WorldWideScience

Sample records for arctic tundra soils

  1. Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils

    Directory of Open Access Journals (Sweden)

    Akihiro eKoyama

    2014-10-01

    Full Text Available The pool of soil organic carbon (SOC in the Arctic is disproportionally large compared to those in other biomes. This large quantity of SOC accumulated over millennia due to slow rates of decomposition relative to net primary productivity. Decomposition is constrained by low temperatures and nutrient concentrations, which limit soil microbial activity. We investigated how nutrients limit bacterial and fungal biomass and community composition in organic and mineral soils within moist acidic tussock tundra ecosystems. We sampled two experimental arrays of moist acidic tussock tundra that included fertilized and non-fertilized control plots. One array included plots that had been fertilized annually since 1989 and the other since 2006. Fertilization significantly altered overall bacterial community composition and reduced evenness, to a greater degree in organic than mineral soils, and in the 1989 compared to the 2006 site. The relative abundance of copiotrophic α-proteobacteria and β-proteobacteria was higher in fertilized than control soils, and oligotrophic Acidobacteria were less abundant in fertilized than control soils at the 1989 site. Fungal community composition was less sensitive to increased nutrient availability, and fungal responses to fertilization were not consistent between soil horizons and sites. We detected two ectomycorrhizal genera, Russula and Cortinarius spp., associated with shrubs. Their relative abundance was not affected by fertilization despite increased dominance of their host plants in the fertilized plots. Our results indicate that fertilization, which has been commonly used to simulate warming in Arctic tundra, has limited applicability for investigating fungal dynamics under warming.

  2. Radiation budget and soil heat fluxes in different Arctic tundra vegetation types

    Science.gov (United States)

    Juszak, Inge; Iturrate Garcia, Maitane; Gastellu-Etchegorry, Jean-Philippe; Schaepman, Michael E.; Schaepman-Strub, Gabriela

    2016-04-01

    While solar radiation is one of the primary energy sources for warming and thawing permafrost soil, the amount of shortwave radiation reaching the soil is reduced by vegetation shading. Climate change has led to greening, shrub expansion and encroachment in many Arctic tundra regions and further changes are anticipated. These vegetation changes feed back to the atmosphere and permafrost as they modify the surface energy budget. However, canopy transmittance of solar radiation has rarely been measured or modelled for a variety of tundra vegetation types. We assessed the radiation budget of the most common vegetation types at the Kytalyk field site in North-East Siberia (70.8°N, 147.5°E) with field measurements and 3D radiative transfer modelling and linked it to soil heat fluxes. Our results show that Arctic tundra vegetation types differ in canopy albedo and transmittance as well as in soil heat flux and active layer thickness. Tussock sedges transmitted on average 56% of the incoming light and dwarf shrubs 27%. For wet sedges we found that the litter layer was very important as it reduced the average transmittance to only 6%. Model output indicated that both, albedo and transmittance, also depend on the spatial aggregation of vegetation types. We found that permafrost thaw was more strongly related to soil properties than to canopy shading. The presented radiative transfer model allows quantifying effects of the vegetation layer on the surface radiation budget in permafrost areas. The parametrised model can account for diverse vegetation types and variation of properties within types. Our results highlight small scale radiation budget and permafrost thaw variability which are indicated and partly caused by vegetation. As changes in species composition and biomass increase can influence thaw rates, small scale patterns should be considered in assessments of climate-vegetation-permafrost feedbacks.

  3. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    Science.gov (United States)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  4. Potential changes in arctic seasonality and plant communities may impact tundra soil chemistry and carbon dynamics

    Science.gov (United States)

    Crow, S.; Cooper, E.; Beilman, D.; Filley, T.; Reimer, P.

    2009-04-01

    On the Svalbard archipelago, as in other high Arctic regions, tundra soil organic matter (SOM) is primarily plant detritus that is largely stabilized by cold, moist conditions and low nitrogen availability. However, the resistance of SOM to decomposition is also influenced by the quality of organic matter inputs to soil. Different plant communities are likely to give different qualities to SOM, especially where lignin-rich woody species encroach into otherwise graminoid and bryophyte-dominated regions. Arctic woody plant species are particularly sensitive to changes in temperature, snow cover, and growing season length. In a changing environment, litter chemistry may emerge as an important control on tundra SOM stabilization. In summer 2007, we collected plant material and soil from the highly-organic upper horizon (appx. 0-5 cm) and the mineral-dominated lower horizon (appx. 5-10cm) from four locations in the southwest facing valleys of Svalbard, Norway. The central goal of the ongoing experiment is to determine whether a greater abundance of woody plants could provide a negative feedback to warming impacts on the carbon (C) balance of Arctic soils. Towards this, we used a combination of plant biopolymer analyses (cupric oxide oxidation and quantification of lignin-derived phenols and cutin/suberin-derived aliphatics) and radiocarbon-based estimates of C longevity and mean residence time (MRT) to characterize potential links between plant type and soil C pools. We found that graminoid species regenerate above- and belowground tissue each year, whereas woody species (Cassiope tetragona and Dryas octopetala) regenerated only leaves yearly. In contrast, C within live branches and roots persisted for 15-18 yr on average. Leaves from woody species remained nearly intact in surface litter for up to 20 yr without being incorporated into the upper soil horizon. Leaves from both graminoid and woody species were concentrated in lignin-derived phenols relative to roots, but

  5. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,

  6. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  7. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.

    Science.gov (United States)

    Gough, Laura; Moore, John C; Shaver, Gauis R; Simpson, Rodney T; Johnson, David R

    2012-07-01

    Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The

  8. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    Science.gov (United States)

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  9. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine;

    2006-01-01

    densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  10. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie;

    2015-01-01

    Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold...... season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic......, Bistorta vivipara, and Luzula arcuata at peak season. Nutrient availability was significantly higher with increased snow depth in the two mesic meadow vegetation types, but not in the drier heath vegetation. Nitrogen concentrations and delta N-15 values of Salix leaves were significantly higher in all...

  11. The unseen iceberg: plant roots in arctic tundra.

    Science.gov (United States)

    Iversen, Colleen M; Sloan, Victoria L; Sullivan, Patrick F; Euskirchen, Eugenie S; McGuire, A David; Norby, Richard J; Walker, Anthony P; Warren, Jeffrey M; Wullschleger, Stan D

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits - including distribution, chemistry, anatomy and resource partitioning - play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  12. The unseen iceberg: Plant roots in arctic tundra

    Science.gov (United States)

    Iverson, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.; Euskirchen, E.S.; McGuire, Anthony; Norby, Richard J.; Walker, Anthony P.; Warren, Jeffrey M.; Wullschleger, Stan D.

    2015-01-01

    Plant roots play a critical role in ecosystem function in arctic tundra, but root dynamics in these ecosystems are poorly understood. To address this knowledge gap, we synthesized available literature on tundra roots, including their distribution, dynamics and contribution to ecosystem carbon and nutrient fluxes, and highlighted key aspects of their representation in terrestrial biosphere models. Across all tundra ecosystems, belowground plant biomass exceeded aboveground biomass, with the exception of polar desert tundra. Roots were shallowly distributed in the thin layer of soil that thaws annually, and were often found in surface organic soil horizons. Root traits – including distribution, chemistry, anatomy and resource partitioning – play an important role in controlling plant species competition, and therefore ecosystem carbon and nutrient fluxes, under changing climatic conditions, but have only been quantified for a small fraction of tundra plants. Further, the annual production and mortality of fine roots are key components of ecosystem processes in tundra, but extant data are sparse. Tundra root traits and dynamics should be the focus of future research efforts. Better representation of the dynamics and characteristics of tundra roots will improve the utility of models for the evaluation of the responses of tundra ecosystems to changing environmental conditions.

  13. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra

    Institute of Scientific and Technical Information of China (English)

    DAI; Limin(代力民); WU; Gang(吴钢); ZHAO; Jingzhu(赵景柱); KONG; Hongmei(孔红梅); SHAO; Guofan(邵国凡); DENG; Hongbing(邓红兵)

    2002-01-01

    The alpine tundra on Changbai Mountain was formed as a left-over ‘island' in higher elevations after the glacier retrieved from the mid-latitude of Northern Hemisphere to the Arctic during the fourth ice age. The alpine tundra on Changbai Mountain also represents the best-reserved tundra ecosystems and the highest biodiversity in northeast Eurasia. This paper examines the quantity of carbon assimilation, litters, respiration rate of soil, and storage of organic carbon within the alpine tundra ecosystems on Changbai Mountain. The annual net storage of organic carbon was 2092 t/a, the total storage of organic carbon was 33457 t, the annual net storage of organic carbon in soil was 1054 t/a, the total organic carbon storage was 316203 t, and the annual respiration rate of soil was 92.9% and was 0.52 times more than that of the Arctic. The tundra-soil ecosystems in alpine Changbai Mountain had 456081 t of carbon storage, of which, organic carbon accounted for 76.7% whereas the mineral carbon accounted for 23.3%.

  14. Soil and Plant Mercury Concentrations and Pools in the Arctic Tundra of Northern Alaska by Hedge Christine, Obrist Daniel, Agnan Yannick, Moore Christopher, Biester Harald, Helmig Detlev

    Science.gov (United States)

    Hedge, C.; Agnan, Y.

    2015-12-01

    We present vegetation, soil and runoff mercury (Hg) concentrations and pool sizes in vegetation and soils at several arctic tundra sites, an area that represents <7 x 106 km2 of land surface globally. The primary measurement location is at Toolik Field Station (TFS, 68° 38' N) in northern Alaska, with additional samples collected along a transect from TFS to the Arctic Ocean, and in Noatak National Preserve to be collected in August 2015. Soil and vegetation samples from all sites will be analyzed for total Hg concentration, pH, soil texture, bulk density, soil moisture content, organic and total carbon (C), nitrogen, along with major and trace elements. Initial results already obtained from TFS (characterized as moist to wet tundra with Typic Aquiturbel soils) show Hg concentrations in tundra vegetation (112±15 μg kg-1) and organic soil (140±8 μg kg-1) similar to those found in temperate sites. Calculation of plant-based Hg deposition rates by litterfall of 17.3 μg kg-1 yr-1 were surprisingly high, exceeding all other Hg deposition fluxes at this site. Hg concentrations in mineral soils (95±3 μg kg-1) were 2-3 times higher than those found at temperate sites. Hg concentrations showed weak relationships to organic C concentrations contrasting patterns from temperate soils where concentrations typically decline with depth following lower organic carbon contents. In fact, vertical mass profiles of Hg showed a strong increase with depth, with mineral layers storing over 90% (200-500 g ha-1) of Hg within these soils. A principle component analysis including major and trace elements indicated that soil Hg was not of lithogenic origin but from atmospheric sources, possibly by long-range transport. Carbon-14 dating results showed over 7,000 years old organic carbon in mineral soils of the active layer where highest concentrations of soil Hg were observed, suggesting long term retention of atmospheric Hg. These patterns suggest vertical translocation of Hg from the

  15. Stochastic daily modeling of arctic tundra ecosystems

    Science.gov (United States)

    Erler, A.; Epstein, H. E.; Frazier, J.

    2011-12-01

    ArcVeg is a dynamic vegetation model that has simulated interannual variability of production and abundance of arctic tundra plant types in previous studies. In order to address the effects of changing seasonality on tundra plant community composition and productivity, we have uniquely adapted the model to operate on the daily timescale. Each section of the model-weather generation, nitrogen mineralization, and plant growth dynamics-are driven by daily fluctuations in simulated temperature conditions. These simulation dynamics are achieved by calibrating stochastic iterative loops and mathematical functions with raw field data. Air temperature is the fundamental driver in the model, parameterized by climate data collected in the field across numerous arctic tundra sites, and key daily statistics are extracted (mean and standard deviation of temperature for each day of the year). Nitrogen mineralization is calculated as an exponential function from the simulated temperature. The seasonality of plant growth is driven by the availability of nitrogen and constrained by historical patterns and dynamics of the remotely sensed normalized difference vegetation index (NDVI), as they pertain to the seasonal onset of growth. Here we describe the methods used for daily weather generation, nitrogen mineralization, and the daily competition among twelve plant functional types for nitrogen and subsequent growth. This still rather simple approach to vegetation dynamics has the capacity to generate complex relationships between seasonal patterns of temperature and arctic tundra vegetation community structure and function.

  16. Modelling regulation of decomposition and related root/mycorrhizal processes in arctic tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Linkins, A.E.

    1992-01-01

    Since this was the final year of this project principal activities were directed towards either collecting data needed to complete existing incomplete data sets or writing manuscripts. Data sets on Imnaviat Creek watershed basin are functionally complete and data finialized on the cellulose mineralizaiton and dust impact on soil organic carbon and phsophorus decomposition. Seven manuscripts were prepared, and are briefly outlined.

  17. Modelling regulation of decomposition and related root/mycorrhizal processes in arctic tundra soils. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Linkins, A.E.

    1992-09-01

    Since this was the final year of this project principal activities were directed towards either collecting data needed to complete existing incomplete data sets or writing manuscripts. Data sets on Imnaviat Creek watershed basin are functionally complete and data finialized on the cellulose mineralizaiton and dust impact on soil organic carbon and phsophorus decomposition. Seven manuscripts were prepared, and are briefly outlined.

  18. Decadal changes of phenological patterns over Arctic tundra biome

    Science.gov (United States)

    Jia, G. J.; Epstein, H. E.; Walker, D. A.; Wang, H.

    2008-12-01

    The northern high latitudes have experienced a continuous and accelerated trend of warming during the past 30 years, with most recent decade ranks the warmest years since 1850. Warmer springs are especially evident throughout the Arctic. Meanwhile, Arctic sea ice declined rapidly to unprecedented low extents in all months, with late summer experiences the most significant declining. Warming in the north is also evident from observations of early melting of snow and reducing snow cover. Now a key question is: in the warmth limited northern biome, what will happen to the phenological patterns of tundra vegetation as the global climate warms and seasonality of air temperature, sea ice, and snow cover shift? To answer the question we examined the onset of vegetation greenness, senescence of greenness, length of growing season, and dates of peak greenness along Arctic bioclimate gradients (subzones) to see how they change over years. Here, we combine multi-scale sub-pixel analysis and remote sensing time-series analysis to investigate recent decadal changes in vegetation phenology along spatial gradients of summer temperature and vegetation in the Arctic. The datasets used here are AVHRR 15-day 8 km time series, AVHRR 8-day 1 km dataset, and MODIS 8-day 500m Collection 5 dataset. There were detectable changes in phenological pattern over tundra biome in past two decades. Increases of vegetation greenness were observed in most of the summer periods in low arctic and mid-summer in high arctic. Peak greenness appeared earlier in high arctic and declined slower after peak in low arctic. Generally, tundra plants were having longer and stronger photosynthesis activities, and therefore increased annual vegetation productivities. Field studies have observed early growth and enhanced peak growth of many deciduous shrub species in tundra plant communities. These changes in seasonality are very likely to alter surface albedo and heat budget, modify plant photosynthesis

  19. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  20. Recent Arctic tundra fire initiates widespread thermokarst development

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, Guido; Arp, Christopher D.; Miller, Eric K.; Liu, Lingli; Hayes, Daniel J.; Larsen, Christopher F.

    2015-01-01

    Fire-induced permafrost degradation is well documented in boreal forests, but the role of fires in initiating thermokarst development in Arctic tundra is less well understood. Here we show that Arctic tundra fires may induce widespread thaw subsidence of permafrost terrain in the first seven years following the disturbance. Quantitative analysis of airborne LiDAR data acquired two and seven years post-fire, detected permafrost thaw subsidence across 34% of the burned tundra area studied, compared to less than 1% in similar undisturbed, ice-rich tundra terrain units. The variability in thermokarst development appears to be influenced by the interaction of tundra fire burn severity and near-surface, ground-ice content. Subsidence was greatest in severely burned, ice-rich upland terrain (yedoma), accounting for ~50% of the detected subsidence, despite representing only 30% of the fire disturbed study area. Microtopography increased by 340% in this terrain unit as a result of ice wedge degradation. Increases in the frequency, magnitude, and severity of tundra fires will contribute to future thermokarst development and associated landscape change in Arctic tundra regions.

  1. Estimation and extrapolation of soil properties in the Siberian tundra, using field spectroscopy

    NARCIS (Netherlands)

    Bartholomeus, H.; Schaepman-Strub, G.; Blok, D.; Udaltsov, S.; Sofronov, R.

    2010-01-01

    The Siberian tundra is a complex and sensitive ecosystem. Predicted global warming will be highest in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to the carbon fluxes in the Arctic will have significant

  2. Disturbance and Recovery of Arctic Alaskan Tundra Terrain. A Review of Recent Investigations.

    Science.gov (United States)

    1987-07-01

    always considerably along the coastal plain according to available, possibly in the seed bank. Bryophyte - local substrate and temperature regime, and...Anthropogenic disturbances ......................................... 14 Toward an ecological understanding of disturbance and recovery in arctic tundra...major topic the basic research on tundra ecology . Studies of of scientific research in northern Alaska for the the response of arctic tundra to human

  3. Carbon and nutrient responses to fire and climate warming in Alaskan arctic tundra

    Science.gov (United States)

    Jiang, Y.; Rastetter, E. B.; Shaver, G. R.; Rocha, A. V.; Kwiatkowski, B.; Pearce, A.; Zhuang, Q.; Mishra, U.

    2015-12-01

    Fire frequency has dramatically increased in the tundra of northern Alaska, which has major implications for the carbon budget of the region and the functioning of these ecosystems that support important wildlife species. We applied the Multiple Element Limitation (MEL) model to investigate both the short- and long-term post-fire succession of plant and soil carbon, nitrogen, and phosphorus fluxes and stocks along a burn severity gradient in the 2007 Anaktuvuk River Fire scar in northern Alaska. We compared the patterns of biomass and soil carbon, nitrogen and phosphorus recoveries with different burn severities and warming intensities. Modeling results indicated that the early regrowth of post-fire tundra vegetation was limited primarily by its canopy photosynthetic potential, rather than nutrient availability. The long-term recovery of C balance from fire disturbance is mainly determined by the internal redistribution of nutrients among ecosystem components, rather than the supply of nutrients from external sources (e.g., nitrogen deposition and fixation, phosphorus weathering). Soil organic matter is the principal source of plant-available nutrients and determines the spatial variation of vegetation biomass across the North Slope of Alaska. Across the North Slope of Alaska, we examined the effects of changes in N and P cycles on tundra C budgets under climate warming. Our results indicate that the ongoing climate warming in Arctic enhances mineralization and leads to a net transfer of nutrient from soil organic matter to vegetation, thereby stimulating tundra plant growth and increased C sequestration in the tundra ecosystems.

  4. Methane and Root Dynamics in Arctic Soil

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica

    on the global climate. We investigated two aspects of arctic ecosystem dynamics which are not well represented in climatic models: i) soil methane (CH4) oxidation in dry heath tundra and barren soils and ii) root dynamics in wetlands. Field measurements were carried out during the growing season in Disko Island...

  5. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.

    Science.gov (United States)

    Deslippe, Julie R; Simard, Suzanne W

    2011-11-01

    • Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms.

  6. Long-term recovery patterns of arctic tundra after winter seismic exploration.

    Science.gov (United States)

    Jorgenson, Janet C; Ver Hoef, Jay M; Jorgenson, M T

    2010-01-01

    In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska's North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of

  7. Potential Arctic tundra vegetation shifts in response to changing temperature, precipitation and permafrost thaw

    Science.gov (United States)

    van der Kolk, Henk-Jan; Heijmans, Monique M. P. D.; van Huissteden, Jacobus; Pullens, Jeroen W. M.; Berendse, Frank

    2016-11-01

    Over the past decades, vegetation and climate have changed significantly in the Arctic. Deciduous shrub cover is often assumed to expand in tundra landscapes, but more frequent abrupt permafrost thaw resulting in formation of thaw ponds could lead to vegetation shifts towards graminoid-dominated wetland. Which factors drive vegetation changes in the tundra ecosystem are still not sufficiently clear. In this study, the dynamic tundra vegetation model, NUCOM-tundra (NUtrient and COMpetition), was used to evaluate the consequences of climate change scenarios of warming and increasing precipitation for future tundra vegetation change. The model includes three plant functional types (moss, graminoids and shrubs), carbon and nitrogen cycling, water and permafrost dynamics and a simple thaw pond module. Climate scenario simulations were performed for 16 combinations of temperature and precipitation increases in five vegetation types representing a gradient from dry shrub-dominated to moist mixed and wet graminoid-dominated sites. Vegetation composition dynamics in currently mixed vegetation sites were dependent on both temperature and precipitation changes, with warming favouring shrub dominance and increased precipitation favouring graminoid abundance. Climate change simulations based on greenhouse gas emission scenarios in which temperature and precipitation increases were combined showed increases in biomass of both graminoids and shrubs, with graminoids increasing in abundance. The simulations suggest that shrub growth can be limited by very wet soil conditions and low nutrient supply, whereas graminoids have the advantage of being able to grow in a wide range of soil moisture conditions and have access to nutrients in deeper soil layers. Abrupt permafrost thaw initiating thaw pond formation led to complete domination of graminoids. However, due to increased drainage, shrubs could profit from such changes in adjacent areas. Both climate and thaw pond formation

  8. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sonal, E-mail: S.Choudhary@sheffield.ac.uk [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Management School, University of Sheffield, Conduit Road, Sheffield S10 1FL (United Kingdom); Blaud, Aimeric [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); Osborn, A. Mark [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom); School of Applied Sciences, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Press, Malcolm C. [School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Manchester Metropolitan University, Manchester, M15 6BH (United Kingdom); Phoenix, Gareth K. [Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN (United Kingdom)

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem {sup 15}N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g N m{sup −2} yr{sup −1}, applied as {sup 15}NH{sub 4}{sup 15}NO{sub 3} in Svalbard (79{sup °}N), during the summer. Separate applications of {sup 15}NO{sub 3}{sup −} and {sup 15}NH{sub 4}{sup +} were also made to determine the importance of N form in their retention. More than 95% of the total {sup 15}N applied was recovered after one growing season (~ 90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants > vascular plants > organic soil > litter > mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of {sup 15}N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater {sup 15}NO{sub 3}{sup −} than {sup 15}NH{sub 4}{sup +}, suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events

  9. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils...

  10. The Blazing Arctic? Linkages of Tundra Fire Regimes to Climatic Change and Implications for Carbon Cycling (Invited)

    Science.gov (United States)

    Hu, F.; Higuera, P. E.; Walsh, J. E.; Chapman, W.; Duffy, P.; Brubaker, L.; Chipman, M. L.

    2010-12-01

    burned in Alaska was moderately correlated with sea-ice extent from 1979-2009 (r = -0.43, p = 0.02), suggesting links among multiple components of the climate system. These patterns imply that climate warming over land areas of the Arctic, amplified by the loss of sea ice, has the potential to dramatically increase tundra burns. Increased tundra burning and associated releases of soil carbon may change the role of tundra ecosystems in the global carbon cycle, but existing data are inadequate for evaluating this possibility. Ongoing work focuses on further characterizing the climatic and vegetation/fuel conditions under which large, severe tundra fires occur and assessing the effects of tundra fires on carbon cycling. Improving our understanding of tundra fire-regime responses to sea-ice reduction and climatic warming is necessary for projecting Earth system dynamics, developing ecosystem management strategies, and preparing arctic residents for future changes.

  11. Fourfold higher tundra volatile emissions due to arctic summer warming

    Science.gov (United States)

    Lindwall, Frida; Schollert, Michelle; Michelsen, Anders; Blok, Daan; Rinnan, Riikka

    2016-03-01

    Biogenic volatile organic compounds (BVOCs), which are mainly emitted by vegetation, may create either positive or negative climate forcing feedbacks. In the Subarctic, BVOC emissions are highly responsive to temperature, but the effects of climatic warming on BVOC emissions have not been assessed in more extreme arctic ecosystems. The Arctic undergoes rapid climate change, with air temperatures increasing at twice the rate of the global mean. Also, the amount of winter precipitation is projected to increase in large areas of the Arctic, and it is unknown how winter snow depth affects BVOC emissions during summer. Here we examine the responses of BVOC emissions to experimental summer warming and winter snow addition—each treatment alone and in combination—in an arctic heath during two growing seasons. We observed a 280% increase relative to ambient in BVOC emissions in response to a 4°C summer warming. Snow addition had minor effects on growing season BVOC emissions after one winter but decreased BVOC emissions after the second winter. We also examined differences between canopy and air temperatures and found that the tundra canopy surface was on average 7.7°C and maximum 21.6°C warmer than air. This large difference suggests that the tundra surface temperature is an important driver for emissions of BVOCs, which are temperature dependent. Our results demonstrate a strong response of BVOC emissions to increasing temperatures in the Arctic, suggesting that emission rates will increase with climate warming and thereby feed back to regional climate change.

  12. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    Science.gov (United States)

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  13. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert;

    2006-01-01

    the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production....... We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. •  Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site....... This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. •  We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has...

  14. Seasonal evolution of the effective thermal conductivity of the snow and the soil in high Arctic herb tundra at Bylot Island, Canada

    Science.gov (United States)

    Domine, Florent; Barrere, Mathieu; Sarrazin, Denis

    2016-11-01

    The values of the snow and soil thermal conductivity, ksnow and ksoil, strongly impact the thermal regime of the ground in the Arctic, but very few data are available to test model predictions for these variables. We have monitored ksnow and ksoil using heated needle probes at Bylot Island in the Canadian High Arctic (73° N, 80° W) between July 2013 and July 2015. Few ksnow data were obtained during the 2013-2014 winter, because little snow was present. During the 2014-2015 winter ksnow monitoring at 2, 12 and 22 cm heights and field observations show that a depth hoar layer with ksnow around 0.02 W m-1 K-1 rapidly formed. At 12 and 22 cm, wind slabs with ksnow around 0.2 to 0.3 W m-1 K-1 formed. The monitoring of ksoil at 10 cm depth shows that in thawed soil ksoil was around 0.7 W m-1 K-1, while in frozen soil it was around 1.9 W m-1 K-1. The transition between both values took place within a few days, with faster thawing than freezing and a hysteresis effect evidenced in the thermal conductivity-liquid water content relationship. The fast transitions suggest that the use of a bimodal distribution of ksoil for modelling may be an interesting option that deserves further testing. Simulations of ksnow using the snow physics model Crocus were performed. Contrary to observations, Crocus predicts high ksnow values at the base of the snowpack (0.12-0.27 W m-1 K-1) and low ones in its upper parts (0.02-0.12 W m-1 K-1). We diagnose that this is because Crocus does not describe the large upward water vapour fluxes caused by the temperature gradient in the snow and soil. These fluxes produce mass transfer between the soil and lower snow layers to the upper snow layers and the atmosphere. Finally, we discuss the importance of the structure and properties of the Arctic snowpack on subnivean life, as species such as lemmings live under the snow most of the year and must travel in the lower snow layer in search of food.

  15. Modelling the spatial pattern of ground thaw in a small basin in the arctic tundra

    Directory of Open Access Journals (Sweden)

    S. Endrizzi

    2011-01-01

    Full Text Available In the arctic tundra the ground is normally composed by a relatively thin organic soil layer, overlying mineral sediment. Subsurface water drainage generally occurs in the organic layer for its high hydraulic conductivity. However, the organic layer shows significant decrease of hydraulic conductivity with depth. The position and the topography of the frost table, which here acts as a relatively impermeable surface, are therefore crucial in determining the hillslope drainage rate. This work aims at understanding how the topography of the ground surface affects the spatial variability of the depth of thaw in a 1 km2 low-elevation arctic tundra basin with a fine resolution model that fully couples energy and water flow processes. The simulations indicate that the spatial patterns of ground thaw are not dominated by slope and aspect, but are instead entirely controlled by the spatial distribution of soil moisture, which is determined by subsurface flow patterns. Measured thaw depths have a similar range of variability to the simulated values for each stage of active layer development, although the model slightly overestimated the depth of thaw.

  16. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  17. Terrestrial bird populations and habitat use on coastal plain tundra of the Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers terrestrial bird populations and habitat use on the coastal plain tundra of the Arctic National Wildlife Refuge. Bird census plots were monitored....

  18. Diversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic.

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2015-01-01

    Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly influence the N cycling in the tundra locally and the carbon budget more globally. Moreover, should these birds experience substantial negative environmental pressure associated with climate change, this will adversely influence the tundra N-budget. Hence, assessment of bird-originated N-input to the tundra is important for understanding biological cycles in polar regions. This study analyzed the stable nitrogen composition of the three main N-sources in the High Arctic and in numerous plants that access different N-pools in ten tundra vegetation types in an experimental catchment in Hornsund (Svalbard). The percentage of the total tundra N-pool provided by birds, ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment was built in 36% by birds, 38% by atmospheric deposition, and 26% by atmospheric N2-fixation. The stable nitrogen isotope mixing mass balance, in contrast to direct methods that measure actual deposition, indicates the ratio between the actual N-loads acquired by plants from different N-sources. Our results enhance our understanding of the importance of different N-sources in the Arctic tundra and the used methodological approach can be applied elsewhere.

  19. Could 4 degrees warming change Arctic tundra from carbon sink to carbon source?

    Science.gov (United States)

    Torn, M. S.; Abramoff, R. Z.; Chafe, O.; Curtis, J. B.; Smith, L. J.; Wullschleger, S. D.

    2015-12-01

    We have set up a controlled, active warming experiment in permafrost tundra on the North Slope of Alaska. The aim of this micro-warming experiment is to investigate the direct effect of soil warming on microbial decomposition of soil organic matter. We are testing the feasibility of small, short-term, in situ warming that can be run off batteries for distributed deployment and that preserves plant-soil relations and natural variability in wind, temperature, and precipitation. Based on preliminary results, the approach looks promising. One resistance heater cable per plot (25 cm diameter plots) was inserted vertically to 50 cm, spanning the full active layer (maximum thaw depth was 40 cm in 2014). Heaters were turned on August 1, 2015, and heated plots reached the 4ºC warming target within 1-3 days. We are measuring soil microclimate, thaw depth, CO2 and CH4 fluxes, and 14CO2, and microbial composition, as part of the DOE Next Generation Ecosystem Experiments (NGEE-Arctic). Ecosystem respiration increased immediately in the heated plots, and net ecosystem exchange under clear chambers changed from net uptake to net CO2 source in two of the four plots. CH4 flux shifted toward reduced net emissions or greater net uptake in all plots. These rapid responses demonstrate direct changes in decomposition without complications from microbial acclimation, altered community structure or changes in substrate availability. However, future Arctic tundra carbon balance will depend on both short term and long term microbial responses, as well as the links between warming, decomposition, nitrogen mineralization, and plant growth. Thus, we envision that distributed micro-warming plots could be combined with new approaches to aboveground passive warming being developed in NGEE, gradient studies, and modeling.

  20. The growth of shrubs on high Arctic tundra at Bylot Island: impact on snow physical properties and permafrost thermal regime

    Science.gov (United States)

    Domine, Florent; Barrere, Mathieu; Morin, Samuel

    2016-12-01

    With climate warming, shrubs have been observed to grow on Arctic tundra. Their presence is known to increase snow height and is expected to increase the thermal insulating effect of the snowpack. An important consequence would be the warming of the ground, which will accelerate permafrost thaw, providing an important positive feedback to warming. At Bylot Island (73° N, 80° W) in the Canadian high Arctic where bushes of willows (Salix richardsonii Hook) are growing, we have observed the snow stratigraphy and measured the vertical profiles of snow density, thermal conductivity and specific surface area (SSA) in over 20 sites of high Arctic tundra and in willow bushes 20 to 40 cm high. We find that shrubs increase snow height, but only up to their own height. In shrubs, snow density, thermal conductivity and SSA are all significantly lower than on herb tundra. In shrubs, depth hoar which has a low thermal conductivity was observed to grow up to shrub height, while on herb tundra, depth hoar only developed to 5 to 10 cm high. The thermal resistance of the snowpack was in general higher in shrubs than on herb tundra. More signs of melting were observed in shrubs, presumably because stems absorb radiation and provide hotspots that initiate melting. When melting was extensive, thermal conductivity was increased and thermal resistance was reduced, counteracting the observed effect of shrubs in the absence of melting. Simulations of the effect of shrubs on snow properties and on the ground thermal regime were made with the Crocus snow physics model and the ISBA (Interactions between Soil-Biosphere-Atmosphere) land surface scheme, driven by in situ and reanalysis meteorological data. These simulations did not take into account the summer impact of shrubs. They predict that the ground at 5 cm depth at Bylot Island during the 2014-2015 winter would be up to 13 °C warmer in the presence of shrubs. Such warming may however be mitigated by summer effects.

  1. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    Science.gov (United States)

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.

  2. Drivers of post-fire successional trajectories in arctic tundra: the importance of physical and biophysical interactions

    Science.gov (United States)

    Rocha, A. V.; Jiang, Y.; Rastetter, E. B.; Drysdale, J.; Kremers, K.; Shaver, G. R.

    2013-12-01

    Fires in arctic tundra are rare with return intervals in the hundreds to thousands of years, but these events have large implications for carbon and energy fluxes in an environmentally changing and sensitive ecosystem. Permafrost degradation, species composition shifts, and ecosystem function alterations are just a few of the potential consequences of fire that could feedback on future climate change. Here we describe remote sensing, eddy covariance, thaw depth, and biomass measurements along an arctic tundra chronosequence to understand long-term post-fire carbon and energy budgets. Historical remote sensing and fire perimeter data were used to choose sites that were representative of a 0-6, 18, and 36 year old fire scar, which were paired with a representative nearby unburned control. Fires caused successional changes to carbon and energy budgets through changes to the soil thermal regime, caused by decreased organic layer from combustion, and shifts from tussock to grass and shrub dominated systems. Measurements and modeling with the Multiple Element Limitation (MEL) model indicate that nutrients played a key role in these shifts and that these dynamics change are controlled by biophysical conditions immediately after fire (i.e. residual organic layer depth) and climate during early succession. Results highlight the importance of initial conditions in determining the successional trajectory of arctic tundra and yield important insights on how these systems will respond to future climate change.

  3. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  4. Microbial diversity in alpine tundra soils correlates with snow cover dynamics.

    Science.gov (United States)

    Zinger, Lucie; Shahnavaz, Bahar; Baptist, Florence; Geremia, Roberto A; Choler, Philippe

    2009-07-01

    The temporal and spatial snow cover dynamics is the primary factor controlling the plant communities' composition and biogeochemical cycles in arctic and alpine tundra. However, the relationships between the distribution of snow and the diversity of soil microbial communities remain largely unexplored. Over a period of 2 years, we monitored soil microbial communities at three sites, including contiguous alpine meadows of late and early snowmelt locations (LSM and ESM, respectively). Bacterial and fungal communities were characterized by using molecular fingerprinting and cloning/sequencing of microbial ribosomal DNA extracted from the soil. Herein, we show that the spatial and temporal distribution of snow strongly correlates with microbial community composition. High seasonal contrast in ESM is associated with marked seasonal shifts for bacterial communities; whereas less contrasted seasons because of long-lasting snowpack in LSM is associated with increased fungal diversity. Finally, our results indicate that, similar to plant communities, microbial communities exhibit important shifts in composition at two extremes of the snow cover gradient. However, winter conditions lead to the convergence of microbial communities independently of snow cover presence. This study provides new insights into the distribution of microbial communities in alpine tundra in relation to snow cover dynamics, and may be helpful in predicting the future of microbial communities and biogeochemical cycles in arctic and alpine tundra in the context of a warmer climate.

  5. How is climate warming altering the carbon cycle of a tundra ecosystem in the Siberian Arctic?

    Science.gov (United States)

    Belelli Marchesini, Luca; (Ko) van Huissteden, Jacobus; van der Molen, Michiel; Parmentier, Frans-Jan W.; Maximov, Trofim; Budishchev, Artem; Gallagher, Angela; (Han) Dolman, Albertus J.

    2015-04-01

    Climate has been warming over the the Arctic region with the strongest anomalies taking place in autumn and winter for the period 2000-2010, particularly in northern Eurasia. The quantification of the impact on climate warming on the degradation of permafrost and the associated potential release to the atmosphere of carbon stocked in the soil under the form of greenhouse gases, thus further increasing the radiative forcing of the atmosphere, is currently a matter of scientific debate. The positive trend in primary productivity in the last decades inferred by vegetation indexes (NDVI) and confirmed by observations on the enhanced growth of shrub vegetation represents indeed a contrasting process that, if prevalent could offset GHG emissions or even strengthen the carbon sink over the Arctic tundra. At the site of Kytalyk, in north-eastern Siberia, net fluxes of CO2 at ecosystem scale (NEE) have been monitored by eddy covariance technique since 2003. While presenting the results of the seasonal (snow free period) and inter-annual variability of NEE, conceived as the interplay between meteorological drivers and ecosystem responses, we test the role of climate as the main source of NEE variability in the last decade using a data oriented statistical approach. The impact of the timing and duration of the snow free period on the seasonal carbon budget is also considered. Finally, by including the results of continuous micrometeorological observations of methane fluxes taken during summer 2012, corroborated with seasonal CH4 budgets from two previous shorter campaigns (2008, 2009), as well as an experimentally determined estimate of dissolved organic carbon (DOC) flux, we provide an assessment of the carbon budget and its stability over time. The examined tundra ecosystem was found to sequester CO2 during the snow free season with relatively small inter-annual variability (-97.9±12.1gC m-2) during the last decade and without any evident trend despite the carbon uptake

  6. Fungi benefit from two decades of increased nutrient availability in tundra heath soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Michelsen, Anders; Bååth, Erland

    2013-01-01

    is a predicted long-term consequence of climatic warming and mimicked by fertilization, both increase soil microbial biomass. However, while fertilization increased the relative abundance of fungi, warming caused only a minimal shift in the microbial community composition based on the phospholipid fatty acid......If microbial degradation of carbon substrates in arctic soil is stimulated by climatic warming, this would be a significant positive feedback on global change. With data from a climate change experiment in Northern Sweden we show that warming and enhanced soil nutrient availability, which...... of complex organic compounds such as vanillin, while warming has had no such effects. Furthermore, the NLFA-to-PLFA ratio for (13)C-incorporation from acetate increased in warmed plots but not in fertilized ones. Thus, fertilization cannot be used as a proxy for effects on warming in arctic tundra soils...

  7. Shrub Abundance Mapping in Arctic Tundra with Misr

    Science.gov (United States)

    Duchesne, R.; Chopping, M. J.; Wang, Z.; Schaaf, C.; Tape, K. D.

    2013-12-01

    Over the last 60 years an increase in shrub abundance has been observed in the Arctic tundra in connection with a rapid surface warming trend. Rapid shrub expansion may have consequences in terms of ecosystem structure and function, albedo, and feedbacks to climate; however, its rate is not yet known. The goal of this research effort is thus to map large scale changes in Arctic tundra vegetation by exploiting the structural signal in moderate resolution satellite remote sensing images from NASA's Multiangle Imaging SpectroRadiometer (MISR), mapped onto a 250m Albers Conic Equal Area grid. We present here large area shrub mapping supported by reference data collated using extensive field inventory data and high resolution panchromatic imagery. MISR Level 1B2 Terrain radiance scenes from the Terra satellite from 15 June-31 July, 2000 - 2010 were converted to surface bidirectional reflectance factors (BRF) using MISR Toolkit routines and the MISR 1 km LAND product BRFs. The red band data in all available cameras were used to invert the RossThick-LiSparse-Reciprocal BRDF model to retrieve kernel weights, model-fitting RMSE, and Weights of Determination. The reference database was constructed using aerial survey, three field campaigns (field inventory for shrub count, cover, mean radius and height), and high resolution imagery. Tall shrub number, mean crown radius, cover, and mean height estimates were obtained from QuickBird and GeoEye panchromatic image chips using the CANAPI algorithm, and calibrated using field-based estimates, thus extending the database to over eight hundred locations. Tall shrub fractional cover maps for the North Slope of Alaska were constructed using the bootstrap forest machine learning algorithm that exploits the surface information provided by MISR. The reference database was divided into two datasets for training and validation. The model derived used a set of 19 independent variables(the three kernel weights, ratios and interaction terms

  8. Energy fluxes in a high Arctic tundra heath subjected to strong climate warming

    Science.gov (United States)

    Lund, M.; Hansen, B. U.; Pedersen, S. H.; Stiegler, C.; Tamstorf, M. P.

    2012-12-01

    During recent decades the observed warming in the Arctic has been almost twice as large as the global average. The implications of such strong warming on surface energy balance, regulating permafrost thaw, hydrology, soil stability and carbon mineralization, need to be assessed. In Zackenberg, northeast Greenland, measurements of energy balance components in various environments have been performed since late 90's, coordinated by Zackenberg Ecological Research Operations. During 1996-2009, mean annual temperature in the area has increased by ca. 0.15 °C yr-1; while maximum thaw depth has increased by 1.4-1.8 cm yr-1. Eddy covariance measurements of energy fluxes have been performed in a Cassiope heath plant community, a commonly occurring tundra ecosystem type in circumpolar middle and high Arctic areas, in Zackenberg allowing for detailed investigations of relationships between energy fluxes and meteorological and soil physical characteristics. As the available data set spans more than a decade, possible trends in energy flux components resulting from warming related changes such as earlier snow melt, increased active layer depth and higher temperatures can be investigated. This presentation will focus on the mid-summer period from which eddy covariance measurements are available. The summer-time energy partitioning at the Zackenberg tundra heath site will be characterized using ratios of sensible, latent and ground heat flux to net radiation and Bowen ratio, whereas the surface characteristics will be described using surface resistance, McNaughton and Jarvis Ω value and Priestley-Taylor α coefficient. Furthermore, we aim to estimate the full year, all energy balance components for the tundra heath site using Snow Model (Liston and Elder 2006) for the dark winter period during which no eddy covariance measurements are available. The snow cover duration in the area is a major regulator of the energy partitioning. Early results point towards high summer

  9. 100% Retention of Snowpack Derived Nitrogen Over 10 Years in High Arctic Tundra

    Science.gov (United States)

    Choudhary, S.; Tye, A. M.; Young, S. D.; West, H. M.; Phoenix, G. K.

    2013-12-01

    ecosystem sinks for the 15N tracer in the long-term were organic humus soil, followed by bryophytes and then vascular plants, it is concluded that greater N deposition resulting in greater released of N from melting snowpack could significantly enrich the plant N pool and possibly enhance plant growth (with a potential to increase C storage) in the future. Overall, this study shows that high arctic tundra has considerable short- and long term- capacity for retention of snow-melt deposited N, with very tight internal recycling that allows 100% of the initially sequestered N to be retained over 10 years. Such capacity for pollutant N retention may exacerbate the impact that increased N deposition has on high arctic tundra.

  10. Succession Stages of Tundra Plant Communities Following Wildfire Disturbance in Arctic Alaska

    Science.gov (United States)

    Breen, A. L.; Hollingsworth, T. N.; Mack, M. C.; Jones, B. M.

    2015-12-01

    Rapid climate change is affecting climate-sensitive disturbance regimes throughout the world. In particular, the impacts of climate change on Arctic disturbance regimes are poorly understood because landscape-scale disturbances are infrequent or occur in remote localities. Wildfire in Arctic Alaska is presently limited by ignition source and favorable burn weather. With rapid climate change, a lengthening growing season, and subsequent increase in plant biomass and productivity, wildfire frequency and annual area burned in tundra ecosystems is expected to increase over the next century. Yet, post-fire tundra vegetation succession is inadequately characterized except at a few point locations. We identify succession stages of tussock tundra communities following wildfire using a chronosequence of 65 relevés in 10 tundra fire scars (1971-2011) and nearby unburned tundra from sites on the Seward Peninsula and northern foothills of the Brooks Range. We used the Braun-Blanquét approach to classify plant communities, and applied nonmetric multidimentional scaling (NMDS) to identify ecological gradients underlying community differentiation. The ordination revealed a clear differentiation between unburned and burned tundra communities. Ecological gradients, reflected by ordination axes, correspond to fire history (e.g., time since last fire, number of times burned, burn severity) and a complex productivity gradient. Post-fire species richness is less than unburned tundra; primarily reflected as a decrease in lichen species and turnover of bryophyte species immediately post-fire. Species richness of grasses increases post-fire and is greatest in communities that burned more than once in the past 30 years. Shrub cover and total aboveground biomass are greatest in repeat burn sites. We review and discuss our results focusing on the implications of a changing tundra fire regime, its effect on vegetation succession trajectories, and subsequent rates of carbon sequestration and

  11. Estimation of surface energy fluxes in the Arctic tundra using the remote sensing thermal-based Two-Source Energy Balance model

    Science.gov (United States)

    Cristóbal, Jordi; Prakash, Anupma; Anderson, Martha C.; Kustas, William P.; Euskirchen, Eugénie S.; Kane, Douglas L.

    2017-03-01

    The Arctic has become generally a warmer place over the past decades leading to earlier snow melt, permafrost degradation and changing plant communities. Increases in precipitation and local evaporation in the Arctic, known as the acceleration components of the hydrologic cycle, coupled with land cover changes, have resulted in significant changes in the regional surface energy budget. Quantifying spatiotemporal trends in surface energy flux partitioning is key to forecasting ecological responses to changing climate conditions in the Arctic. An extensive local evaluation of the Two-Source Energy Balance model (TSEB) - a remote-sensing-based model using thermal infrared retrievals of land surface temperature - was performed using tower measurements collected over different tundra types in Alaska in all sky conditions over the full growing season from 2008 to 2012. Based on comparisons with flux tower observations, refinements in the original TSEB net radiation, soil heat flux and canopy transpiration parameterizations were identified for Arctic tundra. In particular, a revised method for estimating soil heat flux based on relationships with soil temperature was developed, resulting in significantly improved performance. These refinements result in mean turbulent flux errors generally less than 50 W m-2 at half-hourly time steps, similar to errors typically reported in surface energy balance modeling studies conducted in more temperate climatic regimes. The MODIS leaf area index (LAI) remote sensing product proved to be useful for estimating energy fluxes in Arctic tundra in the absence of field data on the local biomass amount. Model refinements found in this work at the local scale build toward a regional implementation of the TSEB model over Arctic tundra ecosystems, using thermal satellite remote sensing to assess response of surface fluxes to changing vegetation and climate conditions.

  12. Long-term Nutrient Fertilization Increases CO2 Loss in Arctic Tundra

    Science.gov (United States)

    Graham, L. M.; Natali, S.; Rastetter, E. B.; Shaver, G. R.; Risk, D. A.; Loranty, M. M.; Jastrow, J. D.

    2015-12-01

    As anthropogenic climate change warms the Arctic, organic carbon (C) trapped in permafrost is at an increased risk of being released to the atmosphere as carbon dioxide (CO2). At the same time, higher rates of decomposition may increase nutrient availability and enhance plant growth, leading to an uptake of C that may offset respiratory losses. Arctic tundra ecosystems are highly nitrogen (N) limited, and the indirect effects of warming on nutrient availability will be the most likely outcome of increased temperature on plant productivity. This study aims to understand the effects of nutrient addition on arctic CO2 and H2O exchange in a tundra ecosystem at Toolik Lake Field Station, Alaska. The nutrient addition experiment, which began in 2006, is comprised of 7 fertilization treatments: 0.5, 1, 2, 5, and 10 g m-2 of N as NO3- and NH4+ (1:1) with 0.25, 0.5, 1, 2.5, and 5 g m-2 of phosphorus as PO43-; 5 g m-2 of N as NO3-; 5 g m-2 of N as NH4+, and one control plot. Plot-level CO2 and H2O exchange was measured at 5 light levels 7 times over a four-week period in June and July 2015. We measured ecosystem CO2 and H2O exchange using a rectangular plexiglass chamber (0.49 m2) that was connected to an infrared gas analyzer (LI-840). Other ecosystem variables measured include thaw depth, soil moisture and temperature, and normalized difference vegetation index. After 10 years of nutrient addition, fertilization significantly altered ecosystem C cycling. Soil respiration was greatest in the highest fertilization treatment (2.97 μmol m-2 s-1), increasing linearly with nutrient level at a rate of 0.133 μmol m-2 s-1 per g m-2 of N added (R2=0.914). Net CO2 uptake was greatest under highest fertilization (-2.06 μmol m-2 s-1), decreasing linearly with nutrient addition at a rate of -0.068 μmol m-2 s-1 per g m-2 of N added (R2=0.687). These results suggest that as nutrients become more available under a warmer climate, plant productivity increases may not offset respiratory

  13. Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem

    Science.gov (United States)

    Semenchuk, Philipp R.; Christiansen, Casper T.; Grogan, Paul; Elberling, Bo; Cooper, Elisabeth J.

    2016-05-01

    Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78°N) and a low-arctic site in the Northwest Territories, Canada (64°N), for 5 and 9 years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2 years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5 years at the high-arctic site and after 8-9 years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of "legacy" effects on ER rates during the following growing seasons.

  14. The Changing Seasonality of Tundra Nutrient Cycling: Implications for Arctic Ecosystem Function

    Science.gov (United States)

    Weintraub, M. N.; Steltzer, H.; Sullivan, P.; Schimel, J.; Wallenstein, M. D.; Darrouzet-Nardi, A.; Segal, A. D.

    2011-12-01

    Arctic soils contain large stores of carbon (C) and may act as a significant CO2 source with warming. However, the key to understanding tundra soil processes is nitrogen (N), as both plant growth and decomposition are N limited. However, current models of tundra ecosystems assume that while N limits plant growth, C limits decomposition. In addition, N availability is strongly seasonal with relatively high concentrations early in the growing season followed by a pronounced crash. We need to understand the controls on this seasonality to predict responses to climate change, but there are multiple questions that need answers: 1) What causes the seasonality in N? 2) Does microbial activity switch seasonally between C and N limitation? 3) How will a lengthening of the growing season alter overall ecosystem C and N dynamics, as a result of differential extension of the periods before and after the nutrient crash? We hypothesized that microbial activity is C limited early in the growing season, when N availability is higher and root exudate C is unavailable, and that microbial activity becomes N limited in response to plant N uptake and immobilization stimulated by root C. To address these questions we are conducting an accelerated snow-melt X warming field experiment in an Alaskan moist acidic arctic tundra community, and following plant and soil dynamics. Changes in the timing of C and N interactions in the different treatments will enable us to develop an enhanced mechanistic understanding of why the nutrient crash occurs and what the implications are for a lengthening of the arctic growing season. In 2010 we successfully accelerated snowmelt by 4 days. Both earlier snowmelt and warming accelerated early season plant life history events, with a few exceptions. However, responses to the combined treatment could not always be predicted from single factor effects. End of season life history events occurred later in response to the treatments, again with a few exceptions

  15. Revisiting factors controlling methane emissions from high-Arctic tundra

    Directory of Open Access Journals (Sweden)

    M. Mastepanov

    2013-07-01

    Full Text Available The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006–2010 of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods. The measurements show clear seasonal dynamics in methane emission. The start of the growing season and the increase in CH4 fluxes were strongly related to the date of snowmelt. Within each particular growing season, CH4 fluxes were highly correlated with the soil temperature (R2 > 0.75, which is probably explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010 despite large differences in climatic factors (temperature and water table. Late-season bursts of CH4 coinciding with soil freezing in the autumn were observed during at least three years. The cumulative emission during the freeze-in CH4 bursts was comparable in size with the growing season emission for the year 2007, and about one third of the growing season emissions for the years 2009 and 2010. In all three cases the CH4 burst was accompanied by a corresponding episodic increase in CO2 emission, which can compose a significant contribution to the annual CO2

  16. The Role of Explicitly Modeling Bryophytes in Simulating Carbon Exchange and Permafrost Dynamics of an Arctic Coastal Tundra at Barrow, Alaska

    Science.gov (United States)

    Yuan, F.; Thornton, P. E.; McGuire, A. D.; Oechel, W. C.; Yang, B.; Tweedie, C. E.; Rogers, A.; Norby, R. J.

    2013-12-01

    Bryophyte cover is greater than 50% in many Arctic tundra ecosystems. In regions of the Arctic where shrubs are expanding it is expected that bryophyte cover will be substantially reduced. Such a loss in cover could influence the hydrological, biogeochemical, and permafrost dynamics of Arctic tundra ecosystems. The explicit representation of bryophyte physiological and biophysical processes in large-scale ecological and land surface models is rare, and we hypothesize that the representation of bryophytes has consequences for estimates of the exchange of water, energy, and carbon by these models. This study explicitly represents the effects of bryophyte function and structure on the exchange of carbon (e.g., summer photosynthesis effects) and energy (e.g., summer insulation effects) with the atmosphere in the Community Land Model (CLM-CN). The modified model was evaluated for its ability to simulate C exchange, soil temperature, and soil moisture since the 1970s at Barrow, Alaska through comparison with data from AmeriFlux sites, USDA Soil Climate Networks observation sites at Barrow, and other sources. We also compare the outputs of the CLM-CN simulations with those of the recently developed Dynamical Organic Soil coupled Terrestrial Ecosystem Model (DOS-TEM). Overall, our evaluation indicates that bryophytes are important contributors to land-atmospheric C exchanges in Arctic tundra and that they play an important role to permafrost thermal and hydrological processes which are critical to permafrost stability. Our next step in this study is to examine the climate system effects of explicitly representing bryophyte dynamics in the land surface model. Key Words: Bryophytes, Arctic coastal tundra, Vegetation composition, Net Ecosystem Exchange, Permafrost, Land Surface Model, Terrestrial Ecosystem Model

  17. Does climate warming stimulate or inhibit soil protist communities? A test on testate amoebae in high-arctic tundra with free-air temperature increase.

    Science.gov (United States)

    Tsyganov, Andrey N; Nijs, Ivan; Beyens, Louis

    2011-04-01

    Soil testate amoebae assemblages in a grassland area at Zackenberg (Northeast Greenland) were subjected to simulated climate-warming during the growing season using the Free-Air Temperature Increase technique. Samples were collected in upper (0 - 3cm) and deeper (3 - 6cm) soil horizons. Mean temperature elevations at 2.5 and 7.5 cm depth were 2.58 ± SD 1.11 and 2.13±SD 0.77°C, respectively, and did not differ significantly. Soil moisture in the top 11cm was not affected by the warming. During the manipulation, the densities of living amoebae and empty shells were higher in the experimental plots but only in the upper layer. Possibly, testate amoebae in the deeper layer were limited by other factors, suggesting that warming enhances the carrying capacity only in favourable conditions. Species richness, on the other hand, was only increased in the deeper horizon. Warming did not change the percentage of individuals belonging to small-sized species in any of the living assemblages, contrary to our expectation that those species would quickly increase their density. However, in the empty shell assemblages, the proportion of small-sized individuals in the experimental plots was higher in both layers, indicating a rapid, transient increase in small amoebae before the first sampling date. Changes in successional state of testate amoebae assemblages in response to future climate change might thus be ephemeral, whereas alterations in density and species richness might be more sustained.

  18. Vegetation shifts observed in arctic tundra 17 years after fire

    Science.gov (United States)

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  19. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    Science.gov (United States)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  20. Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra

    Science.gov (United States)

    Buchhorn, Marcel; Raynolds, Martha K.; Walker, Donald A.

