WorldWideScience

Sample records for arctic vegetation types

  1. The Arctic Vegetation Type Change retrieved from Spaceborne Observations and its Influence on the Simulation of Permafrost Thawing

    Science.gov (United States)

    Kim, Y.; Wang, Z.

    2017-12-01

    The vegetation types change in Arctic has been studied using 10 years of MODIS land cover product (MCD12Q1). The shrub expansion is observed in Alaska and Northeast Asia, while shrub fraction decreases in North Canada and Southwest Arctic Eurasia. The total Arctic shrub fraction increases 3% in 10 years. The tundra decreases where the shrub expands, and thrives where the shrub retreats. In order to isolate the influence of the vegetation dynamic on the permafrost thawing, the Arctic terrestrial ecosystem in recent decades will be simulated using the Community Land Model (CLM) with and without the vegetation type changes. The energy and carbon exchange on the land surface will also be simulated and compared. Acknowledgement: This work was supported by the Korea Polar Research Institute (KOPRI, PN17081) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800).

  2. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Grzegorz Skrzypek

    Full Text Available Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle. Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard. The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  3. Simulations of Vegetation Impacts on Arctic Climate

    Science.gov (United States)

    Bonfils, C.; Phillips, T. J.; Riley, W. J.; Post, W. M.; Torn, M. S.

    2009-12-01

    Because global warming disproportionately influences high-latitude climate, changes in arctic vegetation are in progress. These land-cover changes include redistribution of local vegetation types as well as northward migration of lower-latitude species in response to the increasing warming. The resulting displacement of low-lying tundra vegetation by shrubs and trees darkens the surface, thus accelerating regional warming. As participants in the U.S. Department of Energy IMPACTS Project, we are investigating the potential for abrupt arctic climatic change resulting from such variations in vegetation, among other mechanisms. To estimate the relative magnitudes of effects to be expected from changes in high-latitude land cover, we are conducting several numerical experiments with the Community Climate System Model (CCSM). These experiments include: 1) A “present-day-climate” control experiment with current atmospheric greenhouse-gas concentrations and climatological monthly sea surface temperatures and sea ice extents prescribed, and with “standard” CLM plant functional types (PFTs) specified; 2) A “changed-vegetation-type” experiment that is the same as 1), except that the “standard” PFTs are augmented by additional vegetation types (forbs, sedges, shrubs, mosses, and lichens) that are not presently represented in CLM. This experiment will require information on the location, fractional cover, and physiological parameterizations of these new PFTs. 3) A “changed-vegetation-extent experiment” that is the same as 2), except that the spatial extents of selected PFTs (e.g. shrubs or boreal forest PFTs) are shifted northward from their present locations in the CLM. We will report on the atmospheric climate and land-surface feedbacks associated with these vegetation changes, with emphasis on local and regional surface energy and moisture fluxes and near-surface temperature, humidity, and clouds. Acknowledgments This work was performed under the auspices

  4. Predicting Changes in Arctic Tundra Vegetation: Towards an Understanding of Plant Trait Uncertainty

    Science.gov (United States)

    Euskirchen, E. S.; Serbin, S.; Carman, T.; Iversen, C. M.; Salmon, V.; Helene, G.; McGuire, A. D.

    2017-12-01

    Arctic tundra plant communities are currently undergoing unprecedented changes in both composition and distribution under a warming climate. Predicting how these dynamics may play out in the future is important since these vegetation shifts impact both biogeochemical and biogeophysical processes. More precise estimates of these future vegetation shifts is a key challenge due to both a scarcity of data with which to parameterize vegetation models, particularly in the Arctic, as well as a limited understanding of the importance of each of the model parameters and how they may vary over space and time. Here, we incorporate newly available field data from arctic Alaska into a dynamic vegetation model specifically developed to take into account a particularly wide array of plant species as well as the permafrost soils of the arctic tundra (the Terrestrial Ecosystem Model with Dynamic Vegetation and Dynamic Organic Soil, Terrestrial Ecosystem Model; DVM-DOS-TEM). We integrate the model within the Predicative Ecosystem Analyzer (PEcAn), an open-source integrated ecological bioinformatics toolbox that facilitates the flows of information into and out of process models and model-data integration. We use PEcAn to evaluate the plant functional traits that contribute most to model variability based on a sensitivity analysis. We perform this analysis for the dominant types of tundra in arctic Alaska, including heath, shrub, tussock and wet sedge tundra. The results from this analysis will help inform future data collection in arctic tundra and reduce model uncertainty, thereby improving our ability to simulate Arctic vegetation structure and function in response to global change.

  5. Tundra vegetation effects on pan-Arctic albedo

    International Nuclear Information System (INIS)

    Loranty, Michael M; Goetz, Scott J; Beck, Pieter S A

    2011-01-01

    Recent field experiments in tundra ecosystems describe how increased shrub cover reduces winter albedo, and how subsequent changes in surface net radiation lead to altered rates of snowmelt. These findings imply that tundra vegetation change will alter regional energy budgets, but to date the effects have not been documented at regional or greater scales. Using satellite observations and a pan-Arctic vegetation map, we examined the effects of shrub vegetation on albedo across the terrestrial Arctic. We included vegetation classes dominated by low shrubs, dwarf shrubs, tussock-dominated graminoid tundra, and non-tussock graminoid tundra. Each class was further stratified by bioclimate subzones. Low-shrub tundra had higher normalized difference vegetation index values and earlier albedo decline in spring than dwarf-shrub tundra, but for tussock tundra, spring albedo declined earlier than for low-shrub tundra. Our results illustrate how relatively small changes in vegetation properties result in differences in albedo dynamics, regardless of shrub growth, that may lead to differences in net radiation upwards of 50 W m -2 at weekly time scales. Further, our findings imply that changes to the terrestrial Arctic energy budget during this important seasonal transition are under way regardless of whether recent satellite observed productivity trends are the result of shrub expansion. We conclude that a better understanding of changes in vegetation productivity and distribution in Arctic tundra is essential for accurately quantifying and predicting carbon and energy fluxes and associated climate feedbacks.

  6. Pre-ABoVE: Arctic Alaska Vegetation, Geobotanical, Physiographic Data, 1993-2005

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides the spatial distributions of vegetation types, geobotanical characteristics, and physiographic features for the Arctic tundra region of Alaska...

  7. Recent dynamics of arctic and sub-arctic vegetation

    International Nuclear Information System (INIS)

    Epstein, Howard E; Myers-Smith, Isla; Walker, Donald A

    2013-01-01

    We present a focus issue of Environmental Research Letters on the ‘Recent dynamics of arctic and sub-arctic vegetation’. The focus issue includes three perspective articles (Verbyla 2011 Environ. Res. Lett. 6 041003, Williams et al 2011 Environ. Res. Lett. 6 041004, Loranty and Goetz 2012 Environ. Res. Lett. 7 011005) and 22 research articles. The focus issue arose as a result of heightened interest in the response of high-latitude vegetation to natural and anthropogenic changes in climate and disturbance regimes, and the consequences that these vegetation changes might have for northern ecosystems. A special session at the December 2010 American Geophysical Union Meeting on the ‘Greening of the Arctic’ spurred the call for papers. Many of the resulting articles stem from intensive research efforts stimulated by International Polar Year projects and the growing acknowledgment of ongoing climate change impacts in northern terrestrial ecosystems. (synthesis and review)

  8. New views on changing Arctic vegetation

    Science.gov (United States)

    Kennedy, Robert E.

    2012-03-01

    ). While the USGS archive has been dominated by imagery from the United States, recent efforts by the USGS to repatriate data stored in international archives are adding new historical images to the archive every day. With persistence and the goodwill of collaborating countries, this effort may someday allow analyses similar to that of Fraser et al across broader expanses of the Earth, providing further insights into the mechanisms and manifestations of climate change. References Chapin F S et al 2000 Arctic and boreal ecosystems of western North America as components of the climate system Glob. Change Biol. 6 211-23 Coops N C and Waring R H 2011 A process-based approach to estimate lodgepole pine (Pinus contorta Dougl.) distribution in the Pacific Northwest under climate change Clim. Change 105 313-28 de Beurs K M and Henebry G M 2010 A land surface phenology assessment of the northern polar regions using MODIS reflectance time series Can. J. Remote Sens. 36 S87-110 Forbes B C, Fauria M M and Zetterberg P 2010 Russian Arctic warming and 'greening' are closely tracked by tundra shrub willows Glob. Change Biol. 16 1542-54 Fraser R H et al 2011 Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive Environ. Res. Lett. 6 045502 Goodwin N R, Magnussen S, Coops N C and Wulder M A 2010 Curve fitting of time-series Landsat imagery for characterizing a mountain pine beetle infestation Int. J. Remote Sens. 31 3263-71 Hais M, Jonášová M, Langhammer J and Kuèera T 2009 Comparison of two types of forest disturbance using multitemporal Landsat TM/ETMC imagery and field vegetation data Remote Sens. Environ. 113 835-45 Hansen M C, Stehman S V and Potapov P V 2010 Quantification of global gross forest cover loss Proc. Natl Acad. Sci. 107 8650-5 Huang C, Goward S N, Masek J G, Thomas N, Zhu Z and Vogelmann J E 2010 An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks Remote Sens

  9. Environment, vegetation and greenness (NDVI) along the North America and Eurasia Arctic transects

    International Nuclear Information System (INIS)

    Walker, D A; Raynolds, M K; Kuss, P; Kade, A N; Epstein, H E; Frost, G V; Kopecky, M A; Daniëls, F J A; Leibman, M O; Moskalenko, N G; Khomutov, A V; Matyshak, G V; Khitun, O V; Forbes, B C; Bhatt, U S; Vonlanthen, C M; Tichý, L

    2012-01-01

    Satellite-based measurements of the normalized difference vegetation index (NDVI; an index of vegetation greenness and photosynthetic capacity) indicate that tundra environments are generally greening and becoming more productive as climates warm in the Arctic. The greening, however, varies and is even negative in some parts of the Arctic. To help interpret the space-based observations, the International Polar Year (IPY) Greening of the Arctic project conducted ground-based surveys along two >1500 km transects that span all five Arctic bioclimate subzones. Here we summarize the climate, soil, vegetation, biomass, and spectral information collected from the North America Arctic transect (NAAT), which has a more continental climate, and the Eurasia Arctic transect (EAT), which has a more oceanic climate. The transects have broadly similar summer temperature regimes and overall vegetation physiognomy, but strong differences in precipitation, especially winter precipitation, soil texture and pH, disturbance regimes, and plant species composition and structure. The results indicate that summer warmth and NDVI increased more strongly along the more continental transect. (letter)

  10. Design and Development of a Spectral Library for Different Vegetation and Landcover Types for Arctic, Antarctic and Chihuahua Desert Ecosystem

    Science.gov (United States)

    Matharasi, K.; Goswami, S.; Gamon, J.; Vargas, S.; Marin, R.; Lin, D.; Tweedie, C. E.

    2008-12-01

    All objects on the Earth's surface absorb and reflect portions of the electromagnetic spectrum. Depending on the composition of the material, every material has its characteristic spectral profile. The characteristic spectral profile for vegetation is often used to study how vegetation patterns at large spatial scales affect ecosystem structure and function. Analysis of spectroscopic data from the laboratory, and from various other platforms like aircraft or spacecraft, requires a knowledge base that consists of different characteristic spectral profiles for known different materials. This study reports on establishment of an online and searchable spectral library for a range of plant species and landcover types in the Arctic, Anatarctic and Chihuahuan desert ecosystems. Field data were collected from Arctic Alaska, the Antarctic Peninsula and the Chihuahuan desert in the visible to near infrared (IR) range using a handheld portable spectrometer. The data have been archived in a database created using postgre sql with have been made publicly available on a plone web-interface. This poster describes the data collected in more detail and offers instruction to users who wish to make use of this free online resource.

  11. The regional species richness and genetic diversity of Arctic vegetation reflect both past glaciations and current climate

    DEFF Research Database (Denmark)

    Stewart, L.; Alsos, Inger G.; Bay, Christian

    2016-01-01

    Aim The Arctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate...... species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across the Arctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 common Arctic...... size compared to the models of bryophyte and lichen richness. Main conclusion Our study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag...

  12. Estimating Vegetation Height from WorldView-02 and ArcticDEM Data for Broad Ecological Applications

    Science.gov (United States)

    Meddens, A. J.; Vierling, L. A.; Eitel, J.; Jennewein, J. S.; White, J. C.; Wulder, M.

    2017-12-01

    Boreal and arctic regions are warming at an unprecedented rate, and at a rate higher than in other regions across the globe. Ecological processes are highly responsive to temperature and therefore substantial changes in these northern ecosystems are expected. Recently, NASA initiated the Arctic-Boreal Vulnerability Experiment (ABoVE), which is a large-scale field campaign that aims to gain a better understanding of how the arctic responds to environmental change. High-resolution data products that quantify vegetation structure and function will improve efforts to assess these environmental change impacts. Our objective was to develop and test an approach that allows for mapping vegetation height at a 5m grid cell resolution across the ABoVE domain. To accomplish this, we selected three study areas across a north-south gradient in Alaska, representing an area of approximately 130 km2. We developed a RandomForest modeling approach for predicting vegetation height using the ArcticDEM (a digital surface model produced across the Arctic by the Polar Geospatial Center) and high-resolution multispectral satellite data (WorldView-2) in conjunction with aerial lidar data for calibration and validation. Vegetation height was successfully predicted across the three study areas and evaluated using an independent dataset, with R2 ranging from 0.58 to 0.76 and RMSEs ranging from 1.8 to 2.4 m. This predicted vegetation height dataset also led to the development of a digital terrain model using the ArcticDEM digital surface model by removing canopy heights from the surface heights. Our results show potential to establish a high resolution pan-arctic vegetation height map, which will provide useful information to a broad range of ongoing and future ecological research in high northern latitudes.

  13. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  14. Understanding Pan-Arctic Tundra Vegetation Change Through Long-term Remotely Sensed Data

    Science.gov (United States)

    Bhatt, U.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2012-12-01

    The goal of this paper is to present an analysis of the seasonality of tundra vegetation variability and change using long-term remotely sensed data as well as ground based measurements and reanalyses. An increase of Pan-Arctic tundra vegetation greenness has been documented using the remotely sensed Normalized Difference Vegetation Index (NDVI). Coherent variability between NDVI, springtime coastal sea ice (passive microwave) and land surface temperatures (AVHRR) has also been established. Satellite based snow and cloud cover data sets are being incorporated into this analysis. The Arctic tundra is divided into domains based on Treshnikov divisions that are modified based on floristic provinces. There is notable heterogeneity in Pan-Arctic vegetation and climate trends, which necessitates a regional analysis. This study uses remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2010. The GIMMS NDVI3g data has been corrected for biases during the spring and fall, with special focus on the Arctic. Trends of Maximum NDVI (MaxNDVI), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), and open water area are calculated for the Pan Arctic. Remotely sensed snow data trends suggest varying patterns throughout the Arctic and may in part explain the heterogeneous MaxNDVI trends. Standard climate data (station, reanalysis, and model data) and ground observations are used in the analysis to provide additional support for hypothesized mechanisms. Overall, we find that trends over the 30-year record are changing as evidenced by the following examples from recent years. The sea ice decline has increased in Eurasia and slowed in North America. The weekly AVHRR landsurface temperatures reveal that there has been summer cooling over Eurasia and that the warming over North America has slowed. The MaxNDVI rates of change have diverged between N. America and Eurasia

  15. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)

    International Nuclear Information System (INIS)

    Dutrieux, L P; Bartholomeus, H; Herold, M; Verbesselt, J

    2012-01-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data from the Moderate Resolution Imaging Spectrometer (MODIS) as a primary data source, this study presents detailed maps of vegetation and temperature trends for the Siberian Arctic region, using the time integrated normalized difference vegetation index (TI-NDVI) and summer warmth index (SWI) calculated for the period 2000–11 to represent vegetation greenness and temperature respectively. Spatio-temporal relationships between the two indices and summer sea ice conditions were investigated with transects at eight locations using sea ice concentration data from the Special Sensor Microwave/Imager (SSM/I). In addition, the derived vegetation and temperature trends were compared among major Arctic vegetation types and bioclimate subzones. The fine resolution trend map produced confirms the overall greening (+1% yr −1 ) and warming (+0.27% yr −1 ) of the region, reported in previous studies, but also reveals browning areas. The causes of such local decreases in vegetation, while surrounding areas are experiencing the opposite reaction to changing conditions, are still unclear. Overall correlations between sea ice concentration and SWI as well as TI-NDVI decreased in strength with increasing distance from the coast, with a particularly pronounced pattern in the case of SWI. SWI appears to be driving TI-NDVI in many cases, but not systematically, highlighting the presence of limiting factors other than temperature for plant growth in the region. Further unravelling those limiting

  16. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank [Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Schaepman-Strub, Gabriela [Institute of Evolutionary Biology and Environmental Studies, University of Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Bartholomeus, Harm [Centre for Geo-Information, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Maximov, Trofim C, E-mail: daan.blok@wur.nl [Biological Problems of the Cryolithozone, Russian Academy of Sciences, Siberian Division, 41, Lenin Prospekt, Yakutsk, The Republic of Sakha, Yakutia 677980 (Russian Federation)

    2011-07-15

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  17. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    International Nuclear Information System (INIS)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank; Schaepman-Strub, Gabriela; Bartholomeus, Harm; Maximov, Trofim C

    2011-01-01

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  18. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  19. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...... treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... emissions from the arctic region are assumed to be low, but data from the region is lacking. BVOC emissions are furthermore expected to change drastically due to the rapidly proceeding climate change in the Arctic, which can provide a feedback to climate warming of unknown direction and magnitude. BVOC...

  20. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    NARCIS (Netherlands)

    Kolk, van der Henk-Jan; Heijmans, M.M.P.D.; Huissteden, van J.; Pullens, J.W.M.; Berendse, F.

    2016-01-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated

  1. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    Science.gov (United States)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined

  2. Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Science.gov (United States)

    D A Walker; F J A Daniels; I Alsos; U S Bhatt; A L Breen; M Buchhorn; H Bultmann; L A Druckenmiller; M E Edwards; D Ehrich; H E Epstein; William Gould; R A Ims; H Meltofte; M K Raynolds; J Sibik; S S Talbot; P J Webber

    2016-01-01

    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding.Wereview aspects of the PanArctic Flora, the...

  3. Uptake of radionuclides by vegetation at a High Arctic location

    International Nuclear Information System (INIS)

    Dowdall, M.; Gwynn, J.P.; Moran, C.; O'Dea, J.; Davids, C.; Lind, B.

    2005-01-01

    Radionuclide levels in vegetation from a High Arctic location were studied and compared to in situ soil concentrations. Levels of the anthropogenic radionuclide 137 Cs and the natural radionuclides 40 K, 238 U, 226 Ra and 232 Th are discussed and transfer factor (TF) values and aggregated transfer (Tag) values are calculated for vascular plants. Levels of 137 Cs in vegetation generally followed the order mosses > lichen > vascular plants. The uptake of 137 Cs in vascular plants showed an inverse relationship with the uptake of 40 K, with 137 Cs TF and Tag values generally higher than 40 K TF and Tag values. 40 K activity concentrations in all vegetation showed little correlation to associated soil concentrations, while the uptake of 238 U, 226 Ra and 232 Th by vascular and non-vascular plants was generally low. - Uptake of the anthropogenic radionuclide 137 Cs is highest for moss species

  4. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    Science.gov (United States)

    Zhang, Wenxin; Miller, Paul A.; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-09-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model-downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961-1990) agreed well with a composite map of actual arctic vegetation. In the future (2051-2080), a poleward advance of the forest-tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH4, may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux.

  5. Identifying Differences in Carbon Exchange among Arctic Ecosystem Types

    NARCIS (Netherlands)

    Williams, M.; Street, L.E.; Wijk, van M.T.; Shaver, G.R.

    2006-01-01

    Our objective was to determine how varied is the response of C cycling to temperature and irradiance in tundra vegetation. We used a large chamber to measure C exchange at 23 locations within a small arctic catchment in Alaska during summer 2003 and 2004. At each location, we determined light

  6. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  7. Quantifying snow and vegetation interactions in the high arctic based on ground penetrating radar (GPR)

    DEFF Research Database (Denmark)

    Gacitúa, G.; Bay, C.; Tamstorf, M.

    2013-01-01

    Arctic in Northeast Greenland. We used ground penetrating radar (GPR) for snow thickness measurements across the Zackenberg valley. Measurements were integrated to the physical conditions that support the vegetation distribution. Descriptive statistics and correlations of the distribution of each...

  8. Tundra shrubification and tree-line advance amplify arctic climate warming: results from an individual-based dynamic vegetation model

    International Nuclear Information System (INIS)

    Zhang Wenxin; Miller, Paul A; Smith, Benjamin; Wania, Rita; Koenigk, Torben; Döscher, Ralf

    2013-01-01

    One major challenge to the improvement of regional climate scenarios for the northern high latitudes is to understand land surface feedbacks associated with vegetation shifts and ecosystem biogeochemical cycling. We employed a customized, Arctic version of the individual-based dynamic vegetation model LPJ-GUESS to simulate the dynamics of upland and wetland ecosystems under a regional climate model–downscaled future climate projection for the Arctic and Subarctic. The simulated vegetation distribution (1961–1990) agreed well with a composite map of actual arctic vegetation. In the future (2051–2080), a poleward advance of the forest–tundra boundary, an expansion of tall shrub tundra, and a dominance shift from deciduous to evergreen boreal conifer forest over northern Eurasia were simulated. Ecosystems continued to sink carbon for the next few decades, although the size of these sinks diminished by the late 21st century. Hot spots of increased CH 4 emission were identified in the peatlands near Hudson Bay and western Siberia. In terms of their net impact on regional climate forcing, positive feedbacks associated with the negative effects of tree-line, shrub cover and forest phenology changes on snow-season albedo, as well as the larger sources of CH 4 , may potentially dominate over negative feedbacks due to increased carbon sequestration and increased latent heat flux. (letter)

  9. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect.

    Science.gov (United States)

    Swann, Abigail L; Fung, Inez Y; Levis, Samuel; Bonan, Gordon B; Doney, Scott C

    2010-01-26

    Arctic climate is projected to change dramatically in the next 100 years and increases in temperature will likely lead to changes in the distribution and makeup of the Arctic biosphere. A largely deciduous ecosystem has been suggested as a possible landscape for future Arctic vegetation and is seen in paleo-records of warm times in the past. Here we use a global climate model with an interactive terrestrial biosphere to investigate the effects of adding deciduous trees on bare ground at high northern latitudes. We find that the top-of-atmosphere radiative imbalance from enhanced transpiration (associated with the expanded forest cover) is up to 1.5 times larger than the forcing due to albedo change from the forest. Furthermore, the greenhouse warming by additional water vapor melts sea-ice and triggers a positive feedback through changes in ocean albedo and evaporation. Land surface albedo change is considered to be the dominant mechanism by which trees directly modify climate at high-latitudes, but our findings suggest an additional mechanism through transpiration of water vapor and feedbacks from the ocean and sea-ice.

  10. Impact of dynamic vegetation phenology on the simulated pan-Arctic land surface state

    Science.gov (United States)

    Teufel, Bernardo; Sushama, Laxmi; Arora, Vivek K.; Verseghy, Diana

    2018-03-01

    The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the twenty-first century. Vegetation-related feedbacks have the potential to influence the rate of degradation of permafrost. In this study, the impact of dynamic phenology on the pan-Arctic land surface state, particularly near-surface permafrost, for the 1961-2100 period, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS)—one with dynamic phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are forced by atmospheric data from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation to available observational estimates of plant area index, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the overall distribution of vegetation and permafrost. It is shown that the most important impact of dynamic phenology on the land surface occurs through albedo and it is demonstrated for the first time that vegetation control on albedo during late spring and early summer has the highest potential to impact the degradation of permafrost. While both simulations show extensive near-surface permafrost degradation by the end of the twenty-first century, the strong projected response of vegetation to climate warming and increasing CO2 concentrations in the coupled simulation results in accelerated permafrost degradation in the northernmost continuous permafrost regions.

  11. Determination of Leaf Area Index, Total Foliar N, and Normalized Difference Vegetation Index for Arctic Ecosystems Dominated by Cassiope tetragona

    DEFF Research Database (Denmark)

    Campioli, M; Street, LE; Michelsen, Anders

    2009-01-01

    have not been accurately quantified. We address this knowledge gap by (i) direct measurements of LAI and TFN for C. tetragona, and (ii) determining TFN-LAI and LAI–normalized difference vegetation index (NDVI) relationships for typical C. tetragona tundras in the subarctic (Sweden) and High Arctic...... leaf N and biomass. The LAI-NDVI and TFN-LAI relationships showed high correlation and can be used to estimate indirectly LAI and TFN. The LAI-NDVI relationship for C. tetragona vegetation differed from a generic LAI-NDVI relationship for arctic tundra, whereas the TFN-LAI relationship did not. Overall...

  12. Transitions in high-Arctic vegetation growth patterns and ecosystem productivity tracked with automated cameras from 2000 to 2013

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Pedersen, Stine Højlund

    2017-01-01

    Climate-induced changes in vegetation phenology at northern latitudes are still poorly understood. Continued monitoring and research are therefore needed to improve the understanding of abiotic drivers. Here we used 14 years of time lapse imagery and climate data from high-Arctic Northeast...... days, resulting in an unchanged growing season length. Vegetation greenness, derived from the imagery, was correlated to primary productivity, showing that the imagery holds valuable information on vegetation productivity....

  13. Quantifying the Interactions Between Soil Thermal Characteristics, Soil Physical Properties, Hydro-geomorphological Conditions and Vegetation Distribution in an Arctic Watershed

    Science.gov (United States)

    Dafflon, B.; Leger, E.; Robert, Y.; Ulrich, C.; Peterson, J. E.; Soom, F.; Biraud, S.; Tran, A. P.; Hubbard, S. S.

    2017-12-01

    Improving understanding of Arctic ecosystem functioning and parameterization of process-rich hydro-biogeochemical models require advances in quantifying ecosystem properties, from the bedrock to the top of the canopy. In Arctic regions having significant subsurface heterogeneity, understanding the link between soil physical properties (incl. fraction of soil constituents, bedrock depth, permafrost characteristics), thermal behavior, hydrological conditions and landscape properties is particularly challenging yet is critical for predicting the storage and flux of carbon in a changing climate. This study takes place in Seward Peninsula Watersheds near Nome AK and Council AK, which are characterized by an elevation gradient, shallow bedrock, and discontinuous permafrost. To characterize permafrost distribution where the top of permafrost cannot be easily identified with a tile probe (due to rocky soil and/or large thaw layer thickness), we developed a novel technique using vertically resolved thermistor probes to directly sense the temperature regime at multiple depths and locations. These measurements complement electrical imaging, seismic refraction and point-scale data for identification of the various thermal behavior and soil characteristics. Also, we evaluate linkages between the soil physical-thermal properties and the surface properties (hydrological conditions, geomorphic characteristics and vegetation distribution) using UAV-based aerial imaging. Data integration and analysis is supported by numerical approaches that simulate hydrological and thermal processes. Overall, this study enables the identification of watershed structure and the links between various subsurface and landscape properties in representative Arctic watersheds. Results show very distinct trends in vertically resolved soil temperature profiles and strong lateral variations over tens of meters that are linked to zones with various hydrological conditions, soil properties and vegetation

  14. A dynamic ecosystem process model for understanding interactions between permafrost thawing and vegetation responses in the arctic

    Science.gov (United States)

    Xu, C.; Travis, B. J.; Fisher, R. A.; Wilson, C. J.; McDowell, N.

    2010-12-01

    The arctic is expected to play an important role in the Earth’s future climate due to the large carbon stocks that are stored in permafrost and peatlands, a substantial proportion of which may be released to the atmosphere due to permafrost thawing. There may be positive feedbacks of permafrost thawing on plant growth by releasing stored nitrogen and increasing rooting depth; however, vegetation response to other changing variables such as CO2 and temperature can also modify soil hydrology and energy fluxes, leading to either positive or negative feedbacks on permafrost thawing. Disentangling the interactions between permafrost thawing and vegetation growth is critical for assessing the potential role of arctic regions on current and future global carbon cycling. We have developed a mechanistic, regional, and spatially explicit dynamic ecosystem process model through the integration of a 3-D soil hydrology and biogeochemistry model (Arctic Hydrology, ARCHY) and a dynamic vegetation model (Ecosystem Demography, ED), to quantify the importance of plant-permafrost interactions to soil and plant carbon storage. This model integrates important processes including photosynthesis, transpiration, respiration, 3-D competition for light, 3-D soil hydrology, energy fluxes (ice melting in the soil and solar radiation interception by canopy), nitrogen cycles (microbial decomposition, nitrogen transportation in soil, passive and active nitrogen uptake by plants), species migration, and drought-related mortality. A sensitivity analysis has been implemented to assess the importance of the hydrological cycle, the nitrogen cycle and energy fluxes in regulating the above and below-ground carbon cycles in arctic regions. Our model can fill an important gap between field and global land surface models for assessing plot and regional level hypotheses in the context of global climate.

  15. Digging Deeper: Development and evaluation of an untargeted metabolomics approach to identify biogeochemical hotspots with depth and by vegetation type in Arctic tundra soils

    Science.gov (United States)

    Ladd, M.; Wullschleger, S.; Hettich, R.

    2017-12-01

    Elucidating the chemical composition of low molecular weight (LMW) dissolved organic matter (DOM), and monitoring how this bioavailable pool varies over space and time, is critical to understanding the controlling mechanisms that underlie carbon release and storage in Arctic systems. Due to analytical challenges however, relatively little is known about how this complex mixture of small molecules varies with soil depth or how it may be influenced by vegetation. In this study, we evaluated an untargeted metabolomics approach for the characterization of LMW DOM in water extracts, and applied this approach in soil cores (10-cm diam., 30-cm depth), obtained near Barrow, Alaska (71° 16' N) from the organic-rich active layer where the aboveground vegetation was primarily either Carex aquatilis or Eriophorum angustifolium, two species commonly found in tundra systems. We hypothesized that by using a discovery-based approach, spatial patterns of chemical diversity could be identified, enabling the detection of biogeochemical hotspots across scales. LMW DOM profiles from triplicate water extracts were characterized using dual-separation, nano-liquid chromatography (LC) coupled to an electrospray Orbitrap mass spectrometer in positive and negative ion modes. Both LC separations—reversed-phase and hydrophilic interaction chromatography—were achieved with gradient elutions in 15 minutes. Using a precursor and fragment mass measurement accuracy of nutrients) impact carbon fluxes in the Arctic at the landscape-scale.

  16. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area

    DEFF Research Database (Denmark)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Hansen, Birger Ulf

    2013-01-01

    vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid...... and GPP (R-2 = 0.85, p remote Arctic regions....... (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved....

  17. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2005-01-01

    significantly to ecosystem respiration during most phases of winter and summer in the two vegetation types. Ecosystem respiration rates through the year did not differ significantly between vegetation types despite substantial differences in biomass pools, soil depth and temperature regime. Most (76...... contributions of bulk soil organic matter and plant-associated carbon pools to ecosystem respiration is critical to predicting the response of arctic ecosystem net carbon balance to climate change. In this study, we determined the variation in ecosystem respiration rates from birch forest understory and heath......-92%) of the intra-annual variation in ecosystem respiration rates from these two common mesic subarctic ecosystems was explained using a first-order exponential equation relating respiration to substrate chemical quality and soil temperature. Removal of plants and their current year's litter significantly reduced...

  18. Estimation of the soil heat flux/net radiation ratio based on spectral vegetation indexes in high-latitude Arctic areas

    International Nuclear Information System (INIS)

    Jacobsen, A.; Hansen, B.U.

    1999-01-01

    The vegetation communities in the Arctic environment are very sensitive to even minor climatic variations and therefore the estimation of surface energy fluxes from high-latitude vegetated areas is an important subject to be pursued. This study was carried out in July-August and used micro meteorological data, spectral reflectance signatures, and vegetation biomass to establish the relation between the soil heat flux/net radiation (G / Rn) ratio and spectral vegetation indices (SVIs). Continuous measurements of soil temperature and soil heat flux were used to calculate the surface ground heat flux by use of conventional methods, and the relation to surface temperature was investigated. Twenty-seven locations were established, and six samples per location, including the measurement of the surface temperature and net radiation to establish the G/Rn ratio and simultaneous spectral reflectance signatures and wet biomass estimates, were registered. To obtain regional reliability, the locations were chosen in order to represent the different Arctic vegetation communities in the study area; ranging from dry tundra vegetation communities (fell fields and dry dwarf scrubs) to moist/wet tundra vegetation communities (snowbeds, grasslands and fens). Spectral vegetation indices, including the simple ratio vegetation index (RVI) and the normalized difference vegetation index (NDVI), were calculated. A comparison of SVIs to biomass proved that RVI gave the best linear expression, and NDVI the best exponential expression. A comparison of SVIs and the surface energy flux ratio G / Rn proved that NDVI gave the best linear expression. SPOT HRV images from July 1989 and 1992 were used to map NDVI and G / Rn at a regional scale. (author)

  19. Plant traits and trait-based vegetation modeling in the Arctic

    Science.gov (United States)

    Xu, C.; Sevanto, S.; Iversen, C. M.; Salmon, V. G.; Rogers, A.; Wullschleger, S.; Wilson, C. J.

    2017-12-01

    Arctic tundra environments are characterized by extremely cold temperatures, strong winds, short growing season and thin, nutrient-poor soil layer impacted by permafrost. To survive in this environment vascular plants have developed traits that simultaneously promote high productivity under favorable environments, and survival in harsh conditions. To improve representation of Arctic tundra vegetation in Earth System Models we surveyed plant trait data bases for key trait parameters that influence modeled ecosystem carbon balance, and compared the traits within plant families occurring in the boreal, temperate and arctic zones. The parameters include photosynthetic carbon uptake efficiency (Vcmax and Jmax), root:shoot ratio, and root and leaf nitrogen content, and we focused on woody shrubs. Our results suggest that root nitrogen content in non-nitrogen fixing tundra shrubs is lower than in representatives of the same families in the boreal or temperate zone. High tissue nitrogen concentrations have been related to high vulnerability to drought. The low root nitrogen concentrations in tundra shrubs may thus be an indication of acclimation to shallow soils, and frequent freezing that has a similar impact on the plant conductive tissue as drought. With current nitrogen availability, nitrogen limitation reduces the benefits of increased temperatures and longer growing seasons to the tundra ecosystem carbon balance. Thawing of permafrost will increase nitrogen availability, and promote plant growth and carbon uptake, but it could also make the shrubs more vulnerable to freeze-thaw cycles, with the overall result of reduced shrub coverage. The final outcome of warming temperatures and thawing of permafrost on tundra shrubs will thus depend on the relative speed of warming and plant acclimation.

  20. Comparative responses of phenology and reproductive development to simulated environmental change in sub-arctic and high arctic plants

    Energy Technology Data Exchange (ETDEWEB)

    Wookey, P A; Welker, J M; Callaghan, T V [Inst. of Terrestrial Ecology, Merlewood Research Station, Grange-over-Sands, Cumbria (United Kingdom); Parsons, A N; Potter, J A; Lee, J A; Press, M C [Dept. of Environmental Biology, Univ. of Manchester, Manchester (United Kingdom)

    1993-01-01

    The effects of temperature, precipitation and nutrient perturbations, and their interactions, are being assessed on two contrasting arctic ecosystems to simulate impacts of climate change. One, a high arctic polar semi-desert community, is characterized by a sparse, low and aggregated vegetation cover where plant proliferation is by seedlings, whereas the other, a sub-arctic dwarf shrub health, is characterized by a complete, vegetation cover of erect, clonal dwarf shrubs which spread vegetatively. The developmental processes of seed production were shown to be highly sensitive, even within one growing season to specific environmental perturbations which differed between sites. At the polar semi-desert site, there was a striking effect of the temperature enhancement treatments on phenology and seed-setting of Dryas octopetala ssp. octopetala, with almost no seed-setting occurring in plots experiencing ambient temperatures. By contrast, there were no significant effects of temperature enhancement alone on fruit production of Empetrum hermaphroditum at the sub-Arctic dwarf shrub heath site, although fruit production was significantly influenced by the application of nutrients and/or water. The response of dominant high arctic dwarf shrub to increased temperature suggests that any climate warming may stimulate seed-set. This could be particularly important in the high Arctic where colonization can proceed in areas dominated by bare ground and where genetic recombination may be needed to generate tolerance to predicted changes of great magnitude. In the sub-Arctic, however the closed vegetation is dominated by clonally-proliferating species. Plant fitness will increase here in response to any increased vegetative growth resulting from higher nutrient availability in warmer organic soils. (ua) (59 refs.)

  1. Trophic pathways supporting Arctic grayling in a small stream on the Arctic Coastal Plain, Alaska

    Science.gov (United States)

    McFarland, Jason J.; Wipfli, Mark S.; Whitman, Matthew S.

    2018-01-01

    Beaded streams are prominent across the Arctic Coastal Plain (ACP) of Alaska, yet prey flow and food web dynamics supporting fish inhabiting these streams are poorly understood. Arctic grayling (Thymallus arcticus) are a widely distributed upper-level consumer on the ACP and migrate into beaded streams to forage during the short 3-month open-water season. We investigated energy pathways and key prey resources that support grayling in a representative beaded stream, Crea Creek. We measured terrestrial invertebrates entering the stream from predominant riparian vegetation types, prey types supporting a range of fish size classes, and how riparian plants and fish size influenced foraging habits. We found that riparian plants influenced the quantity of terrestrial invertebrates entering Crea Creek; however, these differences were not reflected in fish diets. Prey type and size ingested varied with grayling size and season. Small grayling (15 cm FL) foraged most heavily on ninespine stickleback (Pungitius pungitius) throughout the summer, indicating that grayling can be insectivorous and piscivorous, depending on size. These findings underscore the potential importance of small streams in Arctic ecosystems as key summer foraging habitats for fish. Understanding trophic pathways supporting stream fishes in these systems will help interpret whether and how petroleum development and climate change may affect energy flow and stream productivity, terrestrial–aquatic linkages and fishes in Arctic ecosystems.

  2. When Winners Become Losers: Predicted Nonlinear Responses of Arctic Birds to Increasing Woody Vegetation.

    Directory of Open Access Journals (Sweden)

    Sarah J Thompson

    Full Text Available Climate change is facilitating rapid changes in the composition and distribution of vegetation at northern latitudes, raising questions about the responses of wildlife that rely on arctic ecosystems. One widely observed change occurring in arctic tundra ecosystems is an increasing dominance of deciduous shrub vegetation. Our goals were to examine the tolerance of arctic-nesting bird species to existing gradients of vegetation along the boreal forest-tundra ecotone, to predict the abundance of species across different heights and densities of shrubs, and to identify species that will be most or least responsive to ongoing expansion of shrubs in tundra ecosystems. We conducted 1,208 point counts on 12 study blocks from 2012-2014 in northwestern Alaska, using repeated surveys to account for imperfect detection of birds. We considered the importance of shrub height, density of low and tall shrubs (i.e. shrubs >0.5 m tall, percent of ground cover attributed to shrubs (including dwarf shrubs <0.5 m tall, and percent of herbaceous plant cover in predicting bird abundance. Among 17 species considered, only gray-cheeked thrush (Catharus minimus abundance was associated with the highest values of all shrub metrics in its top predictive model. All other species either declined in abundance in response to one or more shrub metrics or reached a threshold where further increases in shrubs did not contribute to greater abundance. In many instances the relationship between avian abundance and shrubs was nonlinear, with predicted abundance peaking at moderate values of the covariate, then declining at high values. In particular, a large number of species were responsive to increasing values of average shrub height with six species having highest abundance at near-zero values of shrub height and abundance of four other species decreasing once heights reached moderate values (≤ 33 cm. Our findings suggest that increases in shrub cover and density will negatively

  3. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades

    International Nuclear Information System (INIS)

    Epstein, Howard E; Raynolds, Martha K; Walker, Donald A; Bhatt, Uma S; Tucker, Compton J; Pinzon, Jorge E

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982–2010). We found that the southernmost tundra subzones (C–E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field. (letter)

  4. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  5. Incident radiation and the allocation of nitrogen within Arctic plant canopies: implications for predicting gross primary productivity

    NARCIS (Netherlands)

    Street, L.E.; Shaver, G.R.; Rastetter, E.B.; Wijk, van M.T.; Kaye, B.A.; Williams, M.

    2012-01-01

    Arctic vegetation is characterized by high spatial variability in plant functional type (PFT) composition and gross primary productivity (P). Despite this variability, the two main drivers of P in sub-Arctic tundra are leaf area index (LT) and total foliar nitrogen (NT). LT and NT have been shown to

  6. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  7. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    International Nuclear Information System (INIS)

    Yu Qin; Epstein, Howard; Walker, Donald

    2009-01-01

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model-ArcVeg-to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 deg. C caused an increase of 665 g m -2 in total biomass at the high SON site in subzone E, but only 298 g m -2 at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g m -2 at the high SON site in contrast to 184 g m -2 at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  8. Simulating the effects of soil organic nitrogen and grazing on arctic tundra vegetation dynamics on the Yamal Peninsula, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Yu Qin; Epstein, Howard [Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903 (United States); Walker, Donald [Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775 (United States)

    2009-10-15

    Sustainability of tundra vegetation under changing climate on the Yamal Peninsula, northwestern Siberia, home to the world's largest area of reindeer husbandry, is of crucial importance to the local native community. An integrated investigation is needed for better understanding of the effects of soils, climate change and grazing on tundra vegetation in the Yamal region. In this study we applied a nutrient-based plant community model-ArcVeg-to evaluate how two factors (soil organic nitrogen (SON) levels and grazing) interact to affect tundra responses to climate warming across a latitudinal climatic gradient on the Yamal Peninsula. Model simulations were driven by field-collected soil data and expected grazing patterns along the Yamal Arctic Transect (YAT), within bioclimate subzones C (high arctic), D (northern low arctic) and E (southern low arctic). Plant biomass and NPP (net primary productivity) were significantly increased with warmer bioclimate subzones, greater soil nutrient levels and temporal climate warming, while they declined with higher grazing frequency. Temporal climate warming of 2 deg. C caused an increase of 665 g m{sup -2} in total biomass at the high SON site in subzone E, but only 298 g m{sup -2} at the low SON site. When grazing frequency was also increased, total biomass increased by only 369 g m{sup -2} at the high SON site in contrast to 184 g m{sup -2} at the low SON site in subzone E. Our results suggest that high SON can support greater plant biomass and plant responses to climate warming, while low SON and grazing may limit plant response to climate change. In addition to the first order factors (SON, bioclimate subzones, grazing and temporal climate warming), interactions among these significantly affect plant biomass and productivity in the arctic tundra and should not be ignored in regional scale studies.

  9. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  10. Observing Arctic Ecology using Networked Infomechanical Systems

    Science.gov (United States)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  11. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Jeong, Jee-Hoon; Kug, Jong-Seong; Linderholm, Hans W; Chen, Deliang; Kim, Baek-Min; Jun, Sang-Yoon

    2014-01-01

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO 2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO 2 environments. The increased vegetation activities over high latitudes under a 2xCO 2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  12. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  13. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    Science.gov (United States)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  14. [Effects of road construction on regional vegetation types].

    Science.gov (United States)

    Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li

    2013-05-01

    As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.

  15. Four years of UAS Imagery Reveals Vegetation Change Due to Permafrost Thaw

    Science.gov (United States)

    DelGreco, J. L.; Herrick, C.; Varner, R. K.; McArthur, K. J.; McCalley, C. K.; Garnello, A.; Finnell, D.; Anderson, S. M.; Crill, P. M.; Palace, M. W.

    2017-12-01

    Warming trends in sub-arctic regions have resulted in thawing of permafrost which in turn induces change in vegetation across peatlands. Collapse of palsas (i.e. permafrost plateaus) has also been correlated to increases in methane (CH4) emissions to the atmosphere. Vegetation change provides new microenvironments that promote CH4 production and emission, specifically through plant interactions and structure. By quantifying the changes in vegetation at the landscape scale, we will be able to understand the impact of thaw on CH4 emissions in these complex and climate sensitive northern ecosystems. We combine field-based measurements of vegetation composition and high resolution Unmanned Aerial Systems (UAS) imagery to characterize vegetation change in a sub-arctic mire. At Stordalen Mire (1 km x 0.5 km), Abisko, Sweden, we flew a fixed-wing UAS in July of each year between 2014 and 2017. High precision GPS ground control points were used to georeference the imagery. Seventy-five randomized square-meter plots were measured for vegetation composition and individually classified into one of five cover types, each representing a different stage of permafrost degradation. With this training data, each year of imagery was classified by cover type. The developed cover type maps were also used to estimate CH4 emissions across the mire based on average flux CH4 rates from each cover type obtained from flux chamber measurements collected at the mire. This four year comparison of vegetation cover and methane emissions has indicated a rapid response to permafrost thaw and changes in emissions. Estimation of vegetation cover types is vital in our understanding of the evolution of northern peatlands and its future role in the global carbon cycle.

  16. Soil nutrients, landscape age, and Sphagno-Eriophoretum vaginati plant communities in Arctic moist-acidic Tundra landscapes

    Science.gov (United States)

    Joel Mercado-Diaz; William Gould; Grizelle Gonzalez

    2014-01-01

    Most research exploring the relationship between soil chemistry and vegetation in Alaskan Arctic tundra landscapes has focused on describing differences in soil elemental concentrations (e.g. C, N and P) of areas with contrasting vegetation types or landscape age. In this work we assess the effect of landscape age on physico-chemical parameters in organic and mineral...

  17. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    Science.gov (United States)

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  18. Landscape dynamics in the Arctic foothills: Landscape evolution and vegetation succession on disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A.; Walker, M.D.

    1990-10-20

    This document contains a summary of research accomplished by the University of Colorado's Institute of Arctic and Alpine Research (INSTAAR) Joint Facility for Regional Ecosystem Analysis (JFREA) for the Department of Energy's R D research program for 1989--1990. Aerial photographs, orthophoto topographic maps, and digital elevation models (DEMs) of the Toolik Lake region site were prepared by Aeromap US at 1:500 and 1:5000 scales. During August 1990, the region surrounding Toolik Lake was mapped at 1:5000 scale, and the intensive research grid was mapped at 1:500 scale. Mapped variables include vegetation, landforms, surface forms, and percentage surface water. Soil data from the Imnavait Creek and Toolik Lake sites are central to the analysis of landscape evolution. Soils were collected from the base of the O horizon at 72 gridpoints on the 1:500-scale map area at Imnavait Creek, and 85 grid points at Toolik Lake. Soils are being analyzed for percentage moisture, pH (saturated paste), electrical conductivity, percentage organic matter, nitrate, nitrogen, phosphorus, potassium, iron, manganese, copper. Soils were also collected from 81 permanent plots (199 horizons) which will be used for vegetation-environmental analyses. Permanent 1 {times} 1-meter point-quadrat plots were established at 85 points of the Toolik Lake grid. Data from the plots will be stratified according to slope position and terrain unit and used to compare vegetation structure and cover on different aged surfaces. Work continued on the study of the effects of road dust on tundra vegetation. 28 figs.

  19. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden

    International Nuclear Information System (INIS)

    Johansson, Margareta; Bosiö, Julia; Akerman, H Jonas; Jackowicz-Korczynski, Marcin; Christensen, Torben R; Callaghan, Terry V

    2013-01-01

    Increased snow depth already observed, and that predicted for the future are of critical importance to many geophysical and biological processes as well as human activities. The future characteristics of sub-arctic landscapes where permafrost is particularly vulnerable will depend on complex interactions between snow cover, vegetation and permafrost. An experimental manipulation was, therefore, set up on a lowland peat plateau with permafrost, in northernmost Sweden, to simulate projected future increases in winter precipitation and to study their effects on permafrost and vegetation. After seven years of treatment, statistically significant differences between manipulated and control plots were found in mean winter ground temperatures, which were 1.5 ° C higher in manipulated plots. During the winter, a difference in minimum temperatures of up to 9 ° C higher could be found in individual manipulated plots compared with control plots. Active layer thicknesses increased at the manipulated plots by almost 20% compared with the control plots and a mean surface subsidence of 24 cm was recorded in the manipulated plots compared to 5 cm in the control plots. The graminoid Eriophorum vaginatum has expanded in the manipulated plots and the vegetation remained green longer in the season. (letter)

  20. Significant impacts of nutrient enrichment on High Arctic vegetation and soils despite two decades of recovery

    Science.gov (United States)

    Street, L. E.; Burns, N. R.; Woodin, S. J.

    2012-04-01

    We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects

  1. Detecting Arctic Climate Change Using Koeppen Climate Classification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. [Joint Institute for the Study of Atmosphere and Oceans, University of Washington, Seattle, Washington (United States); Overland, J.E. [NOAA/Pacific Marine Environmental Laboratory, Sand Point Way NE, Seattle, Washington (United States)

    2004-11-01

    Ecological impacts of the recent warming trend in the Arctic are already noted as changes in tree line and a decrease in tundra area with the replacement of ground cover by shrubs in northern Alaska and several locations in northern Eurasia. The potential impact of vegetation changes to feedbacks on the atmospheric climate system is substantial because of the large land area impacted and the multi-year persistence of the vegetation cover. Satellite NDVI estimates beginning in 1981 and the Koeppen climate classification, which relates surface types to monthly mean air temperatures from 1901 onward, track these changes on an Arctic-wide basis. Temperature fields from the NCEP/NCAR reanalysis and CRU analysis serve as proxy for vegetation cover over the century. A downward trend in the coverage of tundra group for the first 40 yr of the twentieth century was followed by two increases during 1940s and early 1960s, and then a rapid decrease in the last 20 yr. The decrease of tundra group in the 1920-40 period was localized, mostly over Scandinavia; whereas the decrease since 1990 is primarily pan-Arctic, but largest in NW Canada, and eastern and coastal Siberia. The decrease in inferred tundra coverage from 1980 to 2000 was 1.4 x 106 km{sup 2}, or about a 20% reduction in tundra area based on the CRU analyses. This rate of decrease is confirmed by the NDVI data. These tundra group changes in the last 20 yr are accompanied by increase in the area of both the boreal and temperate groups. During the tundra group decrease in the first half of the century boreal group area also decreased while temperate group area increased. The calculated minimum coverage of tundra group from both the Koeppen classification and NDVI indicates that the impact of warming on the spatial coverage of the tundra group in the 1990s is the strongest in the century, and will have multi-decadal consequences for the Arctic.

