 to 0.114*10-6 m2/s in thawed conditions, and from 0.174*10-6 to 0.584*10-6 m2/s in frozen conditions. The sod (bottom of vegetation cover) had relatively high thermal properties. Thermal properties of vegetation cover and peat (turf) were compared. The thermal conductivity of peat was much higher than thermal conductivity of vegetation cover. This data may be used for modeling of the thickness of the seasonally thawed layer and ground temperature variation. The knowledge of thermal properties of these samples allows us to view vegetation cover as a separate layer of geological section.

  6. Sensitivity analysis of modelled responses of vegetation dynamics on the Tibetan Plateau to doubled CO2 and associated climate change

    Science.gov (United States)

    Qiu, Linjing; Liu, Xiaodong

    2016-04-01

    Increases in the atmospheric CO2 concentration affect both the global climate and plant metabolism, particularly for high-altitude ecosystems. Because of the limitations of field experiments, it is difficult to evaluate the responses of vegetation to CO2 increases and separate the effects of CO2 and associated climate change using direct observations at a regional scale. Here, we used the Community Earth System Model (CESM, version 1.0.4) to examine these effects. Initiated from bare ground, we simulated the vegetation composition and productivity under two CO2 concentrations (367 and 734 ppm) and associated climate conditions to separate the comparative contributions of doubled CO2 and CO2-induced climate change to the vegetation dynamics on the Tibetan Plateau (TP). The results revealed whether the individual effect of doubled CO2 and its induced climate change or their combined effects caused a decrease in the foliage projective cover (FPC) of C3 arctic grass on the TP. Both doubled CO2 and climate change had a positive effect on the FPC of the temperate and tropical tree plant functional types (PFTs) on the TP, but doubled CO2 led to FPC decreases of C4 grass and broadleaf deciduous shrubs, whereas the climate change resulted in FPC decrease in C3 non-arctic grass and boreal needleleaf evergreen trees. Although the combination of the doubled CO2 and associated climate change increased the area-averaged leaf area index (LAI), the effect of doubled CO2 on the LAI increase (95 %) was larger than the effect of CO2-induced climate change (5 %). Similarly, the simulated gross primary productivity (GPP) and net primary productivity (NPP) were primarily sensitive to the doubled CO2, compared with the CO2-induced climate change, which alone increased the regional GPP and NPP by 251.22 and 87.79 g C m-2 year-1, respectively. Regionally, the vegetation response was most noticeable in the south-eastern TP. Although both doubled CO2 and associated climate change had a

  7. Arctic Basemaps In Google Maps

    DEFF Research Database (Denmark)

    Muggah, J.; Mioc, Darka

    2010-01-01

    the advantages of the use of Google Maps, to display the OMG's Arctic data. The map should should load the large Artic dataset in a reasonable time. The bathymetric images were created using software in Linux written by the OMG, and a step-by-step process was used to create images from the multibeam data...... collected by the OMG in the Arctic. The website was also created using Linux operating system. The projection needed to be changed from Lambert Conformal Conic (useful at higher Latitudes) to Mercator (used by Google Maps) and the data needed to have a common colour scheme. After creating and testing...... a prototype website using Google Ground overlay and Tile overlay, it was determined that the high resolution images (10m) were loading very slowly and the ground overlay method would not be useful for displaying the entire dataset. Therefore the Tile overlays were selected to be used within Google Maps. Tile...

  8. Aerosols indirectly warm the Arctic

    Directory of Open Access Journals (Sweden)

    T. Mauritsen

    2010-07-01

    Full Text Available On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.

  9. Stories from the Arctic field

    Science.gov (United States)

    Cain, Michelle

    2016-04-01

    I will discuss my experience co-ordinating a range of communication activities for a multi-university research programme called Methane in the Arctic: Measurements and Modelling. The project included ground- and aircraft-based fieldwork in the European Arctic, as well as computer modelling. Our communication activities included: our own field blog (www.arcticmethane.wordpress.com), which was syndicated to the Scientific American Expeditions blog; writing articles for other blogs with a wider audience than our own; use of twitter; and podcasting our field work. The grand finale to our communications work was a live event at a science festival, in which we took the audience along with us on a recreated research flight, complete with a life-size mock up of a section of our research aircraft. I will discuss my experiences of these forms of communication, and give an evaluation of their successes and failures.