    2016-12-01

    Satellites provide the only practical source of data for estimating biomass of large and remote areas such as the Alaskan Arctic. Researchers have found that the normalized difference vegetation index (NDVI) correlates well with biomass sampled on the ground. However, errors in NDVI and biomass estimates due to bidirectional reflectance distribution function (BRDF) effects are not well reported in the literature. Sun-sensor-object geometries and sensor band-width affect the BRDF, and formulas relating NDVI to ground-sampled biomass vary between projects. We examined the effects of these different variables on five studies that estimated above-ground tundra biomass of two common arctic vegetation types that dominate the Alaska tundra, moist acidic tussock tundra (MAT) and moist non-acidic tundra (MNT). We found that biomass estimates were up to 33% (excluding extremes) more sensitive than NDVI to BRDF effects. Variation between the sensors resulted in differences in NDVI of under 3% over all viewing geometries, and wider bands were more stable in their biomass estimates than narrow bands. MAT was more sensitive than MNT to BRDF effects due to irregularities in surface reflectance created by the tussocks. Finally, we found that studies that sampled only a narrow range of biomass and NDVI produced equations that were more difficult to correct for BRDF effects.

  1. Annual patterns and budget of CO2 flux in an Alaskan arctic tussock tundra ecosystem at Atqasuk, Alaska

    Science.gov (United States)

    Oechel, W. C.; Kalhori, A. A.; Burba, G. G.; Gioli, B.

    2013-12-01

    Arctic ecosystem functioning is not only critically affected by climate change, but also has the potential for major positive feedbacks on climate. There is however relatively little information available on the role, patterns, and vulnerabilities of CO2 fluxes during the non-summer seasons. Presented here is a year-around study of CO2 fluxes in an Alaskan Arctic tussock tundra ecosystem. Also presented are key environmental controls on CO2 fluxes as well as possible impacts of likely changes in season timing. This is aided by a new empirical quantification of seasons in the Arctic based on net radiation, which can help describe seasonal responses to greenhouse gas fluxes under climate change. The fluxes were computed using standard FluxNet methodology and corrected using standard WPL density terms, adjusted for influences of instrument surface heating. The results showed that the non-summer season comprises a significant source of carbon to the atmosphere. The summer period was a net sink of 10.83 g C m-2 yr-1, while the non-summer seasons released more than four times the CO2 uptake observed in the summer, resulting in a net annual source of 37.6 g C m-2 yr-1 to the atmosphere. This shows a change in this region of the Arctic from a long-term annual sink of CO2 from the atmosphere to an annual source of CO2 from the terrestrial ecosystem and soils to the atmosphere. The results presented here demonstrate that nearly continuous observations may be required in order to accurately calculate the annual NEE of Arctic ecosystems, and to build predictive understanding that can be used to estimate, with confidence, Arctic fluxes under future conditions. Daily CO2 fluxes over the year, average daily net radiation, average daily PAR, average daily air temperature and average daily soil respiration (at -5 cm).

  2. Variation in bird's originating nitrogen availability limits High Arctic tundra development over last 2000 year (Hornsund, Svalbard)

    Science.gov (United States)

    Skrzypek, Grzegorz; Wojtuń, Bronisław; Hua, Quan; Richter, Dorota; Jakubas, Dariusz; Wojczulanis-Jakubas, Katarzyna; Samecka-Cymerman, Aleksandra

    2016-04-01

    Arctic and subarctic regions play important roles in the global carbon balance. However, nitrogen (N) deficiency is a major constraint for organic carbon sequestration in the High Arctic. Hence, the identification of the relative contributions from different N-sources is critical for understanding the constraints that limit tundra growth. The stable nitrogen composition of the three main N-sources and numerous plants were analyzed in ten tundra types (including those influenced by seabirds) in the Fuglebekken catchment (Hornsund, Svalbard, 77°N 15°E). The percentage of the total tundra N-pool provided by seabirds' feces (from planktivorous colonially breeding little auks Alle alle), ranged from 0-21% in Patterned-ground tundra to 100% in Ornithocoprophilous tundra. The total N-pool utilized by tundra plants in the studied catchment originated from birds (36%), atmospheric deposition (38%), and N2-fixation (26%). The results clearly show that N-pool in the tundra is significantly supplemented by nesting seabirds. Thus, if they experienced climate change induced substantial negative environmental pressure, it would adversely influence the tundra N-budget (Skrzypek et al. 2015). The growth rates and the sediment thickness (PLoS ONE 10(9): e0136536.

  3. The exchange of carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Directory of Open Access Journals (Sweden)

    L. Kutzbach

    2007-06-01

    Full Text Available The exchange fluxes of carbon dioxide between wet arctic polygonal tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was situated in the centre of the Lena River Delta in Northern Siberia (72°22' N, 126°30' E. The study region is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The micrometeorological campaigns were performed during the periods July–October 2003 and May–July 2004 which included the period of snow and soil thaw as well as the beginning of soil refreeze. The main CO2 exchange processes, the gross photosynthesis and the ecosystem respiration, were found to be of a generally low intensity. The gross photosynthesis accumulated to –432 g m−2 over the photosynthetically active period (June–September. The contribution of mosses to the gross photosynthesis was estimated to be about 40%. The diurnal trend of the gross photosynthesis was mainly controlled by the incoming photosynthetically active radiation. During midday the photosynthetic apparatus of the canopy was frequently near saturation and represented the limiting factor on gross photosynthesis. The synoptic weather conditions strongly affected the exchange fluxes of CO2 by changes in cloudiness, precipitation and pronounced changes of air temperature. The ecosystem respiration accumulated to +327 g m−2 over the photosynthetically active period, which corresponds to 76% of the CO2 uptake by photosynthesis. However, the ecosystem respiration continued at substantial rates during autumn when photosynthesis had ceased and the soils

  4. Timing, Magnitude and Sources of Ecosystem Respiration in High Arctic Tundra of NW Greenland

    Science.gov (United States)

    Lupascu, M.; Xu, X.; Lett, C.; Maseyk, K. S.; Lindsey, D. S.; Thomas, J. S.; Welker, J. M.; Czimczik, C. I.

    2011-12-01

    High arctic ecosystems with low vegetation density contain significant stocks of organic carbon (C) in the form of soil organic matter that range in age from modern to ancient. How rapidly these C pools can be mineralized and lost to the atmosphere as CO2 (ecosystem respiration, ER) as a consequence of warming and, or changes in precipitation is a major uncertainty in our understanding of current and future arctic biogeochemistry and for predicting future levels of atmospheric CO2. In a 2-year study (2010-2011), we monitored seasonal changes in the magnitude, timing and sources of ER and soil pore space CO2 in the High Arctic of NW Greenland under current and simulated, future climate conditions. Measurements were taken from May to August at a multi-factorial, long-term climate change experiment in prostrate dwarf-shrub tundra on patterned ground with 5 treatments: (T1) +2oC warming, (T2) +4oC warming, (W) +50% summer precipitation, (T2W) +4oC + 50% summer precipitation, and (C) control. ER (using opaque chambers) and soil CO2 concentrations (wells) were monitored daily via infrared spectroscopy (LI-COR 800 & 840). The source of CO2 was inferred from its radiocarbon (14C) content analyzed at the AMS facility in UCI. CO2 was sampled monthly using molecular sieve traps (chambers) or evacuated canisters (wells). Highest rates of ER are observed on vegetated ground with a maximum in mid summer - reflecting a peak in plant productivity and soil temperature. Respiration rates from bare ground remain similar throughout the summer. Additional soil moisture, administered or due to precipitation events, strongly enhances ER from both vegetated and bare ground. Daily ER budget for the sampling period was of 53.1 mmol C m-2 day-1 for the (C) vegetated areas compared to the 60.0 for the (T2), 68.1 for the (T2W) or the 79.9 for the (W) treatment. ER was highly correlated to temperature (eg. C = 0.8; T2W = 0.8) until middle of July, when heavy precipitation started to occur. In

  5. Mapping Arctic Tundra Vegetation Communities Using Field Spectroscopy and Multispectral Satellite Data in North Alaska, USA

    Directory of Open Access Journals (Sweden)

    Scott J. Davidson

    2016-11-01

    Full Text Available The Arctic is currently undergoing intense changes in climate; vegetation composition and productivity are expected to respond to such changes. To understand the impacts of climate change on the function of Arctic tundra ecosystems within the global carbon cycle, it is crucial to improve the understanding of vegetation distribution and heterogeneity at multiple scales. Information detailing the fine-scale spatial distribution of tundra communities provided by high resolution vegetation mapping, is needed to understand the relative contributions of and relationships between single vegetation community measurements of greenhouse gas fluxes (e.g., ~1 m chamber flux and those encompassing multiple vegetation communities (e.g., ~300 m eddy covariance measurements. The objectives of this study were: (1 to determine whether dominant Arctic tundra vegetation communities found in different locations are spectrally distinct and distinguishable using field spectroscopy methods; and (2 to test which combination of raw reflectance and vegetation indices retrieved from field and satellite data resulted in accurate vegetation maps and whether these were transferable across locations to develop a systematic method to map dominant vegetation communities within larger eddy covariance tower footprints distributed along a 300 km transect in northern Alaska. We showed vegetation community separability primarily in the 450–510 nm, 630–690 nm and 705–745 nm regions of the spectrum with the field spectroscopy data. This is line with the different traits of these arctic tundra communities, with the drier, often non-vascular plant dominated communities having much higher reflectance in the 450–510 nm and 630–690 nm regions due to the lack of photosynthetic material, whereas the low reflectance values of the vascular plant dominated communities highlight the strong light absorption found here. High classification accuracies of 92% to 96% were achieved using

  6. Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago

    Directory of Open Access Journals (Sweden)

    Richter Dorota

    2015-09-01

    Full Text Available The paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago. 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

  7. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems

    Science.gov (United States)

    Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; Hinzman, L.; Yoshikawa, K.; Tweedie, C.; Noyle, B.; Silapaswan, C.; Douglas, D.; Griffith, B.; Jia, G.; Epstein, H.; Walker, D.; Daeschner, S.; Petersen, A.; Zhou, L.; Myneni, R.

    2004-01-01

    The objective of this paper is to review research conducted over the past decade on the application of multi-temporal remote sensing for monitoring changes of Arctic tundra lands. Emphasis is placed on results from the National Science Foundation Land-Air-Ice Interactions (LAII) program and on optical remote sensing techniques. Case studies demonstrate that ground-level sensors on stationary or moving track platforms and wide-swath imaging sensors on polar orbiting satellites are particularly useful for capturing optical remote sensing data at sufficient frequency to study tundra vegetation dynamics and changes for the cloud prone Arctic. Less frequent imaging with high spatial resolution instruments on aircraft and lower orbiting satellites enable more detailed analyses of land cover change and calibration/validation of coarser resolution observations. The strongest signals of ecosystem change detected thus far appear to correspond to expansion of tundra shrubs and changes in the amount and extent of thaw lakes and ponds. Changes in shrub cover and extent have been documented by modern repeat imaging that matches archived historical aerial photography. NOAA Advanced Very High Resolution Radiometer (AVHRR) time series provide a 20-year record for determining changes in greenness that relates to photosynthetic activity, net primary production, and growing season length. The strong contrast between land materials and surface waters enables changes in lake and pond extent to be readily measured and monitored. ?? 2003 Elsevier Inc. All rights reserved.

  8. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    Directory of Open Access Journals (Sweden)

    Ivan Pokrovsky

    Full Text Available Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013 we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  9. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, Charlotte; Tagesson, Håkan Torbern;

    2013-01-01

    controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...... short-term control factors (temperature and water table). Our findings suggest the importance of multiyear studies with a continued focus on shoulder seasons in Arctic ecosystems....

  10. Bird communities of the arctic shrub tundra of Yamal: habitat specialists and generalists.

    Directory of Open Access Journals (Sweden)

    Vasiliy Sokolov

    Full Text Available BACKGROUND: The ratio of habitat generalists to specialists in birds has been suggested as a good indicator of ecosystem changes due to e.g. climate change and other anthropogenic perturbations. Most studies focusing on this functional component of biodiversity originate, however, from temperate regions. The Eurasian Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by domestic reindeer and growing human activity. METHODOLOGY/PRINCIPAL FINDINGS: Here we monitored bird communities in a tundra landscape harbouring shrub and open habitats in order to analyse bird habitat relationships and quantify habitat specialization. We used ordination methods to analyse habitat associations and estimated the proportions of specialists in each of the main habitats. Correspondence Analysis identified three main bird communities, inhabiting upland, lowland and dense willow shrubs. We documented a stable structure of communities despite large multiannual variations of bird density (from 90 to 175 pairs/km(2. Willow shrub thickets were a hotspot for bird density, but not for species richness. The thickets hosted many specialized species whose main distribution area was south of the tundra. CONCLUSION/SIGNIFICANCE: If current arctic changes result in a shrubification of the landscape as many studies suggested, we would expect an increase in the overall bird abundance together with an increase of local specialists, since they are associated with willow thickets. The majority of these species have a southern origin and their increase in abundance would represent a strengthening of the boreal component in the southern tundra, perhaps at the expense of species typical of the subarctic zone, which appear to be generalists within this zone.

  11. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  12. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows

    Science.gov (United States)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.

    2009-12-01

    Growth in arctic vegetation is generally expected to increase under a warming climate, particularly among deciduous shrubs. We analyzed annual ring growth for an abundant and nearly circumpolar erect willow (Salix lanata L.) from the coastal zone of the northwest Russian Arctic (Nenets Autonomous Okrug). The resulting chronology is strongly related to summer temperature for the period 1942-2005. Remarkably high correlations occur at long distances (>1600 km) across the tundra and taiga zones of West Siberia and Eastern Europe. We also found a clear relationship with photosynthetic activity for upland vegetation at a regional scale for the period 1981-2005, confirming a parallel ‘greening’ trend reported for similarly warming North American portions of the tundra biome. The standardized growth curve suggests a significant increase in shrub willow growth over the last six decades. These findings are in line with field and remote sensing studies that have assigned a strong shrub component to the reported greening signal since the early 1980s. Furthermore, the growth trend agrees with qualitative observations by nomadic Nenets reindeer herders of recent increases in willow size in the region. The quality of the chronology as a climate proxy is exceptional. Given its wide geographic distribution and the ready preservation of wood in permafrost, S. lanata L. has great potential for extended temperature reconstructions in remote areas across the Arctic.

  13. The exchange of energy, water and carbon dioxide between wet arctic tundra and the atmosphere at the Lena River Delta, Northern Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Kutzbach, L.

    2006-07-01

    The ecosystem-scale exchange fluxes of energy, water and carbon dioxide between wet arctic tundra and the atmosphere were investigated by the micrometeorological eddy covariance method. The investigation site was the centre of the Lena River Delta in Northern Siberia characterised by a polar and distinctly continental climate, very cold and ice-rich permafrost and its position at the interface between the Eurasian continent and the Arctic Ocean. The measurements were performed on the surface of a Holocene river terrace characterised by wet polygonal tundra. The soils at the site are characterised by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. The fluctuations of the H{sub 2}O and CO{sub 2} concentrations were measured with a closed-path infrared gas analyser. The fast-response eddy covariance measurements were supplemented by a set of slow-response meteorological and soil-meteorological measurements. The combined datasets of the two campaigns 2003 and 2004 were used to characterise the seasonal course of the energy, water and CO{sub 2} fluxes and the underlying processes for the synthetic measurement period May 28..October 21 2004/2003 including the period of snow and soil thawing as well as the beginning of refreezing. The synthetic measurement period 2004/2003 was characterised by a long snow ablation period and a late start of the growing season. On the other hand, the growing season ended also late due to high temperatures and snow-free conditions in September. The cumulative summer energy partitioning was characterised by low net radiation, large ground heat flux, low latent heat flux and very low sensible heat flux compared to other tundra sites. These findings point out the major importance of the very cold permafrost for the summer energy budget of the tundra in Northern Siberia. (orig./SR)

  14. Longer thaw seasons increase nitrogen availability for leaching during fall in tundra soils

    Science.gov (United States)

    Treat, Claire C.; Wollheim, Wilfred M.; Varner, Ruth K.; Bowden, William B.

    2016-06-01

    Climate change has resulted in warmer soil temperatures, earlier spring thaw and later fall freeze-up, resulting in warmer soil temperatures and thawing of permafrost in tundra regions. While these changes in temperature metrics tend to lengthen the growing season for plants, light levels, especially in the fall, will continue to limit plant growth and nutrient uptake. We conducted a laboratory experiment using intact soil cores with and without vegetation from a tundra peatland to measure the effects of late freeze and early spring thaw on carbon dioxide (CO2) exchange, methane (CH4) emissions, dissolved organic carbon (DOC) and nitrogen (N) leaching from soils. We compared soil C exchange and N production with a 30 day longer seasonal thaw during a simulated annual cycle from spring thaw through freeze-up and thaw. Across all cores, fall N leaching accounted for ˜33% of total annual N loss despite significant increases in microbial biomass during this period. Nitrate ({{{{NO}}}3}-) leaching was highest during the fall (5.33 ± 1.45 mg N m-2 d-1) following plant senescence and lowest during the summer (0.43 ± 0.22 mg N m-2 d-1). In the late freeze and early thaw treatment, we found 25% higher total annual ecosystem respiration but no significant change in CH4 emissions or DOC loss due to high variability among samples. The late freeze period magnified N leaching and likely was derived from root turnover and microbial mineralization of soil organic matter coupled with little demand from plants or microbes. Large N leaching during the fall will affect N cycling in low-lying areas and streams and may alter terrestrial and aquatic ecosystem nitrogen budgets in the arctic.

  15. Revisiting factors controlling methane emissions from high-Arctic tundra

    DEFF Research Database (Denmark)

    Mastepanov, M.; Sigsgaard, C.; Tagesson, T.;

    2013-01-01

    with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006-2010) of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods...... explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors...... controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010) despite large differences in climatic factors (temperature and water table). Late-season bursts of CH4...

  16. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    Science.gov (United States)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  17. Summertime surface O3 behavior and deposition to tundra in the Alaskan Arctic

    Science.gov (United States)

    Van Dam, Brie; Helmig, Detlev; Doskey, Paul V.; Oltmans, Samuel J.

    2016-07-01

    Atmospheric turbulence quantities, boundary layer ozone (O3) levels, and O3 deposition to the tundra surface were investigated at Toolik Lake, AK, during the 2011 summer season. Beginning immediately after snowmelt, a diurnal cycle of O3 in the atmospheric surface layer developed with daytime O3 maxima, and minima during low-light hours, resulting in a mean amplitude of 13 ppbv. This diurnal O3 cycle is far larger than observed at other high Arctic locations during the snow-free season. During the snow-free months of June, July, and August, O3 deposition velocities were ˜3 to 5 times faster than during May, when snow covered the ground most of the month. The overall mean O3 deposition velocity between June and August was 0.10 cm s-1. The month of June had the highest diurnal variation, with a median O3 deposition velocity of 0.2 cm s-1 during the daytime and 0.08 cm s-1 during low-light conditions. These values are slightly lower than previously reported summertime deposition velocities in northern latitudes over tundra or fen. O3 loss during low-light periods was attributed to a combination of surface deposition to the tundra and stable boundary layer conditions. We also hypothesize that emissions of reactive biogenic volatile organic compounds into the shallow boundary layer may contribute to nighttime O3 loss.

  18. Five Years of Land Surface Phenology in a Large Scale Hydrological Manipulation Experiment in an Arctic Tundra Landscape

    Science.gov (United States)

    Goswami, S.; Gamon, J. A.; Tweedie, C. E.

    2010-12-01

    Climate change appears to be most pronounced at high northern latitudes. Many of the observed and modeled climate change responses in arctic tundra ecosystems have profound effects on surface energy budgets, land-atmosphere carbon exchange, plant phenology, and geomorphic processes. Detecting biotic responses to a changing environment is essential for understanding the consequences of global change. Plants can work as very effective indicators of changing conditions and, depending on the nature of the change, respond by increasing or decreasing amounts of green-leaf biomass, chlorophyll, and water content. Shifts in the composition and abundance of plant species have important effects on ecosystem processes such as net primary production and nutrient cycling. Vegetation is expected to be responsive to arctic warming, although there is some uncertainty as to how the interplay between geomorphic, hydrologic, climatic and other biotic will manifest over a range of spatial scales. The NSF-supported Biocomplexity project in Barrow, Alaska, involves experimental manipulation of water table (drained, flooded, and control treatments) in a vegetated arctic thaw lake basin to investigate the effects of altered hydrology on land-atmosphere carbon balance. In each experimental treatment, hyperspectral reflectance data were collected in the visible and near IR range of the spectrum using a robotic tram system that operated along a 300m tramline during the snow free growing period between June and August 2005-09. Water table depths and soil volumetric water content was also collected along these transects. The years 2005-2007 were control or unmanipulated experimental years and 2008 and 2009 were experimental years where water table was raised (+10cm) and lowered (-10cm) in flooding and draining experiments respectively. This presentation will document the change in phenology (NDVI) between years, treatments, and land cover types. Findings from this research have implications

  19. Experimental Evidence that Fungi are Dominant Microbes in Carbon Content and Growth Response to Added Soluble Organic Carbon in Moss-rich Tundra Soil.

    Science.gov (United States)

    Anderson, O Roger; Lee, Jee Min; McGuire, Krista

    2016-05-01

    Global warming significantly affects Arctic tundra, including permafrost thaw and soluble C release that may differentially affect tundra microbial growth. Using laboratory experiments, we report some of the first evidence for the effects of soluble glucose-C enrichment on tundra soil prokaryotes (bacteria and archaea) and fungi, with comparisons to microbial eukaryotes. Fungal increase in C-biomass was equivalent to 10% (w/w) of the added glucose-C, and for prokaryote biomass 2% (w/w), the latter comparable to prior published results. The C-gain after 14 d was 1.3 mg/g soil for fungi, and ~200 μg/g for prokaryotes.

  20. Arctic biodiversity: Increasing richness accompanies shrinking refugia for a cold-associated tundra fauna

    Science.gov (United States)

    Hope, Andrew; Waltari, Eric; Malaney, Jason L.; Payer, David C.; Cook, J.A.; Talbot, Sandra

    2015-01-01

    As ancestral biodiversity responded dynamically to late-Quaternary climate changes, so are extant organisms responding to the warming trajectory of the Anthropocene. Ecological predictive modeling, statistical hypothesis tests, and genetic signatures of demographic change can provide a powerful integrated toolset for investigating these biodiversity responses to climate change, and relative resiliency across different communities. Within the biotic province of Beringia, we analyzed specimen localities and DNA sequences from 28 mammal species associated with boreal forest and Arctic tundra biomes to assess both historical distributional and evolutionary responses and then forecasted future changes based on statistical assessments of past and present trajectories, and quantified distributional and demographic changes in relation to major management regions within the study area. We addressed three sets of hypotheses associated with aspects of methodological, biological, and socio-political importance by asking (1) what is the consistency among implications of predicted changes based on the results of both ecological and evolutionary analyses; (2) what are the ecological and evolutionary implications of climate change considering either total regional diversity or distinct communities associated with major biomes; and (3) are there differences in management implications across regions? Our results indicate increasing Arctic richness through time that highlights a potential state shift across the Arctic landscape. However, within distinct ecological communities, we found a predicted decline in the range and effective population size of tundra species into several discrete refugial areas. Consistency in results based on a combination of both ecological and evolutionary approaches demonstrates increased statistical confidence by applying cross-discipline comparative analyses to conservation of biodiversity, particularly considering variable management regimes that seek

  1. Phenological dynamics of arctic tundra vegetation and its implications on satellite imagery interpretation

    Science.gov (United States)

    Juutinen, Sari; Aurela, Mika; Mikola, Juha; Räsänen, Aleksi; Virtanen, Tarmo

    2016-04-01

    Remote sensing is a key methodology when monitoring the responses of arctic ecosystems to climatic warming. The short growing season and rapid vegetation development, however, set demands to the timing of image acquisition in the arctic. We used multispectral very high spatial resolution satellite images to study the effect of vegetation phenology on the spectral reflectance and image interpretation in the low arctic tundra in coastal Siberia (Tiksi, 71°35'39"N, 128°53'17"E). The study site mainly consists of peatlands, tussock, dwarf shrub, and grass tundra, and stony areas with some lichen and shrub patches. We tested the hypotheses that (1) plant phenology is responsive to the interannual weather variation and (2) the phenological state of vegetation has an impact on satellite image interpretation and the ability to distinguish between the plant communities. We used an empirical transfer function with temperature sums as drivers to reconstruct daily leaf area index (LAI) for the different plant communities for years 2005, and 2010-2014 based on measured LAI development in summer 2014. Satellite images, taken during growing seasons, were acquired for two years having late and early spring, and short and long growing season, respectively. LAI dynamics showed considerable interannual variation due to weather variation, and particularly the relative contribution of graminoid dominated communities was sensitive to these phenology shifts. We have also analyzed the differences in the reflectance values between the two satellite images taking account the LAI dynamics. These results will increase our understanding of the pitfalls that may arise from the timing of image acquisition when interpreting the vegetation structure in a heterogeneous tundra landscape. Very high spatial resolution multispectral images are available at reasonable cost, but not in high temporal resolution, which may lead to compromises when matching ground truth and the imagery. On the other hand

  2. Short-term herbivory has long-term consequences in warmed and ambient high Arctic tundra

    Science.gov (United States)

    Little, Chelsea J.; Cutting, Helen; Alatalo, Juha; Cooper, Elisabeth

    2017-02-01

    Climate change is occurring across the world, with effects varying by ecosystem and region but already occurring quickly in high-latitude and high-altitude regions. Biotic interactions are important in determining ecosystem response to such changes, but few studies have been long-term in nature, especially in the High Arctic. Mesic tundra plots on Svalbard, Norway, were subjected to grazing at two different intensities by captive Barnacle geese from 2003–2005, in a factorial design with warming by Open Top Chambers. Warming manipulations were continued through 2014, when we measured vegetation structure and composition as well as growth and reproduction of three dominant species in the mesic meadow. Significantly more dead vascular plant material was found in warmed compared to ambient plots, regardless of grazing history, but in contrast to many short-term experiments no difference in the amount of living material was found. This has strong implications for nutrient and carbon cycling and could feed back into community productivity. Dominant species showed increased flowering in warmed plots, especially in those plots where grazing had been applied. However, this added sexual reproduction did not translate to substantial shifts in vegetative cover. Forbs and rushes increased slightly in warmed plots regardless of grazing, while the dominant shrub, Salix polaris, generally declined with effects dependent on grazing, and the evergreen shrub Dryas octopetala declined with previous intensive grazing. There were no treatment effects on community diversity or evenness. Thus despite no changes in total live abundance, a typical short-term response to environmental conditions, we found pronounced changes in dead biomass indicating that tundra ecosystem processes respond to medium- to long-term changes in conditions caused by 12 seasons of summer warming. We suggest that while high arctic tundra plant communities are fairly resistant to current levels of climate warming

  3. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    Science.gov (United States)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    Soil microbial communities play a central role in the cycling of carbon (C) in Arctic tundra ecosystems, which contain a large portion of the global C pool. Climate change predictions for Arctic regions include increased temperature and precipitation (i.e. more snow), resulting in increased winter soil insulation, increased soil temperature and moisture, and shifting plant community composition. We utilized an 18-year snow fence study site designed to examine the effects of increased winter precipitation on Arctic tundra soil bacterial communities within the context of expected ecosystem response to climate change. Soil was collected from three pre-established treatment zones representing varying degrees of snow accumulation, where deep snow ˜ 100 % and intermediate snow ˜ 50 % increased snowpack relative to the control, and low snow ˜ 25 % decreased snowpack relative to the control. Soil physical properties (temperature, moisture, active layer thaw depth) were measured, and samples were analysed for C concentration, nitrogen (N) concentration, and pH. Soil microbial community DNA was extracted and the 16S rRNA gene was sequenced to reveal phylogenetic community differences between samples and determine how soil bacterial communities might respond (structurally and functionally) to changes in winter precipitation and soil chemistry. We analysed relative abundance changes of the six most abundant phyla (ranging from 82 to 96 % of total detected phyla per sample) and found four (Acidobacteria, Actinobacteria, Verrucomicrobia, and Chloroflexi) responded to deepened snow. All six phyla correlated with at least one of the soil chemical properties (% C, % N, C : N, pH); however, a single predictor was not identified, suggesting that each bacterial phylum responds differently to soil characteristics. Overall, bacterial community structure (beta diversity) was found to be associated with snow accumulation treatment and all soil chemical properties. Bacterial

  4. Transformation of nitrogen compounds in the tundra soils of Northern Fennoscandia

    Science.gov (United States)

    Maslov, M. N.; Makarov, M. I.

    2016-07-01

    The transformation of organic nitrogen compounds in the soils of tundra ecosystems of Northern Fennoscandia has been studied under laboratory and natural conditions. Tundra soils contain significant reserves of total nitrogen, but they are poor in its extractable mineral and organic forms. The potential rates of the net mineralization and net immobilization of nitrogen by microorganisms vary among the soils and depend on the C: N ratio in the extractable organic matter and microbial biomass of soil. Under natural conditions, the rate of nitrogen net mineralization is lower than the potential rate determined under laboratory conditions by 6-25 times. The incubation of tundra soils in the presence of plants does not result in the accumulation of mineral nitrogen compounds either in the soil or in microbial biomass. This confirms the high competitive capacity of plants under conditions of limited nitrogen availability in tundra ecosystems.

  5. THE HYDRAULIC CHARACTERISTICS AND GEOCHEMISTRY OF HYPORHEIC AND PARAFLUVIAL ZONES IN ARCTIC TUNDRA STREAMS, NORTH SLOPE, ALASKA

    Science.gov (United States)

    Sodium bromide and Rhodamine WT were used as conservative tracers to examine the hydrologic characteristics of seven tundra streams in Arctic Alaska, during the summers of 1994-1996. Continuous tracer additions were conducted in seven rivers ranging from 1st to 5th order with sam...

  6. Structural complexity and land-surface energy exchange along a gradient from arctic tundra to boreal forest

    Science.gov (United States)

    Thompson, C.; Beringer, J.; Chapin, F. S.; McGuire, A.D.

    2004-01-01

    Question: Current climate changes in the Alaskan Arctic, which are characterized by increases in temperature and length of growing season, could alter vegetation structure, especially through increases in shrub cover or the movement of treeline. These changes in vegetation structure have consequences for the climate system. What is the relationship between structural complexity and partitioning of surface energy along a gradient from tundra through shrub tundra to closed canopy forest? Location: Arctic tundra-boreal forest transition in the Alaskan Arctic. Methods: Along this gradient of increasing canopy complexity, we measured key vegetation characteristics, including community composition, biomass, cover, height, leaf area index and stem area index. We relate these vegetation characteristics to albedo and the partitioning of net radiation into ground, latent, and sensible heating fluxes. Results: Canopy complexity increased along the sequence from tundra to forest due to the addition of new plant functional types. This led to non-linear changes in biomass, cover, and height in the understory. The increased canopy complexity resulted in reduced ground heat fluxes, relatively conserved latent heat fluxes and increased sensible heat fluxes. The localized warming associated with increased sensible heating over more complex canopies may amplify regional warming, causing further vegetation change in the Alaskan Arctic.

  7. Short-term Climate Characteristics at Ny-(A)lesund over the Arctic Tundra Area

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the Germany Koldwey Station's 1994-2003 conventional observation hourly data, this paper conducts a statistical analysis on the short-term climate characteristics for an arctic tundra region (Ny-(A)lesund island) where our first arctic expedition station (Huanghe Station) was located. Affected by the North Atlantic warming current, this area has a humid temperate climate, and the air temperature at Ny-(A)lesund rose above 0 ℃ even during deep winter season during our research period. The wind speed in this area was low and appeared most at southeast direction. We find that the temperature at Ny-(A)lesund rose in the faster rate (0.68 ℃/10 a) than those at the whole Arctic area. Compared with the floating ices where our expedition conducted in the Arctic, Ny-(A)lesund was warmer and more humid and had lower wind speed. Comparison of the near surface air temperature derived by NCEP/NCAR reanalysis to the conventional measurements conducted at the Koldwey site in Ny-(A)lesund area shows a good agreement for winter season and a significant difference for summer season.

  8. Shrub encroachment in Arctic tundra: Betula nana effects on above- and below-ground litter decomposition.

    Science.gov (United States)

    McLaren, Jennie R; Buckeridge, Kate M; van de Weg, Martine J; Shaver, Gaius R; Schimel, Joshua P; Gough, Laura

    2017-03-06

    Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a two-year decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns in to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered

  9. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.

    Science.gov (United States)

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-08-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0-10 cm to 10-20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen (NH4+ and NO3-). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska.

  10. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    Directory of Open Access Journals (Sweden)

    A. Ekici

    2014-09-01

    Full Text Available Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities.

  11. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia.

    Science.gov (United States)

    Forbes, Bruce C; Kumpula, Timo; Meschtyb, Nina; Laptander, Roza; Macias-Fauria, Marc; Zetterberg, Pentti; Verdonen, Mariana; Skarin, Anna; Kim, Kwang-Yul; Boisvert, Linette N; Stroeve, Julienne C; Bartsch, Annett

    2016-11-01

    Sea ice loss is accelerating in the Barents and Kara Seas (BKS). Assessing potential linkages between sea ice retreat/thinning and the region's ancient and unique social-ecological systems is a pressing task. Tundra nomadism remains a vitally important livelihood for indigenous Nenets and their large reindeer herds. Warming summer air temperatures have been linked to more frequent and sustained summer high-pressure systems over West Siberia, Russia, but not to sea ice retreat. At the same time, autumn/winter rain-on-snow (ROS) events have become more frequent and intense. Here, we review evidence for autumn atmospheric warming and precipitation increases over Arctic coastal lands in proximity to BKS ice loss. Two major ROS events during November 2006 and 2013 led to massive winter reindeer mortality episodes on the Yamal Peninsula. Fieldwork with migratory herders has revealed that the ecological and socio-economic impacts from the catastrophic 2013 event will unfold for years to come. The suggested link between sea ice loss, more frequent and intense ROS events and high reindeer mortality has serious implications for the future of tundra Nenets nomadism.

  12. Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra

    Directory of Open Access Journals (Sweden)

    Igor V. Polyakov

    2013-08-01

    Full Text Available Vegetation productivity trends for the Arctic tundra are updated for the 1982–2011 period and examined in the context of land surface temperatures and coastal sea ice. Understanding mechanistic links between vegetation and climate parameters contributes to model advancements that are necessary for improving climate projections. This study employs remote sensing data: Global Inventory Modeling and Mapping Studies (GIMMS Maximum Normalized Difference Vegetation Index (MaxNDVI, Special Sensor Microwave Imager (SSM/I sea-ice concentrations, and Advanced Very High Resolution Radiometer (AVHRR radiometric surface temperatures. Spring sea ice is declining everywhere except in the Bering Sea, while summer open water area is increasing throughout the Arctic. Summer Warmth Index (SWI—sum of degree months above freezing trends from 1982 to 2011 are positive around Beringia but are negative over Eurasia from the Barents to the Laptev Seas and in parts of northern Canada. Eastern North America continues to show increased summer warmth and a corresponding steady increase in MaxNDVI. Positive MaxNDVI trends from 1982 to 2011 are generally weaker compared to trends from 1982–2008. So to better understand the changing trends, break points in the time series were quantified using the Breakfit algorithm. The most notable break points identify declines in SWI since 2003 in Eurasia and 1998 in Western North America. The Time Integrated NDVI (TI-NDVI, sum of the biweekly growing season values of MaxNDVI has declined since 2005 in Eurasia, consistent with SWI declines. Summer (June–August sea level pressure (slp averages from 1999–2011 were compared to those from 1982–1998 to reveal higher slp over Greenland and the western Arctic and generally lower pressure over the continental Arctic in the recent period. This suggests that the large-scale circulation is likely a key contributor to the cooler temperatures over Eurasia through increased summer cloud

  13. Mercury dynamics of an arctic tundra ecosystem in northern Alaska: a mass balance

    Science.gov (United States)

    Obrist, D.; Helmig, D.; Agnan, Y.; Hedge, C.; Moore, C. W.; Paxton, D.; Hueber, J.

    2015-12-01

    To constrain the mercury (Hg) mass balance of a tundra ecosystem, we measured atmospheric mercury (Hg) concentrations and surface-atmosphere exchange at Toolik Field Station (68° 38' N) beginning September 2014. We also conducted automated measurements of gaseous Hg in soil pores and snow interstitial air to quantify gas exchange between soils, snow, and the atmosphere; and characterized wet and dry deposition and plant-derived Hg inputs. Results show that atmospheric Hg concentrations peak in winter, decrease in spring, and show summertime minima. Oxidized atmospheric Hg was below detection limits (0.05 ng m-3) indicating no significant dry deposition. Summertime minima of atmospheric Hg concentrations were associated with depositional fluxes of gaseous Hg (up to 2.8 ng m-2 hr-1; measured by a gradient method) that emerged after complete snowmelt. In contrast, gaseous Hg fluxes were below detection limits when snowpack was present; this was supported by in situ snowpack measurements and in contrast to commonly observed gaseous emissions from temperate snowpacks. The cumulative annual gaseous deposition flux of mercury was 12 µg m-2, in similar range as plant-derived inputs (17 µg m-2 yr-1) which we consider the major reason for observed gaseous Hg sink. Wet deposition was extremely low (<1 µg m-2 yr-1) compared to other sites. Hg concentrations in plants and soils are similar to levels found at temperate sites, but terrestrial pool sizes are large in comparison ranging around 400 g ha-1. The results suggest that: atmospheric Hg exposure is low at this site; that deposition is dominated by plant-derived deposition; and that significant Hg pools accumulate in tundra soils, likely driven by strong retention and low re-emissions after deposition. The high Hg soil pool sizes and key role of plant-productivity for Hg deposition may indicate a high sensitivity to climate change, in particular to permafrost soil thawing and increased growing season length.

  14. Vertical distribution of bacterial community is associated with the degree of soil organic matter decomposition in the active layer of moist acidic tundra.

    Science.gov (United States)

    Kim, Hye Min; Lee, Min Jin; Jung, Ji Young; Hwang, Chung Yeon; Kim, Mincheol; Ro, Hee-Myong; Chun, Jongsik; Lee, Yoo Kyung

    2016-11-01

    The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure.

  15. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  16. Modeling different freeze/thaw processes in heterogeneous landscapes of the Arctic polygonal tundra using an ecosystem model

    Directory of Open Access Journals (Sweden)

    S. Yi

    2013-09-01

    Full Text Available Freeze/thaw (F/T processes can be quite different under the various land surface types found in the heterogeneous polygonal tundra of the Arctic. Proper simulation of these different processes is essential for accurate prediction of the release of greenhouse gases under a warming climate scenario. In this study we have modified the dynamic organic soil version of the Terrestrial Ecosystem Model (DOS-TEM to simulate F/T processes beneath the polygon rims, polygon centers (with and without water, and lakes that are common features in Arctic lowland regions. We first verified the F/T algorithm in the DOS-TEM against analytical solutions, and then compared the results with in situ measurements from Samoylov Island, Siberia. In the final stage, we examined the different responses of the F/T processes for different water levels at the various land surface types. The simulations revealed that (1 the DOS-TEM was very efficient and its results compared very well with analytical solutions for idealized cases, (2 the simulations compared reasonably well with in situ measurements although there were a number of model limitations and uncertainties, (3 the DOS-TEM was able to successfully simulate the differences in F/T dynamics under different land surface types, and (4 permafrost beneath water bodies was found to respond highly sensitive to changes in water depths between 1 and 2 m. Our results indicate that water is very important in the thermal processes simulated by the DOS-TEM; the heterogeneous nature of the landscape and different water depths therefore need to be taken into account when simulating methane emission responses to a warming climate.

  17. Increasing shrub abundance and N addition in Arctic tundra affect leaf and root litter decomposition differently

    Science.gov (United States)

    McLaren, J.; van de Weg, M. J.; Shaver, G. R.; Gough, L.

    2013-12-01

    Changes in global climate have resulted in a ';greening' of the Arctic as the abundance of deciduous shrub species increases. Consequently, not only the living plant community, but also the litter composition changes, which in turn can affect carbon turnover patterns in the Arctic. We examined effects of changing litter composition (both root and leaf litter) on decomposition rates with a litter bag study, and specifically focused on the impact of deciduous shrub Betula nana litter on litter decomposition from two evergreen shrubs (Ledum palustre, and Vaccinium vitis-idaea) and one graminoid (Eriophorum vaginatum) species. Additionally, we investigated how decomposition was affected by nutrient availability by placing the litterbags in an ambient and a fertilized moist acidic tundra environment. Measurements were carried out seasonally over 2 years (after snow melt, mid-growing season, end growing season). We measured litter mass loss over time, as well as the respiration rates (standardized for temperature and moisture) and temperature sensitivity of litter respiration at the time of harvesting the litter bags. For leaves, Betula litter decomposed faster than the other three species, with Eriophorum leaves decomposing the slowest. This pattern was observed for both mass loss and litter respiration rates, although the differences in respiration became smaller over time. Surprisingly, combining Betula with any other species resulted in slower overall weight loss rates than would be predicted based on monoculture weight loss rates. This contrasted with litter respiration at the time of sampling, which showed a positive mixing effect of adding Betula leaf liter to the other species. Apparently, during the first winter months (September - May) Betula litter decomposition is negatively affected by mixing the species and this legacy can still be observed in the total mass loss results later in the year. For root litter there were fewer effects of species identity on root

  18. Assessing Seasonal Backscatter Variations with Respect to Uncertainties in Soil Moisture Retrieval in Siberian Tundra Regions

    Directory of Open Access Journals (Sweden)

    Elin Högström

    2014-09-01

    Full Text Available Knowledge of surface hydrology is essential for many applications, including studies that aim to understand permafrost response to changing climate and the associated feedback mechanisms. Advanced remote sensing techniques make it possible to retrieve a range of land-surface variables, including radar retrieved soil moisture (SSM. It has been pointed out before that soil moisture retrieval from satellite data can be challenging at high latitudes, which correspond to remote areas where ground data are scarce and the applicability of satellite data of this type is essential. This study investigates backscatter variability other than associated with changing soil moisture in order to examine the possible impact on soil moisture retrieval. It focuses on issues specific to SSM retrieval in the Arctic, notably variations related to tundra lakes. ENVISAT Advanced Synthetic Aperture Radar (ASAR Wide Swath (WS, 120 m data are used to understand and quantify impacts on Metop (AAdvanced Scatterometer (ASCAT, 25 km soil moisture retrieval during the snow free period. Sites of interest are chosen according to ASAR WS availability, high or low agreement between output from the land surface model ORCHIDEE and ASCAT derived SSM. Backscatter variations are analyzed with respect to the ASCAT footprint area. It can be shown that the low model agreement is related to water fraction in most cases. No difference could be detected between periods with floating ice (in snow off situation and ice free periods at the chosen sites. The mean footprint backscatter is however impacted by partial short term surface roughness change. The water fraction correlates with backscatter deviations (relative to a smooth water surface reference image within the ASCAT footprint areas (R = 0.91

  19. Role of Siderophores in Dissimilatory Iron Reduction in Arctic Soils : Effect of Direct Amendment of Siderophores to Arctic Soil

    Science.gov (United States)

    Srinivas, A. J.; Dinsdale, E. A.; Lipson, D.

    2014-12-01

    Dissimilatory iron reduction (DIR), where ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) anaerobically, is an important respiratory pathway used by soil bacteria. DIR contributes to carbon dioxide (CO2) efflux from the wet sedge tundra biome in the Arctic Coastal Plain (ACP) in Alaska, and could competitively inhibit the production of methane, a stronger greenhouse gas than CO2, from arctic soils. The occurrence of DIR as a dominant anaerobic process depends on the availability of substantial levels of Fe3+ in soils. Siderophores are metabolites made by microbes to dissolve Fe3+ from soil minerals in iron deficient systems, making Fe3+ soluble for micronutrient uptake. However, as the ACP is not iron deficient, siderophores in arctic soils may play a vital role in anaerobic respiration by dissolving Fe3+ for DIR. We studied the effects of direct siderophore addition to arctic soils through a field study conducted in Barrow, Alaska, and a laboratory incubation study conducted at San Diego State University. In the field experiment, 50μM deferroxamine mesylate (a siderophore), 50μM trisodium nitrilotriacetate (an organic chelator) or an equal volume of water was added to isolated experimental plots, replicated in clusters across the landscape. Fe2+ concentrations were measured in soil pore water samples collected periodically to measure DIR over time in each. In the laboratory experiment, frozen soil samples obtained from drained thaw lake basins in the ACP, were cut into cores and treated with the above-mentioned compounds to the same final concentrations. Along with measuring Fe2+ concentrations, CO2 output was also measured to monitor DIR over time in each core. Experimental addition of siderophores to soils in both the field and laboratory resulted in increased concentrations of soluble Fe3+ and a sustained increase in Fe2+concentrations over time, along with increased respiration rates in siderophore-amended cores. These results show increased DIR in

  20. Scaling Issues Between Plot and Satellite Radiobrightness Observations of Arctic Tundra

    Science.gov (United States)

    Kim, Edward J.; England, Anthony W.; Judge, Jasmeet; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Data from generation of satellite microwave radiometer will allow the detection of seasonal to decadal changes in the arctic hydrology cycle as expressed in temporal and spatial patterns of moisture stored in soil and snow This nw capability will require calibrated Land Surface Process/Radiobrightness (LSP/R) model for the principal terrains found in the circumpolar Arctic. These LSP/R models can than be used in weak constraint. Dimensional Data Assimilation (DDA)of the daily satellite observation to estimate temperature and moisture profiles within the permafrost in active layer.

  1. Arctic Tundra Vegetation Functional Types Based on Photosynthetic Physiology and Optical Properties

    Science.gov (United States)

    Huemmrich, Karl Fred; Gamon, John A.; Tweedie, Craig E.; Campbell, Petya K. Entcheva; Landis, David R.; Middleton, Elizabeth M.

    2013-01-01

    Non-vascular plants (lichens and mosses) are significant components of tundra landscapes and may respond to climate change differently from vascular plants affecting ecosystem carbon balance. Remote sensing provides critical tools for monitoring plant cover types, as optical signals provide a way to scale from plot measurements to regional estimates of biophysical properties, for which spatial-temporal patterns may be analyzed. Gas exchange measurements were collected for pure patches of key vegetation functional types (lichens, mosses, and vascular plants) in sedge tundra at Barrow, AK. These functional types were found to have three significantly different values of light use efficiency (LUE) with values of 0.013 plus or minus 0.0002, 0.0018 plus or minus 0.0002, and 0.0012 plus or minus 0.0001 mol C mol (exp -1) absorbed quanta for vascular plants, mosses and lichens, respectively. Discriminant analysis of the spectra reflectance of these patches identified five spectral bands that separated each of these vegetation functional types as well as nongreen material (bare soil, standing water, and dead leaves). These results were tested along a 100 m transect where midsummer spectral reflectance and vegetation coverage were measured at one meter intervals. Along the transect, area-averaged canopy LUE estimated from coverage fractions of the three functional types varied widely, even over short distances. The patch-level statistical discriminant functions applied to in situ hyperspectral reflectance data collected along the transect successfully unmixed cover fractions of the vegetation functional types. The unmixing functions, developed from the transect data, were applied to 30 m spatial resolution Earth Observing-1 Hyperion imaging spectrometer data to examine variability in distribution of the vegetation functional types for an area near Barrow, AK. Spatial variability of LUE was derived from the observed functional type distributions. Across this landscape, a

  2. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Science.gov (United States)

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  3. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    Directory of Open Access Journals (Sweden)

    John-André Henden

    Full Text Available The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation

  4. Seasonal variation in soil nitrogen availability across a fertilization chronosequence in moist acidic tundra

    Science.gov (United States)

    McLaren, J. R.; Gough, L.; Weintraub, M. N.

    2012-12-01

    Changes in global climate may result in altered timing of seasonal events including the timing of the spring-thaw and fall freeze-up. In addition to this changing seasonality, arctic environments are experiencing overall increases in nutrient availability caused by climate warming resulting in alterations of plant species composition, such as the observed increases in the abundance of deciduous shrubs. Changing species composition may have large effects on nutrient dynamics in the surrounding ecosystem because of documented differences in how particular plant species influence soil nutrient availability. Although we have some idea of how plant identity influences soil nutrients, soil biogeochemical processes are strongly seasonal, and we have a poor understanding of how plant identity, or nutrient levels, may influence these seasonal patterns. We examined the responses of moist acidic tundra to experimentally increased soil nutrient availability and the accompanying increase in shrub abundance at the Arctic Long Term Ecological Research (LTER) site at Toolik Lake, Alaska. We examined a chrono-sequence of long-term fertilization experiments, composed of experiments fertilized for 5, 15 and 22 years, which has resulted in increasing shrub density with time since fertilization. The fertilized plots receive both nitrogen (N, 10 g/m2/yr) and phosphorus (5 g/m2/yr) annually following snowmelt. In the 2011 growing season we measured variation in soil available N weekly, including measures of ammonium (NH4), nitrate (NO3) and total free amino acids (TFAA). We found that differences between fertilized and control plots depended strongly on both the seasonal timing of measurements, as well as the duration of the fertilization treatment. Early in the growing season fertilization resulted in large increases in available soil N (both NH4 and NO3) across the entire chronosequence. As the season progressed, however, older fertilized plots show evidence of N saturation, where

  5. Lepidoptera Larvae as an Indicator of Multi-trophic Level Responses to Changing Seasonality in an Arctic Tundra Ecosystem

    Science.gov (United States)

    Daly, K. M.; Steltzer, H.; Boelman, N.; Weintraub, M. N.; Darrouzet-Nardi, A.; Wallenstein, M. D.; Sullivan, P.; Gough, L.; Rich, M.; Hendrix, C.; Kielland, K.; Philip, K.; Doak, P.; Ferris, C.; Sikes, D.

    2011-12-01

    Earlier snowmelt and warming temperatures in the Arctic will impact multiple trophic levels through the timing and availability of food resources. Lepidoptera are a vital link within the ecosystem; their roles include pollinator, parasitized host for other pollinating insects, and essential food source for migrating birds and their fledglings. Multiple environmental cues including temperature initiate plant growth, and in turn, trigger the emergence of Lepidoptera and the migrations of birds. If snowmelt is accelerated and temperature is increased, it is expected that the Lepidoptera larvae will respond to early plant growth by increasing their abundance within areas that have accelerated snowmelt and warmer conditions. In May of 2011 in a moist acidic tussock tundra system, we accelerated snowmelt by 15 days through the use of radiation-absorbing fabric and warmed air and soil temperatures using open-top chambers, individually and in combination. Every 1-2 days from May 27th to July 8th, 2 minute searches were performed for Lepidoptera larvae in all treatments; when an animal was found, their micro-habitat, surface temperature, behavior, food source, and time of day were noted. The length, body and head width were measured, and the animals were examined for braconid wasp and tachinid fly parasites. Lepidoptera larvae collected in pitfall traps from May 26th to July 7th were also examined and measured. Total density of parasitized larvae accounted for 54% of observed specimens and 50% of pitfall specimens, indicating that Lepidoptera larvae serve an integral role as a host for other pollinators. Total larvae density was highest within the accelerated snowmelt plots compared to the control plots; 66% of observed live specimens and 63% of pitfall specimens were found within the accelerated snowmelt plots. Ninety percent of the total observed animals were found within the open-top warming chambers. Peak density of animals occurred at Solar Noon between 14:00 -15

  6. Spatial and Temporal Variability of Methane Mole Fractions and Exchanges in and Between Soil, Snow, and the Atmosphere in a Tundra System in Northern Alaska

    Science.gov (United States)

    Agnan, Y.; Obrist, D.; Edwards, G. C.; Moore, C.; Hedge, C.; Helmig, D.; Paxton, D.; Jacques, H.

    2015-12-01

    An important global source of atmospheric methane (CH4) is production in tundra soils (an important global source). To place constraints on the potential role that tundra soils play in global CH4 cycling, we have been continuously measuring mole the air space in soils, snow, and the atmosphere as gradient-based surface-atmosphere fluxes for arctic tundra at Toolik Field Station (68° 38' N) starting in October 2014. We have found that atmospheric CH4 mole fractions were, on average, relatively constant during the first 9 months of sampling (averaging 1.93 µmol mol-1), with pronounced diel patterns starting in May and nighttime exceeding daytime mole fractions. However, gradients measured within the soil profile showed high variability in air withdrawn from different locations of these tundra soils (Typic Aquiturbels), with one soil profile indicating a CH4 sink during fall until January; mole fractions were similar to the atmospheric measurements during winter indicating no source or sink (average 1.89 µmol mol-1). A second soil profile 5 m away showed production of CH4 (average 2.48 µmol mol-1, two-times higher than atmospheric levels), even during mid-winter when soil temperatures were below -10 °C. Measurements of CH4 in interstitial snowpack air also exhibited a similar combination of sources and sinks. We used micrometeorological gradient surface flux measurements to confirm that the area was a net source of CH4 in fall, winter, and spring, with emissions averaging 26.6, 25.2, and 16.8 mg m-2 d-1, respectively. In the summer months, we saw strong diel flux patterns with deposition during day and emission at night, corresponding with observed diel variability in CH4 snowpack mole fractions. Our results indicated a high variability of tundra landscape CH4 fluxes, which locally shift from sources to sinks with high temporal variability. CH4 oxidation by methanotrophic bacteria probably occurs in tundra soils, confirming observations in one soil, snowpack, and

  7. Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.

    2015-03-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low Arctic shrub tundra near Umiujaq, Quebec, (56°34´ N; 76°29´ W) and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at 4 heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time-evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. Shrubs are observed to have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevents snow compaction and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  8. Automatic monitoring of the effective thermal conductivity of snow in a low-Arctic shrub tundra

    Science.gov (United States)

    Domine, F.; Barrere, M.; Sarrazin, D.; Morin, S.; Arnaud, L.

    2015-06-01

    The effective thermal conductivity of snow, keff, is a critical variable which determines the temperature gradient in the snowpack and heat exchanges between the ground and the atmosphere through the snow. Its accurate knowledge is therefore required to simulate snow metamorphism, the ground thermal regime, permafrost stability, nutrient recycling and vegetation growth. Yet, few data are available on the seasonal evolution of snow thermal conductivity in the Arctic. We have deployed heated needle probes on low-Arctic shrub tundra near Umiujaq, Quebec, (N56°34'; W76°29') and monitored automatically the evolution of keff for two consecutive winters, 2012-2013 and 2013-2014, at four heights in the snowpack. Shrubs are 20 cm high dwarf birch. Here, we develop an algorithm for the automatic determination of keff from the heating curves and obtain 404 keff values. We evaluate possible errors and biases associated with the use of the heated needles. The time evolution of keff is very different for both winters. This is explained by comparing the meteorological conditions in both winters, which induced different conditions for snow metamorphism. In particular, important melting events in the second year increased snow hardness, impeding subsequent densification and increase in thermal conductivity. We conclude that shrubs have very important impacts on snow physical evolution: (1) shrubs absorb light and facilitate snow melt under intense radiation; (2) the dense twig network of dwarf birch prevent snow compaction, and therefore keff increase; (3) the low density depth hoar that forms within shrubs collapsed in late winter, leaving a void that was not filled by snow.