  2. The role of deep nitrogen and dynamic rooting profiles on vegetation dynamics and productivity in response to permafrost thaw and climate change in Arctic tundra

    Science.gov (United States)

    Hewitt, R. E.; Helene, G.; Taylor, D. L.; McGuire, A. D.; Mack, M. C.

    2017-12-01

    The release of permafrost-derived nitrogen (N) has the potential to fertilize tundra vegetation, modulating plant competition, stimulating productivity, and offsetting carbon losses from thawing permafrost. Dynamic rooting, mycorrhizal interactions, and coupling of N availability and root N uptake have been identified as gaps in ecosystem models. As a first step towards understanding whether Arctic plants can access deep permafrost-derived N, we characterized rooting profiles and quantified acquisition of 15N tracer applied at the permafrost boundary by moist acidic tundra plants subjected to almost three decades of warming at Toolik Lake, Alaska. In the ambient control plots the vegetation biomass is distributed between five plant functional types (PFTs): sedges, evergreen and deciduous shrubs, mosses and in lower abundance, forbs. The warming treatment has resulted in the increase of deciduous shrub biomass and the loss of sedges, evergreen shrubs, and mosses. We harvested roots by depth increment down to the top of the permafrost. Roots were classified by size class and PFT. The average thaw depth in the warmed plots was 58.3 cm ± 6.4 S.E., close to 18 cm deeper than the average thaw depth in the ambient plots (40.8 cm ± 1.8 S.E.). Across treatments the deepest rooting species was Rubus chamaemorus (ambient 40.8 cm ± 1.8 S.E., warmed 50.3 cm ± 9.8 S.E.), a non-mycorrhizal forb, followed by Eriophorum vaginatum, a non-mycorrhizal sedge. Ectomycorrhizal deciduous and ericoid mycorrhizal evergreen shrubs were rooted at more shallow depths. Deeply rooted non-mycorrhizal species had the greatest uptake of 15N tracer within 24 hours across treatments. Tracer uptake was greatest for roots of E. vaginatum in ambient plots and R. chamaemorus in warmed plots. Root profiles were integrated into a process-based ecosystem model coupled with a dynamic vegetation model. Functions modeling dynamic rooting profile relative to thaw depth were implemented for each PFT. The

  3. Ecosystem CO2 production during winter in a Swedish subarctic region: the relative importance of climate and vegetation type

    DEFF Research Database (Denmark)

    Grogan, Paul; Jonasson, Sven Evert

    2006-01-01

    General circulation models consistently predict that regional warming will be most rapid in the Arctic, that this warming will be predominantly in the winter season, and that it will often be accompanied by increasing snowfall. Paradoxically, despite the strong cold season emphasis in these predi...... will respond to climate change during winter because they indicate a threshold (~1 m) above which there would be little effect of increased snow accumulation on wintertime biogeochemical cycling....... in these predictions, we know relatively little about the plot and landscape-level controls on tundra biogeochemical cycling in wintertime as compared to summertime. We investigated the relative influence of vegetation type and climate on CO2 production rates and total wintertime CO2 release in the Scandinavian...... subarctic. Ecosystem respiration rates and a wide range of associated environmental and substrate pool size variables were measured in the two most common vegetation types of the region (birch understorey and heath tundra) at four paired sites along a 50 km transect through a strong snow depth gradient...

  4. Arctic Tundra Greening and Browning at Circumpolar and Regional Scales

    Science.gov (United States)

    Epstein, H. E.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Yang, X.

    2017-12-01

    Remote sensing data have historically been used to assess the dynamics of arctic tundra vegetation. Until recently the scientific literature has largely described the "greening" of the Arctic; from a remote sensing perspective, an increase in the Normalized Difference Vegetation Index (NDVI), or a similar satellite-based vegetation index. Vegetation increases have been heterogeneous throughout the Arctic, and were reported to be up to 25% in certain areas over a 30-year timespan. However, more recently, arctic tundra vegetation dynamics have gotten more complex, with observations of more widespread tundra "browning" being reported. We used a combination of remote sensing data, including the Global Inventory Monitoring and Modeling System (GIMMS), as well as higher spatial resolution Landsat data, to evaluate the spatio-temporal patterns of arctic tundra vegetation dynamics (greening and browning) at circumpolar and regional scales over the past 3-4 decades. At the circumpolar scale, we focus on the spatial heterogeneity (by tundra subzone and continent) of tundra browning over the past 5-15 years, followed by a more recent recovery (greening since 2015). Landsat time series allow us to evaluate the landscape-scale heterogeneity of tundra greening and browning for northern Alaska and the Yamal Peninsula in northwestern Siberia, Russia. Multi-dataset analyses reveal that tundra greening and browning (i.e. increases or decreases in the NDVI respectively) are generated by different sets of processes. Tundra greening is largely a result of either climate warming, lengthening of the growing season, or responses to disturbances, such as fires, landslides, and freeze-thaw processes. Browning on the other hand tends to be more event-driven, such as the shorter-term decline in vegetation due to fire, insect defoliation, consumption by larger herbivores, or extreme weather events (e.g. winter warming or early summer frost damage). Browning can also be caused by local or

  5. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most

  6. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    Science.gov (United States)

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D.A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  7. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    Science.gov (United States)

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  8. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    International Nuclear Information System (INIS)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E; Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G; Epstein, H E; Yu, Q; Forbes, B C; Kaarlejaervi, E; Comiso, J C; Jia, G J; Kaplan, J O; Kumpula, T; Kuss, P; Matyshak, G

    2009-01-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  9. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D A; Bhatt, U S; Raynolds, M K; Romanovsky, V E [University of Alaska Fairbanks, Fairbanks, AK (United States); Leibman, M O; Gubarkov, A A; Khomutov, A V; Moskalenko, N G; Orekhov, P; Ukraientseva, N G [Earth Cryosphere Institute, Russian Academy of Science, Siberian Branch, Tyumen (Russian Federation); Epstein, H E; Yu, Q [University of Virginia, Charlottesville, VA (United States); Forbes, B C; Kaarlejaervi, E [Arctic Center, University of Lapland, Rovaniemi (Finland); Comiso, J C [NASA Goddard Space Flight Center, MD (United States); Jia, G J [Chinese Academy of Sciences, Institute for Atmospheric Physics, Beijing (China); Kaplan, J O [Swiss Federal Institute for Forest Snow and Landscape Research, Birmensdorf (Switzerland); Kumpula, T [University of Joensuu, Joensuu (Finland); Kuss, P [University of Berne, Berne (Switzerland); Matyshak, G [Moscow State University, Moscow (Russian Federation)

    2009-10-15

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  10. Phenological characteristics of the main vegetation types on the Tibetan Plateau based on vegetation and water indices

    International Nuclear Information System (INIS)

    Peng, D L; Huang, W J; Zhou, B; Li, C J; Wu, Y P; Yang, X H

    2014-01-01

    Plant phenology is considered one of the most sensitive and easily observable natural indicators of climate change, though few studies have focused on the heterogeneities of phenology across the different vegetation types. In this study, we tried to find the phenological characteristics of the main vegetation types on the Tibetan Plateau. MCD12Q1 images over the Tibetan Plateau from 2001 to 2010 were used to extract the main vegetation types. The Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI) were calculated using surface reflectance values from the blue, red, near-infrared, short-wave infrared (SWIR) 6 (for LSIW6), and SWIR7 (for LSIW7) bands derived from MOD09A1 and used to explore the phenological characteristics of the main vegetation types on the Tibetan Plateau. The results showed that there were eight constant vegetation types on the Tibetan Plateau from 2001 to 2010 demonstrating multiple phenological characteristics. Evergreen needleleaf forest, evergreen broadleaf forest, and permanent wetland had the minimum NDVI values during the summer season, while open shrubland and grassland had the maximum NDVI/EVI values during this period. NDVI and EVI of cropland/natural vegetation had two peaks for their seasonal variations. EVI showed a more significant correlation with LSWI6/LSWI7 than NDVI. Compared to LSWI7, larger EVI values occurred in evergreen needleleaf forest, evergreen broadleaf forest, mixed forest, and permanent wetland, while smaller values occurred in shrubland and barren or sparsely vegetated cover, and nearly equal values occurred in grassland and cropland

  11. REPEATABILITY OF THE FRENCH HIGHER VEGETATION TYPES ACCORDING

    Directory of Open Access Journals (Sweden)

    H. BRISSE

    1998-04-01

    Full Text Available Higher vegetation types are generally determined by successive approximations and defined by a common consent. Instead, they might be statistically determined and repeated, according to a numerical method called ‘socio-ecology’. This method deals only with floristical data, but gives them an ecological meaning by a previous calibration of the relations between plants, computed as ecological indices. It is applied to a pair of two homologous samples, each having 2.000 relevés and coming from the 60.000 relevés stored in the French data bank ‘Sophy’. Each sample covers the main ecological gradients of the bank, it defines a hierarchy of vegetation types and it explains half the peculiarity of a type with only 10 to 30 discriminant plants, out of the 5.000 plants observed in the relevés. Results : 1 The discriminant plants may characterize the vegetation types, including the higher ones, in a coherent and readable form. 2 In the two independent classifications, having different structures, the same vegetation types are repeated. They are the reciprocal nearest types, in the socio-ecological space. Though the two classifications have no one relevé in common, the repeated types have nearly the same discriminant plants. 3 At the highest level, two clear-cut main types show the difference between light and shadow. The same herbaceous discriminant plants, for a type, and the ligneous or sciaphilous ones, for the other, have similar fidelities and constancies in the two classifications. 4 Such a numerical agreement, instead of common consent, appears again in the sub-types, which remind the classical ones, but which are repeatable.

  12. Radar studies of arctic ice and development of a real-time Arctic ice type identification system

    Science.gov (United States)

    Rouse, J. W., Jr.; Schell, J. A.; Permenter, J. A.

    1973-01-01

    Studies were conducted to develop a real-time Arctic ice type identification system. Data obtained by NASA Mission 126, conducted at Pt. Barrow, Alaska (Site 93) in April 1970 was analyzed in detail to more clearly define the major mechanisms at work affecting the radar energy illuminating a terrain cell of sea ice. General techniques for reduction of the scatterometer data to a form suitable for application of ice type decision criteria were investigated, and the electronic circuit requirements for implementation of these techniques were determined. Also, consideration of circuit requirements are extended to include the electronics necessary for analog programming of ice type decision algorithms. After completing the basic circuit designs a laboratory model was constructed and a preliminary evaluation performed. Several system modifications for improved performance are suggested. (Modified author abstract)

  13. International student Arctic Field School on Permafrost and urban areas study

    Science.gov (United States)

    Suter, L.; Tolmanov, V. A.; Grebenets, V. I.; Streletskiy, D. A.; Shiklomanov, N. I.

    2017-12-01

    Arctic regions are experiencing drastic climatic and environmental changes. These changes are exacerbated in the Russian Arctic, where active resource development resulted in further land cover transformations, especially near large settlements. There is a growing need in multidisciplinary studies of climate and human- induced changes in the Arctic cities. In order to fill this gap, International Arctic Field Course on Permafrostand Northern Studies was organized in July 2017 to the Russian Arctic. The course was organized under the umbrella of the Arctic PIRE project in cooperation between the George Washington University, Moscow State University, and the Russian Center for Arctic Development. The course attracted twenty undergraduate and graduate students from Russia, USA, and EU countries and involved instructors specializing in Arctic system science, geocryology, permafrost engineering, and urban sustainability. The field course was focused on studying typical natural Arctic landscapes of tundra and forest tundra; transformations of natural landscapes in urban and industrial areas around Vorkuta and Salekhard; construction and planning on permafrost and field methods and techniques, including permafrost and soil temperature monitoring, active layer thickness (ALT) measurements, studying of cryogenic processes, stratigraphic and soil investigations, vegetation and microclimate studies. The students were also engaged in a discussion of climatic change and historical development of urban areas on permafrost,and were exposed to examples of both active and passive construction principles while conducting a field survey of permafrost related building deformations. During the course, students collected more than 800 ALT and soil temperature measurements in typical landscapes around Vorkuta and Salekhard to determine effects of soil and vegetation factors on ground thermal regime; surveyed several hundreds of buildings to determine locations with most deformation

  14. Is climate change affecting wolf populations in the high Arctic?

    Science.gov (United States)

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  15. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

    Science.gov (United States)

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev

    2017-07-12

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  16. Mapping and characterizing the vegetation types of the Democratic Republic of Congo using SPOT VEGETATION time series

    Science.gov (United States)

    Vancutsem, C.; Pekel, J.-F.; Evrard, C.; Malaisse, F.; Defourny, P.

    2009-02-01

    The need for quantitative and accurate information to characterize the state and evolution of vegetation types at a national scale is widely recognized. This type of information is crucial for the Democratic Republic of Congo, which contains the majority of the tropical forest cover of Central Africa and a large diversity of habitats. In spite of recent progress in earth observation capabilities, vegetation mapping and seasonality analysis in equatorial areas still represent an outstanding challenge owing to high cloud coverage and the extent and limited accessibility of the territory. On one hand, the use of coarse-resolution optical data is constrained by performance in the presence of cloud screening and by noise arising from the compositing process, which limits the spatial consistency of the composite and the temporal resolution. On the other hand, the use of high-resolution data suffers from heterogeneity of acquisition dates, images and interpretation from one scene to another. The objective of the present study was to propose and demonstrate a semi-automatic processing method for vegetation mapping and seasonality characterization based on temporal and spectral information from SPOT VEGETATION time series. A land cover map with 18 vegetation classes was produced using the proposed method that was fed by ecological knowledge gathered from botanists and reference documents. The floristic composition and physiognomy of each vegetation type are described using the Land Cover Classification System developed by the FAO. Moreover, the seasonality of each class is characterized on a monthly basis and the variation in different vegetation indicators is discussed from a phenological point of view. This mapping exercise delivers the first area estimates of seven different forest types, five different savannas characterized by specific seasonality behavior and two aquatic vegetation types. Finally, the result is compared to two recent land cover maps derived from

  17. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    residents speak in eloquent terms of the changes they see around them, manifested in new patterns of vegetation, the melting of permafrost and the absence of game species that used to be abundant. Meanwhile, new satellites and more sophisticated sensors on the ground and in the ice, add scientific testimony that seems to support and even extend native perceptions. Live from the Arctic will unify both perspectives, and use todays most powerful and effective communications media to connect young people and general audiences all across America to researchers and communities living and working in the Arctic. During IPY there will be a level of interest in the Polar regions unprecedented in a generation. Live from the Arctic offers unique resources to satisfy that curiosity, and encourage active participation and engagement in understanding some of Earths most significant peoples, places and rapidly changing conditions.

  18. High-latitude steppe vegetation and the mineral nutrition of Pleistocene herbivores

    Science.gov (United States)

    Davydov, S. P.; Davydova, A.; Makarevich, R.; Loranty, M. M.; Boeskorov, G.

    2014-12-01

    High-latitude steppes were widespread and zonal in the Late Pleistocene and formed a landscape basis for the Mammoth Biome. Now the patches of these steppes survived on steep slopes under southern aspects. These steppes serve as unique information sources about the Late Pleistocene "Mammoth" steppe. Numerous data obtained by palynological, carpological, and DNA analysis of plant remains from feces and stomach contents of Pleistocene herbivore mummies, as well as from buried soils and enclosing deposits show that they are similar to modern steppe plant assemblage in taxa composition. Plant's nutrient concentrations are of fundamental importance across Pleistocene grass-rich ecosystems because of their role in the support of large herbivores. The average weight of an adult mammoth skeleton (about 0.5 tons) and of a woolly rhinoceros (about 0.2 tons) clearly suggests this. Detailed studies on fossil bone remains showed mineral deficiency in large Pleistocene herbivores. A three-year study of ash and mineral contents of two types of relict steppe vegetation at the Kolyma Lowland, Arctic Siberia has been carried out. Nowadays refugia of similar vegetation are located not far (1 - 15km) from the Yedoma permafrost outcrops were abundant fossil remains are found. Dominant species of the steppe vegetation were sampled. Preliminary studies indicate that the ash-content varied 1.5-2 times in speceies of steppe herbs. The Ca, P, Mg, K element contents was higher for most steppe species than in the local herbaceous vegetation, especially in Ca and P. One of the most important elements of the mineral nutrition, the phosphorus, was always found in higher concentrations in the steppe vegetation than in plants of recently dominant landscapes of the study area. It should be noted that the mineral nutrient content of the modern steppe vegetation of Siberian Arctic is comparable to that of the recent zonal steppe of Transbaikal Region. This study supports the hypothesis that

  19. Cold season soil respiration in response to grazing and warming in the High Arctic Svalbard

    DEFF Research Database (Denmark)

    Strebel, Ditte; Elberling, Bo; Morgner, Elke

    2010-01-01

    of Arctic Goose Habitat: Impacts of Land Use, Conservation and Elevated Temperatures). New measurements of soil CO2 effluxes, temperatures and water contents were regularly made from July to November 2007. SOC stocks were quantified, and the reactivity and composition measured by basal soil respiration (BSR...... be concluded that two years after a goose grazing experiment, SOC cycling was less than the natural variation within contrasting vegetation types....

  20. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    Science.gov (United States)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  1. Humidification of the Arctic: Effects of more open ocean water on land temperatures and tundra productivity along continental and maritime bioclimate transects

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Epstein, H. E.

    2017-12-01

    Amplified Arctic warming linked to declining sea-ice extent led to generally enhanced productivity of the tundra biome during the period 1982-2008. After about 2002, coinciding with a recent precipitous decline in sea ice, large areas of the Arctic began showing reversals of previous positive productivity trends. To better understand these recent vegetation productivity declines and whether they are associated with differences in a general humidification of portions of the Arctic, we focus analysis on two transects with ground information: the more continental North America Arctic Transect (NAAT) and the more maritime Eurasia Arctic Transect (EAT). We compare ground information with satellite-derived trends in open water, summer terrestrial temperatures, and vegetation greenness and changes in continentality of the two transects, as indicated by the differences in the annual maximum and minimum mean monthly temperatures. Areas adjacent to perennial sea ice along in the northern parts of the NAAT exhibit climates with positive trends in summer warmth, but negative greening trends, possibly due to soil drying. Southern parts of the NAAT in the vicinity of more open water show positive greenness trends. Along the EAT, cooling midsummer conditions and reduced greenness appear to be caused by cloudier conditions, and possibly later snow melt during the period of maximum potential photosynthesis. Ground-based environmental and vegetation data indicate that biomass, particularly moss biomass is much greater along the more maritime EAT, indicating a buffering effect of the vegetation that will act to damp productivity as humidification of the Arctic proceeds. This multi-scale analysis is one step in the direction of understanding the drivers of tundra vegetation productivity in the Arctic.

  2. Future vegetation types and related main processes for Olkiluoto site

    International Nuclear Information System (INIS)

    Haapanen, R.

    2007-07-01

    This working report summarizes current knowledge of the land up-lift induced vegetation succession and future vegetation types on Olkiluoto Island and its surroundings. The report is based on generic literature and site-specific studies concerning Olkiluoto Island. Current vegetation on Olkiluoto Island and typical succession lines on different soil types are described, as well as main factors affecting the succession. Most relevant materials on hand are listed. Some problems and possible areas to be emphasized before using the data in modelling work are pointed out. (orig.)

  3. Biological responses to current UV-B radiation in Arctic regions

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2008-01-01

    on high-arctic vegetation. They supplement previous investigations from the Arctic focussing on other variables like growth etc., which have reported no or minor plant responses to UV-B, and clearly indicates that UV-B radiation is an important factor affecting plant life at high-arctic Zackenberg......Depletion of the ozone layer and the consequent increase in solar ultraviolet-B radiation (UV-B) may impact living conditions for arctic plants significantly. In order to evaluate how the prevailing UV-B fluxes affect the heath ecosystem at Zackenberg (74°30'N, 20°30'W) and other high......-arctic regions, manipulation experiments with various set-ups have been performed. Activation of plant defence mechanisms by production of UV-B absorbing compounds was significant in ambient UV-B in comparison to a filter treatment reducing the UV-B radiation. Despite the UV-B screening response, ambient UV...

  4. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    Science.gov (United States)

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  5. Hybrid image classification technique for land-cover mapping in the Arctic tundra, North Slope, Alaska

    Science.gov (United States)

    Chaudhuri, Debasish

    Remotely sensed image classification techniques are very useful to understand vegetation patterns and species combination in the vast and mostly inaccessible arctic region. Previous researches that were done for mapping of land cover and vegetation in the remote areas of northern Alaska have considerably low accuracies compared to other biomes. The unique arctic tundra environment with short growing season length, cloud cover, low sun angles, snow and ice cover hinders the effectiveness of remote sensing studies. The majority of image classification research done in this area as reported in the literature used traditional unsupervised clustering technique with Landsat MSS data. It was also emphasized by previous researchers that SPOT/HRV-XS data lacked the spectral resolution to identify the small arctic tundra vegetation parcels. Thus, there is a motivation and research need to apply a new classification technique to develop an updated, detailed and accurate vegetation map at a higher spatial resolution i.e. SPOT-5 data. Traditional classification techniques in remotely sensed image interpretation are based on spectral reflectance values with an assumption of the training data being normally distributed. Hence it is difficult to add ancillary data in classification procedures to improve accuracy. The purpose of this dissertation was to develop a hybrid image classification approach that effectively integrates ancillary information into the classification process and combines ISODATA clustering, rule-based classifier and the Multilayer Perceptron (MLP) classifier which uses artificial neural network (ANN). The main goal was to find out the best possible combination or sequence of classifiers for typically classifying tundra type vegetation that yields higher accuracy than the existing classified vegetation map from SPOT data. Unsupervised ISODATA clustering and rule-based classification techniques were combined to produce an intermediate classified map which was

  6. Carbon dioxide and methane fluxes from arctic mudboils

    International Nuclear Information System (INIS)

    Wilson, K.S.; Humphreys, E.R.

    2010-01-01

    Carbon-rich ecosystems in the Arctic have large stores of soil carbon. However, small changes in climate have the potential to change the carbon (C) balance. This study examined how changes in ecosystem structure relate to differences in the exchange of greenhouse gases, notably carbon dioxide (CO 2 ) and methane (CH 4 ), between the atmosphere and soil. In particular, it examined low-center mudboils to determine the influence that this distinct form of patterned ground in the Arctic may have on the overall C balance of Tundra ecosystems. The net ecosystem exchange of carbon dioxide (NEE) was measured along with methane efflux along a 35-m transect intersecting two mudboils in a wet sedge fen in Canada's Southern Arctic during the summer of 2008. Mudboil features revealed significant variations in vegetation, soil temperature and thaw depth, and soil organic matter content along this transect. Variations in NEE were attributed to changes in the amount of vascular vegetation, but CO 2 and CH 4 effluxes were similar among the two mudboil and the sedge fen sampling areas. The study showed that vegetation played a key role in limiting temporal variations in CH 4 effluxes through plant mediated transport in both mudboil and sedge fen sampling areas. The negligible vascular plant colonization in one of the mudboils was likely due to more active frost heave processes. Growth and decomposition of cryptogamic organisms along with inflow of dissolved organic C and warmer soil temperatures may have been the cause of the rather high CO 2 and CH 4 efflux in this mudboil area.

  7. Habitat-specific effects of climate change on a low-mobility Arctic spider species

    DEFF Research Database (Denmark)

    Bowden, Joseph James; Hansen, Rikke Reisner; Olsen, Kent

    2015-01-01

    Abstract Terrestrial ecosystems are heterogeneous habitat mosaics of varying vegetation types that are differentially affected by climate change. Arctic plant communities, for example, are changing faster in moist habitats than in dry habitats and abiotic changes like snowmelt vary locally among...... was significantly related to the timing of snowmelt and differed significantly between the sexes and habitats with the spiders in the mesic habitat showing a stronger temporal response to later snowmelt. Juvenile/ female ratios also differed significantly between habitats; as did the overall abundance...

  8. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  9. Effect of vegetation on rock and soil type discrimination

    Science.gov (United States)

    Siegal, B. S.; Goetz, A. F. H.

    1977-01-01

    The effect of naturally occurring vegetation on the spectral reflectance of earth materials in the wavelength region of 0.45 to 2.4 microns is determined by computer averaging of in situ acquired spectral data. The amount and type of vegetation and the spectral reflectance of the ground are considered. Low albedo materials may be altered beyond recognition with only ten per cent green vegetation cover. Dead or dry vegetation does not greatly alter the shape of the spectral reflectance curve and only changes the albedo with minimum wavelength dependency. With increasing amounts of vegetation the Landsat MSS band ratios 4/6, 4/7, 5/6, and 5/7 are significantly decreased whereas MSS ratios 4/5 and 6/7 remain entirely constant.

  10. Intermittent Flooding of Arctic Lagoon Wet Sedge Areas: an investigation of past and future conditions at Arey Lagoon, Eastern Arctic Alaska

    Science.gov (United States)

    Gibbs, A.; Erikson, L. H.; Richmond, B. M.

    2017-12-01

    Arctic lagoons and mainland coasts support highly productive ecosystems, where soft substrate and coastal wet sedge fringing the shores act as feeding grounds and nurseries for a variety of marine fish and waterfowl. Much tundra vegetation is intolerant to saltwater flooding, but some vegetation cherished by geese for example, is maintained by flooding one to two times per month. The balance of northern ecosystems such as these may be in jeopardy as the Arctic climate is rapidly changing. In this study, sea level rise and 21st century storms are simulated with a numerical model to evaluate changes in ocean-driven flooding of low-lying tundra and coastal wet sedge that fringe the shores of Arey Lagoon, located in eastern Arctic Alaska. Numerically modeled extreme surge levels are projected to increase from a historical range of 0.5 m - 1.3 m (1976-2010) to 1.0 m - 2.0 m by end-of-century (2011-2100). The maximum storm surge of the projected time-period translates to > 6 km2 of flooded tundra, much of which consists of salt-intolerant vegetation. Monthly flood extents that might be expected to maintain halophytic vegetation were calculated by extracting the maximum monthly water levels of months that had more than 21 days ( 70%) of ice-free conditions. Median monthly water levels are shown to range from 0.46 m in 1981-1990 to 0.91 m by the final decades of the 21st century. The temporal trend is strongly linear (r2 = 0.82). An overlay of these water elevations onto a 10 m resolution elevation model shows that monthly flood extents will increase by 26% by the end of the century compared to the present decade (2011 to 2020) (from 2.86 km2 to 3.60 km2). The rate at which the flood extents are projected to increase will dictate if inland succession of salt-tolerant vegetation will survive. By combining the frequency and magnitude of extreme storm surge events with the progression of modeled monthly inland flood extents, it might be possible to identify areas along this

  11. Understanding Mesoscale Land-Atmosphere Interactions in Arctic Region

    Science.gov (United States)

    Hong, X.; Wang, S.; Nachamkin, J. E.

    2017-12-01

    Land-atmosphere interactions in Arctic region are examined using the U.S. Navy Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS©*) with the Noah Land Surface Model (LSM). Initial land surface variables in COAMPS are interpolated from the real-time NASA Land Information System (LIS). The model simulations are configured for three nest grids with 27-9-3 km horizontal resolutions. The simulation period is set for October 2015 with 12-h data assimilation update cycle and 24-h integration length. The results are compared with those simulated without using LSM and evaluated with observations from ONR Sea State R/V Sikuliaq cruise and the North Slope of Alaska (NSA). There are complex soil and vegetation types over the surface for simulation with LSM, compared to without LSM simulation. The results show substantial differences in surface heat fluxes between bulk surface scheme and LSM, which may have an important impact on the sea ice evolution over the Arctic region. Evaluations from station data show surface air temperature and relative humidity have smaller biases for simulation using LSM. Diurnal variation of land surface temperature, which is necessary for physical processes of land-atmosphere, is also better captured than without LSM.

  12. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra - coupling field observations with remote sensing data

    Science.gov (United States)

    Mikola, Juha; Virtanen, Tarmo; Linkosalmi, Maiju; Vähä, Emmi; Nyman, Johanna; Postanogova, Olga; Räsänen, Aleksi; Kotze, D. Johan; Laurila, Tuomas; Juutinen, Sari; Kondratyev, Vladimir; Aurela, Mika

    2018-05-01

    Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs) and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI) and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM) in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm-3 in bare soil and lichen tundra and 89 g dm-3 in other LCTs. Total moss biomass varied from 0 to 820 g m-2, total vascular shoot mass from 7 to 112 g m-2 and vascular leaf area index (LAI) from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14-34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer depth, but only explained 6-15 % of variation. NDVI

  13. The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium

    Science.gov (United States)

    Zhang, Hui; Piilo, Sanna R.; Amesbury, Matthew J.; Charman, Dan J.; Gallego-Sala, Angela V.; Väliranta, Minna M.

    2018-02-01

    Climate warming has inevitable impacts on the vegetation and hydrological dynamics of high-latitude permafrost peatlands. These impacts in turn determine the role of these peatlands in the global biogeochemical cycle. Here, we used six active layer peat cores from four permafrost peatlands in Northeast European Russia and Finnish Lapland to investigate permafrost peatland dynamics over the last millennium. Testate amoeba and plant macrofossils were used as proxies for hydrological and vegetation changes. Our results show that during the Medieval Climate Anomaly (MCA), Russian sites experienced short-term permafrost thawing and this induced alternating dry-wet habitat changes eventually followed by desiccation. During the Little Ice Age (LIA) both sites generally supported dry-hummock habitats, at least partly driven by permafrost aggradation. However, proxy data suggest that occasionally, MCA habitat conditions were drier than during the LIA, implying that evapotranspiration may create important additional eco-hydrological feedback mechanisms under warm conditions. All sites showed a tendency towards dry conditions as inferred from both proxies starting either from ca. 100 years ago or in the past few decades after slight permafrost thawing, suggesting that recent warming has stimulated surface desiccation rather than deeper permafrost thawing. This study shows links between two important controls over hydrology and vegetation changes in high-latitude peatlands: direct temperature-induced surface layer response and deeper permafrost layer-related dynamics. These data provide important backgrounds for predictions of Arctic permafrost peatlands and related feedback mechanisms. Our results highlight the importance of increased evapotranspiration and thus provide an additional perspective to understanding of peatland-climate feedback mechanisms.

  14. Temperature response of respiration across heterogeneous microtopography in the Arctic tundra, Utqiaġvik, Alaska

    Science.gov (United States)

    Wilkman, E.; Zona, D.; Tang, Y.; Gioli, B.; Lipson, D.; Oechel, W. C.

    2017-12-01

    The response of ecosystem respiration to warming in the Arctic is not well constrained, partly due to the presence of ice-wedge polygons in continuous permafrost areas. These formations lead to substantial variation in vegetation, soil moisture, water table, and active layer depth over the meter scale that can drive respiratory carbon loss. Accurate calculations of in-situ temperature sensitivities (Q10) are vital for the prediction of future Arctic emissions, and while the eddy covariance technique has commonly been used to determine the diurnal and season patterns of net ecosystem exchange (NEE) of CO2, the lack of suitable dark periods in the Arctic summer has limited our ability to estimate and interpret ecosystem respiration. To therefore improve our understanding of and define controls on ecosystem respiration, we directly compared CO2 fluxes measured from automated chambers across the main local polygonised landscape forms (high and low centers, polygon rims, and polygon troughs) to estimates from an adjacent eddy covariance tower. Low-centered polygons and polygon troughs had the greatest cumulative respiration rates, and ecosystem type appeared to be the most important explanatory variable for these rates. Despite the difference in absolute respiration rates, Q10 was surprisingly similar across all microtopographic features, despite contrasting water levels and vegetation types. Conversely, Q10 varied temporally, with higher values during the early and late summer and lower values during the peak growing season. Finally, good agreement was found between chamber and tower based Q10 estimates during the peak growing season. Overall, this study suggests that it is possible to simplify estimates of the temperature sensitivity of respiration across heterogeneous landscapes, but that seasonal changes in Q10 should be incorporated into current and future model simulations.

  15. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie

    2015-01-01

    season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... Svalbard in two vegetation types spanning three moisture regimes. We measured growing-season availability of ammonium (NH4 (+)), nitrate (NO3 (-)), total dissolved organic carbon (DOC) and nitrogen (TON) in soil; C, N, delta N-15 and chlorophyll content in Salix polaris leaves; and leaf sizes of Salix...

  16. Trajectory of the Arctic as an integrated system.

    Science.gov (United States)

    Hinzman, Larry D; Deal, Clara J; McGuire, A David; Mernild, Sebastian H; Polyakov, Igor V; Walsh, John E

    2013-12-01

    Although much remains to be learned about the Arctic and its component processes, many of the most urgent scientific, engineering, and social questions can only be approached through a broader system perspective. Here, we address interactions between components of the Arctic system and assess feedbacks and the extent to which feedbacks (1) are now underway in the Arctic and (2) will shape the future trajectory of the Arctic system. We examine interdependent connections among atmospheric processes, oceanic processes, sea-ice dynamics, marine and terrestrial ecosystems, land surface stocks of carbon and water, glaciers and ice caps, and the Greenland ice sheet. Our emphasis on the interactions between components, both historical and anticipated, is targeted on the feedbacks, pathways, and processes that link these different components of the Arctic system. We present evidence that the physical components of the Arctic climate system are currently in extreme states, and that there is no indication that the system will deviate from this anomalous trajectory in the foreseeable future. The feedback for which the evidence of ongoing changes is most compelling is the surface albedo-temperature feedback, which is amplifying temperature changes over land (primarily in spring) and ocean (primarily in autumn-winter). Other feedbacks likely to emerge are those in which key processes include surface fluxes of trace gases, changes in the distribution of vegetation, changes in surface soil moisture, changes in atmospheric water vapor arising from higher temperatures and greater areas of open ocean, impacts of Arctic freshwater fluxes on the meridional overturning circulation of the ocean, and changes in Arctic clouds resulting from changes in water vapor content.

  17. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  18. Depth-based differentiation in nitrogen uptake between graminoids and shrubs in an Arctic tundra plant community

    NARCIS (Netherlands)

    Wang, Peng; Limpens, Juul; Nauta, Ake; Huissteden, van Corine; Rijssel, van Sophie Quirina; Mommer, Liesje; Kroon, de Hans; Maximov, Trofim C.; Heijmans, Monique M.P.D.

    2018-01-01

    Questions: The rapid climate warming in tundra ecosystems can increase nutrient availability in the soil, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making the understanding

  19. Arctic Tundra Soils: A Microbial Feast That Shrubs Will Cease

    Science.gov (United States)

    Machmuller, M.; Calderon, F.; Cotrufo, M. F.; Lynch, L.; Paul, E. A.; Wallenstein, M. D.

    2016-12-01

    Rapid climate warming may already be driving rapid decomposition of the vast stocks of carbon in Arctic tundra soils. However, stimulated decomposition may also release nitrogen and support increased plant productivity, potentially counteracting soil carbon losses. At the same time, these two processes interact, with plant derived carbon potentially fueling soil microbes to attack soil organic matter (SOM) to acquire nitrogen- a process known as priming. Thus, differences in the physiology, stoichiometry and microbial interactions among plant species could affect climate-carbon feedbacks. To reconcile these interactive mechanisms, we examined how vegetation type (Betula nana and Eriophorum vaginatum) and fertilization (short-term and long-term) influenced the decomposition of native SOM after labile carbon and nutrient addition. We hypothesized that labile carbon inputs would stimulate the loss of native SOM, but the magnitude of this effect would be indirectly related to soil nitrogen concentrations (e.g. SOM priming would be highest in N-limited soils). We added isotopically enriched (13C) glucose and ammonium nitrate to soils under shrub (B. nana) and tussock (E. vaginatum) vegetation. We found that nitrogen additions stimulated priming only in tussock soils, characterized by lower nutrient concentrations and microbial biomass (p20yrs. Rather, we found that long-term fertilization shifted SOM chemistry towards a greater abundance of recalcitrant SOM, lower microbial biomass, and decreased SOM respiration (p<0.05). Our results suggest that, in the short-term, the magnitude of SOM priming is dependent on vegetation and soil nitrogen concentrations, but this effect may not persist if shrubs increase in abundance under climate warming. Therefore, including nitrogen as a control on SOM decomposition and priming is critical to accurately model the effects of climate change on arctic carbon storage.

  20. The Arctic Observing Viewer (AOV): Visualization, Data Discovery, Strategic Assessment, and Decision Support for Arctic Observing

    Science.gov (United States)

    Kassin, A.; Cody, R. P.; Barba, M.; Escarzaga, S. M.; Villarreal, S.; Manley, W. F.; Gaylord, A. G.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2017-12-01

    To better assess progress in Arctic Observing made by U.S. SEARCH, NSF AON, SAON, and related initiatives, an updated version of the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been released. This web mapping application and information system conveys the who, what, where, and when of "data collection sites" - the precise locations of monitoring assets, observing platforms, and wherever repeat marine or terrestrial measurements have been taken. Over 13,000 sites across the circumarctic are documented including a range of boreholes, ship tracks, buoys, towers, sampling stations, sensor networks, vegetation plots, stream gauges, ice cores, observatories, and more. Contributing partners are the U.S. NSF, NOAA, the NSF Arctic Data Center, ADIwg, AOOS, a2dc, CAFF, GINA, IASOA, INTERACT, NASA ABoVE, and USGS, among others. Users can visualize, navigate, select, search, draw, print, view details, and follow links to obtain a comprehensive perspective of environmental monitoring efforts. We continue to develop, populate, and enhance AOV. Recent updates include: a vastly improved Search tool with free text queries, autocomplete, and filters; faster performance; a new clustering visualization; heat maps to highlight concentrated research; and 3-D represented data to more easily identify trends. AOV is founded on principles of interoperability, such that agencies and organizations can use the AOV Viewer and web services for their own purposes. In this way, AOV complements other distributed yet interoperable cyber resources and helps science planners, funding agencies, investigators, data specialists, and others to: assess status, identify overlap, fill gaps, optimize sampling design, refine network performance, clarify directions, access data, coordinate logistics, and collaborate to meet Arctic Observing goals. AOV is a companion application to the Arctic Research Mapping Application (armap.org), which is focused on general project information at a

  1. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    Science.gov (United States)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    effect of plant functional type (PFT) dynamics and instantaneous BVOC responses to warming. The identified challenges in estimating Arctic BVOC emissions are (1) correct leaf T estimation, (2) PFT parameterization accounting for plant emission features as well as physiological responses to warming, and (3) representation of long-term vegetation changes in the past and the future.

  2. Crop Type Classification Using Vegetation Indices of RapidEye Imagery

    Science.gov (United States)

    Ustuner, M.; Sanli, F. B.; Abdikan, S.; Esetlili, M. T.; Kurucu, Y.

    2014-09-01

    Cutting-edge remote sensing technology has a significant role for managing the natural resources as well as the any other applications about the earth observation. Crop monitoring is the one of these applications since remote sensing provides us accurate, up-to-date and cost-effective information about the crop types at the different temporal and spatial resolution. In this study, the potential use of three different vegetation indices of RapidEye imagery on crop type classification as well as the effect of each indices on classification accuracy were investigated. The Normalized Difference Vegetation Index (NDVI), the Green Normalized Difference Vegetation Index (GNDVI), and the Normalized Difference Red Edge Index (NDRE) are the three vegetation indices used in this study since all of these incorporated the near-infrared (NIR) band. RapidEye imagery is highly demanded and preferred for agricultural and forestry applications since it has red-edge and NIR bands. The study area is located in Aegean region of Turkey. Radial Basis Function (RBF) kernel was used here for the Support Vector Machines (SVMs) classification. Original bands of RapidEye imagery were excluded and classification was performed with only three vegetation indices. The contribution of each indices on image classification accuracy was also tested with single band classification. Highest classification accuracy of 87, 46 % was obtained using three vegetation indices. This obtained classification accuracy is higher than the classification accuracy of any dual-combination of these vegetation indices. Results demonstrate that NDRE has the highest contribution on classification accuracy compared to the other vegetation indices and the RapidEye imagery can get satisfactory results of classification accuracy without original bands.

  3. Variations in the Sensitivity of Shrub Growth to Climate Change along Arctic Environmental and Biotic Gradients

    Science.gov (United States)

    Beck, P. S. A.; Myers-Smith, I. H.; Elmendorf, S.; Georges, D.

    2015-12-01

    Despite evidence of rapid shrub expansion at many Arctic sites and the profound effects this has on ecosystem structure, biogeochemical cycling, and land-atmosphere feedbacks in the Arctic, the drivers of shrub growth remain poorly understood. The compilation of 41,576 annual shrub growth measurements made around the Arctic, allowed for the first systematic evaluation of the climate sensitivity of Arctic shrub growth, i.e. the strength of the relationship between annual shrub growth and monthly climate variables. The growth measurements were taken on 1821 plants of 25 species at 37 arctic and alpine sites, either as annual ring widths or as stem increments. We evaluated climate sensitivity of shrub growth for each genus-by-site combination in this data set based on the performance and parameters of linear mixed models that used CRU TS3.21 climate data as predictors of shrub growth between 1950 and 2010. 76% of genus-by-site combinations showed climate sensitive growth, but climate-growth relationships varied with soil moisture, species canopy height, and geographic position within the species ranges. Shrubs growing at sites with more soil moisture showed greater climate sensitivity, suggesting that water availability might limit shrub growth if continued warming isn't matched by a steady increase in soil moisture. Tall shrub species growing at their northern range limit were particularly climate sensitive causing climate sensitivity of shrubs to peak at the transition between Low and High Arctic, where carbon storage in permafrost is greatest. Local and regional studies have documented matching spatial and temporal patterns in dendrochronological measurements and satellite observations of vegetation indices both in boreal and Arctic regions. Yet the circumarctic comparison of patterns in dendrochronological and remote sensing data sets yielded poor levels of agreement. In much of the Arctic, steep environmental gradients generate fine spatial patterns of vegetation

  4. Modern pollen data from the Canadian Arctic, 1972-1973

    Science.gov (United States)

    Nichols, Harvey; Stolze, Susann

    2017-05-01

    This data descriptor reports results of a 1972-73 baseline study of modern pollen deposition in the Canadian Arctic to originally aid interpretation of Holocene pollen diagrams from that region, especially focussed on the arctic tree-line. The data set is geographically unique due to its extent, and allows the assessment of the effects of modern climate change on northern ecosystems, including fluctuations of the a arctic tree-line. Repeated sampling was conducted along an interior transect at 29 sites from the Boreal Forest to the High Arctic, with five additional coastal sites covering a total distance of 3,200 km. Static pollen samplers captured both local pollen and long-distance pollen wind-blown from the Boreal Forest. Moss and lichen polsters provided multi-year pollen fallout to assess the effectiveness of the static pollen samplers. The local vegetation was recorded at each site. This descriptor provides information on data archived at the World Data Center PANGAEA, which includes spreadsheets detailing site and sample information as well as raw and processed pollen data obtained on over 500 samples.

  5. Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology

    Science.gov (United States)

    Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.

    2016-12-01

    Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.

  6. Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic.

    Science.gov (United States)

    Rogers, Alistair; Serbin, Shawn P; Ely, Kim S; Sloan, Victoria L; Wullschleger, Stan D

    2017-12-01

    Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V c,max.25 and J max.25 , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO 2 response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska. The activation energies associated with the temperature response functions of V c,max and J max were 17% lower than commonly used values. When scaled to 25°C, V c,max.25 and J max.25 were two- to five-fold higher than the values used to parameterize current TBMs. This high photosynthetic capacity was attributable to a high leaf N content and the high fraction of N invested in Rubisco. Leaf-level modeling demonstrated that current parameterization of TBMs resulted in a two-fold underestimation of the capacity for leaf-level CO 2 assimilation in Arctic vegetation. This study highlights the poor representation of Arctic photosynthesis in TBMs, and provides the critical data necessary to improve our ability to project the response of the Arctic to global environmental change. No claim to original US Government works. New Phytologist © 2017 New Phytologist Trust.

  7. Evaluation of Polarimetric SAR Decomposition for Classifying Wetland Vegetation Types

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Hong

    2015-07-01

    Full Text Available The Florida Everglades is the largest subtropical wetland system in the United States and, as with subtropical and tropical wetlands elsewhere, has been threatened by severe environmental stresses. It is very important to monitor such wetlands to inform management on the status of these fragile ecosystems. This study aims to examine the applicability of TerraSAR-X quadruple polarimetric (quad-pol synthetic aperture radar (PolSAR data for classifying wetland vegetation in the Everglades. We processed quad-pol data using the Hong & Wdowinski four-component decomposition, which accounts for double bounce scattering in the cross-polarization signal. The calculated decomposition images consist of four scattering mechanisms (single, co- and cross-pol double, and volume scattering. We applied an object-oriented image analysis approach to classify vegetation types with the decomposition results. We also used a high-resolution multispectral optical RapidEye image to compare statistics and classification results with Synthetic Aperture Radar (SAR observations. The calculated classification accuracy was higher than 85%, suggesting that the TerraSAR-X quad-pol SAR signal had a high potential for distinguishing different vegetation types. Scattering components from SAR acquisition were particularly advantageous for classifying mangroves along tidal channels. We conclude that the typical scattering behaviors from model-based decomposition are useful for discriminating among different wetland vegetation types.

  8. Risk elements in selected types of vegetables

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2016-12-01

    in selected types of vegetables analyzed element was not exceeded the limit values established by Codex Alimentarius of Slovak Republic. From the results, also can be concluded that higher contents of heavy metals (Cu, Mn, Ni, Cd, Pb were mostly in samples from home gardeners than in samples came from local market. 

  9. Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009

    Science.gov (United States)

    Robert R. Pattison; Janet C. Jorgenson; Martha K. Raynolds; Jeffery M. Welker

    2015-01-01

    As Arctic ecosystems experience increases in surface air temperatures, plot-level analyses of tundra vegetation composition suggest that there are important changes occurring in tundra communities that are typified by increases in shrubs and declines in non-vascular species. At the same time analyses of NDVI indicate that the Arctic tundra is greening. Few studies have...

  10. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Science.gov (United States)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  11. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  12. Vegetation geographical patterns as a key to the past, with emphasis on the dry vegetation types of South Africa

    Directory of Open Access Journals (Sweden)

    M. J. A. Werger

    1983-11-01

    Full Text Available Southern Africa is characterized by a highly diversified vegetational cover with extremes as contrasting as desert, tropical forest, alpine grassland, or mediterranean type scrub, and many other types in between. This vegetational pattern is strongly correlated to the climatological pattern. It is therefore likely that past changes in climate can still be partly traced in the vegetational pattern, particularly in geographical anomalies, and that study of these patterns provides complementary evidence to palynological research. The following anomalies in the vegetational pattern are briefly discussed: 1. island-wise occurrence of Afro-montane vegetation on mesic, sheltered sites in the southern Sudano- Zambezian Region, in particular in the Highveld grassland/False Karoo transition area; 2. similar westward occurrence of Sudano-Zambezian scrub patches in the Karoo-Namib Region near the Orange/Vaal confluence; 3. scattered occurrence of Sudano-Zambezian woody species in a matrix of Karoo-Namib vegetation in the marginal Karoo-Namib Region; 4. island-wise occurrence of frost-tolerant, dry, karroid dwarf shrub vegetation of predominantly C,-plants on isolated peaks in the winter rainfall area of Namaqualand; 5. peculiar patchy distribution of some succulents in wide areas of climatically rather homogeneous, succulent dwarf shrub vegetation of predominantly CAM-plants in the escarpment area of Namaqualand. a pattern reminiscent of that in many Cape fynbos species. Interpretation of these patterns logically leads to the conclusion that these result from a previously wetter, a previously cooler, or a previously wetter and cooler climate, respectively, over the parts of southern Africa under discussion. This conclusion is compared with published palynological views.

  13. Modern pollen data from the Canadian Arctic, 1972–1973

    Science.gov (United States)

    Nichols, Harvey; Stolze, Susann

    2017-01-01

    This data descriptor reports results of a 1972–73 baseline study of modern pollen deposition in the Canadian Arctic to originally aid interpretation of Holocene pollen diagrams from that region, especially focussed on the arctic tree-line. The data set is geographically unique due to its extent, and allows the assessment of the effects of modern climate change on northern ecosystems, including fluctuations of the a arctic tree-line. Repeated sampling was conducted along an interior transect at 29 sites from the Boreal Forest to the High Arctic, with five additional coastal sites covering a total distance of 3,200 km. Static pollen samplers captured both local pollen and long-distance pollen wind-blown from the Boreal Forest. Moss and lichen polsters provided multi-year pollen fallout to assess the effectiveness of the static pollen samplers. The local vegetation was recorded at each site. This descriptor provides information on data archived at the World Data Center PANGAEA, which includes spreadsheets detailing site and sample information as well as raw and processed pollen data obtained on over 500 samples. PMID:28509898

  14. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    Science.gov (United States)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  15. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes.

    Science.gov (United States)

    Holzinger, Andreas; Albert, Andreas; Aigner, Siegfried; Uhl, Jenny; Schmitt-Kopplin, Philippe; Trumhová, Kateřina; Pichrtová, Martina

    2018-02-22

    Species of Zygnema form macroscopically visible mats in polar and temperate terrestrial habitats, where they are exposed to environmental stresses. Three previously characterized isolates (Arctic Zygnema sp. B, Antarctic Zygnema sp. C, and temperate Zygnema sp. S) were tested for their tolerance to experimental UV radiation. Samples of young vegetative cells (1 month old) and pre-akinetes (6 months old) were exposed to photosynthetically active radiation (PAR, 400-700 nm, 400 μmol photons m -2  s -1 ) in combination with experimental UV-A (315-400 nm, 5.7 W m -2 , no UV-B), designated as PA, or UV-A (10.1 W m -2 ) + UV-B (280-315 nm, 1.0 W m -2 ), designated as PAB. The experimental period lasted for 74 h; the radiation period was 16 h PAR/UV-A per day, or with additional UV-B for 14 h per day. The effective quantum yield, generally lower in pre-akinetes, was mostly reduced during the UV treatment, and recovery was significantly higher in young vegetative cells vs. pre-akinetes during the experiment. Analysis of the deepoxidation state of the xanthophyll-cycle pigments revealed a statistically significant (p UV-absorbing phenolic compounds was significantly higher (p UV-B stress than pre-akinetes.