  10. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    Science.gov (United States)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  11. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  12. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (bird-N rich tundra with very diverse ages ranging from 235 to 2300 cal BP and thickness up to 110 cm. The growth rates for this tundra (62 cm core, 18 AMS 14C dates) were high (1.5-3.0 mm/yr) between 1568 and 1804 AD and then substantially declined for the period between 1804 and 1929 AD (0.2 mm/yr). These findings deliver an additional argument, that the organic matter accumulation is driven not only directly by climatic conditions but also by birds' contribution to the tundra N-pool. Skrzypek G, Wojtuń B, Richter D, Jakubas D, Wojczulanis-Jakubas K, Samecka-Cymerman A, 2015. Diversification of nitrogen sources in various tundra vegetation types in the high Arctic. PLoS ONE 10(9): e0136536.

  13. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic....... This results in high transport costs. The building materials situation in Greenland may potentially be improved by intensifying the reuse of building materials or by promoting the local production of building materials....

  14. Analysis of the vegetation of the sandstone ridges (Ib land type of the north-eastern parts of the Mapungubwe National Park, Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Albie R. Gotze

    2008-05-01

    Full Text Available The establishment of the Mapungubwe National Park has been an objective of several conservationists for many years. The ultimate objective is that this park should become a major component of a Transfrontier National Park shared by Botswana, Zimbabwe and South Africa. The aim of this study was to identify, classify and describe the plant communities present in the Ib land type of the park. Sampling was done by means of the Braun-Blanquet method. A total of 48 stratified random relevés were sampled in the Ib land type. All relevé data were imported into a TURBOVEG database, after which the numerical classification technique TWINSPAN was used as a first approximation. Subsequently, Braun-Blanquet procedures were used to refine data and a phytosociological table was constructed, using the visual editor, MEGATAB. Two plant communities and several subcommunities and variants were identified and described from the phytosociological table.

  15. Arctic whaling: proceedings of the International Symposium Arctic Whaling February 1983

    OpenAIRE

    H.K. 's Jacob; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the biology of whales Edward Mitchell Ecology of North Atlantic Boreal and Arctic Monodontid and Mysticete Whales Allen P. McCartney History of native whaling in the Arctic and Subarctic Albert A. Dekin Jr...

  16. The Weird Vegetable Price

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Chinese Government faces the task of stabilizing vegetable prices to avoid steep increases and dips Fluctuations of vegetable prices in China have recently caused near panic in the domestic market.Purchase prices for farm produce are decreasing dramatically

  17. Procedures for Sampling Vegetation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report outlines vegetation sampling procedures used on various refuges in Region 3. The importance of sampling the response of marsh vegetation to management...

  18. Tanker under retrofit for arctic service gets new propulsion design

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-26

    The world's largest azimuthing propulsion drive will be installed on an oil tanker under retrofit for arctic service by a Finnish shipyard. And plans call for the drive's installation on four 135,000 cu m LNG carriers. The 11.4-mw (15,275 hp) Azipod azimuthing electric propulsion drive is being installed on Nemarc's 16,000 dwt arctic tanker M/T Uikku. The major difference between the Azipod system and traditional Z-type thrusters is that the Azipod's propulsion motor is an electric ac synchronous motor located inside the azimuthing unit. The motor drives a fixed-pitch propeller and is speed-controlled (0--100%) by a cycloconverter. The rotatable Azipod drive enables full power thrust in any desired direction.

  19. Experimental icing affects growth, mortality, and flowering in a high Arctic dwarf shrub.

    Science.gov (United States)