  9. Priming of soil organic matter decomposition in cryoturbated Arctic soils

    Science.gov (United States)

    Richter, A.; Wild, B.; Schnecker, J.; Rusalimova, O.

    2012-12-01

    The Arctic is subjected to particularly high rates of warming, with profound consequences for the carbon cycle: on the one hand plant productivity and C storage in plant biomass have been shown to increase strongly in many parts of the Arctic, on the other hand, increasing rates of soil organic matter (SOM) decomposition have been reported. One of the possibilities that could reconcile these observations is, that increased plant growth may lead to increased root exudation rates, which are known to stimulate microbial turnover of organic matter under certain circumstances, in a process termed "priming" of SOM. Two mechanisms have been brought forward that may be responsible for priming: first, easily assimilable material exuded by plant roots may help microbes to overcome their energy limitation and second, this input of labile carbon could lead to a nitrogen limitation of the microbial community and lead to nitrogen mining, i.e. decomposition of N-rich SOM. We here report on an incubation study with arctic soil investigating potential priming of SOM decomposition in organic topsoil horizons, cryoturbated organic matter and subsoil mineral horizons of tundra soil from the Taymyr peninsula in Siberia. We used arctic soils, that are characterized by cryoturbation (mixing of soil layers due to freezing and thawing), for this study. Turbated cryosols store more than 580 Gt C globally, a significant proportion of which is stored in the cryoturbated organic matter. We hypothesized that an increased availability of labile compounds would increase SOM decomposition rates, and that this effect would be strongest in horizons with a low natural availability of labile C, i.e. in the mineral subsoil. We amended soils with 13C labelled glucose, cellulose, amino acids or proteins, and measured the mineralization of SOM C as well as microbial community composition and potential activities of extracellular enzymes. Our results demonstrate that topsoil organic, cryoturbated and

  10. Complete genome sequence of Granulicella mallensis type strain MP5ACTX8(T), an acidobacterium from tundra soil

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Suman R. [Rutgers University; Mannisto, Minna [Finnish Forest Research Institute, Parkano, Finland; Starovoytov, Valentin [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Haggblom, Max [Rutgers University

    2013-01-01

    Granulicella mallensis MP5ACTX8(T) is a novel species of the genus Granulicella in subdivision 1 of Acidobacteria. G. mallensis is of ecological interest being a member of the dominant soil bacterial community active at low temperatures and nutrient limiting conditions in Arctic alpine tundra. G. mallensis is a cold-adapted acidophile and a versatile heterotroph that hydrolyzes a suite of sugars and complex polysaccharides. Genome analysis revealed metabolic versatility with genes involved in metabolism and transport of carbohydrates. These include gene modules encoding the carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides including plant based carbon polymers. The genome of Granulicella mallensis MP5ACTX8(T) consists of a single replicon of 6,237,577 base pairs (bp) with 4,907 protein-coding genes and 53 RNA

  11. Distribution patterns of typical enzyme activities in tundra soils on the Fildes Peninsula of maritime Antarctica

    Institute of Scientific and Technical Information of China (English)

    DING Wei; WANG Qing; ZHU Renbin; MA Dawei

    2015-01-01

    Soil enzyme activities can be used as indicators of microbial activity and soil fertility. In this paper, the activities of invertase (IA), phosphatase (PA) and urease (UA) were investigated in tundra soils collected from marine animal colonies, areas of human activity and background areas on Fildes Peninsula, maritime Antarctica. Soil enzyme activities were in the range of 1.0–82.7 mg·kg-1·h-1 for IA, 0.2–8.2 mg·kg-1·h-1 for PA and 0.2–39.8 mg·kg-1·h-1 for UA. The spatial distribution patterns for soil enzyme activities corresponded strongly with marine animal activity and human activity. Significantly higher soil IA and PA activities occurred in penguin colony soils, whereas seal colony soils showed higher UA activity. Statistical analysis indicated that soil IA activity was controlled by the levels of soil nutrients (TOC, TN and TP), PA activity was closely related with TP, and UA activity was affected by the soil pH. Overall, the deposition amount of penguin guano or seal excreta could impact the distribution of enzyme activity in Antarctic tundra soils. Multiple stepwise regression models were established between the enzyme activities, soil physicochemical properties and heavy metals Cu and Zn ([IA]=0.7[TP]–0.2[Cu]+22.3[TN]+15.1, [PA]=0.3[TP]+0.03[Mc]+0.2, [UA]=16.7[pH]–0.5[Cu]+ 0.4[Zn]–72.6). These models could be used to predict enzyme activities in the tundra soils, which could be helpful to study the effects of marine animal activity and environmental change on tundra ecosystems in maritime Antarctica.

  12. Wet meadow ecosystems contribute the majority of overwinter soil respiration from snow-scoured alpine tundra

    Science.gov (United States)

    Knowles, John F.; Blanken, Peter D.; Williams, Mark W.

    2016-04-01

    We measured soil respiration across a soil moisture gradient ranging from dry to wet snow-scoured alpine tundra soils throughout three winters and two summers. In the absence of snow accumulation, soil moisture variability was principally determined by the combination of mesotopographical hydrological focusing and shallow subsurface permeability, which resulted in a patchwork of comingled ecosystem types along a single alpine ridge. To constrain the subsequent carbon cycling variability, we compared three measures of effective diffusivity and three methods to calculate gradient method soil respiration from four typical vegetation communities. Overwinter soil respiration was primarily restricted to wet meadow locations, and a conservative estimate of the rate of overwinter soil respiration from snow-scoured wet meadow tundra was 69-90% of the maximum carbon dioxide (CO2) respired by seasonally snow-covered soils within this same catchment. This was attributed to higher overwinter soil temperatures at wet meadow locations relative to fellfield, dry meadow, and moist meadow communities, which supported liquid water and heterotrophic respiration throughout the winter. These results were corroborated by eddy covariance-based measurements that demonstrated an average of 272 g C m-2 overwinter carbon loss during the study period. As a result, we updated a conceptual model of soil respiration versus snow cover to express the potential for soil respiration variability from snow-scoured alpine tundra.

  13. Assessing the spatial variability in peak season CO2 exchange characteristics across the Arctic tundra using a light response curve parameterization

    Directory of Open Access Journals (Sweden)

    H. N. Mbufong

    2014-05-01

    Full Text Available This paper aims to assess the functional and spatial variability in the response of CO2 exchange to irradiance across the Arctic tundra during peak season using light response curve (LRC parameters. This investigation allows us to better understand the future response of Arctic tundra under climatic change. Data was collected using the micrometeorological eddy covariance technique from 12 circumpolar Arctic tundra sites, in the range of 64–74° N. The LRCs were generated for 14 days with peak net ecosystem exchange (NEE using an NEE -irradiance model. Parameters from LRCs represent site specific traits and characteristics describing: (a NEE at light saturation (Fcsat, (b dark respiration (Rd, (c light use efficiency (α, (d NEE when light is at 1000 μmol m−2 s−1 (Fc1000, (e potential photosynthesis at light saturation (Psat and (f the light compensation point (LCP. Parameterization of LRCs was successful in predicting CO2 flux dynamics across the Arctic tundra. Yet we did not find any trends in LRC parameters across the whole Arctic tundra but there were indications for temperature and latitudinal differences within sub-regions like Russia and Greenland. Together, LAI and July temperature had a high explanatory power of the variance in assimilation parameters (Fcsat, Fc1000 and Psat, thus illustrating the potential for upscaling CO2 exchange for the whole Arctic tundra. Dark respiration was more variable and less correlated to environmental drivers than was assimilation parameters. Thus, indicating the inherent need to include other parameters such as nutrient availability, substrate quantity and quality in flux monitoring activities.

  14. Experimentally substantiated equations of the interrelations between the agrochemical characteristics of tundra soils

    Science.gov (United States)

    Vasil'Evskaya, V. D.; Grigor'ev, V. Ya.; Pogozhev, E. Yu.; Pogozheva, E. A.

    2011-01-01

    The detailed analysis of the results obtained in the course of experimental studying of the tundra soils in Western and Central Siberia and in the European part of Russia has revealed the general regularities of the variability and the relationships between the agrochemical and other properties of the soils. On the basis of these data, the calculated methods for the assessment of a complex of agrochemical properties of natural and disturbed tundra soils under different moisture and thermal conditions were elaborated. Among the properties analyzed, the following are important for plant growth: the acidity and the content of humus, organic carbon, total nitrogen, mobile phosphorus, nitrogen, and potassium. The relationships between the soil agro-chemical properties and the plant productivity allowed applying them for the quantitative evaluation of the environmental threat of the soil-plant cover's degradation because of different predominantly mechanical disturbances.

  15. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, J.S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  16. Complete genome sequence of Terriglobus saanensis type strain SP1PR4T, an Acidobacteria from tundra soil

    Energy Technology Data Exchange (ETDEWEB)

    Rawat, Suman R. [Rutgers University; Mannisto, Minna [Finnish Forest Research Institute, Parkano, Finland; Starovoytov, Valentin [Rutgers University; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Hauser, Loren John [ORNL; Land, Miriam L [ORNL; Davenport, Karen W. [Los Alamos National Laboratory (LANL); Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Haggblom, Max [Rutgers University

    2012-01-01

    Terriglobus saanensis SP1PR4T is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4T represents the first member of genus Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.

  17. Water-table height and microtopography control biogeochemical cycling in an Arctic coastal tundra ecosystem

    Science.gov (United States)

    Lipson, D. A.; Zona, D.; Raab, T. K.; Bozzolo, F.; Mauritz, M.; Oechel, W. C.

    2012-01-01

    Drained thaw lake basins (DTLB's) are the dominant land form of the Arctic Coastal Plain in northern Alaska. The presence of continuous permafrost prevents drainage and so water tables generally remain close to the soil surface, creating saturated, suboxic soil conditions. However, ice wedge polygons produce microtopographic variation in these landscapes, with raised areas such as polygon rims creating more oxic microenvironments. The peat soils in this ecosystem store large amounts of organic carbon which is vulnerable to loss as arctic regions continue to rapidly warm, and so there is great motivation to understand the controls over microbial activity in these complex landscapes. Here we report the effects of experimental flooding, along with seasonal and spatial variation in soil chemistry and microbial activity in a DTLB. The flooding treatment generally mirrored the effects of natural landscape variation in water-table height due to microtopography. The flooded portion of the basin had lower dissolved oxygen, lower oxidation-reduction potential (ORP) and higher pH, as did lower elevation areas throughout the entire basin. Similarly, soil pore water concentrations of organic carbon and aromatic compounds were higher in flooded and low elevation areas. Dissolved ferric iron (Fe(III)) concentrations were higher in low elevation areas and responded to the flooding treatment in low areas, only. The high concentrations of soluble Fe(III) in soil pore water were explained by the presence of siderophores, which were much more concentrated in low elevation areas. All the aforementioned variables were correlated, showing that Fe(III) is solubilized in response to anoxic conditions. Dissolved carbon dioxide (CO2) and methane (CH4) concentrations were higher in low elevation areas, but showed only subtle and/or seasonally dependent effects of flooding. In anaerobic laboratory incubations, more CH4 was produced by soils from low and flooded areas, whereas anaerobic CO2

  18. Improved quantification of microbial CH4 oxidation efficiency in Arctic wetland soils using carbon isotope fractionation

    Directory of Open Access Journals (Sweden)

    E.-M. Pfeiffer

    2012-12-01

    Full Text Available Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4. The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox and diffusion (αdiff were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1. In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3. CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18. Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009 and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the

  19. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    Science.gov (United States)

    Mukhortova, Liudmila

    2010-05-01

    Our study was conducted on 17 forest sample plots in the forest-tundra zone of Central Siberia, Krasnoyarsk region, Russia. They were covered by larch/feather moss/shrub and larch/grass forest types growing on cryozems and podburs (Cryosols). The investigation was aimed at estimating soil organic matter storage and structure in forest ecosystems growing along the northern tree line. Such ecosystems have low rates of exchange processes and biological productivity. Estimating soil carbon in these forest types is important for a deeper understanding of their role in biogeochemical cycles and forecasting consequences of climate changes. Soil organic matter was divided into pools by biodegradation resistance level and, hence, different roles of these pools in biological cycles. The soil organic matter was divided into an easily mineralizable (LMOM) fraction, which includes labile (insoluble) (LOM) and mobile (soluble) (MOM) organic compounds, and a stable organic matter fraction that is humus substances bound with soil matrix. The forest-tundra soil carbon was found to total 30.9 to 125.9 tons/ha. Plant residues were the main part of the soil easily mineralizable organic matter and contained from 13.3 to 62.4% of this carbon. Plant residue carbon was mainly allocated on the soil surface, in the forest litter. Plant residues in the soil (dead roots + other "mortmass") were calculated to contribute 10-30% of the plant residues carbon, or 2.5-15.1% of the total soil carbon. Soil surface and in-soil dead plant material included 60-95% of heavily decomposed residues that made up a forest litter fermentation subhorizon and an "other mortmass" fraction of the root detritus. Mobile organic matter (substances dissolved in water and 0.1N NaOH) of plant residues was found to allocate 15-25% of carbon. In soil humus, MOM contribution ranged 14 to 64%. Easily mineralizable organic matter carbon appeared to generally dominate forest-tundra soil carbon pool. It was measured to

  20. Quantification of DOC concentrations in relation with soil properties of soils in tundra and taiga of Northern European Russia

    Directory of Open Access Journals (Sweden)

    M. R. Oosterwoud

    2010-05-01

    Full Text Available Potential mobilization and transport of Dissolved Organic Carbon (DOC in subarctic river basins towards the oceans is enormous, because 23–48% of the worlds Soil Organic Carbon (SOC is stored in northern regions. As climate changes, the amount and composition of DOC exported from these basins are expected to change. The transfer of organic carbon between soils and rivers results in fractionation of organic carbon compounds. The aim of this research is to determine the DOC concentrations, its fractions, i.e. humic (HA, fulvic (FA, and hydrophilic (HY acids, and soil characteristics that influence the DOC sorptive properties of different soil types within a tundra and taiga catchment of Northern European Russia. DOC in taiga and tundra soil profiles (soil solution consisted only of HY and FA, where HY became more abundant with increasing depth. Adsorption of DOC on mineral phases is the key geochemical process for release and removal of DOC from potentially soluble carbon pool. We found that adsorbed organic carbon may desorb easily and can release DOC quickly, without being dependent on mineralization and degradation. Although Extractable Organic Carbon (EOC comprise only a small part of SOC, it is a significant buffering pool for DOC. We found that about 80–90% of released EOC was previously adsorbed. Fractionation of EOC is also influenced by the fact that predominantly HA and FA adsorbed to soil and therefore also are the main compounds released when desorbed. Flowpaths vary between taiga and tundra and through seasons, which likely affects DOC concentration found in streams. As climate changes, also flowpaths of water through soils may change, especially in tundra caused by thawing soils. Therefore, adsorptive properties of thawing soils exert a major control on DOC leaching to rivers. To better understand the process of DOC ad- and de-sorption in soils, process based soil chemical modelling, which could bring more insight in solution

  1. Monitoring ecosystem dynamics in an Arctic tundra ecosystem using hyperspectral reflectance and a robotic tram system

    Science.gov (United States)

    Goswami, Santonu

    Global change, which includes climate change and the impacts of human disturbance, is altering the provision and sustainability of ecosystem goods and services. These changes have the capacity to initiate cascading affects and complex feedbacks through physical, biological and human subsystems and interactions between them. Understanding the future state of the earth system requires improved knowledge of ecosystem dynamics and long term observations of how these are being impacted by global change. Improving remote sensing methods is essential for such advancement because satellite remote sensing is the only means by which landscape to continental-scale change can be observed. The Arctic appears to be impacted by climate change more than any other region on Earth. Arctic terrestrial ecosystems comprise only 6% of the land surface area on Earth yet contain an estimated 25% of global soil organic carbon, most of which is stored in permafrost. If projected increases in plant productivity do not offset forecast losses of soil carbon to the atmosphere as greenhouse gases, regional to global greenhouse warming could be enhanced. Soil moisture is an important control of land-atmosphere carbon exchange in arctic terrestrial ecosystems. However, few studies to date have examined using remote sensing, or developed remote sensing methods for observing the complex interplay between soil moisture and plant phenology and productivity in arctic landscapes. This study was motivated by this knowledge gap and addressed the following questions as a contribution to a large scale, multi investigator flooding and draining experiment funded by the National Science Foundation near Barrow, Alaska (71°17'01" N, 156°35'48" W): (1) How can optical remote sensing be used to monitor the surface hydrology of arctic landscapes? (2) What are the spatio-temporal dynamics of land-surface phenology (NDVI) in the study area and do hydrological treatment has any effect on inter-annual patterns? (3

  2. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  3. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra

    Science.gov (United States)

    Li, Lin; Xing, Ming; Lv, Jiangwei; Wang, Xiaolong; Chen, Xia

    2017-02-01

    Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifolia encroaching in alpine tundra by conducting experiments for two vegetation types (shrubs and herbs) by real-time PCR and Illumina Miseq sequencing methods. The treatments consisted of D. angustifolia sites (DA), native sites (NS, NH) and encroaching sites (ES, EH). Our results show that (1) Rhizosphere soil properties of the alpine tundra were significantly impacted by D. angustifolia encroaching; microbial nutrient cycling and soil bacterial communities were shaped to be suitable for D. angustifolia growth; (2) The two vegetation community rhizosphere soils responded differently to D. angustifolia encroaching; (3) By encroaching into both vegetation communities, D. angustifolia could effectively replace the native species by establishing positive plant-soil feedback. The strong adaptation and assimilative capacity contributed to D. angustifolia encroaching in the alpine tundra. Our research indicates that D. angustifolia significantly impacts the rhizosphere soil microbial of the alpine tundra.

  4. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Science.gov (United States)

    Xue, Kai; M. Yuan, Mengting; J. Shi, Zhou; Qin, Yujia; Deng, Ye; Cheng, Lei; Wu, Liyou; He, Zhili; van Nostrand, Joy D.; Bracho, Rosvel; Natali, Susan; Schuur, Edward. A. G.; Luo, Chengwei; Konstantinidis, Konstantinos T.; Wang, Qiong; Cole, James R.; Tiedje, James M.; Luo, Yiqi; Zhou, Jizhong

    2016-06-01

    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra Reco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability.

  5. Relationships between hyperspectral data and components of vegetation biomass in Low Arctic tundra communities at Ivotuk, Alaska

    Science.gov (United States)

    Bratsch, Sara; Epstein, Howard; Buchhorn, Marcel; Walker, Donald; Landes, Heather

    2017-02-01

    Warming in the Arctic has resulted in a lengthening of the growing season and changes to the distribution and composition of tundra vegetation including increased biomass quantities in the Low Arctic. Biomass has commonly been estimated using broad-band greenness indices such as NDVI; however, vegetation changes in the Arctic are occurring at spatial scales within a few meters. The aim of this paper is to assess the ability of hyperspectral remote sensing data to estimate biomass quantities among different plant tissue type categories at the North Slope site of Ivotuk, Alaska. Hand-held hyperspectral data and harvested biomass measurements were collected during the 1999 growing season. A subset of the data was used as a training set, and was regressed against the hyperspectral bands using LASSO. LASSO is a modification of SPLS and is a variable selection technique that is useful in studies with high collinearity among predictor variables such as hyperspectral remote sensing. The resulting equations were then used to predict biomass quantities for the remaining Ivotuk data. The majority of significant biomass-spectra relationships (65%) were for shrubs categories during all times of the growing season and bands in the blue, green, and red edge wavelength regions of the spectrum. The ability to identify unique biomass-spectra relationships per community is decreased at the height of the growing season when shrubs obscure lower-lying vegetation such as mosses. The results of this study support previous research arguing that shrubs are dominant controls over spectral reflectance in Low Arctic communities and that this dominance results in an increased ability to estimate shrub component biomass over other plant functional types.

  6. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    Directory of Open Access Journals (Sweden)

    Congcong eShen

    2015-06-01

    Full Text Available The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon, total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil total carbon and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient.

  7. Potential methane production rates and its carbon isotopic composition from ornithogenic tundra soils in coastal Antarctic

    Institute of Scientific and Technical Information of China (English)

    BAO Tao; ZHU Renbin; BAI Bo; XU Hua

    2016-01-01

    Methane (CH4) is one of important greenhouse gases with chemical activity. The determination of isotopic compositions for CH4 emitted from the soils helps us to understand its production mechanisms. CH4 isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of CH4 have been reported from Antarctic tundra soils. In this paper, ornithogenic soil profiles were collected from four penguin colonies, and potential CH4 production rates and its13C ratio (δ13C) were investigated based upon laboratory incubation experiments. The mean CH4 production rates are highly variable in these soil proifles, ranging from 0.7 to 20.3 μg CH4−C kg−1∙h−1. These ornithogenic soils had high potential production rates of CH4 under ambient air incubation or under N2 incubation, indicating the importance of potential CH4 emissions from penguin colonies. Most of the soil samples had higher δ13C-CH4 under N2 incubation (−39.28%~−43.53%) than under the ambient air incubation (−42.81%~−57.19%). Highly anaerobic conditions were conducive to the production of CH4 enriched in13C, and acetic acid reduction under N2 incubation might be a predominant source for soil CH4production. Overall theδ13C-CH4 showed a signiifcant negative correlation with CH4 production rates in ornithogenic tundra soils under N2 incubation (R2=0.41,p<0.01) or under the ambient air incubation (R2=0.50,p<0.01). Potential CH4 production from ornithogenic soils showed a signiifcant positive correlation with total phosphorus (TP) and NH4+−N contents, pH and soil moisture (Mc), but the δ13C-CH4 showed a signiifcant negative correlation with TP and NH4+−N contents, pH and Mc, indicating that the deposition amount of penguin guano increased potential CH4 production rates from tundra soils, but decreased the δ13C-CH4. The CH4 emissions from the ornithogenic soils affect carbon isotopic compositions of atmospheric CH4in coastal Antarctica.

  8. Challenges in modelling isoprene and monoterpene emission dynamics of Arctic plants: a case study from a subarctic tundra heath

    Science.gov (United States)

    Tang, Jing; Schurgers, Guy; Valolahti, Hanna; Faubert, Patrick; Tiiva, Päivi; Michelsen, Anders; Rinnan, Riikka

    2016-12-01

    The Arctic is warming at twice the global average speed, and the warming-induced increases in biogenic volatile organic compounds (BVOCs) emissions from Arctic plants are expected to be drastic. The current global models' estimations of minimal BVOC emissions from the Arctic are based on very few observations and have been challenged increasingly by field data. This study applied a dynamic ecosystem model, LPJ-GUESS, as a platform to investigate short-term and long-term BVOC emission responses to Arctic climate warming. Field observations in a subarctic tundra heath with long-term (13-year) warming treatments were extensively used for parameterizing and evaluating BVOC-related processes (photosynthesis, emission responses to temperature and vegetation composition). We propose an adjusted temperature (T) response curve for Arctic plants with much stronger T sensitivity than the commonly used algorithms for large-scale modelling. The simulated emission responses to 2 °C warming between the adjusted and original T response curves were evaluated against the observed warming responses (WRs) at short-term scales. Moreover, the model responses to warming by 4 and 8 °C were also investigated as a sensitivity test. The model showed reasonable agreement to the observed vegetation CO2 fluxes in the main growing season as well as day-to-day variability of isoprene and monoterpene emissions. The observed relatively high WRs were better captured by the adjusted T response curve than by the common one. During 1999-2012, the modelled annual mean isoprene and monoterpene emissions were 20 and 8 mg C m-2 yr-1, with an increase by 55 and 57 % for 2 °C summertime warming, respectively. Warming by 4 and 8 °C for the same period further elevated isoprene emission for all years, but the impacts on monoterpene emissions levelled off during the last few years. At hour-day scale, the WRs seem to be strongly impacted by canopy air T, while at the day-year scale, the WRs are a combined

  9. Nitrous oxide production and emission in high arctic soils of NW Greenland

    Science.gov (United States)

    Stills, A.; Lupascu, M.; Czimczik, C. I.; Sharp, E. D.; Welker, J. M.; Schaeffer, S. M.

    2010-12-01

    Nitrous oxide (N2O) is a potent ozone depleting greenhouse gas with a global warming potential 298 times larger than carbon dioxide (CO2 on a 100-year time scale. Recent studies identified arctic soils undergoing thawing and changes in drainage as potentially large sources of N2O to the atmosphere. More in situ2O production in and emission from arctic soils are needed to understand ecosystem feedbacks to climate change in high arctic tundra, and the role of high latitudes in the global N2O budget. We monitored the concentration of N2O in soils and emissions of N2O to the atmosphere from prostrate shrub tundra in NW Greenland under current and future climate conditions. Measurements were made monthly from June to August 2010 at a long-term climate change experiment started in 2003 consisting of +2oC warming (T1), +4oC warming (T2), +50% summer precipitation (W), +4oC × +50% summer precipitation (T2W), and control (C). In each treatment, N2O was monitored from vegetated and barren soils. In addition, we quantified nitrogen (N) mineralization rates. The concentration of N2O in soils was measured by sampling air from permanent wells ranging from 20 to 90 cm soil depth. N2O emissions were measured every 15 minutes for one hour using opaque, static chambers. Nitrous oxide samples were collected manually with syringes and stored in pre-evacuated glass vials with butyl rubber septa and aluminum crimp. The vials were sealed with silicon, shipped to UC Irvine, and analyzed by GC-ECD (Shimadzu GC-2014). To determine soil N mineralization rates, resin bags were installed under PVC cores from 8 to 10 cm in early spring in all treatments. Bags were removed at peak season. A second set was installed to capture end-of-season mineralization rates. Resin bags were extracted for future analysis of total accumulated ammonium and nitrate. Soil cores concurrently collected with resin bag installation and removal will be analyzed for % C and N, and were extracted for future analysis of

  10. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M

    2015-01-01

    of winter snow depth on shrub growth and ecophysiology by measuring stem length and stem hydrogen ( δ2H), carbon ( δ13C), nitrogen ( δ15N) and oxygen ( δ18O) isotopic composition of the circumarctic evergreen dwarf shrub Cassiope tetragona growing in high-arctic Svalbard, Norway. Measurements were carried...... out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient ( c . 20 cm......-snow individuals compared to individuals growing in ambient-snow plots during the course of the experiment, suggesting that soil N-availability was increased in deep-snow plots as a result of increased soil winter N mineralization. Although inter-annual growing season-precipitation δ 2 H and stem δ 2 H records...

  11. Integrating Research and Education in a Study of Biocomplexity in Arctic Tundra Ecosystems: Costs, Results, and Benefits to the Research Agenda

    Science.gov (United States)

    Gould, W. A.; González, G.; Walker, D. A.

    2006-12-01

    The integration of research and education is one of the fundamental goals of our national science policy. There is strong interest to improve this integration at the graduate and undergraduate levels, with the general public, and with local and indigenous people. Efforts expended in integrating research and education can occur at the expense of research productivity and represent a cost. Results may include number of personnel involved, activities accomplished, research or other products produced. Benefits are difficult to quantify and may be short term and tangible, e.g. education-research projects enhancing research productivity with publications, or long-term and include intangibles such as personal interactions and experiences influencing career choices, the perception of research activities, enhanced communication, and direct or indirect influence on related research and educational projects. We have integrated the University field course Arctic Field Ecology with an interdisciplinary research project investigating the interactions of climate, vegetation, and permafrost in the study Biocomplexity of Arctic Tundra Ecosystems. The integration is designed to give students background in regional ecology; introduce students to the project objectives, methods, and personnel; provide for interaction with participating scientists; conduct research initiated by the class and instructors; and provide the opportunity to interact with indigenous people with interests in traditional ecological knowledge and land management. Our costs included increased logistical complexity and time-demands on the researchers and staff managing the integration. The educational component increased the size of the research group with the addition of 55 participants over the 4 field seasons of the study. Participants came from 7 countries and included 20 enrolled university students, 18 Inuit non student participants, 9 Inuit students, 3 visiting scientists, 3 staff, and 2 scientist

  12. Photosynthetic Characterization of Plant Functional Types from Coastal Tundra to Improve Representation of the Arctic in Earth System Models

    Science.gov (United States)

    Rogers, A.; Xu, C.; McDowell, N. G.; Sloan, V. L.; Norby, R. J.

    2012-12-01

    The primary goal of Earth System Models (ESMs) is to improve understanding and projection of future global change. In order to do this they must accurately represent the carbon fluxes associated with the terrestrial carbon cycle. Photosynthetic CO2 uptake is well described by the Farquhar, von Caemmerer and Berry model of photosynthesis, and most ESMs use a derivation of this model. One of the key parameters required by the Farquhar, von Caemmerer and Berry model is an estimate of the maximum rate of carboxylation by the enzyme Rubisco (Vc,max). In ESMs the parameter Vc,max is usually fixed for a given plant functional type (PFT) and often estimated from the empirical relationship between leaf N content and Vc,max. However, uncertainty in the estimation of Vc,max has been shown to account for significant variation in model estimation of gross primary production, particularly in the Arctic. As part of a new multidisciplinary project to improve the representation of the Arctic in ESMs (Next Generation Ecosystem Experiments - Arctic) we have begun to characterize photosynthetic parameters and N acquisition in the key Arctic PFTs. We measured the response of photosynthesis (A) to internal CO2 concentration (ci) in situ in two sedges (Carex aquatilis, Eriophorum angustifolium), a grass (Dupontia fisheri) and a forb (Petasites frigidus) growing on the Barrow Environmental Observatory, Barrow, AK. The values of Vc,max (normalized to 25oC) currently used to represent Arctic PFTs in ESMs are approximately half of the values we measured in these species in July, 2012, on the coastal tundra in Barrow. We hypothesize that these plants have a greater fraction of leaf N invested in Rubisco (FLNR) than is assumed by the models. The parameter Vc,max is used directly as a driver for respiration in some ESMs, and in other ESMs Vc,max is linked to leaf N content and N acquisition through FLNR. Therefore, these results have implications for ESMs beyond photosynthesis, and suggest that

  13. Organic matter composition and stabilization in a polygonal tundra soil of the Lena Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2013-05-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena Delta, Russia, by applying density and particle size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little-decomposed material with surprisingly high and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine-silt fractions (n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay- and fine-silt-sized OM was surprisingly "young", with 14C contents similar to the bulk soil values. Furthermore, these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  14. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    OpenAIRE

    Vasilyeva, Lina V; Omelchenko, Marina V.; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N.; Zavarzin, George A

    2006-01-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at lo...

  15. Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements

    Science.gov (United States)

    Fox, Andrew M.; Huntley, Brian; Lloyd, Colin R.; Williams, Mathew; Baxter, Robert

    2008-06-01

    Net ecosystem exchange (NEE) was estimated for an area of tundra near Abisko using both eddy covariance (EC) data and chamber measurements. This area of tundra is heterogeneous with six principal elements forming a landscape mosaic. Chamber measurements in patches of the individual mosaic elements were used to model NEE as a function of irradiance and temperature. The area around the EC mast was mapped, and a footprint model was used to simulate the varying source fraction attributable to each mosaic element. Various upscaling approaches were used to estimate NEE for comparison with NEE calculated from the EC observations. The results showed that EC measurements made for such a heterogeneous site are robust to the variations in NEE between mosaic elements that also vary substantially in their source fractions. However, they also revealed a large (˜60%) bias in the absolute magnitude of the cumulative negative NEE for a 40-day study period simulated by various upscaling approaches when compared to the value calculated from the EC observations. The magnitude of this bias, if applied to estimates for the entire tundra region, is substantial in relation to other components of the global carbon budget. Various hypotheses to account for this bias are discussed and, where possible, evaluated. A need is identified for more systematic sampling strategies when performing chamber measurements in order to assess the extent to which subjectivity of chamber location may account for much of the observed bias. If this is the origin of the bias, then upscaling approaches using chamber measurements may generally overestimate CO2 uptake.

  16. Soil plus root respiration and microbial biomass following water, nitrogen, and phosphorus application at a high arctic semi desert

    DEFF Research Database (Denmark)

    Illeris, Lotte; Michelsen, Anders; Jonasson, Sven Evert

    2003-01-01

    CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation......CO2 emmision, Decomposition, Microbial biomass carbon, Soil organic matter, Tundra, Water and nutrient limitation...

  17. CO2, CH4, and DOC Flux During Long Term Thaw of High Arctic Tundra

    Science.gov (United States)

    Stackhouse, B. T.; Vishnivetskaya, T. A.; Layton, A.; Bennett, P.; Mykytczuk, N.; Lau, C. M.; Whyte, L.; Onstott, T. C.

    2013-12-01

    Arctic regions are expected to experience temperature increases of >4° C by the end of this century. This warming is projected to cause a drastic reduction in the extent of permafrost at high northern latitudes, affecting an estimated 1000 Pg of SOC in the top 3 m. Determining the effects of this temperature change on CO2 and CH4 emissions is critical for defining source constraints to global climate models. To investigate this problem, 18 cores of 1 m length were collected in late spring 2011 before the thawing of the seasonal active layer from an ice-wedge polygon near the McGill Arctic Research Station (MARS) on Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). Cores were collected from acidic soil (pH 5.5) with low SOC (~1%), summertime active layer depth between 40-70 cm (2010-2013), and sparse vegetation consisting primarily of small shrubs and sedges. Cores were progressively thawed from the surface over the course of 14 weeks to a final temperature of 4.5° C and held at that temperature for 15 months under the following conditions: in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, surface light versus no surface light, cores from the polygon edge, and control cores with a permafrost table maintained at 70 cm depth. Core headspaces were measured weekly for CO2, CH4, H2, CO, and O2 flux during the 18 month thaw experiment. After ~20 weeks of thawing maximum, CO2 flux for the polygon edge and dark treatment cores were 3.0×0.7 and 1.7×0.4 mmol CO2 m-2 hr-1, respectively. The CO2 flux for the control, saturated, and in situ saturation cores reached maximums of 0.6×0.2, 0.9×0.5, and 0.9×0.1 mmol CO2 m-2 hr-1, respectively. Field measurements of CO2 flux from an adjacent polygon during the mid-summer of 2011 to 2013 ranged from 0.3 to 3.7 mmol CO2 m-2 hr-1. Cores from all treatments except water saturated were found to consistently oxidize CH4 at ~atmospheric concentrations (2 ppmv) with a maximum

  18. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    DEFF Research Database (Denmark)

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...... be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects...

  19. Carbon dioxide exchange of the Arctic tundra in the northern part of European Russia

    DEFF Research Database (Denmark)

    Kiepe, Isabell; Johansson, Paul Torbjörn; Friborg, Thomas

    Northern Russia has been subject to many speculations in relation to climatic change effects and greenhouse gas (GHG) exchange but still little scientific evidence is available for this region. There is low abundance of continuous Arctic GHG exchange measurements deploying eddy covariance techniq...

  20. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change.

  1. Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic, prosthecate bacterium from tundra wetland soil.

    Science.gov (United States)

    Vasilyeva, Lina V; Omelchenko, Marina V; Berestovskaya, Yulia Y; Lysenko, Anatolii M; Abraham, Wolf-Rainer; Dedysh, Svetlana N; Zavarzin, George A

    2006-09-01

    A Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacterium was isolated from tundra wetland soil and designated strain Z-0023(T). Cells of this strain had a dimorphic life cycle and developed a non-adhesive stalk at a site not coincident with the centre of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of cells of strain Z-0023(T) was the presence of a conical, bell-shaped sheath when grown at low temperature. This prosthecate bacterium was a psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28 degrees Celsius (optimum 15-20 degrees Celsius) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid was 18 : 1omega7c and the major phospholipids were phosphatidylglycerols. The G+C content of the DNA was 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023(T) was most closely related to Asticcacaulis biprosthecium (98 % similarity), Asticcacaulis taihuensis (98 %) and Asticcacaulis excentricus (95 %). However, low levels of DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed. The type strain is Z-0023(T) (=DSM 16100(T)=ATCC BAA-896(T)).

  2. Organic matter composition and stabilization in a polygonal tundra soil of the Lena-Delta

    Directory of Open Access Journals (Sweden)

    S. Höfle

    2012-09-01

    Full Text Available This study investigated soil organic matter (OM composition of differently stabilized soil OM fractions in the active layer of a polygonal tundra soil in the Lena-Delta, Russia by applying density and particle-size fractionation combined with qualitative OM analysis using solid state 13C nuclear magnetic resonance spectroscopy, and lipid analysis combined with 14C analysis. Bulk soil OM was mainly composed of plant-derived, little decomposed material with surprisingly low and strongly increasing apparent 14C ages with active layer depth suggesting slow microbial OM transformation in cold climate. Most soil organic carbon was stored in clay and fine silt fractions (< 6.3 μm, which were composed of little decomposed plant material indicated by the dominance of long n-alkane and n-fatty acid compounds and low alkyl/O-alkyl C ratios. Organo-mineral associations, which are suggested to be a key mechanism of OM stabilization in temperate soils, seem to be less important in the active layer as the mainly plant-derived clay and fine silt sized OM was surprisingly "young" with 14C contents similar to the bulk soil values. Furthermore these fractions contained less organic carbon compared to density fractionated OM occluded in soil aggregates – a further important OM stabilization mechanism in temperate soils restricting accessibility of microorganisms. This process seems to be important at greater active layer depth where particulate OM, occluded in soil aggregates, was "older" than free particulate OM.

  3. Remotely sensed vicennial changes of green phytomass, Salix cover, and leaf turnover in a sedge-shrub tundra, Arctic National Wildlife Refuge, Alaska

    Science.gov (United States)

    Kushida, K.; Kim, Y.; Tsuyuzaki, S.; Watanabe, M.; Kadosaki, G.; Sawada, Y.; Ishikawa, M.; Fukuda, M.

    2007-12-01

    We obtained the relationship between spectral indices, green phytomass, Salix - non-Salix ratio, and leaf turnover in a sedge-shrub tundra, Arctic National Wildlife Refuge (ANWR), Alaska based on the field observations of spectral reflectance and phytomass, and we used Landsat TM images acquired in July of 1986, 1994, and 2006 and the time series of NOAA AVHRR (Advanced Very High Resolution Radiometer) for evaluating the vicennial changes. 51% of Beaufort coastal plain, Alaska was occupied by lowland moist sedge-shrub tundra, lowland wet sedge tundra, riverine moist sedge-shrub tundra, and riverine wet sedge tundra, where willow shrubs and sedges dominate. We set a 50-m × 50-m plot located on the floodplain of Jago River in ANWR. Shrub (Salix lanata L.) and sedge (Carex bigelowii Torr.) dominated in the plot. Ten 0.5-m × 0.5-m quadrates (Salix} quadrates) were set on the Salix cover and ten 0.5-m × 0.5-m quadrates (non-Salix quadrates) were set on the ground that was not covered with Salix lanata. Salix lanata in each of the Salix quadrates was harvested, and the leaf area index (LAI) and the oven-dried weights of the photosynthetic (leaf) and non-photosynthetic parts were measured. After harvesting Salix, other green plants were harvested and the oven-dried weights of the plants were measured. The Salix quadrates were spectrally measured with a spectroradiometer at a wavelength of 350 - 2500 nm before and after harvesting Salix and after harvesting other green plants. Non-Salix quadrates were also spectrally measured with the spectroradiometer. The coefficients of determination (R2) of the green phytomass, Salix - non-Salix ratio, and leaf turnover estimations from the spectral indices were 0.63, 0.57, and 0.79, respectively. These estimations were used for evaluating the vicennial changes using the satellite data.

  4. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland.

    Science.gov (United States)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob; Citterio, Michele; Hansen, Birger U; van As, Dirk

    2017-02-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere-atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt. For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled with modelling efforts are essential for assessing the impact of warming in the Arctic.

  5. Two years with extreme and little snowfall: effects on energy partitioning and surface energy exchange in a high-Arctic tundra ecosystem

    Science.gov (United States)

    Stiegler, Christian; Lund, Magnus; Røjle Christensen, Torben; Mastepanov, Mikhail; Lindroth, Anders

    2016-07-01

    Snow cover is one of the key factors controlling Arctic ecosystem functioning and productivity. In this study we assess the impact of strong variability in snow accumulation during 2 subsequent years (2013-2014) on the land-atmosphere interactions and surface energy exchange in two high-Arctic tundra ecosystems (wet fen and dry heath) in Zackenberg, Northeast Greenland. We observed that record-low snow cover during the winter 2012/2013 resulted in a strong response of the heath ecosystem towards low evaporative capacity and substantial surface heat loss by sensible heat fluxes (H) during the subsequent snowmelt period and growing season. Above-average snow accumulation during the winter 2013/2014 promoted summertime ground heat fluxes (G) and latent heat fluxes (LE) at the cost of H. At the fen ecosystem a more muted response of LE, H and G was observed in response to the variability in snow accumulation. Overall, the differences in flux partitioning and in the length of the snowmelt periods and growing seasons during the 2 years had a strong impact on the total accumulation of the surface energy balance components. We suggest that in a changing climate with higher temperature and more precipitation the surface energy balance of this high-Arctic tundra ecosystem may experience a further increase in the variability of energy accumulation, partitioning and redistribution.

  6. Ground measurements of the hemispherical-directional reflectance of Arctic snow covered tundra for the validation of satellite remote sensing products

    Science.gov (United States)

    Ball, C. P.; Marks, A. A.; Green, P.; Mac Arthur, A.; Fox, N.; King, M. D.

    2013-12-01

    Surface albedo is the hemispherical and wavelength integrated reflectance over the visible, near infrared and shortwave infrared regions of the solar spectrum. The albedo of Arctic snow can be in excess of 0.8 and it is a critical component in the global radiation budget because it determines the proportion of solar radiation absorbed, and reflected, over a large part of the Earth's surface. We present here our first results of the angularly resolved surface reflectance of Arctic snow at high solar zenith angles (~80°) suitable for the validation of satellite remote sensing products. The hemispherical directional reflectance factor (HDRF) of Arctic snow covered tundra was measured using the GonioRAdiometric Spectrometer System (GRASS) during a three-week field campaign in Ny-Ålesund, Svalbard, in March/April 2013. The measurements provide one of few existing HDRF datasets at high solar zenith angles for wind-blown Arctic snow covered tundra (conditions typical of the Arctic region), and the first ground-based measure of HDRF at Ny-Ålesund. The HDRF was recorded under clear sky conditions with 10° intervals in view zenith, and 30° intervals in view azimuth, for several typical sites over a wavelength range of 400-1500 nm at 1 nm resolution. Satellite sensors such as MODIS, AVHRR and VIIRS offer a method to monitor the surface albedo with high spatial and temporal resolution. However, snow reflectance is anisotropic and is dependent on view and illumination angle and the wavelength of the incident light. Spaceborne sensors subtend a discrete angle to the target surface and measure radiance over a limited number of narrow spectral bands. Therefore, the derivation of the surface albedo requires accurate knowledge of the surfaces bidirectional reflectance as a function of wavelength. The ultimate accuracy to which satellite sensors are able to measure snow surface properties such as albedo is dependant on the accuracy of the BRDF model, which can only be assessed

  7. Effects of temperature seasonality on tundra vegetation productivity using a daily vegetation dynamics model

    Science.gov (United States)

    Epstein, H. E.; Erler, A.; Frazier, J.; Bhatt, U. S.

    2011-12-01

    Changes in the seasonality of air temperature will elicit interacting effects on the dynamics of snow cover, nutrient availability, vegetation growth, and other ecosystem properties and processes in arctic tundra. Simulation models often do not have the fine temporal resolution necessary to develop theory and propose hypotheses for the effects of daily and weekly timescale changes on ecosystem dynamics. We therefore developed a daily version of an arctic tundra vegetation dynamics model (ArcVeg) to simulate how changes in the seasonality of air temperatures influences the dynamics of vegetation growth and carbon sequestration across regions of arctic tundra. High temporal-resolution air and soil temperature data collected from field sites across the five arctic tundra bioclimate subzones were used to develop a daily weather generator operable for sites throughout the arctic tundra. Empirical relationships between temperature and soil nitrogen were used to generate daily dynamics of soil nitrogen availability, which drive the daily uptake of nitrogen and growth among twelve tundra plant functional types. Seasonal dynamics of the remotely sensed normalized difference vegetation index (NDVI) and remotely sensed land surface temperature from the Advanced Very High Resolution Radiometer (AVHRR) GIMMS 3g dataset were used to investigate constraints on the start of the growing season, although there was no indication of any spatially consistent temperature or day-length controls on greening onset. Because of the exponential nature of the relationship between soil temperature and nitrogen mineralization, temperature changes during the peak of the growing season had greater effects on vegetation productivity than changes earlier in the growing season. However, early season changes in temperature had a greater effect on the relative productivities of different plant functional types, with potential influences on species composition.

  8. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems

    Science.gov (United States)

    Loranty, Michael M.; Liberman-Cribbin, Wil; Berner, Logan T.; Natali, Susan M.; Goetz, Scott J.; Alexander, Heather D.; Kholodov, Alexander L.

    2016-09-01

    In arctic tundra and boreal forest ecosystems vegetation structural and functional influences on the surface energy balance can strongly influence permafrost soil temperatures. As such, vegetation changes will likely play an important role in permafrost soil carbon dynamics and associated climate feedbacks. Processes that lead to changes in vegetation, such as wildfire or ecosystem responses to rising temperatures, are of critical importance to understanding the impacts of arctic and boreal ecosystems on future climate. Yet these processes vary within and between ecosystems and this variability has not been systematically characterized across the arctic-boreal region. Here we quantify the distribution of vegetation productivity trends, wildfire, and near-surface soil carbon, by vegetation type, across the zones of continuous and discontinuous permafrost. Siberian larch forests contain more than one quarter of permafrost soil carbon in areas of continuous permafrost. We observe pervasive positive trends in vegetation productivity in areas of continuous permafrost, whereas areas underlain by discontinuous permafrost have proportionally less positive productivity trends and an increase in areas exhibiting negative productivity trends. Fire affects a much smaller proportion of the total area and thus a smaller amount of permafrost soil carbon, with the vast majority occurring in deciduous needleleaf forests. Our results indicate that vegetation productivity trends may be linked to permafrost distribution, fire affects a relatively small proportion of permafrost soil carbon, and Siberian larch forests will play a crucial role in the strength of the permafrost carbon climate feedback.

  9. Snowpack fluxes of methane and carbon dioxidefrom high Arctic tundra

    DEFF Research Database (Denmark)

    Pirk, Norbert; Tamstorf, Mikkel P.; Lund, Magnus;

    2016-01-01

    to 2 orders of magnitude lower than growing season fluxes. Perennially, CH4fluxes resembledthe same spatial pattern, which was largely attributed to differences in soil wetness controlling substrateaccumulation and microbial activity. We found no significant gas sinks or sources inside the snowpack...

  10. Identifying the main drivers of soil carbon response to climate change in arctic and boreal Alaska.

    Science.gov (United States)

    Genet, H.; McGuire, A. D.; He, Y.; Johnson, K.; Wylie, B. K.; Pastick, N. J.; Zhuang, Q.; Zhu, Z.

    2015-12-01

    Boreal and arctic regions represent the largest reservoir of carbon among terrestrial biomes. Most of this carbon is stored deep in the soil in permafrost where frozen organic matter is protected from decomposition. The vulnerability of soil carbon stocks to a changing climate in high latitudes depends on a number of physical and ecological processes. The importance of these processes in controlling the dynamics of soil carbon stocks vary across regions because of variability in vegetation composition, drainage condition, and permafrost characteristics. To better understand the main drivers of the vulnerability of soil carbon stocks to climate change in Alaska, we ran a process-based ecosystem model, the Terrestrial Ecosystem Model. This model explicitly simulates interactions between the carbon cycle and permafrost dynamics and was coupled with a disturbance model and a model of biogenic methane dynamics to assess historical and projected soil carbon dynamics in Alaska, from 1950 to 2100. The uncertainties related to climate, fire regime and atmospheric CO2projections on soil carbon dynamics were quantified by running simulations using climate projections from 2 global circulation models, 3 fossil fuel emission scenarios and 3 alternative fire management scenarios. During the historical period [1950-2009], soil carbon stocks increased by 4.7 TgC/yr in Alaska. Soil carbon stocks decreased in boreal Alaska due to substantial fire activity in the early 2000's. This loss was offset by carbon accumulation in the arctic. Changes in soil carbon stocks from 2010 to 2099 ranged from 8.9 to 25.6 TgC/yr, depending on the climate projections. Soil carbon accumulation was slower in lowlands than in uplands and slower in the boreal than in the arctic regions because of the negative effect of fire activity on soil carbon stocks. Tundra ecosystems were more vulnerable to carbon loss from fire than forest ecosystems because of a lower productivity. As a result, the increase in

  11. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  12. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    DEFF Research Database (Denmark)

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan

    2012-01-01

    yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes...... will significantly impact the global carbon cycle. We explore the potential of soil spectroscopy to estimate soil carbon properties and investigate the relation between soil properties and vegetation composition. Soil samples are collected in Siberia, and vegetation descriptions are made at each sample point. First...

  13. The southernmost Andean Mountain soils: a toposequence from Nothofagus Forest to Sub Antarctic Tundra at Ushuaia, Tierra del Fuego

    Science.gov (United States)

    Firme Sá, Mariana M.; Schaefer, Carlos E.; Loureiro, Diego C.; Simas, Felipe N.; Francelino, Marcio R.; Senra, Eduardo O.

    2015-04-01

    Located at the southern tip of the Fuegian Andes Cordilhera, the Martial glacier witnessed a rapid process of retreat in the last century. Up to now little is known about the development and genesis of soils of this region. A toposequence of six soils, ranging from 430-925 m a.s.l, was investigated, with emphasis on genesis, chemical and mineralogical properties. The highest, youngest soil is located just below the Martial Glacier Martial Sur sector, and the lowest soils occur on sloping moraines under Nothofagus pumilio forests. Based on chemical, physical and mineralogical characteristics, the soils were classified according to the Soil taxonomy, being keyed out as Inceptisols and Entisols. Soil parent material of the soil is basically moraines, in which the predominant lithic components dominated by metamorphic rocks, with allochthonous contributions of wind-blown materials (very small fragments of volcanic glass) observed by hand lens in all horizons, except the highest profile under Tundra. In Nothofagus Deciduous Forests at the lowest part of the toposequence, poorly developed Inceptisols occur with Folistic horizons, with mixed "andic" and "spodic" characters, but with a predominance of andosolization (Andic Drystrocryepts). Under Tundra vegetation, Inceptisols are formed under hydromorphism and andosolization processes (Oxiaquic Dystrocrepts and Typic Dystrocrepts). On highland periglacial environments, soils without B horizon with strong evidence of cryoturbation and cryogenesis occur, without present-day permafrost down to 2 meters (Typic Cryorthents and Lithic Haploturbels). The mountain soils of Martial glacier generalize young, stony and rich in organic matter, with the exception of barely vegetated Tundra soils at higher altitudes. The forest soils are more acidic and have higher Al3+activity. All soils are dystrophic, except for the highest profile of the local periglacial environment. The organic carbon amounts are higher in forest soils and

  14. Interannual variability of plant phenology in tussock tundra: modelling interactions of plant productivity, plant phenology, snowmelt and soil thaw

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Laundre, J.A.; Shaver, G.R.

    2003-01-01

    We present a linked model of plant productivity, plant phenology, snowmelt and soil thaw in order to estimate interannual variability of arctic plant phenology and its effects on plant productivity. The model is tested using 8 years of soil temperature data, and three years of bud break data of Betu

  15. Spatiotemporal variability in surface energy balance across tundra, snow and ice in Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Stiegler, Christian; Abermann, Jakob

    2017-01-01

    The surface energy balance (SEB) is essential for understanding the coupled cryosphere–atmosphere system in the Arctic. In this study, we investigate the spatiotemporal variability in SEB across tundra, snow and ice. During the snow-free period, the main energy sink for ice sites is surface melt....... For tundra, energy is used for sensible and latent heat flux and soil heat flux leading to permafrost thaw. Longer snow-free period increases melting of the Greenland Ice Sheet and glaciers and may promote tundra permafrost thaw. During winter, clouds have a warming effect across surface types whereas during...... summer clouds have a cooling effect over tundra and a warming effect over ice, reflecting the spatial variation in albedo. The complex interactions between factors affecting SEB across surface types remain a challenge for understanding current and future conditions. Extended monitoring activities coupled...

  16. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan;

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2,3. In recent decades, Arctic tundra ecosystems have changed rapidly4......, including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field...

  17. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters.

    Science.gov (United States)

    Naseri, Masoud; Barabadi, Abbas; Barabady, Javad

    2014-10-01

    The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

  18. Environmental factors influencing soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient in subarctic tundra (Abisko, Sweden).

    Science.gov (United States)

    Tsyganov, Andrey N; Milbau, Ann; Beyens, Louis

    2013-05-01

    Shifts in community composition of soil protozoa in response to climate change may substantially influence microbial activity and thereby decomposition processes. However, effects of climate and vegetation on soil protozoa remain poorly understood. We studied the distribution of soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient (from below the treeline at 500 m to the mid-alpine region at 900 m a.s.l.) in subarctic tundra. To explain patterns in abundance, species diversity and assemblage composition of testate amoebae, a data set of microclimate and soil chemical characteristics was collected. Both elevation and vegetation influenced the assemblage composition of testate amoebae. The variation was regulated by interactive effects of summer soil moisture, winter soil temperature, soil pH and nitrate ion concentrations. Besides, soil moisture regulated non-linear patterns in species richness across the gradient. This is the first study showing the effects of winter soil temperatures on species composition of soil protozoa. The effects could be explained by specific adaptations of testate amoebae such as frost-resistant cysts allowing them to survive low winter temperatures. We conclude that the microclimate and soil chemical characteristics are the main drivers of changes in protozoan assemblage composition in response to elevation and vegetation.

  19. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  20. Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Bååth, Erland

    2009-01-01

    , the allocation decreased over time, indicating use of the storage products, whereas for vanillin incorporation into fungal NLFA increased during the incubation. In addition to providing information on functioning of the microbial communities in an arctic soil, our study showed that the combination of PLFA...... acid, glycine, starch, and vanillin, and the incorporation of 13C into different phospholipid fatty acids (PLFA; indicative of growth) and neutral lipid fatty acids (NLFA; indicative of fungal storage) was measured after 1 and 7 days. The use of 13C-labeled substrates allowed the addition of substrates...... that different groups of the microbial community were responsible for substrate utilization. The 13C-incorporation from the complex substrates (starch and vanillin) increased over time. There was significant allocation of 13C into the fungal NLFA, except for starch. For glucose, acetic acid, and glycine...