  16. Spatial variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling field observations with remote sensing data

    Directory of Open Access Journals (Sweden)

    J. Mikola

    2018-05-01

    Full Text Available Arctic tundra ecosystems will play a key role in future climate change due to intensifying permafrost thawing, plant growth and ecosystem carbon exchange, but monitoring these changes may be challenging due to the heterogeneity of Arctic landscapes. We examined spatial variation and linkages of soil and plant attributes in a site of Siberian Arctic tundra in Tiksi, northeast Russia, and evaluated possibilities to capture this variation by remote sensing for the benefit of carbon exchange measurements and landscape extrapolation. We distinguished nine land cover types (LCTs and to characterize them, sampled 92 study plots for plant and soil attributes in 2014. Moreover, to test if variation in plant and soil attributes can be detected using remote sensing, we produced a normalized difference vegetation index (NDVI and topographical parameters for each study plot using three very high spatial resolution multispectral satellite images. We found that soils ranged from mineral soils in bare soil and lichen tundra LCTs to soils of high percentage of organic matter (OM in graminoid tundra, bog, dry fen and wet fen. OM content of the top soil was on average 14 g dm−3 in bare soil and lichen tundra and 89 g dm−3 in other LCTs. Total moss biomass varied from 0 to 820 g m−2, total vascular shoot mass from 7 to 112 g m−2 and vascular leaf area index (LAI from 0.04 to 0.95 among LCTs. In late summer, soil temperatures at 15 cm depth were on average 14 °C in bare soil and lichen tundra, and varied from 5 to 9 °C in other LCTs. On average, depth of the biologically active, unfrozen soil layer doubled from early July to mid-August. When contrasted across study plots, moss biomass was positively associated with soil OM % and OM content and negatively associated with soil temperature, explaining 14–34 % of variation. Vascular shoot mass and LAI were also positively associated with soil OM content, and LAI with active layer

  17. Shrub water use dynamics in arctic Alaska

    Science.gov (United States)

    Clark, J.; Young-Robertson, J. M.; Tape, K. D.

    2016-12-01

    In the Arctic tundra, hydrologic processes influence the majority of ecosystem processes, from soil thermal dynamics to energy balance and trace gas exchange to vegetation community distributions. The tundra biome is experiencing a broad spectrum of ecosystem changes spurred by 20th century warming, including deciduous shrub expansion. Deciduous woody vegetation typically has high water use rates compared to evergreen and herbaceous species, and is projected to have a greater impact on energy balance than altered albedo from changes in snowpack. However, the impact of greater shrub cover on water balance has been overlooked. Shrubs have the potential to significantly dry the soil, accessing stored soil moisture in the organic layers, while increasing atmospheric moisture. The goal of this study is to quantify the water use dynamics (sap flux and stem water content) of three common arctic shrub species (Salix alexensis, S. pulchra, Betula nana) over two growing seasons. Stem water content was measured through a novel application of time domain reflectometry (TDR). Maximum sap flow rates varied by species: S. alexensis-600g/hr, S. pulchra-60g/hr, and B. nana-40g/hr. We found daily sap flow rates are highly correlated with atmospheric moisture demand (VPD) and not limited by soil moisture or antecedent precipitation. Stem water content varied between 20% and 60%, was correlated with soil moisture, and showed weak diurnal variation. This is one of the first studies to provide a detailed look at arctic tundra shrub water balance and explore the environmental controls on water flux. Planned future work will expand on these results for estimates of evapotranspiration over larger landscape areas.

  18. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    Science.gov (United States)

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  19. Can antibrowsing defense regulate the spread of woody vegetation in arctic tundra?

    Science.gov (United States)

    Bryant, John P.; Joly, Kyle; Chapin, F. Stuart; DeAngelis, Donald L.; Kielland, Knut

    2014-01-01

    Global climate warming is projected to promote the increase of woody plants, especially shrubs, in arctic tundra. Many factors may affect the extent of this increase, including browsing by mammals. We hypothesize that across the Arctic the effect of browsing will vary because of regional variation in antibrowsing chemical defense. Using birch (Betula) as a case study, we propose that browsing is unlikely to retard birch expansion in the region extending eastward from the Lena River in central Siberia across Beringia and the continental tundra of central and eastern Canada where the more effectively defended resin birches predominate. Browsing is more likely to retard birch expansion in tundra west of the Lena to Fennoscandia, Iceland, Greenland and South Baffin Island where the less effectively defended non-resin birches predominate. Evidence from the literature supports this hypothesis. We further suggest that the effect of warming on the supply of plant-available nitrogen will not significantly change either this pan-Arctic pattern of variation in antibrowsing defense or the resultant effect that browsing has on birch expansion in tundra. However, within central and east Beringia warming-caused increases in plant-available nitrogen combined with wildfire could initiate amplifying feedback loops that could accelerate shrubification of tundra by the more effectively defended resin birches. This accelerated shrubification of tundra by resin birch, if extensive, could reduce the food supply of caribou causing population declines. We conclude with a brief discussion of modeling methods that show promise in projecting invasion of tundra by woody plants.

  20. Arctic transitions in the Land - Atmosphere System (ATLAS): Background, objectives, results, and future directions

    Science.gov (United States)

    McGuire, A.D.; Sturm, M.; Chapin, F. S.

    2003-01-01

    This paper briefly reviews the background, objectives, and results of the Arctic Transitions in the Land-Atmosphere System (ATLAS) Project to date and provides thoughts on future directions. The key goal of the ATLAS Project is to improve understanding of controls over spatial and temporal variability of terrestrial processes in the Arctic that have potential consequences for the climate system, i.e., processes that affect the exchange of water and energy with the atmosphere, the exchange of radiatively active gases with the atmosphere, and the delivery of freshwater to the Arctic Ocean. Three important conclusions have emerged from research associated with the ATLAS Project. First, associated with the observation that the Alaskan Arctic has warmed significantly in the last 30 years, permafrost is warming, shrubs are expanding, and there has been a temporary release of carbon dioxide from tundra soils. Second, the winter is a more important period of biological activity than previously appreciated. Biotic processes, including shrub expansion and decomposition, affect snow structure and accumulation and affect the annual carbon budget of tundra ecosystems. Third, observed vegetation changes can have a significant positive feedback to regional warming. These vegetation effects are, however, less strong than those exerted by land-ocean heating contrasts and the topographic constraints on air mass movements. The papers of this special section provide additional insights related to these conclusions and to the overall goal of ATLAS.

  1. Multivariate ordination identifies vegetation types associated with spider conservation in brassica crops

    Directory of Open Access Journals (Sweden)

    Hafiz Sohaib Ahmed Saqib

    2017-10-01

    Full Text Available Conservation biological control emphasizes natural and other non-crop vegetation as a source of natural enemies to focal crops. There is an unmet need for better methods to identify the types of vegetation that are optimal to support specific natural enemies that may colonize the crops. Here we explore the commonality of the spider assemblage—considering abundance and diversity (H—in brassica crops with that of adjacent non-crop and non-brassica crop vegetation. We employ spatial-based multivariate ordination approaches, hierarchical clustering and spatial eigenvector analysis. The small-scale mixed cropping and high disturbance frequency of southern Chinese vegetation farming offered a setting to test the role of alternate vegetation for spider conservation. Our findings indicate that spider families differ markedly in occurrence with respect to vegetation type. Grassy field margins, non-crop vegetation, taro and sweetpotato harbour spider morphospecies and functional groups that are also present in brassica crops. In contrast, pumpkin and litchi contain spiders not found in brassicas, and so may have little benefit for conservation biological control services for brassicas. Our findings also illustrate the utility of advanced statistical approaches for identifying spatial relationships between natural enemies and the land uses most likely to offer alternative habitats for conservation biological control efforts that generates testable hypotheses for future studies.

  2. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)

    Science.gov (United States)

    Evangeliou, N.; Balkanski, Y.; Hao, W. M.; Petkov, A.; Silverstein, R. P.; Corley, R.; Nordgren, B. L.; Urbanski, S. P.; Eckhardt, S.; Stohl, A.; Tunved, P.; Crepinsek, S.; Jefferson, A.; Sharma, S.; Nøjgaard, J. K.; Skov, H.

    2016-06-01

    In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002-2013 influenced the budget of BC in the Arctic. For simulating the transport of fire emissions from northern Eurasia to the Arctic, we adopted BC fire emission estimates developed independently by GFED3 (Global Fire Emissions Database) and FEI-NE (Fire Emission Inventory - northern Eurasia). Both datasets were based on fire locations and burned areas detected by MODIS (Moderate resolution Imaging Spectroradiometer) instruments on NASA's (National Aeronautics and Space Administration) Terra and Aqua satellites. Anthropogenic sources of BC were adopted from the MACCity (Monitoring Atmospheric Composition and Climate and megacity Zoom for the Environment) emission inventory.During the 12-year period, an average area of 250 000 km2 yr-1 was burned in northern Eurasia (FEI-NE) and the global emissions of BC ranged between 8.0 and 9.5 Tg yr-1 (FEI-NE+MACCity). For the BC emitted in the Northern Hemisphere (based on FEI-NE+MACCity), about 70 % originated from anthropogenic sources and the rest from biomass burning (BB). Using the FEI-NE+MACCity inventory, we found that 102 ± 29 kt yr-1 BC was deposited in the Arctic (defined here as the area north of 67° N) during the 12 years simulated, which was twice as much as when using the MACCity inventory (56 ± 8 kt yr-1). The annual mass of BC deposited in the Arctic from all sources (FEI-NE in northern Eurasia, MACCity elsewhere) is significantly higher by about 37 % in 2009 (78 vs. 57 kt yr-1) to 181 % in 2012 (153 vs. 54 kt yr-1), compared to the BC deposited using just the MACCity emission inventory. Deposition of BC in the Arctic from BB sources in the Northern Hemisphere

  3. Developing digital vegetation for central hardwood forest types: A case study from Leslie County, KY

    Science.gov (United States)

    Bo Song; Wei-lun Tsai; Chiao-ying Chou; Thomas M. Williams; William Conner; Brian J. Williams

    2011-01-01

    Digital vegetation is the computerized representation, with either virtual images or animations, of vegetation types and conditions based on current measurements or ecological models. Digital vegetation can be useful in evaluating past, present, or future land use; changes in vegetation linked to climate change; or restoration efforts. Digital vegetation can be...

  4. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  5. Water retention and evapotranspiration of green roofs and possible natural vegetation types

    NARCIS (Netherlands)

    Metselaar, K.

    2012-01-01

    Matching vegetation to growing conditions on green roofs is one of the options to increase biodiversity in cities. A hydrological model has been applied to match the hydrological requirements of natural vegetation types to roof substrate parameters and to simulate moisture stress for specific

  6. Alien plant invasion in mixed-grass prairie: Effects of vegetation type and anthropogenic disturbance

    Science.gov (United States)

    Larson, D.L.; Anderson, P.J.; Newton, W.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  7. Improving understanding of controls on spatial variability in methane fluxes in Arctic tundra

    Science.gov (United States)

    Davidson, Scott J.; Sloan, Victoria; Phoenix, Gareth; Wagner, Robert; Oechel, Walter; Zona, Donatella

    2015-04-01

    The Arctic is experiencing rapid climate change relative to the rest of the globe, and this increase in temperature has feedback effects across hydrological and thermal regimes, plant community distribution and carbon stocks within tundra soils. Arctic wetlands account for a significant amount of methane emissions from natural ecosystems to the atmosphere and with further permafrost degradation under a warming climate, these emissions are expected to increase. Methane (CH4) is an extremely important component of the global carbon cycle with a global warming potential 28.5 times greater than carbon dioxide over a 100 year time scale (IPCC, 2013). In order to validate carbon cycle models, modelling methane at broader landscape scales is needed. To date direct measurements of methane have been sporadic in time and space which, while capturing some key controls on the spatial heterogeneity, make it difficult to accurately upscale methane emissions to the landscape and regional scales. This study investigates what is controlling the spatial heterogeneity of methane fluxes across Arctic tundra. We combined over 300 portable chamber observations from 13 micro-topographic positions (with multiple vegetation types) across three locations spanning a 300km latitudinal gradient in Northern Alaska from Barrow to Ivotuk with synchronous measurements of environmental (soil temperature, soil moisture, water table, active layer thaw depth, pH) and vegetation (plant community composition, height, sedge tiller counts) variables to evaluate key controls on methane fluxes. To assess the diurnal variation in CH4 fluxes, we also performed automated chamber measurements in one study site (Barrow) location. Multiple statistical approaches (regression tree and multiple linear regression) were used to identify key controlling variables and their interactions. Methane emissions across all sites ranged from -0.08 to 15.3 mg C-CH4 m-2 hr-1. As expected, soil moisture was the main control

  8. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  9. Impacts of Climate Change Induced Vegetation Responses on BVOC Emissions from Subarctic Heath Ecosystems

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta

    The role of biogenic volatile organic compounds (BVOCs) affecting Earths’ climate system is one of the greatest uncertainties when modelling the global climate change. BVOCs presence in the atmosphere can have both positive and negative climate feedback mechanisms when they involve atmospheric...... chemistry and physics. Vegetation is the main source of BVOCs. Their production is directly linked to temperature and the foliar biomass. On global scale, vegetation in subarctic and arctic regions has been modeled to have only minor contribution to annual total BVOC emissions. In these regions cold...... temperature has been regulating annual plant biomass production, but ongoing global warming is more pronounced in these regions than what the global average is. This may increase the importance of subarctic and arctic vegetation as a source of BVOC emissions in near future. This thesis aims to increase...

  10. Increasing Alkalinity Export from Large Russian Arctic Rivers

    Science.gov (United States)

    Drake, T.; Zhulidov, A. V.; Gurtovaya, T. Y.; Spencer, R. G.

    2017-12-01

    Riverine carbonate alkalinity (HCO3- and CO32-) sourced from chemical weathering of minerals on land represents a significant sink for atmospheric CO2 over geologic timescales. The flux of alkalinity from rivers in the Arctic depends on precipitation, permafrost extent and thaw, groundwater flow paths, and surface vegetation, all of which are changing under a warming climate. Here we show that over the past four decades, the export of alkalinity from the Ob' and Yenisei Rivers has more than doubled. The increase is likely due to a combination of increasing precipitation and permafrost thaw in the watersheds, which lengthens hydrologic flow paths and increases residence time in soils. These trends have broad implications for the rate of carbon sequestration on land and the delivery of buffering capacity to the Arctic Ocean.

  11. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  12. Plot-scale evidence of tundra vegetation change and links to recent summer warming

    Science.gov (United States)

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollister; Robert G. Bjork; Noemie Boulanger-Lapointe; Elisabeth J. Cooper; Johannes H.C. Cornelissen; Thomas A. Day; Ellen Dorrepaal; Tatiana G. Elumeeva; Mike Gill; William A. Gould; John Harte; David S. Hik; Annika Hofgaard; David R. Johnson; Jill F. Johnstone; Ingijorg Svala Jonsdottir; Janet C. Jorgenson; Kari Klanderud; Julia A. Klein; Saewan Koh; Gaku Kudo; Mark Lara; Esther Levesque; Borgthor Magnusson; Jeremy L. May; Joel A. Mercado; Anders Michelsen; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Vladimir G. Onipchenko; Christian Rixen; Niels Martin Schmidt; Gaius R. Shaver; Marko J. Spasojevic; Pora Ellen Porhallsdottir; Anne Tolvanen; Tiffany Troxler; Craig E. Tweedie; Sandra Villareal; Carl-Henrik Wahren; Xanthe Walker; Patrick J. Webber; Jeffrey M. Welker; Sonja Wipf

    2012-01-01

    Temperature is increasing at unprecedented rates across most of the tundra biome1. Remote-sensing data indicate that contemporary climate warming has already resulted in increased productivity over much of the Arctic2,3, but plot-based evidence for vegetation transformation is not widespread. We analysed change in tundra vegetation surveyed between 1980 and 2010 in 158...

  13. Enhanced MODIS Atmospheric Total Water Vapour Content Trends in Response to Arctic Amplification

    Directory of Open Access Journals (Sweden)

    Dunya Alraddawi

    2017-12-01

    Full Text Available In order to assess the strength of the water vapour feedback within Arctic climate change, 15 years of the total column-integrated density of water vapour (TCWV from the moderate resolution imaging spectrometer (MODIS are analysed. Arctic TCWV distribution, trends, and anomalies for the 2001–2015 period, broken down into seasons and months, are analysed. Enhanced local spring TCWV trends above the terrestrial Arctic regions are discussed in relation to land snow cover and vegetation changes. Upward TCWV trends above the oceanic areas are discussed in lien with sea ice extent and sea surface temperature changes. Increased winter TCWV (up to 40% south of the Svalbard archipelago are observed; these trends are probably driven by a local warming and sea ice extent decline. Similarly, the Barents/Kara regions underwent wet trends (up to 40%, also associated with winter/fall local sea ice loss. Positive late summer TCWV trends above the western Greenland and Beaufort seas (about 20% result from enhanced upper ocean warming and thereby a local coastal decline in ice extent. The Mackenzie and Siberia enhanced TCWV trends (about 25% during spring are found to be associated with coincident decreased snow cover and increased vegetation, as a result of the earlier melt onset. Results show drier summers in the Eurasia and western Alaska regions, thought to be affected by changes in albedo from changing vegetation. Other TCWV anomalies are also presented and discussed in relation to the dramatic decline in sea ice extent and the exceptional rise in sea surface temperature.

  14. Landsat time series analysis documents beaver migration into permafrost landscapes of arctic Alaska

    Science.gov (United States)

    Jones, B. M.; Tape, K. D.; Nitze, I.; Arp, C. D.; Grosse, G.; Zimmerman, C. E.

    2017-12-01

    Landscape-scale impacts of climate change in the Arctic include increases in growing season length, shrubby vegetation, winter river discharge, snowfall, summer and winter water temperatures, and decreases in river and lake ice thickness. Combined, these changes may have created conditions that are suitable for beaver colonization of low Arctic tundra regions. We developed a semi-automated workflow that analyzes Landsat imagery time series to determine the extent to which beavers may have colonized permafrost landscapes in arctic Alaska since 1999. We tested this approach on the Lower Noatak, Wulik, and Kivalina river watersheds in northwest Alaska and identified 83 locations representing potential beaver activity. Seventy locations indicated wetting trends and 13 indicated drying trends. Verification of each site using high-resolution satellite imagery showed that 80 % of the wetting locations represented beaver activity (damming and pond formation), 11 % were unrelated to beavers, and 9 % could not readily be distinguished as being beaver related or not. For the drying locations, 31 % represented beaver activity (pond drying due to dam abandonment), 62 % were unrelated to beavers, and 7 % were undetermined. Comparison of the beaver activity database with historic aerial photography from ca. 1950 and ca. 1980 indicates that beavers have recently colonized or recolonized riparian corridors in northwest Alaska. Remote sensing time series observations associated with the migration of beavers in permafrost landscapes in arctic Alaska include thermokarst lake expansion and drainage, thaw slump initiation, ice wedge degradation, thermokarst shore fen development, and possibly development of lake and river taliks. Additionally, beaver colonization in the Arctic may alter channel courses, thermal regimes, hyporheic flow, riparian vegetation, and winter ice regimes that could impact ecosystem structure and function in this region. In particular, the combination of beaver

  15. Satellite Leaf Area Index: Global Scale Analysis of the Tendencies Per Vegetation Type Over the Last 17 Years

    Directory of Open Access Journals (Sweden)

    Simon Munier

    2018-03-01

    Full Text Available The main objective of this study is to detect and quantify changes in the vegetation dynamics of each vegetation type at the global scale over the last 17 years. With recent advances in remote sensing techniques, it is now possible to study the Leaf Area Index (LAI seasonal and interannual variability at the global scale and in a consistent way over the last decades. However, the coarse spatial resolution of these satellite-derived products does not permit distinguishing vegetation types within mixed pixels. Considering only the dominant type per pixel has two main drawbacks: the LAI of the dominant vegetation type is contaminated by spurious signal from other vegetation types and at the global scale, significant areas of individual vegetation types are neglected. In this study, we first developed a Kalman Filtering (KF approach to disaggregate the satellite-derived LAI from GEOV1 over nine main vegetation types, including grasslands and crops as well as evergreen, broadleaf and coniferous forests. The KF approach permits the separation of distinct LAI values for individual vegetation types that coexist within a pixel. The disaggregated LAI product, called LAI-MC (Multi-Cover, consists of world-wide LAI maps provided every 10 days for each vegetation type over the 1999–2015 period. A trend analysis of the original GEOV1 LAI product and of the disaggregated LAI time series was conducted using the Mann-Kendall test. Resulting trends of the GEOV1 LAI (which accounts for all vegetation types compare well with previous regional or global studies, showing a greening over a large part of the globe. When considering each vegetation type individually, the largest global trend from LAI-MC is found for coniferous forests (0.0419 m 2 m − 2 yr − 1 followed by summer crops (0.0394 m 2 m − 2 yr − 1 , while winter crops and grasslands show the smallest global trends (0.0261 m 2 m − 2 yr − 1 and 0.0279 m 2 m − 2 yr − 1 , respectively. The LAI

  16. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic - a 12-year retrospective synopsis (2002-2013)

    Science.gov (United States)

    N. Evangeliou; Y. Balkanski; WeiMin Hao; A. Petkov; R. P. Silverstein; R. Corley; B. L. Nordgren; Shawn Urbanski; S. Eckhardt; A. Stohl; P. Tunved; S. Crepinsek; A. Jefferson; S. Sharma; J. K. Nojgaard; H. Skov

    2016-01-01

    In recent decades much attention has been given to the Arctic environment, where climate change is happening rapidly. Black carbon (BC) has been shown to be a major component of Arctic pollution that also affects the radiative balance. In the present study, we focused on how vegetation fires that occurred in northern Eurasia during the period of 2002–2013 influenced...

  17. Evaporative cooling over the Tibetan Plateau induced by vegetation growth

    Science.gov (United States)

    Shen, Miaogen; Piao, Shilong; Jeong, Su-Jong; Zhou, Liming; Zeng, Zhenzhong; Ciais, Philippe; Chen, Deliang; Huang, Mengtian; Jin, Chun-Sil; Li, Laurent Z. X.; Li, Yue; Myneni, Ranga B.; Yang, Kun; Zhang, Gengxin; Zhang, Yangjian; Yao, Tandong

    2015-01-01

    In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system. PMID:26170316

  18. Simulation of maximum light use efficiency for some typical vegetation types in China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Maximum light use efficiency (εmax) is a key parameter for the estimation of net primary productivity (NPP) derived from remote sensing data. There are still many divergences about its value for each vegetation type. The εmax for some typical vegetation types in China is simulated using a modified least squares function based on NOAA/AVHRR remote sensing data and field-observed NPP data. The vegetation classification accuracy is introduced to the process. The sensitivity analysis of εmax to vegetation classification accuracy is also conducted. The results show that the simulated values of εmax are greater than the value used in CASA model, and less than the values simulated with BIOME-BGC model. This is consistent with some other studies. The relative error of εmax resulting from classification accuracy is -5.5%―8.0%. This indicates that the simulated values of εmax are reliable and stable.

  19. Rescuing and Sharing Historical Vegetation Data for Ecological Analysis: The California Vegetation Type Mapping Project

    Directory of Open Access Journals (Sweden)

    Maggi Kelly

    2016-10-01

    Full Text Available Research efforts that synthesize historical and contemporary ecological data with modeling approaches improve our understanding of the complex response of species, communities, and landscapes to changing biophysical conditions through time and in space. Historical ecological data are particularly important in this respect. There are remaining barriers that limit such data synthesis, and technological improvements that make multiple diverse datasets more readily available for integration and synthesis are needed. This paper presents one case study of the Wieslander Vegetation Type Mapping project in California and highlights the importance of rescuing, digitizing and sharing historical datasets. We review the varied ecological uses of the historical collection: the vegetation maps have been used to understand legacies of land use change and plan for the future; the plot data have been used to examine changes to chaparral and forest communities around the state and to predict community structure and shifts under a changing climate; the photographs have been used to understand changing vegetation structure; and the voucher specimens in combination with other specimen collections have been used for large scale distribution modeling efforts. The digitization and sharing of the data via the web has broadened the scope and scale of the types of analysis performed. Yet, additional research avenues can be pursued using multiple types of VTM data, and by linking VTM data with contemporary data. The digital VTM collection is an example of a data infrastructure that expands the potential of large scale research through the integration and synthesis of data drawn from numerous data sources; its journey from analog to digital is a cautionary tale of the importance of finding historical data, digitizing it with best practices, linking it with other datasets, and sharing it with the research community.

  20. The Arctic tourism in Russia

    Directory of Open Access Journals (Sweden)

    Yury F. Lukin

    2016-12-01

    Full Text Available In the new book "Arctic tourism in Russia" the basic concepts, resource potential, attractiveness (from Lat. Attrahere: to attract, opportunities and threats of environmental, cruise, international, and other types of tourism in the Arctic are system-based analyzed, for the first time in the literature. The sphere of tourism has becoming an integral sector of the economy, having a multiplicative effect for the development of infrastructure, social services, employment. Reference materials about the tourism products in the Russian Arctic and Far North regions are published, including the Arkhangelsk and Murmansk regions; Republic of Karelia, Komi, Sakha (Yakutia; Nenets, the Yamalo-Nenets, Khanty-Mansiysk, the Chukotka Autonomous Districts; Taimyr Dolgan-Nenets Municipal District, Turukhansk district, the city of Norilsk of the Krasnoyarsk region; Magadan region, Kamchatka region.

  1. Higher intake of fruits, vegetables or their fiber reduces the risk of type?2 diabetes: A meta?analysis

    OpenAIRE

    Wang, Ping?Yu; Fang, Jun?Chao; Gao, Zong?Hua; Zhang, Can; Xie, Shu?Yang

    2015-01-01

    Abstract Aims/Introduction Some previous studies reported no significant association of consuming fruit or vegetables, or fruit and vegetables combined, with type 2 diabetes. Others reported that only a greater intake of green leafy vegetables reduced the risk of type 2 diabetes. To further investigate the relationship between them, we carried out a meta‐analysis to estimate the independent effects of the intake of fruit, vegetables and fiber on the risk of type 2 diabetes. Materials and Meth...

  2. Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors using an evidence-based approach

    Science.gov (United States)

    Martin, Andrew C.; Jeffers, Elizabeth S.; Petrokofsky, Gillian; Myers-Smith, Isla; Macias-Fauria, Marc

    2017-08-01

    Woody shrubs have increased in biomass and expanded into new areas throughout the Pan-Arctic tundra biome in recent decades, which has been linked to a biome-wide observed increase in productivity. Experimental, observational, and socio-ecological research suggests that air temperature—and to a lesser degree precipitation—trends have been the predominant drivers of this change. However, a progressive decoupling of these drivers from Arctic vegetation productivity has been reported, and since 2010, vegetation productivity has also been declining. We created a protocol to (a) identify the suite of controls that may be operating on shrub growth and expansion, and (b) characterise the evidence base for controls on Arctic shrub growth and expansion. We found evidence for a suite of 23 proximal controls that operate directly on shrub growth and expansion; the evidence base focused predominantly on just four controls (air temperature, soil moisture, herbivory, and snow dynamics). 65% of evidence was generated in the warmest tundra climes, while 24% was from only one of 28 floristic sectors. Temporal limitations beyond 10 years existed for most controls, while the use of space-for-time approaches was high, with 14% of the evidence derived via experimental approaches. The findings suggest the current evidence base is not sufficiently robust or comprehensive at present to answer key questions of Pan-Arctic shrub change. We suggest future directions that could strengthen the evidence, and lead to an understanding of the key mechanisms driving changes in Arctic shrub environments.

  3. Record-low primary productivity and high plant damage in the Nordic Arctic Region in 2012 caused by multiple weather events and pest outbreaks

    International Nuclear Information System (INIS)

    Bjerke, Jarle W; Jepsen, Jane U; Lovibond, Sarah; Tømmervik, Hans; Rune Karlsen, Stein; Arild Høgda, Kjell; Malnes, Eirik; Vikhamar-Schuler, Dagrun

    2014-01-01

    The release of cold temperature constraints on photosynthesis has led to increased productivity (greening) in significant parts (32–39%) of the Arctic, but much of the Arctic shows stable (57–64%) or reduced productivity (browning, <4%). Summer drought and wildfires are the best-documented drivers causing browning of continental areas, but factors dampening the greening effect of more maritime regions have remained elusive. Here we show how multiple anomalous weather events severely affected the terrestrial productivity during one water year (October 2011–September 2012) in a maritime region north of the Arctic Circle, the Nordic Arctic Region, and contributed to the lowest mean vegetation greenness (normalized difference vegetation index) recorded this century. Procedures for field data sampling were designed during or shortly after the events in order to assess both the variability in effects and the maximum effects of the stressors. Outbreaks of insect and fungal pests also contributed to low greenness. Vegetation greenness in 2012 was 6.8% lower than the 2000–11 average and 58% lower in the worst affected areas that were under multiple stressors. These results indicate the importance of events (some being mostly neglected in climate change effect studies and monitoring) for primary productivity in a high-latitude maritime region, and highlight the importance of monitoring plant damage in the field and including frequencies of stress events in models of carbon economy and ecosystem change in the Arctic. Fourteen weather events and anomalies and 32 hypothesized impacts on plant productivity are summarized as an aid for directing future research. (letter)

  4. Floristic relationships among vegetation types of new zealand and the southern andes: similarities and biogeographic implications.

    Science.gov (United States)

    Ezcurra, Cecilia; Baccalá, Nora; Wardle, Peter

    2008-06-01

    Similarities between the floras of geographically comparable regions of New Zealand (NZ) and the southern Andes (SA) have interested biologists for over 150 years. The present work selects vegetation types that are physiognomically similar between the two regions, compares their floristic composition, assesses the environmental factors that characterize these matching vegetation types, and determines whether phylogenetic groups of ancestral versus modern origin are represented in different proportions in their floras, in the context of their biogeographic history. Floristic relationships based on 369 genera of ten vegetation types present in both regions were investigated with correspondence analysis (CA) and ascending hierarchical clustering (AHC). The resulting ordination and classification were related to the environmental characteristics of the different vegetation types. The proportions of different phylogenetic groups between the regions (NZ, SA) were also compared, and between forest and non-forest communities. Floristic similarities between NZ and SA tend to increase from forest to non-forest vegetation, and are highest in coastal vegetation and bog. The floras of NZ and SA also differ in their phylogenetic origin, NZ being characterized by an 'excess' of genera of basal origin, especially in forests. The relatively low similarities between forests of SA and NZ are related to the former being largely of in situ South American and Gondwanan origin, whereas the latter have been mostly reconstituted though transoceanic dispersal of propagules since the Oligocene. The greater similarities among non-forest plant communities of the two regions result from varied dispersal routes, including relatively recent transoceanic dispersal for coastal vegetation, possible dispersal via a still-vegetated Antarctica especially for bog plants, and independent immigration from Northern Hemisphere sources for many genera of alpine vegetation and grassland.

  5. Overland Transport of Rotavirus and the Effect of Soil Type and Vegetation

    Directory of Open Access Journals (Sweden)

    Paul C. Davidson

    2016-03-01

    Full Text Available Soil and vegetation are two critical factors for controlling the overland transport kinetics of pathogens in a natural environment. With livestock operations moving more towards concentrated animal operations, the need to dispose of a very large amount of manure in a localized area is becoming increasingly important. Animal manure contains a substantial amount of microbial pathogens, including rotavirus, which may pose a threat of contamination of water resources. This study examined the kinetics of rotavirus in overland transport, with an overall objective of optimizing the design of best management practices, especially vegetative filter strips. The overland transport of rotavirus was studied using three soil types (Catlin silt-loam, Darwin silty-clay, Alvin fine sandy-loam, spanning the entire spectrum of typical Illinois soil textures. A 20-min rainfall event was produced using a small-scale (1.07 m × 0.66 m laboratory rainfall simulator over a soil box measuring 0.610 m × 0.305 m. Each soil type was tested for rotavirus transport kinetics with bare surface conditions, as well as with Smooth Brome and Fescue vegetative covers. Surface runoff, near-surface runoff, soil cores, and vegetation were each analyzed for infective rotavirus particles using cell-culture infectivity assays. Results show that vegetation reduces the recovery of infective rotavirus particles in surface runoff by an average of 73%, in addition to delaying the time to peak recovery. The vegetation, in general, appeared to decrease the recovery of infective rotavirus particles in surface runoff by impeding surface flow and increasing the potential for infiltration into the soil profile.

  6. Influences of Moisture Regimes and Functional Plant Types on Nutrient Cycling in Permafrost Regions

    Science.gov (United States)

    McCaully, R. E.; Arendt, C. A.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.; Sevanto, S.; Wales, N. A.; Wullschleger, S.

    2017-12-01

    In the permafrost-dominated Arctic, climatic feedbacks exist between permafrost, soil moisture, functional plant type and presence of nutrients. Functional plant types present within the Arctic regulate and respond to changes in hydrologic regimes and nutrient cycling. Specifically, alders are a member of the birch family that use root nodules to fix nitrogen, which is a limiting nutrient strongly linked to fertilizing Arctic ecosystems. Previous investigations in the Seward Peninsula, AK show elevated presence of nitrate within and downslope of alder patches in degraded permafrost systems, with concentrations an order of magnitude greater than that of nitrate measured above these patches. Further observations within these degraded permafrost systems are crucial to assess whether alders are drivers of, or merely respond to, nitrate fluxes. In addition to vegetative feedbacks with nitrate supply, previous studies have also linked low moisture content to high nitrate production. Within discontinuous permafrost regions, the absence of permafrost creates well-drained regions with unsaturated soils whereas the presence of permafrost limits vertical drainage of soil-pore water creating elevated soil moisture content, which likely corresponds to lower nitrate concentrations. We investigate these feedbacks further in the Seward Peninsula, AK, through research supported by the United States Department of Energy Next Generation Ecosystem Experiment (NGEE) - Arctic. Using soil moisture and thaw depth as proxies to determine the extent of permafrost degradation, we identify areas of discontinuous permafrost over a heterogeneous landscape and collect co-located soilwater chemistry samples to highlight the complex relationships that exist between alder patches, soil moisture regimes, the presence of permafrost and available nitrate supply. Understanding the role of nitrogen in degrading permafrost systems, in the context of both vegetation present and soil moisture, is crucial

  7. Long photoperiods sustain high pH in Arctic kelp forests.

    Science.gov (United States)

    Krause-Jensen, Dorte; Marbà, Núria; Sanz-Martin, Marina; Hendriks, Iris E; Thyrring, Jakob; Carstensen, Jacob; Sejr, Mikael Kristian; Duarte, Carlos M

    2016-12-01

    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO 2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO 2 concentration further stimulated the capacity of macrophytes to deplete CO 2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.

  8. Vegetation types and forest productivity, west part of Syncrude's Lease 17, Alberta. Environmental Research Monography 1977-6. [Tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E B; Levinsohn, A G

    1977-01-01

    The vegetation that existed in August 1977 on the western half of Syncrude's Lease 17 near Fort McMurray, Alberta is described. Eight vegetation types were identified and are mapped at a scale if 1 : 24,000. Black Spruce--Labrador Tea was the dominant vegetation type, making up 35.0% of the 9250 hectare study area. The second most abundant vegetation type was Aspen--White Spruce (26.0%) and the third was White Spruce--Aspen (18.0%). The remaining 21.0% of the area was occupied by the Aspen--Birch vegetation type (7.5%), Balsam Poplar--Alder (6.0%) along the McKay River, Sedge--Reed Grass (4.0%) mainly around bodies of standing water created by beaver dams, Willow--Reed Grass (3.0%) along stream courses, and Black Spruce--Feathermoss (0.5%). The White Spruce--Aspen type is best developed in the southern part of the lease. It is the only vegetation type that contains some white spruce stands approaching the present lower limits of merchantable forest in Alberta. The Aspen--White Spruce type was less productive. In terms of mean annual increment and site index, the two vegetation types with the greatest potential for fibre production (White Spruce--Aspen and Aspen--White Spruce types) are average or below average productivity when compared to data from similar stands elsewhere in Alberta and Saskatchewan.

  9. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  10. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982-2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas.

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    Full Text Available The Qinghai-Tibetan Plateau (QTP contains the largest permafrost area in a high-altitude region in the world, and the unique hydrothermal environments of the active layers in this region have an important impact on vegetation growth. Geographical locations present different climatic conditions, and in combination with the permafrost environments, these conditions comprehensively affect the local vegetation activity. Therefore, the responses of vegetation to climate change in the permafrost region of the QTP may be varied differently by geographical location and vegetation condition. In this study, using the latest Global Inventory Modeling and Mapping Studies (GIMMS Normalized Difference Vegetation Index (NDVI product based on turning points (TPs, which were calculated using a piecewise linear model, 9 areas within the permafrost region of the QTP were selected to investigate the effect of geographical location and vegetation type on vegetation growth from 1982 to 2012. The following 4 vegetation types were observed in the 9 selected study areas: alpine swamp meadow, alpine meadow, alpine steppe and alpine desert. The research results show that, in these study areas, TPs mainly appeared in 2000 and 2001, and almost 55.1% and 35.0% of the TPs were located in 2000 and 2001. The global standardized precipitation evapotranspiration index (SPEI and 7 meteorological variables were selected to analyze their correlations with NDVI. We found that the main correlative variables to vegetation productivity in study areas from 1982 to 2012 were precipitation, surface downward long-wave radiation and temperature. Furthermore, NDVI changes exhibited by different vegetation types within the same study area followed similar trends. The results show that regional effects rather than vegetation type had a larger impact on changes in vegetation growth in the permafrost regions of the QTP, indicating that climatic factors had a larger impact in the permafrost

  11. Measurement and modelling of evapotranspiration in three fynbos vegetation types

    CSIR Research Space (South Africa)

    Dzikiti, Sebinasi

    2014-04-01

    Full Text Available sites. In this study we determined water use by 3 fynbos vegetation types growing at 4 different sites, namely: (i) lowland Atlantis Sand Plain fynbos growing on deep sandy soils, (ii) Kogelberg Sandstone fynbos growing in a riparian zone on deep...

  12. Big changes in cold places: the future of wildlife habitat in northwest Alaska

    Science.gov (United States)

    Natasha Vizcarra; Bruce Marcot

    2016-01-01

    Higher global temperatures are changing ecosystems in the Arctic. They are becoming greener as the climate and land become more hospitable to taller vegetation. Scientists predict that woody vegetation in the Arctic will increase by more than 50 percent, and half of all vegetated areas will shift to types more suited to the higher temperatures and changing physical...

  13. Role of vegetation type on hydraulic conductivity in urban rain gardens

    Science.gov (United States)

    Schott, K.; Balster, N. J.; Johnston, M. R.

    2009-12-01

    Although case studies report improved control of urban stormwater within residential rain gardens, the extent to which vegetation type (shrub, turf, prairie) affects the saturated hydraulic conductivity (Ksat) of these depressions has yet to be investigated in a controlled experiment. We hypothesized that there would be significant differences in hydraulic conductivity by vegetation type due to differences in soil physical characteristics and rooting dynamics such that Ksat of shrub gardens would exceed that of prairie, followed by turf. To test this hypothesis, we measured changes in Ksat relative to the above vegetation types as well as non-vegetative controls, each of which were replicated three times for a total of 12 rain gardens. Ksat was calculated using a published method for curve-fitting to single-ring infiltration with a two-head approach where the shape factor is independent of ponding depth. Constant-head infiltration rates were measured at two alternating ponding depths within each garden twice over the growing season. Root core samples were also taken to qualify belowground characteristics including soil bulk density and rooting dynamics relative to differences in Ksat. We found the control and shrub gardens had the lowest mean Ksat of 3.56 (SE = 0.96) and 3.73 (1.22) cm3 hr-1, respectively. Prairie gardens had the next highest mean Ksat of 12.18 (2.26) cm3 hr-1, and turf had the highest mean value of 23.63 (1.81) cm3 hr-1. These data suggest that a denser rooting network near the soil surface may influence saturated hydraulic conductivity. We applied our observed flow rates to a Glover solution model for 3-dimensional flow, which revealed considerably larger discrepancies in turf gardens than beneath prairie or shrub. This indicated that lateral flow conditions in the turf plots could be the explanation for our observed infiltration rates.

  14. Reduced arctic tundra productivity linked with landform and climate change interactions

    Science.gov (United States)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David

    2018-01-01

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  15. [Consumption of nuts and vegetal oil in people with type 1 diabetes mellitus].

    Science.gov (United States)

    Ferrer-García, Juan Carlos; Granell Vidal, Lina; Muñoz Izquierdo, Amparo; Sánchez Juan, Carlos

    2015-06-01

    Recent studies have demonstrated the cardiovascular benefits of the Mediterranean Diet, enriched with olive oil and nuts. People with diabetes, who have an increased risk of cardiovascular complications, could benefit greatly from following this type of eating pattern. Analysis of vegetable fats intake from nuts and olive oil in patients with 1 Diabetes Mellitus type (DM1). Transverse descriptive study comparing 60 people with type 1 Diabetes Mellitus (DM1) with 60 healthy individuals. We collect the frequency of consumption of vegetable oils and nuts and calculate the contribution of these foods in mono and polyunsaturated fatty acids (oleic acid, linoleic acid and α-linolenic acid). For data collection we designed a food frequency questionnaire specifically. We also collect anthropometric variables, cardiovascular risk factors and diabetes-related variables. Vegetable fat intake from vegetable oils (3.02 ± 1.14 vs 3.07 ± 1.27 portions/day, P = 0.822) and nuts (1.35 ± 2.24 vs 1.60 ± 2.44 portions/week, P = 0.560), was similar in both groups. The DM1 group consumed fewer portions of olive oil daily than the control group (2.55 ± 1.17 vs 3.02 ± 1.34 portions/day, P = 0.046). We detected a significantly lower intake of α-linolenic acid in the control group (1.13 ± 2.06 versus 2.64 ± 4.37 g/day, p = 0.018) while there were not differences in the rest of fatty acids (oleic acid 28.30 ± 18.13 vs 29.53 ± 16.90 g/day, P = 0.703; linoleic 13.70 ± 16.80 vs 15.45 ± 19.90 g/day, P = 0.605). In DM1, it not demonstrated an influence of the intake of vegetable fats and oils from nuts in the anthropometric, metabolic and diabetes-specific variables. In people with DM1, total intake of vegetable oils and nuts do not differ from the general population. However, the consumption of olive oil and the contribution of α-linolenic fatty acid derived from such fats are slightly lower than the general population. Although intake of vegetable oils and nuts in people with DM1

  16. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis

    Science.gov (United States)

    Cooper, Andrew J; Forouhi, Nita G; Ye, Zheng; Buijsse, Brian; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Beulens, Joline WJ; Boeing, Heiner; Büchner, Frederike L; Dahm, Christina C; de Lauzon-Guillain, Blandine; Fagherazzi, Guy; Franks, Paul W; Gonzalez, Carlos; Grioni, Sara; Kaaks, Rudolf; Key, Timothy J; Masala, Giovanna; Navarro, Carmen; Nilsson, Peter; Overvad, Kim; Panico, Salvatore; Quirós, Jose Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sánchez, María-José; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke MW; Teucher, Birgit; Tjonneland, Anne; Tumino, Rosario; Sharp, Stephen J; Langenberg, Claudia; Feskens, Edith JM; Riboli, Elio; Wareham, Nicholas J

    2013-01-01

    Background/Objective Fruit and vegetable intake (FVI) may reduce the risk of type 2 diabetes (T2D), but the epidemiological evidence is inconclusive. The aim of this study is to examine the prospective association of FVI with T2D and conduct an updated meta-analysis. Subjects/Methods In the EPIC-InterAct (European Prospective Investigation into Cancer-InterAct) prospective case-cohort study nested within eight European countries, a representative sample of 16 154 participants and 12 403 incident cases of T2D were identified from 340 234 individuals with 3.99 million person-years of follow-up. For the meta-analysis we identified prospective studies on FVI and T2D risk by systematic searches of MEDLINE and EMBASE until April 2011. Results In EPIC-InterAct, estimated FVI by dietary questionnaires varied more than two-fold between countries. In adjusted analyses the hazard ratio (95% confidence interval) comparing the highest with lowest quartile of reported intake was 0.90 (0.80-1.01) for FVI; 0.89 (0.76-1.04) for fruit, and 0.94 (0.84-1.05) for vegetables. Among FV sub-types, only root vegetables were inversely associated with diabetes 0.87 (0.77-0.99). In meta-analysis using pooled data from five studies including EPIC-InterAct, comparing the highest with lowest category for FVI was associated with a lower relative risk of diabetes (0.93 (0.87-1.00)). Fruit or vegetables separately were not associated with diabetes. Among FV sub-types, only green leafy vegetable intake (RR: 0.84 (0.74-0.94)) was inversely associated with diabetes. Conclusions Sub-types of vegetables, such as root vegetables or green leafy vegetables may be beneficial for the prevention of diabetes, while total FVI may exert a weaker overall effect. PMID:22854878

  17. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis.

    Science.gov (United States)

    Wang, Ping-Yu; Fang, Jun-Chao; Gao, Zong-Hua; Zhang, Can; Xie, Shu-Yang

    2016-01-01

    Some previous studies reported no significant association of consuming fruit or vegetables, or fruit and vegetables combined, with type 2 diabetes. Others reported that only a greater intake of green leafy vegetables reduced the risk of type 2 diabetes. To further investigate the relationship between them, we carried out a meta-analysis to estimate the independent effects of the intake of fruit, vegetables and fiber on the risk of type 2 diabetes. Searches of MEDLINE and EMBASE for reports of prospective cohort studies published from 1 January 1966 to 21 July 2014 were carried out, checking reference lists, hand-searching journals and contacting experts. The primary analysis included a total of 23 (11 + 12) articles. The pooled maximum-adjusted relative risk of type 2 diabetes for the highest intake vs the lowest intake were 0.91 (95% confidence interval [CI] 0.87-0.96) for total fruits, 0.75 (95% CI 0.66-0.84) for blueberries, 0.87 (95% CI 0.81-0.93) for green leafy vegetables, 0.72 (95% CI 0.57-0.90) for yellow vegetables, 0.82 (95% CI 0.67-0.99) for cruciferous vegetables and 0.93 (95% CI 0.88-0.99) for fruit fiber in these high-quality studies in which scores were seven or greater, and 0.87 (95% CI 0.80-0.94) for vegetable fiber in studies with a follow-up period of 10 years or more. A higher intake of fruit, especially berries, and green leafy vegetables, yellow vegetables, cruciferous vegetables or their fiber is associated with a lower risk of type 2 diabetes.

  18. Divergent Impacts of Two Cattle Types on Vegetation in Coastal Meadows: Implications for Management

    Science.gov (United States)

    Laurila, Marika; Huuskonen, Arto; Pesonen, Maiju; Kaseva, Janne; Joki-Tokola, Erkki; Hyvärinen, Marko

    2015-11-01

    The proportion of beef cattle in relation to the total number of cattle has increased in Europe, which has led to a higher contribution of beef cattle in the management of semi-natural grasslands. Changes in vegetation caused by this change in grazers are virtually unexplored so far. In the present study, the impacts of beef and dairy cattle on vegetation structure and composition were compared on Bothnian Bay coastal meadows. Vegetation parameters were measured in seven beef cattle, six dairy heifer pastures, and in six unmanaged meadows. Compared to unmanaged meadows, vegetation in grazed meadows was significantly lower in height and more frequently colonized by low-growth species. As expected, vegetation grazed by beef cattle was more open than that on dairy heifer pastures where litter cover and proportion of bare ground were in the same level as in the unmanaged meadows. However, the observed differences may have in part arisen from the higher cattle densities in coastal meadows grazed by beef cattle than by dairy heifers. The frequencies of different species groups and the species richness values of vegetation did not differ between the coastal meadows grazed by the two cattle types. One reason for this may be the relatively short management history of the studied pastures. The potential differences in grazing impacts of the two cattle types on vegetation structure can be utilized in the management of coastal meadows for species with divergent habitat requirements.

  19. Three years exclusion of large herbivores in a high arctic mire in NE Greenland resulted in changed vegetation density and greenhouse gas emission and uptake

    Science.gov (United States)

    Falk, Julie M.; Schmidt, Niels Martin; Christensen, Torben R.; Forchhammer, Mads C.; Jackowicz-Korczynski, Marcin; Ström, Lena

    2014-05-01

    Herbivory is an important part of many ecosystems and their presence effects the ecosystems carbon balance with both direct and indirect effects. Little is known about what will happen to an arctic ecosystem that is influenced by herbivory, if the animals disappear. We hypothesized that trampling and grazing by large herbivores influence the vegetation density and composition and hereby the carbon balance. Method: In 2010 an in-situ field experiment in Zackenberg, NE Greenland, were initiated to study the effects of herbivory on the vegetation and carbon balance. Exclosures were established to exclude the muskoxen (Ovibos moschatus), which are a natural part of these ecosystems. The experiment consists of five block replicates with three treatments within each block, i.e., control, exclosure and a snow fence (the treatment area is 10x10 m and the fences are 1 m high). During the growing season we have since 2011 performed weekly measurements of CO2 and CH4fluxes, the concentration of labile substrate for CH4 formation (organic acid concentration) in pore-water and additional ecosystem properties, i.e., water table depth, active layer depth and soil temperature. In 2013 a detailed analysis of the vascular plant species composition and density within each measurement plot were performed. Furthermore biomass (including mosses) samples 20x20 cm were harvested within all treatments. Results: The third year after the initiation of the experiment we observed a clear effect of excluding muskoxen grazing from the ecosystem. The exclosures had lower uptake of CO2 and lower CH4 emission. The vegetation analysis inside the plots showed a decrease in total number of vascular tillers and of Eriophorum scheuchzeri (ES) tillers. Correspondingly, the biomass samples from the exclosures had lower number of total plant tillers, ES tillers, total green leaves and green ES leaves and the height of all vascular plants and of ES plants were higher. Finally, the dry weight of the biomass

  20. Disentangling Modern Fire-Climate-Vegetation Relationships across the Boreal Forest Biome

    Science.gov (United States)

    Young, A. M.; Boschetti, L.; Duffy, P.; Hu, F.; Higuera, P.