    Milner, Jos M; Varpe, Øystein; van der Wal, René; Hansen, Brage Bremset

    2016-04-01

    Effects of climate change are predicted to be greatest at high latitudes, with more pronounced warming in winter than summer. Extreme mid-winter warm spells and heavy rain-on-snow events are already increasing in frequency in the Arctic, with implications for snow-pack and ground-ice formation. These may in turn affect key components of Arctic ecosystems. However, the fitness consequences of extreme winter weather events for tundra plants are not well understood, especially in the high Arctic. We simulated an extreme mid-winter rain-on-snow event at a field site in high Arctic Svalbard (78°N) by experimentally encasing tundra vegetation in ice. After the subsequent growing season, we measured the effects of icing on growth and fitness indices in the common tundra plant, Arctic bell-heather (Cassiope tetragona). The suitability of this species for retrospective growth analysis enabled us to compare shoot growth in pre and postmanipulation years in icing treatment and control plants, as well as shoot survival and flowering. Plants from icing treatment plots had higher shoot mortality and lower flowering success than controls. At the individual sample level, heavily flowering plants invested less in shoot growth than nonflowering plants, while shoot growth was positively related to the degree of shoot mortality. Therefore, contrary to expectation, undamaged shoots showed enhanced growth in ice treatment plants. This suggests that following damage, aboveground resources were allocated to the few remaining undamaged meristems. The enhanced shoot growth measured in our icing treatment plants has implications for climate studies based on retrospective analyses of Cassiope. As shoot growth in this species responds positively to summer warming, it also highlights a potentially complex interaction between summer and winter conditions. By documenting strong effects of icing on growth and reproduction of a widespread tundra plant, our study contributes to an understanding of

  20. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    Science.gov (United States)

    Bjerke, Jarle W.; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Jepsen, Jane U.; Lovibond, Sarah; Vikhamar-Schuler, Dagrun; Tømmervik, Hans

    2014-08-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32-39%) of the Arctic, but much of the Arctic shows stable (57-64%) or reduced productivity (browning, factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011-September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000-11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research.

  1. European Vegetation Archive (EVA)

    NARCIS (Netherlands)

    Chytrý, Milan; Hennekens, S.M.; Jiménez-Alfaro, Borja; Schaminée, J.H.J.; Haveman, Rense; Janssen, J.A.M.

    2016-01-01

    The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and region

  2. Dutch Vegetation Database (LVD)

    NARCIS (Netherlands)

    Hennekens, S.M.

    2011-01-01

    The Dutch Vegetation Database (LVD) hosts information on all plant communities in the Netherlands. This substantial archive consists of over 600.000 recent and historic vegetation descriptions. The data provide information on more than 85 years of vegetation recording in various habitats covering te

  3. Drawer Type Household Vegetable Growth Cabinet Control System Based on the Internet of Things%基于物联网的抽屉式家用蔬菜生长柜控制系统

    Institute of Scientific and Technical Information of China (English)

    蔡宇; 周泓; 李许可; 朱斌斌; 代永辉

    2015-01-01

    Shortage of land resources and population growth determines the urban residents are difficult to obtain private plant cultivation land , in order to meet the urban residents and special environment of the user of the demand for high -quality green vegetables , is proposed a drawer type household vegetable growth cabinet control system based on the Inter -net of things .Vegetable growth cabinet provides a fine control of artificial environmental conditions for the growth of vege -tables , each drawer as a control unit , through a variety of sensors and control devices for perceiving and regulating light , temperature , humidity and other environmental factors , to meet different vegetables required at different stages of produc-tion of light , temperature , moisture , nutrients and other environmental factors needs , environmental factors control curve stored in the control system of the cabinet , and through the Internet of things update .The results show that vegetable growth cabinet has little influence by natural conditions , plant production planning is strong , fast growing , short cycle , high degree of automation , non-polluting , and multi-dimensional cultivation methods can save 3 to 5 times of the land .%土地资源的紧缺和人口的增长性决定了城市居民很难获得私有的植物栽培土地。为了满足城市居民和特殊环境用户对高品质绿色蔬菜的需求,提出了一种基于物联网的抽屉式家用蔬菜生长柜方案。蔬菜生长柜以每一抽屉为一控制单元,通过各种传感器和调节控制设备对光照、温度、湿度等环境因素进行感知和调节,满足不同蔬菜在不同生产阶段所需的光照、温度、水分、营养等环境因子需求。其环境因素的控制曲线保存于柜体的控制系统中,可通过物联网更新升级。研究结果表明:蔬菜生长柜受自然条件影响小,作物生产计划性强,生长速度快,周期