  1. Spatial variation in landscape-level CO2 and CH4 fluxes from arctic coastal tundra: influence from vegetation, wetness, and the thaw lake cycle.

    Science.gov (United States)

    Sturtevant, Cove S; Oechel, Walter C

    2013-09-01

    Regional quantification of arctic CO2 and CH4 fluxes remains difficult due to high landscape heterogeneity coupled with a sparse measurement network. Most of the arctic coastal tundra near Barrow, Alaska is part of the thaw lake cycle, which includes current thaw lakes and a 5500-year chronosequence of vegetated thaw lake basins. However, spatial variability in carbon fluxes from these features remains grossly understudied. Here, we present an analysis of whole-ecosystem CO2 and CH4 fluxes from 20 thaw lake cycle features during the 2011 growing season. We found that the thaw lake cycle was largely responsible for spatial variation in CO2 flux, mostly due to its control on gross primary productivity (GPP). Current lakes were significant CO2 sources that varied little. Vegetated basins showed declining GPP and CO2 sink with age (R(2) = 67% and 57%, respectively). CH4 fluxes measured from a subset of 12 vegetated basins showed no relationship with age or CO2 flux components. Instead, higher CH4 fluxes were related to greater landscape wetness (R(2) = 57%) and thaw depth (additional R(2) = 28%). Spatial variation in CO2 and CH4 fluxes had good satellite remote sensing indicators, and we estimated the region to be a small CO2 sink of -4.9 ± 2.4 (SE) g C m(-2) between 11 June and 25 August, which was countered by a CH4 source of 2.1 ± 0.2 (SE) g C m(-2) . Results from our scaling exercise showed that developing or validating regional estimates based on single tower sites can result in significant bias, on average by a factor 4 for CO2 flux and 30% for CH4 flux. Although our results are specific to the Arctic Coastal Plain of Alaska, the degree of landscape-scale variability, large-scale controls on carbon exchange, and implications for regional estimation seen here likely have wide relevance to other arctic landscapes.

  2. Stem secondary growth of tundra shrubs

    DEFF Research Database (Denmark)

    Campioli, Matteo; Leblans, Niki; Michelsen, Anders

    2012-01-01

    Our knowledge of stem secondary growth of arctic shrubs (a key component of tundra net primary production, NPP) is very limited. Here, we investigated the impact of the physical elements of the environment on shrub secondary growth by comparing annual growth rates of model species from similar...... habitats at contrasting altitude, microtopography, latitude, geographical location, and soil type, in both the sub- and High Arctic. We found that secondary growth has a modest sensitivity to the environment but with large differences among species. For example, the evergreen Cassiope tetragona is affected...... by altitude, microtopography, and latitude, whereas the evergreen Empetrum hermaphroditum has rather constant secondary growth in all environments. Deciduous species seem to be most affected by microtopography. Furthermore, the impact of the environment on secondary growth differed from the impact on primary...

  3. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations

    Science.gov (United States)

    Treat, C.C.; Natali, Susan M.; Ernakovich, Jessica; Iverson, Colleen M.; Lupasco, Massimo; McGuire, Anthony; Norby, Richard J.; Roy Chowdhury, Taniya; Richter, Andreas; Šantrůčková, Hana; Schädel, C.; Schuur, Edward A.G.; Sloan, Victoria L.; Turetsky, Merritt R.; Waldrop, Mark P.

    2015-01-01

    Permafrost thaw can alter the soil environment through changes in soil moisture, frequently resulting in soil saturation, a shift to anaerobic decomposition, and changes in the plant community. These changes, along with thawing of previously frozen organic material, can alter the form and magnitude of greenhouse gas production from permafrost ecosystems. We synthesized existing methane (CH4) and carbon dioxide (CO2) production measurements from anaerobic incubations of boreal and tundra soils from the geographic permafrost region to evaluate large-scale controls of anaerobic CO2 and CH4 production and compare the relative importance of landscape-level factors (e.g., vegetation type and landscape position), soil properties (e.g., pH, depth, and soil type), and soil environmental conditions (e.g., temperature and relative water table position). We found fivefold higher maximum CH4 production per gram soil carbon from organic soils than mineral soils. Maximum CH4 production from soils in the active layer (ground that thaws and refreezes annually) was nearly four times that of permafrost per gram soil carbon, and CH4 production per gram soil carbon was two times greater from sites without permafrost than sites with permafrost. Maximum CH4 and median anaerobic CO2 production decreased with depth, while CO2:CH4 production increased with depth. Maximum CH4 production was highest in soils with herbaceous vegetation and soils that were either consistently or periodically inundated. This synthesis identifies the need to consider biome, landscape position, and vascular/moss vegetation types when modeling CH4 production in permafrost ecosystems and suggests the need for longer-term anaerobic incubations to fully capture CH4 dynamics. Our results demonstrate that as climate warms in arctic and boreal regions, rates of anaerobic CO2 and CH4 production will increase, not only as a result of increased temperature, but also from shifts in vegetation and increased

  4. Invasion of terrestrial enchytraeids into two postglacial tundras: North-eastern Greenland and the Arctic Archipelago of Canada (Enchytraeidae, Oligochaeta)

    DEFF Research Database (Denmark)

    Christensen, Bent; Dózsa-Farkas, Klára

    2006-01-01

    that of potential source regions indicating either strong selection or varied dispersal ability. It appears that the Archipelago is influenced mainly from North America and North-eastern Greenland from Europe while the specialized fauna of the ancient Beringian tundra is of minor importance. The two alternative...... scenarios: (a) survival of a prepleistocene fauna in protected refugia within the area or (b) a postglacial re-invasion from outside are discussed, but the available data do not discriminate between these two possibilities. A total of 24 terrestrial enchytraeid taxa are recorded of which 22 are identified...

  5. Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River Delta

    Directory of Open Access Journals (Sweden)

    M. Langer

    2014-07-01

    Full Text Available Lakes and ponds play a key role in the carbon cycle of permafrost ecosystems, where they are considered to be hotspots of carbon dioxide CO2 and methane CH4 emission. The strength of these emissions is, however, controlled by a variety of physical and biogeochemical processes whose responses to a warming climate are complex and only poorly understood. Small waterbodies have been attracting an increasing amount of attention since recent studies demonstrated that ponds can make a significant contribution to the CO2 and CH4 emissions of tundra ecosystems. Waterbodies also have a marked effect on the thermal state of the surrounding permafrost; during the freezing period they prolong the period of time during which thawed soil material is available for microbial decomposition. This study presents net CH4 production rates during the freezing period from ponds within a typical lowland tundra landscape in northern Siberia. Rate estimations were based on CH4 concentrations measured in surface lake ice from a variety of waterbody types. Vertical profiles along ice blocks showed an exponential increase in CH4 concentration with depth. These CH4 profiles were reproduced by a 1-D mass balance model and the net CH4 production rates then inferred through inverse modeling. Results revealed marked differences in early winter net CH4 production among various ponds. Initial state ponds underlain by stable permafrost with little or no signs of degradation yielded low net production rates, of the order of 10–11 to 10–10 mol m−2 s−1 (0.01 to 0.14 mgCH4 m−2 d−1. In contrast, advanced state ponds exhibiting clear signs of thermal erosion yielded net CH4 production rates of the order of 10–7 mol m−2 s−1 (140 mgCH4 m−2 d−1. The net production rate per square meter of advanced state ponds exceeded the maximum summer CH4 emission rates per square meter which was measured for the average tundra landscape at the study site. Our results therefore

  6. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling.

    Science.gov (United States)

    Nemergut, Diana R; Townsend, Alan R; Sattin, Sarah R; Freeman, Kristen R; Fierer, Noah; Neff, Jason C; Bowman, William D; Schadt, Christopher W; Weintraub, Michael N; Schmidt, Steven K

    2008-11-01

    Many studies have shown that changes in nitrogen (N) availability affect primary productivity in a variety of terrestrial systems, but less is known about the effects of the changing N cycle on soil organic matter (SOM) decomposition. We used a variety of techniques to examine the effects of chronic N amendments on SOM chemistry and microbial community structure and function in an alpine tundra soil. We collected surface soil (0-5 cm) samples from five control and five long-term N-amended plots established and maintained at the Niwot Ridge Long-term Ecological Research (LTER) site. Samples were bulked by treatment and all analyses were conducted on composite samples. The fungal community shifted in response to N amendments, with a decrease in the relative abundance of basidiomycetes. Bacterial community composition also shifted in the fertilized soil, with increases in the relative abundance of sequences related to the Bacteroidetes and Gemmatimonadetes, and decreases in the relative abundance of the Verrucomicrobia. We did not uncover any bacterial sequences that were closely related to known nitrifiers in either soil, but sequences related to archaeal nitrifiers were found in control soils. The ratio of fungi to bacteria did not change in the N-amended soils, but the ratio of archaea to bacteria dropped from 20% to less than 1% in the N-amended plots. Comparisons of aliphatic and aromatic carbon compounds, two broad categories of soil carbon compounds, revealed no between treatment differences. However, G-lignins were found in higher relative abundance in the fertilized soils, while proteins were detected in lower relative abundance. Finally, the activities of two soil enzymes involved in N cycling changed in response to chronic N amendments. These results suggest that chronic N fertilization induces significant shifts in soil carbon dynamics that correspond to shifts in microbial community structure and function.

  7. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra

    Science.gov (United States)

    Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Biasi, C.; Marushchak, M.; Martikainen, P.

    2016-05-01

    The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil-geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer-upper permafrost-underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50-90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.

  8. Cultural Resilience of Nenets Social-Ecological Systems in Arctic Russia: A Focus on Reindeer Nomads of the Tundra

    Science.gov (United States)

    Forbes, B. C.

    2013-12-01

    Empirical data on resilience in social-ecological systems (SESs) are reviewed from local and regional scale case studies among full-time nomads in the neighbouring Nenets and Yamal-Nenets Autonomous Okrugs, Russia. The focus is on critical cultural factors contributing to SES resilience. In particular, this work presents an integrated view of people situated in specific tundra landscapes that face significantly different prospects for adaptation depending on existing or planned infrastructure associated with oil and gas development. Factors contributing to general resilience are compared to those that are adapted to certain spatial and temporal contexts. Environmental factors include ample space and an abundance of resources, such as fish and game (e.g. geese), to augment the diet of not only the migratory herders, but also residents from coastal settlements. In contrast to other regions, such as the Nenets Okrug, Yamal Nenets households consist of intact nuclear families with high retention among youth in the nomadic tundra population. Accepting attitudes toward exogenous drivers such as climate change and industrial development appear to play a significant role in how people react to both extreme weather events and piecemeal confiscation or degradation of territory. Consciousness of their role as responsible stewards of the territories they occupy has likely been a factor in maintaining viable wildlife populations over centuries. Institutions administering reindeer herding have remained flexible, especially on Yamal, and so accommodate decision-making that is sensitive to herders' needs and timetables. This affects factors such as herd demography, mobility and energetics. Resilience is further facilitated within the existing governance regimes by herders' own agency, most recently in the post-Soviet shift to smaller, privately managed herds that can better utilize available pastures in a highly dynamic environment experiencing rapid socio-economic, climate and

  9. Capturing Micro-topography of an Arctic Tundra Landscape through Digital Elevation Models (DEMs) Acquired from Various Remote Sensing Platforms

    Science.gov (United States)

    Vargas, S. A., Jr.; Tweedie, C. E.; Oberbauer, S. F.

    2013-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level measurements of ecosystem structure and function to the landscape level has been identified as a persistent research challenge in the arctic terrestrial sciences. Although there has been a range of advances in remote sensing capabilities on satellite, fixed wing, helicopter and unmanned aerial vehicle platforms over the past decade, these present costly, logistically challenging (especially in the Arctic), technically demanding solutions for applications in an arctic environment. Here, we present a relatively low cost alternative to these platforms that uses kite aerial photography (KAP). Specifically, we demonstrate how digital elevation models (DEMs) were derived from this system for a coastal arctic landscape near Barrow, Alaska. DEMs of this area acquired from other remote sensing platforms such as Terrestrial Laser Scanning (TLS), Airborne Laser Scanning, and satellite imagery were also used in this study to determine accuracy and validity of results. DEMs interpolated using the KAP system were comparable to DEMs derived from the other platforms. For remotely sensing acre to kilometer square areas of interest, KAP has proven to be a low cost solution from which derived products that interface ground and satellite platforms can be developed by users with access to low-tech solutions and a limited knowledge of remote sensing.

  10. Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic.

    Science.gov (United States)

    Bjorkman, Anne D; Vellend, Mark; Frei, Esther R; Henry, Gregory H R

    2017-04-01

    Rapidly rising temperatures are expected to cause latitudinal and elevational range shifts as species track their optimal climate north and upward. However, a lack of adaptation to environmental conditions other than climate - for example photoperiod, biotic interactions, or edaphic conditions - might limit the success of immigrants in a new location despite hospitable climatic conditions. Here, we present one of the first direct experimental tests of the hypothesis that warmer temperatures at northern latitudes will confer a fitness advantage to southern immigrants relative to native populations. As rates of warming in the Arctic are more than double the global average, understanding the impacts of warming in Arctic ecosystems is especially urgent. We established experimentally warmed and nonwarmed common garden plots at Alexandra Fiord, Ellesmere Island in the Canadian High Arctic with seeds of two forb species (Oxyria digyna and Papaver radicatum) originating from three to five populations at different latitudes across the Arctic. We found that plants from the local populations generally had higher survival and obtained a greater maximum size than foreign individuals, regardless of warming treatment. Phenological traits varied with latitude of the source population, such that southern populations demonstrated substantially delayed leaf-out and senescence relative to northern populations. Our results suggest that environmental conditions other than temperature may influence the ability of foreign populations and species to establish at more northerly latitudes as the climate warms, potentially leading to lags in northward range shifts for some species.

  11. Perturbation of an arctic soil microbial community by metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Shah, Vishal [Department of Biology, Dowling College, Oakdale, NY 11769 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Department of Biology, School of Environmental Studies and Department of Microbiology and Immunology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2011-06-15

    Highlights: {yields} Silver, copper and silica nanoparticles had an impact on arctic soil {yields} A microbial community toxicity indicator was developed {yields} Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity {yields} Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78{sup o}N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  12. Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape

    Science.gov (United States)

    Kumar, Jitendra; Collier, Nathan; Bisht, Gautam; Mills, Richard T.; Thornton, Peter E.; Iversen, Colleen M.; Romanovsky, Vladimir

    2016-09-01

    Vast carbon stocks stored in permafrost soils of Arctic tundra are under risk of release to the atmosphere under warming climate scenarios. Ice-wedge polygons in the low-gradient polygonal tundra create a complex mosaic of microtopographic features. This microtopography plays a critical role in regulating the fine-scale variability in thermal and hydrological regimes in the polygonal tundra landscape underlain by continuous permafrost. Modeling of thermal regimes of this sensitive ecosystem is essential for understanding the landscape behavior under the current as well as changing climate. We present here an end-to-end effort for high-resolution numerical modeling of thermal hydrology at real-world field sites, utilizing the best available data to characterize and parameterize the models. We develop approaches to model the thermal hydrology of polygonal tundra and apply them at four study sites near Barrow, Alaska, spanning across low to transitional to high-centered polygons, representing a broad polygonal tundra landscape. A multiphase subsurface thermal hydrology model (PFLOTRAN) was developed and applied to study the thermal regimes at four sites. Using a high-resolution lidar digital elevation model (DEM), microtopographic features of the landscape were characterized and represented in the high-resolution model mesh. The best available soil data from field observations and literature were utilized to represent the complex heterogeneous subsurface in the numerical model. Simulation results demonstrate the ability of the developed modeling approach to capture - without recourse to model calibration - several aspects of the complex thermal regimes across the sites, and provide insights into the critical role of polygonal tundra microtopography in regulating the thermal dynamics of the carbon-rich permafrost soils. Areas of significant disagreement between model results and observations highlight the importance of field-based observations of soil thermal and

  13. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  14. Application of fungistatics in soil reduces N uptake by an arctic ericoid shrub (Vaccinium vitis-idaea)

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F.; Johnson, L.; Simpson, N.B.; Bill, M.; Jumpponen, A.

    2009-11-01

    In arctic tundra soil N is highly limiting, N mineralization is slow and organic N greatly exceeds inorganic N. We studied the effects of fungistatics (azoxystrobin [Quadris{reg_sign}] or propiconazole [Tilt{reg_sign}]) on the fungi isolated from ericaceous plant roots in vitro. In addition to testing the phytotoxicity of the two fungistatics we also tested their effects on growth and nitrogen uptake of an ericaceous plant (Vaccinium uliginosum) in a closed Petri plate system without root-associated fungi. Finally, to evaluate the fungistatic effects in an in vivo experiment we applied fungistatics and nitrogen isotopes to intact tundra soil cores from Toolik Lake, Alaska, and examined the ammonium-N and glycine-N use by Vaccinium vitis-idaea with and without fungistatics. The experiments on fungal pure cultures showed that Tilt{reg_sign} was more effective in reducing fungal colony growth in vitro than Quadris{reg_sign}, which was highly variable among the fungal strains. Laboratory experiments aiming to test the fungistatic effects on plant performance in vitro showed that neither Quadris{reg_sign} nor Tilt{reg_sign} affected V. uliginosum growth or N uptake. In this experiment V. uliginosum assimilated more than an order of magnitude more ammonium-N than glycine-N. The intact tundra core experiment provided contrasting results. After 10 wk of fungistatic application in the growth chamber V. vitis-idaea leaf %N was 10% lower and the amount of leaf {sup 15}N acquired was reduced from labeled ammonium (33%) and glycine (40%) during the 4 d isotope treatment. In contrast to the in vitro experiment leaf {sup 15}N assimilation from glycine was three times higher than from {sup 15}NH{sub 4} in the treatments that received no-fungistatics. We conclude that the function of the fungal communities is essential to the acquisition of N from organic sources and speculate that N acquisition from inorganic sources is mainly inhibited by competition with complex soil microbial

  15. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    Science.gov (United States)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  16. Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms

    DEFF Research Database (Denmark)

    Grogan, P.; Michelsen, A.; Ambus, P.;

    2004-01-01

    Freeze-thaw fluctuations in soil temperature may be critical events in the annual pattern of nutrient mobilisation that supplies plant growth requirements in some temperate, and most high latitude and high altitude ecosystems. We investigated the effects of two differing freeze-thaw regimes, each...

  17. Soil Warming and Fertilization Effects on Growth Ring Widths of Arctic Shrubs - Application of a Novel Dendroecological Approach.

    Science.gov (United States)

    Iturrate Garcia, M.; Heijmans, M.; Schweingruber, F. H.; Niklaus, P. A.; Schaepman-Strub, G.

    2015-12-01

    Climate warming is suggested as the main driver of shrub expansion in arctic tundra regions. Shrub expansion may have consequences on biodiversity and climate, especially through its feedbacks with the energy budget. A better understanding of shrub expansion mechanisms, including growth rate patterns and stem anatomy changes, and their sensitivity to climate is needed in order to quantify related feedbacks. We present a novel dendroecological approach to determine the response of three arctic shrub species to increased soil temperature and nutrients. A full factorial block-design experiment was run for four years with a total of thirty plots. Six individuals of each species were sampled from each plot to test for treatment effects on growth rate and stem anatomy. We compared the ring width of the four years of experiment with the one of the four previous years. The preliminary results for Betula nana and Salix pulchra suggest a significant effect of the treatments on the growth ring width. The response is stronger in Salix pulchra than in Betula nana individuals. And, while Salix pulchra is more sensitive to the combined soil warming and fertilization treatment, Betula nana is to the fertilization treatment. We could not observe an effect of treatment on the stem anatomy, likely because bark thickness co-varies with age. We found significant positive correlations of cork, cortex and phloem thickness with xylem thickness (used as a proxy of age), and a significant difference in stem anatomy between species. The results suggest species-specific growth sensitivity to soil warming and nutrient enhancement. The use of experimental dendroecology by manipulating environmental conditions according to future climate scenarios and testing effects on shrub anatomy and annual growth will increase our understanding on shrub expansion mechanisms. Ongoing plant trait analysis and consecutive application in a 3D radiative transfer model will allow to quantify the feedback of

  18. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    Science.gov (United States)

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  19. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    Science.gov (United States)

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2016-09-01

    Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere.

  20. An underestimated methane sink in Arctic mineral soils

    Science.gov (United States)

    Oh, Y.; Medvigy, D.; Stackhouse, B. T.; Lau, M.; Onstott, T. C.; Jørgensen, C. J.; Elberling, B.; Emmerton, C. A.; St Louis, V. L.; Moch, J.

    2015-12-01

    Atmospheric methane has more than doubled since the industrial revolution, yet the sources and sinks are still poorly constrained. Though soil methane oxidation is the largest terrestrial methane sink, it is inadequately represented in current models. We have conducted laboratory analysis of mineral cryosol soils from Axel Heiberg Island in the Canadian high arctic. Microcosm experiments were carried out under varying environmental conditions and used to parameterize methane oxidation models. One-meter long intact soil cores were also obtained from Axel Heiberg Island and analyzed in the laboratory. A controlled core thawing experiment was carried out, and observed methane fluxes were compared to modeled methane fluxes. We find that accurate model simulation of methane fluxes needs to satisfy two requirements:(1) microbial biomass needs to be dynamically simulated, and (2) high-affinity methanotrophs need to be represented. With these 2 features, our model is able to reproduce observed temperature and soil moisture sensitivities of high affinity methanotrophs, which are twice as sensitive to temperature than the low affinity methanotrophs and are active under saturated moisture conditions. The model is also able to accurately reproduce the time rate of change of microbial oxidation of atmospheric methane. Finally, we discuss the remaining biases and uncertainties in the model, and the challenges of extending models from the laboratory scale to the landscape scale.

  1. Above and below ground carbon stocks in northeast Siberia tundra ecosystems: a comparison between disturbed and undisturbed areas

    Science.gov (United States)

    Weber, L. R.; Pena, H., III; Curasi, S. R.; Ramos, E.; Loranty, M. M.; Alexander, H. D.; Natali, S.

    2014-12-01

    Changes in arctic tundra vegetation have the potential to alter the regional carbon (C) budget, with feedback implications for global climate. A number of studies have documented both widespread increases in productivity as well as shifts in the dominant vegetation. In particular, shrubs have been replacing other vegetation, such as graminoids, in response to changes in their environment. Shrub expansion is thought to be facilitated by exposure of mineral soil and increased nutrient availability, which are often associated with disturbance. Such disturbances can be naturally occurring, typically associated with permafrost degradation or with direct anthropogenic causes such as infrastructure development. Mechanical disturbance associated with human development is not uncommon in tundra and will likely become more frequent as warming makes the Arctic more hospitable for resource extraction and other human activities. As such, this type of disturbance will become an increasingly important component of tundra C balance. Both increased productivity and shrub expansion have clear impacts on ecosystem C cycling through increased C uptake and aboveground (AG) storage. What is less clear, however, are the concurrent changes in belowground (BG) C storage. Here we inventoried AG and BG C stocks in disturbed and undisturbed tundra ecosystems to determine the effects of disturbance on tundra C balance. We measured differences in plant functional type, AG and BG biomass, soil C, and specific leaf area (SLA) for the dominant shrub (Salix) in 2 tundra ecosystems in northern Siberia—an undisturbed moist acidic tundra and an adjacent ecosystem that was used as a road ~50 years ago. Deciduous shrubs and grasses dominated both ecosystems, but biomass for both functional types was higher in the disturbed area. SLA was also higher inside the disturbance. Conversely, nonvascular plants and evergreen shrubs were less abundant in the disturbed area. BG plant biomass was substantially

  2. Alaska North Slope Tundra Travel Model and Validation Study

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Bader; Jacynthe Guimond

    2006-03-01

    The Alaska Department of Natural Resources (DNR), Division of Mining, Land, and Water manages cross-country travel, typically associated with hydrocarbon exploration and development, on Alaska's arctic North Slope. This project is intended to provide natural resource managers with objective, quantitative data to assist decision making regarding opening of the tundra to cross-country travel. DNR designed standardized, controlled field trials, with baseline data, to investigate the relationships present between winter exploration vehicle treatments and the independent variables of ground hardness, snow depth, and snow slab thickness, as they relate to the dependent variables of active layer depth, soil moisture, and photosynthetically active radiation (a proxy for plant disturbance). Changes in the dependent variables were used as indicators of tundra disturbance. Two main tundra community types were studied: Coastal Plain (wet graminoid/moist sedge shrub) and Foothills (tussock). DNR constructed four models to address physical soil properties: two models for each main community type, one predicting change in depth of active layer and a second predicting change in soil moisture. DNR also investigated the limited potential management utility in using soil temperature, the amount of photosynthetically active radiation (PAR) absorbed by plants, and changes in microphotography as tools for the identification of disturbance in the field. DNR operated under the assumption that changes in the abiotic factors of active layer depth and soil moisture drive alteration in tundra vegetation structure and composition. Statistically significant differences in depth of active layer, soil moisture at a 15 cm depth, soil temperature at a 15 cm depth, and the absorption of photosynthetically active radiation were found among treatment cells and among treatment types. The models were unable to thoroughly investigate the interacting role between snow depth and disturbance due to a

  3. Plants impact structure and function of bacterial communities in Arctic soils

    NARCIS (Netherlands)

    Kumar, Manoj; Mannisto, Minna K.; van Elsas, Jan Dirk; Nissinen, Riitta M.

    2016-01-01

    Microorganisms are prime drivers of ecosystem functions in the Arctic, and they are essential for vegetation succession. However, very little is known about the phylogenetic and functional diversities of the bacterial communities associated with Arctic plants, especially in low organic matter soils.

  4. Circumpolar Arctic vegetation: a hierarchic review and roadmap toward an internationally consistent approach to survey, archive and classify tundra plot data

    Science.gov (United States)

    Walker, D. A.; Daniëls, F. J. A.; Alsos, I.; Bhatt, U. S.; Breen, A. L.; Buchhorn, M.; Bültmann, H.; Druckenmiller, L. A.; Edwards, M. E.; Ehrich, D.; Epstein, H. E.; Gould, W. A.; Ims, R. A.; Meltofte, H.; Raynolds, M. K.; Sibik, J.; Talbot, S. S.; Webber, P. J.

    2016-05-01

    Satellite-derived remote-sensing products are providing a modern circumpolar perspective of Arctic vegetation and its changes, but this new view is dependent on a long heritage of ground-based observations in the Arctic. Several products of the Conservation of Arctic Flora and Fauna are key to our current understanding. We review aspects of the PanArctic Flora, the Circumpolar Arctic Vegetation Map, the Arctic Biodiversity Assessment, and the Arctic Vegetation Archive (AVA) as they relate to efforts to describe and map the vegetation, plant biomass, and biodiversity of the Arctic at circumpolar, regional, landscape and plot scales. Cornerstones for all these tools are ground-based plant-species and plant-community surveys. The AVA is in progress and will store plot-based vegetation observations in a public-accessible database for vegetation classification, modeling, diversity studies, and other applications. We present the current status of the Alaska Arctic Vegetation Archive (AVA-AK), as a regional example for the panarctic archive, and with a roadmap for a coordinated international approach to survey, archive and classify Arctic vegetation. We note the need for more consistent standards of plot-based observations, and make several recommendations to improve the linkage between plot-based observations biodiversity studies and satellite-based observations of Arctic vegetation.

  5. Substrate Geochemistry and Soil Development in Boreal Forest and Tundra Ecosystems in the Yukon-Tanana Upland and Seward Peninsula, Alaska

    Science.gov (United States)

    Gough, L.P.; Crock, J.G.; Wang, B.; Day, W.C.; Eberl, D.D.; Sanzolone, R.F.; Lamothe, P.J.

    2008-01-01

    We report on soil development as a function of bedrock type and the presence of loess in two high latitude ecosystems (boreal forest and tundra) and from two regions in Alaska?the Yukon-Tanana Upland (YTU, east-central Alaska) and the Seward Peninsula (SP, far-west coastal Alaska). This approach to the study of 'cold soils' is fundamental to the quantification of regional geochemical landscape patterns. Of the five state factors in this study, bedrock and biota (ecosystem; vegetation zone) vary whereas climate (within each area) and topography are controlled. The influence of time is assumed to be controlled, as these soils are thousands of years old (late Quaternary to Holocene). The primary minerals in soils from YTU, developed over loess and crystalline bedrock (metamorphic and intrusive), are quartz, plagioclase, and 2:1 clays; whereas in the SP, where loess and metasedimentary bedrock (schist and quartzite) predominate, they are quartz and muscovite. The A horizon of both regions is rich in peat. Examination of the ratio of mobile (K2O, CaO, and Fe2O3) to immobile (TiO2) major oxides, within each region, shows that very little difference exists in the chemical weathering of soils developed between the two ecosystems examined. Differences were observed between tundra soils developed in the two regions. These differences are most probably due to the dissimilarity in the geochemical importance of both loess and bedrock. A minimal loss of cadmium with soil depth is seen for soils developed over YTU crystalline bedrock in the boreal forest environments. This trend is related to the mobility of cadmium in these soils as well as to its biogenic cycling. Major differences were observed in the proportion of cadmium and zinc among the A, B, and C horizon material sequestered in various soil fractions as measured by sequential soil extractions. These trends followed such variables as the decrease with depth in organic matter, the change in clay minerals, and the change

  6. Microbes residing in young organic rich Alaskan soils contain older carbon than those residing in old mineral high Arctic soils

    Science.gov (United States)

    Ziolkowski, L. A.; Slater, G. F.; Onstott, T. C.; Whyte, L.; Townsend-Small, A.

    2013-12-01

    Arctic soils range from very organic rich to low carbon and mineral-dominated soils. At present, we do not yet fully understand if all carbon in the Arctic is equally vulnerable to mineralization in a warmer climate. Many studies have demonstrated that ancient carbon is respired when permafrost has thawed, yet our understanding of the active layer and permafrost carbon dynamics is still emerging. In an effort to remedy this disconnect between our knowledge of surface fluxes and below ground processes, we used radiocarbon to examine the microbial carbon dynamics in soil cores from organic rich soils near Barrow, Alaska and mineral soils from the Canadian high Arctic. Specifically, we compared the microbial community using lipid biomarkers, the inputs of carbon using n-alkanes and measured the 14C of both the bulk organic carbon and of the microbial lipids. In theory, the microbial lipids (phospholipid fatty acids, PLFA) represent the viable microbial community, as these lipids are hydrolyzed quickly after cell death. Variations in the PLFA distributions suggested that different microbial communities inhabit organic rich Alaskan soils and those of the Canadian high Arctic. When the PLFA concentrations were converted to cellular concentration, they were within the same order of magnitude (1 to 5 x 108 cells/g dry soil) with slightly higher cell concentrations in the organic rich Alaskan soils. When these cellular concentrations were normalized to the organic carbon content, the Canadian high Arctic soils contained a greater proportion of microbes. Although bulk organic carbon 14C of Alaskan soils indicated more recent carbon inputs into the soil than the Canadian high Arctic soils, the 14C of the PLFA revealed the opposite. For corresponding depth horizons, microbes in Alaskan soils were consuming carbon 1000 to 1500 years older than those in the Canadian high Arctic. Differences between the 14C content of bulk organic carbon and the microbial lipids were much smaller

  7. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra Arthropods using weather and seasonal variation

    NARCIS (Netherlands)

    Tulp, I.Y.M.; Schekkerman, H.

    2008-01-01

    Of all climatic zones on earth, Arctic areas have experienced the greatest climate change in recent decades. Predicted changes, including a continuing rise in temperature and precipitation and a reduction in snow cover, are expected to have a large impact on Arctic life. Large numbers of birds breed

  8. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variations

    NARCIS (Netherlands)

    Tulp, I.; Schekkerman, H.

    2008-01-01

    Of all climatic zones on earth, Arctic areas have experienced the greatest climate change in recent decades. Predicted changes, including a continuing rise in temperature and precipitation and a reduction in snow cover, are expected to have a large impact on Arctic life. Large numbers of birds breed

  9. Food and soil-borne Penicillia in Arctic environments: Chemical diversity

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    Penicillia are very common inhabitants of cold environments, including arctic soil, plants, animals, and foods. We have investigated the mycobiota of Greenland inland ice and soil, and found a very unique and pronounced diversity among the Penicillia. Nearly all species were new to science....... The species found in inland ice were both of the soil-borne type, and Penicillia that grow and sporulate well at 25°C. The latter group of Penicillia have been found earlier in refrigerated foods, including P. nordicum, and in glacier ice and melting water from Svalbard (se Sonjak et al., this conference......). This “food-borne group” of arctic fungi also contained some new species, but not as many as in arctic soil. The chemical diversity of the Penicillium species was remarkably high and in most cases even larger than the chemical diversity of Penicillia in the tropics. Several new secondary metabolites were...

  10. Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry

    Science.gov (United States)

    Yakovleva, E. V.; Gabov, D. N.; Beznosikov, V. A.; Kondratenok, B. M.

    2016-11-01

    Thirteen polycyclic aromatic hydrocarbon (PAH) compounds were identified in organic horizons of tundra surface-gleyed soils ( Histic Stagnosols (Gelistagnic) and plants. The total content of PAHs in contaminated soils exceeded the background values by three times. Concentrations of low-molecular weight hydrocarbons in soils at different distances from the coalmines were relatively stable. Concentrations of highmolecular weight hydrocarbons had a distinct maximum at a distance of about 0.5 km from the source of emission. The increased values of correlation coefficients were found between PAH concentrations in organic soil horizons, plants, and coal of the Vorkutinskaya mine. Mostly low-molecular weight structures predominated in the organic soil horizons and in the studied plant species. The maximum capacity for the biological accumulation of PAHs was displayed by Pleurozium schreberi and the minimum capacity was displayed by Vaccinium myrtillus. Mosses and lichens actively absorbed polyarenes from the surface; most of the PAHs were transported into the plants. This phenomenon was not observed for Vaccinium myrtillus Concentrations of PAHs on the surface and in plant tissues decreased with an increase in the distance from the mine. Distribution of polyarenes in plant organs was nonuniform. Insignificant excess of concentration of polyarenes was found in dead part of Pleurozium schreberi in comparison with its living part. The accumulation of polyarenes in the leaves of Vaccinium myrtillus was higher than that in its stems and roots.

  11. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  12. The role of snow cover and soil freeze/thaw cycles affecting boreal-arctic soil carbon dynamics

    Directory of Open Access Journals (Sweden)

    Y. Yi

    2015-07-01

    Full Text Available Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (∼ 0.8–1.3 days decade−1 in the mean annual snow cover extent and frozen season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to changes in snow cover and soil freeze/thaw processes in the Pan-Arctic region over the past three decades (1982–2010. Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD cm, corresponding with widespread warming and lengthening non-frozen season. Warming promotes vegetation growth and soil heterotrophic respiration, particularly within surface soil layers (≤ 0.2 m. The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m soil layers, especially in colder climate zones (mean annual T ≤ −10 °C. Our results demonstrate the important control of snow cover in affecting northern soil freeze/thaw and soil carbon decomposition processes, and the necessity of considering both warming, and changing precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  13. Evidence and Implications of Frequent Fires in Ancient Shrub Tundra

    Energy Technology Data Exchange (ETDEWEB)

    Higuera, P E; Brubaker, L B; Anderson, P M; Brown, T A; Kennedy, A T; Hu, F S

    2008-03-06

    Understanding feedbacks between terrestrial and atmospheric systems is vital for predicting the consequences of global change, particularly in the rapidly changing Arctic. Fire is a key process in this context, but the consequences of altered fire regimes in tundra ecosystems are rarely considered, largely because tundra fires occur infrequently on the modern landscape. We present paleoecological data that indicate frequent tundra fires in northcentral Alaska between 14,000 and 10,000 years ago. Charcoal and pollen from lake sediments reveal that ancient birchdominated shrub tundra burned as often as modern boreal forests in the region, every 144 years on average (+/- 90 s.d.; n = 44). Although paleoclimate interpretations and data from modern tundra fires suggest that increased burning was aided by low effective moisture, vegetation cover clearly played a critical role in facilitating the paleo-fires by creating an abundance of fine fuels. These records suggest that greater fire activity will likely accompany temperature-related increases in shrub-dominated tundra predicted for the 21st century and beyond. Increased tundra burning will have broad impacts on physical and biological systems as well as land-atmosphere interactions in the Arctic, including the potential to release stored organic carbon to the atmosphere.

  14. Partitioning of organic carbon in European Russian tundra and taiga ecosystems

    Science.gov (United States)

    Oosterwoud, M. R.; Temminghoff, E. J. M.; van der Zee, S. E. A. T. M.

    2009-04-01

    Sorption of dissolved organic carbon (DOC) on mineral phases is an important process for carbon preservation and element cycling in soils. Sorption of DOC to active minerals results in its fractionation because hydrophobic compounds (humic and fulvic acids) will be preferentially sorbed. Binding of cations (Ca2+, Mg2+, Al3+, Fe3+) by the DOC reduces the negative charge and thus its water solubility. At low pH and high cation concentrations, cations may cause coagulation of DOC. The sorption and/or coagulation are important factors in relation to DOC transport. Little is known about DOC partitioning between the soil solid and solution phases of arctic ecosystems. As a consequence of future warming arctic ecosystem will shift from surface water dominated to groundwater dominated systems. In general, permafrost affected soils with shallow active layers, having lateral flow towards the stream with only short contact time to mineral layers, lead to higher hydrophobic (humic and fulvic acid) DOC concentrations in streams compared to permafrost free soils where a larger share of hydrophilic DOC is expected to be discharged into streams. Changes in the delivery of DOC, nutrients and major ions to arctic rivers may have important consequences for primary production and carbon cycling. The partitioning of DOC is a fundamental process needed for modelling current and future stream water quality and solute transport. Therefore, the objective of this study is to determine the sorption and consequent fractionation of DOC in arctic ecosystems. During fieldwork carried out in the summer of 2007 and 2008 in the Russian Komi Republic, we collected soil, soil solution and surface water samples in both a forested taiga and a permafrost affected tundra catchment. The liquid samples were analysed for total organic carbon and inorganic cations. A rapid batch procedure was used for determining the humic-, fulvic- and hydrophilic acid fractions. Using the chemical speciation model

  15. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    Science.gov (United States)

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  16. Priming in permafrost soils: High vulnerability of arctic soil organic carbon to increased input of plant-derived compounds

    Science.gov (United States)

    Wild, Birgit; Gentsch, Norman; Capek, Petr; Diakova, Katerina; Alves, Ricardo; Barta, Jiri; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Knoltsch, Anna; Mikutta, Robert; Santruckova, Hana; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Watzka, Margarete; Richter, Andreas

    2015-04-01

    Arctic ecosystems are warming rapidly, resulting in a stimulation of both plant primary production and soil organic matter (SOM) decomposition. In addition to this direct stimulation, SOM decomposition might also be indirectly affected by rising temperatures mediated by the increase in plant productivity. Higher root litter production for instance might decrease SOM decomposition by providing soil microorganisms with alternative C and N sources ("negative priming"), or might increase SOM decomposition by facilitating microbial growth and enzyme production ("positive priming"). With about 1,700 Pg of organic C stored in arctic soils, and 88% of that in horizons deeper than 30 cm, it is crucial to understand the controls on SOM decomposition in different horizons of arctic permafrost soils, and thus the vulnerability of SOM to changes in C and N availability in a future climate. We here report on the vulnerability of SOM in arctic permafrost soils to an increased input of plant-derived organic compounds, and on its variability across soil horizons and sites. We simulated an increased input of plant-derived compounds by amending soil samples with 13C-labelled cellulose or protein, and compared the mineralization of native, unlabelled soil organic C (SOC) to unamended control samples. Our experiment included 119 individual samples of arctic permafrost soils, covering four sites across the Siberian Arctic, and five soil horizons, i.e., organic topsoil, mineral topsoil, mineral subsoil and cryoturbated material (topsoil material buried in the subsoil by freeze-thaw processes) from the active layer, as well as thawed material from the upper permafrost. Our findings suggest that changes in C and N availability in Arctic soils, such as mediated by plants, have a high potential to alter the decomposition of SOM, but also point at fundamental differences between soil horizons. In the organic topsoil, SOC mineralization increased by 51% after addition of protein, but was not

  17. Shrubs in the cold : interactions between vegetation, permafrost and climate in Siberian tundra

    NARCIS (Netherlands)

    Blok, D.

    2011-01-01

    The Arctic is experiencing strong increases in air temperature during the last decades. High-latitude tundra regions are very responsive to changes in temperature and may cause a shift in tundra vegetation composition towards greater dominance of deciduous shrubs. With increasing deciduous shrub cov

  18. The Cooling Capacity of Mosses: Controls on Water and Energy Fluxes in a Siberian Tundra Site

    NARCIS (Netherlands)

    Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Ruijven, van J.; Parmentier, F.J.W.; Maximov, T.C.; Berendse, F.

    2011-01-01

    Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosy

  19. Tundra Disturbance and Recovery Nine Years After Winter Seismic Exploration in Northern Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Seismic exploration was conducted during the winters of 1984 and 1985 on the coastal plain tundra of the Arctic National Wildlife Refuge, Alaska. In 1986, 1989, and...

  20. Herbivore impact on moss depth, soil temperature and arctic plant growth

    NARCIS (Netherlands)

    van der Wal, R; Loonen, MJJE

    2001-01-01

    We provide evidence for a mechanism by which herbivores may influence plant abundance in arctic ecosystems, These systems are commonly dominated by mosses, the thickness of which influences the amount of heat reaching the soil surface. Herbivores can reduce the thickness of the moss layer by means o

  1. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    DEFF Research Database (Denmark)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode;

    2015-01-01

    experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...

  2. Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for trait-based land models

    Science.gov (United States)

    Zhu, Qing; Iversen, Colleen M.; Riley, William J.; Slette, Ingrid J.; Vander Stel, Holly M.

    2016-12-01

    Ongoing climate warming will likely perturb vertical distributions of nitrogen availability in tundra soils through enhancing nitrogen mineralization and releasing previously inaccessible nitrogen from frozen permafrost soil. However, arctic tundra responses to such changes are uncertain, because of a lack of vertically explicit nitrogen tracer experiments and untested hypotheses of root nitrogen uptake under the stress of microbial competition implemented in land models. We conducted a vertically explicit 15N tracer experiment for three dominant tundra species to quantify plant N uptake profiles. Then we applied a nutrient competition model (N-COM), which is being integrated into the ACME Land Model, to explain the observations. Observations using an 15N tracer showed that plant N uptake profiles were not consistently related to root biomass density profiles, which challenges the prevailing hypothesis that root density always exerts first-order control on N uptake. By considering essential root traits (e.g., biomass distribution and nutrient uptake kinetics) with an appropriate plant-microbe nutrient competition framework, our model reasonably reproduced the observed patterns of plant N uptake. In addition, we show that previously applied nutrient competition hypotheses in Earth System Land Models fail to explain the diverse plant N uptake profiles we observed. Our results cast doubt on current climate-scale model predictions of arctic plant responses to elevated nitrogen supply under a changing climate and highlight the importance of considering essential root traits in large-scale land models. Finally, we provided suggestions and a short synthesis of data availability for future trait-based land model development.

  3. Hydrology modifies ecosystem responses to warming through interactions between soil, leaf and canopy processes in a high Arctic ecosystem

    Science.gov (United States)

    Maseyk, K. S.; Welker, J. M.; Lett, C.; Czimczik, C. I.; Lupascu, M.; Seibt, U. H.

    2013-12-01

    Arctic ecosystems are experiencing temperature increases more strongly than the global average, and increases in precipitation are also expected amongst the climate impacts on this region in the future. These changes are expected to strongly influence both plant physiology and soil biogeochemistry, and therefore ecosystem carbon balance, hydrology and nutrient cycling. We have investigated the effects of a long-term (10 years) increase in temperature (T2), soil water (W) and the combination of both (T2W) on leaf-level structure and function and ecosystem CO2 and water fluxes in a tundra ecosystem at a field manipulation experiment in NW Greenland. Leaf-level gas exchange, chlorophyll fluorescence, carbon (C), nitrogen (N) and morphology were measured on Salix arctica plants in treatment and control plots in June-July 2011, and continuous measurements of net ecosystem fluxes of carbon and water were made using automatic chambers coupled to a trace gas analyzer. Contrasting responses to the treatments were observed between leaf-level and net ecosystem fluxes. Plants in the elevated temperature treatment had the highest leaf-level photosynthetic capacity in terms of net CO2 assimilation rates and photosystem II efficiencies, and lowest rates of non-photochemical energy dissipation during photosynthesis. The plants in the plots with both elevated temperatures and additional water had the lowest photosystem II efficiencies and the highest rates of non-photochemical energy dissipation. However, net photosynthetic rates remained similar to control plants with additional water, due in part to higher stomatal conductance (W) and lower dark respiration rates (T2W). In contrast, net ecosystem CO2 and water fluxes were highest in the T2W plots, due largely to a 35% increase in leaf area. Total growing season C accumulation was 3-5 times greater, water fluxes were 1.5-2 times higher, and water use efficiency was about 3 times higher in the combined treatment than the control

  4. Selective preservation of old organic carbon fluvially released from sub-Arctic soils

    Science.gov (United States)

    Vonk, Jorien E.; van Dongen, Bart E.; Gustafsson, Örjan

    2010-06-01

    Amplified climate warming in the Arctic may cause thaw-remobilization of its large soil organic carbon (SOC) pool. Here we assess the remobilization and preservation of old SOC by the watershed-integrated radiocarbon signature of molecular SOC markers released from northernmost Scandinavia. The radiocarbon analyses revealed a remarkable fractionation for identical vascular plant markers (˜420‰ or ˜6000 14C years) upon settling from surface water to the underlying sediments. From this, we infer fluvial export of two SOC pools; a young surface peat component, and an old deep mineral soil component. The young pool exists as an easily degradable humic suspension, while the old pool is matrix protected from degradation and ballasted for preferential settling. The two soil types with highest OC in Arctic permafrost evidently exhibit different susceptibilities to degradation. Hence, a significant part of the thaw-released OC may simply be fluvially relocated to sediments instead of being emitted to the atmosphere.

  5. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A;

    2009-01-01

    production was obtained from average species growth rates, previously assessed at the sites. Results showed that aboveground vascular NPP (15-270 g m-2), annual NPP (214-282 g m-2 or 102-137 g C m-2) and vegetation biomass (330-2450 g m-2) varied greatly among communities. Vegetation dominated by Empetrum......Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... of the vegetation production occurred aboveground (85%). Ecosystem C and N stocks were 2100-8200 g C m-2 and 80-330 g N m-2, respectively, stored mainly in the soil turf and in the fine organic soil. Such stocks are comparable to the C and N stocks of moister tundra types, such as tussock tundra....

  6. The modeled effects of fire on carbon balance and vegetation abundance in Alaskan tundra

    Science.gov (United States)

    Dietze, M. C.; Davidson, C. D.; Kelly, R.; Higuera, P. E.; Hu, F.

    2012-12-01

    Arctic climate is warming at a rate disproportionately faster than the rest of the world. Changes have been observed within the tundra that are attributed to this trend, including active layer thickening, shrub land expansion, and increases in fire frequency. Whether tundra remains a global net sink of carbon could depend upon the effects of fire on vegetation, specifically concerning the speed at which vegetation reestablishes, the stimulation of growth after fire, and the changes that occur in species composition during succession. While rapid regeneration of graminoid vegetation favors the spread of this functional type in early succession, late succession appears to favor shrub vegetation at abundances greater than those observed before fire. Possible reasons for this latter observation include changes in albedo, soil insulation, and soil moisture regimes. Here we investigate the course of succession after fire disturbance within tundra ecosystems, and the mechanisms involved. A series of simulated burn experiments were conducted on the burn site left by the 2007 Anaktuvuk River fire to access the behavior of the Ecosystem Demography model v2.2 (ED2) in the simulation of fire on the tundra. The land surface sub-model within ED is modified to improve simulate permafrost through the effects of an increased soil-column depth, a peat texture class, and the effects of wind compaction and depth hoar on snow density. Parameterization is conducted through Bayesian techniques used to constrain parameter distributions based upon data from a literature survey, field measurements at Toolik Lake, Alaska, and a data assimilation over three datasets. At each step, priority was assigned to measurements that could constrain parameters that account for the greatest explained variance in model output as determined through sensitivity analysis. Following parameterization, a series of simulations were performed to gauge the suitability of the model in predicting carbon balance and

  7. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    Science.gov (United States)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring will help

  8. Diversity and composition of bacterial community in soils and lake sediments from an Arctic lake area

    Directory of Open Access Journals (Sweden)

    Nengfei Wang

    2016-07-01

    Full Text Available This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard. A total of 2,987 operational taxonomic units (OTUs were identified by high throughput sequencing, targeting bacterial 16S rRNA. The samples from four sites (three samples in each site were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chlorofiexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p < 0.001, water content (p < 0.01, ammonium nitrogen (NH4--N, p < 0.01, silicate silicon (SiO42--Si, p < 0.01, nitrite nitrogen (NO2--N, p < 0.05, organic carbon (p < 0.05, and organic nitrogen (p < 0.05 were the most significant factors that correlated with the bacterial community composition. The results suggest soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments.

  9. Permafrost thawing in organic Arctic soils accelerated by ground heat production

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn;

    2015-01-01

    Decomposition of organic carbon from thawing permafrost soils and the resulting release of carbon to the atmosphere are considered to represent a potentially critical global-scale feedback on climate change1, 2. The accompanying heat production from microbial metabolism of organic material has been...... organic permafrost soils across Greenland and tested the hypothesis that these soils produce enough heat to reach a tipping point after which internal heat production can accelerate the decomposition processes. Results show that the impact of climate changes on natural organic soils can be accelerated...... by microbial heat production with crucial implications for the amounts of carbon being decomposed. The same is shown to be true for organic middens5 with the risk of losing unique evidence of early human presence in the Arctic....

  10. Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach

    NARCIS (Netherlands)

    Meij, van der W.M.; Temme, A.J.A.M.; Kleijn, de Christian; Reimann, T.; Heuvelink, G.B.M.; Zwoliński, Zbigniew; Rachlewicz, Grzegorz; Rymer, Krzysztof; Sommer, Michael

    2016-01-01

    Soils in Arctic regions currently enjoy attention because of their sensitivity to climate change. It is therefore important to understand the natural processes and rates of development of these soils. Specifically, there is a need to quantify the rates and interactions between various landscape- and

  11. Application of a methane carbon isotope analyzer for the investigation of δ13C of methane emission measured by the automatic chamber method in an Arctic Tundra

    Science.gov (United States)

    Mastepanov, Mikhail; Christensen, Torben

    2014-05-01

    Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of

  12. Remote sensing of freeze-thaw transitions in Arctic soils using the complex resistivity method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin [Lawrence Berkeley National Laboratory (LBNL); Hubbard, Susan S [Lawrence Berkeley National Laboratory (LBNL); Ulrich, Craig [Lawrence Berkeley National Laboratory (LBNL); Wullschleger, Stan D [ORNL

    2013-01-01

    Our ability to monitor freeze - thaw transitions is critical to developing a predictive understanding of biogeochemical transitions and carbon dynamics in high latitude environments. In this study, we conducted laboratory column experiments to explore the potential of the complex resistivity method for monitoring the freeze - thaw transitions of the arctic permafrost soils. Samples for the experiment were collected from the upper active layer of Gelisol soils at the Barrow Environmental Observatory, Barrow Alaska. Freeze - thaw transitions were induced through exposing the soil column to controlled temperature environments at 4 C and -20 C. Complex resistivity and temperature measurements were collected regularly during the freeze - thaw transitions using electrodes and temperature sensors installed along the column. During the experiments, over two orders of magnitude of resistivity variations were observed when the temperature was increased or decreased between -20 C and 0 C. Smaller resistivity variations were also observed during the isothermal thawing or freezing processes that occurred near 0 C. Single frequency electrical phase response and imaginary conductivity at 1 Hz were found to be exclusively related to the unfrozen water in the soil matrix, suggesting that these geophysical 24 attributes can be used as a proxy for the monitoring of the onset and progression of the freeze - thaw transitions. Spectral electrical responses and fitted Cole Cole parameters contained additional information about the freeze - thaw transition affected by the soil grain size distribution. Specifically, a shift of the observed spectral response to lower frequency was observed during isothermal thawing process, which we interpret to be due to sequential thawing, first from fine then to coarse particles within the soil matrix. Our study demonstrates the potential of the complex resistivity method for remote monitoring of freeze - thaw transitions in arctic soils. Although

  13. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil.

    Science.gov (United States)

    Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J Eloy; Barsukov, Pavel; Bárta, Jiří; Capek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Santrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas

    2014-08-01

    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of (13)C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant

  14. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana;

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients, temperat....... Experiments have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination...

  15. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana P.;

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients, temperat...... have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination....

  16. Tundra in the rain

    DEFF Research Database (Denmark)

    Keuper, Frida; Parmentier, Frans-Jan; Blok, Daan

    2012-01-01

    increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences...... tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year-1) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length...... at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation....

  17. How to preserve the tundra in a warming climate?

    Science.gov (United States)

    Käyhkö, Jukka

    2014-05-01

    The warming climate of the polar regions may change much of the current arctic-alpine tundra to forest or dense scrubland. This modification requires adaptation by traditional livelihoods such as reindeer herding, which relies on diverse, seasonal pasturelands. Vegetation change may also trigger positive warming feedbacks, where more abundant forest-scrub vegetation will decrease the global albedo. NCoE Tundra team investigates the complex climate-animal-plant interaction of the tundra ecosystem and aim to unravel the capability of herbivorous mammals to control the expansion of woody vegetation. Our interdisciplinary approach involves several work packages, whose results will be summarised in the presentation. In the ecological WPs, we study the dynamics of the natural food chains involving small herbivorous and the impacts of reindeer on the vegetation and the population dynamics of those arctic-alpine plants, which are most likely to become threatened in a warmer climate. Our study demonstrates the potential of a relatively sparse reindeer stocks (2-5 heads per km2) together with natural populations of arvicoline rodents to prevent the expansion of erect woody plants at the arctic-alpine timberline. In the climatic WPs we study the impact of grazing-dependent vegetation differences on the fraction of solar energy converted to heat. In the socio-economic WPs, we study the conditions for maintaining the economic and cultural viability of reindeer herding while managing the land use so that the arctic-alpine biota would be preserved.

  18. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  19. Constraining predictions of tundra permafrost and vegetation through model-data feedbacks and data-assimilation

    Science.gov (United States)

    Davidson, C. D.; Dietze, M.