    2015-12-01

    Fire regimes differ between Eurasian and North American boreal forests, due in part to differences in climate and the dominant forest types. While North American boreal forests are dominated by stand-replacing fires, much of the Eurasian boreal forest is characterized by lower intensity surface fires. These different fire regimes have important consequences for continental-scale biogeochemical cycling and surface-energy fluxes1. Here, we use generalized linear models (GLM) and boosted regression trees (BRT) to explore the relative importance of vegetation, annual climatic factors, and their interactions in determining annual fire occurrence across Eurasian and North American boreal forests. We use remotely sensed burned area (MCD64A1), land cover (MCD12Q1), and observed climate data (CRU) from 2002-2012 at 0.25° spatial resolution to quantify these relationships at annual temporal scales and continental spatial scales. The spatial distribution of boreal fire occurrence was well explained with climate and vegetation variables, with similarities and differences in fire-climate-vegetation relationships between Eurasia and North America. For example, while GLMs indicate vegetation is a significant factor determining fire occurrence in both continents, the effect of climate differed. Spring temperature and precipitation are significant factors explaining fire occurrence in Eurasia, but no climate variables were significant for explaining fire occurrence in North America. BRTs complement this analysis, highlighting climatic thresholds to fire occurrence in both continents. The nature of these thresholds can vary among vegetation types, even within each continent, further implying regional sensitivity to climate-induced shifts in wildfire activity. To build on these results and better understand regional sensitivity of northern-high latitude fire regimes, future work will explore these relationships in forest-tundra and arctic tundra ecosystems, and apply historical

  1. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  2. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  3. AROME-Arctic: New operational NWP model for the Arctic region

    Science.gov (United States)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  4. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand...... and influence policies relating to the Arctic. But each country’s approach is quite different, writes Aki Tonami....

  5. Local variability in growth and reproduction of Salix arctica in the High Arctic

    Directory of Open Access Journals (Sweden)

    Noémie Boulanger-Lapointe

    2016-06-01

    Full Text Available Arctic terrestrial ecosystems are heterogeneous because of the strong influences of microtopography, soil moisture and snow accumulation on vegetation distribution. The interaction between local biotic and abiotic factors and global climate patterns will influence species responses to climate change. Salix arctica (Arctic willow is a structuring species, ubiquitous and widespread, and as such is one of the most important shrub species in the High Arctic. In this study, we measured S. arctica reproductive effort, early establishment, survival and growth in the Zackenberg valley, north-east Greenland. We sampled four plant communities that varied with respect to snow conditions, soil moisture, nutrient content and plant composition. We found large variability in reproductive effort and success with total catkin density ranging from 0.6 to 66 catkins/m2 and seedling density from <1 to 101 seedlings/m2. There were also major differences in crown area increment (4–23 cm2/year and stem radial growth (40–74 µm/year. The snowbed community, which experienced a recent reduction in snow cover, supported young populations with high reproductive effort, establishment and growth. Soil nutrient content and herbivore activity apparently did not strongly constrain plant reproduction and growth, but competition by Cassiope tetragona and low soil moisture may inhibit performance. Our results show that local environmental factors, such as snow accumulation, have a significant impact on tundra plant response to climate change and will affect the understanding of regional vegetation response to climate change.

  6. An atmosphere-ocean GCM modelling study of the climate response to changing Arctic seaways in the early Cenozoic.

    Science.gov (United States)

    Roberts, C. D.; Legrande, A. N.; Tripati, A. K.

    2008-12-01

    The report of fossil Azolla (a freshwater aquatic fern) in sediments from the Lomonosov Ridge suggests low salinity conditions occurred in the Arctic Ocean in the early Eocene. Restricted passages between the Arctic Ocean and the surrounding oceans are hypothesized to have caused this Arctic freshening. We investigate this scenario using a water-isotope enabled atmosphere-ocean general circulation model with Eocene boundary conditions including 4xCO2, 7xCH4, altered bathymetry and topography, and an estimated distribution of Eocene vegetational types. In one experiment, oceanic exchange between the Arctic Ocean and other ocean basins was restricted to two shallow (~250 m) seaways, one in the North Atlantic, the Greenland-Norwegian seaway, and the second connecting the Arctic Ocean with the Tethys Ocean, the Turgai Straits. In the restricted configuration, the Greenland-Norwegian seaway was closed and exchange through the Turgai Straits was limited to a depth of ~60 m. The simulations suggest that the severe restriction of Arctic seaways in the early Eocene may have been sufficient to freshen Arctic Ocean surface waters, conducive to Azolla blooms. When exchange with the Arctic Ocean is limited, salinities in the upper several hundred meters of the water column decrease by ~10 psu. In some regions, surface salinity is within 2-3 psu of the reported maximum modern conditions tolerated by Azolla (~5 psu). In the restricted scenario, salt is stored preferentially in the North Atlantic and Tethys oceans, resulting in enhanced meridional overturning, increased poleward heat transport in the North Atlantic western boundary current, and warming of surface and intermediate waters in the North Atlantic by several degrees. Increased sensible and latent heat fluxes from the North Atlantic Ocean, combined with a reduction in cloud albedo, also lead to an increase in surface air temperature of over much of North America, Greenland and Eurasia. Our work is consistent with

  7. Does Your Terrestrial Model Capture Key Arctic-Boreal Relationships?: Functional Benchmarks in the ABoVE Model Benchmarking System

    Science.gov (United States)

    Stofferahn, E.; Fisher, J. B.; Hayes, D. J.; Schwalm, C. R.; Huntzinger, D. N.; Hantson, W.

    2017-12-01

    The Arctic-Boreal Region (ABR) is a major source of uncertainties for terrestrial biosphere model (TBM) simulations. These uncertainties are precipitated by a lack of observational data from the region, affecting the parameterizations of cold environment processes in the models. Addressing these uncertainties requires a coordinated effort of data collection and integration of the following key indicators of the ABR ecosystem: disturbance, vegetation / ecosystem structure and function, carbon pools and biogeochemistry, permafrost, and hydrology. We are continuing to develop the model-data integration framework for NASA's Arctic Boreal Vulnerability Experiment (ABoVE), wherein data collection is driven by matching observations and model outputs to the ABoVE indicators via the ABoVE Grid and Projection. The data are used as reference datasets for a benchmarking system which evaluates TBM performance with respect to ABR processes. The benchmarking system utilizes two types of performance metrics to identify model strengths and weaknesses: standard metrics, based on the International Land Model Benchmarking (ILaMB) system, which relate a single observed variable to a single model output variable, and functional benchmarks, wherein the relationship of one variable to one or more variables (e.g. the dependence of vegetation structure on snow cover, the dependence of active layer thickness (ALT) on air temperature and snow cover) is ascertained in both observations and model outputs. This in turn provides guidance to model development teams for reducing uncertainties in TBM simulations of the ABR.

  8. Western Arctic Temperature Sensitivity Varies under Different Mean States

    Science.gov (United States)

    Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.

    2017-12-01

    The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.

  9. Molecules in the mud: Combining ancient DNA and lipid biomarkers to reconstruct vegetation response to climate variability during the Last Interglacial and the Holocene on Baffin Island, Arctic Canada

    Science.gov (United States)

    Crump, S. E.; Sepúlveda, J.; Bunce, M.; Miller, G. H.

    2017-12-01

    Modern ecological studies are revealing that the "greening" of the Arctic, resulting from a poleward shift in woody vegetation ranges, is already underway. The increasing abundance of shrubs in tundra ecosystems plays an important role in the global climate system through multiple positive feedbacks, yet uncertainty in future predictions of terrestrial vegetation means that climate models are likely not capturing these feedbacks accurately. Recently developed molecular techniques for reconstructing past vegetation and climate allow for a closer look at the paleo-record in order to improve our understanding of tundra community responses to climate variability; our current research focus is to apply these tools to both Last Interglacial and Holocene warm times. Here we present initial results from a small lake on southern Baffin Island spanning the last 7.2 ka. We reconstruct climate with both bulk geochemical and biomarker proxies, primarily using biogenic silica and branched glycerol dialkyl glycerol tetraethers (brGDGTs) as temperature indicators. We assess shifts in plant community using multivariate analysis of sedimentary ancient DNA (sedaDNA) metabarcoding data. This combination of approaches reveals that the vegetation community has responded sensitively to early Holocene warmth, Neoglacial cooling, and possibly modern anthropogenic warming. To our knowledge, this represents the first combination of a quantitative, biomarker-based climate reconstruction with a sedaDNA-based paleoecological reconstruction, and offers a glimpse at the potential of these molecular techniques used in tandem.

  10. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  11. Holocene stratigraphy and vegetation history in the Scoresby Sund area, East Greenland

    International Nuclear Information System (INIS)

    Funder, S.

    1978-01-01

    The Holocene stratigraphy in Scoresby Sund is based on climatic change reflected by fluctuations in fjord and valley glaciers, immigration and extinction of marine molluscs, and the vegetation history recorded in pollen diagrams from five lakes. The histories are dated by C-14, and indirectly by emergence curves showing the patterns of isostatic uplift. From c. 10100-10400 to 9400 yr BP the major fjord glaciers showed oscillatory retreat with abundant moraine formation, the period of the Milne Land Moraines. The vegetation in the ice free areas was a sparse type of fell field vetetation but with thermophilous elements indicating temperatures similar to the present. From 9400 yr BP the fjord glaciers retreated rapidly in the narrow fjords, the few moraines formed are referred to the Roedefjord stages and indicate topographically conditioned stillstands. At 8000 yr BP the low arctic Betula nana imigrated into the area, and in the period until 5000 yr BP dense dwarf shrub heat grew in areas where it is now absent. In the fjords the subarctic Mytilus edulis and Pecten islandia lived, suggesting a climate warmer than the present. From c. 5000 yr BP the dense dwarf shrub heath began to disappear in the coastal areas, and a ''poor'' heat dominated by the high arctic Salix Arctica and Cassiope tetragona expanded. These two species, which are now extremely common, apparently did not grow in the area until c. 6000 yr BP. In lakes in the coastal area minerogenic sedimentation at c. 2800 yr BP, reflecting the general climatic deterioration. (author)

  12. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic

    Science.gov (United States)

    Gustine, David D.; Brinkman, Todd J.; Lindgren, Michael A.; Schmidt, Jennifer I.; Rupp, T. Scott; Adams, Layne G.

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (−21%) than the Central Arctic herd that wintered primarily in the arctic tundra (−11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  13. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Directory of Open Access Journals (Sweden)

    David D Gustine

    Full Text Available Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs, and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21% than the Central Arctic herd that wintered primarily in the arctic tundra (-11%. Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  14. Climate-driven effects of fire on winter habitat for caribou in the Alaskan-Yukon Arctic.

    Science.gov (United States)

    Gustine, David D; Brinkman, Todd J; Lindgren, Michael A; Schmidt, Jennifer I; Rupp, T Scott; Adams, Layne G

    2014-01-01

    Climatic warming has direct implications for fire-dominated disturbance patterns in northern ecosystems. A transforming wildfire regime is altering plant composition and successional patterns, thus affecting the distribution and potentially the abundance of large herbivores. Caribou (Rangifer tarandus) are an important subsistence resource for communities throughout the north and a species that depends on terrestrial lichen in late-successional forests and tundra systems. Projected increases in area burned and reductions in stand ages may reduce lichen availability within caribou winter ranges. Sufficient reductions in lichen abundance could alter the capacity of these areas to support caribou populations. To assess the potential role of a changing fire regime on winter habitat for caribou, we used a simulation modeling platform, two global circulation models (GCMs), and a moderate emissions scenario to project annual fire characteristics and the resulting abundance of lichen-producing vegetation types (i.e., spruce forests and tundra >60 years old) across a modeling domain that encompassed the winter ranges of the Central Arctic and Porcupine caribou herds in the Alaskan-Yukon Arctic. Fires were less numerous and smaller in tundra compared to spruce habitats throughout the 90-year projection for both GCMs. Given the more likely climate trajectory, we projected that the Porcupine caribou herd, which winters primarily in the boreal forest, could be expected to experience a greater reduction in lichen-producing winter habitats (-21%) than the Central Arctic herd that wintered primarily in the arctic tundra (-11%). Our results suggest that caribou herds wintering in boreal forest will undergo fire-driven reductions in lichen-producing habitats that will, at a minimum, alter their distribution. Range shifts of caribou resulting from fire-driven changes to winter habitat may diminish access to caribou for rural communities that reside in fire-prone areas.

  15. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  16. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  17. Controls and variability of solute and sedimentary fluxes in Arctic and sub-Arctic Environments

    Science.gov (United States)

    Dixon, John

    2015-04-01

    Six major factors consistently emerge as controls on the spatial and temporal variability in sediment and solute fluxes in cold climates. They are climatic, geologic, physiographic or relief, biologic, hydrologic, and regolith factors. The impact of these factors on sediment and solute mass transfer in Arctic and sub-Arctic environments is examined. Comparison of non-glacierized Arctic vs. subarctic drainage basins reveals the effects of these controls. All drainage basins exhibit considerable variability in rates of sediment and solute fluxes. For the non-glacierized drainage basins there is a consistent increase in sediment mass transfer by slope processes and fluvial processes as relief increases. Similarly, a consistent increase in sediment mass transfer by slope and fluvial processes is observed as total precipitation increases. Similar patterns are also observed with respect to solute transport and relief and precipitation. Lithologic factors are most strongly observed in the contrast between volcanic vs. plutonic igneous bedrock substrates. Basins underlain by volcanic rocks display greater mass transfers than those underlain by plutonic rocks. Biologic influences are most strongly expressed by variations in extent of vegetation cover and the degree of human interference, with human impacted basins generating greater fluxes. For glacierized basins the fundamental difference to non-glacierized basins is an overall increase in mean annual mass transfers of sediment and a generally smaller magnitude solute transfer. The principal role of geology is observed with respect to lithology. Catchments underlain by limestone demonstrate substantially greater solute mass transfers than sediment transfer. The influence of relief is seen in the contrast in mass transfers between upland and lowland drainage basins with upland basins generating greater sediment and solute transfers than lowland basins. For glacierized basins the effects of biology and regolith appear to be

  18. The Arctic Turn

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2018-01-01

    In October 2006, representatives of the Arctic governments met in Salekhard in northern Siberia for the biennial Arctic Council ministerial meeting to discuss how the council could combat regional climate change, among other issues. While most capitals were represented by their foreign minister......, a few states – Canada, Denmark, and the United States – sent other representatives. There was nothing unusual about the absence of Per Stig Møller, the Danish foreign minister – a Danish foreign minister had only once attended an Arctic Council ministerial meeting (Arctic Council 2016). Møller......’s nonappearance did, however, betray the low status that Arctic affairs had in the halls of government in Copenhagen. Since the end of the Cold War, where Greenland had helped tie Denmark and the US closer together due to its geostrategically important position between North America and the Soviet Union, Arctic...

  19. The Polar Crust Project- BSC Diversity and Variability in the Arctic and Antarctica

    Science.gov (United States)

    Williams, Laura; Borchhardt, Nadine; Komisc-Buchmann, Karin; Becker, Burkhard; Karsten, Ulf; Büdel, Burkhard

    2015-04-01

    The Polar Crust Project is a newly funded DFG initiative that aims to provide a precise evaluation of the biodiversity of eukaryotic green microalgae and cyanobacteria in Biological Soil Crusts (BSC) isolated from the Antarctic Peninsula and Arctic Svalbard. This project will include a thorough investigation into the composition of BSC in the Polar regions, this especially is important for Svalbard due to the severe lack of any previous research on such communities in this area. During our expedition to Spitsbergen, Svalbard in August 2014 we were particularly surprised to find that the coverage of BSC is extremely high and is certainly the dominant vegetation type around Ny Ålesund. Due to this discovery the project has now been extended to include long term measurements of CO2 gas exchange in order to gain exact seasonal carbon fixation rates and therefore discovering how the BSC contributes to the ecosystems carbon balance. The research areas of Spitsbergen were centred around 2 localities: Ny-Ålesund is a research town, home to the AWIPEV station, on the Brøgger peninsula. Longyearbyen, which is the largest settlement on the island, is found in the valley Longyeardalen on the shore of Adventfjorden. Areas where BSC is the prevalent vegetation type were identified, 6 around Ny-Ålesund and 4 for Longyearbyen, and vegetation surveys were conducted. This entailed 625 single point measurements at each site and identifying the crust/or other cover type. For example, green algal lichen, cyanobacterial crust, higher plant, open soil. Samples were also taken at every location in order to study the green algal and cyanobacterial diversity. The vegetation survey will allow us to get a good overview of the BSC composition at the different sites. In January 2015 an expedition to the Antarctic Peninsular took place, here the sampling method was repeated and therefore both Polar Regions BSC composition can be described and compared. Here, we wish to introduce the Polar

  20. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub

  1. Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland.

    Directory of Open Access Journals (Sweden)

    Guangxuan Han

    Full Text Available Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively. During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m(-2 s(-1, followed by the Suaeda salsa site (0.77 µmol CO2 m(-2 s(-1 and the bare soil site (0.41 µmol CO2 m(-2 s(-1. The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland.

  2. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland

    Science.gov (United States)

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q 10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m−2 s−1), followed by the Suaeda salsa site (0.77 µmol CO2 m−2 s−1) and the bare soil site (0.41 µmol CO2 m−2 s−1). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland. PMID:24608636

  3. Responses of CO2 Fluxes to Arctic Browning Events in a Range of High Latitude, Shrub-Dominated Ecosystems

    Science.gov (United States)

    Phoenix, G. K.; Treharne, R.; Emberson, L.; Tømmervik, H. A.; Bjerke, J. W.

    2017-12-01

    Climatic and biotic extreme events can result in considerable damage to arctic vegetation, often at landscape and larger scale. These acute events therefore contribute to the browning observed in some arctic regions. It is of considerable concern, therefore, that such extreme events are increasing in frequency as part of climate change. However, despite the increasing importance of browning events, and the considerable impact they can have on ecosystems, to date there is little understanding of their impacts on ecosystem carbon fluxes. To address this, the impacts of a number of different, commonly occurring, extreme events and their subsequent browning (vegetation damage) on key ecosystem CO2 fluxes were assessed during the growing season at a range of event damaged sites of shrub dominated vegetation. Sites were located from the boreal to High Arctic (64˚N-79˚N) and had been previously been damaged by events of frost-drought, extreme winter warming, ground icing and caterpillar (Epirrita autumnata) outbreaks. Plot-level CO2 fluxes of Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and Ecosystem Respiration (Reco) were assessed using vegetation chambers. At a sub-set of sites, NDVI (greenness) in flux plots was also assessed by hand-held proximal sensor, allowing the relationship between NDVI of damage plots to CO2 flux to be calculated. Despite the contrasting sites and drivers, damage had consistent, major impacts on all fluxes. All sites showed reductions in GPP and NEE with increasing damage, despite efflux from Reco also declining with damage. When scaled to site-level, reductions of up to 81% of NEE, 51% of GPP and 37% of Reco were observed. In the plot-level NDVI-flux relationship, NDVI was shown to explain up to 91% of variation in GPP, and therefore supports the use of NDVI for estimating changes in ecosystem CO2 flux at larger scales in regions where browning has been driven by extreme events. This work is the first attempt to quantify the

  4. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    Science.gov (United States)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  5. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    Science.gov (United States)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  6. Temperature-induced recruitment pulses of Arctic dwarf shrub communities

    Czech Academy of Sciences Publication Activity Database

    Büntgen, Ulf; Hellmann, L.; Tegel, W.; Normand, S.; Myers-Smith, I.; Kirdyanov, A. V.; Nievergelt, D.; Schweingruber, F. H.

    2015-01-01

    Roč. 103, č. 2 (2015), s. 489-501 ISSN 0022-0477 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : recent climate-change * tree-line * environmental-change * forest limit * northern siberia * pinus-sylvestris * kola-peninsula * carbon-cycle * picea-abies * polar urals * Arctic tundra * cambial activity * climate change * dendroecology * dwarf shrubs * East Greenland * plant longevity * plant population and community dynamics * vegetation dynamics * wood anatomy Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 6.180, year: 2015

  7. Arctic shipping and risks: Emergency categories and response capacities

    DEFF Research Database (Denmark)

    Marchenko, Nataly A.; Andreassen, Natalia; Borch, Odd Jarl

    2018-01-01

    The sea ice in the Arctic has shrunk significantly in the last decades. The transport pattern has as a result partly changed with more traffic in remote areas. This change may influence the risk pattern. The critical factors are harsh weather, ice conditions, remoteness and vulnerability of natur...... are rare, there are limited statistics available for Arctic maritime accidents. Hence, this study offers a qualitative analysis and an expert-based risk assessment. Implications for the emergency preparedness system of the Arctic region are discussed........ In this paper, we look into the risk of accidents in Atlantic Arctic based on previous ship accidents and the changes in maritime activity. The risk has to be assessed to ensure a proper level of emergency response. The consequences of incidents depend on the incident type, scale and location. As accidents...

  8. Surface energy exchanges over contrasting vegetation types on a subtropical sand island

    Science.gov (United States)

    Gray, Michael; McGowan, Hamish; Lowry, Andrew; Guyot, Adrien

    2017-04-01

    The surface energy balance of subtropical coastal vegetation communities has thus far received little attention. Here we present a multi-year observational data set using the eddy covariance method to quantify for the first time the surface energy balance over three contrasting vegetation types on a subtropical sand island in eastern Australia: a periodically inundated sedge swamp, an exotic pine plantation and a coastal heath. Maximum daily sensible heat flux varied between sites but was typically > 280 Wm-2 in the coastal heath and pine plantation but no more than 250 Wm-2 in the swamp when dry and 1. The partitioning of energy, as represented by β, is similar to a variety of Australian ecosystems, and a range of coastal vegetation types in other latitudes, but differs from other tropical or subtropical locations which have strongly seasonal rainfall patterns and therefore a switch from β > 1 before rainfall to β changes in background meteorology with the most important influences being net radiation, absolute humidity, and rainfall. The main factor differentiating the sites was soil water content, with the remnant coastal heath and swamp having ready access to water but the exotic pine plantation having much drier soils. Should the current balance between remnant vegetation and the pine plantation undergo changes there would be a corresponding shift in the surface energy balance of the island as a whole, and altered plant water use may lead to reduced water table depth, important because the groundwater of the local islands is used as part of a regional water grid. A better understanding of the response of coastal vegetation to atmospheric forcing will enable more informed decision making on land use changes, as coastal regions the world over face development pressure.

  9. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    Science.gov (United States)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  10. [Influence of three types of riparian vegetation on fluvial erosion control in Pantanos de Centla, Mexico].

    Science.gov (United States)

    Sepúlveda-Lozada, Alejandra; Geissen, Violette; Ochoa-Gaona, Susana; Jarquín-Sánchez, Aarón; de la Cruz, Simón Hernández; Capetillo, Edward; Zamora-Cornelio, Luis Felipe

    2009-12-01

    Wetlands constitute very important ecological areas. The aim of this study was to quantify the soil losses due to fluvial erosion from 2006 to 2008 in two riverbanks under three types of vegetal coverage dominated by Haematoxylum campechianum, Dalbergia brownei and Brachiaria mutica, in the Pantanos de Centla Biosphere Reserve, SE Mexico. The relationship between the texture, organic matter and pH of soils and soil losses was evaluated. We used erosion sticks to estimate soil losses in 18 plots (three plots per type, three vegetation types, two riverbanks). Soil loss decreased in this order: H. campechianum>B. mutica>D. brownei indicating that D. brownei scrubland has the most potential to retain soil. The higher erosive impact within H. campechianum sites can be related with the low density of these trees in the study areas, as well as the lack of association with other types of vegetation that could reinforce the rooting of the soil profile. Furthermore, soil losses in H. campechianum sites were dependent on soil texture. The soils under this type of vegetal coverage were mainly sandy, which are more vulnerable to the erosive action in comparison with fine textured soils or soils with higher clay content, like the ones found in D. brownei and B. mutica sites. Soil losses of 100 % in the second year (B. mutica plots) can be attributed to the distribution of roots in the upper soil layer and also to livestock management along riverbanks. This study recognizes the importance of D. brownei scrublands in riverbank soil retention. Nevertheless it is necessary to consider the role of an entire vegetal community in future research.

  11. Vegetation Change in Interior Alaska Over the Last Four Decades

    Science.gov (United States)

    Huhman, H.; Dewitz, J.; Cristobal, J.; Prakash, A.

    2017-12-01

    The Arctic has become a generally warmer place over the past decades leading to earlier snowmelt, permafrost degradation and changing plant communities. One area in particular, vegetation change, is responding relatively rapidly to climate change, impacting the surrounding environment with changes to forest fire regime, forest type, forest resiliency, habitat availability for subsistence flora and fauna, hydrology, among others. To quantify changes in vegetation in the interior Alaska boreal forest over the last four decades, this study uses the National Land Cover Database (NLCD) decision-tree based classification methods, using both C5 and ERDAS Imagine software, to classify Landsat Surface Reflectance Images into the following NLCD-consistent vegetation classes: planted, herbaceous, shrubland, and forest (deciduous, evergreen and mixed). The results of this process are a total of four vegetation cover maps, that are freely accessible to the public, one for each decade in the 1980's, 1990's, 2000's, and a current map for 2017. These maps focus on Fairbanks, Alaska and the surrounding area covering approximately 36,140 square miles. The maps are validated with over 4,000 ground truth points collected through organizations such as the Landfire Project and the Long Term Ecological Research Network, as well as vegetation and soil spectra collected from the study area concurrent with the Landsat satellite over-passes with a Spectral Evolution PSR+ 3500 spectro-radiometer (0.35 - 2.5 μm). We anticipate these maps to be viewed by a wide user-community and may aid in preparing the residents of Alaska for changes in their subsistence food sources and will contribute to the scientific community in understanding the variety of changes that can occur in response to changing vegetation.

  12. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  13. Arctic water tracks retain phosphorus and transport ammonium

    Science.gov (United States)

    Harms, T.; Cook, C. L.; Wlostowski, A. N.; Godsey, S.; Gooseff, M. N.

    2017-12-01

    Hydrologic flowpaths propagate biogeochemical signals among adjacent ecosystems, but reactions may attenuate signals by retaining, removing, or transforming dissolved and suspended materials. The theory of nutrient spiraling describes these simultaneous reaction and transport processes, but its application has been limited to stream channels. We applied nutrient spiraling theory to water tracks, zero-order channels draining Arctic hillslopes that contain perennially saturated soils and flow at the surface either perennially or in response to precipitation. In the Arctic, experimental warming results in increased availability of nitrogen, the limiting nutrient for hillslope vegetation at the study site, which may be delivered to aquatic ecosystems by water tracks. Increased intensity of rain events, deeper snowpack, earlier snowmelt, and increasing thaw depth resulting from climate change might support increased transport of nutrients, but the reactive capacity of hillslope flowpaths, including sorption and uptake by plants and microbes, could counter transport to regulate solute flux. Characteristics of flowpaths might influence the opportunity for reaction, where slower flowpaths increase the contact time between solutes and soils or roots. We measured nitrogen and phosphorus uptake and transient storage of water tracks through the growing season and found that water tracks retain inorganic phosphorus, but transport ammonium. Nutrient uptake was unrelated to transient storage, suggesting high capacity for nutrient retention by shallow organic soils and vegetation. These observations indicate that increased availability of ammonium, the biogeochemical signal of warming tundra, is propagated by hillslope flowpaths, whereas water tracks attenuate delivery of phosphorus to aquatic ecosystems, where its availability typically limits production.

  14. Assessment of heterogeneity in types of vegetables served by main household food preparers and food decision influencers.

    Science.gov (United States)

    Yi, Sunghwan; Kanetkar, Vinay; Brauer, Paula

    2015-10-01

    While vegetables are often studied as one food group, global measures may mask variation in the types and forms of vegetables preferred by different individuals. To explore preferences for and perceptions of vegetables, we assessed main food preparers based on their preparation of eight specific vegetables and mushrooms. An online self-report survey. Ontario, Canada. Measures included perceived benefits and obstacles of vegetables, convenience orientation and variety seeking in meal preparation. Of the 4517 randomly selected consumers who received the invitation, 1013 responded to the survey (22·4 % response). Data from the main food preparers were analysed (n 756). Latent profile analysis indicated three segments of food preparers. More open to new recipes, the 'crucifer lover' segment (13 %) prepared and consumed substantially more Brussels sprouts, broccoli and asparagus than the other segments. Although similar to the 'average consumer' segment (54 %) in many ways, the 'frozen vegetable user' segment (33 %) used significantly more frozen vegetables than the other segments due to higher prioritization of time and convenience in meal preparation and stronger 'healthy=not tasty' perception. Perception of specific vegetables on taste, healthiness, ease of preparation and cost varied significantly across the three consumer segments. Crucifer lovers also differed with respect to shopping and cooking habits compared with the frozen vegetable users. The substantial heterogeneity in the types of vegetables consumed and perceptions across the three consumer segments has implications for the development of new approaches to promoting these foods.

  15. Global Warming and the Arctic in 3D: A Virtual Globe for Outreach

    Science.gov (United States)

    Manley, W. F.

    2006-12-01

    Virtual Globes provide a new way to capture and inform the public's interest in environmental change. As an example, a recent Google Earth presentation conveyed 'key findings' from the Arctic Climate Impact Assessment (ACIA, 2004) to middle school students during the 2006 INSTAAR/NSIDC Open House at the University of Colorado. The 20-minute demonstration to 180 eighth graders began with an introduction and a view of the Arctic from space, zooming into the North American Arctic, then to a placemark for the first key finding, 'Arctic climate is now warming rapidly and much larger changes are projected'. An embedded link then opened a custom web page, with brief explanatory text, along with an ACIA graphic illustrating the rise in Arctic temperature, global CO2 concentrations, and carbon emissions for the last millennium. The demo continued with an interactive tour of other key findings (Reduced Sea Ice, Changes for Animals, Melting Glaciers, Coastal Erosion, Changes in Vegetation, Melting Permafrost, and others). Each placemark was located somewhat arbitrarily (which may be a concern for some audiences), but the points represented the messages in a geographic sense and enabled a smooth visual tour of the northern latitudes. Each placemark was linked to custom web pages with photos and concise take-home messages. The demo ended with navigation to Colorado, then Boulder, then the middle school that the students attended, all the while speaking to implications as they live their lives locally. The demo piqued the students' curiosity, and in this way better conveyed important messages about the Arctic and climate change. The use of geospatial visualizations for outreach and education appears to be in its infancy, with much potential.

  16. High spatial resolution decade-time scale land cover change at multiple locations in the Beringian Arctic (1948–2000s)

    International Nuclear Information System (INIS)

    Lin, D H; Johnson, D R; Tweedie, C E; Andresen, C

    2012-01-01

    Analysis of time series imagery from satellite and aircraft platforms is useful for detecting land cover change at plot to regional scales. In this study, we created multi-temporal high spatial resolution land cover maps for seven locations in the Beringian Arctic and assessed the change in land cover over time. Land cover classifications were site specific and mostly aligned with a soil moisture gradient. Time series varied between 60 and 21 years. Four of the five landscapes studied in Alaska underwent an expansion of drier land cover classes while the two landscapes studies in Chukotka, Russia showed an expansion of wetter land cover types. While a range of land cover types was present across the landscapes studied, the extent of shrubs (in Chukotka) and open water (in Alaska) increased in all landscapes where these land cover types were present. The results support trends documented for regional change in NDVI (a measure of vegetation greenness and productivity) as well as a host of other long term, experimental and modeling studies. Using historic change trends for each land cover type at each landscape, we use a simple probabilistic vegetation model to establish hypotheses of future change trajectories for different land cover types at each of the landscapes investigated. This study is a contribution to the International Polar Year Back to the Future project (IPY-BTF). (letter)

  17. Challenges in Modeling Disturbance Regimes and Their Impacts in Arctic and Boreal Ecosystems (Invited)

    Science.gov (United States)

    McGuire, A. D.; Rupp, T. S.; Kurz, W.

    2013-12-01

    Disturbances in arctic and boreal terrestrial ecosystems influence services provided by these ecosystems to society. In particular, changes in disturbance regimes in northern latitudes have uncertain consequences for the climate system. A major challenge for the scientific community is to develop the capability to predict how the frequency, severity and resultant impacts of disturbance regimes will change in response to future changes in climate projected for northern high latitudes. Here we compare what is known about drivers and impacts of wildfire, phytophagous insect pests, and thermokarst disturbance to illustrate the complexities in predicting future changes in disturbance regimes and their impacts in arctic and boreal regions. Much of the research on predicting fire has relied on the use of drivers related to fire weather. However, changes in vegetation, such as increases in broadleaf species, associated with intensified fire regimes have the potential to influence future fire regimes through negative feedbacks associated with reduced flammability. Phytophagous insect outbreaks have affected substantial portions of the boreal region in the past, but frequently the range of the tree host is larger than the range of the insect. There is evidence that a number of insect species are expanding their range in response to climate change. Major challenges to predicting outbreaks of phytophagous insects include modeling the effects of climate change on insect growth and maturation, winter mortality, plant host health, the synchrony of insect life stages and plant host phenology, and changes in the ranges of insect pests. Moreover, Earth System Models often simplify the representation of vegetation characteristics, e.g. the use of plant functional types, providing insufficient detail to link to insect population models. Thermokarst disturbance occurs when the thawing of ice-rich permafrost results in substantial ground subsidence. In the boreal forest, thermokarst can

  18. Climate of the Arctic marine environment.

    Science.gov (United States)

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  19. The Content of Fat and Polyenoic Acids in the Major Food Sources of the Arctic Diet

    DEFF Research Database (Denmark)

    Shukla, V. K. S.; Clausen, Jytte Lene; Egsgaard, Helge

    1980-01-01

    In relation to the apparently low incidence of coronary heart diseases in Arctic populations the fatty acid pattern of muscle and fat tissue of the Arctic seal, birds and mammals were compared with the fatty acid pattern of the corresponding tissues of domestic animals normally used as meat sources...... in western countries. The triglyceride content of muscle samples was also estimated. A gas chromatography-mass spectrometry system was used for localizing the position of double bonds in the unsaturated acids, by means of their pyrrolidides. The fat tissue from the seal was the main source of polyenoic acids......, tri- and pentaenoic acids in the diet of the Arctic hunter. Those acids were derived metabolically from linolenic acid. In contrast polyenoic acids, linoleic acid and its derivatives in the nonarctic diet, were mainly supplied from muscle of nonruminant animals and from sources of vegetable origin...

  20. The Arctic

    International Nuclear Information System (INIS)

    Petersen, H.; Meltofte, H.; Rysgaard, S.; Rasch, M.; Jonasson, S.; Christensen, T.R.; Friborg, T.; Soegaard, H.; Pedersen, S.A.

    2001-01-01

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  1. Seasonal variations in phosphorus fractions in semiarid sandy soils under different vegetation types

    Science.gov (United States)

    Qiong Zhao; Dehui Zeng; Zhiping Fan; Zhanyuan Yu; Yalin Hu; Jianwei Zhang

    2009-01-01

    We investigated the seasonal patterns of soil phosphorus (P) fractions under five vegetation types – Ulmus macrocarpa savanna, grassland, Pinus sylvestris var. mongolica plantation, Pinus tabulaeformis plantation, and Populus simonii plantation ...

  2. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Pieter S A; Goetz, Scott J, E-mail: pbeck@whrc.org [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2011-10-15

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  3. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences

    International Nuclear Information System (INIS)

    Beck, Pieter S A; Goetz, Scott J

    2011-01-01

    To assess ongoing changes in high latitude vegetation productivity we compared spatiotemporal patterns in remotely sensed vegetation productivity in the tundra and boreal zones of North America and Eurasia. We compared the long-term GIMMS (Global Inventory Modeling and Mapping Studies) NDVI (Normalized Difference Vegetation Index) to the more recent and advanced MODIS (Moderate Resolution Imaging Spectroradiometer) NDVI data set, and mapped circumpolar trends in a gross productivity metric derived from the former. We then analyzed how temporal changes in productivity differed along an evergreen-deciduous gradient in boreal Alaska, along a shrub cover gradient in Arctic Alaska, and during succession after fire in boreal North America and northern Eurasia. We find that the earlier reported contrast between trends of increasing tundra and decreasing boreal forest productivity has amplified in recent years, particularly in North America. Decreases in boreal forest productivity are most prominent in areas of denser tree cover and, particularly in Alaska, evergreen forest stands. On the North Slope of Alaska, however, increases in tundra productivity do not appear restricted to areas of higher shrub cover, which suggests enhanced productivity across functional vegetation types. Differences in the recovery of post-disturbance vegetation productivity between North America and Eurasia are described using burn chronosequences, and the potential factors driving regional differences are discussed.

  4. Plant functional type affects nitrogen use efficiency in high-Arctic tundra

    Czech Academy of Sciences Publication Activity Database

    Oulehle, F.; Rowe, E. C.; Myška, Oldřich; Chuman, T.; Evans, C.D.

    2016-01-01

    Roč. 94, mar (2016), s. 19-28 ISSN 0038-0717 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : Arctic * Nitrogen * Isotope * Mineralization * Nitrification * Tundra Subject RIV: EH - Ecology, Behaviour Impact factor: 4.857, year: 2016

  5. Arctic whaling : proceedings of the International Symposium Arctic Whaling February 1983

    NARCIS (Netherlands)

    Jacob, H.K. s'; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the

  6. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  7. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  8. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  9. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  10. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations

    Science.gov (United States)

    Treat, C.C.; Natali, Susan M.; Ernakovich, Jessica; Iverson, Colleen M.; Lupasco, Massimo; McGuire, A. David; Norby, Richard J.; Roy Chowdhury, Taniya; Richter, Andreas; Šantrůčková, Hana; Schädel, C.; Schuur, Edward A.G.; Sloan, Victoria L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2015-01-01

    Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased

  11. Collaboration across the Arctic

    DEFF Research Database (Denmark)

    Huppert, Verena Gisela; Chuffart, Romain François R.

    2017-01-01

    The Arctic is witnessing the rise of a new paradigm caused by an increase in pan-Arctic collaborations which co-exist with the region’s traditional linkages with the South. Using an analysis of concrete examples of regional collaborations in the Arctic today in the fields of education, health...... and infrastructure, this paper questions whether pan-Arctic collaborations in the Arctic are more viable than North-South collaborations, and explores the reasons behind and the foreseeable consequences of such collaborations. It shows that the newly emerging East-West paradigm operates at the same time...... as the traditional North-South paradigm, with no signs of the East-West paradigm being more viable in the foreseeable future. However, pan-Arctic collaboration, both due to pragmatic reasons and an increased awareness of similarities, is likely to increase in the future. The increased regionalization process...

  12. Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale

    Science.gov (United States)

    Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.

    2017-12-01

    Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at

  13. Seasonal and Inter-annual Phenological Varibility is Greatest in Low-Arctic and Wet Sites Across the North Slope of Alaska as Observed from Multiple Remote Sensing Platforms

    Science.gov (United States)

    Vargas, S. A., Jr.; Andresen, C. G.; May, J. L.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.

    2017-12-01

    The Arctic is experiencing among the most dramatic impacts from climate variability on the planet. Arctic plant phenology has been identified as an ideal indicator of climate change impacts and provides great insight into seasonal and inter-annual vegetative trends and their responses to such changes. Traditionally, phenology has been quantified using satellite-based systems and plot-level observations but each approach presents limitations especially in high latitude regions. Mid-scale systems (e.g. automated sensor platforms and trams) have shown to provide alternative, and in most cases, cheaper solutions with comparable results to those acquired traditionally. This study contributes to the US Arctic Observing Network (AON) and assesses the effectiveness of using digital images acquired from pheno-cams, a kite aerial photography (KAP) system, and plot-level images (PLI) in their capacity to assess phenological variability (e.g. snow melt, greening and end-of-season) for dominant vegetation communities present at two sites in both Utqiagvik and Atqasuk, Alaska, namely the Mobile Instrumented Sensor Platform (MISP) and the Circum-arctic Active Layer Monitoring (CALM) grids. RGB indices (e.g. GEI and %G) acquired from these methods were compared to the normalized difference vegetation index (NDVI) calculated from multispectral ground-based reflectance measurements, which has been identified and used as a proxy of primary productivity across multiple ecosystems including the Arctic. The 5 years of growing season data collected generally resulted with stronger Pearson's correlations between indices located in plots containing higher soil moisture versus those that were drier. Future studies will extend platform inter-comparison to the satellite level by scaling trends to MODIS land surface products. Trends documented thus far, however, suggest that the long-term changes in satellite NDVI for these study areas, could be a direct response from wet tundra landscapes.

  14. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  15. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  16. Relation of MODIS EVI and LAI across time, vegetation types and hydrological regimes

    Science.gov (United States)

    Alexandridis, Thomas; Ovakoglou, George

    2015-04-01

    Estimation of the Leaf Area Index (LAI) of a landscape is considered important to describe the ecosystems activity and is used as an important input parameter in hydrological and biogeochemical models related to water and carbon cycle, desertification risk, etc. The measurement of LAI in the field is a laborious and costly process and is mainly done by indirect methods, such as hemispherical photographs that are processed by specialized software. For this reason there have been several attempts to estimate LAI with multispectral satellite images, using theoretical biomass development models, or empirical equations using vegetation indices and land cover maps. The aim of this work is to study the relation of MODIS EVI and LAI across time, vegetation type, and hydrological regime. This was achieved by studying 120 maps of EVI and LAI which cover a hydrological year and five hydrologically diverse areas: river Nestos in Greece, Queimados catchment in Brazil, Rijnland catchment in The Netherlands, river Tamega in Portugal, and river Umbeluzi in Mozambique. The following Terra MODIS composite datasets were downloaded for the hydrological year 2012-2013: MOD13A2 "Vegetation Indices" and MCD15A2 "LAI and FPAR", as well as the equivalent quality information layers (QA). All the pixels that fall in a vegetation land cover (according to the MERIS GLOBCOVER map) were sampled for the analysis, with the exception of those that fell at the border between two vegetation or other land cover categories, to avoid the influence of mixed pixels. Using linear regression analysis, the relationship between EVI and LAI was identified per date, vegetation type and study area. Results show that vegetation type has the highest influence in the variation of the relationship between EVI and LAI in each study area. The coefficient of determination (R2) is high and statistically significant (ranging from 0.41 to 0.83 in 90% of the cases). When plotting the EVI factor from the regression equation

  17. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  18. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA

    Science.gov (United States)

    Stapanian, Martin A.; Gara, Brian; Schumacher, William

    2018-01-01

    The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2 km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.

  19. Arctic Security

    DEFF Research Database (Denmark)

    Wang, Nils

    2013-01-01

    The inclusion of China, India, Japan, Singapore and Italy as permanent observers in the Arctic Council has increased the international status of this forum significantly. This chapter aims to explain the background for the increased international interest in the Arctic region through an analysis...

  20. Alien plant invasion in mixed-grass prairie: effects of vegetation type, stochiasticity, and anthropogenic disturbance in two park units

    Science.gov (United States)

    Larson, Diane L.; Anderson, Patrick J.; Newton, Wesley E.

    2001-01-01

    The ability of alien plant species to invade a region depends not only on attributes of the plant, but on characteristics of the habitat being invaded. Here, we examine characteristics that may influence the success of alien plant invasion in mixed-grass prairie at Theodore Roosevelt National Park, in western North Dakota, USA. The park consists of two geographically separate units with similar vegetation types and management history, which allowed us to examine the effects of native vegetation type, anthropogenic disturbance, and the separate park units on the invasion of native plant communities by alien plant species common to counties surrounding both park units. If matters of chance related to availability of propagules and transient establishment opportunities determine the success of invasion, park unit and anthropogenic disturbance should better explain the variation in alien plant frequency. If invasibility is more strongly related to biotic or physical characteristics of the native plant communities, models of alien plant occurrence should include vegetation type as an explanatory variable. We examined >1300 transects across all vegetation types in both units of the park. Akaike's Information Criterion (AIC) indicated that the fully parameterized model, including the interaction among vegetation type, disturbance, and park unit, best described the distribution of both total number of alien plants per transect and frequency of alien plants on transects where they occurred. Although all vegetation types were invaded by alien plants, mesic communities had both greater numbers and higher frequencies of alien plants than did drier communities. A strong element of stochasticity, reflected in differences in frequencies of individual species between the two park units, suggests that prediction of risk of invasion will always involve uncertainty. In addition, despite well-documented associations between anthropogenic disturbance and alien plant invasion, five of

  1. Effects of aquatic vegetation type on denitrification

    NARCIS (Netherlands)

    Veraart, A.J.; Bruijne, de W.J.J.; Peeters, E.T.H.M.; Klein, de J.J.M.; Scheffer, M.

    2011-01-01

    In a microcosm 15N enrichment experiment we tested the effect of floating vegetation (Lemna sp.) and submerged vegetation (Elodea nuttallii) on denitrification rates, and compared it to systems without macrophytes. Oxygen concentration, and thus photosynthesis, plays an important role in regulating

  2. Relationships between NDVI, canopy structure, and photosynthesis in three California vegetation types

    International Nuclear Information System (INIS)

    Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Penuelas, J.; Valentini, R.

    1995-01-01

    In a range of plant species from three Californian vegetation types, we examined the widely used ''normalized difference vegetation index'' (NDVI) and ''simple ratio'' (SR) as indicators of canopy structure, light absorption, and photosynthetic activity. These indices, which are derived from canopy reflectance in the red and near-infrared wavebands, highlighted phenological differences between evergreen and deciduous canopies. They were poor indicators of total canopy biomass due to the varying abundance of non-green standing biomass in these vegetation types. However, in sparse canopies (leaf area index (LAI) apprxeq 0-2), NDVI was a sensitive indicator of canopy structure and chemical content (green biomass, green leaf area index, chlorophyll content, and foliar nitrogen content). At higher canopy green LAI values ( gt 2; typical of dense shrubs and trees), NDVI was relatively insensitive to changes in canopy structure. Compared to SR, NDVI was better correlated with indicators of canopy structure and chemical content, but was equivalent to the logarithm of SR. In agreement with theoretical expectations, both NDVI and SR exhibited near-linear correlations with fractional PAR intercepted by green leaves over a wide range of canopy densities. Maximum daily photosynthetic rates were positively correlated with NDVI and SR in annual grassland and semideciduous shrubs where canopy development and photosynthetic activity were in synchrony. The indices were also correlated with peak springtime canopy photosynthetic rates in evergreens. However, over most of the year, these indices were poor predictors of photosynthetic performance in evergreen species due to seasonal reductions in photosynthetic radiation-use efficiency that occurred without substantial declines in canopy greenness. Our results support the use of these vegetation indices as remote indicators of PAR absorption, and thus potential photosynthetic activity, even in

  3. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  4. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  5. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    Science.gov (United States)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  6. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  7. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula.

    Science.gov (United States)

    Wen, Jason Wh; Winklbauer, Rudolf

    2017-08-10

    During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans -endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration.

  8. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    Science.gov (United States)

    Tape, Ken D.; Flint, Paul L.; Meixell, Brandt W.; Gaglioti, Benjamin V.

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a 'tipping point' whereby inland areas would be transformed into salt marshes.

  9. Characteristics of summer-time energy exchange in a high Arctic tundra heath 2000–2010

    Directory of Open Access Journals (Sweden)

    Magnus Lund

    2014-07-01

    Full Text Available Global warming will bring about changes in surface energy balance of Arctic ecosystems, which will have implications for ecosystem structure and functioning, as well as for climate system feedback mechanisms. In this study, we present a unique, long-term (2000–2010 record of summer-time energy balance components (net radiation, R n; sensible heat flux, H; latent heat flux, LE; and soil heat flux, G from a high Arctic tundra heath in Zackenberg, Northeast Greenland. This area has been subjected to strong summer-time warming with increasing active layer depths (ALD during the last decades. We observe high energy partitioning into H, low partitioning into LE and high Bowen ratio (β=H/LE compared with other Arctic sites, associated with local climatic conditions dominated by onshore winds, slender vegetation with low transpiration activity and relatively dry soils. Surface saturation vapour pressure deficit (D s was found to be an important variable controlling within-year surface energy partitioning. Throughout the study period, we observe increasing H/R n and LE/R n and decreasing G/R n and β, related to increasing ALD and decreasing soil wetness. Thus, changes in summer-time surface energy balance partitioning in Arctic ecosystems may be of importance for the climate system.

  10. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  11. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...... were also assessed. Collembolans were found in highest densities in dry heath soil, about 130,000 individuals m-2, more than twice as high as in mesic heath soils. Enchytraeids, diptera larvae and nematodes were also more abundant in the dry heath soil than in mesic heath soils, whereas protozoan...

  12. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  13. Redefining U.S. Arctic Strategy

    Science.gov (United States)

    2015-05-15

    responsibility shifts 21 Barno, David and Nora Bensahel. The Anti-Access Challenge you’re not thinking...International Affairs 85, no. 6 (2009). 38 Barno, David and Nora Bensahel. THE ANTI-ACCESS CHALLENGE YOU’RE NOT THINKING ABOUT, 05 May 2015...and Rescue in the Arctic, 22 June 2011. Arctic Council Secretariat. About the Arctic Council, Arctic Council, 2011. Barno, David and Nora

  14. A History of Coastal Research in the Arctic (Invited)

    Science.gov (United States)

    Walker, H. J.; McGraw, M.