  4. Long-term protection effects of national reserve to forest vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Changbai Mountain Nature Reserve (CNR) was established in 1960 to protect the virgin Korean pine mixed hardwood forest, a typical temperate forest of northeast China. We conducted systematic stud- ies of vascular diversity patterns on the north slope of the CNR mountainside forests (800-1700 m a.s.l.) in 1963 and 2006 respectively. The aim of this comparison is to assess the long-term effects of the protection on plant biodiversity of CNR during the interval 43 years. The research was carried out in three types of forests: mixed coniferous and broad-leaved forest (MCBF), mixed coniferous forest (MCF), and sub-alpine coniferous forest (SCF), characterized by different dominant species. The alpha diversity indicted by species richness and the Shannon-Wiener index were found different in the same elevations and forest types during the 43-year interval. The floral composition and the diversity of vascular species were generally similar along altitudinal gradients before and after the 43-year interval, but some substantial changes were evident with the altitude gradient. In the tree layers, the dominant species in 2006 were similar to those of 1963, though diversity declined with altitude. The indices in the three forest types did not differ significantly between 1963 and 2006, and these values even increased in the MCBF and MCF from 1963 to 2006. However, originally dominant species, P. koraiensis for ex- ample, tended to decline, while the proportion of broad-leaved trees increased, and the species turn- over in the succession layers trended to shift to higher altitudes. The diversity pattern of the under canopy fluctuated along the altitudinal gradient due to micro-environmental variations. Comparison of the alpha diversity in the three forests shows that the diversity of the shrub and herb layer decreased with time. During the process of survey, we also found some rare and medicinal species disappeared. Analysis indicates that the changes of the diversity

  5. Long-term protection effects of national reserve to forest vegetation in 4 decades: Biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China

    Institute of Scientific and Technical Information of China (English)

    BAI Fan; SANG WeiGuo; LI GuangQi; LIU RuiGang; CHEN LingZhi; WANG Kun

    2008-01-01

    The Changbai Mountain Nature Reserve (CNR) was established in 1960 to protect the virgin Korean pine mixed hardwood forest, a typical temperate forest of northeast China. We conducted systematic stud-ies of vascular diversity patterns on the north slope of the CNR mountainside forests (800-1700 m a.s.I.) in 1963 and 2006 respectively. The aim of this comparison is to assess the long-term effects of the protection on plant biodiversity of CNR during the interval 43 years. The research was carried out in three types of forests: mixed coniferous and broad-leaved forest (MCBF), mixed coniferous forest (MCF), and sub-alpine coniferous forest (SCF), characterized by different dominant species. The alpha diversity indicted by species richness and the Shannon-Wiener index were found different in the same elevations and forest types during the 43-year interval. The floral composition and the diversity of vascular species were generally similar along altitudinal gradients before and after the 43-year interval, but some substantial changes were evident with the altitude gradient. In the tree layers, the dominant species in 2006 were similar to those of 1963, though diversity declined with altitude. The indices in the three forest types did not differ significantly between 1963 and 2006, and these values even increased in the MCBF and MCF from 1963 to 2006. However, originally dominant species, P. koraiensis for ex-ample, tended to decline, while the proportion of broad-leaved trees increased, and the species turn-over in the succession layers trended to shift to higher altitudes. The diversity pattern of the under canopy fluctuated along the altitudinal gradient due to micro-environmental variations. Comparison of the alpha diversity in the three forests shows that the diversity of the shrub and herb layer decreased with time. During the process of survey, we also found some rare and medicinal species disappeared. Analysis indicates that the changes of the diversity pattern

  6. Long-term protection effects of National Reserve to forest vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China.

    Science.gov (United States)

    Bai, Fan; Sang, WeiGuo; Li, GuangQi; Liu, RuiGang; Chen, LingZhi; Wang, Kun

    2008-10-01

    The Changbai Mountain Nature Reserve (CNR) was established in 1960 to protect the virgin Korean pine mixed hardwood forest, a typical temperate forest of northeast China. We conducted systematic studies of vascular diversity patterns on the north slope of the CNR mountainside forests (800-1700 m a.s.l.) in 1963 and 2006 respectively. The aim of this comparison is to assess the long-term effects of the protection on plant biodiversity of CNR during the interval 43 years. The research was carried out in three types of forests: mixed coniferous and broad-leaved forest (MCBF), mixed coniferous forest (MCF), and sub-alpine coniferous forest (SCF), characterized by different dominant species. The alpha diversity indicted by species richness and the Shannon-Wiener index were found different in the same elevations and forest types during the 43-year interval. The floral composition and the diversity of vascular species were generally similar along altitudinal gradients before and after the 43-year interval, but some substantial changes were evident with the altitude gradient. In the tree layers, the dominant species in 2006 were similar to those of 1963, though diversity declined with altitude. The indices in the three forest types did not differ significantly between 1963 and 2006, and these values even increased in the MCBF and MCF from 1963 to 2006. However, originally dominant species, P. koraiensis for example, tended to decline, while the proportion of broad-leaved trees increased, and the species turnover in the succession layers trended to shift to higher altitudes. The diversity pattern of the under canopy fluctuated along the altitudinal gradient due to micro-environmental variations. Comparison of the alpha diversity in the three forests shows that the diversity of the shrub and herb layer decreased with time. During the process of survey, we also found some rare and medicinal species disappeared. Analysis indicates that the changes of the diversity pattern in

  7. Pacific Northwest Laboratory Alaska (ARCTIC) research program

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, W.C.; Eberhardt, L.E.

    1980-03-01

    The current program continues studies of arctic ecosystems begun in 1959 as part of the Cape Thompson Program. Specific ecosystem aspects include studies of the ecology of arctic and red foxes, small mammel and bird population studies, lichen studies, and radiation ecology studies. (ACR)

  8. International Regulation of Central Arctic Ocean Fisheries

    NARCIS (Netherlands)

    Molenaar, E.J.

    2016-01-01

    Due in particular to the impacts of climate change, the adequacy of the international regulation of Central Arctic Ocean fisheries has come under increasing scrutiny in recent years. As shown in this article, however, international regulation of Central Arctic Ocean fisheries is by no means entirely

  9. Traditional Ecological Knowledge in Arctic EIA's

    DEFF Research Database (Denmark)

    Egede, Parnuna Petrina; Hansen, Anne Merrild

    2016-01-01

    The search for new oil and mineral reserves in the Arctic is increasing. This has called for both local and international concerns and opposition to the activities based on environmental apprehensions. Environmental Impact Assessments (EIA’s) have been implemented in legislations by the Arctic...

  10. Arctic freshwater export: Status, mechanisms, and prospects

    NARCIS (Netherlands)

    Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; Woodgate, R.

    2015-01-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980–2000, with an extra ˜ 5000 km3 — about 25% — being stored. The sources of freshwater to the Arctic from precipitation and runo

  11. Linking Arctic amplification and local feedbacks

    Science.gov (United States)

    Balcerak, Ernie

    2011-11-01

    Climate simulations show that as the Earth warms, the Arctic warms more than the average global warming. However, models differ on how much more the Arctic warms, and although scientists have proposed a variety of mechanisms to explain the Arctic warming amplification, there is no consensus on the main reasons for it. To shed light on this issue, Hwang et al. investigated the relationship between Arctic amplification and poleward energy transport and local Arctic feedbacks, such as changes in cloud cover or ice loss, across a group of models. The researchers noted that differences in atmospheric energy transport did not explain the ranges of polar amplification; rather, models with more amplification showed less energy transport into high latitudes. The authors found that decreasing energy transport is due to a coupled relationship between Arctic amplification and energy transport: Arctic amplification reduces the equator-to-pole temperature gradient, which strongly decreases energy transport. They suggest that this coupled relationship should be taken into account in studies of Arctic amplification. (Geophysical Research Letters, doi:10.1029/2011GL048546, 2011)

  12. Health in the Arctic and climate change

    OpenAIRE

    Sloth Pedersen, Henning

    2007-01-01

    The Arctic environment is like a magnifying glass. Many of the hazards stemming from industrial activity in the South tend to concentrate in the North. This is true for DDT, PCB, heavy metals and many other substances that may endanger human health. Climate change is yet another example of how the negative impact of industrial activity may be magnified in the Arctic region.

  13. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  14. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    The Arctic embraces one of the simplest terrestrial ecosystems in the world and yet it covers roughly 11% of the world’s surface. Summer temperatures rarely exceed 10°C and most of the limited precipitation falls as snow. The landmasses are predominantly polar tundra, while the Arctic Ocean...... is frozen solid for the main part of the year. However, in recent decades, arctic temperatures have in-creased between two and three times that of the global averages, which have had a substantial impact on the physical environment of the arctic ecosystem, such as deglaciation of the Greenland inland ice...... sheet, loss of multiannual sea-ice and significant advances in snowmelt days. The biotic components of the arctic ecosystem have also been affected by the rapid changes in climate, for instance resulting in the collapse of the collared lemming cycle, advances in spring flowering and changes in the intra...

  15. Marine Arctic science capability making big strides

    Science.gov (United States)

    Johnson, Leonard; Brass, Garrett

    The profound influence of the Arctic Ocean on global environment, the rapid variability of Arctic processes, and the unresolved geology of the ocean floor have led to growing scientific interest in this region. Ongoing studies are investigating recent historical processes and modern processes such as changes in ocean circulation and ice cover patterns. Sediments beneath the Arctic Ocean record long- and short-term waxing and waning of the cryosphere in the Northern Hemisphere and its linkages to bottom water renewal and faunal adaptation. Underlying basement rocks reflect the tectonic history of the ocean basin, including its ridges and plateaus, which are unsampled and of unknown composition and origin. The vulnerability of Arctic populations to environmental problems makes the need to understand the region even more compelling (see, for example, Arctic Monitoring and Assessment Programme, 1997; also see Web site http://www.grida.no/amap).

  16. Establishing Shared Knowledge about Globalization in Asia and the Arctic

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Graczyk, Piotr

    2016-01-01

    We discuss the role of knowledge in relations between Arctic communities and Asia (the Arctic Council observer states: China, India, Japan, Singapore, South Korea). We argue that mutual and shared knowledge between Arctic communities and Asia is necessary for local benefits and comprehensively...... sustainable development for Arctic communities under globalization....

  17. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  18. Ecological factors regulating growth of seaweeds in Arctic communities

    Directory of Open Access Journals (Sweden)

    Shoshina E. V.

    2016-03-01

    Full Text Available Features of seaweeds in the Arctic communities in connection with periodic and unperiodic influences of ecological factors have been analyzed. It has been shown that the existence of benthic algae biocenosis of the northern seas is mainly controlled by the primary periodic environmental factors acting as triggers that determine the direction of vegetative and generative processes, as well as contribute to the emergence of adaptive devices to extreme environmental conditions. Therefore, periodic exposure to environmental factors cause only structural changes in plant communities due to the elastic stability of fucus algae populations acquired as a result of the long process of adaptation to the northern seas conditions. Unperiodic primary factors also violate the ratio of the number by elimination and inhibit growth of certain algae age stages. However thanks to the stability of resistant the algae community can eventually restore its structural and functional organization

  19. Arctic climate response to the termination of the African Humid Period

    Science.gov (United States)

    Muschitiello, Francesco; Zhang, Qiong; Sundqvist, Hanna S.; Davies, Frazer J.; Renssen, Hans

    2015-10-01

    The Earth's climate response to the rapid vegetation collapse at the termination of the African Humid Period (AHP) (5.5-5.0 kyr BP) is still lacking a comprehensive investigation. Here we discuss the sensitivity of mid-Holocene Arctic climate to changes in albedo brought by a rapid desertification of the Sahara. By comparing a network of surface temperature reconstructions with output from a coupled global climate model, we find that, through a system of land-atmosphere feedbacks, the end of the AHP reduced the atmospheric and oceanic poleward heat transport from tropical to high northern latitudes. This entails a general weakening of the mid-latitude Westerlies, which results in a shift towards cooling over the Arctic and North Atlantic regions, and a change from positive to negative Arctic Oscillation-like conditions. This mechanism would explain the sign of rapid hydro-climatic perturbations recorded in several reconstructions from high northern latitudes at 5.5-5.0 kyr BP, suggesting that these regions are sensitive to changes in Saharan land cover during the present interglacial. This is central in the debate surrounding Arctic climate amplification and future projections for subtropical precipitation changes.

  20. Arctic Shrub Growth Response to Climate Variation and Infrastructure Development on the North Slope of Alaska

    Science.gov (United States)

    Ackerman, D.; Finlay, J. C.; Griffin, D.

    2015-12-01

    Woody shrub growth in the arctic tundra is increasing on a circumpolar scale. Shrub expansion alters land-atmosphere carbon fluxes, nutrient cycling, and habitat structure. Despite these ecosystem effects, the drivers of shrub expansion have not been precisely established at the landscape scale. This project examined two proposed anthropogenic drivers: global climate change and local infrastructure development, a press disturbance that generates high levels of dust deposition. Effects of global change were studied using dendrochronology to establish a relationship between climate and annual growth in Betula and Salix shrubs growing in the Alaskan low Arctic. To understand the spatial heterogeneity of shrub expansion, this analysis was replicated in shrub populations across levels of landscape properties including soil moisture and substrate age. Effects of dust deposition on normalized difference vegetation index (NDVI) and photosynthetic rate were measured on transects up to 625 meters from the Dalton Highway. Dust deposition rates decreased exponentially with distance from road, matching previous models of road dust deposition. NDVI tracked deposition rates closely, but photosynthetic rates were not strongly affected by deposition. These results suggest that dust deposition may locally bias remote sensing measurements such as NDVI, without altering internal physiological processes such as photosynthesis in arctic shrubs. Distinguishing between the effects of landscape properties, climate, and disturbance will improve our predictions of the biogeochemical feedbacks of arctic shrub expansion, with potential application in climate change modeling.

  1. Local variability in growth and reproduction of Salix arctica in the High Arctic

    Directory of Open Access Journals (Sweden)

    Noémie Boulanger-Lapointe

    2016-06-01

    Full Text Available Arctic terrestrial ecosystems are heterogeneous because of the strong influences of microtopography, soil moisture and snow accumulation on vegetation distribution. The interaction between local biotic and abiotic factors and global climate patterns will influence species responses to climate change. Salix arctica (Arctic willow is a structuring species, ubiquitous and widespread, and as such is one of the most important shrub species in the High Arctic. In this study, we measured S. arctica reproductive effort, early establishment, survival and growth in the Zackenberg valley, north-east Greenland. We sampled four plant communities that varied with respect to snow conditions, soil moisture, nutrient content and plant composition. We found large variability in reproductive effort and success with total catkin density ranging from 0.6 to 66 catkins/m2 and seedling density from <1 to 101 seedlings/m2. There were also major differences in crown area increment (4–23 cm2/year and stem radial growth (40–74 µm/year. The snowbed community, which experienced a recent reduction in snow cover, supported young populations with high reproductive effort, establishment and growth. Soil nutrient content and herbivore activity apparently did not strongly constrain plant reproduction and growth, but competition by Cassiope tetragona and low soil moisture may inhibit performance. Our results show that local environmental factors, such as snow accumulation, have a significant impact on tundra plant response to climate change and will affect the understanding of regional vegetation response to climate change.

  2. Large increases in Arctic biogenic volatile emissions are a direct effect of warming

    Science.gov (United States)

    Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka

    2016-05-01

    Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.

  3. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

    Science.gov (United States)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.

    2009-12-01

    Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942-2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981-2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.

  4. Comparison modeling for alpine vegetation distribution in an arid area.

    Science.gov (United States)

    Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-07-01

    Mapping and modeling vegetation distribution are fundamental topics in vegetation ecology. With the rise of powerful new statistical techniques and GIS tools, the development of predictive vegetation distribution models has increased rapidly. However, modeling alpine vegetation with high accuracy in arid areas is still a challenge because of the complexity and heterogeneity of the environment. Here, we used a set of 70 variables from ASTER GDEM, WorldClim, and Landsat-8 OLI (land surface albedo and spectral vegetation indices) data with decision tree (DT), maximum likelihood classification (MLC), and random forest (RF) models to discriminate the eight vegetation groups and 19 vegetation formations in the upper reaches of the Heihe River Basin in the Qilian Mountains, northwest China. The combination of variables clearly discriminated vegetation groups but failed to discriminate vegetation formations. Different variable combinations performed differently in each type of model, but the most consistently important parameter in alpine vegetation modeling was elevation. The best RF model was more accurate for vegetation modeling compared with the DT and MLC models for this alpine region, with an overall accuracy of 75 % and a kappa coefficient of 0.64 verified against field point data and an overall accuracy of 65 % and a kappa of 0.52 verified against vegetation map data. The accuracy of regional vegetation modeling differed depending on the variable combinations and models, resulting in different classifications for specific vegetation groups.

  5. Comparison modeling for alpine vegetation distribution in an arid area.

    Science.gov (United States)

    Zhou, Jihua; Lai, Liming; Guan, Tianyu; Cai, Wetao; Gao, Nannan; Zhang, Xiaolong; Yang, Dawen; Cong, Zhentao; Zheng, Yuanrun

    2016-07-01

    Mapping and modeling vegetation distribution are fundamental