    2011-12-01

    Arctic climate is warming at a rate disproportionate to the rest of the world, and recent interest has emerged in using terrestrial biosphere models to understand and predict the response of tundra ecosystems to such warming. Of particular interest are the potential feedbacks between permafrost melting, plant community dynamics, and biogeochemical cycles. Here, we report on efforts to calibrate and validate version 2 of the Ecosystem Demography model (ED2) for the Alaskan tundra and on the use of model analyses to motivate targeted field measurements. ED2 is a terrestrial biosphere model unique in its ability to scale physiological and plant community dynamics to regional levels. We began by assessing the ability of ED2's land surface model to capture permafrost thermodynamics and hydrology. Simulations at Barrow and Toolik Lake, Alaska bore several incongruities with observed data, with soil temperatures significantly higher and soil moisture lower than observed. Modifications were made to increase the soil column depth and to simulate the effect of wind compaction on snow density, and in turn, the insulation of winter soils. In addition to these changes, a new soil class was created to represent unique characteristics within the organic horizon of tundra soils. Together these changes significantly improved permafrost dynamics without substantially altering dynamics in the temperate region. To capture tundra vegetation dynamics, tundra species were classified into three plant functional types (graminoid, deciduous shrub, evergreen shrub). ED2 was then iteratively calibrated for the tundra using the Predictive Ecosystem Analyzer (PEcAn), a scientific workflow and ecoinformatics toolbox developed to aid model parameterization and analysis. Initial parameter estimates were derived from a formal Bayesian meta-analysis of compiled plant trait data. Sensitivity analyses and variance decomposition demonstrated that model uncertainties were driven by the minimum

  20. Occurrence of matrix-bound phosphine in polar ornithogenic tundra ecosystems: effects of alkaline phosphatase activity and environmental variables.

    Science.gov (United States)

    Zhu, Renbin; Ma, Dawei; Ding, Wei; Bai, Bo; Liu, Yashu; Sun, Jianjun

    2011-09-01

    Phosphine (PH(3)), a reduced phosphorus compound, is a highly toxic and reactive atmospheric trace gas. In this study, a total of ten ornithogenic soil/sediment profiles were collected from tundra ecosystems of east Antarctica and Arctic, and matrix-bound phosphine (MBP), the phosphorus fractions and alkaline phosphatase activity (APA) were analyzed. High MBP concentrations were found in these profiles with the range from 39.59 ng kg(-1) dw to 11.77 μg kg(-1) dw. MBP showed a consistent vertical distribution pattern in almost all the soil profiles, and its concentrations increased at soil surface layers and then decreased with depths. MBP levels in the ornithogenic soils were two to three orders of magnitude lower than those in ornithogenic sediments. The yield of PH(3) as a fraction of total P in all the profiles ranged from 10(-5) to 10(-9) mgPH(3) mg(-1)P with higher mean PH(3) yield in the ornithogenic sediments. The ornithogenic soils showed high concentrations of total phosphorus (TP), organic phosphorus (OP), inorganic phosphorus (IP) and metal elements (Cu, Zn, Mn, Fe, Al and Ca) but low MBP levels, vice versa for the ornithogenic sediments. No correlation had been obtained between MBP concentrations and IP, OP and TP. There existed an exponential correlation (r=0.67, psoil/sediment moisture. MBP concentrations showed a significant positive correlation with APA (r=0.668, psoils/sediments. Our results indicated that MBP is an important gaseous link in the phosphorus biogeochemical cycles of ornithogenic tundra ecosystems in Antarctica and Arctic.

  1. Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach

    Science.gov (United States)

    van der Meij, W. Marijn; Temme, Arnaud J. A. M.; de Kleijn, Christian M. F. J. J.; Reimann, Tony; Heuvelink, Gerard B. M.; Zwoliński, Zbigniew; Rachlewicz, Grzegorz; Rymer, Krzysztof; Sommer, Michael

    2016-06-01

    Soils in Arctic regions currently enjoy attention because of their sensitivity to climate change. It is therefore important to understand the natural processes and rates of development of these soils. Specifically, there is a need to quantify the rates and interactions between various landscape- and soil-forming processes. Soil chronosequences are ideal natural experiments for this purpose. In this contribution, we combine field observations, luminescence dating and soil-landscape modelling to improve and test our understanding of Arctic soil formation. The field site is a Holocene chronosequence of gravelly raised marine terraces in central Spitsbergen. Field observations show that soil-landscape development is mainly driven by weathering, silt translocation, aeolian deposition and rill erosion. Spatial soil variation is mainly caused by soil age, morphological position within a terrace and depth under the surface. Luminescence dating confirmed existing radiocarbon dating of the terraces, which are between ˜ 1.5 and ˜ 13.3 ka old. The soil-landscape evolution model LORICA was used to test our hypothesis that the field-observed processes indeed dominate soil-landscape development. Model results additionally indicated the importance of aeolian deposition as a source of fine material in the subsoil for both sheltered and vegetated trough positions and barren ridge positions. Simulated overland erosion was negligible. Consequently, an un-simulated process must be responsible for creating the observed erosion rills. Dissolution and physical weathering both play a major role. However, using present-day soil observations, the relative contribution of physical and chemical weathering could not be disentangled. Discrepancies between field and model results indicate that soil formation is non-linear and driven by spatially and temporally varying boundary conditions which were not included in the model. To conclude, Arctic soil and landscape development appears to be more

  2. Permafrost-Affected Soils of the Russian Arctic and their Carbon Pools

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.-M.

    2014-02-01

    Permafrost-affected soils have accumulated enormous pools of organic matter during the Quaternary Period. The area occupied by these soils amounts to more than 8.6 million km2, which is about 27% of all land areas north of 50° N. Therefore, permafrost-affected soils are considered to be one of the most important cryosphere elements within the climate system. Due to the cryopedogenic processes that form these particular soils and the overlying vegetation that is adapted to the arctic climate, organic matter has accumulated to the present extent of up to 1024 Pg (1 Pg = 1015 g = 1 Gt) of soil organic carbon stored within the uppermost three meters of ground. Considering the observed progressive climate change and the projected polar amplification, permafrost-affected soils will undergo fundamental property changes. Higher turnover and mineralization rates of the organic matter are consequences of these changes, which are expected to result in an increased release of climate-relevant trace gases into the atmosphere. As a result, permafrost regions with their distinctive soils are likely to trigger an important tipping point within the global climate system, with additional political and social implications. The controversy of whether permafrost regions continue accumulating carbon or already function as a carbon source remains open until today. An increased focus on this subject matter, especially in underrepresented Siberian regions, could contribute to a more robust estimation of the soil organic carbon pool of permafrost regions and at the same time improve the understanding of the carbon sink and source functions of permafrost-affected soils.

  3. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    Historically, the function of Arctic ecosystems in terms of cycles of nutrients and carbon has led to low levels of primary production and exchanges of energy, water and greenhouse gases have led to low local and regional cooling. Sequestration of carbon from atmospheric CO2, in extensive, cold organic soils and the high albedo from low, snow-covered vegetation have had impacts on regional climate. However, many aspects of the functioning of Arctic ecosystems are sensitive to changes in climate and its impacts on biodiversity. The current Arctic climate results in slow rates of organic matter decomposition. Arctic ecosystems therefore tend to accumulate organic matter and elements despite low inputs. As a result, soil-available elements like nitrogen and phosphorus are key limitations to increases in carbon fixation and further biomass and organic matter accumulation. Climate warming is expected to increase carbon and element turnover, particularly in soils, which may lead to initial losses of elements but eventual, slow recovery. Individual species and species diversity have clear impacts on element inputs and retention in Arctic ecosystems. Effects of increased CO2 and UV-B on whole ecosystems, on the other hand, are likely to be small although effects on plant tissue chemisty, decomposition and nitrogen fixation may become important in the long-term. Cycling of carbon in trace gas form is mainly as CO2 and CH4. Most carbon loss is in the form of CO2, produced by both plants and soil biota. Carbon emissions as methane from wet and moist tundra ecosystems are about 5% of emissions as CO2 and are responsive to warming in the absence of any other changes. Winter processes and vegetation type also affect CH4 emissions as well as exchanges of energy between biosphere and atmosphere. Arctic ecosystems exhibit the largest seasonal changes in energy exchange of any terrestrial ecosystem because of the large changes in albedo from late winter, when snow reflects most

  4. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO{sub 2} flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO{sub 2} flux was measured at several sites on the North Slope of Alaska during the 1990--94 growing season (June--August) to determine the local and regional patterns of seasonal CO{sub 2} exchange. In addition, net CO{sub 2} flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO{sub 2} exchange observed in Arctic Alaska were representative of the circumpolar Arctic, while cold-season CO{sub 2} flux measurements were carried out during the 1993--94 winter season to determine the magnitude of CO{sub 2} efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO{sub 2} exchange, were carried out during the 1993--94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH{sub 4} flux were also measured at several of the North Slope study sites during the 1990--91 growing seasons.

  5. Deepened winter snow increases stem growth and alters stem δ13C and δ15N in evergreen dwarf shrub Cassiope tetragona in high-arctic Svalbard tundra

    DEFF Research Database (Denmark)

    Blok, Daan; Weijers, Stef; Welker, Jeffrey M;

    2015-01-01

    out on C. tetragona individuals sampled from three tundra sites, each representing a distinct moisture regime (dry heath, meadow, moist meadow). Individuals were sampled along gradients of experimentally manipulated winter snow depths in a six-year old snow fence experiment: in ambient ( c . 20 cm...

  6. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.

    Science.gov (United States)

    Parker, Thomas C; Subke, Jens-Arne; Wookey, Philip A

    2015-05-01

    Climate warming at high northern latitudes has caused substantial increases in plant productivity of tundra vegetation and an expansion of the range of deciduous shrub species. However significant the increase in carbon (C) contained within above-ground shrub biomass, it is modest in comparison with the amount of C stored in the soil in tundra ecosystems. Here, we use a 'space-for-time' approach to test the hypothesis that a shift from lower-productivity tundra heath to higher-productivity deciduous shrub vegetation in the sub-Arctic may lead to a loss of soil C that out-weighs the increase in above-ground shrub biomass. We further hypothesize that a shift from ericoid to ectomycorrhizal systems coincident with this vegetation change provides a mechanism for the loss of soil C. We sampled soil C stocks, soil surface CO2 flux rates and fungal growth rates along replicated natural transitions from birch forest (Betula pubescens), through deciduous shrub tundra (Betula nana) to tundra heaths (Empetrum nigrum) near Abisko, Swedish Lapland. We demonstrate that organic horizon soil organic C (SOCorg ) is significantly lower at shrub (2.98 ± 0.48 kg m(-2) ) and forest (2.04 ± 0.25 kg m(-2) ) plots than at heath plots (7.03 ± 0.79 kg m(-2) ). Shrub vegetation had the highest respiration rates, suggesting that despite higher rates of C assimilation, C turnover was also very high and less C is sequestered in the ecosystem. Growth rates of fungal hyphae increased across the transition from heath to shrub, suggesting that the action of ectomycorrhizal symbionts in the scavenging of organically bound nutrients is an important pathway by which soil C is made available to microbial degradation. The expansion of deciduous shrubs onto potentially vulnerable arctic soils with large stores of C could therefore represent a significant positive feedback to the climate system.

  7. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank;

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...

  8. Soil pH is a Key Determinant of Soil Fungal Community Composition in the Ny-Ålesund Region, Svalbard (High Arctic).

    Science.gov (United States)

    Zhang, Tao; Wang, Neng-Fei; Liu, Hong-Yu; Zhang, Yu-Qin; Yu, Li-Yan

    2016-01-01

    This study assessed the fungal community composition and its relationships with properties of surface soils in the Ny-Ålesund Region (Svalbard, High Arctic). A total of thirteen soil samples were collected and soil fungal community was analyzed by 454 pyrosequencing with fungi-specific primers targeting the rDNA internal transcribed spacer (ITS) region. The following eight soil properties were analyzed: pH, organic carbon (C), organic nitrogen (N), ammonium nitrogen (NH4 (+)-N), silicate silicon (SiO4 (2-)-Si), nitrite nitrogen (NO2 (-)-N), phosphate phosphorus (PO4 (3-)-P), and nitrate nitrogen (NO3 (-)-N). A total of 57,952 reads belonging to 541 operational taxonomic units (OTUs) were found. of these OTUs, 343 belonged to Ascomycota, 100 to Basidiomycota, 31 to Chytridiomycota, 22 to Glomeromycota, 11 to Zygomycota, 10 to Rozellomycota, whereas 24 belonged to unknown fungi. The dominant orders were Helotiales, Verrucariales, Agaricales, Lecanorales, Chaetothyriales, Lecideales, and Capnodiales. The common genera (>eight soil samples) were Tetracladium, Mortierella, Fusarium, Cortinarius, and Atla. Distance-based redundancy analysis (db-rda) and analysis of similarities (ANOSIM) revealed that soil pH (p = 0.001) was the most significant factor in determining the soil fungal community composition. Members of Verrucariales were found to predominate in soils of pH 8-9, whereas Sordariales predominated in soils of pH 7-8 and Coniochaetales predominated in soils of pH 6-7. The results suggest the presence and distribution of diverse soil fungal communities in the High Arctic, which can provide reliable data for studying the ecological responses of soil fungal communities to climate changes in the Arctic.

  9. Ecological recovery in an Arctic delta following widespread saline incursion.

    Science.gov (United States)

    Lantz, Trevor C; Kokelj, Steve V; Fraser, Robert H

    2015-01-01

    Arctic ecosystems are vulnerable to the combined effects of climate change and a range of other anthropogenic perturbations. Predicting the cumulative impact of these stressors requires an improved understanding of the factors affecting ecological resilience. In September of 1999, a severe storm surge in the Mackenzie Delta flooded alluvial surfaces up to 30 km inland from the coast with saline waters, driving environmental impacts unprecedented in the last millennium. In this study we combined field monitoring of permanent sampling plots with an analysis of the Landsat archive (1986-2011) to explore the factors affecting the recovery of ecosystems to this disturbance. Soil salinization following the 1999 storm caused the abrupt dieback of more than 30,000 ha of tundra vegetation. Vegetation cover and soil chemistry show that recovery is occurring, but the rate and spatial extent are strongly dependent on vegetation type, with graminoid- and upright shrub-dominated areas showing recovery after a decade, but dwarf shrub tundra exhibiting little to no recovery over this period. Our analyses suggest that recovery from salinization has been strongly influenced by vegetation type and the frequency of freshwater flooding following the storm. With increased ocean storm activity, rising sea levels, and reduced sea ice cover, Arctic coastal ecosystems will be more likely to experience similar disturbances in the future, highlighting the importance of combining field sampling with regional-scale remote sensing in efforts to detect, understand, and anticipate environmental change.

  10. Effects of Temperature Changes on Biodegradation of Petroleum Hydrocarbons in Contaminated Soils from an Arctic Site

    Science.gov (United States)

    Chang, W.; Klemm, S.; Whyte, L.; Ghoshal, S.

    2009-05-01

    Bioremediation is being considered as a cost-effective and a minimally disruptive remedial option at remote sites in the Arctic and sub-Arctic impacted by petroleum NAPL contamination. The implementation of on-site bioremediation in cold environments has been generally limited in the short, non-freezing summer months since ground remains frozen for 8-9 months of the year. This study evaluates the effect of different temperature regimes on petroleum hydrocarbon biodegradation rates and extent, as well as on the microbial activity. A series of pilot-scale landfarming bioremediation experiments (1 m×0.6 m×0.35 m soil tank dimension) was performed using aged, petroleum fuel-contaminated soils shipped from Resolution Island, Nunavut, Canada. These experiments were conducted under the following temperature conditions: (1) variable daily average field temperatures (1 to 10°C) representative of summers at the site; (2) constant mean temperature-mode with 6°C, representing typical stable laboratory incubation; and (3) under seasonal freeze-thaw conditions (-8°C to 10°C). Data to be presented include changes with time of petroleum hydrocarbons concentration fractionated by C-lengths, soil moisture (unfrozen water) contents, O2 and CO2 concentrations in soil pore gas, microbial population size and community composition in nutrient- amended and untreated landfarms. Hydrocarbon biodegradation and heterotrophic respiration activity was more rapid under the variable temperature cycle (1 to 10°C) than at a constant average temperature of 6°C, and total petroleum hydrocarbon (TPH) concentrations were reduced by 55% due to biodegradation over a 60 day test period under the variable temperature regime, compared to only 21% in soil tanks which were subjected to a constant temperature of 6°C. Shifts in microbial community were clearly observed in the both temperature modes using PCR-DGGE analyses and the emergence of a hydrocarbon-degrading population, Alkanindiges, was

  11. Land-atmosphere fluxes of methane and carbon dioxide at Siberian polygonal tundra - new data from 2009 in comparison to data from 2003/04 and 2006.

    Science.gov (United States)

    Schreiber, Peter; Wille, Christian; Sachs, Torsten; Pfeiffer, Eva-Maria; Kutzbach, Lars

    2010-05-01

    The fluxes of carbon dioxide (CO2) and methane (CH4) between wet arctic polygonal tundra and the atmosphere were investigated by the eddy covariance method and empirical modeling. The study site is situated in the Lena River Delta in Northern Siberia (72° 22' N, 126° 30' E) and is characterized by a polar and distinctly continental climate, very cold and ice-rich permafrost, and its position at the interface between the Eurasian continent and the Arctic Ocean. The soils at the site are characterized by high organic matter content, low nutrient availability and pronounced water logging. The vegetation is dominated by sedges and mosses. Flux measurements were performed during one 'synthetic' growing season consisting of the periods July - October 2003 and May - July 2004, one full growing season in 2006 (June - September), and during July - August in 2009. The main carbon exchange processes - gross photosynthesis, ecosystem respiration, and CH4 emissions - were generally found to be of low intensity. Over the 2004/2003 growing season (June - September), these gas fluxes accumulated to -0.43 kg m-2, +0.33 kg m-2, and +2 g m-2, respectively. CH4 emissions from June - September 2006 were 1.96 g m-2 with highest emissions in July (+0.57 g m-2) and August (+0.64 g m-2). Day-to-day variations of photosynthesis were mainly controlled by radiation and hence by the synoptic weather conditions. Variations of ecosystem respiration were best explained by an exponential function of surface temperature, which indicates that plant respiration plays a major role within the tundra carbon balance. The factors controlling CH4 emissions were found to be soil temperature and near-surface atmospheric turbulence. The influence of atmospheric turbulence was attributed to the high coverage of open water surfaces in the tundra. For the 2003- 2004 period, winter fluxes were modeled based on functional relationships found in the measured data. On an annual basis, CH4 emissions accounted for

  12. Bioremediation of weathered petroleum hydrocarbon soil contamination in the Canadian High Arctic: laboratory and field studies.

    Science.gov (United States)

    Sanscartier, David; Laing, Tamsin; Reimer, Ken; Zeeb, Barbara

    2009-11-01

    The bioremediation of weathered medium- to high-molecular weight petroleum hydrocarbons (HCs) in the High Arctic was investigated. The polar desert climate, contaminant characteristics, and logistical constraints can make bioremediation of persistent HCs in the High Arctic challenging. Landfarming (0.3 m(3) plots) was tested in the field for three consecutive years with plots receiving very little maintenance. Application of surfactant and fertilizers, and passive warming using a greenhouse were investigated. The field study was complemented by a laboratory experiment to better understand HC removal mechanisms and limiting factors affecting bioremediation on site. Significant reduction of total petroleum HCs (TPH) was observed in both experiments. Preferential removal of compounds nC16 occurred, whereas in the field, TPH reduction was mainly limited to removal of compounds nC16 was observed in the fertilized field plots only. The greenhouse increased average soil temperatures and extended the treatment season but did not enhance bioremediation. Findings suggest that temperature and low moisture content affected biodegradation of HCs in the field. Little volatilization was measured in the laboratory, but this process may have been predominant in the field. Low-maintenance landfarming may be best suited for remediation of HCs compounds

  13. Sorting out non-sorted circles: Effects of winter climate change on the Collembola community of cryoturbated subarctic tundra

    Science.gov (United States)

    Krab, Eveline; Monteux, Sylvain; Becher, Marina; Blume-Werry, Gesche; Keuper, Frida; Klaminder, Jonatan; Kobayashi, Makoto; Lundin, Erik J.; Milbau, Ann; Roennefarth, Jonas; Teuber, Laurenz Michael; Weedon, James; Dorrepaal, Ellen

    2015-04-01

    Non-sorted circles (NSC) are a common type of cryoturbated (frost-disturbed) soil in the arctic and store large amounts of soil organic carbon (SOC) by the burial of organic matter. They appear as sparsely vegetated areas surrounded by denser tundra vegetation, creating patterned ground. Snowfall in the arctic is expected to increase, which will modify freezing intensity and freeze-thaw cycles in soils, thereby impacting on SOC dynamics. Vegetation, soil fauna and microorganisms, important drivers of carbon turnover, may benefit directly from the altered winter conditions and the resulting reduction in cryoturbation, but may also impact each other through trophic cascading. We investigated how Collembola, important decomposer soil fauna in high latitude ecosystems, are affected by increased winter insulation and vegetation cover. We subjected NSC in North-Swedish subarctic alpine tundra to two years of increased thermal insulation (snow fences or fiber cloth) in winter and spring, increasing soil temperatures and strongly reducing freeze-thaw frequency. From these NSC we sampled the Collembola community in: (i) the non-vegetated center, (ii) sparsely vegetated parts in the center and (iii) the vegetated domain surrounding NSC. To link changes in Collembola density and community composition to SOC dynamics, we included measurements of decomposer activity, dissolved organic carbon (DOC) and total extractable nitrogen (TN). We observed differences in Collembola density, community composition and soil fauna activity between the sampling points in the NSC. Specifically Collembola diversity increased with the presence of vegetation and density was higher in the vegetated outer domains. Increased winter insulation did not affect diversity but seemed to negatively affect density and decomposer activity in the vegetated outer domains. Interestingly, SOM distribution over NSC changed with snow addition (also to a lesser extent with fleece insulation) towards less SOM in the

  14. U.S. Tundra Biome-International Biological Program. U.S. Tundra Biome Publication List.

    Science.gov (United States)

    1983-09-01

    4040) /Bib 33-4561/ Rastorfer, J.R., H.J. Webster and D.K. Smith (1973) Floristic and ecologic studies of bryophytes of selected habitats at...al., Eds). Stockholm: IBP Tundra Biome Steering Committee, pp. 375-378. (1799) /Bib 29-3367/ Flock, J.W. (1978) Lichen- bryophyte distribution along a...1973) Natural oil seeps at Cape Simpson, Alaska: Localized influences on terrestrial habitat . Proceedings of the Symposium on the Impact of Soil

  15. IMPACT OF CRITICAL ANION SOIL SOLUTION CONCENTRATION ON ALUMINUM ACTIVITY IN ALPINE TUNDRA SOIL Andrew Evans, Jr.1 , Michael B. Jacobs2, and Jason R. Janke1, (1) Metropolitan State University of Denver, Dept. of Earth and Atmospheric Sciences, (2) Dept. of Chemistry, Denver, CO, United States.

    Science.gov (United States)

    Evans, A.

    2015-12-01

    Soil solution anionic composition can impact both plant and microbial activity in alpine tundra soils by altering biochemical cycling within the soil, either through base cation leaching, or shifts in aluminum controlling solid phases. Although anions play a critical role in the aqueous speciation of metals, relatively few high altitude field studies have examined their impact on aluminum controlling solid phases and aluminum speciation in soil water. For this study, thirty sampling sites were selected on Trail Ridge Road in Rocky Mountain National Park, Estes Park, CO, and sampled during July, the middle of the growing season. Sampling elevations ranged from approximately 3560 - 3710 m. Soil samples were collected to a depth of 15.24 cm, and the anions were extracted using a 2:1 D.I. water to soil ratio. Filtered extracts were analyzed using IC and ICP-MS. Soil solution NO3- concentrations were significantly higher for sampling locations east of Iceberg Pass (EIBP) (mean = 86.94 ± 119.8 mg/L) compared to locations west of Iceberg Pass (WIBP) (mean 1.481 ± 2.444 mg/L). Both F- and PO43- soil solution concentrations, 0.533 and 0.440 mg/L, respectively, were substantially lower, for sampling sites located EIBP, while locations WIBP averaged 0.773 and 0.829 mg/L respectively, for F- and PO43-. Sulfate concentration averaged 3.869 ± 3.059 mg/L for locations EIBP, and 3.891 ± 3.1970 for locations WIBP. Geochemical modeling of Al3+ in the soil solution indicated that a suite of aluminum hydroxyl sulfate minerals controlled Al3+ activity in the alpine tundra soil, with shifts between controlling solid phases occurring in the presence of elevated F- concentrations.

  16. Carbon monoxide photoproduction: implications for photoreactivity of Arctic permafrost-derived soil dissolved organic matter.

    Science.gov (United States)

    Hong, Jun; Xie, Huixiang; Guo, Laodong; Song, Guisheng

    2014-08-19

    Apparent quantum yields of carbon monoxide (CO) photoproduction (AQY(CO)) for permafrost-derived soil dissolved organic matter (SDOM) from the Yukon River Basin and Alaska coast were determined to examine the dependences of AQY(CO) on temperature, ionic strength, pH, and SDOM concentration. SDOM from different locations and soil depths all exhibited similar AQY(CO) spectra irrespective of soil age. AQY(CO) increased by 68% for a 20 °C warming, decreased by 25% from ionic strength 0 to 0.7 mol L(-1), and dropped by 25-38% from pH 4 to 8. These effects combined together could reduce AQY(CO) by up to 72% when SDOM transits from terrestrial environemnts to open-ocean conditions during summer in the Arctic. A Michaelis-Menten kinetics characterized the influence of SDOM dilution on AQY(CO) with a very low substrate half-saturation concentration. Generalized global-scale relationships between AQY(CO) and salinity and absorbance demostrate that the CO-based photoreactivity of ancient permaforst SDOM is comparable to that of modern riverine DOM and that the effects of the physicochemical variables revealed here alone could account for the seaward decline of AQY(CO) observed in diverse estuarine and coastal water bodies.

  17. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Rizzi, Agostino; Baldi, Franco; Ventura, Stefano; Daffonchio, Daniele; Borin, Sara

    2011-02-01

    In arctic glacier moraines, bioweathering primed by microbial iron oxidizers creates fertility gradients that accelerate soil development and plant establishment. With the aim of investigating the change of bacterial diversity in a pyrite-weathered gradient, we analyzed the composition of the bacterial communities involved in the process by sequencing 16S rRNA gene libraries from different biological soil crusts (BSC). Bacterial communities in three BSC of different morphology, located within 1 m distance downstream a pyritic conglomerate rock, were significantly diverse. The glacier moraine surrounding the weathered site showed wide phylogenetic diversity and high evenness with 15 represented bacterial classes, dominated by Alphaproteobacteria and pioneer Cyanobacteria colonizers. The bioweathered area showed the lowest diversity indexes and only nine bacterial families, largely dominated by Acidobacteriaceae and Acetobacteraceae typical of acidic environments, in accordance with the low pH of the BSC. In the weathered BSC, iron-oxidizing bacteria were cultivated, with counts decreasing along with the increase of distance from the rock, and nutrient release from the rock was revealed by environmental scanning electron microscopy-energy dispersive X-ray analyses. The vegetated area showed the presence of Actinomycetales, Verrucomicrobiales, Gemmatimonadales, Burkholderiales, and Rhizobiales, denoting a bacterial community typical of developed soils and indicating that the lithoid substrate of the bare moraine was here subjected to an accelerated colonization, driven by iron-oxidizing activity.

  18. Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf

    Science.gov (United States)

    Bischoff, Juliane; Sparkes, Robert B.; Doğrul Selver, Ayça; Spencer, Robert G. M.; Gustafsson, Örjan; Semiletov, Igor P.; Dudarev, Oleg V.; Wagner, Dirk; Rivkina, Elizaveta; van Dongen, Bart E.; Talbot, Helen M.

    2016-09-01

    The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk δ13C measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'soil ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R'soil displays a negative linear correlation with bulk δ13C measurements (r2 = -0.73, p = balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'soil of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R'soil correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental conditions (e.g. temperature, pH), but other physiological controls on microbial bacteriohopanepolyol (BHP) production under psychrophilic conditions are as yet unknown.

  19. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    Science.gov (United States)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of

  20. The Arctic CH4 sink and its implications for the permafrost carbon feedbacks to the global climate system

    Science.gov (United States)

    Juncher Jørgensen, Christian; Christiansen, Jesper; Mariager, Tue; Hugelius, Gustaf

    2016-04-01

    Using atmospheric methane (CH4), certain soil microbes are able to sustain their metabolism, and in turn remove this powerful greenhouse gas from the atmosphere. While the process of CH4 oxidation is a common feature in most natural and unmanaged ecosystems in temperate and boreal ecosystems, the interactions between soil physical properties and abiotic process drivers, net landscape exchange and spatial patterns across Arctic drylands remains highly uncertain. Recent works show consistent CH4 comsumption in upland dry tundra soils in Arctic and High Arctic environments (Christiansen et al., 2014, Biogeochemistry 122; Jørgensen et al., 2015, Nature Geoscience 8; Lau et al., 2015, The ISME Journal 9). In these dominantly dry or barren soil ecosystems, CH4 consumption has been observed to significantly exceed the amounts of CH4 emitted from adjacent wetlands. These observations point to a potentially important but largely overlooked component of the global soil-climate system interaction and a counterperspective to the conceptual understanding of the Arctic being a only a source of CH4. However, due to our limited knowledge of spatiotemporal occurrence of CH4 consumption across a wider range of the Arctic landscape we are left with substantial uncertainites and an overall unconstrained range estimate of this terrestrial CH4 sink and its potential effects on permafrost carbon feedback to the atmospheric CH4 concentration. To address this important knowledge gap and identify the most relevant spatial scaling parameters, we studied in situ CH4 net exchange across a large landscape transect on West Greenland. The transect representated soils formed from the dominant geological parent materials of dry upland tundra soils found in the ice-free land areas of Western Greenland, i.e. 1) granitic/gneissic parent material, 2) basaltic parent material and 3) sedimentary deposits. Results show that the dynamic variations in soil physical properties and soil hydrology exerts an

  1. Seasonal and spatial variation in soil chemistry and anaerobic processes in an Arctic ecosystem

    Science.gov (United States)

    Lipson, D.; Mauritz, M.; Bozzolo, F.; Raab, T. K.; Santos, M. J.; Friedman, E. F.; Rosenbaum, M.; Angenent, L.

    2009-12-01

    Drained thaw lake basins (DTLB) are the dominant landform in the Arctic coastal plain near Barrow, Alaska. Our previous work in a DTLB showed that Fe(III) and humic substances are important electron acceptors in anaerobic respiration, and play a significant role in the C cycle of these organic-rich soils. In the current study, we investigated seasonal and spatial patterns of availability of electron acceptors and labile substrate, redox conditions and microbial activity. Landscapes within DTLB contain complex, fine-scale topography arising from ice wedge polygons, which produce raised and lowered areas. One goal of our study was to determine the effects of microtopographic variation on the potential for Fe(III) reduction and other anaerobic processes. Additionally, the soil in the study site has a complex vertical structure, with an organic peat layer overlying a mineral layer, overlying permafrost. We described variations in soil chemistry across depth profiles into the permafrost. Finally, we installed an integrated electrode/potentiostat system to electrochemically monitor microbial activity in the soil. Topographically low areas differed from high areas in most of the measured variables: low areas had lower oxidation-reduction potential, higher pH and electrical conductivity. Soil pore water from low areas had higher concentrations of Fe(III), Fe(II), dissolved organic C (DOC), and aromaticity (UV absorbance at 260nm, “A260”). Low areas also had higher concentrations of dissolve CO2 and CH4 in soil pore water. Laboratory incubations of soil showed a trend toward higher potentials for Fe(III) reduction in topographically low areas. Clearly, ice wedge-induced microtopography exerts a strong control on microbial processes in this DTLB landscape, with increased anaerobic activity occurring in the wetter, depressed areas. Soil water extracted from 5-15 cm depth had higher concentrations of Fe(III), Fe(II), A260, and DOC compared to soil water sampled from 0-5cm

  2. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    Science.gov (United States)

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by

  3. Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter C.

    1990-09-05

    OAK B188 Response of Tundra Ecosystems to Elevated Atmospheric CO{sub 2}. Atmospheric CO{sub 2} is expected to double by the end of the next century. Global mean increases in surface air temperature of 1.5-4.5 C are anticipated with larger increases towards the poles predicted. Changes in CO{sub 2} levels and temperature could have major impacts on ecosystem functioning, including primary productivity, species composition, plant-animal interactions, and carbon storage. Until recently, there has been little direct information on the impact of changes in CO{sub 2} and temperature on native ecosystems. The study described here was undertaken to evaluate the effects of a 50 and 100% increase in atmospheric CO{sub 2}, and a 100% increase in atmospheric CO{sub 2} coupled with a 4 C summer air temperature rise on the structure and function of an arctic tussock tundra ecosystem. The arctic contains large stores of carbon as soil organic matter, much frozen in permafrost and currently not reactive or available for oxidation and release into the atmosphere. About 10-27% of the world's terrestrial carbon occurs in arctic and boreal regions, and carbon is accumulating in these regions at the rate of 0.19 GT y{sup -1}. Mean temperature increases of 11 C and summer temperature increases of 4 C have been suggested. Mean July temperatures on the arctic coastal plain and arctic foothills regions are 4-12 C, and mean annual temperatures are -7 to -13 C (Haugen, 1982). The projected temperature increases represent a substantial elevation above current temperatures which will have major impacts on physical processes such as permafrost development and development of the active layer, and on biological and ecosystem processes such as primary productivity, carbon storage, and species composition. Extreme nutrient and temperature limitation of this ecosystem raised questions of the responsiveness of arctic systems to elevated CO{sub 2}. Complex ecosystem interactions with the effects

  4. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms

    Science.gov (United States)

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.

    2016-09-01

    Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.

  5. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic.

    Science.gov (United States)

    Cory, Rose M; Crump, Byron C; Dobkowski, Jason A; Kling, George W

    2013-02-26

    Recent climate change has increased arctic soil temperatures and thawed large areas of permafrost, allowing for microbial respiration of previously frozen C. Furthermore, soil destabilization from melting ice has caused an increase in thermokarst failures that expose buried C and release dissolved organic C (DOC) to surface waters. Once exposed, the fate of this C is unknown but will depend on its reactivity to sunlight and microbial attack, and the light available at the surface. In this study we manipulated water released from areas of thermokarst activity to show that newly exposed DOC is >40% more susceptible to microbial conversion to CO(2) when exposed to UV light than when kept dark. When integrated over the water column of receiving rivers, this susceptibility translates to the light-stimulated bacterial activity being on average from 11% to 40% of the total areal activity in turbid versus DOC-colored rivers, respectively. The range of DOC lability to microbes seems to depend on prior light exposure, implying that sunlight may act as an amplification factor in the conversion of frozen C stores to C gases in the atmosphere.

  6. Paenibacillus tundrae sp. nov. and Paenibacillus xylanexedens sp. nov., Psychrotolerant, Xylan-Degrading, Bacteria from Alaskan Tundra

    Science.gov (United States)

    Psychrotolerant, xylan-degrading, strains of bacteria were isolated from soil beneath moist non-acidic and acidic tundra in northern Alaska. Phylogenetic analysis based on 16S rRNA gene sequences revealed that each strain belonged to the genus Paenibacillus. The highest levels of 16S rRNA gene sim...

  7. Using Coarse Resolution Land Surface Temperature Time Series Data for Vegetation Analysis in the Taiga Tundra Transition Zone. a Case Study for Yamal, Krasnoyarsk Kray and Yakutia

    Science.gov (United States)

    Urban, M.; Schmullius, C. C.; Hese, S.; Herold, M.

    2011-12-01

    Predictions from Global Climate Models have shown increasing trends of global temperature for the 21th century. Since the arctic regions are highly vulnerable to global climate changes, rising temperatures will lead to an intensification of vegetation activity which benefits the extension of the boreal forest into tundra areas. Especially the recruitment of trees into the northern regions, which were controlled by summer temperature and the length of the growing season, is of high importance for the Global Climate System. The tree line movement will lead to a positive feedback in climate conditions since dark forest areas will reduce the albedo which leads to higher warming rates. A multi scale concept for the monitoring of the arctic tree line and changes in vegetation structure in the taiga tundra transition zone of Siberia using Earth Observation data and products on coarse, medium and high spatial resolution is presented. On coarse scale, global land surface temperature data from TERRA, AQUA, ERS and ENVISAT as well as land cover, biomass and phenological information will be integrated to analyze the vegetation composition within the taiga tundra transition zone. On medium spatial resolution, optical and SAR remote sensing data with a pixel size of approx. 30 m will be used to analyze the vegetation structure at the tree line. On very high spatial scale recent Rapideye and Corona imagery from the 1960s will be used to identify vegetation changes and the movement of trees within this 40-50 year time period. As this is a multi-scale approach, the findings on all spatial scales can be connected to each other to verify the results. The first results at coarse scale level have shown the relation between the mean summer temperature and the location of the arctic tree line, which was extracted from the Circumpolar Arctic Vegetation Map (CAVM) by Walker et al. (2005). The assumption is that trees have their optimal growing conditions at a mean summer temperature of 10

  8. Impact of climate change on zooplankton communities, seabird populations and arctic terrestrial ecosystem—A scenario

    Science.gov (United States)

    Stempniewicz, Lech; Błachowiak-Samołyk, Katarzyna; Węsławski, Jan M.

    2007-11-01

    Many arctic terrestrial ecosystems suffer from a permanent deficiency of nutrients. Marine birds that forage at sea and breed on land can transport organic matter from the sea to land, and thus help to initiate and sustain terrestrial ecosystems. This organic matter initiates the emergence of local tundra communities, increasing primary and secondary production and species diversity. Climate change will influence ocean circulation and the hydrologic regime, which will consequently lead to a restructuring of zooplankton communities between cold arctic waters, with a dominance of large zooplankton species, and Atlantic waters in which small species predominate. The dominance of large zooplankton favours plankton-eating seabirds, such as the little auk ( Alle alle), while the presence of small zooplankton redirects the food chain to plankton-eating fish, up through to fish-eating birds (e.g., guillemots Uria sp.). Thus, in regions where the two water masses compete for dominance, such as in the Barents Sea, plankton-eating birds should dominate the avifauna in cold periods and recess in warmer periods, when fish-eaters should prevail. Therefore under future anthropogenic climate scenarios, there could be serious consequences for the structure and functioning of the terrestrial part of arctic ecosystems, due in part to changes in the arctic marine avifauna. Large colonies of plankton-eating little auks are located on mild mountain slopes, usually a few kilometres from the shore, whereas colonies of fish-eating guillemots are situated on rocky cliffs at the coast. The impact of guillemots on the terrestrial ecosystems is therefore much smaller than for little auks because of the rapid washing-out to sea of the guano deposited on the seabird cliffs. These characteristics of seabird nesting sites dramatically limit the range of occurrence of ornithogenic soils, and the accompanying flora and fauna, to locations where talus-breeding species occur. As a result of climate

  9. Land Cover Characterization and Classification of Arctic Tundra Environments by Means of Polarized Synthetic Aperture X- and C-Band Radar (PolSAR and Landsat 8 Multispectral Imagery — Richards Island, Canada

    Directory of Open Access Journals (Sweden)

    Tobias Ullmann

    2014-09-01

    Full Text Available In this work the potential of polarimetric Synthetic Aperture Radar (PolSAR data of dual-polarized TerraSAR-X (HH/VV and quad-polarized Radarsat-2 was examined in combination with multispectral Landsat 8 data for unsupervised and supervised classification of tundra land cover types of Richards Island, Canada. The classification accuracies as well as the backscatter and reflectance characteristics were analyzed using reference data collected during three field work campaigns and include in situ data and high resolution airborne photography. The optical data offered an acceptable initial accuracy for the land cover classification. The overall accuracy was increased by the combination of PolSAR and optical data and was up to 71% for unsupervised (Landsat 8 and TerraSAR-X and up to 87% for supervised classification (Landsat 8 and Radarsat-2 for five tundra land cover types. The decomposition features of the dual and quad-polarized data showed a high sensitivity for the non-vegetated substrate (dominant surface scattering and wetland vegetation (dominant double bounce and volume scattering. These classes had high potential to be automatically detected with unsupervised classification techniques.

  10. Diversity of soil organisms in alpine and arctic soils in Europe. Review an research needs

    Directory of Open Access Journals (Sweden)

    Broll, Gabrielle

    1998-12-01

    Full Text Available The diversity of soil organisms and soil ecological processes in different mountain regions of Europe are reviewed. Detailed taxonomic studies on soil organisms have been made in the Alps and in Northern Europe since the end of the last century, however, there is a paucity of data from Southern Europe. Future studies could include the re-sampling of historic study sites to assess if there has been a change in the soil fauna and microorganisms. The role of key abiotic processes such as cryoturbation should be quantified and further research should focus on identifying indicator organisms, keystone species and functional groups. In addition, studies on soil organic matter and particularly on humus forms, the products of soil ecological processes should be encouraged. Ecotones, where the influence of spatial heterogeneity on soil biodiversity is likely to be particularly pronounced, appear to be the most rewarding for such studies.

    [fr] La diversité des organismes du sol et les différents processus écologiques ayant lié dans les diverses régions de montagne en Europe sont détaillés. Des études approfondies sur la taxonomie des organismes du sol ont été développées dans les Alpes et en Europe du Nord depuis la fin du siècle dernier, mais par contre il y a peu de données sur l'Europe du Sud. Dans l'avenir on pourrait re-étudier les sites bien connus de façon à savoir s'il y a eu de changements dans la faune et les microorganismes du sol. Il faudrait quantifier le rôle des processus abiotiques comme la cryoturbation, identifier les organismes indicateurs, les espèces-clé et les groupes fonctionnels. Il est aussi indispensable de développer les études sur la matière organique et en particulier les types d'humus, en tant que résultat des processus écologiques du sol. Les ecotones, dans lesquels l'influence de l’heterogeneité spatiale sur la biodiversité du sol est particulièrement prononcée, semblent les plus

  11. Response of a tundra ecosytem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1996-11-01

    The overall objective of this research was to document current patterns of CO{sub 2} flux in selected locations of the circumpolar arctic, and to develop the information necessary to predict how these fluxes may be affected by climate change. In fulfillment of these objectives, net CO{sub 2} flux was measured at several sites on the North Slope of Alaska during the 1990-94 growing season (June-August) to determine the local and regional patterns, of seasonal CO{sub 2} exchange. In addition, net CO{sub 2} flux was measured in the Russian and Icelandic Arctic to determine if the patterns of CO{sub 2} exchange observed in Arctic Alaska were representative of the circumpolar arctic, while cold-season CO{sub 2} flux measurements were carried out during the 1993-94 winter season to determine the magnitude of CO{sub 2} efflux not accounted for by the growing season measurements. Manipulations of soil water table depth and surface temperature, which were identified from the extensive measurements as being the most important variables in determining the magnitude and direction of net CO{sub 2} exchange, were carried out during the 1993-94 growing seasons in tussock and wet sedge tundra ecosystems. Finally, measurements of CH{sub 4} flux were also measured at several of the North Slope study sites during the 1990-91 growing seasons. Measurements were made on small (e.g. 0.5 m{sup 2}) plots using a portable gas-exchange system and cuvette. The sample design allowed frequent measurements of net CO{sub 2} exchange and respiration over diurnal and seasonal cycles, and a large spatial extent that incorporated both locally and regionally diverse tundra surface types. Measurements both within and between ecosystem types typically extended over soil water table depth and temperature gradients, allowing for the indirect analysis of the effects of anticipated climate change scenarios on net CO{sub 2} exchange. In situ experiments provided a direct means for testing hypotheses.

  12. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    Science.gov (United States)

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D. A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  13. Long-term mountain tundra composition's responses to grazing pressure in the context of environmental changes

    Science.gov (United States)

    Saccone, Patrick; Pyykkonen, Tuija; Eskelinen, Anu; Virtanen, Risto

    2013-04-01

    Strong changes in northern tundra in response to climate changes are expected and in particular an increasing shrubiness. However, global changes contain not only warming or shifts in snow-cover but also changes in land-use, e.g. for arctic low productive ecosystems changes in grazing pressure. Grazing could also represent an important driver of future Arctic tundra communities. However, the relative importance of biotic and abiotic drivers of plant communities' composition remains largely unknown, in particular because short-term experiments provided to conflicting evidences. Here, we present the results from a long-term (23 years) experiment set up in 1989 at Kilpisjärvi in the north-western Finnish Lapland. The experiment consisted in the transplantation of twenty 40x50 cm blocks of Vaccinium myrtillus heath including 5-10 cm thick soil layer from a 660 m.a.s.l. dry slope to a snowbed 150m higher in elevation containing dry and wet sites. We considered the transplantation at higher altitude in snowbed conditions an increase in harsher conditions (shorter growing season, lower productivity). Half of the transplanted blocks were protected from herbivores and the percentage cover of each plant species was estimated in mid-august 2012 from a central 12.5 x12.5 cm area in each block. Our results showed that the dominance of the shrub V. myrtillus was strongly reduced as response to transplantation to snowbed. Consequently the competitive pressure also decreased and allowed an increase of the species richness. Soil moisture differences between installation locations induced divergence in plant communities' composition allowing the increase in abundance of subordinate species as bryophytes and graminoids in wet and dry sites respectively. Excluding herbivory, some species assumed high dominance reducing the community diversity. In the wet exclosures, quarter of the surface was covered by a moss and V. myrtillus co-dominated. The strongest changes occurred in dry

  14. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-06-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500-700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  15. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  16. The Alaska Arctic Vegetation Archive (AVA-AK)

    NARCIS (Netherlands)

    Walker, Donald A.; Breen, Amy L.; Druckenmiller, Lisa A.; Wirth, Lisa W.; Fisher, Will; Raynolds, Martha K.; Šibík, Jozef; Walker, Marilyn D.; Hennekens, Stephan; Boggs, Keith; Boucher, Tina; Buchhorn, Marcel; Bültmann, Helga; Cooper, David J.; Daniëls, Fred J.A.; Davidson, Scott J.; Ebersole, James J.; Elmendorf, Sara C.; Epstein, Howard E.; Gould, William A.; Hollister, Robert D.; Iversen, Colleen M.; Jorgenson, M.T.; Kade, Anja; Lee, Michael T.; MacKenzie, William H.; Peet, Robert K.; Peirce, Jana L.; Schickhoff, Udo; Sloan, Victoria L.; Talbot, Stephen S.; Tweedie, Craig E.; Villarreal, Sandra; Webber, Patrick J.; Zona, Donatella

    2016-01-01

    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation dat

  17. Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic

    Directory of Open Access Journals (Sweden)

    N. Gentsch

    2015-02-01

    Full Text Available In permafrost soils, the temperature regime and the resulting cryogenic processes are decisive for the storage of organic carbon (OC and its small-scale spatial variability. For cryoturbated soils there is a lack in the assessment of pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM fractions such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels across the Siberian Arctic were sampled in five meter wide soil trenches in order to calculate OC and total nitrogen (TN stocks within the active layer and the upper permafrost based on digital profile mapping. Density fractionation of soil samples was performed to distinguish particulate OM (light fraction, LF, −3, mineral associated OM (heavy fraction, HF, >1.6 g cm−3, and a mobilizable dissolved pool (mobilizable fraction, MoF. Mineral-organic associations were characterized by selective extraction of pedogenic Fe and Al oxides and the clay composition was analyzed by X-ray diffraction. Organic matter transformation in bulk soil and density fractions was assessed by the stable carbon isotope ratio (δ13C and element contents (C and N. Across all investigated soil profiles, total OC stocks were calculated to 20.2 ± 8.0 kg m−2 (mean ± SD to 100 cm soil depth. Of this average, 54% of the OC was located in active layer horizons (annual summer thawing layer showing evidence of cryoturbation, and another 35% was present in the permafrost. The HF-OC dominated the overall OC stocks (55% followed by LF-OC (19% in mineral and 13% in organic horizons. During fractionation about 13% of the OC was released as MoF, which likely represents the most bioavailable OM pool. Cryogenic activity combined with an impaired biodegradation in topsoil horizons (O and A horizons were the principle mechanisms to sequester large OC stocks in the subsoil (16.4 ± 8.1 kg m−2; all mineral B, C, and permafrost horizons. About 22% of the subsoil

  18. Relating the Chemical Composition of Dissolved Organic Matter Draining Permafrost Soils to its Photochemical Degradation in Arctic Surface Waters.

    Science.gov (United States)

    Ward, C.; Cory, R. M.

    2015-12-01

    Thawing permafrost soils are expected to shift the chemical composition of DOM exported to and degraded in arctic surface waters. While DOM photo-degradation is an important component of the freshwater C cycle in the Arctic, the molecular controls on DOM photo-degradation remain poorly understood, making it difficult to predict how shifting chemical composition may alter DOM photo-degradation in arctic surface waters. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer to complete photo-oxidation to CO₂ and partial photo-oxidation to compounds that remain in the DOM pool, and investigated changes in DOM chemical composition following sunlight exposure. DOM leached from the organic mat contained higher molecular weight, more oxidized and unsaturated aromatic species compared to permafrost DOM. Despite significant differences in initial chemical composition, permafrost and organic mat DOM had similar susceptibilities to complete photo-oxidation to CO₂. Concurrent losses of carboxyl moieties and shifts in chemical composition during photo-degradation indicated that carboxyl-rich tannin-like compounds in both DOM sources were likely photo-decarboxylated to CO₂. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic compounds that act as "antioxidants" and slow the oxidation of DOM. These results demonstrated how chemical composition controls the photo-degradation of DOM in arctic surface waters, and that DOM photo-degradation will likely remain an important component of the freshwater C budget in the Arctic with increased export of permafrost DOM to surface waters.

  19. Demographic population structure and fungal associations of plants colonizing High Arctic glacier forelands, Petuniabukta, Svalbard

    Directory of Open Access Journals (Sweden)

    Jakub Těšitel

    2014-04-01

    Full Text Available The development of vegetation in Arctic glacier forelands has been described as unidirectional, non-replacement succession characterized by the gradual establishment of species typical for mature tundra with no species turnover. Our study focused on two early colonizers of High Arctic glacier forelands: Saxifraga oppositifolia (Saxifragaceae and Braya purpurascens (Brassicaceae. While the first species is a common generalist also found in mature old growth tundra communities, the second specializes on disturbed substrate. The demographic population structures of the two study species were investigated along four glacier forelands in Petuniabukta, north Billefjorden, in central Spitsbergen, Svalbard. Young plants of both species occurred exclusively on young substrate, implying that soil conditions are favourable for establishment only before soil crusts develop. We show that while S. oppositifolia persists from pioneer successional stages and is characterized by increased size and flowering, B. purpurascens specializes on disturbed young substrate and does not follow the typical unidirectional, non-replacement succession pattern. Plants at two of the forelands were examined for the presence of root-associated fungi. Fungal genus Olpidium (Fungus incertae sedis was found along a whole successional gradient in one of the forelands.

  20. Energy fluxes retrieval on an Alaskan Arctic and Sub-Arctic vegetation by means MODIS imagery and the DTD method

    Science.gov (United States)

    Cristobal, J.; Prakash, A.; Starkenburg, D. P.; Fochesatto, G. J.; Anderson, M. C.; Gens, R.; Kane, D. L.; Kustas, W.; Alfieri, J. G.

    2012-12-01

    Evapotranspiration (ET) plays a significant role in the hydrologic cycle of Arctic and Sub-Arctic basins. Surface-atmosphere exchanges due to ET are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, the bulk estimates don't accurately account for spatial and temporal variability due to vegetation type, topography, etc. (Kane and Yang, 2004). Nowadays, remote sensing is the only technology capable of providing the necessary radiometric measurements for the calculation of the ET at global scales and in a feasible economic way, especially in Arctic and Sub-Arctic Alaskan basins with a very sparse network of both meteorological and flux towers. In this work we present the implementation and validation of the Dual-Time-Difference model (Kustas et al., 2001) to retrieve energy fluxes (ET, sensible heat flux, net radiation and soil heat flux) in tundra vegetation in Arctic conditions and in a black spruce (Picea mariana) forest in Sub-Arctic conditions. In order to validate the model in tundra vegetation we used a flux tower from the Imnavait Creek sites of the Arctic Observatory Network (Euskirchen et al. 2012). In the case of the black spruce forest, on September 2011 we installed a flux tower in the University of Alaska Fairbanks north campus that includes an eddy-covariance system as well a net radiometer, air temperature probes, soil heat flux plates, soil moisture sensors and thermistors to fully estimate energy fluxes in the field (see http://www.et.alaska.edu/ for further details). Additionally, in order to upscale energy fluxes into MODIS spatial resolution, a scintillometer was also installed covering 1.2 km across the flux tower. DTD model mainly requires meteorological inputs as well as land surface temperature (LST) and leaf area index (LAI) data, both coming from satellite imagery, at two different times: after

  1. Spatial and Temporal Variation in Primary Productivity (NDVI) of Coastal Alaskan Tundra: Decreased Vegetation Growth Following Earlier Snowmelt

    Science.gov (United States)

    Gamon, John A.; Huemmrich, K. Fred; Stone, Robert S.; Tweedie, Craig E.

    2015-01-01

    In the Arctic, earlier snowmelt and longer growing seasons due to warming have been hypothesized to increase vegetation productivity. Using the Normalized Difference Vegetation Index (NDVI) from both field and satellite measurements as an indicator of vegetation phenology and productivity, we monitored spatial and temporal patterns of vegetation growth for a coastal wet sedge tundra site near Barrow, Alaska over three growing seasons (2000-2002). Contrary to expectation, earlier snowmelt did not lead to increased productivity. Instead, productivity was associated primarily with precipitation and soil moisture, and secondarily with growing degree days, which, during this period, led to reduced growth in years with earlier snowmelt. Additional moisture effects on productivity and species distribution, operating over a longer time scale, were evident in spatial NDVI patterns associated with microtopography. Lower, wetter regions dominated by graminoids were more productive than higher, drier locations having a higher percentage of lichens and mosses, despite the earlier snowmelt at the more elevated sites. These results call into question the oft-stated hypothesis that earlier arctic growing seasons will lead to greater vegetation productivity. Rather, they agree with an emerging body of evidence from recent field studies indicating that early-season, local environmental conditions, notably moisture and temperature, are primary factors determining arctic vegetation productivity. For this coastal arctic site, early growing season conditions are strongly influenced by microtopography, hydrology, and regional sea ice dynamics, and may not be easily predicted from snowmelt date or seasonal average air temperatures alone. Our comparison of field to satellite NDVI also highlights the value of in-situ monitoring of actual vegetation responses using field optical sampling to obtain detailed information on surface conditions not possible from satellite observations alone.

  2. Accumulation of carbon and nitrogen in vegetation and soils of deglaciated area in Ellesmere Island, high-Arctic Canada

    Science.gov (United States)

    Osono, Takashi; Mori, Akira S.; Uchida, Masaki; Kanda, Hiroshi

    2016-09-01

    The amount of biomass, carbon (C), and nitrogen (N) in vegetation and soil were measured at two spatial scales in the high Arctic. At the scale of proglacial landscape, the amount of C and N in aboveground and belowground parts of vegetation, surface litter, and soil were significantly affected by the habitat (moraines vs hummocks), the relative age of the terrain after the deglaciation, and/or the vegetation. At another scale, we focused on mudboils as an agent of local disturbance in the vegetation and soil of the glacier foreland. The biomass and the amount of C and N in aboveground vegetation, surface litter, biological soil crust, and soil were generally increased with the stage of mudboils' inactivation. Biomass, C, and N in aboveground vegetation and surface litter were generally greater at moraine than at hummock, whereas those in biological soil crust and soil were greater at hummock. Principal component analysis identified two pathways, xeric and mesic ones on moraines and hummocks, respectively, of C and N accumulation both at the two spatial scales. These results suggested that the C and N accumulation was not linearly related to the time since deglaciation and that moisture condition, vegetation, and mudboil activity were locally important.