    2009-12-01

    Laboratory in 1947. Although these organizations were broad based, they occasionally had research projects devoted to arctic shorelines. In the USSR, research by Felix Are on shore retreat in the Arctic set the pattern for detail. Because the concentration of people (native as well as non-native) in the Arctic tends to be along the coast(such as Barrow, Alaska and Tuktoyaktuk, Canada) or rivers, some of the earliest research dealt with erosion that threatened settlements. In the process, consideration was given to such factors as sea ice, ground ice and permafrost, sediment type, long-shore drift, tides, wave action, and river discharge. Although there were scattered relevant projects, it was not until the last quarter of the 20th century that teamwork on arctic coastal research began to make its mark. Especially notable are the Russian-German cooperative study of the Lena Delta in 1998 and the International Arctic Science Committee's project on Arctic Coastal Dynamics. The number of detailed studies from such initiatives has increased during the last two decades.

  15. Long Distance Pollen Transport to the Arctic: a Useful Proxy to Calibrate Atmospheric Circulation?

    Science.gov (United States)

    Rousseau, D.; Schevin, P.; Duzer, D.; Jolly, D.; Cambon, G.

    2004-12-01

    Tracing modern atmosphere dynamics is important to constrain models used for past climate reconstruction. The main types of tracers of arctic air masses are chemical and show different patterns. Dust in the ice at the summit of the Greenland ice cap has been shown, through isotope analyses, to have originated from Chinese deserts, mostly the Takla Makan and Gobi. Conversely, the chemical composition of the aerosols reaching the summit of the ice cap associated with backward air masses trajectories points to source areas in North America, Europe and Asia. A total of four pollen traps have been displayed on both western and eastern coasts of Greenland during the last four years in order to assess long distance transport in the Arctic domain and to identify potential vegetation source areas associated with air mass pathways. We are demonstrating the long distance transport of pollen originating from North America, Great Lakes area to southern Greenland at least during two consecutives years, 2002 and 2003. Thus a regular pattern of air masses responsible for the transport of pollen grains from North America to Greenland should be constant, as already described for anthropogenic pollutants. Another pollen trap was installed on the sea ice during the ice-sea drift expedition from North Pole of French explorer Dr. Jean-Louis Etienne in 2002. In that case we demonstrate two long distance transport to the North Pole from two different Eurasian regions during 2002: western Europe and eastern Siberia. Until now the use of pollen as an air mass tracer had not yet been investigated. Here we show that first evidence pollen represents a biological alternative to understand both present and past air mass dynamics in the Arctic and its associated relationship with biosphere changes.

  16. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  17. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  18. Conflict Resolution Practices of Arctic Aboriginal Peoples

    NARCIS (Netherlands)

    Gendron, R.; Hille, C.

    2013-01-01

    This article presents an overview of the conflict resolution practices of indigenous populations in the Arctic. Among the aboriginal groups discussed are the Inuit, the Aleut, and the Saami. Having presented the conflict resolution methods, the authors discuss the types of conflicts that are

  19. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man

    2006-01-01

    Arctic peoples are spread over eight countries and comprise 3.74 million residents, of whom 9% are indigenous. The Arctic countries include Canada, Finland, Greenland (Denmark), Iceland, Norway, Russia, Sweden and the United States. Although Arctic peoples are very diverse, there are a variety...... of environmental and health issues that are unique to the Arctic regions, and research exploring these issues offers significant opportunities, as well as challenges. On July 28-29, 2004, the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research co-sponsored a working group...... entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...

  20. Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

    Science.gov (United States)

    Ravindran, Anita; Yang, Shang-Shyng

    2015-08-01

    Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of 1800-3952 m and consists of three vegetation types: spruce, hemlock, and grassland. Three plots were selected in each vegetation type. Soil samples were collected from the organic layer, topsoil, and subsoil. Microbial biomass carbon (Cmic) was determined by the chloroform fumigation-extraction method, and microbial biomass nitrogen (Nmic) was determined from the total nitrogen (Ntot) released during fumigation-extraction. Bacteria, actinomycetes, fungi, cellulolytic microbes, phosphate-solubilizing microbes, and nitrogen-fixing microbes were also counted. The Cmic and Nmic were highest in the surface soil and declined with the soil depth. These were also highest in spruce soils, followed by in hemlock soils, and were lowest in grassland soils. Cmic and Nmic had the highest values in the spring season and the lowest values in the winter season. Cmic and Nmic had significantly positive correlations with total organic carbon (Corg) and Ntot. Contributions of Cmic and Nmic, respectively, to Corg and Ntot indicated that the microbial biomass was immobilized more in spruce and hemlock soils than in grassland soils. Microbial populations of the tested vegetation types decreased with increasing soil depth. Cmic and Nmic were high in the organic layer and decreased with the depth of layers. These values were higher for spruce and hemlock soils than for grassland soils. Positive correlations were observed between Cmic and Nmic and between Corg and Ntot. Copyright © 2014. Published by Elsevier B.V.

  1. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    Science.gov (United States)

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  2. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  3. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, Helge

    2011-01-01

    Ambient ultraviolet-B (UV-B) radiation potentially impacts the photosynthetic performance of high Arctic plants. We conducted an UV-B exclusion experiment in a dwarf shrub heath in NE Greenland (74°N), with open control, filter control, UV-B filtering and UV-AB filtering, all in combination......, nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  4. Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships.

    Science.gov (United States)

    Gómez-Mendoza, L; Galicia, L; Cuevas-Fernández, M L; Magaña, V; Gómez, G; Palacio-Prieto, J L

    2008-07-01

    Variations in the normalized vegetation index (NDVI) for the state of Oaxaca, in southern Mexico, were analyzed in terms of precipitation anomalies for the period 1997-2003. Using 10-day averages in NDVI data, obtained from AVHRR satellite information, the response of six types of vegetation to intra-annual and inter-annual fluctuations in precipitation were examined. The onset and temporal evolution of the greening period were studied in terms of precipitation variations through spectral analysis (coherence and phase). The results indicate that extremely dry periods, such as those observed in 1997 and 2001, resulted in low values of NDVI for much of Oaxaca, while good precipitation periods produced a rapid response (20-30 days of delay) from a stressed to a non-stressed condition in most vegetation types. One of these rapid changes occurred during the transition from dry to wet conditions during the summer of 1998. As in many parts of the tropics and subtropics, the NDVI reflects low frequency variations in precipitation on several spatial scales. Even after long dry periods (2001-2002), the various regional vegetation types are capable of recovering when a good rainy season takes place, indicating that vegetation types such as the evergreen forests in the high parts of Oaxaca respond better to rainfall characteristics (timing, amount) than to temperature changes, as is the case in most mid-latitudes. This finding may be relevant to prepare climate change scenarios for forests, where increases in surface temperature and precipitation anomalies are expected.

  5. Environmental problems associated with Arctic development especially in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    West, G. C.

    1976-10-01

    Exploration and extraction of mineral and petroleum resources in the arctic tundra and subarctic taiga regions of the world has potential impacts on the environment, wildlife, and human health and safety. Transportation, especially over low wet-tundra in summer, causes long-term changes in vegetation by reducing insulation to the underlying permafrost. Gravel laid directly on the tundra mat, makes the most suitable permanent road-bed. However this causes problems such as spreading of dust, impoundment of water, behavioral barricading of animals, alteration of river channels, and siltation of streams. Anadromous fishes are a major food alteration of stream channels or siltation of rivers can affect their movement and reproduction. Oil-spills in aquatic systems are harder to control and clean up than terrestrial ones, and recovery of ponds takes several years. The oil-rich outer-continental shelves in the Beaufort, Chukchi, and Bering Seas, now under exploration for oil, are especially sensitive. They contain unique populations of marine mammals and birds. Human habitation of the Arctic requires transport of food, fuel, and construction materials, and disposal of refuse and wastes which, due to the permafrost-underlain vegetative mat, is difficult. Heating by fossil fuels results in ice-fogs in winter and accumulation of atmospheric pollutants at ground-level during thermal inversions at all seasons. Perhaps the greatest impact is the increased intervention of the human population. Where native people were previously only sparsely settled or nomadic in the tundra, and on coasts where they congregated, now the economic need for resources has resulted in increased pressure overall which will result in fewer habitats for wildlife, destruction of wilderness, and increased access to humans for further exploration and recreation.

  6. Crustal structure and tectonic model of the Arctic region

    DEFF Research Database (Denmark)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey

    2016-01-01

    We present a new model of the crustal and tectonic structure of the Arctic region north of 60° N latitude, constrained as a part of the international Atlas of Geological Maps of the Circumpolar Arctic under the aegis of the Commission for the Geological Map of the World. The region is largely...... formed by (i) Archean-Paleoproterozoic shields and platforms, (ii) orogenic belts of the Neoproterozoic to the Late Mesozoic ages overlain by platform and basin sediments, (iii) Cenozoic rift structures formed in part as a consequence of seafloor spreading in the North East Atlantic Ocean...... and thickness of the sedimentary cover and presents tectonic regionalization based on 18 major crustal types (oceanic, transitional, and continental) recognized in the Arctic. A 7600. km-long crustal geotransect across the region illustrates the details of its crustal and tectonic structure. We discuss...

  7. Tundra Rehabilitation in Alaska's Arctic

    Science.gov (United States)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  8. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.

    Science.gov (United States)

    Weijers, Stef; Buchwal, Agata; Blok, Daan; Löffler, Jörg; Elberling, Bo

    2017-11-01

    Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulT emx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulT emx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to

  9. [Soil infiltration characteristics under main vegetation types in Anji County of Zhejiang Province].

    Science.gov (United States)

    Liu, Dao-Ping; Chen, San-Xiong; Zhang, Jin-Chi; Xie, Li; Jiang, Jiang

    2007-03-01

    The study on the soil infiltration under different main vegetation types in Anji County of Zhejiang Province showed that the characteristics of soil infiltration differed significantly with land use type, and the test eight vegetation types could be classified into four groups, based on soil infiltration capability. The first group, deciduous broadleaved forest, had the strongest soil infiltration capability, and the second group with a stronger soil infiltration capability was composed of grass, pine forest, shrub community and tea bush. Bamboo and evergreen broadleaved forest were classified into the third group with a relatively strong soil infiltration capability, while bare land belonged to the fourth group because of the bad soil structure and poorest soil infiltration capability. The comprehensive parameters of soil infiltration (alpha) and root (beta) were obtained by principal component analysis, and the regression model of alpha and beta could be described as alpha = 0. 1708ebeta -0. 3122. Soil infiltration capability was greatly affected by soil physical and chemical characteristics and root system. Fine roots (soil physical and chemical properties, and the increase of soil infiltration capability was closely related to the amount of the fine roots.

  10. Arctic Research Plan: FY2017-2021

    Science.gov (United States)

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  11. Local increase of anticyclonic wave activity over northern Eurasia under amplified Arctic warming: WAVE ACTIVITY RESPONSE TO ARCTIC MELTING

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Daokai [School of Atmospheric Sciences, Nanjing University, Nanjing China; Lu, Jian [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Sun, Lantao [CIRES, University of Colorado Boulder, Boulder Colorado USA; PSD, ESRL, NOAA, Boulder Colorado USA; Chen, Gang [Department of Earth and Atmospheric Sciences, UCLA, Los Angeles California USA; Zhang, Yaocun [School of Atmospheric Sciences, Nanjing University, Nanjing China

    2017-04-10

    In an attempt to resolve the controversy as to whether Arctic sea ice loss leads to more mid-latitude extremes, a metric of finite-amplitude wave activity is adopted to quantify the midlatitude wave activity and its change during the observed period of the drastic Arctic sea ice decline in both ERA Interim reanalysis data and a set of AMIP-type of atmospheric model experiments. Neither the experiment with the trend in the SST or that with the declining trend of Arctic sea ice can simulate the sizable midlatitude-wide reduction in the total wave activity (Ae) observed in the reanalysis, leaving its explanation to the atmospheric internal variability. On the other hand, both the diagnostics of the flux of the local wave activity and the model experiments lend evidence to a possible linkage between the sea ice loss near the Barents and Kara seas and the increasing trend of anticyclonic local wave activity over the northern part of the central Eurasia and the associated impacts on the frequency of temperature extremes.

  12. Biomarkers of Canadian High Arctic Litoral Sediments for Assessment of Organic Matter Sources and Degradation

    Science.gov (United States)

    Pautler, B. G.; Austin, J.; Otto, A.; Stewart, K.; Lamoureux, S. F.; Simpson, M. J.

    2009-05-01

    Carbon stocks in the High Arctic are particularly sensitive to global climate change, and investigation of variations in organic matter (OM) composition is beneficial for the understanding of the alteration of organic carbon under anticipated future elevated temperatures. Molecular-level characterization of solvent extractable compounds and CuO oxidation products of litoral sedimentary OM at the Cape Bounty Arctic Watershed Observatory in the Canadian Arctic Archipelago was conducted to determine the OM sources and decomposition patterns. The solvent extracts contained a series of aliphatic lipids, steroids and one triterpenoid primarily of higher plant origin and new biomarkers, iso- and anteiso-alkanes originating from cerastium arcticum (Arctic mouse-ear chickweed, a native angiosperm) were discovered. Carbon preference index (CPI) values for the n-alkanes, n-alkanols and n-alkanoic acids suggests that the OM biomarkers result from fresh material input in early stage of degradation. The CuO oxidation products were comprised of benzyls, lignin phenols and short-chain diacids and hydroxyacids. High abundance of terrestrial OM biomarkers observed at sites close to the river inlet suggests fluvial inputs as an important pathway to deliver OM into the lake. The lignin phenol vegetation index (LPVI) also suggests that the OM origin is mostly from non-woody angiosperms. A relatively high degree of lignin alteration in the litoral sediments is evident from the abundant ratio of acids and aldehydes of the vanillyl and syringyl monomers. This suggests that the lignin contents have been diagenetically altered as the result of a long residence time in this ecosystem. The molecular-level characterization of litoral sedimentary OM in Canadian High Arctic region provides insight into current OM composition,potential responses to future disturbances and the biogeochemical cycling of carbon in the Arctic.

  13. “An Arctic Great Power”? Recent Developments in Danish Arctic Policy

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2016-01-01

    Denmark has been a firm advocate for Arctic cooperation in the recent decade, most importantly as the initiator of the 2008 Ilulissat meeting. Two new strategic publications – a foreign policy report (Danish Diplomacy and Defence in a Time of Change) and a defense report (The Ministry of Defence......’s Future Activities in the Arctic), which were published in May and June 2016 –highlight the Kingdom of Denmark’s status as “an Arctic great power” and the importance of pursuing Danish interests, which could indicate a shift away from a cooperation-oriented policy. This article investigates whether...... the documents represent a break in Danish Arctic policy. It argues that the two documents represent continuation, rather than change. They show that the High North continues to become steadily more important on the Danish foreign policy agenda, although the region remains just one of several regional priorities...

  14. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra

    International Nuclear Information System (INIS)

    Frost, Gerald V; Epstein, Howard E; Walker, Donald A

    2014-01-01

    Widespread increases in Arctic tundra productivity have been documented for decades using coarse-scale satellite observations, but finer-scale observations indicate that changes have been very uneven, with a high degree of landscape- and regional-scale heterogeneity. Here we analyze time-series of the Normalized Difference Vegetation Index (NDVI) observed by Landsat (1984–2012), to assess landscape- and regional-scale variability of tundra vegetation dynamics in the northwest Siberian Low Arctic, a little-studied region with varied soils, landscape histories, and permafrost attributes. We also estimate spatio-temporal rates of land-cover change associated with expansion of tall alder (Alnus) shrublands, by integrating Landsat time-series with very-high-resolution imagery dating to the mid-1960s. We compiled Landsat time-series for eleven widely-distributed landscapes, and performed linear regression of NDVI values on a per-pixel basis. We found positive net NDVI trends (‘greening’) in nine of eleven landscapes. Net greening occurred in alder shrublands in all landscapes, and strong greening tended to correspond to shrublands that developed since the 1960s. Much of the spatial variability of greening within landscapes was linked to landscape physiography and permafrost attributes, while between-landscape variability largely corresponded to differences in surficial geology. We conclude that continued increases in tundra productivity in the region are likely in upland tundra landscapes with fine-textured, cryoturbated soils; these areas currently tend to support discontinuous vegetation cover, but are highly susceptible to rapid increases in vegetation cover, as well as land-cover changes associated with the development of tall shrublands. (paper)

  15. A case study of high Arctic anthropogenic disturbance to polar desert permafrost and ecosystems

    Science.gov (United States)

    Becker, M. S.; Pollard, W. H.

    2013-12-01

    One of the indirect impacts of climate change on Arctic ecosystems is the expected increase of industrial development in high latitudes. The scale of terrestrial impacts cannot be known ahead of time, particularly due to a lack of long-term impact studies in this region. With one of the slowest community recovery rates of any ecosystem, the high Artic biome will be under a considerable threat that is exacerbated by a high susceptibility to change in the permafrost thermal balance. One such area that provides a suitable location for study is an old airstrip near Eureka, Ellesmere Island, Nunavut (80.0175°N, 85.7340°W). While primarily used as an ice-runway for winter transport, the airstrip endured a yearly summer removal of vegetation that continued from 1947 until its abandonment in 1951. Since then, significant vegetative and geomorphic differences between disturbed and undisturbed areas have been noted in the literature throughout the decades (Bruggemann, 1953; Beschel, 1963; Couture and Pollard, 2007), but no system wide assessment of both the ecosystem and near-surface permafrost has been conducted. Key to our study is that the greatest apparent geomorphic and vegetative changes have occurred and persisted in areas where underlying ice-wedges have been disturbed. This suggests that the colonizing communities rapidly filled new available thermokarst niches and have produced an alternative ice-wedge stable state than the surrounding polar desert. We hypothesize that disturbed areas will currently have greater depths of thaw (deeper active layers) and degraded ice-wedges, with decreased vegetation diversity but higher abundance due to a changed hydrological balance. To test this a comprehensive set of near-surface active layer and ecosystem measurements were conducted. Permafrost dynamics were characterized using probing and high-frequency Ground Penetrating Radar (500 MHz) to map the near-surface details of ice-wedges and active layer. Vegetation was measured

  16. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  17. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, William [Univ. of Texas, El Paso, TX (United States)

    2016-11-18

    RASM is a multi-disciplinary project, which brings together researchers from six state universities, one military postgraduate school, and one DoE laboratory to address the core modeling objectives of the arctic research community articulated in the Arctic System Modeling report by Roberts et al. (2010b). This report advocates the construction of a regional downscaling tool to generate probabilistic decadal projections of Greenland ice sheet retreat, evolution of arctic sea ice cover, changes in land surface vegetation, and regional processes leading to arctic amplification. Unified coupled models such as RASM are ideal for this purpose because they simulate fine-scale physics, essential for the realistic representation of intra-annual variability, in addition to processes fundamental to long term climatic shifts (Hurrell et al. 2009). By using RASM with boundary conditions from a global model, we can generate many-member ensembles essential for understanding uncertainty in regional climate projections (Hawkins and Sutton 2009). This probabilistic approach is computationally prohibitive for high-resolution global models in the foreseeable future, and also for regional models interactively nested within global simulations. Yet it is fundamental for quantifying uncertainty in decadal forecasts to make them useful for decision makers (Doherty et al. 2009). For this reason, we have targeted development of ensemble generation techniques as a core project task (Task 4.5). Environmental impact assessment specialists need high-fidelity regional ensemble projections to improve the accuracy of their work (Challinor et al. 2009; Moss et al. 2010). This is especially true of the Arctic, where economic, social and national interests are rapidly reshaping the high north in step with regional climate change. During the next decade, considerable oil and gas discoveries are expected across many parts of the marine and terrestrial Arctic (Gautier et al. 2009), the economics of the

  18. Genomics of Arctic cod

    Science.gov (United States)

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  19. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    International Nuclear Information System (INIS)

    Tape, Ken D; Flint, Paul L; Meixell, Brandt W; Gaglioti, Benjamin V

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are <1 m above sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a ‘tipping point’ whereby inland areas would be transformed into salt marshes. (letter)

  20. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification

    NARCIS (Netherlands)

    Lameris, T.K.; Scholten, Ilse; Bauer, S.; Cobben, M.M.P.; Ens, B.J.; Nolet, B.A.

    2017-01-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset

  1. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  2. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  3. Lumped hydrological models is an Occam' razor for runoff modeling in large Russian Arctic basins

    OpenAIRE

    Ayzel Georgy

    2018-01-01

    This study is aimed to investigate the possibility of three lumped hydrological models to predict daily runoff of large-scale Arctic basins for the modern period (1979-2014) in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil or vegetation cover properties of studied basins. We found limitations of model parameters calibration in ungauged basins using global optimization alg...

  4. Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments

    Science.gov (United States)

    Vavrus, S. J.

    2012-12-01

    Although impending Arctic climate change is widely recognized, a wild card in its expression is how extreme weather events in this region will respond to greenhouse warming. Intense polar cyclones represent one type of high-latitude phenomena falling into this category, including very deep synoptic-scale cyclones and mesoscale polar lows. These systems inflict damage through high winds, heavy precipitation, and wave action along coastlines, and their impact is expected to expand in the future, when reduced sea ice cover allows enhanced wave energy. The loss of a buffering ice pack could greatly increase the rate of coastal erosion, which has already been increasing in the Arctic. These and related threats may amplify if extreme Arctic cyclones become more frequent and/or intense in a warming climate with much more open water to fuel them. This possibility has merit on the basis of GCM experiments, which project that greenhouse forcing causes lower mean sea level pressure (SLP) in the Arctic and a strengthening of the deepest storms over boreal high latitudes. In this study, the latest Coupled Model Intercomparison Project (CMIP5) climate model output is used to investigate the following questions: (1) What are the spatial and seasonal characteristics of extreme Arctic cyclones? (2) How well do GCMs simulate these phenomena? (3) Are Arctic cyclones already showing the expected response to greenhouse warming in climate models? To address these questions, a retrospective analysis is conducted of the transient 20th century simulations among the CMIP5 GCMs (spanning years 1850-2005). The results demonstrate that GCMs are able to reasonably represent extreme Arctic cyclones and that the simulated characteristics do not depend significantly on model resolution. Consistent with observational evidence, climate models generate these storms primarily during winter and within the climatological Aleutian and Icelandic Low regions. Occasionally the cyclones remain very intense

  5. On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions

    NARCIS (Netherlands)

    Torello-Raventos, M.; Feldpausch, T.R.; Veenendaal, E.M.; Sykora, K.V.

    2013-01-01

    Background: There is no generally agreed classification scheme for the many different vegetation formation types occurring in the tropics. This hinders cross-continental comparisons and causes confusion as words, such as ‘forest’ and ‘savanna’ have different meanings to different people. Tropical

  6. Orbitally-forced Azolla blooms and middle Eocene Arctic hydrology; clues from palynology

    Science.gov (United States)

    Barke, Judith; Abels, Hemmo A.; Sangiorgi, Francesca; Greenwood, David R.; Sweet, Arthur R.; Donders, Timme; Lotter, Andre F.; Reichart, Gert-Jan; Brinkhuis, Henk

    2010-05-01

    The presence of high abundances of the freshwater fern Azolla in the early Middle Eocene central Arctic Ocean sediments recovered from the Lomonosov Ridge during IODP Expedition 302, have been related to the presence of a substantial freshwater cap. Azolla massulae, belonging to the newly described Eocene species Azolla arctica Collinson et al., have been found over at least a ~4 m-thick interval. There are strong indications that Azolla has bloomed and reproduced in situ in the Arctic Ocean for several hundreds of thousands of years. Possible causes for the sudden demise of Azolla at ~48.1 Ma include salinity changes due to evolving oceanic connections or sea-level change. Distinct cyclic fluctuation in the Azolla massulae abundances have previously been related to orbitally forced climate changes. In this study, we evaluate the possible underlying forcing mechanisms for these freshwater cycles and for the eventual demise of Azolla in an integrated palynological and cyclostratigraphical approach. Our results show two clear periodicities of ~1.3 and ~0.7 m in all major aquatic and terrestrial palynomorph associations, which we can relate to obliquity (41 ka) and precession (~21 ka), respectively. Cycles in the abundances of Azolla, freshwater-tolerant dinoflagellate cysts, and swamp vegetation pollen show co-variability in the obliquity domain. Their strong correlation suggests periods of enhanced rainfall and runoff during Azolla blooms, possibly associated with increased summer season length and insolation during obliquity maxima. Cycles in the angiosperm pollen record are in anti-phase with the Azolla cycles. We interpret this pattern as edaphically drier conditions on land and reduced associated runoff during Azolla lows, possibly corresponding to obliquity minima. The precession signal is distinctly weaker than that for obliquity, and is mainly detectable in the cold-temperate Larix and bisaccate conifer pollen abundances, which is interpreted as a response to

  7. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  8. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  9. Net Ecosystem Exchange of CO2 with Rapidly Changing High Arctic Landscapes

    Science.gov (United States)

    Emmerton, C. A.

    2015-12-01

    High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO2 (NEE: -0.3±13.5 g C m-2). A nearby meadow wetland accumulated over two magnitudes more carbon (NEE: -79.3±20.0 g C m-2) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southern latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against

  10. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions

    DEFF Research Database (Denmark)

    Mansfield, K.L.; Racloz, V.; McElhinney, L.M.

    2006-01-01

    We report a Molecular epidemiological study of rabies in Arctic Countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies Virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from...... sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating ill the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group...... in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders....

  11. Assessment of the transfer of 137Cs in three types of vegetables consumed in Hong Kong

    International Nuclear Information System (INIS)

    Yu, K.N.; Mao, S.Y.; Young, E.C.M.

    1998-01-01

    A dynamic food chain model has been built for the modeling of the transfer of 137 Cs in three types of vegetables consumed in Hong Kong, namely, white flowering cabbage (Brassica chinensis), head lettuce (Lactuca sativa) and celery (Apium graveolens). Some parameters have been estimated from the experimental data obtained in this work. The experimental data include the transfer factors of 137 Cs from soil to the different vegetable species which are determined through high resolution gamma spectrometry, maximum crop biomasses for the vegetable species, the dry-to-fresh ratios for the vegetable species, the bulk density of soil layers and the average concentration of 137 Cs in air. The derived parameters include the deposition rate and the root uptake rate, information for tillage, the logistic growth model and radionuclide concentrations in vegetables. The dynamic food chain model is solved by the Birchall-James algorithm to give the 137 Cs concentration in subsurface soil, from the 0.1-25 cm soil layer, and the 137 Cs concentration in harvested and unwashed vegetables. As validation of the model and parameters, the concentrations obtained experimentally and from the model are compared and are found to be in good agreement

  12. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    Science.gov (United States)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  13. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  14. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  15. U.S. Arctic research in a technological age

    International Nuclear Information System (INIS)

    Johnson, P.L.

    1993-01-01

    The United States Arctic Research Commission was established in 1984 primarily as an advisory agency. An Interagency Arctic Research Policy Committee is one of the main recipients of the Commission's recommendations. The Committee formulated an Arctic research policy calling for research focused on national security concerns, regional development with minimal environmental or adverse social impact, and scientific research on Arctic phenomena and processes. In basic science, emphasis is placed on the need to understand Arctic processes as part of the global earth system. These processes include those that affect and are affected by climatic change. A new research program in Arctic systems science has three components: paleoenvironmental studies on ice core from Greenland; ocean-atmosphere interactions; and land-atmosphere interactions. The Commission also recognizes a need to focus on issues relevant to the Arctic as an integral component of the world economic system, since the Arctic is a significant source of petroleum and minerals. The Commission recommended that the Committee develop an Arctic engineering research plan with emphasis on such topics as oil spill prevention, waste disposal, small-scale power generation, and Arctic construction techniques. The USA is also cooperating in international Arctic research through the International Arctic Science Committee, the Arctic Environmental Protection Strategy, and the North Pacific Marine Science Organization

  16. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  17. Types of fruits and vegetables used in commercial baby foods and their contribution to sugar content.

    Science.gov (United States)

    Garcia, Ada Lizbeth; McLean, Kimberley; Wright, Charlotte M

    2016-10-01

    Fruits and vegetables (F&V) are often featured in names of commercial baby foods (CBFs). We aimed to survey all available CBFs in the UK market with F&V included in the food name in order to describe the amount and types of F&V used in CBF and their contribution to total sugar content. Food labels were used to identify F&V and total sugar content. Fruits were more common than vegetables in names of the 329 CBFs identified. The six most common F&V in the names were all relatively sweet: apple, banana, tomato, mango, carrot and sweet potato. The percentage of F&V in the foods ranged from a median of 94% for sweet-spoonable to 13% for dry-savoury products. Fruit content of sweet foods (n = 177) was higher than vegetable content of savoury foods (n = 152) with a median (IQR) of 64.0 g/100 g (33.0-100.0) vs. 46.0 g/100 g (33-56.7). Fruit juice was added to 18% of products. The proportion of F&V in CBF correlated significantly with sugar content for all the food types except dry-savoury food (sweet-spoonable r = 0.24, P = 0.006; savoury-spoonable r = 0.65, P vegetables which are unlikely to encourage preferences for bitter-tasting vegetables or other non-sweet foods. F&V contribute significantly to the total sugar content, particularly of savoury foods. © 2015 John Wiley & Sons Ltd.

  18. Globalising the Arctic Climate:

    DEFF Research Database (Denmark)

    Corry, Olaf

    2017-01-01

    This chapter uses an object-oriented approach to explore how the Arctic is being constituted as an object of global governance within an emerging ‘global polity’, partly through geoengineering plans and political visions ('imaginaries'). It suggests that governance objects—the socially constructed...... on world politics. The emergence of the Arctic climate as a potential target of governance provides a case in point. The Arctic climate is becoming globalised, pushing it up the political agenda but drawing it away from its local and regional context....

  19. The Evolving Arctic: Current State of U.S. Arctic Policy

    Science.gov (United States)

    2013-09-01

    to advance national interests. The U.S. has not yet acceded to UNCLOS, and trails its Arctic neighbors in regards to national policy and direction...maritime transportation, and maritime tourism are expanding exponentially. As commercial opportunities increase in the region, the U.S. needs an...UNCLOS without having ratified it, it trails behind the remainder of the Arctic states on its policy and in asserting its

  20. Terminal Restriction Fragment Length Polymorphism Analysis of Soil Bacterial Communities under Different Vegetation Types in Subtropical Area.

    Directory of Open Access Journals (Sweden)

    Zeyan Wu

    Full Text Available Soil microbes are active players in energy flow and material exchange of the forest ecosystems, but the research on the relationship between the microbial diversity and the vegetation types is less conducted, especially in the subtropical area of China. In this present study, the rhizosphere soils of evergreen broad-leaf forest (EBF, coniferous forest (CF, subalpine dwarf forest (SDF and alpine meadow (AM were chosen as test sites. Terminal-restriction fragment length polymorphisms (T-RFLP analysis was used to detect the composition and diversity of soil bacterial communities under different vegetation types in the National Natural Reserve of Wuyi Mountains. Our results revealed distinct differences in soil microbial composition under different vegetation types. Total 73 microbes were identified in soil samples of the four vegetation types, and 56, 49, 46 and 36 clones were obtained from the soils of EBF, CF, SDF and AM, respectively, and subsequently sequenced. The Actinobacteria, Fusobacterium, Bacteroidetes and Proteobacteria were the most predominant in all soil samples. The order of Shannon-Wiener index (H of all soil samples was in the order of EBF>CF>SDF>AM, whereas bacterial species richness as estimated by four restriction enzymes indicated no significant difference. Principal component analysis (PCA revealed that the soil bacterial communities' structures of EBF, CF, SDF and AM were clearly separated along the first and second principal components, which explained 62.17% and 31.58% of the total variance, respectively. The soil physical-chemical properties such as total organic carbon (TOC, total nitrogen (TN, total phosphorus (TP and total potassium (TK were positively correlated with the diversity of bacterial communities.

  1. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    Science.gov (United States)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  2. The Arctic zone: possibilities and risks of development

    Science.gov (United States)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  3. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  4. Summer in the Arctic National Wildlife Refuge

    Science.gov (United States)

    2001-01-01

    , arctic tundra dominates the coastal plain, until reaching the foothills of the Brooks Mountain Range. Beneath the tundra, a layer of permafrost reaches an average depth of 600 meters, restricting water drainage through the soil, and increasing the sensitivity of tundra vegetation to disturbance. Precipitation is scarce (less than 16 centimeters per year) and the small amount of melt water or rain that soaks into the tundra remains near the surface. This is why the coastal plain can be classified as a wetland.The western boundary of the Refuge is marked by the Canning River, about halfway between the center and left-hand side of the image, and the eastern boundary is near the right-hand edge at the US/Canadian border. The two permanent human settlements within the image area are Kaktovic near the tip of the large rounded peninsula, and Arctic Village south of the Brooks Range near the southern Refuge boundary. The area represented by the image is approximately 380 kilometers x 540 kilometers.MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Regional cooperation and sustainable development: The Arctic

    International Nuclear Information System (INIS)

    Vartanov, R.V.

    1993-01-01

    The Arctic is one of the regions most alienated from sustainable development, due to consequences of nuclear testing, long-range pollution transport, large-scale industrial accidents, irrational use of natural resources, and environmentally ignorant socio-economic policies. Revelations of the state of the USSR Arctic shows that air quality in northern cities is below standard, fish harvests are declining, pollution is not being controlled, and native populations are being affected seriously. The presence of immense resources in the Arctic including exploitable offshore oil reserves of 100-200 billion bbl and the prospect of wider utilization of northern sea routes should stimulate establishment of a new international regime of use, research, and protection of Arctic resources in favor of sustainable development in the region. The Arctic marine areas are the key component of the Arctic ecosystem and so should receive special attention. A broad legal framework has already been provided for such cooperation. Included in such cooperation would be native peoples and non-Arctic countries. Specifics of the cooperation would involve exchanging of scientific and technical information, promotion of ecologically sound technologies, equipping Arctic regions with means to control environmental quality, harmonizing environmental protection legislation, and monitoring Arctic environmental quality

  6. Long distance migratory songbirds respond to extremes in arctic seasonality

    Science.gov (United States)

    Boelman, N.; Asmus, A.; Chmura, H.; Krause, J.; Perez, J. H.; Sweet, S. K.; Gough, L.; Wingfield, J.

    2017-12-01

    Arctic regions are warming rapidly, with extreme weather events increasing in frequency, duration and intensity, as in other regions. Many studies have focused on how shifting seasonality in environmental conditions affect the phenology and productivity of vegetation, while far fewer have examined how arctic fauna responds. We studied two species of long-distance migratory songbirds, Lapland longspurs, Calcarius lapponicus, and White-crowned sparrows, Zonotrichia leucophrys gambelii, across seven consecutive breeding seasons in northern Alaskan tundra. We aimed to understand how spring environmental conditions affected breeding cycle phenology, food availability, body condition, stress physiology, and ultimately, reproductive success. Spring temperatures, precipitation, storm frequency, and snow-free dates differed significantly among years, with 2013 characterized by unusually late snow cover, and 2015 and 2016 characterized by unusually early snow-free dates and several late spring snowstorms. In response, we found that relative to other study years, there was a significant delay in breeding cycle phenology for both study species in 2013, while breeding cycle phenology was significantly earlier in 2015 only. For both species, we also found significant variation among years in: the seasonal patterns of arthropod availability during the nesting stage; body condition, and; stress physiology. Finally, we found significant variation in reproductive success of both species across years, and that daily survival rates were decreased by snow storm events. Our findings suggest that arctic-breeding passerine communities may be able to adjust phenology to unpredictable shifts in the timing of spring, but extreme conditions during the incubation and nestling stages are detrimental to reproductive success.

  7. Major Vegetation Types of the Soutpansberg Conservancy and the Blouberg Nature Reserve, South Africa

    Directory of Open Access Journals (Sweden)

    Theo H.C. Mostert

    2008-10-01

    Full Text Available The Major Megetation Types (MVT and plant communities of the Soutpansberg Centre of Endemism are described in detail, with special reference to the Soutpansberg Conservancy and the Blouberg Nature Reserve. Phytosociological data from 442 sample plots were ordinated using a DEtrended CORrespondence ANAlysis (DECORANA and classified using TWo-Way INdicator SPecies ANalysis (TWINSPAN. The resulting classification was further refined with table-sorting procedures based on the Braun–Blanquet floristic–sociological approach of vegetation classification using MEGATAB. Eight MVT’s were identified and described as Eragrostis lehmanniana var. lehmanniana–Sclerocarya birrea subsp. caffra Blouberg Northern Plains Bushveld, Euclea divinorum–Acacia tortilis Blouberg Southern Plains Bushveld, Englerophytum magalismontanum–Combretum molle Blouberg Mountain Bushveld, Adansonia digitata–Acacia nigrescens Soutpansberg Arid Northern Bushveld, Catha edulis–Flueggia virosa Soutpansberg Moist Mountain Thickets, Diplorhynchus condylocarpon–Burkea africana Soutpansberg Leached Sandveld, Rhus rigida var. rigida–Rhus magalismontanum subsp. coddii Soutpansberg Mistbelt Vegetation and Xymalos monospora–Rhus chirendensis Soutpansberg Forest Vegetation.

  8. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  9. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  10. State of the Arctic Environment

    International Nuclear Information System (INIS)

    1990-01-01

    The Arctic environment, covering about 21 million km 2 , is in this connection regarded as the area north of the Arctic Circle. General biological and physical features of the terrestrial and freshwater environments of the Arctic are briefly described, but most effort is put into a description of the marine part which constitutes about two-thirds of the total Arctic environment. General oceanography and morphological characteristics are included; e.g. that the continental shelf surrounding the Arctic deep water basins covers approximately 36% of the surface areas of Arctic waters, but contains only 2% of the total water masses. Blowout accident may release thousands of tons of oil per day and last for months. They occur statistically very seldom, but the magnitude underlines the necessity of an efficient oil spill contingency as well as sound safety and quality assurance procedures. Contingency plans should be coordinated and regularly evaluated through simulated and practical tests of performance. Arctic conditions demand alternative measures compared to those otherwise used for oil spill prevention and clean-up. New concepts or optimization of existing mechanical equipment is necessary. Chemical and thermal methods should be evaluated for efficiency and possible environmental effects. Both due to regular discharges of oil contaminated drilled cuttings and the possibility of a blowout or other spills, drilling operations in biological sensitive areas may be regulated to take place only during the less sensitive parts of the year. 122 refs., 8 figs., 8 tabs

  11. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  12. A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    Science.gov (United States)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2015-07-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stages (MISs) 1 (9 ka), 5e (127 ka), 11c (409 ka) and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the mean temperature of the warmest month (MTWM) indicate conditions up to 0.4, 2.1, 0.5 and 3.1 °C warmer than today during MIS 1, 5e, 11c and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer (JJA) orbital forcing, the extraordinary warmth of MIS 11c compared to the other interglacials in the Lake El'gygytgyn temperature proxy reconstructions remains difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice and circum-Arctic land ice feedbacks on the modeled climate of the Beringian interior. Simulations accounting for climate-vegetation-land-surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on northeast Asian temperature during the warmth of stages 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic Ocean does have some effect on Lake El'gygytgyn's regional climate, but the exceptional warmth of MIS l1c remains enigmatic compared to the modest orbital and greenhouse gas forcing during that interglacial.

  13. Arctic tipping points in an Earth system perspective.

    Science.gov (United States)

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  14. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    Science.gov (United States)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  15. ARM Aerial Facility ArcticShark Unmanned Aerial System

    Science.gov (United States)

    Schmid, B.; Hubbell, M.; Mei, F.; Carroll, P.; Mendoza, A.; Ireland, C.; Lewko, K.

    2017-12-01

    The TigerShark Block 3 XP-AR "ArcticShark" Unmanned Aerial System (UAS), developed and manufactured by Navmar Applied Sciences Corporation (NASC), is a single-prop, 60 hp rotary-engine platform with a wingspan of 6.5 m and Maximum Gross Takeoff Weight of 295 Kg. The ArcticShark is owned by the U.S. Department of Energy (DOE) and has been operated by Pacific Northwest National Laboratory (PNNL) since March 2017. The UAS will serve as an airborne atmospheric research observatory for DOE ARM, and, once fully operational, can be requested through ARM's annual call for proposals. The Arctic Shark is anticipated to measure a wide range of radiative, aerosol, and cloud properties using a variable instrument payload weighing up to 46 Kg. SATCOM-equipped, it is capable of taking measurements up to altitudes of 5.5 Km over ranges of up to 500 Km. The ArcticShark operates at airspeeds of 30 to 40 m/s, making it capable of slow sampling. With a full fuel load, its endurance exceeds 8 hours. The aircraft and its Mobile Operations Center (MOC) have been hardened specifically for operations in colder temperatures.ArcticShark's design facilitates rapid integration of various types of payloads. 2500 W of its 4000 W electrical systems is dedicated to payload servicing. It has an interior payload volume of almost 85 L and four wing-mounted pylons capable of carrying external probes. Its payload bay volume, electrical power, payload capacity, and flight characteristics enable the ArcticShark to accommodate multiple combinations of payloads in numerous configurations. Many instruments will be provided by the ARM Aerial Facility (AAF), but other organizations may eventually propose instrumentation for specific campaigns. AAF-provided measurement capabilities will include the following atmospheric state and thermodynamics: temperature, pressure, winds; gases: H2O and CO2; up- and down-welling broadband infrared and visible radiation; surface temperature; aerosol number concentration

  16. THE ARCTIC: A DIALOGUE FOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Yury Mazurov

    2010-01-01

    Full Text Available In September 2010, Moscow hosted the International Arctic Forum “The Arctic—Territory of Dialogue.” The Arctic Forum focused its attention on elements of sustainable development in the Arctic region, i.e., ecology, economics, infrastructure, social services, security, and geopolitics. Many Russian experts and many well-known politicians and experts from leading research centers of the Arctic countries (Canada, Denmark, Finland, Iceland, Norway, Sweden, and USA, as well as by participants from France, Germany, Netherlands, and other countries attended the forum. Scholars and public figures from the European countries, representatives of the NATO, the Organization for Security and Cooperation in Europe and other institutions were also present at the conference. In his key-note speech the Chairman of the Board of Trustees of the Russian Geographical Society (RGS, Prime Minister of the Russian Federation, Vladimir V. Putin formulated the principles of Russian national policy in the Arctic. Russian and foreign participants supported the idea of continuing dialogue on the Arctic under the RGS’s aegis and the transformation of the Arctic Forum into a permanent platform for discussions on the most urgent issues of the region.

  17. Food and soil-borne Penicillia in Arctic environments: Chemical diversity

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    Penicillia are very common inhabitants of cold environments, including arctic soil, plants, animals, and foods. We have investigated the mycobiota of Greenland inland ice and soil, and found a very unique and pronounced diversity among the Penicillia. Nearly all species were new to science....... The species found in inland ice were both of the soil-borne type, and Penicillia that grow and sporulate well at 25°C. The latter group of Penicillia have been found earlier in refrigerated foods, including P. nordicum, and in glacier ice and melting water from Svalbard (se Sonjak et al., this conference......). This “food-borne group” of arctic fungi also contained some new species, but not as many as in arctic soil. The chemical diversity of the Penicillium species was remarkably high and in most cases even larger than the chemical diversity of Penicillia in the tropics. Several new secondary metabolites were...

  18. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.F.; Braune, B.M.; O' Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G

    2003-04-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by {delta}{sup 15}N) is positively correlated with increasing {delta}{sup 13}C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls ({sigma}PCB) > chlordane-related compounds ({sigma}CHLOR) > hexachlorocyclohexane ({sigma}HCH) > total toxaphene (TOX) {>=}chlorobenzenes ({sigma}ClBz) > DDT-related isomers ({sigma}DDT). In liver, {sigma}CHLOR was the most abundant OC group, followed by {sigma}PCB > TOX > {sigma}HCH > {sigma}ClBz > {sigma}DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of {delta}{sup 15}N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While {sigma}PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  19. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    International Nuclear Information System (INIS)

    Hoekstra, P.F.; Braune, B.M.; O'Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G.

    2003-01-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by δ 15 N) is positively correlated with increasing δ 13 C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (ΣPCB) > chlordane-related compounds (ΣCHLOR) > hexachlorocyclohexane (ΣHCH) > total toxaphene (TOX) ≥chlorobenzenes (ΣClBz) > DDT-related isomers (ΣDDT). In liver, ΣCHLOR was the most abundant OC group, followed by ΣPCB > TOX > ΣHCH > ΣClBz > ΣDDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of δ 15 N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While ΣPCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs

  20. Detecting and Understanding Changing Arctic Carbon Emissions

    Science.gov (United States)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  1. Arctic Islands LNG

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, W.

    1977-01-01

    Trans-Canada Pipe Lines Ltd. made a feasibility study of transporting LNG from the High Arctic Islands to a St. Lawrence River Terminal by means of a specially designed and built 125,000 cu m or 165,000 cu m icebreaking LNG tanker. Studies were made of the climatology and of ice conditions, using available statistical data as well as direct surveys in 1974, 1975, and 1976. For on-schedule and unimpeded (unescorted) passage of the LNG carriers at all times of the year, special navigation and communications systems can be made available. Available icebreaking experience, charting for the proposed tanker routes, and tide tables for the Canadian Arctic were surveyed. Preliminary design of a proposed Arctic LNG icebreaker tanker, including containment system, reliquefaction of boiloff, speed, power, number of trips for 345 day/yr operation, and liquefaction and regasification facilities are discussed. The use of a minimum of three Arctic Class 10 ships would enable delivery of volumes of natural gas averaging 11.3 million cu m/day over a period of a year to Canadian markets. The concept appears to be technically feasible with existing basic technology.

  2. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    OpenAIRE

    A. A. Marks; M. D. King

    2013-01-01

    The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section ov...

  3. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf......Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past...... Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even...

  4. Behavioral interactions of penned red and arctic foxes

    Science.gov (United States)

    Rudzinski, D.R.; Graves, H.B.; Sargeant, A.B.; Storm, G.L.

    1982-01-01

    Expansion of the geographical distribution of red foxes (Vulpes vulpes) into the far north tundra region may lead to competition between arctic (Alopex lagopus) and red foxes for space and resources. Behavioral interactions between red and arctic foxes were evaluated during 9 trials conducted in a 4.05-ha enclosure near Woodworth, North Dakota. Each trial consisted of introducing a male-female pair of arctic foxes into the enclosure and allowing them to acclimate for approximately a week before releasing a female red fox into the enclosure, followed by her mate a few days later. In 8 of 9 trials, red foxes were dominant over arctic foxes during encounters. Activity of the arctic foxes decreased upon addition of red foxes. Arctic foxes tried unsuccessfully to defend preferred den, resting, and feeding areas. Even though the outcome of competition between red and arctic foxes in the Arctic is uncertain, the more aggressive red fox can dominate arctic foxes in direct competition for den sites and other limited resources.

  5. Characterizing Arctic Sea Ice Topography Using High-Resolution IceBridge Data

    Science.gov (United States)

    Petty, Alek; Tsamados, Michel; Kurtz, Nathan; Farrell, Sinead; Newman, Thomas; Harbeck, Jeremy; Feltham, Daniel; Richter-Menge, Jackie

    2016-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009-2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes.

  6. Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer

    Directory of Open Access Journals (Sweden)

    J. B. Gilman

    2010-11-01

    Full Text Available The influence of halogen oxidation on the variabilities of ozone (O3 and volatile organic compounds (VOCs within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI, multi-year ice (MYI, and total ICE (FYI+MYI. O3 anti-correlated with the modeled total ICE tracer (r = −0.86 indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.

  7. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    Science.gov (United States)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  8. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  9. Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica

    DEFF Research Database (Denmark)

    Albert, Kristian Rost; Mikkelsen, Teis Nørgaard; Ro-Poulsen, H.

    2011-01-01

    , nitrogen and UV-B absorbing compounds. Compared to a 60% reduced UV-B irradiance, the ambient solar UV-B reduced net photosynthesis in Salix arctica leaves fixed in the 45° position which exposed leaves to maximum natural irradiance. Also a reduced Calvin Cycle capacity was found, i.e. the maximum rate...... across position in the vegetation. These findings add to the evidence that the ambient solar UV-B currently is a significant stress factor for plants in high Arctic Greenland....

  10. Challenges of climate change: an Arctic perspective.

    Science.gov (United States)

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  11. Arctic Messages: Arctic Research in the Vocabulary of Poets and Artists

    Science.gov (United States)

    Samsel, F.

    2017-12-01

    Arctic Messages is a series of prints created by a multidisciplinary team designed to build understanding and encourage dialogue about the changing Arctic ecosystems and the impacts on global weather patterns. Our team comprised of Arctic researchers, a poet, a visual artist, photographers and visualization experts set out to blend the vocabularies of our disciplines in order to provide entry into the content for diverse audiences. Arctic Messages is one facet of our broader efforts experimenting with mediums of communication able to provide entry to those of us outside scientific of fields. We believe that the scientific understanding of change presented through the languages art will speak to our humanity as well as our intellect. The prints combine poetry, painting, visualization, and photographs, drawn from the Arctic field studies of the Next Generation Ecosystem Experiments research team at Los Alamos National Laboratory. The artistic team interviewed the scientists, read their papers and poured over their field blogs. The content and concepts are designed to portray the wonder of nature, the complexity of the science and the dedication of the researchers. Smith brings to life the intertwined connection between the research efforts, the ecosystems and the scientist's experience. Breathtaking photography of the research site is accompanied by Samsel's drawings and paintings of the ecosystem relationships and geological formations. Together they provide entry to the variety and wonder of life on the Arctic tundra and that resting quietly in the permafrost below. Our team has experimented with many means of presentation from complex interactive systems to quiet individual works. Here we are presenting a series of prints, each one based on a single thread of the research or the scientist's experience but containing intertwined relationships similar to the ecosystems they represent. Earlier interactive systems, while engaging, were not tuned to those seeking

  12. Arctic summer school onboard an icebreaker

    Science.gov (United States)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  13. Advancing NOAA NWS Arctic Program Development

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  14. The expedition ARCTIC `96 of RV `Polarstern` (ARK XII) with the Arctic Climate System Study (ACSYS). Cruise report; Die Expedition ARCTIC `96 des FS `Polarstern` (ARK XII) mit der Arctic Climate System Study (ACSYS). Fahrtbericht

    Energy Technology Data Exchange (ETDEWEB)

    Augstein, E.

    1997-11-01

    The multinational expedition ARCTIC `96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climte System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the Arctic Ocean and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. (orig.) [Deutsch] Die Expedition ARCTIC `96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, Grossbritannien, Irland, Kanada, Norwegen, Russland, Schweden und den Vereinigten Staaten von Amerika durchgefuehrt. Die physikalischen Projekte auf der POLARSTERN dienten ueberwiegend der Unterstuetzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungsprogramms, die auf die Erforschung der vorherrschenden ozeanischen, atmosphaerischen, kryosphaerischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. (orig.)

  15. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  16. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The Arctic policy of China and Japan

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    At the May 2013 Arctic Council Ministerial Meeting, five Asian states, namely China, Japan, India, Singapore and South Korea, were accepted to become new Permanent Observers at the Arctic Council. Nonetheless, little attention has been paid to the Asian states and their interest in the Arctic. Most...... discussions have focused on China and the assessment of China’s interest in the Arctic is divided. This paper attempts to fill this gap by presenting and comparing the various components of the Arctic policies of China and Japan. Referring to Putnam’s model of the “two-level game” and Young’s categorization...

  18. Carbon dioxide exchange in the High Arctic - examples from terrestrial ecosystems

    DEFF Research Database (Denmark)

    Grøndahl, L.

    of the growing season, which in combination with high temperatures increased uptake rates. The dry heath ecosystem in general gained carbon during the summer season in the order of magnitude -1.4 gCm-2 up to 32 gCm-2. This result is filling out a gap of knowledge on the response of high Arctic ecosystems...... the measurements conducted in the valley to a regional level. Including information on temporal and spatial variability in air temperature and radiation, together with NDVI and a vegetation map a regional estimate of the CO2 exchange during the summer was provided, elaborating the NDVI based estimate on net carbon...

  19. Methods for measuring arctic and alpine shrub growth

    DEFF Research Database (Denmark)

    Myers-Smith, Isla; Hallinger, Martin; Blok, Daan

    2015-01-01

    Shrubs have increased in abundance and dominance in arctic and alpine regions in recent decades. This often dramatic change, likely due to climate warming, has the potential to alter both the structure and function of tundra ecosystems. The analysis of shrub growth is improving our understanding...... of tundra vegetation dynamics and environmental changes. However, dendrochronological methods developed for trees, need to be adapted for the morphology and growth eccentricity of shrubs. Here, we review current and developing methods to measure radial and axial growth, estimate age, and assess growth...... dynamics in relation to environmental variables. Recent advances in sampling methods, analysis and applications have improved our ability to investigate growth and recruitment dynamics of shrubs. However, to extrapolate findings to the biome scale, future dendroecologicalwork will require improved...

  20. [Comparison of soil fertility among open-pit mine reclaimed lands in Antaibao regenerated with different vegetation types].

    Science.gov (United States)

    Wang, Xiang; Li, Jin-chuan; Yue, Jian-ying; Zhou, Xiao-mei; Guo, Chun-yan; Lu, Ning; Wang, Yu-hong; Yang, Sheng-quan

    2013-09-01

    Re-vegetation is mainly applied into regeneration in opencast mine to improve the soil quality. It is very important to choose feasible vegetation types for soil restoration. In this study, three typical forest restoration types were studied at Antaibao mine, namely, Medicago sativa, mixed forests Pinus taebelaefolius-Robinia pseudoacacia-Caragana korshinskii and Elaeagnus angustifolia-Robinia pseudoacacia-Caragana korshinskii-Hipophae rhamnoides, to determine the nutrient contents and enzyme activities in different soil layers. The results showed that re-vegetation markedly increased soil nutrient contents and the enzyme activities during the restoration process. The nutrient content of soil in the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest field was significantly higher than those in other plots. It was found that the soil of the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest had the highest integrated fertility index values. In conclusion, the restoration effects of the P. zaebelaefolius-R. pseudoacacia-C. Korshinskii mixed forest was better than that of E. angustifolia-R. pseudoacacia-C. korshinskii-H. rhamnoides, while M. sativa grassland had the least effect.

  1. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    Science.gov (United States)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  2. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    Science.gov (United States)

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural

  3. Diagnosis of the hydrology of a small Arctic basin at the tundra-taiga transition using a physically based hydrological model

    Science.gov (United States)

    Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip

    2017-07-01

    A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.

  4. The influence of elevation, latitude and Arctic Oscillation on trends in temperature extremes over northeastern China, 1961-2011

    Science.gov (United States)

    Zeng, Wei; Yu, Zhen; Li, Xilin

    2018-04-01

    Trend magnitudes of 14 indices of temperature extremes at 70 stations with elevations, latitude and Arctic Oscillation over northeast China during 1960-2011 are examined. There are no significant correlations between elevation and trend magnitudes with the exception of TXn (Min T max), TNn (Min T min), TR20 (tropical nights) and GSL (growing season length). Analysis of trend magnitudes by topographic type has a strong influence, which overrides that of degree of urbanization. By contrast, most of the temperature indices have stronger correlations with the latitude and Arctic Oscillation index. The correlations between the Arctic Oscillation index and percentile indices, including TX10p (cool days), TX90p (warm days), TN10p (cool nights), TN90p (warm nights), are not the same in different areas. To summarize, analysis of trend magnitudes by topographic type, the latitude and the Arctic Oscillation shows three factors to have a strong influence in this dataset, which overrides that of elevation and degree of urbanization.

  5. Arctic security and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tamnes, Rolf

    2013-03-01

    Global warming is one of the most serious threats facing mankind. Many regions and countries will be affected, and there will be many losers. The earliest and most intense climatic changes are being experienced in the Arctic region. Arctic average temperature has risen at twice the rate of the global average in the past half century. These changes provide an early indication for the world of the environmental and societal significance of global warming. For that reason, the Arctic presents itself as an important scientific laboratory for improving our understanding of the causes and patterns of climate changes. The rapidly rising temperature threatens the Arctic ecosystem, but the human consequences seem to be far less dramatic there than in many other places in the world. According to the U.S. National Intelligence Council, Russia has the potential to gain the most from increasingly temperate weather, because its petroleum reserves become more accessible and because the opening of an Arctic waterway could provide economic and commercial advantages. Norway might also be fortunate. Some years ago, the Financial Times asked: #Left Double Quotation Mark#What should Norway do about the fact that global warming will make their climate more hospitable and enhance their financial situation, even as it inflicts damage on other parts of the world?#Right Double Quotation Mark#(Author)

  6. Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial.

    Science.gov (United States)

    Stein, Ruediger; Fahl, Kirsten; Gierz, Paul; Niessen, Frank; Lohmann, Gerrit

    2017-08-29

    Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades and climate scenarios suggest that sea ice may completely disappear during summer within the next about 50-100 years. Here we produce Arctic sea ice biomarker proxy records for the penultimate glacial (Marine Isotope Stage 6) and the subsequent last interglacial (Marine Isotope Stage 5e). The latter is a time interval when the high latitudes were significantly warmer than today. We document that even under such warmer climate conditions, sea ice existed in the central Arctic Ocean during summer, whereas sea ice was significantly reduced along the Barents Sea continental margin influenced by Atlantic Water inflow. Our proxy reconstruction of the last interglacial sea ice cover is supported by climate simulations, although some proxy data/model inconsistencies still exist. During late Marine Isotope Stage 6, polynya-type conditions occurred off the major ice sheets along the northern Barents and East Siberian continental margins, contradicting a giant Marine Isotope Stage 6 ice shelf that covered the entire Arctic Ocean.Coinciding with global warming, Arctic sea ice has rapidly decreased during the last four decades. Here, using biomarker records, the authors show that permanent sea ice was still present in the central Arctic Ocean during the last interglacial, when high latitudes were warmer than present.

  7. Public Perceptions of Arctic Change

    Science.gov (United States)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  8. Beyond Thin Ice: Co-Communicating the Many Arctics

    Science.gov (United States)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  9. Arctic melt ponds and energy balance in the climate system

    Science.gov (United States)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  10. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P.

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  11. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  12. Detecting long-term changes to vegetation in northern Canada using the Landsat satellite image archive

    International Nuclear Information System (INIS)

    Fraser, R H; Olthof, I; Carrière, M; Deschamps, A; Pouliot, D

    2011-01-01

    Analysis of coarse resolution (∼1 km) satellite imagery has provided evidence of vegetation changes in arctic regions since the mid-1980s that may be attributable to climate warming. Here we investigate finer-scale changes to northern vegetation over the same period using stacks of 30 m resolution Landsat TM and ETM + satellite images. Linear trends in the normalized difference vegetation index (NDVI) and tasseled cap indices are derived for four widely spaced national parks in northern Canada. The trends are related to predicted changes in fractional shrub and other vegetation covers using regression tree classifiers trained with plot measurements and high resolution imagery. We find a consistent pattern of greening (6.1–25.5% of areas increasing) and predicted increases in vascular vegetation in all four parks that is associated with positive temperature trends. Coarse resolution (3 km) NDVI trends were not detected in two of the parks that had less intense greening. A range of independent studies and observations corroborate many of the major changes observed.

  13. Comparing the impacts of hiking, skiing and horse riding on trail and vegetation in different types of forest.

    Science.gov (United States)

    Törn, A; Tolvanen, A; Norokorpi, Y; Tervo, R; Siikamäki, P

    2009-03-01

    Nature-based tourism in protected areas has increased and diversified dramatically during the last decades. Different recreational activities have a range of impacts on natural environments. This paper reports results from a comparison of the impacts of hiking, cross-country skiing and horse riding on trail characteristics and vegetation in northern Finland. Widths and depths of existing trails, and vegetation on trails and in the neighbouring forests were monitored in two research sites during 2001 and 2002. Trail characteristics and vegetation were clearly related to the recreational activity, research site and forest type. Horse trails were as deep as hiking trails, even though the annual number of users was 150-fold higher on the hiking trails. Simultaneously, cross-country skiing had the least effect on trails due to the protective snow cover during winter. Hiking trail plots had little or no vegetation cover, horse riding trail plots had lower vegetation cover than forest plots, while skiing had no impact on total vegetation cover. On the other hand, on horse riding trails there were more forbs and grasses, many of which did not grow naturally in the forest. These species that were limited to riding trails may change the structure of adjacent plant communities in the long run. Therefore, the type of activities undertaken and the sensitivity of habitats to these activities should be a major consideration in the planning and management of nature-based tourism. Establishment of artificial structures, such as stairs, duckboards and trail cover, or complete closure of the site, may be the only way to protect the most sensitive or deteriorated sites.

  14. Assessment of the transfer of {sup 137}Cs in three types of vegetables consumed in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Yu, K.N.; Mao, S.Y.; Young, E.C.M

    1998-12-01

    A dynamic food chain model has been built for the modeling of the transfer of {sup 137}Cs in three types of vegetables consumed in Hong Kong, namely, white flowering cabbage (Brassica chinensis), head lettuce (Lactuca sativa) and celery (Apium graveolens). Some parameters have been estimated from the experimental data obtained in this work. The experimental data include the transfer factors of {sup 137}Cs from soil to the different vegetable species which are determined through high resolution gamma spectrometry, maximum crop biomasses for the vegetable species, the dry-to-fresh ratios for the vegetable species, the bulk density of soil layers and the average concentration of {sup 137}Cs in air. The derived parameters include the deposition rate and the root uptake rate, information for tillage, the logistic growth model and radionuclide concentrations in vegetables. The dynamic food chain model is solved by the Birchall-James algorithm to give the {sup 137}Cs concentration in subsurface soil, from the 0.1-25 cm soil layer, and the {sup 137}Cs concentration in harvested and unwashed vegetables. As validation of the model and parameters, the concentrations obtained experimentally and from the model are compared and are found to be in good agreement.

  15. ArcticDEM Validation and Accuracy Assessment

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  16. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  17. Diel Variation of Biogenic Volatile Organic Compound Emissions- A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  18. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light.

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography-mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α-phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic.

  19. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  20. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  1. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  2. Balkan Vegetation Database

    NARCIS (Netherlands)

    Vassilev, Kiril; Pedashenko, Hristo; Alexandrova, Alexandra; Tashev, Alexandar; Ganeva, Anna; Gavrilova, Anna; Gradevska, Asya; Assenov, Assen; Vitkova, Antonina; Grigorov, Borislav; Gussev, Chavdar; Filipova, Eva; Aneva, Ina; Knollová, Ilona; Nikolov, Ivaylo; Georgiev, Georgi; Gogushev, Georgi; Tinchev, Georgi; Pachedjieva, Kalina; Koev, Koycho; Lyubenova, Mariyana; Dimitrov, Marius; Apostolova-Stoyanova, Nadezhda; Velev, Nikolay; Zhelev, Petar; Glogov, Plamen; Natcheva, Rayna; Tzonev, Rossen; Boch, Steffen; Hennekens, Stephan M.; Georgiev, Stoyan; Stoyanov, Stoyan; Karakiev, Todor; Kalníková, Veronika; Shivarov, Veselin; Russakova, Veska; Vulchev, Vladimir

    2016-01-01

    The Balkan Vegetation Database (BVD; GIVD ID: EU-00-019; http://www.givd.info/ID/EU-00- 019) is a regional database that consists of phytosociological relevés from different vegetation types from six countries on the Balkan Peninsula (Albania, Bosnia and Herzegovina, Bulgaria, Kosovo, Montenegro

  3. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  4. LANDFIRE 2015 Remap – Utilization of Remotely Sensed Data to Classify Existing Vegetation Type and Structure to Support Strategic Planning and Tactical Response

    Science.gov (United States)

    Picotte, Joshua J.; Long, Jordan; Peterson, Birgit; Nelson, Kurtis

    2017-01-01

    The LANDFIRE Program produces national scale vegetation, fuels, fire regimes, and landscape disturbance data for the entire U.S. These data products have been used to model the potential impacts of fire on the landscape [1], the wildfire risks associated with land and resource management [2, 3], and those near population centers and accompanying Wildland Urban Interface zones [4], as well as many other applications. The initial LANDFIRE National Existing Vegetation Type (EVT) and vegetation structure layers, including vegetation percent cover and height, were mapped circa 2001 and released in 2009 [5]. Each EVT is representative of the dominant plant community within a given area. The EVT layer has since been updated by identifying areas of landscape change and modifying the vegetation types utilizing a series of rules that consider the disturbance type, severity of disturbance, and time since disturbance [6, 7]. Non-disturbed areas were adjusted for vegetation growth and succession. LANDFIRE vegetation structure layers also have been updated by using data modeling techniques [see 6 for a full description]. The subsequent updated versions of LANDFIRE include LANDFIRE 2008, 2010, 2012, and LANDFIRE 2014 is being incrementally released, with all data being released in early 2017. Additionally, a comprehensive remap of the baseline data, LANDFIRE 2015 Remap, is being prototyped, and production is tentatively planned to begin in early 2017 to provide a more current baseline for future updates.

  5. Development of pan-Arctic database for river chemistry

    Science.gov (United States)

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  6. Meal types as sources for intakes of fruits, vegetables, fish and whole grains among Norwegian adults.

    Science.gov (United States)

    Myhre, Jannicke B; Løken, Elin B; Wandel, Margareta; Andersen, Lene F

    2015-08-01

    To study how different meals contribute to intakes of fruits, vegetables, fish and whole grains in a group of Norwegian adults and in subgroups of this population. Moreover, to investigate the consequences of skipping the meal contributing most to the intake of each food group (main contributing meal). Cross-sectional dietary survey in Norwegian adults. Dietary data were collected using two non-consecutive telephone-administered 24 h recalls. The recorded meal types were breakfast, lunch, dinner, supper/evening meal and snacks. Nationwide, Norway (2010-2011). Adults aged 18-70 years (n 1787). Dinner was the main contributing meal for fish and vegetables, while snacks were the main contributing meal for fruit intake. For whole grains, breakfast was the main contributing meal. The main contributing meal did not change for any of the food groups when studying subgroups of the participants according to intake of each food group, educational level or age. A substantially lower intake of the food groups in question was found on days when the main contributing meal was skipped. Intakes of fruits, vegetables, fish and whole grains largely depend on one meal type. Inclusion of these foods in other meals in addition to the main contributing meal, preferably replacing energy-dense nutrient-poor foods, should be promoted.

  7. Cross-Border Assessment of Environmental Radioactivity in the Euro-Arctic Region

    Energy Technology Data Exchange (ETDEWEB)

    Nalbandyan, Anna; Gwynn, Justin P.; Moeller, Bredo [Norwegian Radiation Protection Authority (NRPA), Section High North, 9296 Tromsoe (Norway); Leppaenen, Ari-Pekka; Rasilainen, Tiina [STUK Radiation and Nuclear Safety Authority, Regional Laboratory in Northern Finland, 96400 Rovaniemi (Finland); Kasatkina, Nadezhda; Usiagina, Irina [Murmansk Marine Biological Institute (MMBI), 183010 Murmansk (Russian Federation)

    2014-07-01

    The Euro-Arctic region is currently experiencing rapid changes in environmental, social and economic conditions. The issue of environmental radioactivity is of special concern to the Arctic region due to numerous existing and potential sources of radioactive pollution in the immediate and adjacent areas. Due to cross-border nature of any potential radioactive contamination and common challenges in border countries, one should consider risks related to radioactivity, monitoring and protection at a regional and international level. This research presents results of cross-border cooperation between Norway, Finland and Russia and joint assessment of the status of terrestrial radioactivity in the Euro-Arctic region and in particular across Troms and Finnmark (Norway), Lapland (Finland) and Murmansk Oblast (Russia). To assess current environmental radioactivity levels in the terrestrial environment, environmental samples were collected in each country in 2010-2012. The main focus was comparison of radioactivity levels in the natural food products such as berries, mushrooms and freshwater fish. The results showed that large variations in activity concentrations exist between species and sampling areas. However, activity concentrations of {sup 137}Cs in all berries and mushrooms in Northern Norway, Finland and Russia were below the national limits set for commercial retail and well below the national limits for freshwater fish from Northern Norway and Finland. The sampled species from three countries were analysed in order to find out reference species available for further monitoring and data comparison. The doses to man arising from consumption of berries, mushrooms and freshwater fish were calculated. To compare overall terrestrial radioactivity levels in the Euro-Arctic region, partners exchanged long-term monitoring data available in the three countries such as data for soil, vegetation, berries, mushrooms, lichens, reindeer meat, freshwater fish, whole body counting

  8. Greenland and the international politics of a changing arctic

    DEFF Research Database (Denmark)

    Greenland and the International Politics of a Changing Arctic examines the international politics of semi-independent Greenland in a changing and increasingly globalised Arctic. Without sovereign statehood, but with increased geopolitical importance, independent foreign policy ambitions......, and a solidified self-image as a trailblazer for Arctic indigenous peoples’ rights, Greenland is making its mark on the Arctic and is in turn affected – and empowered – by Arctic developments. The chapters in this collection analyse how a distinct Greenlandic foreign policy identity shapes political ends and means...... for regional change in the Arctic. This is the first comprehensive and interdisciplinary examination of Greenland’s international relations and how they are connected to wider Arctic politics. It will be essential reading for students and scholars interested in Arctic governance and security, international...

  9. The changing seasonal climate in the Arctic.

    Science.gov (United States)

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  10. Environmental conditions and vegetation recovery at abandoned drilling mud sumps in the Mackenzie Delta region, Northwest Territories, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Johnstone, J.F. [Saskatchewan Univ., Regina, SK (Canada). Dept. of Biology

    2008-06-15

    Decadal scale impacts of exploratory oil and gas drilling activities on native plant communities in the lower Arctic tundra were investigated. The study used historical data from oil and gas exploration activities in the Mackenzie River Delta to assess changes in vegetation composition and environmental gradients at 7 drilling mud sumps located in the Kendall Island Bird Sanctuary. Over a period of 3 decades, the sumps had developed vegetation coverage equivalent in mass to vegetation in undisturbed areas. However, bare soil was observed at ponded sites where salt crusts had formed. The vegetation was composed of forbs, grasses, and tall shrubs that were distinct from surrounding low shrub communities. The area of vegetation around the sump was larger in upland and saline environments. Water around the sumps was associated with thaw subsidence that occurred after construction activities. Changes in drainage, surface salt concentrations, and active-layer depths were seen as the most significant factors in the resulting plant communities. 31 refs., 4 tabs., 7 figs.

  11. Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0)

    Science.gov (United States)

    Druel, Arsène; Peylin, Philippe; Krinner, Gerhard; Ciais, Philippe; Viovy, Nicolas; Peregon, Anna; Bastrikov, Vladislav; Kosykh, Natalya; Mironycheva-Tokareva, Nina

    2017-12-01

    Simulation of vegetation-climate feedbacks in high latitudes in the ORCHIDEE land surface model was improved by the addition of three new circumpolar plant functional types (PFTs), namely non-vascular plants representing bryophytes and lichens, Arctic shrubs and Arctic C3 grasses. Non-vascular plants are assigned no stomatal conductance, very shallow roots, and can desiccate during dry episodes and become active again during wet periods, which gives them a larger phenological plasticity (i.e. adaptability and resilience to severe climatic constraints) compared to grasses and shrubs. Shrubs have a specific carbon allocation scheme, and differ from trees by their larger survival rates in winter, due to protection by snow. Arctic C3 grasses have the same equations as in the original ORCHIDEE version, but different parameter values, optimised from in situ observations of biomass and net primary productivity (NPP) in Siberia. In situ observations of living biomass and productivity from Siberia were used to calibrate the parameters of the new PFTs using a Bayesian optimisation procedure. With the new PFTs, we obtain a lower NPP by 31 % (from 55° N), as well as a lower roughness length (-41 %), transpiration (-33 %) and a higher winter albedo (by +3.6 %) due to increased snow cover. A simulation of the water balance and runoff and drainage in the high northern latitudes using the new PFTs results in an increase of fresh water discharge in the Arctic ocean by 11 % (+140 km3 yr-1), owing to less evapotranspiration. Future developments should focus on the competition between these three PFTs and boreal tree PFTs, in order to simulate their area changes in response to climate change, and the effect of carbon-nitrogen interactions.

  12. ARCTOX: a pan-Arctic sampling network to track mercury contamination across Arctic marine food webs

    DEFF Research Database (Denmark)

    Fort, Jerome; Helgason, Halfdan; Amelineau, Francoise

    and is still a source of major environmental concerns. In that context, providing a large-scale and comprehensive understanding of the Arctic marine food-web contamination is essential to better apprehend impacts of anthropogenic activities and climate change on the exposure of Arctic species and humans to Hg....... In 2015, an international sampling network (ARCTOX) has been established, allowing the collection seabird samples all around the Arctic. Seabirds are indeed good indicators of Hg contamination of marine food webs at large spatial scale. Gathering researchers from 10 countries, ARCTOX allowed......Arctic marine ecosystems are threatened by new risks of Hg contamination under the combined effects of climate change and human activities. Rapid change of the cryosphere might for instance release large amounts of Hg trapped in sea-ice, permafrost and terrestrial glaciers over the last decades...

  13. Food and water security issues in Russia I: food security in the general population of the Russian Arctic, Siberia and the Far East, 2000-2011.

    Science.gov (United States)

    Dudarev, Alexey A; Alloyarov, Pavel R; Chupakhin, Valery S; Dushkina, Eugenia V; Sladkova, Yuliya N; Dorofeyev, Vitaliy M; Kolesnikova, Tatijana A; Fridman, Kirill B; Nilsson, Lena Maria; Evengård, Birgitta

    2013-01-01

    Problems related to food security in Russian Arctic (dietary imbalance, predominance of carbohydrates, shortage of milk products, vegetables and fruits, deficit of vitamins and microelements, chemical, infectious and parasitic food contamination) have been defined in the literature. But no standard protocol of food security assessment has been used in the majority of studies. Our aim was to obtain food security indicators, identified within an Arctic collaboration, for selected regions of the Russian Arctic, Siberia and the Far East, and to compare food safety in these territories. In 18 regions of the Russian Arctic, Siberia and the Far East, the following indicators of food security were analyzed: food costs, food consumption, and chemical and biological food contamination for the period 2000-2011. Food costs in the regions are high, comprising 23-43% of household income. Only 4 out of 10 food groups (fish products, cereals, sugar, plant oil) are consumed in sufficient amounts. The consumption of milk products, eggs, vegetables, potatoes, fruits (and berries) is severely low in a majority of the selected regions. There are high levels of biological contamination of food in many regions. The biological and chemical contamination situation is alarming, especially in Chukotka. Only 7 food pollutants are under regular control; among pesticides, only DDT. Evenki AO and Magadan Oblast have reached peak values in food contaminants compared with other regions. Mercury in local fish has not been analyzed in the majority of the regions. In 3 regions, no monitoring of DDT occurs. Aflatoxins have not been analyzed in 5 regions. Nitrates had the highest percentage in excess of the hygienic threshold in all regions. Excesses of other pollutants in different regions were episodic and as a rule not high. Improvement of the food supply and food accessibility in the regions of the Russian Arctic, Siberia and the Far East is of utmost importance. Both quantitative and qualitative

  14. Marine Corps Equities in the Arctic

    Science.gov (United States)

    2013-04-18

    reduces the shipping time from Yokohama, Japan, to Hamburg , Germany, by 11 days as compared to the Suez Canal. Ships average approximately a 20...areas within the Arctic Circle. 10 Warming ocean water is causing fisheries to shift north as well. Fish populations usually found in the...people live in the Arctic region. Commercial fishing fleets are following these populations. 29 Russia holds the majority of the Arctic population

  15. Radioactive contamination in Arctic - present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, Per

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is probably the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In the last decade information has also been released concerning the nuclear situation which has caused concern in many countries. Due to such concerns, the International Arctic Environmental Protection Strategy (IAEPS) was launched in 1991 and the Arctic Monitoring and Assessment Programme (AMAP) was established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. In 1996 IAEPS became part of the Arctic Council. AMAP presented one main report in 1997 and another in 1998. There are also several other national, bilateral and international programmes in existence which deal with this issue. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (au)

  16. The Arctic - A New Region for China's Foreign Policy

    Directory of Open Access Journals (Sweden)

    V S Yagiya

    2015-12-01

    Full Text Available Article is devoted to foreign policy of China in the Arctic. Main attention is paid to strategic view of the China concerning the Arctic, to bilateral and multilateral cooperation on the Arctic issues, also to opinion of Russian experts about discussing of Russian-China economic partnership. It was shown interests of the People's Republic of China in the Arctic: use Arctic transport system from the Pacific Rim to Europe; possibility of access to the Arctic resources; seeks of partners for the realized of Arctic projects and programs. It was pointed six directions of China cooperation in the Arctic: a scientific researches, b natural minerals, oil and gas issues, c tourism, d routes of the Arctic navigation, e use of high technologies in development of regional economy, e cooperation in the cultural and educational spheres. Authors are summarized that at the initial stage of the international cooperation in the Arctic polar scientific researches become as the tool of “he soft power”, and in the long term - the Northern Sea Route of the Russian Federation is included in the Strategy of China Economic belt and the Maritime Silk Route in the XXI century.

  17. Russia's strategy in the Arctic

    DEFF Research Database (Denmark)

    Staun, Jørgen Meedom

    2017-01-01

    Russia's strategy in the Arctic is dominated by two overriding international relations (IR) discourses – or foreign policy directions. On the one hand, there is an IR-realism/geopolitical discourse that puts security first and often has a clear patriotic character, dealing with ‘exploring......’, ‘winning’ or ‘conquering’ the Arctic and putting power, including military power, behind Russia's national interests in the area. Opposed to this is an IR-liberalism, international law-inspired and modernisation-focused discourse, which puts cooperation first and emphasises ‘respect for international law......’, ‘negotiation’ and ‘cooperation’, and labels the Arctic as a ‘territory of dialogue’, arguing that the Arctic states all benefit the most if they cooperate peacefully. After a short but very visible media stunt in 2007 and subsequent public debate by proponents of the IR realism/geopolitical side, the IR...

  18. Optical properties of melting first-year Arctic sea ice

    Science.gov (United States)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  19. Arctic Intermediate Water in the Nordic Seas, 1991-2009

    Science.gov (United States)

    Jeansson, Emil; Olsen, Are; Jutterström, Sara

    2017-10-01

    The evolution of the different types of Arctic Intermediate Water (AIW) in the Nordic Seas is evaluated and compared utilising hydro-chemical data from 1991 to 2009. It has been suggested that these waters are important components of the Norwegian Sea Arctic Intermediate Water (NSAIW), and of the dense overflows to the North Atlantic. Thus, it is important to understand how their properties and distribution vary with time. The AIWs from the Greenland and Iceland Seas, show different degrees of variability during the studied period; however, only the Greenland Sea Arctic Intermediate Water (GSAIW) shows an increasing temperature and salinity throughout the 2000s, which considerably changed the properties of this water mass. Optimum multiparameter (OMP) analysis was conducted to assess the sources of the NSAIW. The analysis shows that the Iceland Sea Arctic Intermediate Water (ISAIW) and the GSAIW both contribute to NSAIW, at different densities corresponding to their respective density range. This illustrates that they flow largely isopycnally from their source regions to the Norwegian Sea. The main source of the NSAIW, however, is the upper Polar Deep Water, which explains the lower concentrations of oxygen and chlorofluorocarbons, and higher salinity and nutrient concentrations of the NSAIW layer compared with the ISAIW and GSAIW. This shows how vital it is to include chemical tracers in any water mass analysis to correctly assess the sources of the water mass being studied.

  20. Arctic climatechange and its impacts on the ecology of the North Atlantic.

    Science.gov (United States)

    Greene, Charles H; Pershing, Andrew J; Cronin, Thomas M; Ceci, Nicole

    2008-11-01

    Arctic climate change from the Paleocene epoch to the present is reconstructed with the objective of assessing its recent and future impacts on the ecology of the North Atlantic. A recurring theme in Earth's paleoclimate record is the importance of the Arctic atmosphere, ocean, and cryosphere in regulating global climate on a variety of spatial and temporal scales. A second recurring theme in this record is the importance of freshwater export from the Arctic in regulating global- to basin-scale ocean circulation patterns and climate. Since the 1970s, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. In addition, modal shifts in the atmosphere have altered Arctic Ocean circulation patterns and the export of freshwater into the North Atlantic. The combination of these processes has resulted in variable patterns of freshwater export from the Arctic Ocean and the emergence of salinity anomalies that have periodically freshened waters in the North Atlantic. Since the early 1990s, changes in Arctic Ocean circulation patterns and freshwater export have been associated with two types of ecological responses in the North Atlantic. The first of these responses has been an ongoing series of biogeographic range expansions by boreal plankton, including renewal of the trans-Arctic exchanges of Pacific species with the Atlantic. The second response was a dramatic regime shift in the shelf ecosystems of the Northwest Atlantic that occurred during the early 1990s. This regime shift resulted from freshening and stratification of the shelf waters, which in turn could be linked to changes in the abundances and seasonal cycles of phytoplankton, zooplankton, and higher trophic-level consumer populations. It is predicted that the recently observed ecological responses to Arctic climate change in the North Atlantic will continue into the near future if current trends

  1. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; van Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  2. Regular, high, and moderate intake of vegetables rich in antioxidants may reduce cataract risk in Central African type 2 diabetics

    Directory of Open Access Journals (Sweden)

    Mvitu M

    2012-06-01

    Full Text Available Moise Mvitu,1 Benjamin Longo-Mbenza,2 Dieudonné Tulomba,3 Augustin Nge31Department of Ophthalmology, University of Kinshasa, Democratic Republic of Congo; 2Faculty of Health Sciences, Walter Sisulu University, South Africa; 3Biostatistics Unit, Lomo Medical Center and Heart of Africa Center of Cardiology, Kinshasa, Democratic Republic of CongoBackground: Antioxidant nutrients found in popularly consumed vegetables, including red beans, are thought to prevent diabetic complications. In this study, we assessed the frequency and contributing factors of intake of fruits and vegetables rich in antioxidants, and we determined their impact on the prevention of diabetes-related cataract extraction.Methods: This was a cross-sectional study, run in Congo among 244 people with type 2 diabetes mellitus. An intake of ≥three servings of vegetables rich in antioxidants/day, intake of red beans, consumption of fruit, and cataract extraction were considered as dependent variables.Results: No patient reported a fruit intake. Intake of red beans was reported by 64 patients (26.2%, while 77 patients (31.6% reported ≥three servings of vegetables rich in antioxidants. High socioeconomic status (OR = 2.3; 95% CI: 1.1–12.5; P = 0.030 and moderate alcohol intake (OR = 4; 95% CI: 1.1–17.4; P = 0.049 were the independent determinants of eating ≥three servings of vegetables rich in antioxidants. Red beans intake (OR = 0.282; 95% CI: 0.115–0.687; P > 0.01 and eating ≥three servings of vegetables rich in antioxidants (OR = 0.256; 95% CI: 0.097–0.671; P = 0.006 were identified as independent and protective factors against the presence of cataracts (9.8% n = 24, whereas type 2 diabetes mellitus duration ≥3 years was the independent risk factor for cataract extraction (OR = 6.3; 95% CI: 2.1–19.2; P > 0.001 in the model with red beans intake and OR = 7.1; 95% CI: 2.3–22.2; P > 0.001 in the model with ≥three servings of vegetables rich in antioxidants

  3. The relation between Arctic Ocean circulation and the Arctic Oscillation as revealed by satellite altimetry and gravimetry

    Science.gov (United States)

    Morison, J.; Kwok, R.; Peralta Ferriz, C.; Dickinson, S.; Morison, D.; Andersen, R.; Dewey, S.

    2017-12-01

    Arctic Ocean circulation is commonly characterized by the persistent anticyclonic Beaufort Gyre in the Canada Basin and the Transpolar Drift. While these are clearly important features, their role in changing Arctic Ocean circulation is at times distorted by sampling biases inherent in drifting buoy and standard shipboard measurements of western nations. Hydrographic measurements from SCICEX submarine cruises for science in the early 1990s revealed an increasingly cyclonic circulation along the Russian side of the Arctic Ocean related to the low sea level pressure pattern in the same region associated with a high Arctic Oscillation (AO) index. More recently satellite altimetry (ICESat and CryoSat2) and gravimetry (GRACE) have provided the basin-wide observational coverage needed to see shifts to increased cyclonic circulation in 2004 to 2008 and decreased cyclonic circulation in 2008 to 2015. These shifts are related to changes in the AO and are important for their effect on the trajectories of sea ice and freshwater through the Arctic Ocean.

  4. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    Science.gov (United States)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  5. A Recommended Set of Key Arctic Indicators

    Science.gov (United States)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  6. Wood-inhabiting fungi in southern Italy forest stands: morphogroups, vegetation types and decay classes.

    Science.gov (United States)

    Granito, Vito Mario; Lunghini, Dario; Maggi, Oriana; Persiani, Anna Maria

    2015-01-01

    The authors conducted an ecological study of forests subjected to varying management. The aim of the study was to extend and integrate, within a multivariate context, knowledge of how saproxylic fungal communities behave along altitudinal/vegetational gradients in response to the varying features and quality of coarse woody debris (CWD). The intra-annual seasonal monitoring of saproxylic fungi, based on sporocarp inventories, was used to investigate saproxylic fungi in relation to vegetation types and management categories. We analyzed fungal species occurrence, recorded according to the presence/absence and frequency of sporocarps, on the basis of the harvest season, of coarse woody debris decay classes as well as other environmental and ecological variables. Two-way cluster analysis, DCA and Spearman's rank correlations, for indirect gradient analysis, were performed to identify any patterns of seasonality and decay. Most of the species were found on CWD in an intermediate decay stage. The first DCA axis revealed the vegetational/microclimate gradient as the main driver of fungal community composition, while the second axis corresponded to a strong gradient of CWD decay classes. © 2015 by The Mycological Society of America.

  7. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  8. Debating the Arctic during the Ukraine Crisis – Comparing Arctic State Identities and Media Discourses in Canada and Norway

    DEFF Research Database (Denmark)

    Burke, Danita Catherine; Rahbek-Clemmensen, Jon

    2017-01-01

    identities and foreign policy by showing that these identifications affected domestic media discourses about the Arctic in Canada and Norway during the first years (2014-16) of the Crisis. Canada’s territorial identification made it difficult for the newly elected Trudeau government to push for a less...... identities shape media debates, but that the identifications themselves can change. In general, the article advocates for a comparative approach towards the analysis of Arctic state identities.......Previous studies have argued that domestic factors, including each state’s Arctic state identities, may explain why some Western states (e.g. Canada) have been more critical of Russia in the Arctic than others (e.g. Norway). The present study analyses part of the link between Arctic state...

  9. Biodiversity of arctic marine fishes

    DEFF Research Database (Denmark)

    Mecklenburg, Catherine W.; Møller, Peter Rask; Steinke, Dirk

    2011-01-01

    Taxonomic and distributional information on each fish species found in arctic marine waters is reviewed, and a list of families and species with commentary on distributional records is presented. The list incorporates results from examination of museum collections of arctic marine fishes dating b...

  10. The International Arctic Seas Assessment Project

    International Nuclear Information System (INIS)

    Linsley, G.S.; Sjoeblom, K.L.

    1994-01-01

    The International Arctic Seas Assessment Project (IASAP) was initiated in 1993 to address widespread concern over the possible health and environmental impacts associated with the radioactive waste dumped into the shallow waters of the Arctic Seas. This article discusses the project with these general topics: A brief history of dumping activities; the international control system; perspectives on arctic Seas dumping; the IASAP aims and implementation; the IASAP work plan and progress. 2 figs

  11. Arctic action against climatic changes

    International Nuclear Information System (INIS)

    Njaastad, Birgit

    2000-01-01

    The articles describes efforts to map the climatic changes in the Arctic regions through the Arctic Climate Impact Assessment Project which is a joint venture between eight Arctic countries: Denmark, Canada, the USA, Russia, Finland, Sweden and Norway. The project deals with the consequences of the changes such as the UV radiation due to diminishing ozone layers. The aims are: Evaluate and integrate existing knowledge in the field and evaluate and predict the consequences particularly on the environment both in the present and the future and produce reliable and useful information in order to aid the decision-making processes

  12. Participatory Methods in Arctic Research

    DEFF Research Database (Denmark)

    Faber, Louise

    2018-01-01

    collection, analysis and conclusions and / or knowledge dissemination. The book aims to collect and share experiences from researchers active in engaging research in the Arctic. The articles reflect on the inclusive methods used in the Arctic research, on the cause and purpose thereof, while the methods......This book is a collection of articles written by researchers at Aalborg University, affiliated with AAU Arctic. The articles are about how the researchers in their respective projects work with stakeholders and citizens in different ways, for example in connection with problem formulation, data...... are exemplified to serve as inspiration for other researchers....

  13. Building on Sub-Arctic Soil: Geopolymerization of Muskeg to a Densified Load-Bearing Composite.

    Science.gov (United States)

    Waetzig, Gregory R; Cho, Junsang; Lacroix, Max; Banerjee, Sarbajit

    2017-11-07

    The marshy water-saturated soil typical of the sub-Arctic represents a considerable impediment to the construction of roads, thereby greatly hindering human habitation and geological excavation. Muskeg, the native water-laden topsoil characteristic of the North American sub-Arctic, represents a particularly vexing challenge for road construction. Muskeg must either be entirely excavated, or for direct construction on muskeg, a mix of partial excavation and gradual compaction with the strategic placement of filling materials must be performed. Here, we demonstrate a novel and entirely reversible geopolymerization method for reinforcing muskeg with wood fibers derived from native vegetation with the addition of inorganic silicate precursors and without the addition of extraneous metal precursors. A continuous siloxane network is formed that links together the muskeg, wood fibers, and added silicates yielding a load-bearing and low-subsidence composite. The geopolymerization approach developed here, based on catalyzed formation of a siloxane network with further incorporation of cellulose, allows for an increase of density as well as compressive strength while reducing the compressibility of the composite.

  14. Bacterial communities from Arctic seasonal sea ice are more compositionally variable than those from multi-year sea ice.

    Science.gov (United States)

    Hatam, Ido; Lange, Benjamin; Beckers, Justin; Haas, Christian; Lanoil, Brian

    2016-10-01

    Arctic sea ice can be classified into two types: seasonal ice (first-year ice, FYI) and multi-year ice (MYI). Despite striking differences in the physical and chemical characteristics of FYI and MYI, and the key role sea ice bacteria play in biogeochemical cycles of the Arctic Ocean, there are a limited number of studies comparing the bacterial communities from these two ice types. Here, we compare the membership and composition of bacterial communities from FYI and MYI sampled north of Ellesmere Island, Canada. Our results show that communities from both ice types were dominated by similar class-level phylogenetic groups. However, at the operational taxonomic unit (OTU) level, communities from MYI and FYI differed in both membership and composition. Communities from MYI sites had consistent structure, with similar membership (presence/absence) and composition (OTU abundance) independent of location and year of sample. By contrast, communities from FYI were more variable. Although FYI bacterial communities from different locations and different years shared similar membership, they varied significantly in composition. Should these findings apply to sea ice across the Arctic, we predict increased compositional variability in sea ice bacterial communities resulting from the ongoing transition from predominantly MYI to FYI, which may impact nutrient dynamics in the Arctic Ocean.

  15. Arctic pollution: How much is too much

    Energy Technology Data Exchange (ETDEWEB)

    An overview is presented of the problems of pollution in the Arctic. Pollution from lower latitudes is carried into the Arctic by atmospheric circulation and ocean currents. Contamination of snow, waters and organisms with imported pollutants has appeared in the past few decades and appears to be increasing. Arctic ecosystems show indications of being much more susceptible to biological damage at low levels of pollutants than higher-energy ecosystems in temperate latitudes, and many Arctic organisms become accumulators and concentrators of organic pollutants and toxic metals. Arctic haze is 20 to 40 times as high in winter as in summer and has been found to consist of particles of largely industrial origin, mostly soot, hydrocarbons and sulphates. Dramatic declines in stratospheric ozone have been apparent over Antarctica, and a similar but less intense depletion is appearing over the Arctic. Toxic compounds, particularly organochlorines and some heavy metals, have been found in worrying amounts in snow, water and organisms in Arctic North America, Greenland and Svalbard. Radioactive contamination was widespread during atmospheric testing of nuclear weapons during the 1960s and 1970s, and the comparatively small amount of radiation released by the Chernobyl accident had greatest effect in northern Scandinavia. 4 figs.

  16. Arctic Energy Resources: Security and Environmental Implications

    Directory of Open Access Journals (Sweden)

    Peter Johnston

    2012-08-01

    Full Text Available n recent years, there has been considerable interest in the Arctic as a source for resources, as a potential zone for commercial shipping, and as a region that might experience conflict due to its strategic importance. With regards to energy resources, some studies suggest that the region contains upwards of 13 percent of global undiscovered oil, 30 percent of undiscovered gas, and multiples more of gas hydrates. The decreasing amount and duration of Arctic ice cover suggests that extraction of these resources will be increasingly commercially viable. Arctic and non-arctic states wish to benefit from the region's resources and the potential circum-polar navigation possibilities. This has led to concerns about the environmental risks of these operations as well as the fear that competition between states for resources might result in conflict. Unresolved offshore boundaries between the Arctic states exacerbate these fears. Yet, the risk of conflict seems overstated considering the bilateral and multilateral steps undertaken by the Arctic states to resolve contentious issues. This article will examine the potential impact of Arctic energy resources on global security as well as the regional environment and examine the actions of concerned states to promote their interests in the region.

  17. Radioactive contamination in the Arctic - Present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, P.

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In 1991, the International Arctic Environmental Protection Strategy (IAEPS) was launched and the Arctic Monitoring and Assessment Programme (AMAP) established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (author)

  18. Biological Soil Crusts of Arctic Svalbard—Water Availability as Potential Controlling Factor for Microalgal Biodiversity

    Directory of Open Access Journals (Sweden)

    Nadine Borchhardt

    2017-08-01

    Full Text Available In the present study the biodiversity of biological soil crusts (BSCs formed by phototrophic organisms were investigated on Arctic Svalbard (Norway. These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae, 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae. Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta, which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus, and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

  19. Biological Soil Crusts of Arctic Svalbard-Water Availability as Potential Controlling Factor for Microalgal Biodiversity.

    Science.gov (United States)

    Borchhardt, Nadine; Baum, Christel; Mikhailyuk, Tatiana; Karsten, Ulf

    2017-01-01

    In the present study the biodiversity of biological soil crusts (BSCs) formed by phototrophic organisms were investigated on Arctic Svalbard (Norway). These communities exert several important ecological functions and constitute a significant part of vegetation at high latitudes. Non-diatom eukaryotic microalgal species of BSCs from 20 sampling stations around Ny-Ålesund and Longyearbyen were identified by morphology using light microscopy, and the results revealed a high species richness with 102 species in total. 67 taxa belonged to Chlorophyta (31 Chlorophyceae and 36 Trebouxiophyceae), 13 species were Streptophyta (11 Klebsormidiophyceae and two Zygnematophyceae) and 22 species were Ochrophyta (two Eustigmatophyceae and 20 Xanthophyceae). Surprisingly, Klebsormidium strains belonging to clade G (Streptophyta), which were so far described from Southern Africa, could be determined at 5 sampling stations. Furthermore, comparative analyses of Arctic and Antarctic BSCs were undertaken to outline differences in species composition. In addition, a pedological analysis of BSC samples included C, N, S, TP (total phosphorus), and pH measurements to investigate the influence of soil properties on species composition. No significant correlation with these chemical soil parameters was confirmed but the results indicated that pH might affect the BSCs. In addition, a statistically significant influence of precipitation on species composition was determined. Consequently, water availability was identified as one key driver for BSC biodiversity in Arctic regions.

  20. A SCAT manual for Arctic regions and cold climates

    International Nuclear Information System (INIS)

    Owens, E.H.; Sergy, G.A.

    2004-01-01

    The Shoreline Cleanup Assessment Technique (SCAT) has been used on many oil spills in a variety of ways to meet a broad range of specific spill conditions. SCAT was created in response to the Exxon Valdez oil spill in Prince William Sound Alaska. Environment Canada developed generic second-generation SCAT protocols to standardize the documentation and description of oiled shorelines. As the SCAT process becomes more widely accepted and used during spill response operations, the need for flexibility and modifications has grown. For that reason, the Arctic SCAT Manual was created to address the need for guidelines, standardized definitions, standardized terminology and forms that can be applied for oiled shorelines or riverbanks in Arctic environments and cold climates. Unique Arctic shoreline types such as tundra cliffs, inundated low-lying tundra and peat shorelines are included in the manual along with a new set of shoreline oiling forms for marine coasts, tidal flats, wetlands, lake shores, riverbanks, and stream banks. A First Responders guide has been included with the manual to help local inhabitants during the initial phases of an oiled shoreline assessment. 5 refs., 2 tabs., 20 figs

  1. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    Science.gov (United States)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  2. Tipping elements in the Arctic marine ecosystem.

    Science.gov (United States)

    Duarte, Carlos M; Agustí, Susana; Wassmann, Paul; Arrieta, Jesús M; Alcaraz, Miquel; Coello, Alexandra; Marbà, Núria; Hendriks, Iris E; Holding, Johnna; García-Zarandona, Iñigo; Kritzberg, Emma; Vaqué, Dolors

    2012-02-01

    The Arctic marine ecosystem contains multiple elements that present alternative states. The most obvious of which is an Arctic Ocean largely covered by an ice sheet in summer versus one largely devoid of such cover. Ecosystems under pressure typically shift between such alternative states in an abrupt, rather than smooth manner, with the level of forcing required for shifting this status termed threshold or tipping point. Loss of Arctic ice due to anthropogenic climate change is accelerating, with the extent of Arctic sea ice displaying increased variance at present, a leading indicator of the proximity of a possible tipping point. Reduced ice extent is expected, in turn, to trigger a number of additional tipping elements, physical, chemical, and biological, in motion, with potentially large impacts on the Arctic marine ecosystem.

  3. The marsh vegetation of Kleinmond Lagoon

    Directory of Open Access Journals (Sweden)

    M. O'Callaghan

    1994-10-01

    Full Text Available The vegetation of Kleinmond Lagoon suggests that this system is in transition from an estuary to a coastal lake. Two major types of vegetation were recognized, one which is subjected to soil and water conditions of marine origin and the other which is subjected to conditions of terrestrial origin. These vegetation types are discussed and compared to the vegetation of other estuarine systems. Artificial manipulations of the mouth seem to have resulted in sediment deposition and a freshening of the system. These unseasonable manipulations also threaten the continued existence of a number of species in the system.

  4. Mining in the European Arctic

    NARCIS (Netherlands)

    van Dam, Kim; Scheepstra, Annette; Gille, Johan; Stępień, Adam; Koivurova, Timo

    The European Arctic is currently experiencing an upsurge in mining activities, but future developments will be highly sensitive to mineral price fluctuations. The EU is a major consumer and importer of Arctic raw materials. As the EU is concerned about the security of supply, it encourages domestic

  5. Food and water security issues in Russia I: food security in the general population of the Russian Arctic, Siberia and the Far East, 2000–2011

    Directory of Open Access Journals (Sweden)

    Alexey A. Dudarev

    2013-10-01

    Full Text Available Background. Problems related to food security in Russian Arctic (dietary imbalance, predominance of carbohydrates, shortage of milk products, vegetables and fruits, deficit of vitamins and microelements, chemical, infectious and parasitic food contamination have been defined in the literature. But no standard protocol of food security assessment has been used in the majority of studies. Objectives. Our aim was to obtain food security indicators, identified within an Arctic collaboration, for selected regions of the Russian Arctic, Siberia and the Far East, and to compare food safety in these territories. Study design and methods. In 18 regions of the Russian Arctic, Siberia and the Far East, the following indicators of food security were analyzed: food costs, food consumption, and chemical and biological food contamination for the period 2000–2011. Results. Food costs in the regions are high, comprising 23–43% of household income. Only 4 out of 10 food groups (fish products, cereals, sugar, plant oil are consumed in sufficient amounts. The consumption of milk products, eggs, vegetables, potatoes, fruits (and berries is severely low in a majority of the selected regions. There are high levels of biological contamination of food in many regions. The biological and chemical contamination situation is alarming, especially in Chukotka. Only 7 food pollutants are under regular control; among pesticides, only DDT. Evenki AO and Magadan Oblast have reached peak values in food contaminants compared with other regions. Mercury in local fish has not been analyzed in the majority of the regions. In 3 regions, no monitoring of DDT occurs. Aflatoxins have not been analyzed in 5 regions. Nitrates had the highest percentage in excess of the hygienic threshold in all regions. Excesses of other pollutants in different regions were episodic and as a rule not high. Conclusion. Improvement of the food supply and food accessibility in the regions of the Russian

  6. Arctic resources : a mechatronics opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McKean, M.; Baiden, G. [Penguin Automated Systems Inc., Naughton, ON (Canada)

    2008-07-01

    This paper discussed the telerobotic mechatronics opportunities that exist to access mineral resources in the Arctic. The Mining Automation Project (MAP) determined that telerobotics could contribute to productivity gains while providing increased worker safety. The socio-economic benefits of advanced mechatronics for Arctic resource development are particularly attractive due to reduced infrastructure needs; operating costs; and environmental impacts. A preliminary analysis of mining transportation options by the authors revealed that there is a case for in-situ resource utilization (ISRU) for oil and gas processing to address resource development. The ISRU options build on concepts developed to support space exploration and were proposed to reduce or modify transportation loads to allow more sustainable and efficient Arctic resource development. Many benefits in terms of efficiency could be achieved by combining demonstrated mechatronics with ISRU because of the constrained transportation infrastructure in the Arctic. In the context of harsh environment operations, mechatronics may provide an opportunity for undersea resource facilities. 15 refs., 6 figs.

  7. Rapid Assessment of Key Structural Elements of Different Vegetation Types of West African Savannas in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Qasim Mohammad

    2016-01-01

    Full Text Available Estimations of Leaf Area Index (LAI have recently gained attention due to the sensitivity to the effects of climate change and its impact on forest ecosystems. Hence, a study was conducted on the LAI estimation of four vegetation types: (i gallery forests, (ii woodland savannas, (iii tree savannas, and (iv shrub savannas, at two protected areas of Nazinga Game Ranch and Bontioli Nature Reserve, Burkina Faso. A relationship between LAI and Crown Diameter was also investigated at these two sites. Digital hemispherical photography was used for the LAI estimation. Crown diameters (CD were determined perpendicular to each other and averaged for each tree and shrub. Overall results revealed that LAI ranged from 0-1.33 and the CD was recorded in the range of 0.46-11.01 m. The gallery forests recorded the highest mean LAI 1.33 ± 0.32 as well as the highest mean CD 7.69 ± 1.90 m. The LAI for the vegetation types were at their lower ends as the study was conducted in summer season, higher values are therefore expected in the wet season, as a significant correlation between LAI and precipitation has been emphasized by various studies. Continuous LAI monitoring and studies on various growth parameters of different vegetation types at the study sites are recommended towards enhanced monitoring and an ecologically feasible forest- and savanna-use and management to maintain essential ecosystem functions and services.

  8. Changing geo-political realities in the Arctic region

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2014-01-01

    This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region.......This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region....

  9. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne

    2009-01-01

    Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated...... setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003...... and herbivory. 6 Synthesis. Our results show that warming increases the cover of V. myrtillus, which seems to enhance the nutrient sink strength of vegetation in the studied ecosystem. However, herbivory partially negates the effect of warming on plant N uptake and interacts with the effect of warming...

  10. Cyclone Activity in the Arctic From an Ensemble of Regional Climate Models (Arctic CORDEX)

    Science.gov (United States)

    Akperov, Mirseid; Rinke, Annette; Mokhov, Igor I.; Matthes, Heidrun; Semenov, Vladimir A.; Adakudlu, Muralidhar; Cassano, John; Christensen, Jens H.; Dembitskaya, Mariya A.; Dethloff, Klaus; Fettweis, Xavier; Glisan, Justin; Gutjahr, Oliver; Heinemann, Günther; Koenigk, Torben; Koldunov, Nikolay V.; Laprise, René; Mottram, Ruth; Nikiéma, Oumarou; Scinocca, John F.; Sein, Dmitry; Sobolowski, Stefan; Winger, Katja; Zhang, Wenxin

    2018-03-01

    The ability of state-of-the-art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic-CORDEX initiative. Some models employ large-scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA-Interim, National Centers for Environmental Prediction-Climate Forecast System Reanalysis, National Aeronautics and Space Administration-Modern-Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency-Japanese 55-year reanalysis) in winter and summer for 1981-2010 period. In addition, we compare cyclone statistics between ERA-Interim and the Arctic System Reanalysis reanalyses for 2000-2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large-scale spectral nudging show a better agreement with ERA-Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.

  11. An assessment of geographical distribution of different plant functional types over North America simulated using the CLASS-CTEM modelling framework

    Science.gov (United States)

    Shrestha, Rudra K.; Arora, Vivek K.; Melton, Joe R.; Sushama, Laxmi

    2017-10-01

    The performance of the competition module of the CLASS-CTEM (Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model) modelling framework is assessed at 1° spatial resolution over North America by comparing the simulated geographical distribution of its plant functional types (PFTs) with two observation-based estimates. The model successfully reproduces the broad geographical distribution of trees, grasses and bare ground although limitations remain. In particular, compared to the two observation-based estimates, the simulated fractional vegetation coverage is lower in the arid southwest North American region and higher in the Arctic region. The lower-than-observed simulated vegetation coverage in the southwest region is attributed to lack of representation of shrubs in the model and plausible errors in the observation-based data sets. The observation-based data indicate vegetation fractional coverage of more than 60 % in this arid region, despite only 200-300 mm of precipitation that the region receives annually, and observation-based leaf area index (LAI) values in the region are lower than one. The higher-than-observed vegetation fractional coverage in the Arctic is likely due to the lack of representation of moss and lichen PFTs and also likely because of inadequate representation of permafrost in the model as a result of which the C3 grass PFT performs overly well in the region. The model generally reproduces the broad spatial distribution and the total area covered by the two primary tree PFTs (needleleaf evergreen trees, NDL-EVG; and broadleaf cold deciduous trees, BDL-DCD-CLD) reasonably well. The simulated fractional coverage of tree PFTs increases after the 1960s in response to the CO2 fertilization effect and climate warming. Differences between observed and simulated PFT coverages highlight model limitations and suggest that the inclusion of shrubs, and moss and lichen PFTs, and an adequate representation of permafrost will help improve

  12. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    The peak of biological activities in Arctic ecosystems is characterized by a relative short and intense period between the start of snowmelt until the onset of frost. Recent climate changes have induced larger seasonal variation in both timing of snowmelt as well as changes mean temperatures......, an extensive monitoring program has been conducted in the North Eastern Greenland National Park, the Zackenberg Basic. The objective of the program is to provide long time series of data on the natural innate oscillations and plasticity of a High Arctic ecosystem. With offset in the data provided through...

  13. 2nd International Arctic Ungulate Conference

    Directory of Open Access Journals (Sweden)

    A. Anonymous

    1996-01-01

    Full Text Available The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. The United States, Canada, and Norway had the largest representation. The conference included invited lectures; panel discussions, and about 125 contributed papers. There were five technical sessions on Physiology and Body Condition; Habitat Relationships; Population Dynamics and Management; Behavior, Genetics and Evolution; and Reindeer and Muskox Husbandry. Three panel sessions discussed Comparative caribou management strategies; Management of introduced, reestablished, and expanding muskox populations; and Health risks in translocation of arctic ungulates. Invited lectures focused on the physiology and population dynamics of arctic ungulates; contaminants in food chains of arctic ungulates and lessons learned from the Chernobyl accident; and ecosystem level relationships of the Porcupine Caribou Herd.

  14. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    Science.gov (United States)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  15. Arctic research vessel design would expand science prospects

    Science.gov (United States)

    Elsner, Robert; Kristensen, Dirk

    The U.S. polar marine science community has long declared the need for an arctic research vessel dedicated to advancing the study of northern ice-dominated seas. Planning for such a vessel began 2 decades ago, but competition for funding has prevented construction. A new design program is underway, and it shows promise of opening up exciting possibilities for new research initiatives in arctic marine science.With its latest design, the Arctic Research Vessel (ARV) has grown to a size and capability that will make it the first U.S. academic research vessel able to provide access to the Arctic Ocean. This ship would open a vast arena for new studies in the least known of the world's seas. These studies promise to rank high in national priority because of the importance of the Arctic Ocean as a source of data relating to global climate change. Other issues that demand attention in the Arctic include its contributions to the world's heat budget, the climate history buried in its sediments, pollution monitoring, and the influence of arctic conditions on marine renewable resources.

  16. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    Science.gov (United States)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  17. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  18. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    Science.gov (United States)

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  19. Games in the Arctic: applying game theory insights to Arctic challenges

    Directory of Open Access Journals (Sweden)

    Scott Cole

    2014-08-01

    Full Text Available We illustrate the benefits of game theoretic analysis for assisting decision-makers in resolving conflicts and other challenges in a rapidly evolving region. We review a series of salient Arctic issues with global implications—managing open-access fisheries, opening Arctic areas for resource extraction and ensuring effective environmental regulation for natural resource extraction—and provide insights to help reach socially preferred outcomes. We provide an overview of game theoretic analysis in layman's terms, explaining how game theory can help researchers and decision-makers to better understand conflicts, and how to identify the need for, and improve the design of, policy interventions. We believe that game theoretic tools are particularly useful in a region with a diverse set of players ranging from countries to firms to individuals. We argue that the Arctic Council should take a more active governing role in the region by, for example, dispersing information to “players” in order to alleviate conflicts regarding the management of common-pool resources such as open-access fisheries and natural resource extraction. We also identify side payments—that is, monetary or in-kind compensation from one party of a conflict to another—as a key mechanism for reaching a more biologically, culturally and economically sustainable Arctic future. By emphasizing the practical insights generated from an academic discipline, we present game theory as an influential tool in shaping the future of the Arctic—for individual researchers, for inter-disciplinary research and for policy-makers themselves.

  20. CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada

    Science.gov (United States)

    Buell, Mary-Claire

    Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d -1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the

  1. The effects of climate changes on soil methane oxidation in a dry Arctic tundra

    Science.gov (United States)

    D'Imperio, Ludovica

    2014-05-01

    The effects of climate changes on soil methane oxidation in a dry Arctic tundra. Ludovica D'Imperio1, Anders Michelsen1, Christian J. Jørgensen1, Bo Elberling1 1Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Denmark At Northern latitudes climatic changes are predicted to be most pronounced resulting in increasing active layer depth and changes in growing season length, vegetation cover and nutrient cycling. As a consequence of increased temperature, large stocks of carbon stored in the permafrost-affected soils could become available for microbial transformations and under anoxic conditions result in increasing methane production affecting net methane (CH4) budget. Arctic tundra soils also serves as an important sink of atmospheric CH4 by microbial oxidation under aerobic conditions. While several process studies have documented the mechanisms behind both production and emissions of CH4 in arctic ecosystems, an important knowledge gap exists with respect to the in situ dynamics of microbial-driven uptake of CH4 in arctic dry lands which may be enhanced as a consequence of global warming and thereby counterbalancing CH4 emissions from Arctic wetlands. In-situ methane measurements were made in a dry Arctic tundra in Disko Island, Western Greenland, during the summer 2013 to assess the role of seasonal and inter-annual variations in temperatures and snow cover. The experimental set-up included snow fences installed in 2012, allowed investigations of the emissions of GHGs from soil under increased winter snow deposition and ambient field conditions. The soil fluxes of CH4 and CO2 were measured using closed chambers in manipulated plots with increased summer temperatures and shrub removal with or without increased winter precipitation. At the control plots, the averaged seasonal CH4 oxidation rates ranged between -0.05 mg CH4 m-2 hr-1 (end of August) and -0.32 mg CH4 m-2 hr-1 (end of June). In the

  2. Post-fire vegetation recovery in Portugal based ewline on spot/vegetation data

    Directory of Open Access Journals (Sweden)

    C. Gouveia

    2010-04-01

    Full Text Available A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI, with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation

  3. Relating Radiative Fluxes on Arctic Sea Ice Area Using Arctic Observation and Reanalysis Integrated System (ArORIS)

    Science.gov (United States)

    Sledd, A.; L'Ecuyer, T. S.

    2017-12-01

    With Arctic sea ice declining rapidly and Arctic temperatures rising faster than the rest of the globe, a better understanding of the Arctic climate, and ice cover-radiation feedbacks in particular, is needed. Here we present the Arctic Observation and Reanalysis Integrated System (ArORIS), a dataset of integrated products to facilitate studying the Arctic using satellite, reanalysis, and in-situ datasets. The data include cloud properties, radiative fluxes, aerosols, meteorology, precipitation, and surface properties, to name just a few. Each dataset has uniform grid-spacing, time-averaging and naming conventions for ease of use between products. One intended use of ArORIS is to assess Arctic radiation and moisture budgets. Following that goal, we use observations from ArORIS - CERES-EBAF radiative fluxes and NSIDC sea ice fraction and area to quantify relationships between the Arctic energy balance and surface properties. We find a discernable difference between energy budgets for years with high and low September sea ice areas. Surface fluxes are especially responsive to the September sea ice minimum in months both leading up to September and the months following. In particular, longwave fluxes at the surface show increased sensitivity in the months preceding September. Using a single-layer model of solar radiation we also investigate the individual responses of surface and planetary albedos to changes in sea ice area. By partitioning the planetary albedo into surface and atmospheric contributions, we find that the atmospheric contribution to planetary albedo is less sensitive to changes in sea ice area than the surface contribution. Further comparisons between observations and reanalyses can be made using the available datasets in ArORIS.

  4. Levels and trends of contaminants in humans of the Arctic.

    Science.gov (United States)

    Gibson, Jennifer; Adlard, Bryan; Olafsdottir, Kristin; Sandanger, Torkjel Manning; Odland, Jon Øyvind

    2016-01-01

    The Arctic Monitoring and Assessment Programme (AMAP) is one of the six working groups established under the Arctic Council. AMAP is tasked with monitoring the levels of contaminants present in the Arctic environment and people as well as assessing their effects on a continuous basis, and reporting these results regularly. Most of the presented data have been collected over the last 20 years and are from all eight Arctic countries. Levels of contaminants appear to be declining in some of the monitored Arctic populations, but it is not consistent across the Arctic. Most Arctic populations continue to experience elevated levels of these contaminants compared to other populations monitored globally. There are certain contaminants, such as perfluorinated compounds and polybrominated diphenyl ethers, which are still increasing in Arctic populations. These contaminants require more investigation to find out the predominant and important sources of exposure, and whether they are being transported to the Arctic through long-range transport in the environment.

  5. Sulfate Aerosol in the Arctic: Source Attribution and Radiative Forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Smith, Steven J. [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park MD USA; Easter, Richard C. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2018-02-08

    Source attributions of Arctic sulfate and its direct radiative effect for 2010–2014 are quantified in this study using the Community Earth System Model (CESM) equipped with an explicit sulfur source-tagging technique. Regions that have high emissions and/or are near/within the Arctic present relatively large contributions to Arctic sulfate burden, with the largest contribution from sources in East Asia (27%). East Asia and South Asia together have the largest contributions to Arctic sulfate concentrations at 9–12 km, whereas sources within or near the Arctic account largely below 2 km. For remote sources with strong emissions, their contributions to Arctic sulfate burden are primarily driven by meteorology, while contributions of sources within or near the Arctic are dominated by their emission strength. The sulfate direct radiative effect (DRE) is –0.080 W m-2 at the Arctic surface, offsetting the net warming effect from the combination of in-snow heating and DRE cooling from black carbon. East Asia, Arctic local and Russia/Belarus/Ukraine sources contribute –0.017, –0.016 and –0.014 W m-2, respectively, to Arctic sulfate DRE. A 20% reduction in anthropogenic SO2 emissions leads to a net increase of +0.013 W m-2 forcing at the Arctic surface. These results indicate that a joint reduction in BC emissions could prevent possible Arctic warming from future reductions in SO2 emissions. Sulfate DRE efficiency calculations suggest that short transport pathways together with meteorology favoring long sulfate lifetimes make certain sources more efficient in influencing the Arctic sulfate DRE.

  6. Military aspects of Russia's Arctic policy

    Energy Technology Data Exchange (ETDEWEB)

    Zysk, Katarzyna

    2013-03-01

    Russia's Arctic policies have a strong bearing on the regional strategic environment for a number of factors. One obvious reason is the geography and the fact that Russia's Arctic shoreline covers nearly half of the latitudinal circle, which gives the country a unique potential to influence future Arctic activities. Second, despite radical changes in the regional security environment after the end of the Cold War, the Arctic and the High North (the European Arctic), in particular has maintained its central role in Russian strategic thinking and defense policy. Russia still has a strong military presence in the region, with a variety of activities and interests, despite weaknesses and problems facing the Russian armed forces. Third, and finally, Russia has enormous petroleum and other natural riches in the Arctic, and the leadership is laying on ambitious plans for development of commercial activities in the region. Understanding Russia's approaches to security is thus clearly important to surrounding Arctic nations and other stakeholders. Russian military activity in the Arctic has tangibly increased in recent years, adding perhaps the most controversial topic in debates on the region's future security. Combined with political assertiveness and rhetorical hostility toward the West, which was a particular feature of Vladimir Putin's second presidential term (2004#En Dash#2008), the intensified presence of the Russian naval and air forces operating in the region has drawn much of the international attention and contributed to the image of Russia as the wild card in the Arctic strategic equation.(Author)

  7. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  8. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  9. Mapping Congo Basin vegetation types from 300 m and 1 km multi-sensor time series for carbon stocks and forest areas estimation

    Directory of Open Access Journals (Sweden)

    A. Verhegghen

    2012-12-01

    Full Text Available This study aims to contribute to the understanding of the Congo Basin forests by delivering a detailed map of vegetation types with an improved spatial discrimination and coherence for the whole Congo Basin region. A total of 20 land cover classes were described with the standardized Land Cover Classification System (LCCS developed by the FAO. Based on a semi-automatic processing chain, the Congo Basin vegetation types map was produced by combining 19 months of observations from the Envisat MERIS full resolution products (300 m and 8 yr of daily SPOT VEGETATION (VGT reflectances (1 km. Four zones (north, south and two central were delineated and processed separately according to their seasonal and cloud cover specificities. The discrimination between different vegetation types (e.g. forest and savannas was significantly improved thanks to the MERIS sharp spatial resolution. A better discrimination was achieved in cloudy areas by taking advantage of the temporal consistency of the SPOT VGT observations. This resulted in a precise delineation of the spatial extent of the rural complex in the countries situated along the Atlantic coast. Based on this new map, more accurate estimates of the surface areas of forest types were produced for each country of the Congo Basin. Carbon stocks of the Basin were evaluated to a total of 49 360 million metric tons. The regional scale of the map was an opportunity to investigate what could be an appropriate tree cover threshold for a forest class definition in the Congo Basin countries. A 30% tree cover threshold was suggested. Furthermore, the phenology of the different vegetation types was illustrated systematically with EVI temporal profiles. This Congo Basin forest types map reached a satisfactory overall accuracy of 71.5% and even 78.9% when some classes are aggregated. The values of the Cohen's kappa coefficient, respectively 0.64 and 0.76 indicates a result significantly better than random.

  10. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  11. Arctic pipeline planning design, construction, and equipment

    CERN Document Server

    Singh, Ramesh

    2013-01-01

    Utilize the most recent developments to combat challenges such as ice mechanics. The perfect companion for engineers wishing to learn state-of-the-art methods or further develop their knowledge of best practice techniques, Arctic Pipeline Planning provides a working knowledge of the technology and techniques for laying pipelines in the coldest regions of the world. Arctic Pipeline Planning provides must-have elements that can be utilized through all phases of arctic pipeline planning and construction. This includes information on how to: Solve challenges in designing arctic pipelines Protect pipelines from everyday threats such as ice gouging and permafrost Maintain safety and communication for construction workers while supporting typical codes and standards Covers such issues as land survey, trenching or above ground, environmental impact of construction Provides on-site problem-solving techniques utilized through all phases of arctic pipeline planning and construction Is packed with easy-to-read and under...

  12. Arctic Ocean Paleoceanography and Future IODP Drilling

    Science.gov (United States)

    Stein, Ruediger

    2015-04-01

    Although the Arctic Ocean is a major player in the global climate/earth system, this region is one of the last major physiographic provinces on Earth where the short- and long-term geological history is still poorly known. This lack in knowledge is mainly due to the major technological/logistical problems in operating within the permanently ice-covered Arctic region which makes it difficult to retrieve long and undisturbed sediment cores. Prior to 2004, in the central Arctic Ocean piston and gravity coring was mainly restricted to obtaining near-surface sediments, i.e., only the upper 15 m could be sampled. Thus, all studies were restricted to the late Pliocene/Quaternary time interval, with a few exceptions. These include the four short cores obtained by gravity coring from drifting ice floes over the Alpha Ridge, where older pre-Neogene organic-carbon-rich muds and laminated biosiliceous oozes were sampled. Continuous central Arctic Ocean sedimentary records, allowing a development of chronologic sequences of climate and environmental change through Cenozoic times and a comparison with global climate records, however, were missing prior to the IODP Expedition 302 (Arctic Ocean Coring Expedition - ACEX), the first scientific drilling in the central Arctic Ocean. By studying the unique ACEX sequence, a large number of scientific discoveries that describe previously unknown Arctic paleoenvironments, were obtained during the last decade (for most recent review and references see Stein et al., 2014). While these results from ACEX were unprecedented, key questions related to the climate history of the Arctic Ocean remain unanswered, in part because of poor core recovery, and in part because of the possible presence of a major mid-Cenozoic hiatus or interval of starved sedimentation within the ACEX record. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key

  13. Scientific Drilling in the Arctic Ocean: A challenge for the next decades

    Science.gov (United States)

    Stein, R.; Coakley, B.

    2009-04-01

    Nansen Arctic Drilling Program as well as by sponsorships from British Petroleum, ConocoPhillips, ExxonMobil, Norwegian Petroleum Directorate, StatoilHydro, and Shell International. The major targets of the workshop were: (1) to bring together an international group of Arctic scientists, young scientists and ocean drilling scientists to learn and exchange ideas, experience and enthusiasm about the Arctic Ocean; (2) to develop a scientific drilling strategy to investigate the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system; (3) to summarize the technical needs, opportunities, and limitations of drilling in the Arctic; (4) to define scientific and drilling targets for specific IODP-type campaigns in Arctic Ocean key areas to be finalized in the development of drilling proposals. Following overview presentations about the history of the Arctic Ocean, legacy of high-latitude ocean drilling, existing site-survey database, technical needs for high-latitude drilling, possibilities of collaboration with industry, and the process of developing ocean-drilling legs through IODP, the main part of the workshop was spent in thematic and regional break-out groups discussing the particular questions to be addressed by drilling and the particular targets for Arctic scientific drilling. Within the working groups, key scientific questions (related to the overall themes paleoceanography, tectonic evolution, petrology/geochemistry of basement, and gas hydrates) and strategies for reaching the overall goals were discussed and - as one of the main results - core groups for further developing drilling proposals were formed. Based on discussions at this workshop, approximately ten new pre-proposals are planned to be submitted to IODP for the April 01- 2009 deadline. We hope that the development of new scientific objectives through the pre-proposal process will help reshape plans for scientific ocean drilling beyond 2013 and direct

  14. The Arctic : the great breakup

    International Nuclear Information System (INIS)

    Lemieux, R.

    2007-01-01

    The impact that climate change has had on the famous Northwest passage in Canada's Arctic was discussed. The water channel through the Arctic Islands is now navigable during the summer and it has been predicted that in 40 years, it may be navigable throughout the entire year. Although the Arctic is still covered with snow, the icebergs which navigators have feared no longer exist. Environment Canada has cautioned that Canada's extreme north would be most at risk from global warming, with temperatures increasing by 6 degrees, or 3 times higher than in moderate zones. The joint Canadian-United States program Surface Heat Budget of the Arctic has also confirmed that the waters of the Beaufort Sea are less salty and relatively warmer. Climatologists also project that the predicted increase in snowfall will act as an insulation blanket, thereby preventing the ice from thickening. Scientists stated that the gigantic polar cap, which has been frozen for the past 3.2 million years, will have fissures everywhere by 2080. The Northwest passage will become easily accessible in less than 10 years. This article raised questions regarding the role of the Northwest passage as an international maritime route. It presented the case of the first successful passage of a U.S. commercial oil tanker in 1969 which created controversy regarding Canada's territorial waters. Fourty years later, this issue is still not resolved. The article questioned whether there should be more cooperation on both the Canadian and American sides in light of the shared common interests such as commerce, science and security. It was noted that although Canada has sovereignty of the Arctic Islands, there are eight other countries who share the Arctic. 4 figs

  15. [Variation characteristics and influencing factors of actual evapotranspiration under various vegetation types: A case study in the Huaihe River Basin, China.

    Science.gov (United States)

    Wu, Rong Jun; Xing, Xiao Yong

    2016-06-01

    The actual evapotranspiration was modelled utilizing the boreal ecosystem productivity simulator (BEPS) in Huaihe River Basin from 2001 to 2012. In the meantime, the quantitative analyses of the spatial-temporal variations of actual evapotranspiration characteristics and its influencing factors under different vegetation types were conducted. The results showed that annual evapotranspiration gradually decreased from southeast to northwest, tended to increase annually, and the monthly change for the average annual evapotranspiration was double-peak curve. The differences of evapotranspiration among vegetation types showed that the farmland was the largest contributor for the evapotranspiration of Huaihe Basin. The annual actual evapotranspiration of the mixed forest per unit area was the largest, and that of the bare ground per unit area was the smallest. The changed average annual evapotranspiration per unit area for various vegetation types indicated an increased tendency other than the bare ground, with a most significant increase trend for the evergreen broadleaf forest. The thermodynamic factors (such as average temperature) were the dominant factors affecting the actual evapotranspiration in the Huaihe Basin, followed by radiation and moisture factors.

  16. Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop

    Science.gov (United States)

    Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve

    2012-01-01

    Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation

  17. Screening of heavy metal containing waste types for use as raw material in Arctic clay-based bricks

    DEFF Research Database (Denmark)

    Belmonte, Louise Josefine; Ottosen, Lisbeth M.; Kirkelund, Gunvor Marie

    2016-01-01

    In the vulnerable Arctic environment, the impact of especially hazardous wastes can have severe consequences and the reduction and safe handling of these waste types are therefore an important issue. In this study, two groups of heavy metal containing particulate waste materials, municipal solid...... waste incineration (MSWI) fly and bottom ashes and mine tailings (i.e., residues from the mineral resource industry) from Greenland were screened in order to determine their suitability as secondary resources in clay-based brick production. Small clay discs, containing 20 or 40% of the different...... brick discs obtained satisfactory densities (1669-2007 kg/m3) and open porosities (27.9-39.9%). In contrast, the fly ash brick discs had low densities (1313-1578 kg/m3) and high open porosities (42.1-51. %). However, leaching tests on crushed brick discs revealed that heavy metals generally became more...

  18. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    Science.gov (United States)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  19. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels M.; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how...... they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  20. NATIONAL ATLAS OF THE ARCTIC

    Directory of Open Access Journals (Sweden)

    Nikolay S. Kasimov

    2018-01-01

    Full Text Available The National Atlas of the Arctic is a set of spatio-temporal information about the geographic, ecological, economic, historical-ethnographic, cultural, and social features of theArcticcompiled as a cartographic model of the territory. The Atlas is intended for use in a wide range of scientific, management, economic, defense, educational, and public activities. The state policy of theRussian Federationin the Arctic for the period until 2020 and beyond, states that the Arctic is of strategic importance forRussiain the 21st century. A detailed description of all sections of the Atlas is given. The Atlas can be used as an information-reference and educational resource or as a gift edition.

  1. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    Science.gov (United States)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  2. The role of the Arctic in future global petroleum supply

    Energy Technology Data Exchange (ETDEWEB)

    Lindholt, Lars; Glomsroed, Solveig

    2011-07-01

    The Arctic has a substantial share of global petroleum resources, but at higher costs than in most other petroleum provinces. Arctic states and petroleum companies are carefully considering the potential for future extraction in the Arctic. This paper studies the oil and gas supply from 6 arctic regions during 2010-2050 along with global economic growth and different assumptions regarding petroleum prices and resource endowments. Supply is calculated based on a global model of oil and gas markets. The data on undiscovered resources for the Arctic is based on the estimates by USGS. Sensitivity studies are carried out for two alternative price scenarios and for a 50 per cent reduction of arctic undiscovered resources compared with the USGS 2008 resource estimate. Although a major part of the undiscovered arctic petroleum resources is natural gas, our results show that the relative importance of the Arctic as a world gas supplier will decline, while its importance as a global oil producer may be maintained. We also show that less than full access to undiscovered oil resources will have minor effect on total arctic oil production and a marginal effect on arctic gas extraction. The reason is that Arctic Russia is an important petroleum producer with a sufficiently large stock of already discovered resources to support their petroleum production before 2050. (Author)

  3. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    Science.gov (United States)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  4. Future-Proofing Japan’s Interests in the Arctic

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    credentials Japan has to be involved in the leading Arctic forum. However, a closer look at its engagement in the Arctic indicates that Japan has genuine interests in political, economic, and environmental developments there. This essay examines Japan’s interests in the Arctic, its new role as an observer...

  5. Application of Terrestrial Ecosystem Monitoring under the CAFF Circumpolar Biodiversity Monitoring Program: Designing and Implementing Terrestrial Monitoring to Establish the Canadian High Arctic Research Station as a Flagship Arctic Environmental Monitoring Site

    Science.gov (United States)

    McLennan, D.; Kehler, D.

    2016-12-01

    The Canadian High Arctic Research Station (CHARS) is scheduled for completion in July 2017 and is the northern science component of Polar Knowledge Canada (POLAR). A mandated goal for POLAR is to establish the adjacent Experimental and Reference Area (ERA) as an Arctic Flagship monitoring site that will track change in Arctic terrestrial, freshwater and marine ecosystems. Situated in the community of Cambridge Bay, CHARS provides the opportunity to draw on the Indigenous Knowledge of local residents to help design and conduct the monitoring, and to operate 12 months a year. Monitoring at CHARS will be linked to networks nationally and internationally, and is being designed so that change in key indicators can be understood in terms of drivers and processes, modeled and scaled up regionally, and used to predict important changes in critical indicators. As a partner in the Circumpolar Biodiversity Monitoring Program (CBMP), the monitoring design for terrestrial ecosystems follows approaches outlined by the CBMP Terrestrial Expert Monitoring Group, who have listed key monitoring questions and identified a list of important Focal Ecosystem Components (FECs). To link drivers to FECs we are proposing a multi-scaled approach: 1) an Intensive Monitoring Area to establish replicated monitoring plots that track change in snow depth and condition, active layer depth, soil temperature, soil moisture, and soil solution chemistry that are spatially and temporally linked to changes in microbiological activity, CO2/CH4 net ecosystem flux, vegetation relative frequency, species composition, growth and foliar nutrient concentration, arthropod abundance, lemming abundance and health, and shorebird/songbird abundance and productivity. 2) These intensive observations are supported by watershed scale measures that will monitor, during the growing season, lemming winter nest abundance, songbird, shorebird and waterfowl staging and nesting, and other observations; in the winter we will

  6. The Thermodynamic Structure of Arctic Coastal Fog Occurring During the Melt Season over East Greenland

    Science.gov (United States)

    Gilson, Gaëlle F.; Jiskoot, Hester; Cassano, John J.; Gultepe, Ismail; James, Timothy D.

    2018-05-01

    An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980-2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65-80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.

  7. Towards Arctic Resource Governance of Marine Invasive Species

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    2015-01-01

    Scientific and policy-oriented publications highlighting the magnitude of uncertainty in the changing Arctic and the possibilities for effective regional governance are proliferating, yet it remains a challenging task to examine Arctic marine biodiversity. Limited scientific data are currently...... available. Through analysis of marine invasions in the Arctic, we work to identify and assess patterns in the knowledge gaps regarding invasive species in the Arctic that affect the ability to generate improved governance outcomes. These patterns are expected to depend on multiple aspects of scientific...... research into invasive species threats in the Arctic, including the ways in which known marine invasions are related to different stakeholder groups and existing disparate national and international experiences with invasive species. Stakeholdergroups include dominant industries (fishing, shipping, tourism...

  8. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  9. Arctic-midlatitude weather linkages in North America

    Science.gov (United States)

    Overland, James E.; Wang, Muyin

    2018-06-01

    There is intense public interest in whether major Arctic changes can and will impact midlatitude weather such as cold air outbreaks on the central and east side of continents. Although there is progress in linkage research for eastern Asia, a clear gap is conformation for North America. We show two stationary temperature/geopotential height patterns where warmer Arctic temperatures have reinforced existing tropospheric jet stream wave amplitudes over North America: a Greenland/Baffin Block pattern during December 2010 and an Alaska Ridge pattern during December 2017. Even with continuing Arctic warming over the past decade, other recent eastern US winter months were less susceptible for an Arctic linkage: the jet stream was represented by either zonal flow, progressive weather systems, or unfavorable phasing of the long wave pattern. The present analysis lays the scientific controversy over the validity of linkages to the inherent intermittency of jet stream dynamics, which provides only an occasional bridge between Arctic thermodynamic forcing and extended midlatitude weather events.

  10. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds

    Science.gov (United States)

    Popović, Predrag; Cael, B. B.; Silber, Mary; Abbot, Dorian S.

    2018-04-01

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  11. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.

    Science.gov (United States)

    Popović, Predrag; Cael, B B; Silber, Mary; Abbot, Dorian S

    2018-04-06

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  12. Coarse mode aerosols in the High Arctic

    Science.gov (United States)

    Baibakov, K.; O'Neill, N. T.; Chaubey, J. P.; Saha, A.; Duck, T. J.; Eloranta, E. W.

    2014-12-01

    Fine mode (submicron) aerosols in the Arctic have received a fair amount of scientific attention in terms of smoke intrusions during the polar summer and Arctic haze pollution during the polar winter. Relatively little is known about coarse mode (supermicron) aerosols, notably dust, volcanic ash and sea salt. Asian dust is a regular springtime event whose optical and radiative forcing effects have been fairly well documented at the lower latitudes over North America but rarely reported for the Arctic. Volcanic ash, whose socio-economic importance has grown dramatically since the fear of its effects on aircraft engines resulted in the virtual shutdown of European civil aviation in the spring of 2010 has rarely been reported in the Arctic in spite of the likely probability that ash from Iceland and the Aleutian Islands makes its way into the Arctic and possibly the high Arctic. Little is known about Arctic sea salt aerosols and we are not aware of any literature on the optical measurement of these aerosols. In this work we present preliminary results of the combined sunphotometry-lidar analysis at two High Arctic stations in North America: PEARL (80°N, 86°W) for 2007-2011 and Barrow (71°N,156°W) for 2011-2014. The multi-years datasets were analyzed to single out potential coarse mode incursions and study their optical characteristics. In particular, CIMEL sunphotometers provided coarse mode optical depths as well as information on particle size and refractive index. Lidar measurements from High Spectral Resolution lidars (AHSRL at PEARL and NSHSRL at Barrow) yielded vertically resolved aerosol profiles and gave an indication of particle shape and size from the depolarization ratio and color ratio profiles. Additionally, we employed supplementary analyses of HYSPLIT backtrajectories, OMI aerosol index, and NAAPS (Navy Aerosol Analysis and Prediction System) outputs to study the spatial context of given events.

  13. Dissolved organic carbon (DOC) concentrations in UK soils and the influence of soil, vegetation type and seasonality.

    Science.gov (United States)

    van den Berg, Leon J L; Shotbolt, Laura; Ashmore, Mike R

    2012-06-15

    Given the lack of studies which measured dissolved organic carbon (DOC) over long periods, especially in non-forest habitat, the aim of this study was to expand the existing datasets with data of mainly non-forest sites that were representative of the major soil and habitat types in the UK. A further aim was to predict DOC concentrations from a number of biotic and abiotic explanatory variables such as rainfall, temperature, vegetation type and soil type in a multivariate way. Pore water was sampled using Rhizon or Prenart samplers at two to three week intervals for 1 year. DOC, pH, organic carbon, carbon/nitrogen (C:N) ratios of soils and slope were measured and data on vegetation, soil type, temperature and precipitation were obtained. The majority of the variation in DOC concentrations between the UK sites could be explained by simple empirical models that included annual precipitation, and soil C:N ratio with precipitation being negatively related to DOC concentrations and C:N ratio being positively related to DOC concentrations. Our study adds significantly to the data reporting DOC concentrations in soils, especially in grasslands, heathlands and moorlands. Broad climatic and site factors have been identified as key factors influencing DOC concentrations. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The Eocene Arctic Azolla phenomenon: species composition, temporal range and geographic extent.

    Science.gov (United States)

    Collinson, Margaret; Barke, Judith; van der Burgh, Johan; van Konijnenburg-van Cittert, Johanna; Pearce, Martin; Bujak, Jonathan; Brinkhuis, Henk

    2010-05-01

    Azolla is a free-floating freshwater fern that is renowned for its rapid vegetative spread and invasive biology, being one of the world's fastest growing aquatic macrophytes. Two species of this plant have been shown to have bloomed and reproduced in enormous numbers in the latest Early to earliest Middle Eocene of the Arctic Ocean and North Sea based on samples from IODP cores from the Lomonosov Ridge (Arctic) and from outcrops in Denmark (Collinson et al 2009 a,b Review of Palaeobotany and Palynology 155,1-14; and doi:10.1016/j.revpalbo.2009.12.001). To determine the geographic and temporal extent of this Azolla phenomenon, and the spatial distribution of the different species, we have examined samples from 15 additional sites using material from ODP cores and commercial exploration wells. The sites range from the Sub-Arctic (Northern Alaska and Canadian Beaufort Mackenzie Basin) to the Nordic Seas (Norwegian-Greenland Sea and North Sea Basin). Our data show that the Azolla phenomenon involved at least three species. These are distinguished by characters of the megaspore apparatus (e.g. megaspore wall, floats, filosum) and the microspore massulae (e.g. glochidia fluke tips). The Lomonosov Ridge (Arctic) and Danish occurrences are monotypic but in other sites more than one species co-existed. The attachment to one another and the co-occurrence of megaspore apparatus and microspore massulae, combined with evidence that these spores were shed at the fully mature stage of their life cycle, shows that the Azolla remains were not transported over long distances, a fact which could not be assumed from isolated massula fragments alone. Our evidence, therefore, shows that Azolla plants grew on the ocean surfaces for approximately 1.2 million years (from 49.3 to 48.1 Ma) and that the Azolla phenomenon covered the area from Denmark northwards across the North Sea Basin and the whole of the Arctic and Nordic seas. Apparently, early Middle Eocene Northern Hemisphere middle

  15. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    Science.gov (United States)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  16. BETR-World: a geographically explicit model of chemical fate: application to transport of α-HCH to the Arctic

    International Nuclear Information System (INIS)

    Toose, L.; Woodfine, D.G.; MacLeod, M.; Mackay, D.; Gouin, J.

    2004-01-01

    The Berkeley-Trent (BETR)-World model, a 25 compartment, geographically explicit fugacity-based model is described and applied to evaluate the transport of chemicals from temperate source regions to receptor regions (such as the Arctic). The model was parameterized using GIS and an array of digital data on weather, oceans, freshwater, vegetation and geo-political boundaries. This version of the BETR model framework includes modification of atmospheric degradation rates by seasonally variable hydroxyl radical concentrations and temperature. Degradation rates in all other compartments vary with seasonally changing temperature. Deposition to the deep ocean has been included as a loss mechanism. A case study was undertaken for α-HCH. Dynamic emission scenarios were estimated for each of the 25 regions. Predicted environmental concentrations showed good agreement with measured values for the northern regions in air, and fresh and oceanic water and with the results from a previous model of global chemical fate. Potential for long-range transport and deposition to the Arctic region was assessed using a Transfer Efficiency combined with estimated emissions. European regions and the Orient including China have a high potential to contribute α-HCH contamination in the Arctic due to high rates of emission in these regions despite low Transfer Efficiencies. Sensitivity analyses reveal that the performance and reliability of the model is strongly influenced by parameters controlling degradation rates. - A geographically explicit multi-compartment model is applied to the transport of α-HCH to the Arctic, showing Europe and the Orient are key sources

  17. Terrestrial transect study on driving mechanism of vegetation changes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In terms of Chinese climate-vegetation model based on the classification of plant functional types, to- gether with climatic data from 1951 to 1980 and two future climatic scenarios (SRES-A2 and SRES-B2) in China from the highest and the lowest emission scenarios of greenhouse gases, the distribution patterns of vegetation types and their changes along the Northeast China Transect (NECT) and the North-South Transect of Eastern China (NSTEC) were simulated in order to understand the driving mechanisms of vegetation changes under climatic change. The results indicated that the vegetation distribution patterns would change significantly under future climate, and the major factors driving the vegetation changes were water and heat. However, the responses of various vegetation types to the changes in water and heat factors were obviously different. The vegetation changes were more sensi- tive to heat factors than to water factors. Thus, in the future climate warming will significantly affect vegetation distribution patterns.

  18. The great challenges in Arctic Ocean paleoceanography

    International Nuclear Information System (INIS)

    Stein, Ruediger

    2011-01-01

    Despite the importance of the Arctic in the climate system, the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, i.e., the Lomonosov Ridge, the Alpha-Mendeleev Ridge, and the Chukchi Plateau/Northwind Ridge, the Beaufort, Kara and Laptev sea continental margins, as well as the major Arctic gateways towards the Atlantic and Pacific oceans. The new detailed climate records from the Arctic Ocean spanning time intervals from the Late Cretaceous/Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world and representing short- and long-term climate variability on scales from 10 to 10 6 years, will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. With this, studying the Arctic Ocean is certainly one of the major challenges in climate research for the coming decades.

  19. A non-parametric, supervised classification of vegetation types on the Kaibab National Forest using decision trees

    Science.gov (United States)

    Suzanne M. Joy; R. M. Reich; Richard T. Reynolds

    2003-01-01

    Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in...

  20. NMR structure of the Arctic mutation of the Alzheimer's Aβ(1-40) peptide docked to SDS micelles

    Science.gov (United States)

    Usachev, K. S.; Filippov, A. V.; Khairutdinov, B. I.; Antzutkin, O. N.; Klochkov, V. V.

    2014-11-01

    The “Arctic” point mutation of the Alzheimer's amyloid β-peptide is a rare mutation leading to an early onset of Alzheimer's disease. The peptide may interact with neuronal membranes, where it can provide its toxic effects. We used 2D NMR spectroscopy to investigate the conformation of the “Arctic” mutant of Aβ1-40 Alzheimer's amyloid peptide in sodium dodecyl sulfate micelle solutions, which are the type of amphiphilic structures mimicking some properties of biomembranes. The study showed that the Arctic mutant of Aβ1-40 interacts with the surface of SDS micelles mainly through the Leu17-Asn27 310-helical region, while the Ile31-Val40 region is buried in the hydrophobic interior of the micelle. In contrast, wild-type Aβ1-40 interacts with SDS micelles through the Lys16-Asp23 α-helical region and Gly29-Met35. Both the Arctic mutant and the wild-type Aβ1-40 peptides interactions with SDS micelles are hydrophobic in nature. Aβ peptides are thought to be capable of forming pores in biomembranes that can cause changes in neuronal and endothelial cell membrane permeability. It has also been shown that Aβ peptides containing the “Arctic” mutation are more neurotoxic and aggregate more readily than the wild-type Aβ peptides at physiological conditions. Here, we propose that the extension of the helical structure of Leu17-Asn27 and a high aliphaticity (neutrality) of the C-terminal region in the Arctic Aβ peptides are consistent with the idea that formation of ion-permeable pores by Aβ oligomers may be one of prevailing mechanisms of a larger neuronal toxicity of the Arctic Aβ compared to the wild-type Aβ peptides, independent of oxidative damage and lipid peroxidation.

  1. Arctic Climate and Atmospheric Planetary Waves

    Science.gov (United States)

    Cavalieri, D. J.; Haekkinen, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Analysis of a fifty-year record (1946-1995) of monthly-averaged sea level pressure data provides a link between the phases of planetary-scale sea level pressure waves and Arctic Ocean and ice variability. Results of this analysis show: (1) a breakdown of the dominant wave 1 pattern in the late 1960's, (2) shifts in the mean phase of waves 1 and 2 since this breakdown, (3) an eastward shift in the phases of both waves 1 and 2 during the years of simulated cyclonic Arctic Ocean circulation relative to their phases during the years of anticyclonic circulation, (4) a strong decadal variability of wave phase associated with simulated Arctic Ocean circulation changes. Finally, the Arctic atmospheric circulation patterns that emerge when waves 1 and 2 are in their extreme eastern and western positions suggest an alternative approach for determining significant forcing patterns of sea ice and high-latitude variability.

  2. A quantitative assessment of Arctic shipping in 2010–2014

    KAUST Repository

    Eguíluz, Victor M.

    2016-08-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011–2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far.

  3. Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes

    Science.gov (United States)

    Bartlein, P.J.; Edwards, M.E.; Hostetler, Steven W.; Shafer, Sarah; Anderson, P.M.; Brubaker, L. B; Lozhkin, A. V

    2015-01-01

    Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modeling and paleo-observations. The subcontinental region of Beringia (northeastern Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia's early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present-day simulations of regional climate – one with modern and one with 11 ka geography – plus another simulation for 6 ka. In addition, we performed five ~ 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka Control, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present-day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal

  4. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    Science.gov (United States)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater

  5. Chapter 3: Status and trends of vegetation

    Science.gov (United States)

    James M. Guldin; Frank R. Thompson; Lynda L. Richards; Kyra C. Harper

    1999-01-01

    This chapter provides information about the vegetation cover of the Assessment area. The types and areal extent of vegetation in the Highlands are of interest for many reasons. Vegetation cover largely determines the availability of habitat for terrestrial animals, plants, and other organisms. Vegetation cover strongly influences what uses {e.g., timber, forage,...

  6. Enzymes inhibitory and radical scavenging potentials of two selected tropical vegetable (Moringa oleifera and Telfairia occidentalis leaves relevant to type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Tajudeen O. Jimoh

    Full Text Available ABSTRACT Moringa oleifera Lam., Moringaceae, and Telfairia occidentalis Hook. f., Curcubitaceae, leaves are two tropical vegetables of medicinal properties. In this study, the inhibitory activities and the radical scavenging potentials of these vegetables on relevant enzymes of type 2-diabetes (α-amylase and α-glucosidase were evaluated in vitro. HPLC-DAD was used to characterize the phenolic constituents and Fe2+-induced lipid peroxidation in rat's pancreas was investigated. Various radical scavenging properties coupled with metal chelating abilities were also determined. However, phenolic extracts from the vegetables inhibited α-amylase, α-glucosidase and chelated the tested metals (Cu2+ and Fe2+ in a concentration-dependent manner. More so, the inhibitory properties of phenolic rich extracts from these vegetables could be linked to their radical scavenging abilities. Therefore, this study may offer a promising prospect for M. oleifera and T. occidentalis leaves as a potential functional food sources in the management of type 2-diabetes mellitus.

  7. The influence of weather and lemmings on spatiotemporal variation in the abundance of multiple avian guilds in the arctic.

    Directory of Open Access Journals (Sweden)

    Barry G Robinson

    Full Text Available Climate change is occurring more rapidly in the Arctic than other places in the world, which is likely to alter the distribution and abundance of migratory birds breeding there. A warming climate can provide benefits to birds by decreasing spring snow cover, but increases in the frequency of summer rainstorms, another product of climate change, may reduce foraging opportunities for insectivorous birds. Cyclic lemming populations in the Arctic also influence bird abundance because Arctic foxes begin consuming bird eggs when lemmings decline. The complex interaction between summer temperature, precipitation, and the lemming cycle hinder our ability to predict how Arctic-breeding birds will respond to climate change. The main objective of this study was to investigate the relationship between annual variation in weather, spring snow cover, lemming abundance and spatiotemporal variation in the abundance of multiple avian guilds in a tundra ecosystem in central Nunavut, Canada: songbirds, shorebirds, gulls, loons, and geese. We spatially stratified our study area based on vegetation productivity, terrain ruggedness, and freshwater abundance, and conducted distance sampling to estimate strata-specific densities of each guild during the summers of 2010-2012. We also monitored temperature, rainfall, spring snow cover, and lemming abundance each year. Spatial variation in bird abundance matched what was expected based on previous ecological knowledge, but weather and lemming abundance also significantly influenced the abundance of some guilds. In particular, songbirds were less abundant during the cool, wet summer with moderate snow cover, and shorebirds and gulls declined with lemming abundance. The abundance of geese did not vary over time, possibly because benefits created by moderate spring snow cover were offset by increased fox predation when lemmings were scarce. Our study provides an example of a simple way to monitor the correlation between

  8. Encouraging children to eat vegetables

    OpenAIRE

    Buh, Alenka

    2014-01-01

    It is important for children to maintain a healthy and balanced diet throughout their childhood and youth. Children tend to skip vegetables in their meals as they are not much liked; the tastes of vegetables are also highly specific and each individual has to get used to them by repeated tasting. The aim of this undergraduate thesis was to analyse how often children eat vegetables, which types of vegetables they like and which they do not, to determine if the executed method of pedagogica...

  9. Amplified Arctic warming by phytoplankton under greenhouse warming.

    Science.gov (United States)

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  10. China in the Arctic: interests, actions and challenges

    Directory of Open Access Journals (Sweden)

    Njord Wegge

    2014-07-01

    Full Text Available This article gives an overview of China’s interest in and approach to the Arctic region. The following questions are raised: 1.Why is China getting involved in the Arctic, 2. How is China’s engagement in the Arctic playing out? 3, What are the most important issues that need to be solved in order for China to increase its relevance and importance as a political actor and partner in the Arctic. In applying a rationalist approach when answering the research questions, I identify how China in the last few years increasingly has been accepted as a legitimate stakeholder in the Arctic, with important stakes and activities in areas such as shipping, resource utilization and environmental science.  The article concludes with pointing out some issues that remain to be solved including Chinas role in issues of global politics, the role of observers in the Arctic Council as well as pointing out how China itself needs to decide important aspects of their future role in the region.

  11. Simulating carbon and water fluxes at Arctic and boreal ecosystems in Alaska by optimizing the modified BIOME-BGC with eddy covariance data

    Science.gov (United States)

    Ueyama, M.; Kondo, M.; Ichii, K.; Iwata, H.; Euskirchen, E. S.; Zona, D.; Rocha, A. V.; Harazono, Y.; Nakai, T.; Oechel, W. C.

    2013-12-01

    To better predict carbon and water cycles in Arctic ecosystems, we modified a process-based ecosystem model, BIOME-BGC, by introducing new processes: change in active layer depth on permafrost and phenology of tundra vegetation. The modified BIOME-BGC was optimized using an optimization method. The model was constrained using gross primary productivity (GPP) and net ecosystem exchange (NEE) at 23 eddy covariance sites in Alaska, and vegetation/soil carbon from a literature survey. The model was used to simulate regional carbon and water fluxes of Alaska from 1900 to 2011. Simulated regional fluxes were validated with upscaled GPP, ecosystem respiration (RE), and NEE based on two methods: (1) a machine learning technique and (2) a top-down model. Our initial simulation suggests that the original BIOME-BGC with default ecophysiological parameters substantially underestimated GPP and RE for tundra and overestimated those fluxes for boreal forests. We will discuss how optimization using the eddy covariance data impacts the historical simulation by comparing the new version of the model with simulated results from the original BIOME-BGC with default ecophysiological parameters. This suggests that the incorporation of the active layer depth and plant phenology processes is important to include when simulating carbon and water fluxes in Arctic ecosystems.

  12. Establishing Shared Knowledge about Globalization in Asia and the Arctic

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Graczyk, Piotr

    2016-01-01

    We discuss the role of knowledge in relations between Arctic communities and Asia (the Arctic Council observer states: China, India, Japan, Singapore, South Korea). We argue that mutual and shared knowledge between Arctic communities and Asia is necessary for local benefits and comprehensively su...... sustainable development for Arctic communities under globalization....

  13. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Climate change and the loss of organic archaeological deposits in the Arctic

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn

    2016-01-01

    The Arctic is warming twice as fast as the global average with overlooked consequences for the preservation of the rich cultural and environmental records that have been stored for millennia in archaeological deposits. In this article, we investigate the oxic degradation of different types...

  15. Climate change, future Arctic Sea ice, and the competitiveness of European Arctic offshore oil and gas production on world markets.

    Science.gov (United States)

    Petrick, Sebastian; Riemann-Campe, Kathrin; Hoog, Sven; Growitsch, Christian; Schwind, Hannah; Gerdes, Rüdiger; Rehdanz, Katrin

    2017-12-01

    A significant share of the world's undiscovered oil and natural gas resources are assumed to lie under the seabed of the Arctic Ocean. Up until now, the exploitation of the resources especially under the European Arctic has largely been prevented by the challenges posed by sea ice coverage, harsh weather conditions, darkness, remoteness of the fields, and lack of infrastructure. Gradual warming has, however, improved the accessibility of the Arctic Ocean. We show for the most resource-abundant European Arctic Seas whether and how a climate induced reduction in sea ice might impact future accessibility of offshore natural gas and crude oil resources. Based on this analysis we show for a number of illustrative but representative locations which technology options exist based on a cost-minimization assessment. We find that under current hydrocarbon prices, oil and gas from the European offshore Arctic is not competitive on world markets.

  16. High-Resolution Remote Sensing and Stable Isotope Patterns Across Heath-Shrub-Forest Ecotone at Abisko and Vassijaure, Northern Sweden

    Science.gov (United States)

    Schwan, M. R.; Herrick, C.; Hobbie, E. A.; Chen, J.; Varner, R. K.; Palace, M. W.; Marek, E.; Kashi, N. N.; Smith, S. L.

    2015-12-01

    Rapid warming in arctic and sub-arctic environments shifts plant community structure which in turn can alter carbon cycling by releasing large stocks of carbon sequestered in arctic soils. Much work has been done in sub-arctic peatlands to understand how shifts in dominant vegetation cover can ultimately affect global carbon balances, but less focus has been given to upland environments where similar changes are occurring. Recent circumpolar expansion of deciduous shrubs and trees in sub-arctic upland environments may alter carbon cycling due to shrubs and trees sequestering less C in soils than the heath plants they typically replace. In this study we explored the relationship between nutrient and carbon cycling and above-ground vegetation on six transects which traverse an ecotone gradient from heath tundra (dominated by ericoid mycorrhizal plants) through deciduous shrubs to deciduous trees (dominated by ectomycorrhizal plants) in upland environments of sub-arctic Sweden near Vassijaure (~850 mm precipitation) and Abisko (~300 mm precipitation). We collected soil and foliage for analysis of natural abundances of stable carbon and nitrogen isotopes (δ13C and δ15N), which can be a sensitive indicator of C and N dynamics. We also took high-resolution remote aerial imagery over the transects to calculate percent cover of vegetation types using GIS software. We concurrently estimated percent cover in smaller plots on the ground of three dominant species, Empetrum nigrum, Betula nana, and Betula pubescens, to serve as ground-truthing for the aerial imagery. Analysis of vegetation cover data shows significant differences in vegetation types along the transects. Preliminary multiple regression analysis of isotopes shows that δ13C in organic soil at the Vassijaure site is mostly controlled by distance along the transect, an interaction term between transect distance and soil depth, and δ15N (adjusted r2 = 0.85, p regression analyses, δ15N was primarily controlled by

  17. Sulphur in the Arctic environment (1): results of a catchment-based multi-medium study

    International Nuclear Information System (INIS)

    Kashulina, G.; Reimann, C.

    2001-01-01

    S-concentrations were determined in 9 different sample materials (precipitation (rain and snow), vegetation, O-, E-, B- and C-horizon of podzols, stream water and ground water) collected in eight small catchments (10-30 km 2 ) at different distances from major SO 2 point-source emitters on the Kola Peninsula, Russia. Comparison of the results from these materials, representing different compartments of the ecosystem under varying natural conditions leads to a better understanding of sources, cycling and fate of S in the Arctic environment. More than 300,000 t of SO 2 emitted annually from the Kola smelters affect the air quality over a large area. Arctic climatic conditions (cold and dry) and the remote location of the emitters result in considerably lower S-deposition values than those observed in central Europe. The pathways of atmospheric S-deposition in the terrestrial environment vary significantly from summer to winter because different compartments of the ecosystem, with a different capability to accumulate S, are active. The actual S-flux is altered by every component of the ecosystem. When estimating the total S-deposition this effect must be considered. (Author)

  18. Wieslander Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of the 1945 California Vegetation Type Maps by A. E. Wieslander of the U.S. Forest Service. Source scale of maps are 1:100,000. These compiled maps...

  19. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    Science.gov (United States)

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  20. INTERNATIONAL EXPERIENCE AND TRENDS OF INNOVATIVE DEVELOPMENT OF ARCTIC TERRITORIES

    Directory of Open Access Journals (Sweden)

    M. Dudin

    2015-01-01

    Full Text Available In this article and summarized the regularities of formation of foreign experience and trends of development of Arctic territories. Set out the important points predetermine orientation and specificity of manifestations of national interests – potential participants of the subsoil in the Arctic zone. On the basis of the illuminated materials were obtained the following conclusions: Signifi cant interest in the Arctic show today, not only the fi ve countries (Russia, USA, Canada, Norway, Denmark, who own Arctic territories, but also polar state (Iceland, Sweden, Finland, the European Union and Asia. As a consequence of that, it is expected that in the XXI century the Arctic region will be the focus of attention as an official Arctic 45, and a number of states whose territory is quite removed from it; For Russia, given the current, acute political conditions (sanctions, confrontation with the West, Ukrainian crisis and war in the Middle East development of Arctic territories, some moved away, moved on tomorrow and the day after tomorrow on the agenda. This approach is fundamentally fl awed and fraught with a number of threats, because other countries do not decrease, but only increase their interest in this issue; Territorial opposition to all those involved in the topic of causing instability in the Arctic region, but does not represent a real threat for the emergence of large-scale conflict. Therefore, making the choice between the hard pressure of national interests and the interests of harmonization of the Arctic states, Russia must be based on international cooperationand mutual consideration of interests in the development of its Arctic strategy; Considering the cooperation of the countries of the Arctic Council and their cooperation in the framework of a global economic forum G8, there are prerequisites for the decision of the Arctic confl ict through negotiation and compromise. In this context it is very important to develop

  1. Food expenditure patterns in the Canadian Arctic show cause for concern for obesity and chronic disease.

    Science.gov (United States)

    Pakseresht, Mohammadreza; Lang, Rosalyn; Rittmueller, Stacey; Roache, Cindy; Sheehy, Tony; Batal, Malek; Corriveau, Andre; Sharma, Sangita

    2014-04-17

    Little is understood about the economic factors that have influenced the nutrition transition from traditional to store-bought foods that are typically high in fat and sugar amongst people living in the Canadian Arctic. This study aims to determine the pattern of household food expenditure in the Canadian Arctic. Local food prices were collected over 12 months in six communities in Nunavut and the Northwest Territories. Dietary intake data were collected from 441 adults using a validated quantitative food frequency questionnaire. Money spent on six food groups was calculated along with the cost of energy and selected nutrients per person. Participants spent approximately 10% of total food expenditure on each of the food groups of fruit/vegetables, grains and potatoes, and dairy, 17% on traditional meats (e.g. caribou, goose, char, and seal liver), and 20% on non-traditional meats (e.g. beef, pork, chicken, fish, and processed meats). Non-nutrient-dense foods (NNDF) accounted for 34% of food expenditure. Younger participants (<30 years) spent more on NNDF and less on traditional meats compared with the older age groups. Participants with higher levels of formal education spent more on fruit and vegetables and less on traditional meats, when compared with participants with lower levels of formal education. Participants spent most household income on NNDF, a possible consequence of generation discrepancy between younger and older participants. The tendency toward NNDF, particularly among youth, should be addressed with an assessment of predictive factors and the development of targeted approaches to population-based interventions.

  2. Collaboration During the NASA ABoVE Airborne SAR Campaign: Sampling Strategies Used by NGEE Arctic and Other Partners in Alaska and Western Canada

    Science.gov (United States)

    Wullschleger, S. D.; Charsley-Groffman, L.; Baltzer, J. L.; Berg, A. A.; Griffith, P. C.; Jafarov, E. E.; Marsh, P.; Miller, C. E.; Schaefer, K. M.; Siqueira, P.; Wilson, C. J.; Kasischke, E. S.

    2017-12-01

    There is considerable interest in using L- and P-band Synthetic Aperture Radar (SAR) data to monitor variations in aboveground woody biomass, soil moisture, and permafrost conditions in high-latitude ecosystems. Such information is useful for quantifying spatial heterogeneity in surface and subsurface properties, and for model development and evaluation. To conduct these studies, it is desirable that field studies share a common sampling strategy so that the data from multiple sites can be combined and used to analyze variations in conditions across different landscape geomorphologies and vegetation types. In 2015, NASA launched the decade-long Arctic-Boreal Vulnerability Experiment (ABoVE) to study the sensitivity and resilience of these ecosystems to disturbance and environmental change. NASA is able to leverage its remote sensing strengths to collect airborne and satellite observations to capture important ecosystem properties and dynamics across large spatial scales. A critical component of this effort includes collection of ground-based data that can be used to analyze, calibrate and validate remote sensing products. ABoVE researchers at a large number of sites located in important Arctic and boreal ecosystems in Alaska and western Canada are following common design protocols and strategies for measuring soil moisture, thaw depth, biomass, and wetland inundation. Here we elaborate on those sampling strategies as used in the 2017 summer SAR campaign and address the sampling design and measurement protocols for supporting the ABoVE aerial activities. Plot size, transect length, and distribution of replicates across the landscape systematically allowed investigators to optimally sample a site for soil moisture, thaw depth, and organic layer thickness. Specific examples and data sets are described for the Department of Energy's Next-Generation Ecosystem Experiments (NGEE Arctic) project field sites near Nome and Barrow, Alaska. Future airborne and satellite

  3. Measured Hydrologic Storage Characteristics of Three Major Ice Wedge Polygon Types, Barrow, Alaska

    Science.gov (United States)

    Chamberlain, A. J.; Liljedahl, A.; Wilson, C. J.; Cable, W.; Romanovsky, V. E.

    2014-12-01

    Model simulations have suggested that the hydrologic fluxes and stores of Arctic wetlands are constrained by the micro-topographical features of ice wedge polygons, which are abundant in lowland tundra landscapes. Recently observed changes in ice wedge polygon landscapes - in particular, ice wedge degradation and trough formation - emphasize the need to better understand how differing ice wedge polygon morphologies affect the larger hydrologic system. Here we present three seasons of measured end-of-winter snow accumulation, continuous soil moisture and water table elevations, and repeated frost table mapping. Together, these describe the hydrologic characteristics of three main ice wedge polygon types: low centered polygons with limited trough development (representative of a ~500 year old vegetated drained thaw lake basin), and low- and high-centered polygons with well-defined troughs. Dramatic spatiotemporal variability exists both between polygon types and between the features of an individual polygon (e.g. troughs, centers, rims). Landscape-scale end-of-winter snow water equivalent is similar between polygon types, while the sub-polygon scale distribution of the surface water differs, both as snow and as ponded water. Some sub-polygon features appear buffered against large variations in water levels, while others display periods of prolonged recessions and large responses to rain events. Frost table elevations in general mimic the ground surface topography, but with spatiotemporal variability in thaw rate. The studied thaw seasons represented above long-term average rainfall, and in 2014, record high June precipitation. Differing ice wedge polygon types express dramatically different local hydrology, despite nearly identical climate forcing and landscape-scale snow accumulation, making ice wedge polygons an important component when describing the Arctic water, nutrient and energy system.

  4. Amplified North Atlantic Warming in the Late Pliocene by Changes in Arctic Gateways

    Science.gov (United States)

    Otto-Bliesner, B. L.; Jahn, A.; Feng, R.; Brady, E. C.; Hu, A.; Lofverstrom, M.

    2017-12-01

    Reconstructions of the late Pliocene (mid-Piacenzian, 3.3 - 3.0 million years ago) sea surface temperature (SST) find much warmer conditions in the North Atlantic than modern. The much warmer SSTs, up to 8.8°C from sites with good dating and replicates from several different types of proxies, have been difficult for climate models to reproduce. Even with the slow feedbacks of a reduced Greenland ice sheet and expansion of boreal forests to the Arctic Ocean over Canada and Eurasia, models cannot warm the North Atlantic sufficiently to match the reconstructed SSTs. An enhancement of the Atlantic Meridional Overturning Circulation (AMOC) during the late Pliocene, proposed as a possible mechanism based on ocean core records of δ13C, also is not present in the model simulations. Here, we present CESM simulations using a new reconstruction of late Pliocene paleogeography that has the Bering Strait (BS) and Canadian Arctic Archipelago (CAA) Straits closed. We find that the closure of these small Arctic gateways strengthens the AMOC, by inhibiting freshwater (FW) transport from the Pacific to the Arctic Ocean and from the Arctic Ocean to the Labrador Sea, leading to warmer sea surface temperatures in the North Atlantic. The cutoff of the short export route through the CAA results in a more saline Labrador and south Greenland Sea with increased deep convection. At the same time, as all FW now leaves the Arctic east of Greenland, there is a freshening of and decreased deepwater formation in the Norwegian Sea. Overall, the AMOC strengthens. This past time period has implications for a future Earth under more responsible scenarios of emissions. Late Pliocene atmospheric carbon dioxide concentrations are estimated to have ranged between 350 and 450 ppmv and the paleogeography is relatively similar to modern. Our study indicates that the state of the Arctic gateways may influence the sensitivity of the North Atlantic climate in complex ways, and better understanding of the

  5. Vegetation mapping of the Mond Protected Area of Bushehr Province (south-west Iran).

    Science.gov (United States)

    Mehrabian, Ahmadreza; Naqinezhad, Alireza; Mahiny, Abdolrassoul Salman; Mostafavi, Hossein; Liaghati, Homan; Kouchekzadeh, Mohsen

    2009-03-01

    Arid regions of the world occupy up to 35% of the earth's surface, the basis of various definitions of climatic conditions, vegetation types or potential for food production. Due to their high ecological value, monitoring of arid regions is necessary and modern vegetation studies can help in the conservation and management of these areas. The use of remote sensing for mapping of desert vegetation is difficult due to mixing of the spectral reflectance of bright desert soils with the weak spectral response of sparse vegetation. We studied the vegetation types in the semiarid to arid region of Mond Protected Area, south-west Iran, based on unsupervised classification of the Spot XS bands and then produced updated maps. Sixteen map units covering 12 vegetation types were recognized in the area based on both field works and satellite mapping. Halocnemum strobilaceum and Suaeda fruticosa vegetation types were the dominant types and Ephedra foliata, Salicornia europaea-Suaeda heterophylla vegetation types were the smallest. Vegetation coverage decreased sharply with the increase in salinity towards the coastal areas of the Persian Gulf. The highest vegetation coverage belonged to the riparian vegetation along the Mond River, which represents the northern boundary of the protected area. The location of vegetation types was studied on the separate soil and habitat diversity maps of the study area, which helped in final refinements of the vegetation map produced.

  6. Hygroscopicity and composition of Alaskan Arctic CCN during April 2008

    Directory of Open Access Journals (Sweden)

    R. H. Moore

    2011-11-01

    Full Text Available We present a comprehensive characterization of cloud condensation nuclei (CCN sampled in the Alaskan Arctic during the 2008 Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project, a component of the POLARCAT and International Polar Year (IPY initiatives. Four distinct air mass types were sampled including a cleaner Arctic background and a relatively pristine sea ice boundary layer as well as biomass burning and anthropogenic pollution plumes. Despite differences in chemical composition, inferred aerosol hygroscopicities were fairly invariant and ranged from κ = 0.1–0.3 over the atmospherically-relevant range of water vapor supersaturations studied. Organic aerosols sampled were found to be well-oxygenated, consistent with long-range transport and aerosol aging processes. However, inferred hygroscopicities are less than would be predicted based on previous parameterizations of biogenic oxygenated organic aerosol, suggesting an upper limit on organic aerosol hygroscopicity above which κ is less sensitive to the O:C ratio. Most Arctic aerosols act as CCN above 0.1 % supersaturation, although the data suggest the presence of an externally-mixed, non-CCN-active mode comprising approximately 0–20% of the aerosol number. CCN closure was assessed using measured size distributions, bulk chemical composition, and assumed aerosol mixing states; CCN predictions tended toward overprediction, with the best agreement (±0–20 % obtained by assuming the aerosol to be externally-mixed with soluble organics. Closure also varied with CCN concentration, and the best agreement was found for CCN concentrations above 100 cm−3 with a 1.5- to 3-fold overprediction at lower concentrations.

  7. Recent Arctic sea level variations from satellites

    OpenAIRE

    Ole Baltazar Andersen; Gaia ePiccioni

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher...

  8. Status and Impacts of Arctic Freshwater Export

    Science.gov (United States)

    Haine, T. W. N.

    2017-12-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980-2000, with an extra ≈5000 km3—about 25%—being stored. The sources of freshwater to the Arctic from precipitation and runoff have increased between these periods (most of the evidence comes from models). Despite flux increases from 2001 to 2011, it is uncertain if the marine freshwater source through Bering Strait for the 2000s has changed, as observations in the 1980s and 1990s are incomplete. The marine freshwater fluxes draining the Arctic through Fram and Davis straits are also insignificantly different. In this way, the balance of sources and sinks of freshwater to the Arctic, Canadian Arctic Archipelago (CAA), and Baffin Bay shifted to about 1200±730 km3yr-1 freshening the region, on average, during the 2000s. The observed accumulation of liquid freshwater is consistent with this increased supply and the loss of freshwater from sea ice (Figure, right). Evidence exists that such discharges can impact the Atlantic meridional overturning circulation, and hence Atlantic sector climate. Nevertheless, it appears that the observed AMOC variability since 2004, when high quality measurements began, is not attributable to anthropogenic influence. This work is based on, and updated from, Haine et al. (2015), Carmack et al. (2016), and Haine (2016). Haine, T. W. N. Ocean science: Vagaries of Atlantic overturning. Nature Geoscience, 9, 479-480, 10.1038/ngeo2748, 2016. T. W. N. Haine et al., Arctic Freshwater Export: Status, Mechanisms, and Prospects, Global Planetary Change, 125, 13-35, 10.1016/j.glopacha.2014.11.013, 2015. E. Carmack et al., Fresh water and its role in the Arctic Marine System: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. G. Res. Biogeosciences, 10.1002/2015JG003140, 2016.

  9. Variability of the Arctic Basin Oceanographic Fields

    National Research Council Canada - National Science Library

    Sabinin, K

    1996-01-01

    ...." Special attention was paid to Atlantic Water in the Arctic Ocean which seems to be the main source of information in acoustic monitoring of the ocean, in the framework of the Arctic-ATOC program...

  10. An analysis on vegetation pattern of ecotone in North China

    Energy Technology Data Exchange (ETDEWEB)

    Jia, J.C.; Zhang, H.Y. [North China Electric Power Univ., Beijing (China). Energy and Environmental Research Center

    2008-07-01

    Vegetation pattern is influenced by several natural factors, including climatic elements, elevation factors and soil conditions. Since soil formation and soil types are influenced by water-temperature conditions, much can be learned about vegetation distribution patterns by studying the relationship between water-temperature conditions and vegetation distribution. This paper presented the results of a study whose purpose was to provide scientific evidence for exploiting natural resources, planting trees, and restoring grassland from cropland. A warmth index (WI ) and humidity index (HI) were used to examine the relation between the distribution of vegetation and the water-temperature condition in North China's ecotone, the transition area between two adjacent but different plant communities, including steppe, bush and forest ecosystems. A vegetation map of the study site was digitized and then converted into a vegetation grid map from which 17 different vegetation types were chosen as the study object. A monthly mean temperature grid map and precipitation grid map of the study site were made based on the method of spatial interpolation, by using 119 meteorological data for 50 years during the period from 1951 to 2000. The thermal distribution curves and humidity distribution curves of 17 vegetation types in North China, determined the whole range and optimum range of WI and HI of 17 vegetation types. The relative proportion of each vegetation type distributed in the optimum range of WI and HI were calculated. The vegetation pattern was analyzed according to the WI and HI standard, and was described by species and their relative amount. 10 refs., 5 tabs., 3 figs.

  11. The Arctic Cooperative Data and Information System: Data Management Support for the NSF Arctic Research Program (Invited)

    Science.gov (United States)

    Moore, J.; Serreze, M. C.; Middleton, D.; Ramamurthy, M. K.; Yarmey, L.

    2013-12-01

    The NSF funds the Advanced Cooperative Arctic Data and Information System (ACADIS), url: (http://www.aoncadis.org/). It serves the growing and increasingly diverse data management needs of NSF's arctic research community. The ACADIS investigator team combines experienced data managers, curators and software engineers from the NSIDC, UCAR and NCAR. ACADIS fosters scientific synthesis and discovery by providing a secure long-term data archive to NSF investigators. The system provides discovery and access to arctic related data from this and other archives. This paper updates the technical components of ACADIS, the implementation of best practices, the value of ACADIS to the community and the major challenges facing this archive for the future in handling the diverse data coming from NSF Arctic investigators. ACADIS provides sustainable data management, data stewardship services and leadership for the NSF Arctic research community through open data sharing, adherence to best practices and standards, capitalizing on appropriate evolving technologies, community support and engagement. ACADIS leverages other pertinent projects, capitalizing on appropriate emerging technologies and participating in emerging cyberinfrastructure initiatives. The key elements of ACADIS user services to the NSF Arctic community include: data and metadata upload; support for datasets with special requirements; metadata and documentation generation; interoperability and initiatives with other archives; and science support to investigators and the community. Providing a self-service data publishing platform requiring minimal curation oversight while maintaining rich metadata for discovery, access and preservation is challenging. Implementing metadata standards are a first step towards consistent content. The ACADIS Gateway and ADE offer users choices for data discovery and access with the clear objective of increasing discovery and use of all Arctic data especially for analysis activities

  12. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover

    OpenAIRE

    Nummelin, Aleksi; Ilicak, Mehmet; Li, Camille; Smedsrud, Lars Henrik

    2016-01-01

    The Arctic Ocean has important freshwater sources including river runoff, low evaporation, and exchange with the Pacific Ocean. In the future, we expect even larger freshwater input as the global hydrological cycle accelerates, increasing high-latitude precipitation, and river runoff. Previous modeling studies show some robust responses to high-latitude freshwater perturbations, including a strengthening of Arctic stratification and a weakening of the large-scale ocean circulation...

  13. Ground ice as indicator of the Pleistocene history of the Russian Arctic

    Directory of Open Access Journals (Sweden)

    N. A. Shpolyanskaya

    2013-01-01

    Full Text Available Based on the analysis of massive ground ice origin, the geological development of the Russian Arctic in the Quaternary period has been considered. A classification of massive ice with two new genetic types (submarine and coastal-marine and new mechanism of their formation have been proposed by the author. The possibility of permafrost formation with massive ice directly in marine environments has been calculated. Significant differences in the geological development of western and eastern Arctic, particularly in the transgressive-regressive mode, have been revealed. This calls into question the leading role of glacial eustatic processes in sea level fluctuations and brings to the fore the role of tectonic processes.

  14. Romantic notions about the arctic must include indigenous rights

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2017-01-01

    The Arctic plays a big role in Canada's national identity. But as Canada's relationship with the region evolves, the interests of Indigenous peoples must be better represented. This article summarizes the research in my book 'International Disputes and Cultural Ideas in the Canadian Arctic: Arctic...

  15. The 2008 Circum-Arctic Resource Appraisal

    Science.gov (United States)

    Moore, Thomas E.; Gautier, Donald L.

    2017-11-15

    Professional Paper 1824 comprises 30 chapters by various U.S. Geological Survey authors, including introduction and methodology chapters, which together provide documentation of the geological basis and methodology of the 2008 Circum-Arctic Resource Appraisal, results of which were first released in August 2008.  Twenty-eight chapters summarize the petroleum geology and resource potential of individual, geologically defined provinces north of the Arctic Circle, including those of northern Alaska, northern Canada, east and west Greenland, and most of Arctic Russia, as well as certain offshore areas of the north Atlantic Basin and the Polar Sea. Appendixes tabulate the input and output information used during the assessment.

  16. Vegetation types, dominant compositions, woody plant diversity and stand structure in Trishna Wildlife Sanctuary of Northeast India.

    Science.gov (United States)

    Majumdar, Koushik; Datta, B K

    2015-03-01

    Present study was carried out to assess the vegetation types, diversity and phytosociological status of woody plants in Trishna Wildlife Sanctuary of Tripura, Northeast India. Vegetation data was derived by 25 line transects (10 m wide and 500 m length, each 0.5 ha size). All woody species at >10 cm gbh (Girth at Breast Height) within each plots were measured and counted. A total of six forest types were classified by cluster analysis using Importance Value Index (IVI) of 289 woody species. Species diversity, forest structure and woody community associations were evaluated and discussed. One way ANOVA revealed significant differences in all species diversity measures and stand structure along the forest types. Distribution of stem density at ten different gbh classes showed reverse J-shaped curves. Population status of woody plants was also examined through grouping of all individuals into four population age stages viz. sapling ( or = 30 - 120 - 210 cm gbh) and old (> or =210 cm). To observe dominant composition and species population trend, IVI of top ten dominant species from all forest types were tabulated. The present study suggested that Trishna Wildlife Sanctuary is an important habitat in Tripura from floristic point of view and it should be conserved on priority basis for remaining wildlife endurances and monitor for forest livelihoods products for sustainable biodiversity conservation in this region.

  17. Arctic air pollution: New insights from POLARCAT-IPY

    International Nuclear Information System (INIS)

    Law, Katharine S.; Ancellet, Gerard; Pelon, Jacques; Thomas, Jennie L.; Stohl, Andreas; Quinn, Patricia K.; Brock, Charles A.; Burkhart, John F.

    2014-01-01

    Given the rapid nature of climate change occurring in the Arctic and the difficulty climate models have in quantitatively reproducing observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at mid latitudes can be transported to the Arctic, resulting in a winter/spring aerosol maximum known as Arctic haze. However, many uncertainties remain about the composition and origin of Arctic pollution throughout the troposphere; for example, many climate-chemistry models fail to reproduce the strong seasonality of aerosol abundance observed at Arctic surface sites, the origin and deposition mechanisms of black carbon (soot) particles that darken the snow and ice surface in the Arctic is poorly understood, and chemical processes controlling the abundance of tropospheric ozone are not well quantified. The International Polar Year (IPY) Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, Climate, Chemistry, Aerosols and Transport (POLARCAT) core project had the goal to improve understanding about the origins of pollutants transported to the Arctic; to detail the chemical composition, optical properties, and climate forcing potential of Arctic aerosols; to evaluate the processes governing tropospheric ozone; and to quantify the role of boreal forest fires. This article provides a review of the many results now available based on analysis of data collected during the POLARCAT aircraft-, ship-, and ground-based field campaigns in spring and summer 2008. Major findings are highlighted and areas requiring further investigation are discussed. (authors)

  18. Three-dimensional woody vegetation structure across different land-use types and land-use intensities in a semi-arid savanna

    CSIR Research Space (South Africa)

    Fisher, J

    2009-07-01

    Full Text Available Factors influencing woody savanna vegetation structure across a land-use gradient of intensity (highly and lightly utilized communal rangeland) and type (national protected area, private game reserve and communal rangelands) were investigated. Small...

  19. Rift systems of the Russian Eastern Arctic shelf and Arctic deep water basins: link between geological history and geodynamics

    Directory of Open Access Journals (Sweden)

    A. M. Nikishin

    2017-01-01

    Full Text Available In our study, we have developed a new tectonic scheme of the Arctic Ocean, which is based mainly on seismic profiles obtained in the Arctic-2011, Arctic-2012 and Arctic-2014 Projects implemented in Russia. Having interpreted many seismic profiles, we propose a new seismic stratigraphy of the Arctic Ocean. Our main conclusions are drawn from the interpretation of the seismic profiles and the analysis of the regional geological data. The results of our study show that rift systems within the Laptev, the East Siberian and the Chukchi Seas were formed not earlier than Aptian. The geological structure of the Eurasian, Podvodnikov, Toll and Makarov Basins is described in this paper. Having synthesized all the available data on the study area, we propose the following model of the geological history of the Arctic Ocean: 1. The Canada Basin formed till the Aptian (probably, during Hauterivian-Barremian time. 2. During the Aptian-Albian, large-scale tectonic and magmatic events took place, including plume magmatism in the area of the De Long Islands, Mendeleev Ridge and other regions. Continental rifting started after the completion of the Verkhoyansk-Chukotka orogenу, and rifting occurred on the shelf of the Laptev, East Siberian, North Chukchi and South Chukchi basins, and the Chukchi Plateau; simultaneously, continental rifting started in the Podvodnikov and Toll basins. 3. Perhaps the Late Cretaceous rifting continued in the Podvodnikov and Toll basins. 4. At the end of the Late Cretaceous and Paleocene, the Makarov basin was formed by rifting, although local spreading of oceanic crust during its formation cannot be excluded. 5. The Eurasian Basin started to open in the Early Eocene. We, of course, accept that our model of the geological history of the Arctic Ocean, being preliminary and debatable, may need further refining. In this paper, we have shown a link between the continental rift systems on the shelf and the formation history of the Arctic

  20. Can Canada Avoid Arctic Militarization?

    Science.gov (United States)

    2014-05-20

    global market and the evolution of new fracking technology for the extraction of shale hydrocarbons, the development of the Canadian Arctic might not...resources extraction . In hydrocarbons alone, the United States Geological Survey estimates that there are approximately 90 billion barrels of oil...1,669 trillion cubic feet of natural gas , and 44 billion barrels of natural gas liquids currently undiscovered in the Arctic, with 84 percent lying in

  1. Interaction webs in arctic ecosystems

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Hardwick, Bess; Gilg, Olivier

    2017-01-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they ...... that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems....

  2. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    Science.gov (United States)

    Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2015-12-01

    Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress over such a large expanse of the Arctic. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and other related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 7700 observation sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. During 2015, the web mapping application has been enhanced by the addition of a query builder that allows users to create rich and complex queries. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. Substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies, the AOV data set has been structured and centralized within a relational database and the application front-end has been ported to HTML5 to enable mobile access. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches and an administration web based data management system that allows administrators to add, update, and delete information in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but

  3. Atlas of the potential vegetation of Ethiopia

    DEFF Research Database (Denmark)

    Friis, Ib; Demissew, Sebsebe; van Breugel, Paulo

    Based on many years of field work by the two senior authors (Ib Friis and Sebsebe Demissew) and with the application of GIS analyses (by P. van Breugel) 15 major vegetation types in Ethiopia are described and mapped. The book descibes the structure and floristic composition of the vegetation types...

  4. Benzothiadiazole affects the leaf proteome in arctic bramble (Rubus arcticus).

    Science.gov (United States)

    Hukkanen, Anne; Kokko, Harri; Buchala, Antony; Häyrinen, Jukka; Kärenlampi, Sirpa

    2008-11-01

    Benzothiadiazole (BTH) induces resistance to the downy mildew pathogen, Peronospora sparsa, in arctic bramble, but the basis for the BTH-induced resistance is unknown. Arctic bramble cv. Mespi was treated with BTH to study the changes in leaf proteome and to identify proteins with a putative role in disease resistance. First, BTH induced strong expression of one PR-1 protein isoform, which was also induced by salicylic acid (SA). The PR-1 was responsive to BTH and exogenous SA despite a high endogenous SA content (20-25 microg/g fresh weight), which increased to an even higher level after treatment with BTH. Secondly, a total of 792 protein spots were detected in two-dimensional gel electrophoresis, eight proteins being detected solely in the BTH-treated plants. BTH caused up- or down-regulation of 72 and 31 proteins, respectively, of which 18 were tentatively identified by mass spectrometry. The up-regulation of flavanone-3-hydroxylase, alanine aminotransferase, 1-aminocyclopropane-1-carboxylate oxidase, PR-1 and PR-10 proteins may partly explain the BTH-induced resistance against P. sparsa. Other proteins with changes in intensity appear to be involved in, for example, energy metabolism and protein processing. The decline in ATP synthase, triosephosphate isomerase, fructose bisphosphate aldolase and glutamine synthetase suggests that BTH causes significant changes in primary metabolism, which provides one possible explanation for the decreased vegetative growth of foliage and rhizome observed in BTH-treated plants.

  5. International Disputes and Cultural Ideas in the Canadian Arctic

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    of the Canadian-Arctic relationship. Using Canada as the focus for the analysis, the purpose of this project is to contribute to the existing Arctic studies and international relations literature by examining how interests and disputes in the Canadian Arctic region have been affected by domestic cultural...

  6. Multinational Experiment 7. Maritime Security Region: The Arctic

    Science.gov (United States)

    2013-07-08

    increasingly affect human communities , natural systems, and infrastructure. Resources and Trade Routes in the Arctic Climate change in the Far...capelin, herring, navaga, and wolffishes. Some areas of the Arctic and sub-Arctic suffer from high levels of illegal fishing and overfishing , and...maneuvering, joint air defense drills, communications and search and rescue operations. The exercise is normally held every second year. 8 In

  7. Politics of sustainability in the Arctic (POSUSA)

    DEFF Research Database (Denmark)

    Gad, Ulrik Pram; Jakobsen, Uffe; Strandsbjerg, Jeppe

    The concept of sustainability is of central importance in Arctic politics. However, for different actors (governments, indigenious peoples, NGOs) the concept implies different sets of precautions and opportunities. Sustainability, therefore, is much more a fundamental concept to be further...... elaborated than a definable term with a specific meaning. This is the core hypothesis in a collective research project, the POSUSA project (Politics of Sustainability in the Arctic) that aims to map and analyse the role of sustainability in various political and economic strategies in the Arctic....

  8. Arctic tides from GPS on sea ice

    OpenAIRE

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2012-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic....

  9. Pristine Arctic: Background mapping of PAHs, PAH metabolites and inorganic trace elements in the North-Atlantic Arctic and sub-Arctic coastal environment

    Energy Technology Data Exchange (ETDEWEB)

    Jörundsdóttir, Hrönn Ólína, E-mail: hronn.o.jorundsdottir@matis.is [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Jensen, Sophie [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Hylland, Ketil; Holth, Tor Fredrik [Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Gunnlaugsdóttir, Helga [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Svavarsson, Jörundur [University of Iceland, Department of Life and Environmental Sciences, Askja - Natural Science Building, Sturlugata 7, 101 Reykjavík (Iceland); Ólafsdóttir, Ásdís [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland); El-Taliawy, Haitham [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Rigét, Frank; Strand, Jakob [Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde (Denmark); Nyberg, Elisabeth; Bignert, Anders [Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm (Sweden); Hoydal, Katrin S. [The Faroese Environment Agency, Traðagøta 38, P.O. Box 2048, FO-165 Argir, the Faroe Islands (Faroe Islands); Halldórsson, Halldór Pálmar [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland)

    2014-09-15

    As the ice cap of the Arctic diminishes due to global warming, the polar sailing route will be open larger parts of the year. These changes are likely to increase the pollution load on the pristine Arctic due to large vessel traffic from specific contaminant groups, such as polycyclic aromatic hydrocarbons (PAHs). A well-documented baseline for PAH concentrations in the biota in the remote regions of the Nordic Seas and the sub-Arctic is currently limited, but will be vital in order to assess future changes in PAH contamination in the region. Blue mussels (Mytilus edulis) were collected from remote sites in Greenland, Iceland, the Faroe Islands, Norway and Sweden as well as from urban sites in the same countries for comparison. Cod (Gadus morhua) was caught north of Iceland and along the Norwegian coast. Sixteen priority PAH congeners and the inorganic trace elements arsenic, cadmium, mercury and lead were analysed in the blue mussel samples as well as PAH metabolites in cod bile. Σ{sub 16}PAHs ranged from 28 ng/g dry weight (d.w.) (Álftafjörður, NW Iceland) to 480 ng/g d.w. (Ísafjörður, NW Iceland). Mussel samples from Mjóifjörður, East Iceland and Maarmorilik, West Greenland, contained elevated levels of Σ{sub 16}PAHs, 370 and 280 ng/g d.w., respectively. Levels of inorganic trace elements varied with highest levels of arsenic in mussels from Ísafjörður, Iceland (79 ng/g d.w.), cadmium in mussels from Mjóifjörður, Iceland (4.3 ng/g d.w.), mercury in mussels from Sørenfjorden, Norway (0.23 ng/g d.w.) and lead in mussels from Maarmorilik, Greenland (21 ng/g d.w.). 1-OH-pyrene was only found above limits of quantification (0.5 ng/mL) in samples from the Norwegian coast, ranging between 44 and 140 ng/ml bile. Generally, PAH levels were low in mussels from the remote sites investigated in the study, which indicates limited current effect on the environment. - Highlights: • Low levels of PAHs in blue mussels from remote areas of the Arctic. • Low

  10. The Sticking Point of the Arctic Dispute and China's Strategic Positioning

    Directory of Open Access Journals (Sweden)

    Shijun Li

    2014-12-01

    Full Text Available Global climate warming results in Arctic sea ice melting which increases the value of the Arctic. In recent years, the competition among Arctic coastal nations and nations outside the Arctic has become increasingly fierce for sovereignty over the Arctic Ocean, sea borders, resource extraction, channel control, and other marine interests. The crux of the Arctic dispute focuses on energy, control of the waterways, and geopolitics. To face up to the United States, Russia and Canada’s Arctic strategies, China should focus on energy security strategy. China should actively carry out multilateral cooperation with the Nordic countries, mainly on economic cooperation, and expand the scope of the demilitarized zone, thus becoming able to maximize the interests of the Chinese state.

  11. Changing Arctic Ocean freshwater pathways.

    Science.gov (United States)

    Morison, James; Kwok, Ron; Peralta-Ferriz, Cecilia; Alkire, Matt; Rigor, Ignatius; Andersen, Roger; Steele, Mike

    2012-01-04

    Freshening in the Canada basin of the Arctic Ocean began in the 1990s and continued to at least the end of 2008. By then, the Arctic Ocean might have gained four times as much fresh water as comprised the Great Salinity Anomaly of the 1970s, raising the spectre of slowing global ocean circulation. Freshening has been attributed to increased sea ice melting and contributions from runoff, but a leading explanation has been a strengthening of the Beaufort High--a characteristic peak in sea level atmospheric pressure--which tends to accelerate an anticyclonic (clockwise) wind pattern causing convergence of fresh surface water. Limited observations have made this explanation difficult to verify, and observations of increasing freshwater content under a weakened Beaufort High suggest that other factors must be affecting freshwater content. Here we use observations to show that during a time of record reductions in ice extent from 2005 to 2008, the dominant freshwater content changes were an increase in the Canada basin balanced by a decrease in the Eurasian basin. Observations are drawn from satellite data (sea surface height and ocean-bottom pressure) and in situ data. The freshwater changes were due to a cyclonic (anticlockwise) shift in the ocean pathway of Eurasian runoff forced by strengthening of the west-to-east Northern Hemisphere atmospheric circulation characterized by an increased Arctic Oscillation index. Our results confirm that runoff is an important influence on the Arctic Ocean and establish that the spatial and temporal manifestations of the runoff pathways are modulated by the Arctic Oscillation, rather than the strength of the wind-driven Beaufort Gyre circulation.

  12. Computational problems in Arctic Research

    International Nuclear Information System (INIS)

    Petrov, I

    2016-01-01

    This article is to inform about main problems in the area of Arctic shelf seismic prospecting and exploitation of the Northern Sea Route: simulation of the interaction of different ice formations (icebergs, hummocks, and drifting ice floes) with fixed ice-resistant platforms; simulation of the interaction of icebreakers and ice- class vessels with ice formations; modeling of the impact of the ice formations on the underground pipelines; neutralization of damage for fixed and mobile offshore industrial structures from ice formations; calculation of the strength of the ground pipelines; transportation of hydrocarbons by pipeline; the problem of migration of large ice formations; modeling of the formation of ice hummocks on ice-resistant stationary platform; calculation the stability of fixed platforms; calculation dynamic processes in the water and air of the Arctic with the processing of data and its use to predict the dynamics of ice conditions; simulation of the formation of large icebergs, hummocks, large ice platforms; calculation of ridging in the dynamics of sea ice; direct and inverse problems of seismic prospecting in the Arctic; direct and inverse problems of electromagnetic prospecting of the Arctic. All these problems could be solved by up-to-date numerical methods, for example, using grid-characteristic method. (paper)

  13. Future Arctic climate changes: Adaptation and mitigation time scales

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  14. Arctic Ocean Scientific Drilling: The Next Frontier

    Directory of Open Access Journals (Sweden)

    Ruediger Stein

    2010-04-01

    Full Text Available The modern Arctic Ocean appears to be changing faster than any other region on Earth. To understand the potential extent of high latitude climate change, it is necessary to sample the history stored in the sediments filling the basins and covering the ridges of the Arctic Ocean. These sediments have been imaged with seismic reflection data, but except for the superficial record, which has been piston cored, they have been sampled only on the Lomonosov Ridge in 2004 during the Arctic Coring Expedition (ACEX-IODP Leg 302; Backman et al., 2006 and in 1993 in the ice-free waters in the Fram Strait/Yermak Plateau area (ODP Leg 151; Thiede et al., 1996.Although major progress in Arctic Ocean research has been made during the last few decades, the short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution are poorly known compared to the other oceans. Despite the importance of the Arctic in the climate system, the database we have from this area is still very weak. Large segments of geologic time have not been sampled in sedimentary sections. The question of regional variations cannot be addressed.

  15. Determinants of vegetation distribution at continental scale. The contribution of natural and anthropogenic factors

    DEFF Research Database (Denmark)

    Greve, Michelle; Svenning, J.-C.; Lykke, Anne Mette

    2011-01-01

    It has long been debated what determines distribution of vegetation types, though this has rarely been tested at continental scale. We thus aimed to determine which vegetation types are most accurately predicted by natural environmental factors, and which of these factors best predict current veg...... was also assessed, and found to be of some importance for most vegetation types. We conclude that, in addition to including environmental variables in predicting vegetation distribution, it is essential that human impact be considered, also in future climate change scenarios....... vegetation distribution across Africa. Vegetation types were extracted from the Global Land Cover Map for the year 2000, and the distribution of vegetation types modelled in terms of climate, soil and topography. Annual precipitation was the best predictor of the distribution of all vegetation types...

  16. Application of Visible/near Infrared derivative spectroscopy to Arctic paleoceanography

    Science.gov (United States)

    Ortiz, Joseph D.

    2011-05-01

    The lack of well-preserved carbonate in much of the Arctic marine environment dictates the need for alternative methods of paleoceanographic reconstruction. The broad variety of physical properties measurements makes them well suited for use in a variety of environments, but they provide unique opportunities when employed in the Arctic. Because Arctic sediment is introduced and reworked by a variety of mechanisms, the signature from multiple processes becomes intermixed with the sediment. Many of these processes operate in other ocean basins, while some function only in Polar Regions. A strategy to address this mixing problem is to employ spectrally-resolved physical properties measurements, or to use multiple methods in conjunction to generate multivariate data sets, which can differentiate concurrent processes. Data of this type is well suited to multivariate analysis techniques such as sample-based or variable-based, varimax-rotated, principle component analysis (VPCA). These are methods that decompose the data matrix to infer process from orthogonal functions. The method is applied to cores from the Chukchi sea to document that visible derivative spectroscopy provides a powerful means of reconstructing sediment provenance. In the Chukchi Sea, diffuse spectral reflectance provides a proxy to monitor variations in Holocene flow through the Bering Strait.

  17. Application of Visible/near Infrared derivative spectroscopy to Arctic paleoceanography

    International Nuclear Information System (INIS)

    Ortiz, Joseph D

    2011-01-01

    The lack of well-preserved carbonate in much of the Arctic marine environment dictates the need for alternative methods of paleoceanographic reconstruction. The broad variety of physical properties measurements makes them well suited for use in a variety of environments, but they provide unique opportunities when employed in the Arctic. Because Arctic sediment is introduced and reworked by a variety of mechanisms, the signature from multiple processes becomes intermixed with the sediment. Many of these processes operate in other ocean basins, while some function only in Polar Regions. A strategy to address this mixing problem is to employ spectrally-resolved physical properties measurements, or to use multiple methods in conjunction to generate multivariate data sets, which can differentiate concurrent processes. Data of this type is well suited to multivariate analysis techniques such as sample-based or variable-based, varimax-rotated, principle component analysis (VPCA). These are methods that decompose the data matrix to infer process from orthogonal functions. The method is applied to cores from the Chukchi sea to document that visible derivative spectroscopy provides a powerful means of reconstructing sediment provenance. In the Chukchi Sea, diffuse spectral reflectance provides a proxy to monitor variations in Holocene flow through the Bering Strait.

  18. Effect of vegetation types on soil arbuscular mycorrhizal fungi and nitrogen-fixing bacterial communities in a karst region.

    Science.gov (United States)

    Liang, Yueming; Pan, Fujing; He, Xunyang; Chen, Xiangbi; Su, Yirong

    2016-09-01

    Arbuscular mycorrhizal (AM) fungi and nitrogen-fixing bacteria play important roles in plant growth and recovery in degraded ecosystems. The desertification in karst regions has become more severe in recent decades. Evaluation of the fungal and bacterial diversity of such regions during vegetation restoration is required for effective protection and restoration in these regions. Therefore, we analyzed relationships among AM fungi and nitrogen-fixing bacteria abundances, plant species diversity, and soil properties in four typical ecosystems of vegetation restoration (tussock (TK), shrub (SB), secondary forest (SF), and primary forest (PF)) in a karst region of southwest China. Abundance of AM fungi and nitrogen-fixing bacteria, plant species diversity, and soil nutrient levels increased from the tussock to the primary forest. The AM fungus, nitrogen-fixing bacterium, and plant community composition differed significantly between vegetation types (p fungi and nitrogen-fixing bacteria, respectively. Available phosphorus, total nitrogen, and soil organic carbon levels and plant richness were positively correlated with the abundance of AM fungi and nitrogen-fixing bacteria (p fungi and nitrogen-fixing bacteria increased from the tussock to the primary forest and highlight the essentiality of these communities for vegetation restoration.

  19. Influence of animal fat substitution by vegetal fat on Mortadella-type products formulated with different hydrocolloids

    Directory of Open Access Journals (Sweden)

    Erick Saldaña

    2015-12-01

    Full Text Available Meat has played a crucial role in human evolution and is an important component of a healthy and well-balanced diet on account of its nutritional properties, its high biological value as a source of protein, and the vitamins and minerals it supplies. We studied the effects of animal fat reduction and substitution by hydrogenated vegetal fat, sodium alginate and guar gum. Fatty acid composition, lipid oxidation, color and instrumental texture as well as the sensorial difference between low, substituted-fat and the traditional formulations for mortadella-type products were analyzed. Both substitution and reduction of animal fat decreased the saturated fatty acids percentage from 40% down to 31%. A texture profile analysis showed differences between the formulations. Furthermore, lipid oxidation values were not significant for treatments as regards the type and quantity of fat used while the use of sodium alginate and guar gum reduced the amounts of liquid released after cooking. Animal fat substitution does cause, however, a difference in overall sensorial perception compared with non-substituted products. The results confirm the viability of substituting vegetal fat for animal fat.

  20. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    Science.gov (United States)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.