  3. Anurans in a Subarctic Tundra Landscape Near Cape Churchill, Manitoba

    Science.gov (United States)

    Reiter, M.E.; Boal, C.W.; Andersen, D.E.

    2008-01-01

    Distribution, abundance, and habitat relationships of anurans inhabiting subarctic regions are poorly understood, and anuran monitoring protocols developed for temperate regions may not be applicable across large roadless areas of northern landscapes. In addition, arctic and subarctic regions of North America are predicted to experience changes in climate and, in some areas, are experiencing habitat alteration due to high rates of herbivory by breeding and migrating waterfowl. To better understand subarctic anuran abundance, distribution, and habitat associations, we conducted anuran calling surveys in the Cape Churchill region of Wapusk National Park, Manitoba, Canada, in 2004 and 2005. We conducted surveys along ~l-km transects distributed across three landscape types (coastal tundra, interior sedge meadow-tundra, and boreal forest-tundra interface) to estimate densities and probabilities of detection of Boreal Chorus Frogs (Pseudacris maculata) and Wood Frogs (Lithobates sylvaticus). We detected a Wood Frog or Boreal Chorus Frog on 22 (87%) of 26 transects surveyed, but probability of detection varied between years and species and among landscape types. Estimated densities of both species increased from the coastal zone inland toward the boreal forest edge. Our results suggest anurans occur across all three landscape types in our study area, but that species-specific spatial patterns exist in their abundances. Considerations for both spatial and temporal variation in abundance and detection probability need to be incorporated into surveys and monitoring programs for subarctic anurans.

  4. Isoprene emissions from a tundra ecosystem

    Directory of Open Access Journals (Sweden)

    M. J. Potosnak

    2012-10-01

    Full Text Available Whole-system fluxes of isoprene from a~moist acidic tundra ecosystem and leaf-level emission rates of isoprene from a common species (Salix pulchra in that same ecosystem were measured during three separate field campaigns. The field campaigns were conducted during the summers of 2005, 2010 and 2011 and took place at the Toolik Field Station (68.6° N, 149.6° W on the north slope of the Brooks Range in Alaska, USA. The maximum rate of whole-system isoprene flux measured was over 1.2 mg C m−2 h−1 with an air temperature of 22 ° C and a PAR level over 1500 μmol m−2 s−1. Leaf-level isoprene emission rates for S. pulchra averaged 12.4 nmol m−2 s−1 (27.4 μg C gdw−1 h−1 extrapolated to standard conditions (PAR = 1000 μmol m−2 s−1 and leaf temperature = 30° C. Leaf-level isoprene emission rates were well characterized by the Guenther algorithm for temperature, but less so for light. Chamber measurements from a nearby moist acidic tundra ecosystem with less S. pulchra emitted significant amounts of isoprene, but at lower rates (0.45 mg C m−2 h−1. Comparison of our results to predictions from a global model found broad agreement, but a detailed analysis revealed some significant discrepancies. An atmospheric chemistry box model predicts that the observed isoprene emissions have a significant impact on Arctic atmospheric chemistry, including the hydroxyl radical (OH. Our results support the prediction that isoprene emissions from Arctic ecosystems will increase with global climate change.

  5. Vertical electric sounding of selected Arctic and Antarctic soils: advances in express field investigation of the Cryosols

    Science.gov (United States)

    Abakumov, Evgeny

    2016-04-01

    Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This

  6. Pan-Arctic modelling of net ecosystem exchange of CO2.

    Science.gov (United States)

    Shaver, G R; Rastetter, E B; Salmon, V; Street, L E; van de Weg, M J; Rocha, A; van Wijk, M T; Williams, M

    2013-08-19

    Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.

  7. Source of and potential bio-indicator for the heavy metal pollution in Ny-(A)lesund, Arctic

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three kinds of tundra plant samples including Dicranum angnstum(a type of boreal bryophyte) , PuccineUia phryganodes (a type of fringy p/ant),Salix polaris (a type of vascular plant) and surface soil were samples in 200 at Ny-Alesund of the Arctic.The levels of eight heavy metal elements (Hg, Pb, Cd, Cu, Zn, Ni, Fe and Mn) and three metal-like dements (As, Se, Sr) in the plant and soil samples of the areas within previous coal mining activities are significantly higher than those of other areas.The relative accumulation of these elements in these tundra plant samples is consistent with the one in the soft samples, especially in the areas affected by previous coal-mining activities.Thus, the pollution is apparently from local coal mining activity.Dicranum angustum has the highest concentrations among those elements, and it can be a good bio-indicator for heavy metal pollution in Ny(A)lesund.Though Ny(A)lesund is less polluted by heavy metal than nearby Northern European human living areas, but much more than the tundras of the Alaska, Greenland and the Antarctic.

  8. RADARSAT-1 Background Mission Monitoring of the Arctic

    Science.gov (United States)

    2005-07-25

    coverage of the Arctic would result into valuable temporal records of a part of the world that is particularly sensitive to global climate change...used to define the boundary: The Arctic Circle, a climatic marker, or a vegetational marker. The Arctic Circle is simply the area of mid-night sun...boundary, delineated by the treeline , or the boundary between the Tundra and the (Boreal) forest alone is not appropriate as it is subject to

  9. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    Science.gov (United States)

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change.

  10. Dynamics of the recovery of damaged tundra vegetation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Amundsen, C.C.

    1976-01-01

    A study, begun in 1971, continues to document the environmental factors which affect the recovery of damaged tundra landscapes. A measurement technique was developed on Amchitka Island to allow the rapid acquisition of data on species presence and frequency across areas disturbed at various times and in various ways. Samples across all examples of aspect, slope steepness and exposure are taken. Studies now include Adak Island and the Point Barrow area. We have concluded that there was no directional secondary succession on the Aleutian tundra, although there was vigorous recovery on organic soils. Our study led to recommendations which resulted in less intensive reclamation management at a considerable financial saving and without further biological perturbation. Because of the increasing activity on tundra landscapes, for energy extraction, transportation or production, military or other reasons, we have expanded our sampling to other tundra areas where landscape disruption is occurring or is predicted.

  11. Carbon dioxide exchange in three tundra sites show a dissimilar response to environmental variables

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Lund, Magnus; Christensen, Torben Røjle

    2015-01-01

    variability. An improved understanding of the control of ancillary variables on net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Re) will improve the accuracy with which CO2 exchange seasonality in Arctic tundra ecosystems is modelled. Fluxes were measured with the eddy...... Lake. Growing season NEE correlated mainly to cumulative radiation and temperature-related variables at Zackenberg, while at Daring Lake the same variables showed significant correlations with the partitioned fluxes (GPP and Re). Stordalen was temperature dependent during the growing season. This study...... emphasizes the inherent need for a standardized year round measurement and analytical routine of CO2 fluxes and ancillary variables, and investigations into the interconnectedness of ancillary variables in the Arctic tundra....

  12. Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence

    Science.gov (United States)

    Luus, K. A.; Commane, R.; Parazoo, N. C.; Benmergui, J.; Euskirchen, E. S.; Frankenberg, C.; Joiner, J.; Lindaas, J.; Miller, C. E.; Oechel, W. C.; Zona, D.; Wofsy, S.; Lin, J. C.

    2017-02-01

    Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012-2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring "green-up" to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2. Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.

  13. A Two-dimensional Heat Transfer Model for Atmosphere-land System in the Lake-dominated Alaskan Arctic

    Institute of Scientific and Technical Information of China (English)

    LING Feng; ZHANG Ting-jun

    2002-01-01

    Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-dimensional, non-steady mathematical model is developed for studying the role of shallow tundra lakes in the Alaskan Arctic. Both the radiation absorption in lake water and the phasechange in permafrost are considerd in the model. The materials the model includes are snow, ice, water, unfrozen and frozen soil (peat, silt,sand and gravel). The basic inputs to the model observed mean daily air temperature and snow depth. The ability of this model to simulate lake ice growth and thickness variation, lake water temperature distribution, the thermal regime of permafrost and talik dynamics beneath lakes, and thawing rate of permafrost below and adjacent to shallow thaw lakes offers the potential to describe the effects of climate change in the Alaskan Arctic.

  14. Large increases in Arctic biogenic volatile emissions are a direct effect of warming

    Science.gov (United States)

    Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka

    2016-05-01

    Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.

  15. Metagenomics reveals pervasive bacterial populations and reduced community diversity across the Alaska tundra ecosystem

    Directory of Open Access Journals (Sweden)

    Eric Robert Johnston

    2016-04-01

    Full Text Available How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 grams are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth by sequencing, and the recovery of twenty-seven high-quality, almost complete (>80% completeness population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity. Collectively

  16. Plant and microbial uptake and allocation of organic and inorganic nitrogen related to plant growth forms and soil conditions at two subarctic tundra sites in Sweden

    DEFF Research Database (Denmark)

    Sørensen, Pernille Lærkedal; Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2008-01-01

    transported a high proportion of 15N to aboveground parts, whereas the dwarf shrubs allocated most 15N to underground storage. Enhanced 13C in Betula nana roots represents the first field evidence of uptake of intact glycine by this important circumpolar plant. Plant and microbial uptake of label...... was complementary as plants took up more inorganic than organic N, while microbes preferred organic N. Microbes initially took up a large part of the added label, but over the following four weeks microbial 15N decreased by 50% and most 15N was recovered in soil organic matter, while a smaller but slowly increasing...

  17. Changing Climate Sensitivity in Response to Forest-Tundra Snow Albedo Feedback during the mid to late Pliocene Cooling

    Science.gov (United States)

    Paiewonsky, P.

    2015-12-01

    The forest-tundra snow albedo feedback is an important feedback in Earth's climate system, especially due to its potential role in modulating glacial cycles. Until now, little research has been done on how the strength of this feedback might vary with the background climate state. Over the last 4 million years, I hypothesize that the feedback has been generally weaker under warm Northern Hemispheric conditions when tundra has been primarily confined to the high Arctic and forest has extended to most of the Arctic coastline than under cooler Northern Hemispheric conditions in which the forest-tundra boundary has generally lain to the south, extending across the interiors of the large continental land masses. To test the hypothesis of the weakened/strengthened feedback, I used an Earth System Model of Intermediate Complexity that consists of a dynamic terrestrial vegetation model coupled to a climate model. A set of time-slice experiments with different orbital and greenhouse gas concentrations were analyzed. In one set of experiments, the feedback gain with respect to annual average top-of-atmosphere net short wave radiation due to vegetation was 1.42 for modern conditions but only 1.14 for the mid-Pliocene. Additionally, we compared experiments with different shortwave-radiation parameterizations, which differed in the amount of shortwave energy flux reaching the surface (and subsequently affecting vegetative biomass). These techniques allowed us to isolate the mechanisms responsible for the varying strength of the forest-tundra snow albedo feedback. The results also show that many factors affect the strength of feedback. In this presentation I will concentrate on the availability of land for conversion of forest to tundra (and vice versa), cloud cover near the forest-tundra boundary, and the integrated surface insolation contrast between tundra and forest during the snow-covered season.

  18. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    Science.gov (United States)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  19. Arctic Shrub Growth Response to Climate Variation and Infrastructure Development on the North Slope of Alaska

    Science.gov (United States)

    Ackerman, D.; Finlay, J. C.; Griffin, D.

    2015-12-01

    Woody shrub growth in the arctic tundra is increasing on a circumpolar scale. Shrub expansion alters land-atmosphere carbon fluxes, nutrient cycling, and habitat structure. Despite these ecosystem effects, the drivers of shrub expansion have not been precisely established at the landscape scale. This project examined two proposed anthropogenic drivers: global climate change and local infrastructure development, a press disturbance that generates high levels of dust deposition. Effects of global change were studied using dendrochronology to establish a relationship between climate and annual growth in Betula and Salix shrubs growing in the Alaskan low Arctic. To understand the spatial heterogeneity of shrub expansion, this analysis was replicated in shrub populations across levels of landscape properties including soil moisture and substrate age. Effects of dust deposition on normalized difference vegetation index (NDVI) and photosynthetic rate were measured on transects up to 625 meters from the Dalton Highway. Dust deposition rates decreased exponentially with distance from road, matching previous models of road dust deposition. NDVI tracked deposition rates closely, but photosynthetic rates were not strongly affected by deposition. These results suggest that dust deposition may locally bias remote sensing measurements such as NDVI, without altering internal physiological processes such as photosynthesis in arctic shrubs. Distinguishing between the effects of landscape properties, climate, and disturbance will improve our predictions of the biogeochemical feedbacks of arctic shrub expansion, with potential application in climate change modeling.

  20. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N M

  1. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    Science.gov (United States)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  2. Alaska tundra vegetation trends and their links to the large-scale climate

    Science.gov (United States)

    Bieniek, P. A.; Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Comiso, J. C.

    2011-12-01

    The arctic Normalized Vegetation Index (NDVI) data set (a measure of vegetation photosynthetic capacity) has been used to document coherent temporal relationships between near-coastal sea ice, summer tundra land surface temperatures, and vegetation productivity throughout the Arctic (Bhatt et al. 2010). Land warming over North America has displayed larger trends (+30%) when compared to Eurasia (+16%) since 1982. In the tundra of northern Alaska the greatest change was found in absolute maximum NDVI along the Beaufort Sea coast (+14%). In contrast, tundra areas in southwest Alaska along the Bering Sea have seen a decline (-4%). Greenup date in these regions has been occurring as much as 1-4 days earlier per decade, but trends are mixed. Winter snow water equivalent (SWE) has only increased slightly (+0.1 mm/yr) in the Arctic region of Alaska since 1987 (R. Muskett, personal communication). These findings suggest that there have been changes in the seasonal climate in Alaska during the NDVI record. The tundra trends are further investigated by evaluating remotely sensed sea ice, surface air temperature, SWE, daily snow cover, and NDVI3g. While the snow data has a relatively short record (1999-2010), notable trends can be observed in snow melt, occurring as much 15 days earlier per decade in northern Alaska. Unfortunately, other snow data sets have been found to be problematic and could not be used to extend our analysis. This highlights the need for a long-term pan-arctic snow data set that is suitable for climate analysis. Possible climate drivers are also investigated. Results show that the summer tundra, in terms of NDVI and summer warmth index (SWI), has few direct links with the large-scale climate. However, the sea ice concentration along the coast of the tundra regions has strong preseason links to the large-scale climate. This suggests that the large-scale climate influences the sea ice concentration which then affects the NDVI and SWI. Three tundra regions

  3. Response of tundra ecosystems to elevated atmospheric carbon dioxide. [Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.; Grulke, N.E.

    1988-12-31

    Our past research shows that arctic tussock tundra responds to elevated atmospheric CO{sub 2} with marked increases in net ecosystem carbon flux and photosynthetic rates. However, at ambient temperatures and nutrient availabilities, homeostatic adjustments result in net ecosystem flux rates dropping to those found a contemporary CO{sub 2} levels within three years. Evidence for ecosystem-level acclimation in the first season of elevated CO{sub 2} exposure was found in 1987. Photosynthetic rates of Eriophorum vaginatum, the dominant species, adjusts to elevated CO{sub 2} within three weeks. Past research also indicates other changes potentially important to ecosystem structure and function. Elevated CO{sub 2} treatment apparently delays senescence and increases the period of positive photosynthetic activity. Recent results from the 1987 field season verify the results obtained in the 1983--1986 field seasons: Elevated CO{sub 2} resulted in increased ecosystem-level flux rates. Regressions fitted to the seasonal flux rates indicate an apparent 10 d extension of positive CO{sub 2} uptake reflecting a delay of the onset of plant dormancy. This delay in senescence could increase the frost sensitivity of the system. Major end points proposed for this research include the effects of elevated CO{sub 2} and the interaction of elevated atmospheric CO{sub 2} with elevated soil temperature and increased nutrient availability on: (1) Net ecosystem CO{sub 2} flux; (2) Net photosynthetic rates; (3) Patterns and resource controls on homeostatic adjustment in the above processes to elevated CO{sub 2}; (4) Plant-nutrient status, litter quality, and forage quality; (5) Soil-nutrient status; (6) Plant-growth pattern and shoot demography.

  4. Explicitly Synchronizing Soil Water and Carbon Nitrogen Reactive Transport Using CLM-PFLOTRAN: Does Sequential or Synchronized Implementing of Soil Processes Matter to Soil C Stocks?

    Science.gov (United States)

    Yuan, F.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Thornton, P. E.; Mills, R. T.; Wullschleger, S. D.

    2014-12-01

    In nature soil biophysical and biogeochemical processes are coupled spatially and temporally. However due to constrain of both understanding of complexity of process interactions and computing ability, it still remains a challenge to represent fully coupled system of soil hydrological-thermal dynamics and biogeochemical processes in land surface models (LSMs). In the Community Land Model (CLM), the land component of the Community Earth System Model (CESM), soil C-N processes are not only implemented sequentially but also asynchronously coupled to thermal and hydrological processes. PFLOTRAN is an open source, state-of-the-art massively parallel 3-D subsurface flow and reactive transport code. In this study, we extend the subsurface hydrological-thermal process coupling between CLM and PFLOTRAN to include explicitly synchronized soil biogeochemical processes. The resulting coupled CLM-PFLOTRAN model is a LSM capable of resolving 3-D soil hydrological-thermal-biogeochemical processes. The classic CLM-CN reaction networks, degassing-dissolving of C-N relevant greenhouse gases between soil solution and air, soil N absorption and transportation processes are implemented in PFLOTRAN's reactive-transport framework. We compare soil C stock estimates from CLM alone and coupled CLM-PFLOTRAN simulations at the Next Generation Ecosystem Experiment-Arctic field sites at the Barrow Environmental Observatory (BEO), AK. Both simulations are compared against available soil C dataset to assess importance of representing this synchronization in LSMs. Contributions of various factors to spatial variance of simulated variations from the two modeling approaches are evaluated across this polygonal coastal tundra landscape. Results indicate that two modeling approaches could produce very contrasting results, especially in the N-limit ecosystem. The developed CLM-PFLOTRAN framework will be used for regional evaluation of climate change caused ecosystem process responses and their feedbacks

  5. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    sheet, loss of multiannual sea-ice and significant advances in snowmelt days. The biotic components of the arctic ecosystem have also been affected by the rapid changes in climate, for instance resulting in the collapse of the collared lemming cycle, advances in spring flowering and changes in the intra...... is frozen solid for the main part of the year. However, in recent decades, arctic temperatures have in-creased between two and three times that of the global averages, which have had a substantial impact on the physical environment of the arctic ecosystem, such as deglaciation of the Greenland inland ice......The Arctic embraces one of the simplest terrestrial ecosystems in the world and yet it covers roughly 11% of the world’s surface. Summer temperatures rarely exceed 10°C and most of the limited precipitation falls as snow. The landmasses are predominantly polar tundra, while the Arctic Ocean...

  6. BRDF characteristics of tundra vegetation communities in Yamal, Western Siberia

    Science.gov (United States)

    Buchhorn, Marcel; Heim, Birgit; Walker, Donald A. Skip; Epstein, Howard; Leibman, Marina

    2013-04-01

    Satellite data from platforms with pointing capabilities (CHRIS/Proba, RapidEye) or from sensors with wide swath (AVHRR, MODIS, MERIS) is influenced by the bidirectional reflectance distribution function (BRDF). This effect can cause significant changes in the measured spectral surface reflectance depending on the solar illumination geometry and sensor viewing conditions. The Environmental Mapping and Analysis Program (EnMAP), a German hyperspectral mission with expected launch in 2016, will provide high spectral resolution observations with a ground sampling distance of 30 meters. Since the EnMAP sensor has pointing capabilities, both spectral and directional reflection characteristics need to be taken into account for the algorithms development for vegetation parameters. The 'hyperspectral method development for Arctic VEGetation biomes' (hy-Arc-VEG) project is part of the national preparation program for the EnMAP mission. Within the EnMAP projcect hy-Arc-VEG we developed a portable field spectro-goniometer, named ManTIS (Manual Transportable Instrument for Spherical BRDF observations), for the in-situ measurements of anisotropic effects of tundra surfaces (national and international patent pending - DE 102011117713.6). The goniometer was designed for field use in difficult as well as challenging terrain and climate. It is therefore of low weight, without electrical devices and weatherproof. It can be disassembled and packed into small boxes for transport. The current off-nadir viewing capacity is matched to the EnMAP sensor configuration (up to 30°). We carried out spectral field and goniometer measurements on the joint YAMAL 2011 expedition (RU-US-DE) organized by the Earth-Cryosphere Institute (ECI) in August 2011 on the Yamal Peninsula, northwestern Siberia, Russia. The field goniometer measurements (conducted under varying sun zenith angles) as well as field spectro-radiometrical measurements were carried out at the NASA Yamal Land Cover/Land Use Change

  7. Biogeophysical feedbacks enhance Arctic terrestrial carbon sink in regional Earth system dynamics

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2014-05-01

    Full Text Available Continued warming of the Arctic will likely accelerate terrestrial carbon (C cycling by increasing both uptake and release of C. There are still large uncertainties in modelling Arctic terrestrial ecosystems as a source or sink of C. Most modelling studies assessing or projecting the future fate of C exchange with the atmosphere are based an either stand-alone process-based models or coupled climate–C cycle general circulation models, in either case disregarding biogeophysical feedbacks of land surface changes to the atmosphere. To understand how biogeophysical feedbacks will impact on both climate and C budget over Arctic terrestrial ecosystems, we apply the regional Earth system model RCA-GUESS over the CORDEX-Arctic domain. The model is forced with lateral boundary conditions from an GCMs CMIP5 climate projection under the RCP 8.5 scenario. We perform two simulations with or without interactive vegetation dynamics respectively to assess the impacts of biogeophysical feedbacks. Both simulations indicate that Arctic terrestrial ecosystems will continue to sequester C with an increased uptake rate until 2060s–2070s, after which the C budget will return to a weak C sink as increased soil respiration and biomass burning outpaces increased net primary productivity. The additional C sinks arising from biogeophysical feedbacks are considerable, around 8.5 Gt C, accounting for 22% of the total C sinks, of which 83.5% are located in areas of Arctic tundra. Two opposing feedback mechanisms, mediated by albedo and evapotranspiration changes respectively, contribute to this response. Albedo feedback dominates over winter and spring season, amplifying the near-surface warming by up to 1.35 K in spring, while evapotranspiration feedback dominates over summer exerting the evaporative cooling by up to 0.81 K. Such feedbacks stimulate vegetation growth with an earlier onset of growing-season, leading to compositional changes in woody plants and vegetation

  8. Methane emissions from a high arctic valley: findings and challenges

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Ström, Lena

    2008-01-01

    Wet tundra ecosystems are well-known to be a significant source of atmospheric methane. With the predicted stronger effect of global climate change on arctic terrestrial ecosystems compared to lower-latitudes, there is a special obligation to study the natural diversity and the range of possible...... feedback effects on global climate that could arise from Arctic tundra ecosystems. One of the prime candidates for such a feedback mechanism is a potential change in the emissions of methane. Long-term datasets on methane emissions from high arctic sites are almost non-existing but badly needed...... for analyses of controls on interannual and seasonal variations in emissions. To help fill this gap we initiated a measurement program in a productive high arctic fen in the Zackenberg valley, NE Greenland. Methane flux measurements have been carried out at the same location since 1997. Compared...

  9. Stability and biodegradability of organic matter from Arctic soils of Western Siberia: Insights from 13C-NMR spectroscopy and elemental analysis

    Science.gov (United States)

    Ejarque, Elisabet; Abakumov, Evgeny

    2016-04-01

    Arctic soils contain large amounts of organic matter which, globally, exceed the amount of carbon stored in vegetation biomass and in the atmosphere. Recent studies emphasize the potential sensitivity for this soil organic matter (SOM) to be mineralised when faced with increasing ambient temperatures. In order to better refine the predictions about the response of SOM to climate warming, there is a need to increase the spatial coverage of empirical data on SOM quantity and quality in the Arctic area. This study provides, for the first time, a characterisation of SOM from the Gydan Peninsula in the Yamal Region, Western Siberia, Russia. On the one hand, soil humic acids and their humification state were characterised by measuring the elemental composition and diversity of functional groups using solid-state 13C-NMR spectroscopy. Also, the total mineralisable carbon was measured. Our results show that there is a predominance of aliphatic carbon structures, with a distribution of functional groups that has a minimal variation both regionally and within soil depth. Such vertical homogeneity and low level of aromaticity reflects the accumulation in soil of lowly decomposed organic matter due to cold temperatures. Mineralisation rates were found to be independent of SOM quality, and to be mainly explained solely by the total carbon content. Overall, our results provide further evidence on the sensitivity that the soils of Western Siberia may have to increasing ambient temperatures and highlight the important role that this region can play in the global carbon balance under the effects of climate warming.

  10. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    NARCIS (Netherlands)

    Bingxi Li,; Heijmans, M.M.P.D.; Berendse, F.; Blok, D.; Maximov, T.; Sass-Klaassen, U.G.W.

    2016-01-01

    It is widely believed that deciduous tundrashrub
    dominance is increasing in the pan-Arctic region,
    mainly due to rising temperature. We sampled dwarf birch
    (Betula nana L.) at a northeastern Siberian tundra site and
    used dendrochronological methods to explore the relationship
    bet

  11. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    Science.gov (United States)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  12. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    and the potential for widespread feedbacks with global consequences. In this thesis, I present and discuss the findings of an investigation of comparable drivers of the seasonality in carbon dioxide (CO2) fluxes across heterogeneous Arctic tundra ecosystems. Due to the remoteness and the harsh climatic conditions...

  13. Permafrost thawing in organic Arctic soils accelerated by ground heat production

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Moller, Anders Bjorn;

    2015-01-01

    Decomposition of organic carbon from thawing permafrost soils and the resulting release of carbon to the atmosphere are considered to represent a potentially critical global-scale feedback on climate change1, 2. The accompanying heat production from microbial metabolism of organic material has been...... recognized as a potential positive-feedback mechanism that would enhance permafrost thawing and the release of carbon3, 4. This internal heat production is poorly understood, however, and the strength of this effect remains unclear3. Here, we have quantified the variability of heat production in contrasting...... organic permafrost soils across Greenland and tested the hypothesis that these soils produce enough heat to reach a tipping point after which internal heat production can accelerate the decomposition processes. Results show that the impact of climate changes on natural organic soils can be accelerated...

  14. How Will the Tundra-Taiga Interface Respond to Climate Change?

    Energy Technology Data Exchange (ETDEWEB)

    Skre, Oddvar [Norwegian Forest Research Inst., Fana (Norway); Baxter, Bob [Univ. of Durham (United Kingdom). School of Biological and Biomedical Sciences; Crawford, Robert M.M. [Univ. of St. Andrews (United Kingdom); Callaghan, Terry V. [Univ. of Sheffield (United Kingdom). Sheffield Centre for Arctic Ecology; Fedorkov, Aleksey [Russian Academy of Sciences, Syktyvkar (Russian Federation). Inst. of Biology

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  15. How will the tundra-taiga interface respond to climate change?

    Science.gov (United States)

    Skre, Oddvar; Baxter, Robert; Crawford, Robert M M; Callaghan, Terry V; Fedorkov, Alexey

    2002-08-01

    The intuitive and logical answer to the question of how the tundra-taiga interface will react to global warming is that it should move north and this is mirrored by many models of potential treeline migration. Northward movement may be the eventual outcome if climatic warming persists over centuries or millennia. However, closer examination of the tundra-taiga interface across its circumpolar extent reveals a more complex situation. The regional climatic history of the tundra-taiga interface is highly varied, and consequently it is to be expected that the forest tundra boundary zone will respond differently to climate change depending on local variations in climate, evolutionary history, soil development, and hydrology. Investigations reveal considerable stability at present in the position of the treeline and while there may be a long-term advance northwards there are oceanic regions where climatic warming may result in a retreat southwards due to increased bog development. Reinforcing this trend is an increasing human impact, particularly in the forest tundra of Russia, which forces the limit of the forested areas southwards. Local variations will therefore require continued observation and research, as they will be of considerable importance economically as well as for ecology and conservation.

  16. Remediation of hydrocarbon contaminated soils in the Canadian Arctic with land farms

    Energy Technology Data Exchange (ETDEWEB)

    Paudyn, K.; Poland, J.S.; Rutter, A.; Rowe, R.K. [Queen' s Univ., Kingston, ON (Canada)

    2005-07-01

    Land farming is a process where petroleum contaminated soils are spread out in a layer 0.3-0.5 cm thick. Nutrients are added and the soils are mixed periodically, as both oxygen and water are necessary for aerobic petroleum hydrocarbon degradation. This paper discusses a trial land farm established at Resolution Island, Nunavut. Three truckloads of contaminated soil were excavated from 2 areas and displaced to a previously leveled area. Heavy equipment was used to homogenize the soil and evenly distribute material to each of four test plots, measuring 5 by 5 metres with a depth of 0.3 metres. Rock material was removed manually throughout the lifetime of the farm. Each plot was subjected to a different regime: a control plot with no action except soil collection; daily rototilling; rototilling every 4 days; and rototilling every 4 days with the addition of fertilizer. Plots were re-sampled after 16, 32, 17, 349, and 369 days. Nitrogen and phosphorus were added to the plot in the form of granular agricultural fertilizers. Results in all 4 plots showed a dramatic decrease in contaminant levels with time, possibly because disturbance of the soil in the creation of the land farm created conditions that promoted loss. Levels were calculated using chromatograms of extracted soil samples. For the 3 plots with no fertilizer, levels indicated that no measurable bioremediation was taking place. The addition of fertilizer is low maintenance and economical. However, the fertilized plot was also rototilled, so it is not yet known how important soil aeration is in assisting bioremediation. Laboratory experiments and the construction of a large scale land farm in 2004 should lead to the development of an optimal land farm operation protocol. 4 refs., 2 figs.

  17. Remediation of PCB contaminated soils in the Canadian Arctic: excavation and surface PRB technology.

    Science.gov (United States)

    Kalinovich, Indra; Rutter, Allison; Poland, John S; Cairns, Graham; Rowe, R Kerry

    2008-12-15

    The site BAF-5 is located on the summit of Resolution Island, Nunavut, just southeast of Baffin Island at 61 degrees 35'N and 60 degrees 40'W. The site was part of a North American military defense system established in the 1950s that became heavily contaminated with PCBs during and subsequent, its operational years. Remediation through excavation of the PCB contaminated soil at Resolution Island began in 1999 and at its completion in 2006 approximately 5 tonnes of pure PCBs in approximately 20,000 m3 of soil were remediated. Remediation strategies were based on both quantity of soil and level of contamination in the soil. Excavation removed 96% of the PCB contaminated soil on site. In 2003, a surface funnel-and-gate permeable reactive barrier was design and constructed to treat the remaining contamination left in rock crevices and inaccessible areas of the site. Excavation had destabilized contaminated soil in the area, enabling contaminant migration through erosion and runoff pathways. The barrier was designed to maximize sedimentation through settling ponds. This bulk removal enabled the treatment of highly contaminated fines and water through a permeable gate. The increased sediment loading during excavation required both modifications to the funnel and a shift to a more permeable, granular system. Granulated activated charcoal was chosen for its ability to both act as a particle retention filter and adsorptive filter. The reduction in mass of PCB and volume of soils trapped by the funnel of the barrier indicate that soils are re-stabilizing. In 2007, nonwoven geotextiles were re-introduced back into the filtration system as fine filtering could be achieved without clogging. Monitoring sites downstream indicate that the barrier system is effective. This paper describes the field progress of PCB remediation at Resolution Island.

  18. Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils

    Directory of Open Access Journals (Sweden)

    Largus T. Angenent

    2013-09-01

    Full Text Available Dissimilatory metal-reducing bacteria are ubiquitous in soils worldwide, possess the ability to transfer electrons outside of their cell membranes, and are capable of respiring with various metal oxides. Reduction of iron oxides is one of the more energetically favorable forms of anaerobic respiration, with a higher energy yield than both sulfate reduction and methanogenesis. As such, this process has significant implications for soil carbon balances, especially in the saturated, carbon-rich soils of the northern latitudes. However, the dynamics of these microbial processes within the context of the greater soil microbiome remain largely unstudied. Previously, we have demonstrated the capability of potentiostatically poised electrodes to mimic the redox potential of iron(III- and humic acid-compounds and obtain a measure of metal-reducing respiration. Here, we extend this work by utilizing poised electrodes to provide an inexaustable electron acceptor for iron- and humic acid-reducing microbes, and by measuring the effects on both microbial community structure and greenhouse gas emissions. The application of both nonpoised and poised graphite electrodes in peat soils stimulated methane emissions by 15%–43% compared to soils without electrodes. Poised electrodes resulted in higher (13%–24% methane emissions than the nonpoised electrodes. The stimulation of methane emissions for both nonpoised and poised electrodes correlated with the enrichment of proteobacteria, verrucomicrobia, and bacteroidetes. Here, we demonstrate a tool for precisely manipulating localized redox conditions in situ (via poised electrodes and for connecting microbial community dynamics with larger ecosystem processes. This work provides a foundation for further studies examining the role of dissimilatory metal-reducing bacteria in global biogeochemical cycles.

  19. Arctic River organic matter transport

    Science.gov (United States)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  20. Koyukuk NWR tundra/trumpeter swan survey

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A tundra/trumpeter swan survey was conducted on the Koyukuk National Wildlife Refuge from 14 August to 23 August 1984. Twenty-four six mile square plots were...

  1. International Tundra Experiment ITEX Manual Second Edition

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Nonforest plots of Long Term Ecological Monitoring sites follow protocols developed for the International Tundra Experiment Walker et al. 1993, Walker 1996.

  2. Dynamics of the Exchange of Carbon Dioxide in Arctic and Subarctic Regions,

    Science.gov (United States)

    1973-01-01

    R . Stross, D. Bierle , R . Dillon, M. Miller, P. Coyne and J. Kelley. 1972. Carbon Flux Through a Tundra Pond Ecosystem at Barrow, Alaska. U.S. Tundra...University of Washington, were encouraged by R . Adm. 3 Charles Thomas (now deceased) and Professors P. E. Church and N. Unterleiner. Continued advice and...vessel R /V Acona. Particular acknowledgment is given to the Naval Arctic Research Laboratory, Barrow, Alaska, whose director and staff have gen- erously

  3. Cold season soil respiration in response to grazing and warming in the High Arctic Svalbard

    DEFF Research Database (Denmark)

    Strebel, Ditte; Elberling, Bo; Morgner, Elke;

    2010-01-01

    ) and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Results reveal variations in soil carbon cycling, with significant seasonal trends controlled by temperature, water content and snow. Experimental warming (OTCs) increased near-surface temperatures in the growing season, resulting......The influence of goose grazing intensity and open-topped chambers (OTCs) on near-surface quantities and qualities of soil organic carbon (SOC) was evaluated in wet and mesic ecosystems in Svalbard. This study followed up a field experiment carried out in 2003-05 (part of the project Fragility...

  4. Effects of large herbivores on biodiversity of vegetation and soil microarthropods in low Arctic Greenland

    DEFF Research Database (Denmark)

    Aastrup, Peter; Raundrup, Katrine; Feilberg, Jon;

    This report summarizes the results of a project that aims at documenting long term effects of grazing by comparing baseline data inside and outside exclosures. We collected data on vascular plants, mosses, lichens, microarthropod abundance and food-web structure, soil nutrients, decomposition......, and soil temperature. Data provide a significant basis for understanding the interaction between large herbivores and vegetation in Greenland. The report contains documentation of data collected in 2009 and 2012 as well as documentation of data from 1984-2004 made available by Jon Feilberg....

  5. Interference in the tundra predator guild studied using local ecological knowledge.

    Science.gov (United States)

    Ehrich, Dorothee; Strømeng, Marita A; Killengreen, Siw T

    2016-04-01

    The decline or recolonization of apex predators such as wolves and lynx, often driven by management decisions, and the expansion of smaller generalist predators such as red foxes, can have important ecosystem impacts. The mesopredator release hypothesis proposes that apex predators control medium-sized predator populations through competition and/or intraguild predation. The decline of apex predators thus leads to an increase in mesopredators, possibly with a negative impact on prey populations. Information about the abundance of mammalian tundra predators, wolf (Canis lupus), wolverine (Gulo gulo), lynx (Lynx lynx), red fox (Vulpes vulpes) and arctic fox (Vulpes lagopus) was collected from local active outdoors people during semi-structured interviews in 14 low arctic or sub-arctic settlements in western Eurasia. The perceived abundance of red fox decreased with higher wolf abundance and in more arctic areas, but the negative effect of wolves decreased in more arctic and therefore less productive ecosystems. The perceived abundance of arctic fox increased towards the arctic and in areas with colder winters. Although there was a negative correlation between the two fox species, red fox was not included in the model for perceived arctic fox abundance, which received most support. Our results support the mesopredator release hypothesis regarding the expansion of red foxes in subarctic areas and indicate that top-down control by apex predators is weaker in less productive and more arctic ecosystems. We showed that local ecological knowledge is a valuable source of information about large-scale processes, which are difficult to study through direct biological investigations.

  6. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics.

    Science.gov (United States)

    Perron, Gabriel G; Whyte, Lyle; Turnbaugh, Peter J; Goordial, Jacqueline; Hanage, William P; Dantas, Gautam; Desai, Michael M

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes.

  7.  Winter time burst of CO2 from the High Arctic soils of Svalbard

    DEFF Research Database (Denmark)

    Friborg, Thomas; Hansen, Birger; Elberling, Bo;

    of relatively few measurements which appear to give small and constant emission rates. Further, most studies of the processes behind winter time emission of CO2 conclude that the flux during this time of year can be linked to the respiratory release of CO2 from soil micro organisms, which is temperature...

  8. Arctic and boreal ecosystems of western North America as components of the climate system

    Science.gov (United States)

    Chapin, F. S.; McGuire, A.D.; Randerson, J.; Pielke, R.; Baldocchi, D.; Hobbie, S.E.; Roulet, Nigel; Eugster, W.; Kasischke, E.; Rastetter, E.B.; Zimov, S.A.; Running, S.W.

    2000-01-01

    Synthesis of results from several Arctic and boreal research programmes provides evidence for the strong role of high-latitude ecosystems in the climate system. Average surface air temperature has increased 0.3??C per decade during the twentieth century in the western North American Arctic and boreal forest zones. Precipitation has also increased, but changes in soil moisture are uncertain. Disturbance rates have increased in the boreal forest; for example, there has been a doubling of the area burned in North America in the past 20 years. The disturbance regime in tundra may not have changed. Tundra has a 3-6-fold higher winter albedo than boreal forest, but summer albedo and energy partitioning differ more strongly among ecosystems within either tundra or boreal forest than between these two biomes. This indicates a need to improve our understanding of vegetation dynamics within, as well as between, biomes. If regional surface warming were to continue, changes in albedo and energy absorption would likely act as a positive feedback to regional warming due to earlier melting of snow and, over the long term, the northward movement of treeline. Surface drying and a change in dominance from mosses to vascular plants would also enhance sensible heat flux and regional warming in tundra. In the boreal forest of western North America, deciduous forests have twice the albedo of conifer forests in both winter and summer, 50-80% higher evapotranspiration, and therefore only 30-50% of the sensible heat flux of conifers in summer. Therefore, a warming-induced increase in fire frequency that increased the proportion of deciduous forests in the landscape, would act as a negative feedback to regional warming. Changes in thermokarst and the aerial extent of wetlands, lakes, and ponds would alter high-latitude methane flux. There is currently a wide discrepancy among estimates of the size and direction of CO2 flux between high-latitude ecosystems and the atmosphere. These

  9. Seasonal variability of leaf area index and foliar nitrogen in contrasting dry-mesic tundras

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Lemeur, Raoul;

    2009-01-01

    Assimilation and exchange of carbon for arctic ecosystems depend strongly on leaf area index (LAI) and total foliar nitrogen (TFN). For dry-mesic tundras, the seasonality of these characteristics is unexplored. We addressed this knowledge gap by measuring variations of LAI and TFN at five...... contrasting subarctic heaths during the growing season 2007, from about 2 weeks after bud burst until about 2 weeks before senescence. The communities generally showed an early season LAI and TFN increase, owing to leaf development of deciduous shrubs, and limited variations later on, owing to concurrent leaf...

  10. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund;

    2010-01-01

    the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra......• Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...

  11. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  12. Greening of the Arctic: Partitioning Warming Versus Reindeer Herbivory for Willow Populations on Yamal Peninsula, Northwest Siberia

    Science.gov (United States)

    Forbes, B. C.; Macias-Fauria, M.; Zetterberg, P.; Kumpula, T.

    2012-12-01

    Arctic warming has been linked to observed increases in tundra shrub cover and growth in recent decades on the basis of significant relationships between deciduous shrub growth/biomass and temperature. These vegetation trends have been linked to Arctic sea-ice decline and thus to the sea-ice/albedo feedback known as Arctic amplification. However, the interactions between climate, sea ice, tundra vegetation and herbivores remain poorly understood. Recently we revealed a 50-year growth response over a >100,000 km2 area to a rise in summer temperature for willow (Salix lanata), one the most abundant shrub genera at and north of the continental treeline and an important source of reindeer forage in spring, summer and autumn. We demonstrated that whereas plant productivity is related to sea ice in late spring, the growing season peak responds to persistent synoptic-scale air masses over West Siberia associated with Fennoscandian weather systems through the Rossby wave train. Substrate was important for biomass accumulation, yet a strong correlation between growth and temperature encompasses all observed soil types. Vegetation was especially responsive to temperature in early summer. However, the role of herbivory was not addressed. The present data set explores the relationship between long-term herbivory and growth trends of shrubs experiencing warming in recent decades. Semi-domestic reindeer managed by indigenous Nenets nomads occur at high densities in summer on exposed ridge tops and graze heavily on prostrate and low erect willows. A few meters away in moderately sloped landslides tall willows remain virtually ungrazed as their canopies have grown above the browse line of ca. 180 cm. Here we detail the responses of neighboring shrub populations with and without intensive herbivory yet subject to the same decadal warming trend.

  13. Ecosystem nitrogen fixation throughout the snow-free period in subarctic tundra: effects of willow and birch litter addition and warming.

    Science.gov (United States)

    Rousk, Kathrin; Michelsen, Anders

    2017-04-01

    Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N2 fixation. We therefore aimed to estimate moss-associated N2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha(-1) ) and birch litter addition plots (2.8 ± 0.2 kg N ha(-1) ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha(-1) ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha(-1) ). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits.

  14. N2O and N2 emissions from contrasting soil environments - interactive effects of soil nitrogen, hydrology and microbial communities

    Science.gov (United States)

    Christiansen, Jesper; Elberling, Bo; Ribbons, Relena; Hedo, Javier; José Fernández Alonso, Maria; Krych, Lukasz; Sandris Nielsen, Dennis; Kitzler, Barbara

    2016-04-01

    Reactive nitrogen (N) in the environment has doubled relative to the natural global N cycle with consequences for biogeochemical cycling of soil N. Also, climate change is expected to alter precipitation patterns and increase soil temperatures which in Arctic environments may accelerate permafrost thawing. The combination of changes in the soil N cycle and hydrological regimes may alter microbial transformations of soil N with unknown impacts on N2O and N2 emissions from temperate and Arctic soils. We present the first results of soil N2O and N2 emissions, chemistry and microbial communities over soil hydrological gradients (upslope, intermediate and wet) across a global N deposition gradient. The global gradient covered an N-limited high Arctic tundra (Zackenberg-ZA), a pacific temperate rain forest (Vancouver Island-VI) and an N saturated forest in Austria (Klausenleopoldsdorf-KL). The N2O and N2 emissions were measured from intact cores at field moisture in a He-atmosphere system. Extractable NH4+ and NO3-, organic and microbial C and N and potential enzyme-activities were determined on soil samples. Soil genomic DNA was subjected to MiSeq-based tag-encoded 16S rRNA and ITS gene amplicon sequencing for the bacterial and fungal community structure. Similar soil moisture levels were observed for the upslope, intermediate and wet locations at ZA, VI and KL, respectively. Extractable NO3- was highest at the N rich KL and lowest at ZA and showed no trend with soil moisture similar to NH4+. At ZA and VI soil NH4+ was higher than NO3- indicating a tighter N cycling. N2O emissions increased with soil moisture at all sites. The N2O emissions for the wet locations ranked similarly to NO3- with the largest response to soil moisture at KL. N2 emissions were remarkably similar across the sites and increased with soil wetness. Microbial C and N also increased with soil moisture and were overall lowest at the N rich KL site. The potential activity of protease enzyme was site

  15. Landscape- and decadal-scale changes in the composition and structure of plant communities in the northern foothills of the Brooks Range of Arctic Alaska

    Science.gov (United States)

    Mercado-Díaz, J. A.; Gould, W. A.

    2010-12-01

    Scientists have predicted an increase in vascular plant cover in some tundra ecosystems as a result of global climate change. In Arctic Alaska, observational studies have documented increases in shrub cover for some regions; however, only a few studies have provided detailed quantitative evidence supporting the existence such changes. To address these shortcomings, we analyzed plant community data from 156 1m2 vegetation plots located at two 1km2 grids in Toolik Lake, Alaska. This data covered the time period from 1989-2008. After 18 years, we found that the relative abundance of vascular vegetation have increased by 16%, while the relative abundance of nonvascular vegetation decreased by 19%. Mean plant canopy height has experienced an increase from 4.4 cm in 1990 to 6.5 cm in 2008 and the extent and complexity of the canopy have increased over time from about 60% to 80%. Species diversity was also significantly reduced. While major vegetation changes in other tundra regions have been attributed to gradual increases in surface air temperature, changes documented in this study were apparently promoted by increasing soil moisture conditions that resulted from increased summer rainfall in our region. These results support the idea that tundra ecosystems in this region of the Alaskan Arctic are experiencing significant increases in aboveground standing crop and a shift in carbon allocation to vascular plants vs. bryophytes. These changes will likely affect important ecosystem processes like snow re-deposition, winter biological activities, nutrient cycling and could ultimately result in significant feedbacks to climate.

  16. Soil Response to Aeolian Disturbance in West Greenland

    Science.gov (United States)

    Heindel, R. C.; Culler, L. E.; Chipman, J. W.; Virginia, R. A.

    2015-12-01

    Arctic soils are a critical ecological resource, yet are increasingly vulnerable to global change. In the Kangerlussuaq region of West Greenland, aeolian disturbance is the greatest threat to soil stability, with strong katabatic winds eroding vegetation and soil down to the underlying glacial till or bedrock. Little is known about what controls the distribution and rate of the aeolian erosion, which initially results in a state change from tundra to a deflated and nearly unvegetated ground. It is unclear if vegetation can eventually reestablish after erosion occurs, potentially aided by the biological soil crust (BSC) that develops within the eroded areas, or if this soil loss is an irreversible change in vegetation and soil carbon (C) and nitrogen (N) cycling. Our analysis of high-resolution satellite imagery shows that across the entire study region, deflated ground covers 22% of the terrestrial landscape. Aeolian erosion occurs more frequently closer to the Greenland Ice Sheet and on S-facing slopes. Using lichenometry, we estimate that erosional fronts move across the landscape at rates of 2.5 cm yr-1, leaving unproductive ground in their wake. The onset of widespread aeolian erosion occurred roughly 700-1000 years ago, pointing toward regional cooling and aridity as the drivers behind erosion. Finally, we consider whether the BSCs can improve soil quality enough to allow for full vegetation regrowth. Preliminary results show that while the BSCs fix atmospheric N and increase C storage, the rate of soil quality recovery is extremely slow. Understanding the thresholds between vegetated tundra and eroded ground is critical for predicting how the Kangerlussuaq landscape will respond to anticipated changes in climate and ice sheet dynamics.

  17. Microarray and real-time PCR analyses of the responses of high-arctic soil bacteria to hydrocarbon pollution and bioremediation treatments.

    Science.gov (United States)

    Yergeau, Etienne; Arbour, Mélanie; Brousseau, Roland; Juck, David; Lawrence, John R; Masson, Luke; Whyte, Lyle G; Greer, Charles W

    2009-10-01

    High-Arctic soils have low nutrient availability, low moisture content, and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at the Canadian high-Arctic stations of Alert (ex situ approach) and Eureka (in situ approach). Bacterial community structure and function were assessed using microarrays targeting the 16S rRNA genes of bacteria found in cold environments and hydrocarbon degradation genes as well as quantitative reverse transcriptase PCR targeting key functional genes. The results indicated a large difference between sampling sites in terms of both soil microbiology and decontamination rates. A rapid reorganization of the bacterial community structure and functional potential as well as rapid increases in the expression of alkane monooxygenases and polyaromatic hydrocarbon-ring-hydroxylating dioxygenases were observed 1 month after the bioremediation treatment commenced in the Alert soils. In contrast, no clear changes in community structure were observed in Eureka soils, while key gene expression increased after a relatively long lag period (1 year). Such discrepancies are likely caused by differences in bioremediation treatments (i.e., ex situ versus in situ), weathering of the hydrocarbons, indigenous microbial communities, and environmental factors such as soil humidity and temperature. In addition, this study demonstrates the value of molecular tools for the monitoring of polar bacteria and their associated functions during bioremediation.

  18. Modelling high arctic percent vegetation cover using field digital images and high resolution satellite data

    Science.gov (United States)

    Liu, Nanfeng; Treitz, Paul

    2016-10-01

    In this study, digital images collected at a study site in the Canadian High Arctic were processed and classified to examine the spatial-temporal patterns of percent vegetation cover (PVC). To obtain the PVC of different plant functional groups (i.e., forbs, graminoids/sedges and mosses), field near infrared-green-blue (NGB) digital images were classified using an object-based image analysis (OBIA) approach. The PVC analyses comparing different vegetation types confirmed: (i) the polar semi-desert exhibited the lowest PVC with a large proportion of bare soil/rock cover; (ii) the mesic tundra cover consisted of approximately 60% mosses; and (iii) the wet sedge consisted almost exclusively of graminoids and sedges. As expected, the PVC and green normalized difference vegetation index (GNDVI; (RNIR - RGreen)/(RNIR + RGreen)), derived from field NGB digital images, increased during the summer growing season for each vegetation type: i.e., ∼5% (0.01) for polar semi-desert; ∼10% (0.04) for mesic tundra; and ∼12% (0.03) for wet sedge respectively. PVC derived from field images was found to be strongly correlated with WorldView-2 derived normalized difference spectral indices (NDSI; (Rx - Ry)/(Rx + Ry)), where Rx is the reflectance of the red edge (724.1 nm) or near infrared (832.9 nm and 949.3 nm) bands; Ry is the reflectance of the yellow (607.7 nm) or red (658.8 nm) bands with R2's ranging from 0.74 to 0.81. NDSIs that incorporated the yellow band (607.7 nm) performed slightly better than the NDSIs without, indicating that this band may be more useful for investigating Arctic vegetation that often includes large proportions of senescent vegetation throughout the growing season.

  19. Temperature Effects on Microbial CH4 and CO2 Production in Permafrost-Affected Soils From the Barrow Environmental Observatory

    Science.gov (United States)

    Graham, D. E.; Roy Chowdhury, T.; Zheng, J.; Moon, J. W.; Yang, Z.; Gu, B.; Wullschleger, S. D.

    2015-12-01

    Warmer Arctic temperatures are increasing the annual soil thaw depth and prolonging the thaw season in Alaskan permafrost zones. This change exposes organic matter buried in the soils and permafrost to microbial degradation and mineralization to form CO2 and CH4. The proportion and fluxes of these greenhouse gases released into the atmosphere control the global feedback on warming. To improve representations of these biogeochemical processes in terrestrial ecosystem models we compared soil properties and microbial activities in core samples of polygonal tundra from the Barrow Environmental Observatory. Measurements of soil water potential through the soil column characterized water binding to the organic and mineral components. This suction combines with temperature to control freezing, gas diffusion and microbial activity. The temperature-dependence of CO2 and CH4 production from anoxic soil incubations at -2, +4 or +8 °C identified a significant lag in methanogenesis relative to CO2 production by anaerobic respiration and fermentation. Changes in the abundance of methanogen signature genes during incubations indicate that microbial population shifts caused by thawing and warmer temperatures drive changes in the mixtures of soil carbon degradation products. Comparisons of samples collected across the microtopographic features of ice-wedge polygons address the impacts of water saturation, iron reduction and organic matter content on CH4 production and oxidation. These combined measurements build process understanding that can be applied across scales to constrain key response factors in models that address Arctic soil warming.

  20. Holocene Carbon Accumulation and Soil Properties in Northern Peatlands: A Circum-Arctic Synthesis (Invited)

    Science.gov (United States)

    Loisel, J.; Beilman, D.; Yu, Z.; Camill, P.

    2013-12-01

    Of all terrestrial ecosystems, peatlands are arguably the most efficient at sequestering carbon (C) over long time scales. However, ongoing and projected climate change could shift the balance between peat production and organic matter decomposition, potentially impacting the peatland C-sink capacity and modifying peat-C fluxes to the atmosphere. Yet, the sign and magnitude of the peatland carbon-climate feedback remain uncertain and difficult to assess because of (1) limited understanding of peatland responses to climate change, (2) data gaps and large uncertainties in regional peatland C stocks, and (3) non-linear peatland responses to external forcing. Here we present results from a comprehensive compilation of peat soil properties and Holocene C data for northern peatlands. Our compiled database consists of >250 peat cores from > 200 sites located north of 45N. This synthesis is novel in that our C accumulation estimates are based on directly measured bulk density and C content values. It also encompasses regions within which peat-C data have only recently become available, such as the West Siberia Lowlands, Hudson Bay Lowlands and Kamchatka. Our averaged bulk density value of 0.13 g cm-3 (n = 17,319) is about 16% higher than Gorham's (1991, Ecol. Appl.) widely used estimate of 0.112 g cm-3 for northern peatlands, and 30% larger than the generic value of 0.10 g cm-3 used in recent synthesis (Yu et al. 2009, AGU Monograph 184). When combined with our mean C content value of 48% (n = 2431), these differences in bulk density have important implications for estimating the total C stocks in northern peatlands. Soil organic carbon density (SOC) ranged from 12 to 334 kg C m-2, with a mean value of 102 kg C m-2. A regression model revealed a significant, positive correlation between peat depths and SOC (R2 = 0.675, p < 0.0001), such that higher SOC densities characterized deeper sites. Comparing these values with those published in soil-C surveys that only account for

  1. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time.

    Science.gov (United States)

    Elmendorf, Sarah C; Henry, Gregory H R; Hollister, Robert D; Björk, Robert G; Bjorkman, Anne D; Callaghan, Terry V; Collier, Laura Siegwart; Cooper, Elisabeth J; Cornelissen, Johannes H C; Day, Thomas A; Fosaa, Anna Maria; Gould, William A; Grétarsdóttir, Járngerður; Harte, John; Hermanutz, Luise; Hik, David S; Hofgaard, Annika; Jarrad, Frith; Jónsdóttir, Ingibjörg Svala; Keuper, Frida; Klanderud, Kari; Klein, Julia A; Koh, Saewan; Kudo, Gaku; Lang, Simone I; Loewen, Val; May, Jeremy L; Mercado, Joel; Michelsen, Anders; Molau, Ulf; Myers-Smith, Isla H; Oberbauer, Steven F; Pieper, Sara; Post, Eric; Rixen, Christian; Robinson, Clare H; Schmidt, Niels Martin; Shaver, Gaius R; Stenström, Anna; Tolvanen, Anne; Totland, Orjan; Troxler, Tiffany; Wahren, Carl-Henrik; Webber, Patrick J; Welker, Jeffery M; Wookey, Philip A

    2012-02-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.

  2. Prevalence, transmission, and genetic diversity of blood parasites infecting tundra-nesting geese in Alaska

    Science.gov (United States)

    Ramey, Andy M.; Reed, John A.; Schmutz, Joel A.; Fondell, Tom F.; Meixell, Brandt W.; Hupp, Jerry W.; Ward, David H.; Terenzi, John; Ely, Craig R.

    2014-01-01

    A total of 842 blood samples collected from five species of tundra-nesting geese in Alaska was screened for haemosporidian parasites using molecular techniques. Parasites of the generaLeucocytozoon Danilewsky, 1890, Haemoproteus Kruse, 1890, and Plasmodium Marchiafava and Celli, 1885 were detected in 169 (20%), 3 (parasites and assess variation relative to species, age, sex, geographic area, year, and decade. Species, age, and decade were identified as important in explaining differences in prevalence of Leucocytozoonparasites. Leucocytozoon parasites were detected in goslings sampled along the Arctic Coastal Plain using both historic and contemporary samples, which provided support for transmission in the North American Arctic. In contrast, lack of detection of Haemoproteus and Plasmodiumparasites in goslings (n = 238) provided evidence to suggest that the transmission of parasites of these genera may not occur among waterfowl using tundra habitats in Alaska, or alternatively, may only occur at low levels. Five haemosporidian genetic lineages shared among different species of geese sampled from two geographic areas were indicative of interspecies parasite transmission and supported broad parasite or vector distributions. However, identicalLeucocytozoon and Haemoproteus lineages on public databases were limited to waterfowl hosts suggesting constraints in the range of parasite hosts.

  3. Climate Change Experiments in Arctic Ecosystems: Scientific Strategy and Design Criteria

    Science.gov (United States)

    Wullschleger, S. D.; Hinzman, L. D.; McGuire, A. D.; Oberbauer, S. F.; Oechel, W. C.; Norby, R. J.; Thornton, P. E.; Schuur, E. A.; Shugart, H. H.; Walsh, J. E.; Wilson, C. J.

    2010-12-01

    Arctic and subarctic ecosystems are sensitive to changes in climate. These are among the largest and coldest of all ecosystems and are perceived by many as especially vulnerable to environmental change. Warming, in particular, is expected to be greatest in northern latitudes with potentially significant consequences for tundra, taiga, and peat lands. Observational evidence suggests that warming is already affecting physical and ecological processes in high-latitude ecosystems. Models predict that permafrost degradation and the northward expansion of shrubs into tundra represent important feedbacks on climate. Manipulative experiments can help understand the vulnerability of ecosystems to climate warming. Previous attempts to manipulate the environment of ecosystems in arctic and subarctic regions have focused on warming plant and soils, but treatments have been limited to small scales and modest increases in temperature. Manipulating the environment at larger scales and exposing ecosystems to higher temperatures for longer periods of time will be required to fully describe the physical, chemical, and biological mechanisms that govern land-atmosphere interactions. A variety of logistical and engineering challenges must be overcome and new approaches developed before we can address the questions being asked of the scientific community especially as we continue to move toward large-scale and long-term experiments. In light of the many uncertainties that surround the response of high-latitude ecosystems to global climate change, it is important that the scientific community consider how manipulative experiments can address and resolve ecosystem impacts and feedbacks to climate. A workshop sponsored by the Department of Energy, Office of Science was recently held at the University of Alaska, Fairbanks. The goal of the workshop was to highlight conclusions from observational and modeling studies about the response of arctic and subarctic ecosystems to a changing climate

  4. Aspects of the grammar of Tundra Yukaghir

    NARCIS (Netherlands)

    M. Schmalz

    2013-01-01

    The present thesis is an attempt at a grammatical description of Tundra Yukaghir (TY), based on a variety of primary data including those collected by the author during three field trips from 2009 till 2012. TY is a highly endangered minority language spoken in north-eastern Russia. It has slightly

  5. Seeing the risks of multiple Arctic amplifying feedbacks.

    Science.gov (United States)

    Carter, P.

    2014-12-01

    There are several potentially very large sources of Arctic amplifying feedbacks that have been identified. They present a great risk to the future as they could become self and inter-reinforcing with uncontrollable knock-on, or cascading risks. This has been called a domino effect risk by Carlos Duarte. Because of already committed global warming and the millennial duration of global warming, these are highly policy relevant. These Arctic feedback processes are now all operant with emissions of carbon dioxide methane and nitrous oxide detected. The extent of the risks from these feedback sources are not obvious or easy to understand by policy makers and the public. They are recorded in the IPCC AR5 as potential tipping points, as is the irreversibility of permafrost thaw. Some of them are not accounted for in the IPCC AR5 global warming projections because of quantitative uncertainty. UNEP issued a 2012 report (Policy Implications of Thawing Permafrost) advising that by omitting carbon feedback emissions from permafrost, carbon budget calculations by err on the low side. There is the other unassessed issue of a global warming safety limit for preventing uncontrollable increasing Arctic feedback emissions. Along with our paper, we provide illustrations of the Arctic feedback sources and processes from satellite imagery and flow charts that allows for their qualitative consideration. We rely on the IPCC assessments, the 2012 paper Possible role of wetlands permafrost can methane hydrates in the methane cycle under future climate change; a review, by Fiona M. O'Connor et al., and build on the WWF 2009 Arctic Climate Feedbacks: Global Implications. The potential sources of Arctic feedback processes identified include: Arctic and Far North snow albedo decline, Arctic summer sea ice albedo decline, Greenland summer ice surface melting albedo loss, albedo decline by replacement of Arctic tundra with forest, tundra fires, Boreal forest fires, Boreal forest die

  6. Utilization of subsurface microbial electrochemical systems to elucidate the mechanisms of competition between methanogenesis and microbial iron(III)/humic acid reduction in Arctic peat soils

    Science.gov (United States)

    Friedman, E. S.; Miller, K.; Lipson, D.; Angenent, L. T.

    2012-12-01

    High-latitude peat soils are a major carbon reservoir, and there is growing concern that previously dormant carbon from this reservoir could be released to the atmosphere as a result of continued climate change. Microbial processes, such as methanogenesis and carbon dioxide production via iron(III) or humic acid reduction, are at the heart of the carbon cycle in Arctic peat soils [1]. A deeper understanding of the factors governing microbial dominance in these soils is crucial for predicting the effects of continued climate change. In previous years, we have demonstrated the viability of a potentiostatically-controlled subsurface microbial electrochemical system-based biosensor that measures microbial respiration via exocellular electron transfer [2]. This system utilizes a graphite working electrode poised at 0.1 V NHE to mimic ferric iron and humic acid compounds. Microbes that would normally utilize these compounds as electron acceptors donate electrons to the electrode instead. The resulting current is a measure of microbial respiration with the electrode and is recorded with respect to time. Here, we examine the mechanistic relationship between methanogenesis and iron(III)- or humic acid-reduction by using these same microbial-three electrode systems to provide an inexhaustible source of alternate electron acceptor to microbes in these soils. Chamber-based carbon dioxide and methane fluxes were measured from soil collars with and without microbial three-electrode systems over a period of four weeks. In addition, in some collars we simulated increased fermentation by applying acetate treatments to understand possible effects of continued climate change on microbial processes in these carbon-rich soils. The results from this work aim to increase our fundamental understanding of competition between electron acceptors, and will provide valuable data for climate modeling scenarios. 1. Lipson, D.A., et al., Reduction of iron (III) and humic substances plays a major

  7. What Does Matter?: Idols and Icons in the Nenets Tundra

    Directory of Open Access Journals (Sweden)

    Laur Vallikivi

    2011-08-01

    Full Text Available This paper examines a mission encounter in the Nenets reindeer herders’ tundra. In post-Soviet Arctic Russia, Pentecostal and Baptist missionaries of Russian and Ukrainian origin have been fighting against idolatry and trying to persuade the Nenets to burn their sacred images or khekhe’’. They claim that among the indigenous Siberians idolatry exists in its quintessential or prototypical form, as it is described in the Bible. I shall suggest that this encounter takes place in a gap, in which the Nenets and Protestant have different understandings of language and materiality. Missionaries rely simultaneously on the ‘modern’ ideology of signification and the ‘non-modern’ magic of the material. They argue that idols, which are ‘nothing’ according to the scriptures, dangerously bind the ‘pagans’’ minds. For reindeer herders, for whom sacred items occupy an important place in the family wellbeing, the main issue is how to sever the link with the spirits without doing any damage.

  8. Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics

    OpenAIRE

    Hof, Anouschka R.; Roland Jansson; Christer Nilsson

    2012-01-01

    Arctic and subarctic (i.e., [sub] arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predic...

  9. Matrix-bound phosphine in Ny-(A)lesund Area of Arctic

    Institute of Scientific and Technical Information of China (English)

    Feng Ying; Wang Qiang; Yao Ziwei; Geng Jinju

    2009-01-01

    Phosphine, a ubiquitous trace gas in the atmosphere, acts as a carrier of gasous phosphorus in the biogeochemical cycle. The research of phosphine will show new light on the mechanisms of how the phosphorus supplement influence the biogeochemical cycle and global warming. In this paper, we detect the phosphine in Arctic Pole area for the first time. The result shows that matrix-bound phosphine(MBP) exists in all the samplings. Phosphine distributions varied with different environmental origins. Average phosphine concentrations in tundra soil, lake sediments, sea sediments, seabird-droppings and deer guanos were 14.17ng/kg dry, 35.44 kg dry, 67.20 kg dry, 32.9 ng/kg dry, and 25.52 ng/kg dry respectively. Correlation analysis shows that there is an obviously positive correlation between Porg and MBP. It could be concluded that anaerobic decomposition of Porg and the mechano-chemistry action of the rock probably are the possible reasons explaining the mechanism of MBP production in Arctic Pole area.

  10. Examination of Surface Temperature Modification by Open-Top Chambers along Moisture and Latitudinal Gradients in Arctic Alaska Using Thermal Infrared Photography

    Directory of Open Access Journals (Sweden)

    Nathan C. Healey

    2016-01-01

    Full Text Available Passive warming manipulation methodologies, such as open-top chambers (OTCs, are a meaningful approach for interpretation of impacts of climate change on the Arctic tundra biome. The magnitude of OTC warming has been studied extensively, revealing an average plot-level warming of air temperature that ranges between 1 and 3 °C as measured by shielded resistive sensors or thermocouples. Studies have also shown that the amount of OTC warming depends in part on location climate, vegetation, and soil properties. While digital infrared thermometers have been employed in a few comparisons, most of the focus of the effectiveness of OTC warming has been on air or soil temperature rather than tissue or surface temperatures, which directly translate to metabolism. Here we used thermal infrared (TIR photography to quantify tissue and surface temperatures and their spatial variability at a previously unavailable resolution (3–6 mm2. We analyzed plots at three locations that are part of the International Tundra Experiment (ITEX-Arctic Observing Network (AON-ITEX network along both moisture and latitudinal gradients spanning from the High Arctic (Barrow, AK, USA to the Low Arctic (Toolik Lake, AK, USA. Our results show a range of OTC surface warming from 2.65 to 1.27 °C (31%–10% at our three sites. The magnitude of surface warming detected by TIR imagery in this study was comparable to increases in air temperatures previously reported for these sites. However, the thermal images revealed wide ranges of surface temperatures within the OTCs, with some surfaces well above ambient unevenly distributed within the plots under sunny conditions. We note that analyzing radiometric temperature may be an alternative for future studies that examine data acquired at the same time of day from sites that are in close geographic proximity to avoid the requirement of emissivity or atmospheric correction for validation of results. We foresee future studies using TIR

  11. Carbonyl sulfide uptake and chloroform emissions from an Arctic site

    Science.gov (United States)

    Elkins, J. W.; Dutton, G. S.; Montzka, S. A.; Nance, J. D.; Hall, B. D.; Thoning, K. W.; Miller, J. B.; White, J.; Vaugh, B.; Manning, A.

    2008-12-01

    The Arctic Region is most sensitive to future climate change. Quantifying emissions and sinks of many important biogenic trace gases there may become important indicators of potential climate feedback. Once snowmelt at Pt. Barrow, Alaska (77o N) occurs, ground cover is exposed by sunlight and higher temperatures, then photosynthesis starts up. Peaks of chloroform (CHCl3) appear throughout the summer from southerly-based air masses based over northern Alaska and northwest Canada. Carbonyl sulfide (COS) undergoes uptake throughout the summer season through the same enzymes that uptake carbon dioxide (CO2). We will calculate the footprint of emissions of CHCl3 and uptake of COS using high frequency in situ observations, and the NAME and FLEXPART models. Previous studies show a large source of CHCl3 (8% of the total budget) may be coming from soils in high latitude pine forests. We will examine emissions of CHCl3 to see whether or not they are coming from the tundra just south of Pt. Barrow. We will identify the regions for uptake of COS and CO2 from the footprint generated from the models.

  12. Goose-mediated nutrient enrichment and planktonic grazer control in arctic freshwater ponds

    NARCIS (Netherlands)

    Van Geest, G.J.; Hessen, D.O.; Spierenburg, P.; Dahl-Hansen, G.A.P.; Christensen, G.; Brehm, Michaela; Loonen, M.J.J.E.; Faerovig, P.J.; Van Donk, E.

    2007-01-01

    A dramatic increase in the breeding population of geese has occurred over the past few decades at Svalbard. This may strongly impact the fragile ecosystems of the Arctic tundra because many of the ultra-oligotrophic freshwater systems experience enrichment from goose feces. We surveyed 21 shallow tu

  13. Soil nitrogen dynamics and productivity of snowpack Sanguisorba sitchensis community in alpine tundra of Changbai Mountain, China%长白山高山苔原雪斑大白花地榆群落土壤氮素动态与生产力的关系

    Institute of Scientific and Technical Information of China (English)

    徐倩倩; 刘琪璟; 张国春

    2011-01-01

    Aims Snowpack plant communities in alpine tundra are active in comparison with surrounding vegetation, despite the short growing season due to thick snow cover. Our objective was to understand the growth mechanism of snowpack communities.Methods The nutrient dynamics and primary productivity of snowpack Sanguisorba sitchensis community in alpine tundra of Changbai Mountain was investigated in different seasons.Important findings Soil temperature under snowpack during winter was warmer than snow-free areas, and the minimum temperature was significantly higher. Litter decomposition and nitrogen mineralization under snowpack were active even in winter, and nitrogen content was high with rapid mineralization. Annual net primary productivity was 4 046 kg·hm-2·a-1. The unique hydro-thermo conditions, nutrient cycling features and high leaf area index were key factors maintaining community structure and primary productivity.%在高山苔原冬季积雪覆盖的群落生长季短,但明显比周围群落生长茂盛.为了说明雪斑地段群落生长机理,对长白山苔原雪斑土壤氮素动态以及大白花地榆(Sanguisorba sitchensis)群落生产力进行了连续测定.雪斑群落土壤冬季相对温暖,最低日平均温度-1.4℃,裸露地段-16.9℃,全年水分条件充足;积雪期凋落物分解和氮矿化均在进行,土壤具有很高的氮素含量及矿化速率.大白花地榆地上部分净初级生产力为4 046 kg·hm·a.正是独特的水热条件和养分条件,以及具有很大的叶面积同化器官,高山苔原雪斑地段的大白花地榆群落才得以维持生存并表现出很高的生产力水平.

  14. Erosion of soil organic carbon at high latitudes and its delivery to Arctic Ocean sediments: New source to sink insight from radiocarbon dating

    Science.gov (United States)

    Hilton, Robert; Galy, Valier; Gaillardet, Jerome; Dellinger, Mathieu; Bryant, Charlotte; O'Regan, Matt; Grocke, Darren; Coxall, Helen

    2016-04-01

    Soils of the northern high latitudes store carbon over thousands of years and contain almost double the carbon stock of the atmosphere. Erosion processes can mobilise this pre-aged soil organic carbon from the landscape and supply it to rivers. If it escapes degradation during river transport and is delivered to the coastal ocean, this carbon may be sequestered for much longer periods of time (>104 yr) as a geological CO2 sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers draining the high latitudes remains poorly constrained. Using radiocarbon activity, we quantify POC source, flux and fate in the Mackenzie River, the main sediment supplier to the Arctic Ocean. When combined with stable carbon isotopes and element ratios, the radiocarbon activity of POC allows us to distinguish inputs of POC from sedimentary rocks and quantify the average age of biospheric POC (from vegetation and soil) transported through the river system. We find that the eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5800±800 years. This is much older than large tropical rivers where we have equivalent data (Amazon River, Ganges River), and likely reflects the longer residence time of organic matter in cold, wet, high latitude soils. Based on the measured biospheric POC content and annual sediment flux, we calculate a biospheric POC flux of 2.2 (+1.3/-0.9) TgC yr-1 from the Mackenzie River. This is the largest input of aged organic carbon to the Arctic Ocean, more than the combined POC flux from the Eurasian Rivers. Offshore, we use a marine core to investigate organic carbon burial over the Holocene period. Radiocarbon measurements of bulk organic carbon reveal a significant offset from benthic foraminifera radiocarbon ages throughout the core, which is dependent upon the grain size of the sediments. Organic matter in sediments >63μm are offset from foraminifera by ˜ 6,000 14C years

  15. Can lemmings control the expansion of woody plants on tundra?

    Science.gov (United States)

    Oksanen, Lauri; Oksanen, Tarja; Olofsson, Johan; Virtanen, Risto; Hoset, Katrine; Tuomi, Maria; Kyrö, Kukka

    2013-04-01

    The ongoing expansion of woody vegetation in the arctic, due to global warming, creates a positive feed back loop. Increasing abundance of woody plants reduces surface albedo both directly and via speeding up snow melt. Thus a successively greater fraction of incoming solar radiation is absorbed and converted to heat. Browsing mammals - both big and small - can prevent this by consuming woody plants. However, the grazer/browser community of many tundra areas is dominated by brown/Norwegian lemmings (Lemmus spp.) which eat graminoids and mosses and cannot use woody plants as forage. It would seem a priori likely that in such areas, mammalian herbivores speed up the expansion of woody plants by improving the chances of their seedlings to get established. We studied the impact of lemmings on woody plants by constructing lemming proof exclosures within piece high-altitude tundra at Joatkanjávri, northernmost Norway. The exclosures were constructed in 1998, during a period of low lemming densities, in snow-beds, where Norwegian lemmings (L. lemmus) were the only ecologically significant herbivorous mammals. (Reindeer migrate through the area in May, when snow-beds are inaccessible for them; during the fall migration, the area represents a dead end and is therefore avoided.) We chose pairs of maximally similar vegetation patches of 0.5 by 0.5 m and randomly assigned one of each pair to become an exclosure while the other plot was left open. The initial state of the vegetation was documented by the point frequency method. In 2008, after the 2007 lemming outbreak, the same documentation was repeated; thereafter the plots were harvested, the vegetation was sorted to species, oven dried and weighed. Exclusion of lemmings resulted to pronounced increase in community level plant biomass. Evergreen woody plants were especially favored by the exclusion of lemming: their above-ground biomass in exclosures was 14 times as great as their biomass on open reference plots. The

  16. Measurement-based upscaling of Pan Arctic Net Ecosystem Exchange: the PANEEx project

    Science.gov (United States)

    Njuabe Mbufong, Herbert; Kusbach, Antonin; Lund, Magnus; Persson, Andreas; Christensen, Torben R.; Tamstorf, Mikkel P.; Connolly, John

    2016-04-01

    The high variability in Arctic tundra net ecosystem exchange (NEE) of carbon (C) can be attributed to the high spatial heterogeneity of Arctic tundra due to the complex topography. Current models of C exchange handle the Arctic as either a single or few ecosystems, responding to environmental change in the same manner. In this study, we developed and tested a simple pan Arctic NEE (PANEEx) model using the Misterlich light response curve (LRC) function with photosynthetic photon flux density (PPFD) as the main driving variable. Model calibration was carried out with eddy covariance carbon dioxide (CO2) data from 12 Arctic tundra sites. The model input parameters (Fcsat, Rd and α) were estimated as a function of air temperature (AirT) and leaf area index (LAI) and represent specific characteristics of the NEE-PPFD relationship, including the saturation flux, dark respiration and initial light use efficiency, respectively. LAI and air temperature were respectively estimated from empirical relationships with remotely sensed normalized difference vegetation index (NDVI) and land surface temperature (LST). These are available as MODIS Terra product MOD13Q1 and MOD11A1 respectively. Therefore, no specific knowledge of the vegetation type is required. The PANEEx model captures the spatial heterogeneity of the Arctic tundra and was effective in simulating 77% of the measured fluxes (r2 = 0.72, p agreement between the measured and modeled NEE may result from the disparity between ground-based measured LAI (used in model calibration) and remotely sensed LAI (estimated from NDVI and used in NEE estimation). Moreover, our results suggests that using simple linear regressions may be inadequate as parameters estimated using multiple linear regression showed better agreement between measured and modeled data. We propose recalibrating the model using multiple linear relationships between environmental variables and LRC parameters. This model could contribute significantly to

  17. [The content of heavy metals in soils of the Yamal Peninsula and thE Bely Island].

    Science.gov (United States)

    Tomashunos, V M; Abakumov, E V

    2014-01-01

    In 2012 for the first time the Government of the Yamal-Nenets region in conjunction with the Arctic and Antarctic Research Institute of RosHydromnet, performed the first comprehensive expedition for the examination of the Yamal Peninsula (KAEMB Arctic Yamal-2012). As key observation plots there were selected: settlement Novy Port, Ust Yuribey and the Island Bely. To the last section now there is attracted the maximum attention of the public, because it is selected for the starting of the program for the cleaning up Arctic from the debris and the wastes accumulated during the process of the functioning of polar infrastructure. Soil samples were selected from the prospecting pits in August, 2012. Heavy metals, as well as the content of oxides of silicon, aluminum, iron, titanium, manganese were detected with X-ray fluorescent analyzer "Spectroscan-MAX. The values obtained were compared with thre Approxible Permissible Concentrations and Maximum Allowable Concentrations adopted in Russia. Since the accumulation of heavy metals is related with their fixation by soil organic matter, concomitantly there was evaluated the content of organic carbon and nitrogen with the use of the device VARIO EL III. The application of the profile approach to the study of the chemical composition of soils helped to establish mid-ground and deep supra permafrost accumulation maximums of priority inorganic toxicants and other heavy metals. This is most likely related to the development of two groups of soil processes: eluvial-illuvial and cryogenic mass exchange. As a result of the eluvial-illuvial processes, some heavy metals are redistributed along the profile, and accumulating in the middle part of the profile. Meanwhile, in the tundra soils dominant processes are cryogenic mass exchange, leading to a strong mixing of the soil column and the accumulation of certain components in the chemical composition in the supra permafrost or surprapermafrost-gley horizon. This is the main reason for

  18. Effects of soil freezing and thawing on vegetation carbon density in Siberia: A modeling analysis with the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM)

    Science.gov (United States)

    Beer, C.; Lucht, W.; Gerten, D.; Thonicke, K.; Schmullius, C.

    2007-03-01

    The current latitudinal gradient in biomass suggests a climate-driven limitation of biomass in high latitudes. Understanding of the underlying processes, and quantification of their relative importance, is required to assess the potential carbon uptake of the biosphere in response to anticipated warming and related changes in tree growth and forest extent in these regions. We analyze the hydrological effects of thawing and freezing of soil on vegetation carbon density (VCD) in permafrost-dominated regions of Siberia using a process-based biogeochemistry-biogeography model, the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM). The analysis is based on spatially explicit simulations of coupled daily thaw depth, site hydrology, vegetation distribution, and carbon fluxes influencing VCD subject to climate, soil texture, and atmospheric CO2 concentration. LPJ represents the observed high spring peak of runoff of large Arctic rivers, and simulates a realistic fire return interval of 100 to 200 years in Siberia. The simulated VCD changeover from taiga to tundra is comparable to inventory-based information. Without the consideration of freeze-thaw processes VCD would be overestimated by a factor of 2 in southern taiga to a factor of 5 in northern forest tundra, mainly because available soil water would be overestimated with major effects on fire occurrence and net primary productivity. This suggests that forest growth in high latitudes is not only limited by temperature, radiation, and nutrient availability but also by the availability of liquid soil water.

  19. New views on changing Arctic vegetation

    Science.gov (United States)

    Kennedy, Robert E.

    2012-03-01

    As climate changes, how will terrestrial vegetation respond? Because the fates of many biogeochemical, hydrological and economic cycles depend on vegetation, this question is fundamental to climate change science but extremely challenging to address. This is particularly true in the Arctic, where temperature change has been most acute globally (IPCC 2007) and where potential feedbacks to carbon, energy and hydrological cycles have important implications for the rest of the Earth system (Chapin et al 2000). It is well known that vegetation is tightly coupled to precipitation and temperature (Whittaker 1975), but predicting the response of vegetation to changes in climate involves much more than invoking the limitations of climate envelopes (Thuiller et al 2008). Models must also consider efficacy of dispersal, soil constraints, ecological interactions, possible CO2 fertilization impacts and the changing impact of other, more proximal anthropogenic effects such as pollution, disturbance, etc (Coops and Waring 2011, Lenihan et al 2008, Scheller and Mladenoff 2005). Given this complexity, a key test will be whether models can match empirical observations of changes that have already occurred. The challenge is finding empirical observations of change that are appropriate to test hypothesized impacts of climate change. As climate gradually changes across broad bioclimatic gradients, vegetation condition may change gradually as well. To capture these gradual trends, observations need at least three characteristics: (1) they must quantify a vegetation attribute that is expected to change, (2) they must measure that attribute in exactly the same way over long periods of time, and (3) they must sample diverse communities at geographic scales commensurate with the scale of expected climatic shifts. Observation networks meeting all three criteria are rare anywhere on the globe, but particularly so in remote areas. For this reason, satellite images have long been used as a

  20. Organic carbon and nutrients (N, P in surface soil horizons in a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-03-01

    Full Text Available Organic carbon, nitrogen, and phosphorus in the soils of the High Arctic play an important role in the context of global warming, biodiversity, and richness of tundra vegetation. The main aim of the present study was to determine the content and spatial distribution of soil organic carbon (SOC, total nitrogen (Ntot, and total phosphorus (Ptot in the surface horizons of Arctic soils obtained from the lower part of the Fuglebekken catchment in Spitsbergen as an example of a small non-glaciated catchment representing uplifted marine terraces of the Svalbard Archipelago. The obtained results indicate that surface soil horizons in the Fuglebekken catchment show considerable differences in content of SOC, Ntot, and Ptot. This mosaic is related to high variability of soil type, local hydrology, vegetation (type and quantity, and especially location of seabird nesting colony. The highest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from sites fertilized by seabird guano and located along streams flowing from the direction of the seabird colony. The content of SOC, Ntot, and Ptot is strongly negatively correlated with distance from seabird colony indicating a strong influence of the birds on the fertility of the studied soils and indirectly on the accumulation of soil organic matter. The lowest content of SOC, Ntot, and Ptot occurs in soil surface horizons obtained from the lateral moraine of the Hansbreen glacier and from sites in the close vicinity of the lateral moraine. The content of Ntot, Ptot, and SOC in soil surface horizons are strongly and positively correlated with one another, i.e. the higher the content of nutrients, the higher the content of SOC. The spatial distribution of SOC, Ntot, and Ptot in soils of the Hornsund area in SW Spitsbergen reflects the combined effects of severe climate conditions and periglacial processes. Seabirds play a crucial role in nutrient enrichment in these weakly developed soils.

  1. Influence of the Tussock Growth Form on Arctic Ecosystem Carbon Stocks

    Science.gov (United States)

    Curasi, S.; Rocha, A. V.; Sonnentag, O.; Wullschleger, S. D.; Myers-Smith, I. H.; Fetcher, N.; Mack, M. C.; Natali, S.; Loranty, M. M.; Parker, T.

    2015-12-01

    The influence of plant growth forms on ecosystem carbon (C) cycling has been under appreciated. In arctic tundra, environmental factors and plant traits of the sedge Eriophorum vaginatum cause the formation of mounds that are dense amalgamations of belowground C called tussocks. Tussocks have important implications for arctic ecosystem biogeochemistry and C stocks, but the environmental and biological factors controlling their size and distribution across the landscape are poorly understood. In order to better understand how landscape variation in tussock size and density impact ecosystem C stocks, we formed the Carbon in Arctic Tussock Tundra (CATT) network and recruited an international team to sample locations across the arctic. The CATT network provided a latitudinal and longitudinal gradient along which to improve our understanding of tussocks' influence on ecosystem structure and function. CATT data revealed important insights into tussock formation across the arctic. Tussock density generally declined with latitude, and tussock size exhibited substantial variation across sites. The relationship between height and diameter was similar across CATT sites indicating that both biological and environmental factors control tussock formation. At some sites, C in tussocks comprised a substantial percentage of ecosystem C stocks that may be vulnerable to climate change. It is concluded that the loss of this growth form would offset C gains from projected plant functional shifts from graminoid to shrub tundra. This work highlights the role of plant growth forms on the magnitude and retention of ecosystem C stocks.

  2. Effects of increased snow on growth response and allocation patterns of arctic plants

    Science.gov (United States)

    Addis, C. E.; Bret-Harte, M. S.

    2013-12-01

    Warming in the Arctic has led to an increase in shrub cover on the tundra that has been well documented in arctic Alaska. Fall and winter precipitation are also predicted to increase in arctic regions under continued climate change, resulting in greater snow depths and insulating winter soil, thus facilitating overwinter nitrogen mineralization by microbes. We predict that this increased microbial activity will enhance plant growth because more nutrients will be available for plant uptake at spring thaw. We studied the effect of increased snow on plant growth and nutrient allocation patterns using snow fences located across a gradient of shrub height and density at Toolik Field Station on the north slope of Alaska's Brooks Range. We compared growth and nutrient content of deciduous shrubs, evergreen shrubs, and graminoids on either side of the fences. Species behaved individualistically, with some showing increased growth with snow addition, others showing decreased growth, and some showing no effect of snow at all. The biggest increases in growth were seen in deciduous shrubs, particularly Salix pulchra, due to increases in secondary, or radial, growth which allowed plants to support more branches and thus more leaves. This provides a preliminary mechanistic explanation for the widespread increase in shrub cover across the northern latitudes. In addition, species that experienced increases in biomass due to snow also generally displayed increased nitrogen and carbon content in both leaves and stems, indicating that plants which got bigger were also better able to capture available resources. We conclude that faster growing species with the ability to respond rapidly to changes in nutrient availability will likely dominate under continued climate change, and may alter important ecosystem processes such as carbon and nitrogen storage.

  3. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s.

    Science.gov (United States)

    Frost, Gerald V; Epstein, Howard E

    2014-04-01

    Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest-tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in 11, widely distributed Siberian ecotonal landscapes by comparing very high-resolution photography from the Cold War-era 'Gambit' and 'Corona' satellite surveillance systems (1965-1969) with modern imagery. We also analyzed within-landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of 11 ecotones. In northwest Siberia, alder (Alnus) shrubland cover increased 5.3-25.9% in five ecotones. In Taymyr and Yakutia, larch (Larix) cover increased 3.0-6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice-rich permafrost. In Chukotka, the total cover of alder and dwarf pine (Pinus) increased 6.1% within one ecotone and was little changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned-ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid-1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape scale. Our results indicate that extensive changes can occur within decades in moist, shrub-dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental

  4. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    Science.gov (United States)

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.

  5. Divergent hydrological responses to 20th century climate change in shallow tundra ponds, western Hudson Bay Lowlands

    Science.gov (United States)

    Wolfe, Brent B.; Light, Erin M.; Macrae, Merrin L.; Hall, Roland I.; Eichel, Kaleigh; Jasechko, Scott; White, Jerry; Fishback, LeeAnn; Edwards, Thomas W. D.

    2011-12-01

    The hydrological fate of shallow tundra lakes and ponds under conditions of continued warming remains uncertain, but has important implications for wildlife habitat and biogeochemical cycling. Observations of unprecedented pond desiccation, in particular, signify catastrophic loss of aquatic habitat in some Arctic locations. Shallow tundra ponds are a ubiquitous feature in the western Hudson Bay Lowlands (HBL), a region that has undergone intense warming over the past ˜50 years. But it remains unknown how hydrological processes in these ponds have responded. Here, we use cellulose-inferred pond water oxygen isotope records from sediment cores, informed by monitoring of modern pond water isotope compositions during the 2009 and 2010 ice-free seasons, to reconstruct hydrological conditions of four shallow tundra ponds in the western HBL over the past three centuries. Following an interval of relative hydrological stability during the early part of the records, results reveal widely differing hydrological responses to 20th century climate change among the study sites, which is largely dependent on hydrological connectivity of the basins within their respective surrounding peatlands. These findings suggest the 20th century has been characterized by an increasingly dynamic landscape that has variably influenced surface water balance - a factor that is likely to play a key role in determining the future water balance of ponds in this region.

  6. The alien terrestrial invertebrate fauna of the High Arctic archipelago of Svalbard: potential implications for the native flora and fauna

    Directory of Open Access Journals (Sweden)

    Stephen J. Coulson

    2015-09-01

    Full Text Available Experience from the Antarctic indicates that the establishment of alien species may have significant negative effects on native flora and fauna in polar regions and is considered to be amongst the greatest threats to biodiversity. But, there have been few similar studies from the Arctic. Although the terrestrial invertebrate inventory of the Svalbard Archipelago is amongst the most complete for any region of the Arctic, no consideration has yet been made of alien terrestrial invertebrate species, their invasiveness tendencies, threat to the native biology or their route of entry. Such baseline information is critical for appropriate management strategies. Fifteen alien invertebrate species have established in the Svalbard environment, many of which have been introduced via imported soils. Biosecurity legislation now prohibits such activities. None of the recorded established aliens yet show invasive tendencies but some may have locally negative effects. Ten species are considered to be vagrants and a further seven are classified as observations. Vagrants and the observations are not believed to be able to establish in the current tundra environment. The high connectivity of Svalbard has facilitated natural dispersal processes and may explain why few alien species are recorded compared to isolated islands in the maritime Antarctic. The vagrant species observed are conspicuous Lepidoptera, implying that less evident vagrant species are also arriving regularly. Projected climate change may enable vagrant species to establish, with results that are difficult to foresee.

  7. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand an...

  8. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  9. Experimental modeling of the influence of the rise in average summer temperatures on carbon circulation in tundra ecosystems

    Science.gov (United States)

    Barkhatov, Yu. V.; Tikhomirov, A. A.; Ushakova, S. A.; Shikhov, V. N.; Bartsev, S. I.; Degermendzhi, A. G.

    2016-11-01

    A sealed vegetation chamber was designed and constructed for physical simulation of climate conditions in the Subarctic zone during the spring-summer time. The small laboratory tundra-simulating ecosystem (TSE) was created for comparative evaluation of the rates of soil respiration and of the total balance of carbon fluxes in tundra ecosystems. The test experiment was performed to study the TSE response to a temperature rise in air and soil by 2°C in terms of the intensity of the CO2 flux. It was shown that this increase in temperature would cause a pronounced shift in the balance of CO2 production and utilization in the ecosystem from near-zero values to a stable generation of 24 μmol/h of CO2 per 1 kg of dry biomass.

  10. Arctic Watch

    Science.gov (United States)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  11. Bacterial production and microbial food web structure in a large arctic river and the coastal Arctic Ocean

    Science.gov (United States)

    Vallières, Catherine; Retamal, Leira; Ramlal, Patricia; Osburn, Christopher L.; Vincent, Warwick F.

    2008-12-01

    Globally significant quantities of organic carbon are stored in northern permafrost soils, but little is known about how this carbon is processed by microbial communities once it enters rivers and is transported to the coastal Arctic Ocean. As part of the Arctic River-Delta Experiment (ARDEX), we measured environmental and microbiological variables along a 300 km transect in the Mackenzie River and coastal Beaufort Sea, in July-August 2004. Surface bacterial concentrations averaged 6.7 × 10 5 cells mL - 1 with no significant differences between sampling zones. Picocyanobacteria were abundant in the river, and mostly observed as cell colonies. Their concentrations in the surface waters decreased across the salinity gradient, dropping from 51,000 (river) to 30 (sea) cells mL - 1 . There were accompanying shifts in protist community structure, from diatoms, cryptophytes, heterotrophic protists and chrysophytes in the river, to dinoflagellates, prymnesiophytes, chrysophytes, prasinophytes, diatoms and heterotrophic protists in the Beaufort Sea. Size-fractionated bacterial production, as measured by 3H-leucine uptake, varied from 76 to 416 ng C L - 1 h - 1 . The contribution of particle-attached bacteria (> 3 µm fraction) to total bacterial production decreased from > 90% at the Mackenzie River stations to importance of this particle-based fraction was inversely correlated with salinity and positively correlated with particulate organic carbon concentrations. Glucose enrichment experiments indicated that bacterial metabolism was carbon limited in the Mackenzie River but not in the coastal ocean. Prior exposure of water samples to full sunlight increased the biolability of dissolved organic carbon (DOC) in the Mackenzie River but decreased it in the Beaufort Sea. Estimated depth-integrated bacterial respiration rates in the Mackenzie River were higher than depth-integrated primary production rates, while at the marine stations bacterial respiration rates were near or

  12. Simulation of changes in arctic terrestrial carbon stocks under using ecosys mathematical model

    Science.gov (United States)

    Metivier, K.; Grant, R. F.; Humphreys, E. R.; Lafleur, P.; Zhang, H.

    2010-12-01

    Sustainable Canadian arctic terrestrial ecosystems are vital for northern communities and also for global communities. Arctic terrestrial ecosystems have huge stores of soil C and also contain plant C, all which are important for ecosystem health. However, there are large knowledge gaps concerning the current state of these northern ecosystems, which lead to huge uncertainties in quantification of how climate variables affect these ecosystems. These uncertainties are in part due to the complex nature of climate impacts on biological, physical and chemical activities in soils and plants. The major objective of the modelling effort is to develop a methodology using the ecosys mathematical model, to bring a greater understanding and quantification of ecological processes in northern ecosystems thereby reduce uncertainties of the dynamics of these ecosystems. Addressing current uncertainties associated with quantifying tundra ecosystems may improve our long - term predictions of climate impact on future sustainability of these ecosystems. This research will allow further insights of these ecosystems at several spatial scales - site/plot, landscape and regional. Study site locations include Daring Lake (mesic tundra, wet sedge and fen tundra), Churchill, Iqaluit, Cape Bounty and Ellesmere Island-Lake Hazen, Canada. Modelled results will be compared to measured soil temperature, carbon dioxide and energy exchange fluxes, nitrous oxide, methane emissions and phytomass growth. We have conducted preliminary simulations for the Daring Lake fen site - Modelled (57 g C m-2) and measured (43 g C m-2) shoot biomass were comparable for sedge however, the model underestimated the growth of the dwarf birch trees; work is in progress to determine whether the dwarf tree physiology is represented correctly in the model. Overall, the fen site resulted in a net C source with net ecosystem productivity of 13.5 g C m-2 yr-1, however this could change when the dwarf birch tree growth are

  13. Chamber and Diffusive Based Carbon Flux Measurements in an Alaskan Arctic Ecosystem

    Science.gov (United States)

    Wilkman, E.; Oechel, W. C.; Zona, D.

    2013-12-01

    Eric Wilkman, Walter Oechel, Donatella Zona Comprising an area of more than 7 x 106 km2 and containing over 11% of the world's organic matter pool, Arctic terrestrial ecosystems are vitally important components of the global carbon cycle, yet their structure and functioning are sensitive to subtle changes in climate and many of these functional changes can have large effects on the atmosphere and future climate regimes (Callaghan & Maxwell 1995, Chapin et al. 2002). Historically these northern ecosystems have acted as strong C sinks, sequestering large stores of atmospheric C due to photosynthetic dominance in the short summer season and low rates of decomposition throughout the rest of the year as a consequence of cold, nutrient poor, and generally water-logged conditions. Currently, much of this previously stored carbon is at risk of loss to the atmosphere due to accelerated soil organic matter decomposition in warmer future climates (Grogan & Chapin 2000). Although there have been numerous studies on Arctic carbon dynamics, much of the previous soil flux work has been done at limited time intervals, due to both the harshness of the environment and labor and time constraints. Therefore, in June of 2013 an Ultraportable Greenhouse Gas Analyzer (UGGA - Los Gatos Research Inc.) was deployed in concert with the LI-8100A Automated Soil Flux System (LI-COR Biosciences) in Barrow, AK to gather high temporal frequency soil CO2 and CH4 fluxes from a wet sedge tundra ecosystem. An additional UGGA in combination with diffusive probes, installed in the same location, provides year-round soil and snow CO2 and CH4 concentrations. When used in combination with the recently purchased AlphaGUARD portable radon monitor (Saphymo GmbH), continuous soil and snow diffusivities and fluxes of CO2 and CH4 can be calculated (Lehmann & Lehmann 2000). Of particular note, measuring soil gas concentration over a diffusive gradient in this way allows one to separate both net production and

  14. Past changes in Arctic terrestrial ecosystems, climate and UV radiation.

    Science.gov (United States)

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus

    2004-11-01

    At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 degrees C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the "Little Ice Age spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic conditions

  15. Past Changes in Arctic Terrestrial Ecosystems, Climate and UV Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    At the last glacial maximum, vast ice sheets covered many continental areas. The beds of some shallow seas were exposed thereby connecting previously separated landmasses. Although some areas were ice-free and supported a flora and fauna, mean annual temperatures were 10-13 deg C colder than during the Holocene. Within a few millennia of the glacial maximum, deglaciation started, characterized by a series of climatic fluctuations between about 18,000 and 11,400 years ago. Following the general thermal maximum in the Holocene, there has been a modest overall cooling trend, superimposed upon which have been a series of millennial and centennial fluctuations in climate such as the 'Little Ice Age' spanning approximately the late 13th to early 19th centuries. Throughout the climatic fluctuations of the last 150,000 years, Arctic ecosystems and biota have been close to their minimum extent within the most recent 10,000 years. They suffered loss of diversity as a result of extinctions during the most recent large-magnitude rapid global warming at the end of the last glacial stage. Consequently, Arctic ecosystems and biota such as large vertebrates are already under pressure and are particularly vulnerable to current and projected future global warming. Evidence from the past indicates that the treeline will very probably advance, perhaps rapidly, into tundra areas, as it did during the early Holocene, reducing the extent of tundra and increasing the risk of species extinction. Species will very probably extend their ranges northwards, displacing Arctic species as in the past. However, unlike the early Holocene, when lower relative sea level allowed a belt of tundra to persist around at least some parts of the Arctic basin when treelines advanced to the present coast, sea level is very likely to rise in future, further restricting the area of tundra and other treeless Arctic ecosystems. The negative response of current Arctic ecosystems to global climatic

  16. The Sub-Arctic Carbon Cycle: Assimilating Multi-Scale Chamber, Tower and Aircraft Flux Observations into Ecological Models

    Science.gov (United States)

    Hill, T. C.; Stoy, P. C.; Baxter, R.; Clement, R.; Disney, M.; Evans, J.; Fletcher, B.; Gornall, J.; Harding, R.; Hartley, I. P.; Ineson, P.; Moncrieff, J.; Phoenix, G.; Sloan, V.; Poyatos, R.; Prieto-Blanco, A.; Subke, J.; Street, L.; Wade, T. J.; Wayolle, A.; Wookey, P.; Williams, M. D.

    2009-12-01

    The Arctic has already warmed significantly, and warming of 4-7 °C is expected over the next century. However, linkages between climate, the carbon cycle, the energy balance, and hydrology mean that the response of arctic ecosystems to these changes remains poorly understood. The release by warming of considerable but poorly quantified carbon stores from high latitude soils could accelerate the build-up of atmospheric CO2. The Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) project, part of International Polar Year, was designed to improve predictions of the response of the Arctic terrestrial biosphere to climate change. The project operated at two sites (Abisko, Sweden and Kevo, Finland) over multiple years, utilising roving flux chambers (CO2/CH4), five flux towers (CO2/CH4/H2O) and a research aircraft equipped for fluxes (CO2/H2O) to directly measure multi-scale exchanges in-conjunction with other observations (both plot level and satellite). We show how these data can be combined using data assimilation approaches to address the question “what controls the temporal and spatial variability of carbon exchange by sub-Arctic ecosystems?” Eddy covariance measurements of mire methane exchanges agreed with chamber estimates, indicating that mires were strong summer sources, while birch woodland was a weak sink. However, remote sensing of mire extent was limited at resolutions > 30 m, and variations in sink/source activity suggested that upscaling CH4 exchanges (from chamber, to tower, to landscape) required higher resolution (ideally exchange recorded similar seasonal timing over a range of vegetation types. Birch woodlands had the greatest range of CO2 exchanges compared to tundra and mires. The challenge of measuring continuous fluxes across the full annual cycle, and inherent uncertainties in the methods, complicates the determination of source/sink status of the landscapes, but cold season data were successfully collected. Aircraft flux

  17. Diversity and distribution of Tardigrada in Arctic cryoconite holes

    Directory of Open Access Journals (Sweden)

    Krzysztof Zawierucha

    2016-06-01

    Full Text Available Despite the fact that glaciers and ice sheets have been monitored for more than a century, knowledge on the glacial biota remains poor. Cryoconite holes are water-filled reservoirs on a glacier’s surface and one of the most extreme ecosystems for micro-invertebrates. Tardigrada, also known as water bears, are a common inhabitant of cryoconite holes. In this paper we present novel data on the morphology, diversity, distribution and role in food web of tardigrades on Arctic glaciers. From 33 sampled cryoconite holes of 6 glaciers on Spitsbergen, in 25 tardigrades were found and identified. Five taxa of Tardigrada (Eutardigrada were found in the samples, they are: Hypsibius dujardini, Hypsibius sp. A, Isohypsibius sp. A., Pilatobius recamieri, and one species of Ramazzottiidae. H. dujardini and P. recamieri were previously known from tundra in the Svalbard archipelago. Despite the number of studies on Arctic tundra ecosystems, Hypsibius sp. A, one species of Ramazzottiidae and Isohypsibius sp. A are known only from cryoconite holes. Tardigrade found in this study do not falsify the hypothesis that glaciers and ice sheets are a viable biome (characteristic for biome organisms assemblages - tardigrades. Diagnosis of Hypsibius sp. A, Isohypsibius sp. A, and species of Ramazzottiidae with discussion on the status of taxa, is provided. To check what analytes are associated with the presence of tardigrades in High Arctic glacier chemical analyses were carried out on samples taken from the Buchan Glacier. pH values and the chemical composition of anions and cations from cryoconite hole water from the Buchan Glacier are also presented. The current study on the Spitsbergen glaciers clearly indicates that tardigrade species richness in cryoconite holes is lower than tardigrade species richness in Arctic tundra ecosystems, but consists of unique cryoconite hole species. As cryoconite tardigrades may feed on bacteria as well as algae, they are primary

  18. The role of summer precipitation and summer temperature in establishment and growth of dwarf shrub Betula nana in northeast Siberian tundra

    DEFF Research Database (Denmark)

    Li, Bingxi; Heijmans, Monique M P D; Berendse, Frank;

    2016-01-01

    It is widely believed that deciduous tundra-shrub dominance is increasing in the pan-Arctic region, mainly due to rising temperature. We sampled dwarf birch (Betula nana L.) at a northeastern Siberian tundra site and used dendrochronological methods to explore the relationship between climatic...... variables and local shrub dominance. We found that establishment of shrub ramets was positively related to summer precipitation, which implies that the current high dominance of B. nana at our study site could be related to high summer precipitation in the period from 1960 to 1990. The results confirmed...... that early summer temperature is most influential to annual growth rates of B. nana. In addition, summer precipitation stimulated shrub growth in years with warm summers, suggesting that B. nana growth may be co-limited by summer moisture supply. The dual controlling role of temperature and summer...

  19. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site

    Energy Technology Data Exchange (ETDEWEB)

    Akbari, Ali; Ghoshal, Subhasis, E-mail: subhasis.ghoshal@mcgill.ca

    2014-09-15

    Highlights: • Aeration and moisture addition alone caused extensive hydrocarbon biodegradation. • 30-day slurry reactor remediation endpoints attained in 385 days in biopiles. • High nitrogen concentrations inhibited hydrocarbon degradation. • Inhibition of biodegradation linked to lack of shifts in soil microbial community. - Abstract: Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16–C34) in a pilot-scale biopile experiment conducted at 15 °C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16–C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day{sup −1} in biopile tank compared to 0.11 day{sup −1} in slurry bioreactors for C16–C34 hydrocarbons, the biodegradation extents for this fraction

  20. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    Science.gov (United States)

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.

  1. Review of SOP's for Prodcutivity Surveys for EP tundra swans

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report reviews the SOPs for productivity surveys of tundra swans to identify areas of improvement. An average of 18,700 swans has been surveyed in the Atlantic...

  2. Effects of short term and long term soil warming on ecosystem phenology of a sub-arctic grassland: an NDVI-based approach

    Science.gov (United States)

    Leblans, Niki; Sigurdsson, Bjarni D.; Janssens, Ivan A.

    2014-05-01

    % greening was advanced by 23 days at +5°C and by 32 days at +10°C Ts. However, no difference in the date of maximum greening or in the onset of senescence occurred. In contrast, in the long-term warmed grassland, the start of the growing season was not affected by Ts and the 50% greening point occurred only 10 days earlier at +5°C and 15 days earlier at +10°C Ts. However, the timing of maximum greening was advanced by 19 days at +5°C and even by 32 days at +10°C Ts. Again, the onset of senescence did not change with Ts. Significant Ts effects on ecosystem phenology of subarctic grasslands only occurred at warming of 5°C or higher. This study also demonstrates that short-term Ts effects on ecosystem phenology are not necessarily good predictors for long-term changes in sub-arctic grasslands. In the short-term (5 years warming), soil warming induced an early onset of the growing season, which was later compensated by faster greening on colder soils, so that maximum greenness was reached simultaneously irrespective of Ts. In contrast, the long-term Ts warming did not induce earlier onset of the growing season, but it led to faster greening on warm soils, which again led to an advance in timing of maximum greenness. This difference between short- and long-term responses in phenology might be caused by either phenotypic plasticity (acclimation) or by a genetic selection (evolution) of the grass populations where the warming has been ongoing for centuries. Such processes are at present not included in modelling predictions of climate change responses of natural ecosystems, but may offer important negative feedback mechanisms to warming which will reduce its effects.

  3. Pilot-scale bioremediation of a petroleum hydrocarbon-contaminated clayey soil from a sub-Arctic site.

    Science.gov (United States)

    Akbari, Ali; Ghoshal, Subhasis

    2014-09-15

    Bioremediation is a potentially cost-effective solution for petroleum contamination in cold region sites. This study investigates the extent of biodegradation of petroleum hydrocarbons (C16-C34) in a pilot-scale biopile experiment conducted at 15°C for periods up to 385 days, with a clayey soil, from a crude oil-impacted site in northern Canada. Although several studies on bioremediation of petroleum hydrocarbon-contaminated soils from cold region sites have been reported for coarse-textured, sandy soils, there are limited studies of bioremediation of petroleum contamination in fine-textured, clayey soils. Our results indicate that aeration and moisture addition was sufficient for achieving 47% biodegradation and an endpoint of 530 mg/kg for non-volatile (C16-C34) petroleum hydrocarbons. Nutrient amendment with 95 mg-N/kg showed no significant effect on biodegradation compared to a control system without nutrient but similar moisture content. In contrast, in a biopile amended with 1340 mg-N/kg, no statistically significant biodegradation of non-volatile fraction was detected. Terminal Restriction Fragment Length Polymorphism (T-RFLP) analyses of alkB and 16S rRNA genes revealed that inhibition of hydrocarbon biodegradation was associated with a lack of change in microbial community composition. Overall, our data suggests that biopiles are feasible for attaining the bioremediation endpoint in clayey soils. Despite the significantly lower biodegradation rate of 0.009 day(-1) in biopile tank compared to 0.11 day(-1) in slurry bioreactors for C16-C34 hydrocarbons, the biodegradation extents for this fraction were comparable in these two systems.

  4. Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska

    Science.gov (United States)

    French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.

    2014-12-01

    An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency

  5. Climate sensitivity of shrub growth across the tundra biome

    DEFF Research Database (Denmark)

    Myers-Smith, Isla H.; Elmendorf, Sarah C.; Beck, Pieter S.A.

    2015-01-01

    Rapid climate warming in the tundra biome has been linked to increasing shrub dominance1–4. Shrub expansion can modify climate by altering surface albedo, energy and water balance, and permafrost2,5–8, yet the drivers of shrub growth remain poorly understood. Dendroecological data consisting...... be incorporated into Earth system models to improve future projections of climate change impacts across the tundra biome....

  6. Site Scale Wetness Classification of Tundra Regions with C-Band SAR Satellite Data

    Science.gov (United States)

    Widhalm, Barbara; Bartsch, Annett; Siewert, Matthias Benjamin; Gugelius, Gustaf; Elberling, Bo; Leibman, Marina; Dvornikov, Yury; Khomutov, Artem

    2016-08-01

    A representative and consistent wetland map for the circumpolar region is required for a range of applications including modelling of permafrost properties as well as upscaling of carbon pools and fluxes. Synthetic Aperture Radar (SAR) data has been shown to be suitable for wetland mapping, especially C- band ASAR GM data (1-km resolution). A circumpolar wetness classification map has been introduced previously [1].With heterogeneity being a major challenge in the Arctic, higher spatial resolution products than GM are essential. In this study we therefore investigate the potential of this approach at site scale using ENVISAT ASAR WS data ( 120 m resolution). These higher resolution ASAR WS maps have been produced for study sites representing different settings throughout the Arctic and compared to high resolution land cover maps and field survey data.It can be shown that a medium resolution C-band SAR based wetness level map can be derived for tundra regions where no scattering due to tree trunks hampers the applied methodology.

  7. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams

    Directory of Open Access Journals (Sweden)

    J. R. Larouche

    2015-03-01

    Full Text Available In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC to aquatic ecosystems, however the magnitude of these effects compared to the natural background variability of DOC at the watershed scale is not well known. We measured DOC quantity, composition, and biodegradability from 14 river and stream reaches (watershed sizes ranging from 1.5–167 km2 some of which were impacted by permafrost collapse (thermokarst and fire. We found that region had a significant impact on quantity and biodegradability of DOC, likely driven by landscape and watershed characteristics such as lithology, soil and vegetation type, elevation, and glacial age. However, contrary to our hypothesis, we found that streams disturbed by thermokarst and fire did not contain significantly altered labile DOC fractions compared to adjacent reference waters, potentially due to rapid ecosystem recovery after fire and thermokarst as well as the limited spatial extent of thermokarst. Overall, biodegradable DOC ranged from 4 to 46% and contrary to patterns of DOC biodegradability in large Arctic rivers, seasonal variation in DOC biodegradability showed no clear pattern between sites, potentially related to stream geomorphology and position along the river network. While thermokarst and fire can alter DOC quantity and biodegradability at the scale of the feature, we conclude that tundra ecosystems are resilient to these types of disturbance.

  8. The annual carbon budget for fen and forest in a wetland at Arctic treeline

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, W. R. [McMaster Univ., School of Geography and Geology, Hamilton, ON (Canada); Bello, R. L.; D' Souza, A. [York Univ., Dept. of Geography, Toronto, ON (Canada); Griffis, T. J. [Minnesota Univ., Dept. of Soil, Water and Climate, St. Paul, MN (United States); LaFleur, P. M. [Trent Univ., Dept. of Geography, Peterborough, ON (Canada)

    2002-09-01

    This study of a wetland system at the Arctic treeline compares two carbon budget estimates, one derived from long-term growth rates of organic soil and the other based on shorter-term flux measurements. Result showed that while there was a small loss of carbon from the ecosystem in the case of tundra fen over a period of fifty-three years, the adjacent open subarctic forest showed large gains in atmospheric carbon dioxide during the same period. These longer-term data were supported by shorter-term flux measurements, which also showed carbon loss by the fen and carbon uptake by the forest. The shorter term data indicate that the carbon loss from the fen during this period was attributable to one particularly dry year. The different rates of carbon exchange appear to be controlled by two primary factors. The first is the enhanced development in the fen of a photosynthesis-inhibiting hummock-hollow landscape, while the second is related to warmer and drier average growing season conditions, which inhibit carbon dioxide uptake in the fen and enhances it in the forest. 24 refs., 4 tabs., 3 figs.

  9. Inter-annual Variability in Tundra Phenology Captured with Digital Photography

    Science.gov (United States)

    Melendez, M.; Vargas, S. A.; Tweedie, C. E.

    2012-12-01

    The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.

  10. Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover.

    Science.gov (United States)

    Beckett, Richard P; Zavarzina, Anna G; Liers, Christiane

    2013-06-01

    Lichens are symbiotic associations of a fungus (usually an Ascomycete) with green algae and/or a cyanobacterium. They dominate on 8 % of the world's land surface, mainly in Arctic and Antarctic regions, tundra, high mountain elevations and as components of dryland crusts. In many ecosystems, lichens are the pioneers on the bare rock or soil following disturbance, presumably because of their tolerance to desiccation and high temperature. Lichens have long been recognized as agents of mineral weathering and fine-earth stabilization. Being dominant biomass producers in extreme environments they contribute to primary accumulation of soil organic matter. However, biochemical role of lichens in soil processes is unknown. Our recent research has demonstrated that Peltigeralean lichens contain redox enzymes which in free-living fungi participate in lignocellulose degradation and humification. Thus lichen enzymes may catalyse formation and degradation of soil organic matter, particularly in high-stress communities dominated by lower plants. In the present review we synthesize recently published data on lichen phenol oxidases, peroxidases, and cellulases and discuss their possible roles in lichen physiology and soil organic matter transformations.

  11. Changing Export of Dissolved Black Carbon from Arctic Rivers

    Science.gov (United States)

    Stubbins, A.; Spencer, R. G.; Mann, P. J.; Dittmar, T.; Niggemann, J.; Holmes, R. M.; McClelland, J. W.

    2014-12-01

    Arctic rivers carry black carbon (BC) from Arctic soils to the ocean, linking two of the largest carbon stores on Earth. Wildfires have charred biomass since land plants emerged. BC, a refractory component of char, has accumulated in soils. In the oceans, dissolved BC (DBC) has also accumulated. Here we use samples and data collected as part of the long-term, high temporal resolution Arctic Great Rivers Observatory to model export of DBC from the six largest Arctic Rivers. Scaling to the pan-Arctic catchment, we report that ~3 million tons of DBC are delivered to the Arctic Ocean each year, which is ~8% of dissolved organic carbon loads to the Arctic Ocean. We suggest the transfer of Arctic river DBC to areas of deep water formation is a major source of DBC to the deep ocean carbon store. As the Arctic warms, greater wildfire occurrence is expected to produce more BC and changing hydrology and permafrost thaw to promote DBC export. Thus, the transfer of BC from Arctic soils to the ocean is predicted to increase.

  12. Ozone and aerosol distributions measured by airborne lidar during the 1988 Arctic Boundary Layer Experiment

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Consideration is given to O3 and aerosol distributions measured from an aircraft using a DIAL system in order to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during summer 1988. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere.

  13. Arctic Shipping

    DEFF Research Database (Denmark)

    Hansen, Carsten Ørts; Grønsedt, Peter; Lindstrøm Graversen, Christian

    , the latter aiming at developing key concepts and building up a basic industry knowledge base for further development of CBS Maritime research and teaching. This report attempts to map the opportunities and challenges for the maritime industry in an increasingly accessible Arctic Ocean...

  14. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-01-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r=0.73, p<0.001 and B. nana (Pearson's r=0.46, p<0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (r=0.42, p<0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (<5% surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate-driven tundra vegetation shifts.

  15. What are the main climate drivers for shrub growth in Northeastern Siberian tundra?

    Directory of Open Access Journals (Sweden)

    D. Blok

    2011-05-01

    Full Text Available Deciduous shrubs are expected to rapidly expand in the Arctic during the coming decades due to climate warming. A transition towards more shrub-dominated tundra may have large implications for the regional surface energy balance, permafrost stability and carbon storage capacity, with consequences for the global climate system. However, little information is available on the natural long-term shrub growth response to climatic variability. Our aim was to determine the climate factor and time period that are most important to annual shrub growth in our research site in NE-Siberia. Therefore, we determined annual radial growth rates in Salix pulchra and Betula nana shrubs by measuring ring widths. We constructed shrub ring width chronologies and compared growth rates to regional climate and remotely sensed greenness data. Early summer temperature was the most important factor influencing ring width of S. pulchra (Pearson's r = 0.73, p < 0.001 and B. nana (Pearson's r = 0.46, p < 0.001. No effect of winter precipitation on shrub growth was observed. In contrast, summer precipitation of the previous year correlated positively with B. nana ring width (Pearson's r = 0.42, p < 0.01, suggesting that wet summers facilitate shrub growth in the following growing season. S. pulchra ring width correlated positively with peak summer NDVI, despite the small coverage of S. pulchra shrubs (< 5 % surface cover in our research area. We provide the first climate-growth study on shrubs for Northeast Siberia, the largest tundra region in the world. We show that two deciduous shrub species with markedly different growth forms have a similar growth response to changes in climate. The obtained shrub growth response to climate variability in the past increases our understanding of the mechanisms underlying current shrub expansion, which is required to predict future climate

  16. A Greener Arctic: Vascular Plant Litter Input in Subarctic Peat Bogs Changes Soil Invertebrate Diets and Decomposition Patterns

    Science.gov (United States)

    Krab, E. J.; Berg, M. P.; Aerts, R.; van Logtestijn, R. S. P.; Cornelissen, H. H. C.

    2014-12-01

    Climate-change-induced trends towards shrub dominance in subarctic, moss-dominated peatlands will most likely have large effects on soil carbon (C) dynamics through an input of more easily decomposable litter. The mechanisms by which this increase in vascular litter input interacts with the abundance and diet-choice of the decomposer community to alter C-processing have, however, not yet been unraveled. We used a novel 13C tracer approach to link invertebrate species composition (Collembola), abundance and species-specific feeding behavior to C-processing of vascular and peat moss litters. We incubated different litter mixtures, 100% Sphagnum moss litter, 100% Betula leaf litter, and a 50/50 mixture of both, in mesocosms for 406 days. We revealed the transfer of C from the litters to the soil invertebrate species by 13C labeling of each of the litter types and assessed 13C signatures of the invertebrates Collembola species composition differed significantly between Sphagnum and Betula litter. Within the 'single type litter' mesocosms, Collembola species showed different 13C signatures, implying species-specific differences in diet choice. Surprisingly, the species composition and Collembola abundance changed relatively little as a consequence of Betula input to a Sphagnum based system. Their diet choice, however, changed drastically; species-specific differences in diet choice disappeared and approximately 67% of the food ingested by all Collembola originated from Betula litter. Furthermore, litter decomposition patterns corresponded to these findings; mass loss of Betula increased from 16.1% to 26.2% when decomposing in combination with Sphagnum, while Sphagnum decomposed even slower in combination with Betula litter (1.9%) than alone (4.7%). This study is the first to empirically show that collective diet shifts of the peatland decomposer community from mosses towards vascular plant litter may drive altered decomposition patterns. In addition, we showed that

  17. The Role of Disturbance in Arctic Ecosystem Response to a Changing Climate

    Science.gov (United States)

    Hinzman, L. D.

    2014-12-01

    Wildfires in the tundra regions and the boreal forest project an immediate effect upon the surface energy and water budget by drastically altering the surface albedo, roughness, infiltration rates, and moisture absorption capacity in organic soils. Although fires create a sudden and drastic change to the landcover, it is only the beginning of a long process of recovery and perhaps a shift to a different successional pathway. In permafrost regions, these effects become part of a process of long-term (20-50 years) cumulative impacts. Burn severity may largely determine immediate impacts and long-term disturbance trajectories. As transpiration decreases or ceases, soil moisture increases markedly, remaining quite wet throughout the year. Because the insulating quality of the organic layer is removed during fires, permafrost begins to thaw near the surface and warm to greater depths. Within a few years, it may thaw to the point where it can no longer completely refreeze every winter, creating a permanently thawed layer in the soil called a talik. After formation of a talik, soils can drain internally throughout the year. At this point, soils may become quite dry, as the total precipitation received annually in the Arctic is quite low. The local ecological community must continuously adapt to the changing soil thermal and moisture regimes. The wet soils found over shallow permafrost favor black spruce forests. After a fire creates a deeper permafrost table (thicker active layer) the invading tree species tend to be birch or alder. The hydrologic and thermal regime of the soil is the primary factor controlling these vegetation trajectories and the subsequent changes in surface mass and energy fluxes. The complexities of a changing climate accentuate these processes of change and complicate predictions of the resulting vegetation trajectories. Understanding these shifts in vegetative communities and quantifying the consequences of thawing permafrost can only be

  18. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in western Siberia

    Science.gov (United States)

    Wild, Birgit; Schnecker, Jörg; Knoltsch, Anna; Takriti, Mounir; Mooshammer, Maria; Gentsch, Norman; Mikutta, Robert; Alves, Ricardo J. Eloy; Gittel, Antje; Lashchinskiy, Nikolay; Richter, Andreas

    2015-05-01

    Soil N availability is constrained by the breakdown of N-containing polymers such as proteins to oligopeptides and amino acids that can be taken up by plants and microorganisms. Excess N is released from microbial cells as ammonium (N mineralization), which in turn can serve as substrate for nitrification. According to stoichiometric theory, N mineralization and nitrification are expected to increase in relation to protein depolymerization with decreasing N limitation, and thus from higher to lower latitudes and from topsoils to subsoils. To test these hypotheses, we compared gross rates of protein depolymerization, N mineralization and nitrification (determined using 15N pool dilution assays) in organic topsoil, mineral topsoil, and mineral subsoil of seven ecosystems along a latitudinal transect in western Siberia, from tundra (67°N) to steppe (54°N). The investigated ecosystems differed strongly in N transformation rates, with highest protein depolymerization and N mineralization rates in middle and southern taiga. All N transformation rates decreased with soil depth following the decrease in organic matter content. Related to protein depolymerization, N mineralization and nitrification were significantly higher in mineral than in organic horizons, supporting a decrease in microbial N limitation with depth. In contrast, we did not find indications for a decrease in microbial N limitation from arctic to temperate ecosystems along the transect. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth, even in high-latitude systems such as tundra and boreal forest.

  19. Changes in the Arctic: Background and Issues for Congress

    Science.gov (United States)

    2014-02-14

    and tourism (cruise ships) in the Arctic increase the risk of pollution in the region. Cleaning up oil spills in ice-covered waters will be more...resources, and expanded fishing and tourism (Figure 3). More broadly, physical changes in the Arctic include warming ocean, soil, and air temperatures...Alaska, and the Gulf of Mexico that had been in place since 1982 had not been restored in 2009 appropriations measures. Changes in the Arctic

  20. Arctic Diatoms

    DEFF Research Database (Denmark)

    Tammilehto, Anna

    are often dominated by diatoms. They are single-celled, eukaryotic algae, which play an essential role in ocean carbon and silica cycles. Many species of the diatom genus Pseudo-nitzschia Peragallo produce a neurotoxin, domoic acid (DA), which can be transferred to higher levels in food webs causing amnesic...... as vectors for DA to higher levels in the arctic marine food web, posing a possible risk also to humans. DA production in P. seriata was, for the first time, found to be induced by chemical cues from C. finmarchicus, C. hyperboreus and copepodite stages C3 and C4, suggesting that DA may be related to defense...... against grazing. This thesis also quantified population genetic composition and changes of the diatom Fragilariopsis cylindrus spring bloom using microsatellite markers. Diatom-dominated spring blooms in the Arctic are the key event of the year, providing the food web with fundamental pulses of organic...

  1. Arctic Ocean

    Science.gov (United States)

    Parkinson, Claire L.; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    The Arctic Ocean is the smallest of the Earth's four major oceans, covering 14x10(exp 6) sq km located entirely within the Arctic Circle (66 deg 33 min N). It is a major player in the climate of the north polar region and has a variable sea ice cover that tends to increase its sensitivity to climate change. Its temperature, salinity, and ice cover have all undergone changes in the past several decades, although it is uncertain whether these predominantly reflect long-term trends, oscillations within the system, or natural variability. Major changes include a warming and expansion of the Atlantic layer, at depths of 200-900 m, a warming of the upper ocean in the Beaufort Sea, a considerable thinning (perhaps as high as 40%) of the sea ice cover, a lesser and uneven retreat of the ice cover (averaging approximately 3% per decade), and a mixed pattern of salinity increases and decreases.

  2. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.

  3. Plan to extend Arctic's drilling season with new platforms upsets ecologists

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2003-03-01

    Plans to extend the drilling season in Arctic Alaska beyond the traditional winter months has environmentalists worried about the impact on wildlife and the likelihood that oil and gas production will spread more quickly to remote areas. In the past, drilling was confined to the winter only and the thickness of the ice protected the tundra from damage by the heavy drilling equipment. The recent appearance of lightweight drilling equipment, comprised of components that fit together like Lego pieces, can be transported across the tundra beyond the traditional winter months, with promise of minimal damage, combined with significant savings in time and money. Andarko Petroleum Corporation, the company whose planned extended drilling operations are the cause of ecological concern, also claims increased facility to hunt for energy beyond Prudhoe Bay, Alaska's unofficial hub, in places where ice road construction is difficult. Andarko claims that its patented platform design doubles as a production unit and stands about four metres above the tundra, eliminating the need to build permanent production facilities on top of widely used gravel pads, which can leave long-lasting scars on the land and are expensive to clean up. Besides reducing expenses, the arctic platform is claimed to enable exploratory drilling to occur nearly year around. Environmentalists counter by saying that the Andarko plan will increase noise and air pollution, risks greater damage to the ecosystem in the event of a spill, and represents further intrusion upon plants and animals, including caribou, grizzly bears and migratory birds. They are also concerned that the arctic platform concept will help spread industrial activity on Alaska's North Slope. The first arctic platform is expected to be erected 130 km south of Prudhoe Bay as part of a federally sponsored research project to study the feasibility of extracting gas from ice. Specialists at the Alaska Department of Natural Resources

  4. Arctic Social Sciences: Opportunities in Arctic Research.

    Science.gov (United States)

    Arctic Research Consortium of the United States, Fairbanks, AK.

    The U.S. Congress passed the Arctic Research and Policy Act in 1984 and designated the National Science Foundation (NSF) the lead agency in implementing arctic research policy. In 1989, the parameters of arctic social science research were outlined, emphasizing three themes: human-environment interactions, community viability, and rapid social…

  5. Large ancient organic matter contributions to Arctic marine sediments (Svalbard)

    NARCIS (Netherlands)

    Kim, J.-H.; Peterse, F.; Willmott, V.; Klitgaard Kristensen, D.; Baas, M.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Soils, fine-grained ice-rafted detritus (IRD), coals, and marine surface sediments in the Arctic realm (Svalbard) were collected in 2007 and 2008 to characterize organic matter (OM) sources in Arctic marine sediments. Bulk geochemical (C : N ratio and stable carbon isotopic composition) parameters s

  6. Large ancient organic matter contributions to Arctic marine sediments (Svalbard)

    NARCIS (Netherlands)

    Kim, J.-H.; Peterse, F.; Willmott, V.; Klitgaard Kristensen, D.; Baas, M.; Schouten, S.; Sinninghe Damsté, J.S.

    2011-01-01

    Soils, fine-grained ice-rafted detritus (IRD), coals, and marine surface sediments in the Arctic realm (Svalbard)were collected in 2007 and 2008 to characterize organic matter (OM) sources in Arctic marine sediments. Bulkgeochemical (C : N ratio and stable carbon isotopic composition) parameters sug

  7. The seasonal cycle of the greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-07-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were unusually high, compared with other tundra sites, with NEE=–92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=–232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (–14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg <200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was –64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  8. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    Directory of Open Access Journals (Sweden)

    M. K. van der Molen

    2007-11-01

    Full Text Available Carbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were high compared with other tundra sites, with NEE=−92 g C m−2 yr−1, which is composed of an Reco=+141 g C m−2 yr−1 and GPP=−232 g C m−2 yr−1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (−14°C, reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg<200 W m−2, whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m−2 yr−1, so that the greenhouse gas balance was −64 g C-CO2e m−2 yr−1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition.

  9. Deciduous shrub growth and the greening of the Arctic in West Siberia

    Science.gov (United States)

    Forbes, B. C.; Macias Fauria, M.; Zetterberg, P.; Kumpula, T.

    2010-12-01

    Salix lanata and Alnus fruticosa are common and widespread shrub species in the low arctic tundra zone of West Siberia. They often occur in similar local habitats with the live portions of genets up to 100 years old. We have recently established that growth rings of S. lanata provide an excellent proxy for summer temperature. In that study our data were derived from shrubs growing on organic soils near the arctic coast of the Nenets Autonomous Okrug (NAO), west of the Ural Mountains. East of the Urals, in the Yamal-Nenets Autonomous Okrug (YNAO), climate is more continental and sandy soils provide a relatively nutrient-poor substrate for plant growth. By sampling two different species side by side on the Yamal Peninsula, we shed light on the relationship between deciduous shrubs and growing season temperatures in the last half century or so, a period of pronounced regional warming. We discern differences in the climate signal within a single species (S. lanata) as well as between it and a neighboring species with a strongly overlapping ecological amplitude (A. fruticosa). July is the main month for temperature correlation in Alnus, whereas Salix responds to June-July-August temperatures in both regions. The high correlations of shrub growth with summer temperature (r > 0.7 over the period 1956-2004) strongly suggest a link between increased shrub growth and recent decadal warming in both regions (~2°C). Both species showed significant correlation with the regional Normalized Difference Vegetation Index (NDVI), although it was somewhat lower in YNAO compared to NAO, probably due to the relative land cover (10% vs. 20%, respectively) of erect shrubs in both areas, which affects their overall contribution to the NDVI. In both regions Salix lanata biomass peaks in the second half of July. Hand-held leaf area index data from Yamal indicate a significant difference between loamy/clayey and sandy sites. We hypothesized that this same variation would be evident at the

  10. Light-absorbing impurities in Arctic snow

    Directory of Open Access Journals (Sweden)

    S. J. Doherty

    2010-08-01

    Full Text Available Absorption of radiation by ice is extremely weak at visible and near-ultraviolet wavelengths, so small amounts of light-absorbing impurities in snow can dominate the absorption of solar radiation at these wavelengths, reducing the albedo relative to that of pure snow, contributing to the surface energy budget and leading to earlier snowmelt. In this study Arctic snow is surveyed for its content of light-absorbing impurities, expanding and updating the 1983–1984 survey of Clarke and Noone. Samples were collected in Alaska, Canada, Greenland, Svalbard, Norway, Russia, and the Arctic Ocean during 2005–2009, on tundra, glaciers, ice caps, sea ice, frozen lakes, and in boreal forests. Snow was collected mostly in spring, when the entire winter snowpack is accessible for sampling. Sampling was carried out in summer on the Greenland ice sheet and on the Arctic Ocean, of melting glacier snow and sea ice as well as cold snow. About 1200 snow samples have been analyzed for this study.

    The snow is melted and filtered; the filters are analyzed in a specially designed spectrophotometer system to infer the concentration of black carbon (BC, the fraction of absorption due to non-BC light-absorbing constituents and the absorption Ångstrom exponent of all particles. The reduction of snow albedo is primarily due to BC, but other impurities, principally brown (organic carbon, are typically responsible for ~40% of the visible and ultraviolet absorption. The meltwater from selected snow samples was saved for chemical analysis to identify sources of the impurities. Median BC amounts in surface snow are as follows (nanograms of carbon per gram of snow: Greenland 3, Arctic Ocean snow 7, melting sea ice 8, Arctic Canada 8, Subarctic Canada 14, Svalbard 13, Northern Norway 21, Western Arctic Russia 26, Northeastern Siberia 17. Concentrations are more variable in the European Arctic than in Arctic Canada or the Arctic Ocean, probably because of the proximity

  11. Paleoenvironmental analyses of an organic deposit from an erosional landscape remnant, Arctic Coastal Plain of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Eisner, W R; Bockheim, J G; Hinkel, K M; Brown, T A; Nelson, F E; Peterson, K M; Jones, B M

    2005-01-02

    The dominant landscape process on the Arctic Coastal Plain of northern Alaska is the formation and drainage of thaw lakes. Lakes and drained thaw lake basins account for approximately 75% of the modern surface expression of the Barrow Peninsula. The thaw lake cycle usually obliterates lacustrine or peat sediments from previous cycles which could otherwise be used for paleoecological reconstruction of long-term landscape and vegetation changes. Several possible erosional remnants of a former topographic surface that predates the formation of the thaw lakes have been tentatively identified. These remnants are characterized by a higher elevation, a thick organic layer with very high ground ice content in the upper permafrost, and a plant community somewhat atypical of the region. Ten soil cores were collected from one site, and one core was intensively sampled for soil organic carbon content, pollen analysis, and {sup 14}C dating. The lowest level of the organic sediments represents the earliest phase of plant growth and dates to ca. 9000 cal BP. Palynological evidence indicates the presence of mesic shrub tundra (including sedge, birch, willow, and heath vegetation); and microfossil indicators point to wetter eutrophic conditions during this period. Carbon accumulation was rapid due to high net primary productivity in a relatively nutrient-rich environment. These results are interpreted as the local response to ameliorating climate during the early Holocene. The middle Holocene portion of the record contains an unconformity, indicating that between 8200 and 4200 cal BP sediments were eroded from the site, presumably in response to wind activity during a drier period centered around 4500 cal BP. The modern vegetation community of the erosional remnant was established after 4200 cal BP, and peat growth resumed. During the late Holocene, carbon accumulation rates were greatly reduced in response to the combined effects of declining productivity associated with climatic

  12. Carbon dioxide and methane dynamics in Russian tundra

    DEFF Research Database (Denmark)

    Johansson, Paul Torbjörn; Kiepe, Isabell; Herbst, Mathias

    Russia. The area is situated at 67°N in the European part of northeast Russia within the Pechora basin. The Russian tundra region is an area which has recently been subject to many speculations in relation to climatic change effects and greenhouse gas (GHG) exchange but still little scientific ev...

  13. [The gene pool of native inhabitants of the Samburg tundra].

    Science.gov (United States)

    Osipova, L P; Posukh, O L; Ivakin, E A; Kriukov, Iu A; Karafet, T M

    1996-06-01

    This study continues a series of investigations of the gene pool of native Siberian ethnic groups. In a population of Tundra Nentsi (Northern Samoyeds) and a group of Komi-Zyryans (Finno-Ugrian) (Samburg settlement, Tyumenskaya oblast, Yamalo-Nenetskii Autonomous okrug), gene markers of the following genetic systems were studied: blood groups (ABO, MNSs, Rhesus, Kell, Duffy, and P), erythrocyte acid phosphatase (AcP), phosphoglucomutase 1 (PGM 1), haptoglobin (Hp), and transferrin (Tf). The population of Samburg Tundra Nentsi was shown to have a close genetic relationship with the "core" of the Forest Nentsi population. In Northern Samoyeds, three carriers of the rare allele K (blood group Kell) were found for the first time. It is suggested that this allele was transferred into the population of Tundra Nentsi from Komi. Samburg Tundra Nentsi are found to have the maximum frequency of the allele PGM 1 (Posphoglucomutase 1) among aboriginal populations of northern Asia. Analysis of original data and the literature revealed a significant genetic distance between the Komi and Northern Samoyed populations. It was shown that Samburg Komi occupy an intermediate position between the clusters of Nenets populations and Finno-Ugrians (Komi) living in Komi Republic.

  14. Global assessment of experimental climate warming on tundra vegetation

    DEFF Research Database (Denmark)

    Elmendorf, S.C.; Henry, G.H.R.; Bjorkman, A.D.

    2012-01-01

    Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this ap...

  15. Backscatter from ice growing on shallow tundra lakes near Barrow, Alaska, winter 1991-1992

    Science.gov (United States)

    Jeffries, M. O.; Wakabayashi, H.; Weeks, W. F.; Morris, K.

    1993-01-01

    The timing of freeze-up and break-up of Arctic lake ice is a potentially useful environmental indicator that could be monitored using SAR. In order to do this, it is important to understand how the properties and structure of the ice during its growth and decay affect radar backscatter and thus lake ice SAR signatures. The availability of radiometrically and geometrically calibrated digital SAR data time series from the Alaska SAR Facility has made it possible for the first time to quantify lake ice backscatter intensity (sigma(sup o)) variations. This has been done for ice growing on shallow tundra lakes near Barrow, NW Alaska, from initial growth in September 1991 until thawing and decay in June 1992. Field and laboratory observations and measurements of the lake ice were made in late April 1992. The field investigations of the coastal lakes near Barrow confirmed previous findings that, (1) ice frozen to the lake bottom had a dark signature in SAR images, indicating weak backscatter, while, (2) ice that was floating had a bright signature, indicating strong backscatter. At all sites, regardless of whether the ice was grounded or floating, there was a layer of clear, inclusion-free ice overlaying a layer of ice with dense concentrations of vertically oriented tubular bubbles. At some sites, there was a third layer of porous, snow-ice overlaying the clear ice.

  16. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia.

    Science.gov (United States)

    Berner, Logan T; Beck, Pieter S A; Bunn, Andrew G; Goetz, Scott J

    2013-11-01

    Russia's boreal (taiga) biome will likely contract sharply and shift northward in response to 21st century climatic change, yet few studies have examined plant response to climatic variability along the northern margin. We quantified climate dynamics, trends in plant growth, and growth-climate relationships across the tundra shrublands and Cajander larch (Larix cajanderi Mayr.) woodlands of the Kolyma river basin (657 000 km(2) ) in northeastern Siberia using satellite-derived normalized difference vegetation indices (NDVI), tree ring-width measurements, and climate data. Mean summer temperatures (Ts ) increased 1.0 °C from 1938 to 2009, though there was no trend (P > 0.05) in growing year precipitation or climate moisture index (CMIgy ). Mean summer NDVI (NDVIs ) increased significantly from 1982 to 2010 across 20% of the watershed, primarily in cold, shrub-dominated areas. NDVIs positively correlated (P  0.05), which significantly correlated with NDVIs (r = 0.44, P moisture availability and, furthermore, that warming enhanced growth. Impacts of future climatic change on forests near treeline in Arctic Russia will likely be influenced by shifts in both temperature and moisture, which implies that projections of future forest distribution and productivity in this area should take into account the interactions of energy and moisture limitations.

  17. Seasonal dynamics in soil microbial biomass carbon and nitrogen and microbial quantity in a forest-alpine tundra ecotone, Eastern Qinghai-Tibetan Plateau, China%青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态

    Institute of Scientific and Technical Information of China (English)

    刘洋; 张健; 闫帮国; 黄旭; 徐振锋; 吴福忠

    2012-01-01

    为了了解青藏高原东缘高山森林-苔原交错带土壤微生物的特征和季节变化,研究了米亚罗鹧鸪山原始针叶林、林线、树线、密灌丛、疏灌丛和高山草甸土壤微生物生物量碳(MBC)、氮(MBN)和可培养微生物数量的季节动态.结果表明,植被类型和季节动态对MBC、MBN和微生物数量都有显著影响.不同时期的微生物在各植被类型间分布有差异,植物生长季初期和生长季中期,树线以上群落的MBC高于树线下的群落,而到生长季未期恰恰相反,暗针叶林、林线和树线的MBC显著升高,各植被之间MBC的差异减小;微生物数量基本上也是以树线为界,树线以下群落土壤微生物数量显著低于树线以上群落,其中密灌丛的细菌数量最高;可培养微生物数量为生长季末期>生长季初期>生长季中期.生长季末期真菌数量显著增加,且MBC/MBN最高.统计分析表明,MBN与细菌、真菌、放线菌数量存在显著的相关关系,而MBC仅与真菌数量存在显著相关关系(p<0.05).植物生长季末期大量的凋落物输入和雪被覆盖可能是微生物季节变异的外在因素,而土壤微生物和高山植物对有效氮的竞争可能是微生物季节变异的内在因素.植物生长季初期对氮的吸收和土壤微生物在植物生长季末期对氮的固定加强了高山生态系统对氮的利用.气候变暖可能会延长高山植物的生长季,增加高山土壤微生物生物量,加速土壤有机质的分解,进而改变高山土壤碳的固存速率.%Aims The forest-alpine tundra ecotone is one of the most conspicuous climate-driven ecological boundaries. However, dynamics of soil microbial biomass and quantity during different stages of the growing season in the ecotone remain unclear. Our objective was to understand the temporal and spatial variations of microbial biomass and quantity to explore the main drivers in the ecotone. Methods We collected soil

  18. Bridging arctic pathways: Integrating hydrology, geomorphology and remote sensing in the north

    Science.gov (United States)

    Trochim, Erin D.

    This work presents improved approaches for integrating patterns and processes within hydrology, geomorphology, ecology and permafrost on Arctic landscapes. Emphasis was placed on addressing fundamental interdisciplinary questions using robust, repeatable methods. Water tracks were examined in the foothills of the Brooks Range to ascertain their role within the range of features that transport water in Arctic regions. Classes of water tracks were developed using multiple factor analysis based on their geomorphic, soil and vegetation characteristics. These classes were validated to verify that they were repeatable. Water tracks represented a broad spectrum of patterns and processes primarily driven by surficial geology. This research demonstrated a new approach to better understanding regional hydrological patterns. The locations of the water track classes were mapped using a combination method where intermediate processing of spectral classifications, texture and topography were fed into random forests to identify the water track classes. Overall, the water track classes were best visualized where they were the most discrete from the background landscape in terms of both shape and content. Issues with overlapping and imbalances between water track classes were the biggest challenges. Resolving the spatial locations of different water tracks represents a significant step forward for understanding periglacial landscape dynamics. Leaf area index (LAI) calculations using the gap-method were optimized using normalized difference vegetation index (NDVI) as input for both WorldView-2 and Landsat-7 imagery. The study design used groups to separate the effects of surficial drainage networks and the relative magnitude of change in NDVI over time. LAI values were higher for the WorldView-2 data and for each sensor and group combination the distribution of LAI values was unique. This study indicated that there are tradeoffs between increased spatial resolution and the ability

  19. Latent heat exchange in the boreal and arctic biomes.

    Science.gov (United States)

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need

  20. Slow recovery of High Arctic heath communities from nitrogen enrichment.

    Science.gov (United States)

    Street, Lorna E; Burns, Nancy R; Woodin, Sarah J

    2015-04-01

    Arctic ecosystems are strongly nutrient limited and exhibit dramatic responses to nitrogen (N) enrichment, the reversibility of which is unknown. This study uniquely assesses the potential for tundra heath to recover from N deposition and the influence of phosphorus (P) availability on recovery. We revisited an experiment in Svalbard, established in 1991, in which N was applied at rates representing atmospheric N deposition in Europe (10 and 50 kg N ha(-1)  yr(-1) ; 'low' and 'high', respectively) for 3-8 yr. We investigated whether significant effects on vegetation composition and ecosystem nutrient status persisted up to 18 yr post-treatment. Although the tundra heath is no longer N saturated, N treatment effects persist and are strongly P-dependent. Vegetation was more resilient to N where no P was added, although shrub cover is still reduced in low-N plots. Where P was also added (5 kg P ha(-1)  yr(-1) ), there are still effects of low N on community composition and nutrient dynamics. High N, with and without P, has many lasting impacts. Importantly, N + P has caused dramatically increased moss abundance, which influences nutrient dynamics. Our key finding is that Arctic ecosystems are slow to recover from even small N inputs, particularly where P is not limiting.

  1. Changes in Microbial Nitrogen Dynamics with Soil Depth, and along a Latitudinal Transect in Western Siberia

    Science.gov (United States)

    Wild, B.; Schnecker, J.; Knoltsch, A.; Takriti, M.; Mooshammer, M.; Gentsch, N.; Mikutta, R.; Alves, R.; Gittel, A.; Lashchinskiy, N.; Richter, A.

    2015-12-01

    Plant productivity is often limited by low N availability, and this has been attributed to the slow breakdown of N-containing polymers such as proteins into amino acids that are small enough for uptake. Under such conditions, plants and microorganisms efficiently use the available N for growth, and the microbial release of excess N as ammonium (N mineralization), as well as the transformation of ammonium into nitrate (nitrification) is low. Nitrogen limitation is expected to increase towards high latitudes as conditions become less favourable for decomposition. On the other hand, within an ecosystem, microbial N limitation is expected to decrease with soil depth, following the decrease in the C/N ratio of organic matter. To test these hypotheses, we sampled organic topsoils, mineral topsoils and mineral subsoils from seven ecosystems along a latitudinal transect in Western Siberia, ranging from tundra (67°N) to boreal forest and further to steppe (54°N), and determined gross rates of protein depolymerization, N mineralization and nitrification using 15N pool dilution assays. We found that all rates decreased with depth following the decrease in organic matter content. Related to microbial biomass, however, only protein depolymerization decreased with depth, whereas N mineralization and nitrification significantly increased. This pattern was consistent across the seven ecosystems studied. Furthermore, we did not find indications for a decrease in microbial N limitation from arctic to temperate systems. Our findings thus challenge the perception of ubiquitous N limitation at high latitudes, but suggest a transition from N to C limitation of microorganisms with soil depth. With microbial N immobilization constrained by low C availability, subsoils might harbour an easily available N pool that can contribute to plant N nutrition, but might also promote N losses from the ecosystem, e.g., by nitrate leaching, even in high latitude systems such as tundra and boreal

  2. Expanding Spatial and Temporal Coverage of Arctic CH4 and CO2 Fluxes

    Science.gov (United States)

    Murphy, P.; Oechel, W. C.; Moreaux, V.; Losacco, S.; Zona, D.

    2013-12-01

    Carbon storage and exchange in Arctic ecosystems is the subject of intensive study focused on determining rates, controls, and mechanisms of CH4 and CO2 fluxes. The Arctic contains more than 1 Gt of Carbon in the upper meter of soil, both in the active layer and permafrost (Schuur et al., 2008; Tarnocai et al., 2009). However, the annual pattern and controls on the release of CH4 is inadequately understood in Arctic tundra ecosystems. Annual methane budgets are poorly understood, and very few studies measure fluxes through the freeze-up cycle during autumn months (Mastepanov et al., 2008; Mastepanov et al., 2010; Sturtevant et al., 2012). There is no known, relatively continuous, CH4 flux record for the Arctic. Clearly, the datasets that currently exist for budget calculations and model parameterization and verification are inadequate. This is likely due to the difficult nature of flux measurements in the Arctic. In September 2012, we initiated a research project towards continuous methane flux measurements along a latitudinal transect in Northern Alaska. The eddy-covariance (EC) technique is challenging in such extreme weather conditions due to the effects of ice formation and precipitation on instrumentation, including gas analyzers and sonic anemometers. The challenge is greater in remote areas of the Arctic, when low power availability and limited communication can lead to delays in data retrieval or data loss. For these reasons, a combination of open- and closed-path gas analyzers, and several sonic anemometers (including one with heating), have been installed on EC towers to allow for cross-comparison and cross-referencing of calculated fluxes. Newer instruments for fast CH4 flux determination include: the Los Gatos Research Fast Greenhouse Gas Analyzer and the Li-Cor LI-7700. We also included the self-heated Metek Class-A uSonic-3 Anemometer as a new instrument. Previously existing instruments used for comparison include the Li-Cor LI-7500; Li-Cor LI-7200

  3. Distribution of global fallouts cesium-137 in taiga and tundra catenae at the Ob River basin

    Science.gov (United States)

    Semenkov, I. N.; Usacheva, A. A.; Miroshnikov, A. Yu.

    2015-03-01

    The classification of soil catenae at the Ob River basin is developed and applied. This classification reflects the diverse geochemical conditions that led to the formation of certain soil bodies, their combinations and the migration fields of chemical elements. The soil and geochemical diversity of the Ob River basin catenae was analyzed. The vertical and lateral distribution of global fallouts cesium-137 was studied using the example of the four most common catenae types in Western Siberia tundra and taiga. In landscapes of dwarf birches and dark coniferous forests on gleysols, cryosols, podzols, and cryic-stagnosols, the highest 137Cs activity density and specific activity are characteristic of the upper soil layer of over 30% ash, while the moss-grass-shrub cover is characterized by low 137Cs activity density and specific activity. In landscapes of dwarf birches and pine woods on podzols, the maximum specific activity of cesium-137 is typical for moss-grass-shrub cover, while the maximum reserves are concentrated in the upper soil layer of over 30% ash. Bog landscapes and moss-grass-shrub cover are characterized by a minimum activity of 137Cs, and its reserves in soil generally decrease exponentially with depth. The cesium-137 penetration depth increases in oligotrophic histosols from northern to middle taiga landscapes from 10-15 to 40 cm. 137Cs is accumulated in oligotrophic histosols for increases in pH from 3.3 to 4.0 and in concretionary interlayers of pisoplinthic-cryic-histic-stagnosols. Cryogenic movement, on the one hand, leads to burying organic layers enriched in 137Cs and, on the other hand, to deducing specific activity when mixed with low-active material from lower soil layers.

  4. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  5. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Directory of Open Access Journals (Sweden)

    Ken D Tape

    Full Text Available Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni and Eurasia (A. a. alces. Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  6. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.

    Science.gov (United States)

    Tape, Ken D; Gustine, David D; Ruess, Roger W; Adams, Layne G; Clark, Jason A

    2016-01-01

    Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar extensions have been observed in Canada (A. a. andersoni) and Eurasia (A. a. alces). Northern moose distribution is thought to be limited by forage availability above the snow in late winter, so the observed increase in shrub habitat could be causing the northward moose establishment, but a previous hypothesis suggested that hunting cessation triggered moose establishment. Here, we use recent changes in shrub cover and empirical relationships between shrub height and growing season temperature to estimate available moose habitat in Arctic Alaska c. 1860. We estimate that riparian shrubs were approximately 1.1 m tall c. 1860, greatly reducing the available forage above the snowpack, compared to 2 m tall in 2009. We believe that increases in riparian shrub habitat after 1860 allowed moose to colonize tundra regions of Alaska hundreds of kilometers north and west of previous distribution limits. The northern shift in the distribution of moose, like that of snowshoe hares, has been in response to the spread of their shrub habitat in the Arctic, but at the same time, herbivores have likely had pronounced impacts on the structure and function of these shrub communities. These northward range shifts are a bellwether for other boreal species and their associated predators.

  7. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Science.gov (United States)

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  8. Barry Lopez's Relational Arctic

    OpenAIRE

    Kjeldaas, Sigfrid

    2014-01-01

    "Arctic dreams: imagination and desire in a Northern landscape"(1986) can be read as American nature writer Barry Lopez’s attempt to evoke a more profound and ecologically sound understanding of the North American Arctic. This article investigates how Arctic Dreams uses insights from Jacob von Uexküll’s Umwelt theory, in combination with what Tim Ingold describes as a particular form of animism associated with circumpolar indigenous hunter cultures, to portray the Arctic natur...

  9. Terrestrial bird populations and habitat use on coastal plain tundra of the Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Presents results of four breeding season and three post-breeding season bird surveys conducted on 45 10-ha plots representing seven habitat types study sites on the...

  10. High resilience in the Yamal-Nenets social-ecological system, West Siberian Arctic, Russia.

    Science.gov (United States)

    Forbes, Bruce C; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-12-29

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience.

  11. High resilience in the Yamal-Nenets social–ecological system, West Siberian Arctic, Russia

    Science.gov (United States)

    Forbes, Bruce C.; Stammler, Florian; Kumpula, Timo; Meschtyb, Nina; Pajunen, Anu; Kaarlejärvi, Elina

    2009-01-01

    Tundra ecosystems are vulnerable to hydrocarbon development, in part because small-scale, low-intensity disturbances can affect vegetation, permafrost soils, and wildlife out of proportion to their spatial extent. Scaling up to include human residents, tightly integrated arctic social-ecological systems (SESs) are believed similarly susceptible to industrial impacts and climate change. In contrast to northern Alaska and Canada, most terrestrial and aquatic components of West Siberian oil and gas fields are seasonally exploited by migratory herders, hunters, fishers, and domesticated reindeer (Rangifer tarandus L.). Despite anthropogenic fragmentation and transformation of a large proportion of the environment, recent socioeconomic upheaval, and pronounced climate warming, we find the Yamal-Nenets SES highly resilient according to a few key measures. We detail the remarkable extent to which the system has successfully reorganized in response to recent shocks and evaluate the limits of the system's capacity to respond. Our analytical approach combines quantitative methods with participant observation to understand the overall effects of rapid land use and climate change at the level of the entire Yamal system, detect thresholds crossed using surrogates, and identify potential traps. Institutional constraints and drivers were as important as the documented ecological changes. Particularly crucial to success is the unfettered movement of people and animals in space and time, which allows them to alternately avoid or exploit a wide range of natural and anthropogenic habitats. However, expansion of infrastructure, concomitant terrestrial and freshwater ecosystem degradation, climate change, and a massive influx of workers underway present a looming threat to future resilience. PMID:20007776

  12. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    Science.gov (United States)

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  13. Arctic hydrology and meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Kane, D.L.

    1988-01-01

    The behavior of arctic ecosystems is directly related to the ongoing physical processes of heat and mass transfer. Furthermore, this system undergoes very large fluctuations in the surface energy balance. The buffering effect of both snow and the surface organic soils can be seen by looking at the surface and 40 cm soil temperatures. The active layer, that surface zone above the permafrost table, is either continually freezing or thawing. A large percentage of energy into and out of a watershed must pass through this thin veneer that we call the active layer. Likewise, most water entering and leaving the watershed does so through the active layer. To date, we have been very successful at monitoring the hydrology of Imnavait Creek with special emphasis on the active layer processes. The major contribution of this study is that year-round hydrologic data are being collected. An original objective of our study was to define how the thermal and moisture regimes within the active layer change during an annual cycle under natural conditions, and then to define how the regime will be impacted by some imposed terrain alteration. Our major analysis of the hydrologic data sets for Imnavait Creek have been water balance evaluations for plots during snowmelt, water balance for the watershed during both rainfall and snowmelt, and the application of a hydrologic model to predict the Imnavait Creek runoff events generated by both snowmelt and rainfall.

  14. Permafrost and surface energy balance of a polygonal tundra site in Northern Siberia – Part 2: Winter

    Directory of Open Access Journals (Sweden)

    M. Langer

    2010-08-01

    Full Text Available Permafrost is largely determined by the surface energy balance. Its vulnerability to degradation due to climate warming depends on complex soil-atmosphere interactions. This article is the second part of a comprehensive surface energy balance study at a polygonal tundra site in Northern Siberia. It comprises two consecutive winter periods from October 2007 to May 2008 and from October 2008 to January 2009. The surface energy balance is obtained by independent measurements of the radiation budget, the sensible heat flux and the ground heat flux, whereas the latent heat flux is inferred from measurements of the atmospheric turbulence characteristics and a model approach. The measurements reveal that the long-wave radiation is the dominant factor in the surface energy balance. The radiative losses are balanced to about 60% by the ground heat flux and almost 40% by the sensible heat fluxes, whereas the contribution of the latent heat flux is found to be relatively small. The main controlling factors of the surface energy budget are the snow cover, the cloudiness and the soil temperature gradient. Significant spatial differences in the surface energy balance are observed between the tundra soils and a small pond. The heat flux released from the subsurface heat storage is by a factor of two increased at the freezing pond during the entire winter period, whereas differences in the radiation budget are only observed at the end of winter. Inter-annual differences in the surface energy balance are related to differences in snow depth, which substantially affect the temperature evolution at the investigated pond. The obtained results demonstrate the importance of the ground heat flux for the soil-atmosphere energy exchange and reveal high spatial and temporal variabilities in the subsurface heat budget during winter.

  15. Importance of soil thermal regime in terrestrial ecosystem carbon dynamics in the circumpolar north

    Science.gov (United States)

    Jiang, Yueyang; Zhuang, Qianlai; Sitch, Stephen; O'Donnell, Jonathan A.; Kicklighter, David; Sokolov, Andrei; Melillo, Jerry

    2016-07-01

    In the circumpolar north (45-90°N), permafrost plays an important role in vegetation and carbon (C) dynamics. Permafrost thawing has been accelerated by the warming climate and exerts a positive feedback to climate through increasing soil C release to the atmosphere. To evaluate the influence of permafrost on C dynamics, changes in soil temperature profiles should be considered in global C models. This study incorporates a sophisticated soil thermal model (STM) into a dynamic global vegetation model (LPJ-DGVM) to improve simulations of changes in soil temperature profiles from the ground surface to 3 m depth, and its impacts on C pools and fluxes during the 20th and 21st centuries. With cooler simulated soil temperatures during the summer, LPJ-STM estimates ~ 0.4 Pg C yr- 1 lower present-day heterotrophic respiration but ~ 0.5 Pg C yr- 1 higher net primary production than the original LPJ model resulting in an additional 0.8 to 1.0 Pg C yr- 1 being sequestered in circumpolar ecosystems. Under a suite of projected warming scenarios, we show that the increasing active layer thickness results in the mobilization of permafrost C, which contributes to a more rapid increase in heterotrophic respiration in LPJ-STM compared to the stand-alone LPJ model. Except under the extreme warming conditions, increases in plant production due to warming and rising CO2, overwhelm the e nhanced ecosystem respiration so that both boreal forest and arctic tundra ecosystems remain a net C sink over the 21st century. This study highlights the importance of considering changes in the soil thermal regime when quantifying the C budget in the circumpolar north.

  16. Communicating Climate and Ecosystem Change in the Arctic

    Science.gov (United States)

    Soreide, N. N.; Overland, J. E.; Calder, J. A.; Rodionov, S.

    2005-12-01

    There is an explosion of interest in Northern Hemisphere climate, highlighting the importance of recent changes in the Arctic on mid-latitude climate and its impact on marine and terrestrial ecosystems. Traditional sea ice and tundra dominated arctic ecosystems are being reorganizing into warmer sub-arctic ecosystem types. Over the previous two years we have developed a comprehensive, near real-time arctic change detection protocol to track physical and biological changes for presentation on the web: http://www.arctic.noaa.gov/detect. The effort provides a continuous update to the Arctic Climate Impact Assessment (ACIA) Report, released in November 2004. Principles for the protocol include an accessible narrative style, scientifically credible and objective indicators, notes multiple uses for the information, acknowledges uncertainties, and balances having too many indicators-which leads to information overload-and too few-which does not capture the complexity of the system. Screening criteria include concreteness, public awareness, being understandable, availability of historical time series, and sensitivity. The site provides sufficient information for an individual to make their own assessment regarding the balance of the evidence for tracking change. The product provides an overview, recent news, links to many arctic websites, and highlights climate, global impacts, land and marine ecosystems, and human consequences. Since its inception a year ago, it has averaged about 9000 hits an day on the web, and is a major information source as determined by Google search. The future direction focuses on understanding the causes for change. In spring 2005 we also presented a near real-time ecological and climatic surveillance website for the Bering Sea: www.beringclimate.noaa.gov. The site provides up-to-date information which ties northward shifts of fish, invertebrate and marine mammal populations to physical changes in the Arctic. This site is more technical than the

  17. Islands of the Arctic

    Science.gov (United States)

    Overpeck, Jonathan

    2004-02-01

    Few environments on Earth are changing more dramatically than the Arctic. Sea ice retreat and thinning is unprecedented in the period of the satellite record. Surface air temperatures are the warmest in centuries. The biology of Arctic lakes is changing like never before in millennia. Everything is pointing to the meltdown predicted by climate model simulations for the next 100 years. At the same time, the Arctic remains one of the most pristine and beautiful places on Earth. For both those who know the Arctic and those who want to know it, this book is worth its modest price. There is much more to the Arctic than its islands, but there's little doubt that Greenland and the major northern archipelagos can serve as a great introduction to the environment and magnificence of the Arctic. The book uses the islands of the Arctic to give a good introduction to what the Arctic environment is all about. The first chapter sets the stage with an overview of the geography of the Arctic islands, and this is followed by chapters that cover many key aspects of the Arctic: the geology (origins), weather and climate, glaciers, ice sheets, sea ice, permafrost and other frozen ground issues, coasts, rivers, lakes, animals, people, and environmental impacts. The material is pitched at a level well suited for the interested layperson, but the book will also appeal to those who study the science of the Arctic.

  18. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  19. Photosynthesis, plant growth and nitrogen nutrition in Alaskan tussock tundra: Response to experimental warming

    Science.gov (United States)

    Dynes, E.; Welker, J. M.; Moore, D. J.; Sullivan, P.; Ebbs, L.; Pattison, R.

    2009-12-01

    Temperature is predicted to rise significantly in northern latitudes over the next century. The Arctic tundra is a fragile ecosystem with low rates of photosynthesis and low nutrient mineralisation. Rising temperatures may increase photosynthetic capacity in the short term through direct stimulation of photosynthetic rates and also in the longer term due to enhanced nutrient availability. Different species and plant functional types may have different responses to warming which may have an impact on plant community structure. As part of the International Tundra Experiment (ITEX) to investigate the effects of warming on arctic vegetation, a series of open top chambers (OTCs) have been established at the Toolik Field Station (68°38’N, 149°36’W, elevation 720 m). This study employs 12 plots; 6 control plots and 6 warming plots covered with OTCs which maintain a temperature on average +1.54 °C degrees higher than ambient temperatures. The response of photosynthesis to temperature was measured using an infra-red gas analyzer (IRGA) with a cooling adaptor to manipulate leaf temperature and determine AMAX in two contrasting species, Eriophorum vaginatum (sedge) and Betula nana (shrub). Temperature within the chamber head of the IRGA was manipulated from 10 through 25 °C. We also measured the leaf area index of plots using a Decagon Accupar Ceptometer to provide insights into potential differences in canopy cover. In both OTC and control plots the photosynthetic rate of B. nana was greater than that of E. vaginatum, with the AMAX of B. nana peaking at 20.08°C and E. vaginatum peaking slightly lower at 19.7°C in the control plots. There was no apparent difference in the temperature optimum of photosynthesis of either species when exposed to the warming treatment. Although there was no difference in temperature optimum there were differences in the peak values of AMAX between treatment and control plots. In the case of B. nana, AMAX was higher in the OTCs than in

  20. Barrow Arctic Terrestrial Observatory (BATO): An IPY Legacy

    Science.gov (United States)

    Brown, J.; Hinkel, K. M.; Hollister, R. D.; Oberbauer, S. F.; Nelson, F. E.; Romanovsky, V. E.; Shiklomanov, N. I.; Sturm, M.; Tweedie, C. E.; Webber, P. J.

    2009-12-01

    Barrow, Alaska, has played an important role in the commemoration of the 125th anniversary of the first International Polar Year. Implementation of IPY projects during the Fourth International Polar Year (2007-2009) included a number of IPY approved projects: Thermal State of Permafrost (TSP), SnowNet, the International Tundra Experiment (ITEX), the Circumpolar Active Layer Monitoring (CALM), the Arctic Circumpolar Coastal Observatory Network (ACCO-Net), Back to the Future (1969-1974 IBP Tundra Biome sites) and the Ray-Murdoch Expedition (first Polar Year). Building on results of these and related activities and historical data, the National Science Foundation under its Arctic Observing Network (AON) program, recently funded several long-term projects (estimated duration through 2014): TSP (permafrost temperatures dating back to the 1940s) CALM (seasonal thaw depths dating back to 1962) ITEX (plant phenology starting in 1994) Ultraviolet measurements (since 1990) Other continuing observational projects include snow measurements (SnowNet), coastal erosion, lake dynamics, and bird and small mammal census (U.S. Fish and Wildlife Service and the Owl Research Institute). NOAA and DOE support permanent atmospheric observatories. Site and data information are contained on the Barrow Area Information Database (BAID on Google Earth). Collectively we suggest that these and other continuing field observations be designated as the Barrow Arctic Terrestrial Observatory (BATO). Trends in the historical and current data from these AON and several related projects are reported. AON specific data are available through the Cooperative Arctic Data and Information Service (CADIS) data portal. The proposed BATO, an IPY legacy, is hosted on and adjacent to the Barrow Environmental Observatory (BEO), a 7466-acre protected research area on land provided by the local owners (Ukpeagvik Iñupiat Corporation) and designated as a Scientific Research District by the regional government (North

  1. Tundra in the rain: differential vegetation responses to three years of experimentally doubled summer precipitation in Siberian shrub and Swedish bog tundra.

    Science.gov (United States)

    Keuper, Frida; Parmentier, Frans-Jan W; Blok, Daan; van Bodegom, Peter M; Dorrepaal, Ellen; van Hal, Jurgen R; van Logtestijn, Richard S P; Aerts, Rien

    2012-01-01

    Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.

  2. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    Science.gov (United States)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  3. Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.

    Science.gov (United States)

    Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.

    2005-05-01

    We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches o