WorldWideScience

Sample records for arctic springtail megaphorura

  1. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg

    Directory of Open Access Journals (Sweden)

    Popović Željko D

    2009-07-01

    Full Text Available Abstract Background Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876. The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species. Results A cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules

  2. Lea protein expression during cold-induced dehydration in the Arctic collembola Megaphorura arctica

    Directory of Open Access Journals (Sweden)

    Popović Ž.D.

    2011-01-01

    Full Text Available The Arctic springtail Megaphorura arctica (Tullberg, 1876 employs a strategy known as cryoprotective dehydration to survive winter temperatures as low as -25°C. During cryoprotective dehydration, water is lost from the animal to ice in its surroundings as a result of the difference in vapour pressure between the animal’s supercooled body fluids and ice (Worland et al., 1998; Holmstrup and Somme, 1998. This mechanism ensures that as the habitat temperature falls, the concentration of solutes remains high enough to prevent freezing (Holmstrup et al., 2002. In M. arctica, accumulation of trehalose, a cryo/anhydro protectant, occurs in parallel with dehydration. Recent studies have identified a number of genes and cellular processes involved in cryoprotective dehydration in M. arctica (Clark et al., 2007; Clark et al., 2009; Purać et al., 2011. One of them includes late embryogenesis abundant (LEA proteins. This study, together with that of Bahrndorff et al. (2008, suggests that LEA proteins may be involved in protective dehydration in this species.

  3. Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus EST libraries

    Directory of Open Access Journals (Sweden)

    Kube Michael

    2007-12-01

    Full Text Available Abstract Background Ice, snow and temperatures of -14°C are conditions which most animals would find difficult, if not impossible, to survive in. However this exactly describes the Arctic winter, and the Arctic springtail Onychiurus arcticus regularly survives these extreme conditions and re-emerges in the spring. It is able to do this by reducing the amount of water in its body to almost zero: a process that is called "protective dehydration". The aim of this project was to generate clones and sequence data in the form of ESTs to provide a platform for the future molecular characterisation of the processes involved in protective dehydration. Results Five normalised libraries were produced from both desiccating and rehydrating populations of O. arcticus from stages that had previously been defined as potentially informative for molecular analyses. A total of 16,379 EST clones were generated and analysed using Blast and GO annotation. 40% of the clones produced significant matches against the Swissprot and trembl databases and these were further analysed using GO annotation. Extraction and analysis of GO annotations proved an extremely effective method for identifying generic processes associated with biochemical pathways, proving more efficient than solely analysing Blast data output. A number of genes were identified, which have previously been shown to be involved in water transport and desiccation such as members of the aquaporin family. Identification of these clones in specific libraries associated with desiccation validates the computational analysis by library rather than producing a global overview of all libraries combined. Conclusion This paper describes for the first time EST data from the arctic springtail (O. arcticus. This significantly enhances the number of Collembolan ESTs in the public databases, providing useful comparative data within this phylum. The use of GO annotation for analysis has facilitated the identification of a

  4. Springtail diversity in South Africa

    Directory of Open Access Journals (Sweden)

    Steven L. Chown

    2011-11-01

    Full Text Available Despite their significance in soil ecosystems and their use for investigations of soil ecosystem functioning and in bioindication elsewhere, springtails (Collembola have not been well investigated in South Africa. Early recognition of their role in soil systems and sporadic systematic work has essentially characterised knowledge of the southern African fauna for some time. The situation is now changing as a consequence of systematic and ecological work on springtails. To date this research has focused mostly on the Cape Floristic Region and has revealed a much more diverse springtail fauna than previously known (136 identifiable species and an estimated 300 species for the Cape Floristic Region in total, including radiations in genera such as the isotomid Cryptopygus. Quantitative ecological work has shown that alpha diversity can be estimated readily and that the group may be useful for demonstrating land use impacts on soil biodiversity. Moreover, this ecological work has revealed that some disturbed sites, such as those dominated by Galenia africana, may be dominated by invasive springtail species. Investigation of the soil fauna involved in decomposition in Renosterveld and Fynbos has also revealed that biological decomposition has likely been underestimated in these vegetation types, and that the role of fire as the presumed predominant source of nutrient return to the soil may have to be re-examined. Ongoing research on the springtails will provide the information necessary for understanding and conserving soils: one of southern Africa’s major natural assets.

  5. The springtail cuticle as a blueprint for omniphobic surfaces.

    Science.gov (United States)

    Hensel, René; Neinhuis, Christoph; Werner, Carsten

    2016-01-21

    Omniphobic surfaces found in nature have great potential for enabling novel and emerging products and technologies to facilitate the daily life of human societies. One example is the water and even oil-repellent cuticle of springtails (Collembola). The wingless arthropods evolved a highly textured, hierarchically arranged surface pattern that affords mechanical robustness and wetting resistance even at elevated hydrostatic pressures. Springtail cuticle-derived surfaces therefore promise to overcome limitations of lotus-inspired surfaces (low durability, insufficient repellence of low surface tension liquids). In this review, we report on the liquid-repellent natural surfaces of arthropods living in aqueous or temporarily flooded habitats including water-walking insects or water spiders. In particular, we focus on springtails presenting an overview on the cuticular morphology and chemistry and their biological relevance. Based on the obtained liquid repellence of a variety of liquids with remarkable efficiency, the review provides general design criteria for robust omniphobic surfaces. In particular, the resistance against complete wetting and the mechanical stability strongly both depend on the topographical features of the nano- and micropatterned surface. The current understanding of the underlying principles and approaches to their technological implementation are summarized and discussed. PMID:26239626

  6. Collembase: a repository for springtail genomics and soil quality assessment

    Directory of Open Access Journals (Sweden)

    Klein-Lankhorst Rene M

    2007-09-01

    Full Text Available Abstract Background Environmental quality assessment is traditionally based on responses of reproduction and survival of indicator organisms. For soil assessment the springtail Folsomia candida (Collembola is an accepted standard test organism. We argue that environmental quality assessment using gene expression profiles of indicator organisms exposed to test substrates is more sensitive, more toxicant specific and significantly faster than current risk assessment methods. To apply this species as a genomic model for soil quality testing we conducted an EST sequencing project and developed an online database. Description Collembase is a web-accessible database comprising springtail (F. candida genomic data. Presently, the database contains information on 8686 ESTs that are assembled into 5952 unique gene objects. Of those gene objects ~40% showed homology to other protein sequences available in GenBank (blastx analysis; non-redundant (nr database; expect-value -5. Software was applied to infer protein sequences. The putative peptides, which had an average length of 115 amino-acids (ranging between 23 and 440 were annotated with Gene Ontology (GO terms. In total 1025 peptides (~17% of the gene objects were assigned at least one GO term (expect-value -25. Within Collembase searches can be conducted based on BLAST and GO annotation, cluster name or using a BLAST server. The system furthermore enables easy sequence retrieval for functional genomic and Quantitative-PCR experiments. Sequences are submitted to GenBank (Accession numbers: EV473060 – EV481745. Conclusion Collembase http://www.collembase.org is a resource of sequence data on the springtail F. candida. The information within the database will be linked to a custom made microarray, based on the Agilent platform, which can be applied for soil quality testing. In addition, Collembase supplies information that is valuable for related scientific disciplines such as molecular ecology

  7. An annotated checklist of the springtail fauna of Hungary (Hexapoda: Collembola)

    OpenAIRE

    Dányi, L.; Traser, Gy.

    2008-01-01

    A checklist of the species of springtails (Hexapoda: Collembola) hitherto recorded from Hungary is presented. Each entry is accompanied by complete references, and remarks where appropriate. The present list contains 414 species.

  8. An annotated checklist of the springtail fauna of Hungary (Hexapoda: Collembola

    Directory of Open Access Journals (Sweden)

    Dányi, L

    2008-09-01

    Full Text Available A checklist of the species of springtails (Hexapoda: Collembola hitherto recorded from Hungary is presented. Each entry is accompanied by complete references, and remarks where appropriate. The present list contains 414 species.

  9. Is ornithogenic fertilization important for collembolan communities in Arctic terrestrial ecosystems?

    Directory of Open Access Journals (Sweden)

    Katarzyna Zmudczyńska-Skarbek

    2015-07-01

    Full Text Available In the Arctic, areas close to seabird colonies are often characterized by exceptionally rich vegetation communities linked with the high nutrient subsidies transported by seabirds from the marine environment to the land. These areas also support soil invertebrate communities of which springtails (Collembola often represent the most abundant and diverse group. Our study focused on springtail community composition in the vicinity of seabird (little auk, great skua and glaucous gull nesting areas in different parts of Svalbard (Magdalenefjorden, Isfjorden and Bjørnøya, and on their comparison with adjacent areas not impacted by seabirds. Out of a total of 35 springtail species recorded, seven were found only within the ornithogenically influenced sites. Although geographical location was the strongest factor differentiating these springtail communities, ornithogenic influence was also significant regardless of the location. When each location was considered separately, seabirds were responsible for a relatively small but strongly significant proportion (8.6, 5.2 and 3.9%, respectively, for each site of total springtail community variability. Species whose occurrence was positively correlated with seabird presence were Folsomia coeruleogrisea, Friesea quinquespinosa, Lepidocyrtus lignorum and Oligaphorura groenlandica near Magdalenefjorden, Arrhopalites principalis, Folsomia bisetosella and Protaphorura macfadyeni in Isfjorden, and Folsomia quadrioculata on Bjørnøya.

  10. 土壤跳虫适应低温环境的策略与机制研究进展%Strategies and mechanisms of soil springtails in adapting lower temperature environment:Research progress

    Institute of Scientific and Technical Information of China (English)

    刘晶; 王云彪; 吴东辉

    2012-01-01

    Low temperature and drought are the main environmental factors threatening the animals living in arctic area and cold temperate regions. To adapt the severe environment, the animals should adopt appropriate strategies. As a group of arthopods with freeze-avoiding strategy, soil springtails have the similar ecological mechanisms and modes of cold resistance/tolerance as insects, manifesting in the cold acclimation and drought tolerance to decrease the damage of ice crystal formation. During cold acclimation, there are a rapid increase of glycerol, a rapid decrease of fucose and glucose, and the production of anti-freeze proteins (AFP) , and exists the inter-transformation of different kinds of lipids to improve the flow of cell membrane to protect the cell from low temperature injury. In addition, soil springtails have their own specific modes and mechanisms to tolerate low temperature stress, mainly the vertical migration under the protection of snow cover and the excretion of ice nucleator from haemolymph, illustrating that it' s of significance to research the cryo-biology of soil springtails. This paper summarized the modes and mechanisms of soil springtails in tolerating low temperature environment, reviewed the research progress on the eco-physiology of the springtails, discussed the existing problems of the researches on the low temperature tolerance of the springtails, and prospected the research directions of the springtails low temperature ecology under the background of global change.%低温和干燥是极地及寒温带地区动物的主要环境胁迫因子.为适应恶劣的环境,此区域的动物必须运用有效的方式来适应其栖息环境.土壤跳虫是典型的以避免体液结冰为主要策略来适应低温环境的动物类群,其抗低温的生态策略和模式与昆虫存在相似之处,表现在其利用冷驯化及与干旱协同作用,降低冰晶形成的伤害.在抗低温过程中,其体内甘油等小分子物质含量

  11. Chronic exposure to chlorpyrifos reveals two modes of action in the springtail Folsomia candida

    International Nuclear Information System (INIS)

    Organophosphates are popular insecticides, but relatively little is known about their chronic effects on ecologically relevant endpoints. In this paper, we examine a life-cycle experiment with the springtail Folsomia candida, exposed via food to chlorpyrifos (CPF). The results for all endpoints (survival, growth and reproduction) were analyzed using the DEBtox model. Growth was unaffected by CPF, even at concentrations causing severe effects on survival and reproduction. Model analysis suggests that CPF directly affects the process of egg production. For the short-term response (45 days), this single mode of action accurately agreed with the data. However, the full data set (120 days) revealed a dose-related decrease in reproduction at low concentrations after prolonged exposure, not covered by the same mechanism. It appears that CPF interacts with senescence by increasing oxidative damage. This assumption fits the data well, but has little consequences for the predicted response at the population level. - Exposure to chlorpyrifos in food affects reproduction in springtails according to two distinct toxic mechanisms

  12. First Record of a Neozygites species (Zygomycetes:Entomophthorales) Infecting Springtails (Insecta:Collembola)

    DEFF Research Database (Denmark)

    Steenberg, T; Eilenberg, J; Bresciani, J.

    1996-01-01

    A fungal pathogen from the Entomophthorales (Zygomycetes) was discovered in populations of the lucerne flea Sminthurus viridis (Collembola) collected from grassland and leguminous crops in Denmark during July to October. The morphology of the fungus was studied in springtails, collected live, which...

  13. A case of an apparent infestation by Proisotoma spp. springtails (Collembola: Isotomidae) in a cat.

    Science.gov (United States)

    Beccati, Massimo; Gallo, Maria G; Chiavassa, Elisa; Peano, Andrea

    2012-04-01

    This case report is presumed to be the first case of infestation of a cat by springtails which are small arthropods closely related to insects. The organisms, found by skin scrapings, were identified as Proisotoma spp. (Collembola: Isotomidae). The cat presented with dermatological lesions (itchy, furfuraceous dermatitis), and we speculate that they were due to this infestation. The pathogenic role of the Collembola was hypothesized because of the large number of organisms, the presence of eggs indicating an active reproduction cycle, the lack of other pathogens (fleas, mites or lice) and the clinical recovery accompanied by the disappearance of Collembola following treatment. The owner seemed to be affected by the infestation, because a few days after having purchased the cat, she developed a pruriginous papular dermatitis on the neck and the arms, which disappeared shortly after treatment of the kitten and a careful washing of all of its toys and other accoutrements. PMID:22049948

  14. Synergistic sub-lethal effects of a biocide mixture on the springtail Folsomia fimetaria

    International Nuclear Information System (INIS)

    The toxicity of three biocides, esfenvalerate, picoxystrobin and triclosan, on adult survival and recruitment of juveniles was studied in the springtail Folsomia fimetaria, both in single and mixture experiments. Recruitment of juveniles was more sensitive to biocide exposure than adult survival. The concepts of concentration addition and independent action returned almost identical toxicity predictions, though both models failed to predict the observed toxicity due to synergistic deviations at high exposure concentrations. A comparison with a similar study on earthworms showed that response-patterns were species-specific. Consequently, there is no single reference concept which is applicable for all species of one ecosystem, which in turn questions the usefulness of such mixture prediction concepts in ecological risk assessment. -- Highlights: • Toxicity of esfenvalerate, picoxystrobin and triclosan to Folsomia fimetaria was assessed. • Both, the single biocides and the mixture affected recruitment stronger than survival. • Concentration addition and independent action predictions were almost identical. • Inhibition of recruitment after mixture exposure was stronger than predicted. • Comparison with an earthworm study showed that responses are species-specific. -- The concepts of concentration addition and independent action failed to predict mixture toxicity due to dose-dependent synergistic effects

  15. The life-history of a springtail Folsomia candida living in soil contaminated with nonylphenol

    DEFF Research Database (Denmark)

    Widarto, T. H.; Krogh, P. H.; Forbes, V.

    Nonylphenol (NP) has been known for long time as a suspected endocrine disruptor in animals. We have conducted an experiment to look at the effect of NP on the life-history of the parthenogenetic springtail, Folsomia candida. Six sub-lethal concentrations (0, 8,16, 24, 32, 40 mg/kg dry soil...... in response to different concentrations of NP. The juveniles did not survive the highest concentration of the chemical. In linking the effects on individuals to the population level and for identifying which trait(s) was (were) responsible for the effect on l, we used a simple two-stage model to estimate...... population growth rate (l). Decomposition analysis to investigate the contribution of each of the affected life-history traits to the effects observed on l, and elasticity analysis to examine the relative sensitivity of l to changes in each of the life history traits provided valuable insight...

  16. The Influence of Soil Characteristics on the Toxicity of Oil Refinery Waste for the Springtail Folsomia candida (Collembola).

    Science.gov (United States)

    Reinecke, Adriaan J; van Wyk, Mia; Reinecke, Sophie A

    2016-06-01

    We determined the toxicity of oil refinery waste in three soils using the springtail Folsomia candida (Collembola) in bioassays. Sublethal exposure to a concentration series of API-sludge presented EC50's for reproduction of 210 mg/kg in site soil; 880 mg/kg in LUFA2.2- and 3260 mg/kg in OECD-soil. The sludge was the least toxic in the OECD-soil with the highest clay and organic matter content, the highest maximum water holding capacity, and the least amount of sand. It was the most toxic in the reference site soil with the lowest organic matter content and highest sand content. The results emphasized the important role of soil characteristics such as texture and organic matter content in influencing toxicity, possibly by affecting bioavailability of toxicants. PMID:27048278

  17. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand an...

  18. Arctic Watch

    Science.gov (United States)

    Orcutt, John; Baggeroer, Arthur; Mikhalevsky, Peter; Munk, Walter; Sagen, Hanne; Vernon, Frank; Worcester, Peter

    2015-04-01

    The dramatic reduction of sea ice in the Arctic Ocean will increase human activities in the coming years. This will be driven by increased demand for energy and the marine resources of an Arctic Ocean more accessible to ships. Oil and gas exploration, fisheries, mineral extraction, marine transportation, research and development, tourism and search and rescue will increase the pressure on the vulnerable Arctic environment. Synoptic in-situ year-round observational technologies are needed to monitor and forecast changes in the Arctic atmosphere-ice-ocean system at daily, seasonal, annual and decadal scales to inform and enable sustainable development and enforcement of international Arctic agreements and treaties, while protecting this critical environment. This paper will discuss multipurpose acoustic networks, including subsea cable components, in the Arctic. These networks provide communication, power, underwater and under-ice navigation, passive monitoring of ambient sound (ice, seismic, biologic and anthropogenic), and acoustic remote sensing (tomography and thermometry), supporting and complementing data collection from platforms, moorings and autonomous vehicles. This paper supports the development and implementation of regional to basin-wide acoustic networks as an integral component of a multidisciplinary, in situ Arctic Ocean Observatory.

  19. Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera, Carabidae and springtails (Collembola in a polder habitat

    Directory of Open Access Journals (Sweden)

    Tanja Lessel

    2011-05-01

    Full Text Available Within the scope of the Integrated Rhine Program an ecological flood gate and channel was inserted into the polder “Ingelheim” to enhance animal and plant diversity. In 2008, carabid beetles and springtails were collected, using pitfall traps, to measure the effects of ecological flooding and a strong precipitation event at a flood-disturbed and a dry location in this area. At both localities, xerophilic and mesophilic carabid beetle species were dominant throughout the study period. The total number of individuals of hygrophilic species was comparatively constant, while species number increased, partly due to the changed moisture conditions caused by ecological flooding and strong precipitation. Carabid beetle diversity and evenness decreased marginally when ecological flooding was absent. Springtails represent a less mobile arthropod order, and as such the impact of ecological flooding was stronger. An increase in both numbers of species and individuals of hygrophilic and hygrotolerant species occurred in the flood-disturbed location after ecological flooding. After the sites at both locations had dried, the number of individuals belonging to these species declined rapidly. In contrast to carabid species, the strong precipitation event showed no influence on hygrophilic springtail species. Thus, collembolan diversity and evenness decreased markedly in the absence of flooding. We showed that ecological flooding has an influence on the spatial and temporal dynamics of different arthropod groups that inhabit the polder “Ingelheim”. These findings demonstrate the importance of using different arthropod groups as bioindicators in determining the ecological value of a particular polder design.

  20. The Arctic

    International Nuclear Information System (INIS)

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  1. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  2. Arctic bioremediation

    International Nuclear Information System (INIS)

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  3. Arctic Wears - Perspectives on Arctic Clothing

    OpenAIRE

    Konola, Sanna; Kähkönen, Päivi

    2015-01-01

    Arctic issues are rising around us on every field at the point of view of environment, sustainability, climate change, indigenous peoples’ rights, design and society, snow and ice building knowledge, challenges and possibilities in Arctic areas. The Arctic is written in Finland’s future strategies, and in 2017 Finland assumes the chairmanship of Arctic Council. In the northernmost university of European Union, University of Lapland, the northern issues have always been written in the DNA ...

  4. Arctic studies

    International Nuclear Information System (INIS)

    Idaho National Engineering Laboratory (INEL) conducted a study of contamination of the Arctic Ocean and surrounding areas in order to better understand the severity of the problem and identify possible parallels in the United States. The findings were published in a quarterly report as a part of this technical task plan (TTP). While many radioactive and hazardous material contamination sites in this region have been identified, official Russian statements indicate that contaminant concentrations are within normal limits and are currently confined to specific areas

  5. Passive dosing of polycyclic aromatic hydrocarbon (PAH) mixtures to terrestrial springtails: Linking mixture toxicity to chemical activities, equilibrium lipid concentrations, and toxic units

    DEFF Research Database (Denmark)

    Schmidt, Stine Nørgaard; Holmstrup, Martin; Smith, Kilian E. C.; Mayer, Philipp

    2013-01-01

    treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑Clipid eq.), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments...... could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LClipid eq....... 50) of 133 mmol kg-1 lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg-1 lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture...

  6. Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: a field study focusing on plants, springtails, and bacteria.

    Science.gov (United States)

    Bert, Valérie; Lors, Christine; Ponge, Jean-François; Caron, Lucie; Biaz, Asmaa; Dazy, Marc; Masfaraud, Jean-François

    2012-10-01

    Metal immobilization may contribute to the environmental management strategy of dredged sediment landfill sites contaminated by metals. In a field experiment, amendment effects and efficiency were investigated, focusing on plants, springtails and bacteria colonisation, metal extractability and sediment ecotoxicity. Conversely to hydroxylapatite (HA, 3% DW), the addition of Thomas Basic Slag (TBS, 5% DW) to a 5-yr deposited sediment contaminated with Zn, Cd, Cu, Pb and As resulted in a decrease in the 0.01 M Ca(NO(3))(2)-extractable concentrations of Cd and Zn. Shoot Cd and Zn concentration in Calamagrostis epigejos, the dominant plant species, also decreased in the presence of TBS. The addition of TBS and HA reduced sediment ecotoxicity and improved the growth of the total bacterial population. Hydroxylapatite improved plant species richness and diversity and decreased antioxidant enzymes in C. Epigejos and Urtica dïoica. Collembolan communities did not differ in abundance and diversity between the different treatments. PMID:22647548

  7. Arctic Climate Tipping Points

    OpenAIRE

    Lenton, Timothy M.

    2012-01-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the A...

  8. New species of springtails in the Proisotoma genus complex from Vermont and New York, USA with descriptive notes on Ballistura alpa Christiansen & Bellinger 1980 (Hexapoda, Collembola, Isotomidae

    Directory of Open Access Journals (Sweden)

    Felipe Soto-Adames

    2011-11-01

    Full Text Available Three new species of isotomid springtails are described from the Lake Champlain Basin (Vermont and New York, USA, Lake Willoughby and Greater Averril Pond in Vermont. Subisotoma joycei sp. n. and Scutisotoma champi sp. n. were collected in sandy beaches whereas Ballistura rossi sp. n. was found only in a constructed wetland built and managed by the University of Vermont. Scutisotoma champi sp. n. was found in Lakes Champlain and Willoughby, and Greater Averril Pond and is probably present in most lakes and large ponds in the area. Subisotoma joycei sp. n. was found only along the southern and eastern coast of South Hero, and the mainland coast facing eastern South Hero. Ballistura alpa Christiansen & Bellinger is redescribed and transferred to the genus Pachyotoma based on the absence of tibiotarsal seta B4/B5, the presence of secondary cuticular granules, 4 prelabral setae, a full complement of guard setae on labial papilla E and ina bifurcate outer maxillary lobe with 4 sublobal setae.

  9. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  10. Arctic wind energy

    International Nuclear Information System (INIS)

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  11. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  12. Arctic Environmental Data Directory

    International Nuclear Information System (INIS)

    The Arctic Environmental Data Directory (AEDD) is being developed in cooperation with the US Global Change Research Plan. The AEDD Working Group, with members from US and Canadian agencies and academia, have described more than 300 Arctic data sets in a subset of an online data directory maintained by the US Geological Survey (USGS), ESDD (the Earth Science Data Directory). Through various links known as the Inter-operable Directory, the contents of AEDD are made available to scientists who use the NASA, NOAA, NSF and USGS data directories. Thus, scientists studying global change have access to Arctic data, and scientists studying the Arctic have access to global change data. The AEDD Working Group has sponsored development of a prototype Compact Disc Read Only Memory (CDROM) containing the indexed contents of the AEDD. Named Arctic Data Interactive (ADI), the disc was developed for use on Apple Macintosh and IBM PC-compatible computers, and uses a graphical and intuitive hypermedia user interface. The disc also contains portions of an Arctic Bibliography prepared in concert with the Polar Library Colloquy, sample full-text articles with illustrations, and selected data sets, including tabular data, text, and imagery. The ADI prototype is prepared as a model for organizing, presenting and distributing large quantities of Arctic and global change data and information to the science community. It is intended to be the first series of CDROMs with a consistent graphic design and user interface to place Arctic data and information on the desktop. The data are packaged with a powerful set of intuitive tools to navigate through and preview data sets from many disciplines and institutions. AEDD and ADI are sponsored by the Inter-agency Arctic Research Policy Committee and the Inter-agency Working Group on Data Management for Global Change, with guidance from the US Arctic Research Commission

  13. Metal immobilization and soil amendment efficiency at a contaminated sediment landfill site: A field study focusing on plants, springtails, and bacteria

    International Nuclear Information System (INIS)

    Metal immobilization may contribute to the environmental management strategy of dredged sediment landfill sites contaminated by metals. In a field experiment, amendment effects and efficiency were investigated, focusing on plants, springtails and bacteria colonisation, metal extractability and sediment ecotoxicity. Conversely to hydroxylapatite (HA, 3% DW), the addition of Thomas Basic Slag (TBS, 5% DW) to a 5-yr deposited sediment contaminated with Zn, Cd, Cu, Pb and As resulted in a decrease in the 0.01 M Ca(NO3)2-extractable concentrations of Cd and Zn. Shoot Cd and Zn concentration in Calamagrostis epigejos, the dominant plant species, also decreased in the presence of TBS. The addition of TBS and HA reduced sediment ecotoxicity and improved the growth of the total bacterial population. Hydroxylapatite improved plant species richness and diversity and decreased antioxidant enzymes in C. Epigejos and Urtica dïoica. Collembolan communities did not differ in abundance and diversity between the different treatments. - Highlights: ► Thomas Basic Slag and hydroxylapatite were added to a metal-contaminated sediment. ► Plant metal content and (CaNO3)2 extractable sediment fraction decreased with TBS. ► The growth of the total bacterial population was improved in the presence of TBS. ► Hydroxylapatite favored plant diversity and physiological plant welfare. ► No significant difference was pointed out in collembolan colonization. - In-situ incorporation of Thomas Basic Slag into a landfilled metal-contaminated sediment decreases metal mobility and ecotoxicity and increases bacterial activity.

  14. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  15. Arctic Shipping Emissions in the Changing Climate

    OpenAIRE

    Vihanninjoki, Vesa

    2014-01-01

    Due to the Arctic climate change and the related diminishing of Arctic sea ice cover, the general conditions for Arctic shipping are changing. The retreat of Arctic sea ice opens up new routes for maritime transportation, both trans-Arctic passages and new alternatives within the Arctic region. Hence the amount of Arctic shipping is presumed to increase. Despite the observed development, the sailing conditions in the Arctic waters will remain challenging. Thus particular attention will be ...

  16. Arctic Bathymetry (batharcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The digitally compiled map includes geology, oil and gas field centerpoints, and geologic provinces of the Arctic (North Pole area encircled by 640 N Latitude). The...

  17. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  18. Arctic_Bathymetry

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be...

  19. Arctic survey, 1957

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes a survey and game patrol conducted to twelve villages in the Arctic from April 24 to May 2 1957. The report covers animals take for income...

  20. Arctic Geology (geoarcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The digitally compiled map includes geology, oil and gas field centerpoints, and geologic provinces of the Arctic (North Pole area encircled by 640 N Latitude). The...

  1. Colêmbolos (Hexapoda: Collembola como bioindicadores de qualidade do solo em áreas com Araucaria angustifolia Springtails (Hexapoda: Collembola as soil quality bioindicators in areas with Araucaria angustifolia

    Directory of Open Access Journals (Sweden)

    Dilmar Baretta

    2008-12-01

    qualidade do solo.There is no information about the diversity of springtails associated with Araucaria angustifolia (Bert. O. Kuntze forests in Brazil. This study was carried out to evaluate the potential of springtail family diversity as a soil quality indicator and to separate different Araucaria areas, using soil chemical and microbiological attributes as explanatory variables. The study was conducted in four areas of: 1. native forest with predominance of Araucaria (NF; 2. Araucaria reforestation (R; 3. Araucaria reforestation burnt by an accidental fire (RF; and 4. native grass pasture with native Araucaria and burnt by an intense accidental fire (NPF. In the capture of the organisms, ten Araucaria trees were randomly selected and pitfall traps were distributed around the selected Araucaria trees, at the same sampling points as for soil chemical and microbiological attributes. The number of springtails of each family extracted per trap (abundance, Shannon's diversity index (H and family richness in the different areas were evaluated by analysis of variance (ANOVA. The abundance of springtails of each family was analyzed by Principal Components Analysis (PCA. Eight springtail families (Brachystomellidae, Entomobryidae, Hypogastruridae, Isotomidae, Katiannidae, Paronellidae, Sminthuridae and Tomoceridae were identified in the four areas. The diversity of springtail families was always higher in the NF and R areas, in comparison with RF and NPF. The soil chemical and microbiological attributes were effective as explanatory variables, and useful in the interpretation of modifications occurring in springtail families. The PCA showed that the identification at the family level for Collembola was sufficient to separate the four studied areas, and also indicated which springtail families were most associated with each area. This variable can therefore be considered an indicator of soil quality and anthropogenic disturbance in these forests.

  2. Arctic Tourism: Realities & Possibilities

    OpenAIRE

    Pashkevich, Albina

    2014-01-01

    This paper addresses human capital in the Arctic in relation to tourism. More specifically, with an ever-increasing number oftourists recognizing the attractiveness of the Arctic, tour companies are increasingly recognizing the opportunities. The media(typically southern media) sells the image, either before or after the tourists arrive, and communities are often left to deal with therepercussions – whether those are social, economic, environmental, or the like. Many of the repercussions are ...

  3. Arctic freshwater synthesis: Introduction

    Science.gov (United States)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.

    2015-11-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program, an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason for joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. Hence, the key objective of the AFSΣ was to produce an updated, comprehensive, and integrated review of the structure and function of the entire AFS. The AFSΣ was organized around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources and modeling, and the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ—Introduction reviews the motivations for, and foci of, previous studies of the AFS, discusses criteria used to define the domain of the AFS, and details key characteristics of the definition adopted for the AFSΣ.

  4. The Arctic Visiting Speakers Program

    Science.gov (United States)

    Wiggins, H. V.; Fahnestock, J.

    2013-12-01

    The Arctic Visiting Speakers Program (AVS) is a program of the Arctic Research Consortium of the U.S. (ARCUS) and funded by the National Science Foundation. AVS provides small grants to researchers and other Arctic experts to travel and share their knowledge in communities where they might not otherwise connect. The program aims to: initiate and encourage arctic science education in communities with little exposure to arctic research; increase collaboration among the arctic research community; nurture communication between arctic researchers and community residents; and foster arctic science education at the local level. Individuals, community organizations, and academic organizations can apply to host a speaker. Speakers cover a wide range of arctic topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Preference is given to tours that reach broad and varied audiences, especially those targeted to underserved populations. Between October 2000 and July 2013, AVS supported 114 tours spanning 9 different countries, including tours in 23 U.S. states. Tours over the past three and a half years have connected Arctic experts with over 6,600 audience members. Post-tour evaluations show that AVS consistently rates high for broadening interest and understanding of arctic issues. AVS provides a case study for how face-to-face interactions between arctic scientists and general audiences can produce high-impact results. Further information can be found at: http://www.arcus.org/arctic-visiting-speakers.

  5. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  6. Communicating Arctic Change (Invited)

    Science.gov (United States)

    Serreze, M.

    2009-12-01

    Nowhere on the planet are emerging signals of climate change more visible than in the Arctic. Rapid warming, a quickly shrinking summer sea ice cover, and thawing permafrost, will have impacts that extend beyond the Arctic and may reverberate around the globe. The National Snow and Ice Data Center (NSIDC) of the University of Colorado has taken a leading role in trying to effectively communicate the science and importance of Arctic change. Our popular “Sea Ice News and Analysis” web site tracks the Arctic’s shrinking ice cover and provides scientific analysis with language that is accurate yet accessible to a wide audience. Our Education Center provides accessible information on all components of the Earth’s cryosphere, the changes being seen, and how scientists conduct research. A challenge faced by NSIDC is countering the increasing level of confusion and misinformation regarding Arctic and global change, a complex problem that reflects the low level of scientific literacy by much of the public, the difficulties many scientists face in communicating their findings in accurate but understandable terms, and efforts by some groups to deliberately misrepresent and distort climate change science. This talk will outline through examples ways in which NSIDC has been successful in science communication and education, as well as lessons learned from failures.

  7. Contest for Arctic

    International Nuclear Information System (INIS)

    Warming of Earth surface access the defrosting north extensiveness of economic activities. The Russian Federation (RF) has delegated two bathyscaphs in order to put capsule with Russian flag on the bottom under North Pole. In this paper the territorial pretensions of the RF on the Arctic region are discussed

  8. The Arctic Circle

    Science.gov (United States)

    McDonald, Siobhan

    2016-04-01

    My name is Siobhan McDonald. I am a visual artist living and working in Dublin. My studio is based in The School of Science at University College Dublin where I was Artist in Residence 2013-2015. A fascination with time and the changeable nature of landmass has led to ongoing conversations with scientists and research institutions across the interweaving disciplines of botany, biology and geology. I am developing a body of work following a recent research trip to the North Pole where I studied the disappearing landscape of the Arctic. Prompted by my experience of the Arctic shelf receding, this new work addresses issues of the instability of the earth's materiality. The work is grounded in an investigation of material processes, exploring the dynamic forces that transform matter and energy. This project combines art and science in a fascinating exploration of one of the Earth's last relatively untouched wilderness areas - the High Arctic to bring audiences on journeys to both real and artistically re-imagined Arctic spaces. CRYSTALLINE'S pivotal process is collaboration: with The European Space Agency; curator Helen Carey; palaeontologist Prof. Jenny McElwain, UCD; and with composer Irene Buckley. CRYSTALLINE explores our desire to make corporeal contact with geological phenomena in Polar Regions. From January 2016, in my collaboration with Jenny McElwain, I will focus on the study of plants and atmospheres from the Arctic regions as far back as 400 million years ago, to explore the essential 'nature' that, invisible to the eye, acts as imaginary portholes into other times. This work will be informed by my arctic tracings of sounds and images recorded in the glaciers of this disappearing frozen landscape. In doing so, the urgencies around the tipping of natural balances in this fragile region will be revealed. The final work will emerge from my forthcoming residency at the ESA in spring 2016. Here I will conduct a series of workshops in ESA Madrid to work with

  9. Acquatorialities of the Arctic Region

    DEFF Research Database (Denmark)

    Harste, Gorm

    2013-01-01

    In order to describe the Arctic system I propose using a concept functionally equivalent to territoriality, namely aquatoriality. Whether communicating about territoriality or aquatoriality, concepts and delimitations are both contingent to forms of communication systems. I will distinguish between...... six communications systems that differentiated from each other could become involved in the new deals emerging around the Arctic. Apart of an economic communication code about the Arctic, a legal code, ecological communication codes, and tourist communication codes, I will cope with the military...

  10. Disparities in Arctic Health

    Centers for Disease Control (CDC) Podcasts

    2008-02-04

    Life at the top of the globe is drastically different. Harsh climate devoid of sunlight part of the year, pockets of extreme poverty, and lack of physical infrastructure interfere with healthcare and public health services. Learn about the challenges of people in the Arctic and how research and the International Polar Year address them.  Created: 2/4/2008 by Emerging Infectious Diseases.   Date Released: 2/20/2008.

  11. Summer Arctic sea fog

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Synchronous or quasi-synchronous sea-land-air observations were conducted using advanced sea ice, atmospheric and marine instruments during China' s First Arctic Expedition. Based on the Precious data from the expedition, it was found that in the Arctic Ocean, most part of which is covered with ice or is mixed with ice, various kinds of sea fog formed such as advection fog, radiation fog and vapor fog. Each kind has its own characteristic and mechanics of creation. In the southern part of the Arctic Ocean, due to the sufficient warm and wet flow there, it is favorable for advection fog to form,which is dense and lasts a long time. On ice cap or vast floating ice, due to the strong radiation cooling effect, stable radiating fog is likely to form. In floating ice area there forms vapor fog with the appearance of masses of vapor from a boiling pot, which is different from short-lasting land fog. The study indicates that the reason why there are many kinds of sea fog form in the Arctic Ocean is because of the complicated cushion and the consequent sea-air interaction caused by the sea ice distribution and its unique physical characteristics. Sea fog is the atmospheric phenomenon of sea-air heat exchange. Especially, due to the high albedo of ice and snow surface, it is diffcult to absorb great amount of solar radiation during the polar days. Besides, ice is a poor conductor of heat; it blocks the sea-air heat exchange.The sea-air exchange is active in floating ice area where the ice is broken. The sea sends heat to the atmosphere in form of latent heat; vapor fog is a way of sea-air heat exchange influencing the climate and an indicator of the extent of the exchange. The study also indicates that the sea also transports heat to the atmosphere in form of sensible heat when vapor fog occurs.

  12. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  13. Arctic Submarine Slope Stability

    Science.gov (United States)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  14. a New Japanese Project for Arctic Climate Change Research - Grene Arctic - (Invited)

    Science.gov (United States)

    Enomoto, H.

    2013-12-01

    A new Arctic Climate Change Research Project 'Rapid Change of the Arctic Climate System and its Global Influences' has started in 2011 for a five years project. GRENE-Arctic project is an initiative of Arctic study by more than 30 Japanese universities and institutes as the flame work of GRENE (Green Network of Excellence) of MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). The GRENE-Arctic project set four strategic research targets: 1. Understanding the mechanism of warming amplification in the Arctic 2. Understanding the Arctic system for global climate and future change 3. Evaluation of the effects of Arctic change on weather in Japan, marine ecosystems and fisheries 4. Prediction of sea Ice distribution and Arctic sea routes This project aims to realize the strategic research targets by executing following studies: -Improvement of coupled general circulation models based on validations of the Arctic climate reproducibility and on mechanism analyses of the Arctic climate change and variability -The role of Arctic cryosphere in the global change -Change in terrestrial ecosystem of pan-Arctic and its effect on climate -Studies on greenhouse gas cycles in the Arctic and their responses to climate change -Atmospheric studies on Arctic change and its global impacts -Ecosystem studies of the Arctic ocean declining Sea ice -Projection of Arctic Sea ice responding to availability of Arctic sea route (* ** ***) *Changes in the Arctic ocean and mechanisms on catastrophic reduction of Arctic sea ice cover **Coordinated observational and modeling studies on the basic structure and variability of the Arctic sea ice-ocean system ***Sea ice prediction and construction of ice navigation support system for the Arctic sea route. Although GRENE Arctic project aims to product scientific contribution in a concentrated program during 2011-2016, Japanese Arctic research community established Japan Consortium for Arctic Environmental Research (JCAR) in May

  15. Arctic charr farming

    OpenAIRE

    Brännäs, Eva; Larsson, Stefan; Saether, Björn Steinar; Siikavuopio, Sten Ivar; Thorarensen, Helgi; Sigurgeirsson, Ólafur; Jeuthe, Henrik

    2011-01-01

    The Arctic charr (Salvelinus alpinus L.) is a holarctic salmonid fish species with both landlocked and anadromous populations. In Scandinavia it is mainly found in the mountain area, but it also appears in deep and large lake further south, i.e. in the Alps. It is the northernmost freshwater fish and A. charr is generally regarded as the most cold-adapted freshwater fish. A. charr has been commercially farmed since the early 90ths and today, the total production is 3000, 2300 and 700 tonnes/y...

  16. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man;

    2006-01-01

    entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...... sent representatives. Also attending were representatives from the International Union for Circumpolar Health (IUCH) and the National Indian Health Board. The working group developed a set of ten recommendations related to research opportunities in heart, lung, blood and sleep disorders; obstacles and...

  17. Arctic species resilience

    DEFF Research Database (Denmark)

    Mortensen, Lars O.; Forchhammer, Mads C.; Jeppesen, Erik

    , an extensive monitoring program has been conducted in the North Eastern Greenland National Park, the Zackenberg Basic. The objective of the program is to provide long time series of data on the natural innate oscillations and plasticity of a High Arctic ecosystem. With offset in the data provided through...... and precipitation. Concurrently, phenological change has been recorded in a wide range of plants and animals, with climate change seemingly being the primary driver of these changes. A major concern is whether species and biological systems embrace the plasticity in their phenological responses needed for tracking...

  18. State of the Arctic Environment

    International Nuclear Information System (INIS)

    The Arctic environment, covering about 21 million km2, is in this connection regarded as the area north of the Arctic Circle. General biological and physical features of the terrestrial and freshwater environments of the Arctic are briefly described, but most effort is put into a description of the marine part which constitutes about two-thirds of the total Arctic environment. General oceanography and morphological characteristics are included; e.g. that the continental shelf surrounding the Arctic deep water basins covers approximately 36% of the surface areas of Arctic waters, but contains only 2% of the total water masses. Blowout accident may release thousands of tons of oil per day and last for months. They occur statistically very seldom, but the magnitude underlines the necessity of an efficient oil spill contingency as well as sound safety and quality assurance procedures. Contingency plans should be coordinated and regularly evaluated through simulated and practical tests of performance. Arctic conditions demand alternative measures compared to those otherwise used for oil spill prevention and clean-up. New concepts or optimization of existing mechanical equipment is necessary. Chemical and thermal methods should be evaluated for efficiency and possible environmental effects. Both due to regular discharges of oil contaminated drilled cuttings and the possibility of a blowout or other spills, drilling operations in biological sensitive areas may be regulated to take place only during the less sensitive parts of the year. 122 refs., 8 figs., 8 tabs

  19. Nuanced Perceptions and Arctic Disputes

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    -depth consideration and analysis. As such, this thesis explores the complexities and evolution of the Canadian-Arctic relationship through two central research questions: how have the dominant cultural attitudes about the Canadian Arctic emerged and evolved within Canadian society and how have these cultural ideas...... interests and disputes in the Canadian Arctic region at the regional and international levels are affects by domestic cultural and political factors. The thesis was submitted in May 2015 and successfully defended in September 2015. The external examiner was Professor Philip Steinberg (Professor in the...

  20. Impacts of a Warming Arctic. Arctic Climate Impact Assessment

    International Nuclear Information System (INIS)

    The Arctic is warming much more rapidly than previously known, at nearly twice the rate as the rest of the globe, and increasing greenhouse gases from human activities are projected to make it warmer still, according to an unprecedented four-year scientific study of the region conducted by an international team of 300 scientists. At least half the summer sea ice in the Arctic is projected to melt by the end of this century, along with a significant portion of the Greenland Ice Sheet, as the region is projected to warm an additional 4-7C by the year 2100. These changes will have major global impacts, such as contributing to global sea-level rise and intensifying global warming, according to the final report of the Arctic Climate Impact Assessment (ACIA). The assessment was commissioned by the Arctic Council (a ministerial intergovernmental forum comprised of the eight Arctic countries and six Indigenous Peoples organizations) and the International Arctic Science Committee (an international scientific organization appointed by 18 national academies of science). The assessment's projections are based on a moderate estimate of future emissions of carbon dioxide and other greenhouse gases, and incorporate results from five major global climate models used by the Intergovernmental Panel on Climate Change (IPCC)

  1. SCICEX: Submarine Arctic Science Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Submarine Arctic Science Program, SCICEX, is a federal interagency collaboration among the operational Navy, research agencies, and the marine research...

  2. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.;

    -Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long......-term change in Arctic terrestrial ecosystems and biodiversity. The CBMP-Terrestrial Plan aims to address these priority management questions: 1. What are the status, distribution, and conditions of terrestrial focal species, populations, communities, and landscapes/ecosystems and key processes...... network of scientists, conservation organizations, government agencies, Permanent Participants Arctic community experts and leaders. Using an ecosystem-based monitoring approach which includes species, ecological functions, ecosystems, their interactions, and potential drivers, the CBMP focuses on...

  3. Development of arctic wind technology

    Energy Technology Data Exchange (ETDEWEB)

    Holttinen, H.; Marjaniemi, M.; Antikainen, P. [VTT Energy, Espoo (Finland)

    1998-10-01

    The climatic conditions of Lapland set special technical requirements for wind power production. The most difficult problem regarding wind power production in arctic regions is the build-up of hard and rime ice on structures of the machine

  4. 77 FR 31677 - Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic...

    Science.gov (United States)

    2012-05-29

    ... TECHNOLOGY POLICY Request for Public Comment on Interagency Arctic Research Policy Committee (IARPC) Arctic Research Plan: FY2013-2017 May 22, 2012. ACTION: Request for public comment. SUMMARY: The Arctic Research and Policy Act of 1984 (ARPA), Public Law 98-373, established the Interagency Arctic Research...

  5. The Arctic policy of China and Japan

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    At the May 2013 Arctic Council Ministerial Meeting, five Asian states, namely China, Japan, India, Singapore and South Korea, were accepted to become new Permanent Observers at the Arctic Council. Nonetheless, little attention has been paid to the Asian states and their interest in the Arctic. Most...... discussions have focused on China and the assessment of China’s interest in the Arctic is divided. This paper attempts to fill this gap by presenting and comparing the various components of the Arctic policies of China and Japan. Referring to Putnam’s model of the “two-level game” and Young’s categorization...... of Arctic stakeholders’ interests, data from policy documents and interviews with relevant stakeholders were analysed. This analysis shows the Chinese and Japanese governments are in the gradual process of consolidating their Arctic policies, but both China and Japan see the Arctic less as a...

  6. Arctic Landscape Within Reach

    Science.gov (United States)

    2008-01-01

    This image, one of the first captured by NASA's Phoenix Mars Lander, shows flat ground strewn with tiny pebbles and marked by small-scale polygonal cracking, a pattern seen widely in Martian high latitudes and also observed in permafrost terrains on Earth. The polygonal cracking is believed to have resulted from seasonal contraction and expansion of surface ice. Phoenix touched down on the Red Planet at 4:53 p.m. Pacific Time (7:53 p.m. Eastern Time), May 25, 2008, in an arctic region called Vastitas Borealis, at 68 degrees north latitude, 234 degrees east longitude. This image was acquired at the Phoenix landing site by the Surface Stereo Imager on day 1 of the mission on the surface of Mars, or Sol 0, after the May 25, 2008, landing. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Environmental radioactivity in the Arctic

    International Nuclear Information System (INIS)

    The conference considered several broad themes: (1) assessment of releases from landbased sources and river transport, (2) assessment of dumping of nuclear waste, (3) arctic radioecology, (4) assessment of impacts of nuclear explosions and accidents, (5) nuclear safety and consequences of nuclear accidents in the arctic, and (6) waste management. The presentations demonstrated that current levels of radioactivity in the Arctic are generally low. The two most important sources are global fallout from the nuclear weapons tests of the 1950's and 1960's, and discharges to the sea from reprocessing plants in Western Europe which are transported northward by prevailing currents. The conference was attended by scientists from 17 countries and served as a forum for collection and dissemination of information on the range of themes and described above. It is hoped that this will serve to increase awareness of areas of uncertainty and act as a stimulus to further research

  8. Arctic Energy Resources: Energy Research

    Science.gov (United States)

    Gryc, George

    1984-04-01

    Arctic Energy Resources is a volume of 26 papers recording the proceedings of the Comite' Arctique International Conference, held at the Veritas Centre, Oslo, Norway, September 22-24, 1982. This was the fourth of a series of meetings on the Arctic organized by the Comite', an organization established in the Principality of Monaco with the active support of H.S.H. Prince Rainer III. The fourth Conference was opened by H.R.H. Crown Prins Harald of Norway, a noble beginning for a noble objective.The North Polar Region has drawn world attention recently because of several large hydrocarbon and other mineral discoveries and because of major political and environmental actions in the North American Arctic. Since 1923 when Naval Petroleum Reserve number 4 (NPR-4) was established, northern Alaska has been considered a major petroleum province. It was first explored systematically with modern techniques from 1943 to 1953. In 1958, Alaska became a state, and both federal and state lands in northern Alaska were available for private exploration. Building on the knowledge base provided by the Pet-4 program and its spinoff research laboratory at Barrow, industry explored the area east of NPR-4 and discovered the largest hydrocarbon accumulation (9.6 bbl crude oil and 26 Tcf (trillion cubic feet) gas) in North America at Prudhoe Bay. Concerns for environmental impacts, including oil spills, led to the passing of the National Environmental Policy Act in 1969. In 1970, over 9 million acres were set aside, now known as the Arctic National Wildlife Range, and in 1971 the Alaska Native Claims Settlement Act was passed by the U.S. Congress. The Arab oil embargo of 1973 heightened the energy crisis and changed the economic basis for further exploration in the Arctic. The convergence of these events dramatically changed the balance of power and the pace of activity in the North American Arctic.

  9. U.S. Arctic Research Commission

    Science.gov (United States)

    “North to the Future” is a well-known slogan in Alaska. This slogan also expresses the spirit with which the U.S. Arctic Research Commission (ARC) has begun its work.The commission was established as a result of Sen. Murkowski's (R-Alaska) Arctic Research and Policy Act of 1984, and its members were appointed by President Reagan last February (Eos, February 26, 1985, p. 91). The ARC has been directed to develop and recommend an integrated Arctic research policy and to work with the concomitantly established Interagency Arctic Research Policy Committee in the formulation of a comprehensive 5-year Arctic research plan (see Figure 1). The Arctic Research and Policy Act designates the National Science Foundation as the lead agency responsible for implementing the policy with other federal agencies; it further requires the preparation of a single, integrated multiagency budget request for Arctic research.

  10. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  11. Interact - Access to the Arctic

    Science.gov (United States)

    Johansson, M.; Callaghan, T. V.

    2013-12-01

    INTERACT is currently a network of 50 terrestrial research stations from all Arctic countries, but is still growing. The network was inaugurated in January 2011 when it received an EU 7th Framework award. INTERACT's main objective is to build capacity for identifying, understanding, predicting and responding to diverse environmental changes throughout the wide environmental and land-use envelopes of the Arctic. Implicit in this objective is the task to build capacity for monitoring, research, education and outreach. INTERACT is increasing access to the Arctic: 20 INTERACT research stations in Europe and Russia are offering Transnational Access and so far, 5600 person-days of access have been granted from the total of 10,000 offered. An INTERACT Station Managers' Forum facilitates a dialogue among station managers on subjects such as best practice in station management and standardised monitoring. The Station Managers' Forum has produced a unique 'one-stop-shop' for information from 45 research stations in an informative and attractive Station Catalogue that is available in hard copy and on the INTERACT web site (www.eu-interact.org). INTERACT also includes three joint research activities that are improving monitoring in remote, harsh environments and are making data capture and dissemination more efficient. Already, new equipment for measuring feedbacks from the land surface to the climate system has been installed at several locations, while best practices for sensor networking have been established. INTERACT networks with most of the high-level Arctic organisations: it includes AMAP and WWF as partners, is endorsed by IASC and CBMP, has signed MoUs with ISAC and the University of the Arctic, is a task within SAON, and contributes to the Cold Region community within GEO/GEOSS. INTERACT welcomes other interactions.

  12. Geologic Provinces of the Circum-Arctic, 2008 (north of the Arctic Circle)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This shapefile includes arcs and polygons that describe U.S. Geological Survey defined 33 geologic provinces of the Circum-Arctic (north of the Arctic Circle). Each...

  13. The Arctic Voice at the UN Climate Negotiations: Interplay Between Arctic & Climate Governance

    OpenAIRE

    Duyck, Sébastien, 1983-

    2015-01-01

    During the past decade, the Arctic has progressively gained the status of a “global barometer” of the implications of climate change. As governments finalize in 2015 the negotiations towards a new climate change agreement and as the priorities of the Arctic Council are shifting towards a stronger focus on climate change, the current year offers a timely opportunity to review the interplay between Arctic policies and the international climate change regime. Indeed, several of the Arctic st...

  14. Recent dynamics of arctic and sub-arctic vegetation

    International Nuclear Information System (INIS)

    We present a focus issue of Environmental Research Letters on the ‘Recent dynamics of arctic and sub-arctic vegetation’. The focus issue includes three perspective articles (Verbyla 2011 Environ. Res. Lett. 6 041003, Williams et al 2011 Environ. Res. Lett. 6 041004, Loranty and Goetz 2012 Environ. Res. Lett. 7 011005) and 22 research articles. The focus issue arose as a result of heightened interest in the response of high-latitude vegetation to natural and anthropogenic changes in climate and disturbance regimes, and the consequences that these vegetation changes might have for northern ecosystems. A special session at the December 2010 American Geophysical Union Meeting on the ‘Greening of the Arctic’ spurred the call for papers. Many of the resulting articles stem from intensive research efforts stimulated by International Polar Year projects and the growing acknowledgment of ongoing climate change impacts in northern terrestrial ecosystems. (synthesis and review)

  15. Arctic tipping points: governance in turbulent times.

    Science.gov (United States)

    Young, Oran R

    2012-02-01

    Interacting forces of climate change and globalization are transforming the Arctic. Triggered by a non-linear shift in sea ice, this transformation has unleashed mounting interest in opportunities to exploit the region's natural resources as well as growing concern about environmental, economic, and political issues associated with such efforts. This article addresses the implications of this transformation for governance, identifies limitations of existing arrangements, and explores changes needed to meet new demands. It advocates the development of an Arctic regime complex featuring flexibility across issues and adaptability over time along with an enhanced role for the Arctic Council both in conducting policy-relevant assessments and in promoting synergy in interactions among the elements of the emerging Arctic regime complex. The emphasis throughout is on maximizing the fit between the socioecological features of the Arctic and the character of the governance arrangements needed to steer the Arctic toward a sustainable future. PMID:22270707

  16. Strategic metal deposits of the Arctic Zone

    Science.gov (United States)

    Bortnikov, N. S.; Lobanov, K. V.; Volkov, A. V.; Galyamov, A. L.; Vikent'ev, I. V.; Tarasov, N. N.; Distler, V. V.; Lalomov, A. V.; Aristov, V. V.; Murashov, K. Yu.; Chizhova, I. A.; Chefranov, R. M.

    2015-11-01

    Mineral commodities rank high in the economies of Arctic countries, and the status of mineral resources and the dynamics of their development are of great importance. The growing tendency to develop strategic metal resources in the Circumarctic Zone is outlined in a global perspective. The Russian Arctic Zone is the leading purveyor of these metals to domestic and foreign markets. The comparative analysis of tendencies in development of strategic metal resources of the Arctic Zone in Russia and other countries is crucial for the elaboration of trends of geological exploration and research engineering. This paper provides insight into the development of Arctic strategic metal resources in global perspective. It is shown that the mineral resource potential of the Arctic circumpolar metallogenic belt is primarily controlled by large and unique deposits of nonferrous, noble, and rare metals. The prospective types of economic strategic metal deposits in the Russian Arctic Zone are shown.

  17. Latitudinal distribution of the recent Arctic warming

    Energy Technology Data Exchange (ETDEWEB)

    Chylek, Petr [Los Alamos National Laboratory; Lesins, Glen K [DALLHOUSIE UNIV.; Wang, Muyin [UNIV OF WASHINGTON

    2010-12-08

    Increasing Arctic temperature, disappearance of Arctic sea ice, melting of the Greenland ice sheet, sea level rise, increasing strength of Atlantic hurricanes are these impending climate catastrophes supported by observations? Are the recent data really unprecedented during the observational records? Our analysis of Arctic temperature records shows that the Arctic and temperatures in the 1930s and 1940s were almost as high as they are today. We argue that the current warming of the Arctic region is affected more by the multi-decadal climate variability than by an increasing concentration of carbon dioxide. Unfortunately, none of the existing coupled Atmosphere-Ocean General Circulation Models used in the IPCC 2007 cIimate change assessment is able to reproduce neither the observed 20th century Arctic cIimate variability nor the latitudinal distribution of the warming.

  18. Evolution of the Arctic Calanus complex: an Arctic marine avocado?

    OpenAIRE

    Berge, Jørgen; Gabrielsen, Tove M.; Mark A Moline; Renaud, Paul

    2012-01-01

    Before man hunted the large baleen whales to near extinction by the end of the nineteenth century, Arctic ecosystems were strongly influenced by these large predators. Their main prey were zooplankton, among which the calanoid copepod species of the genus Calanus, long considered key elements of polar marine ecosystems, are particularly abundant. These herbivorous zooplankters display a range of adaptations to the highly seasonal environments of the polar oceans, most notably extensive energy...

  19. Arctic whaling : proceedings of the International Symposium Arctic Whaling February 1983

    NARCIS (Netherlands)

    Jacob, H.K. s'; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the biol

  20. Arctic shipping emissions inventories and future scenarios

    OpenAIRE

    J. J. Corbett; D. A. Lack; J. J. Winebrake; Harder, S; J. A. Silberman; Gold, M.

    2010-01-01

    The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon – a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understa...

  1. Identifying uncertainties in Arctic climate change projections

    OpenAIRE

    Hodson, Daniel L. R.; Keeley, Sarah P. E.; West, Alex; Ridley, Jeff; Hawkins, Ed; Hewitt, Helene T.

    2013-01-01

    Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single mode...

  2. Arctic cephalopod distributions and their associated predators

    OpenAIRE

    Gardiner, Kathleen; Terry A Dick

    2010-01-01

    Cephalopods are key species of the eastern Arctic marine food web, both as prey and predator. Their presence in the diets of Arctic fish, birds and mammals illustrates their trophic importance. There has been considerable research on cephalopods (primarily Gonatus fabricii) from the north Atlantic and the west side of Greenland, where they are considered a potential fishery and are taken as a by-catch. By contrast, data on the biogeography of Arctic cephalopods are still incomplete. This stud...

  3. Shaping a Sustainability Strategy for the Arctic

    OpenAIRE

    Azcarate, Juan; Balfors, Berit; Destouni, Georgia; Bring, Arvid

    2011-01-01

    The development of the Arctic is shaped by the opportunities and constraints brought by climate change and technological advances. In the Arctic, warmer climate is expected to affect ecosystems, local communities and infrastructure due to a combination of effects like reduced sea ice and glaciers, thawing permafrost and increased frequency of floods. Less ice and new technologies mean openings to exploit natural resources in the Arctic. Fishing, mining, hydrocarbon extraction and vessel trans...

  4. Plate tectonic history of the Arctic

    Science.gov (United States)

    Burke, K.

    1984-01-01

    Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.

  5. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of...... Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic. The GPS measurements are compared with the Arctic tidal model AOTIM-5, which assimilates tide-gauges and...

  6. Aerosols indirectly warm the Arctic

    Directory of Open Access Journals (Sweden)

    T. Mauritsen

    2010-07-01

    Full Text Available On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.

  7. Arctic Basemaps In Google Maps

    DEFF Research Database (Denmark)

    Muggah, J.; Mioc, Darka

    2010-01-01

    the advantages of the use of Google Maps, to display the OMG's Arctic data. The map should should load the large Artic dataset in a reasonable time. The bathymetric images were created using software in Linux written by the OMG, and a step-by-step process was used to create images from the multibeam data...... collected by the OMG in the Arctic. The website was also created using Linux operating system. The projection needed to be changed from Lambert Conformal Conic (useful at higher Latitudes) to Mercator (used by Google Maps) and the data needed to have a common colour scheme. After creating and testing...... a prototype website using Google Ground overlay and Tile overlay, it was determined that the high resolution images (10m) were loading very slowly and the ground overlay method would not be useful for displaying the entire dataset. Therefore the Tile overlays were selected to be used within Google Maps. Tile...

  8. The Arctic Research Consortium of the United States (ARCUS): Connecting Arctic Research

    Science.gov (United States)

    Rich, R. H.; Wiggins, H. V.; Creek, K. R.; Sheffield Guy, L.

    2015-12-01

    This presentation will highlight the recent activities of the Arctic Research Consortium of the United States (ARCUS) to connect Arctic research. ARCUS is a nonprofit membership organization of universities and institutions that have a substantial commitment to research in the Arctic. ARCUS was formed in 1988 to serve as a forum for planning, facilitating, coordinating, and implementing interdisciplinary studies of the Arctic; to act as a synthesizer and disseminator of scientific information on arctic research; and to educate scientists and the general public about the needs and opportunities for research in the Arctic. ARCUS, in collaboration with the broader science community, relevant agencies and organizations, and other stakeholders, coordinates science planning and educational activities across disciplinary and organizational boundaries. Examples of ARCUS projects include: Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. PolarTREC (Teachers and Researchers Exploring and Collaborating) - a program whereby K-12 educators and researchers work together in hands-on field experiences in the Arctic and Antarctic to advance polar science education. ArcticInfo mailing list, Witness the Arctic newsletter, and the Arctic Calendar - communication tools for the arctic science community to keep apprised of relevant news, meetings, and announcements. Coordination for the Study of Environmental Arctic Change (SEARCH) program, which aims to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. More information about these and other ARCUS activities can be found at the ARCUS website at

  9. Towards an ice free Arctic

    International Nuclear Information System (INIS)

    The article surveys the rate of ice melting in Arctic and forecasts that the region will be free of ice during this century. Observations of the atmospheric and sea climate, total ice areas for the period 1978 to 1998 and predictions for the areas from 1990 to 2040 by using two different models are presented. Possible reasons for the changes are discussed and some views on the consequences for the Norwegian climate presented

  10. Building Materials in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    2005-01-01

    Building in the artic requires special attention on the appropriateness of building materials. The harsh climate makes execution difficult and sets unusual requirements for the pure material properties. In addition, there is a lack of choice of good, natural building materials in the arctic. This...... results in high transport costs. The building materials situation in Greenland may potentially be improved by intensifying the reuse of building materials or by promoting the local production of building materials....

  11. Extrapolating future Arctic ozone losses

    OpenAIRE

    Knudsen, B. M.; Harris, N. R. P.; S. B. Andersen; Christiansen, B.; N. Larsen; Rex, M.; B. Naujokat

    2004-01-01

    Future increases in the concentration of greenhouse gases and water vapour may cool the stratosphere further and increase the amount of polar stratospheric clouds (PSCs). Future Arctic PSC areas have been extrapolated from the highly significant trends 1958-2001. Using a tight correlation between PSC area and the total vortex ozone depletion and taking the decreasing amounts of ozone depleting substances into account we make empirical estimates of future ozone. The result...

  12. Arctic adaptation and climate change

    International Nuclear Information System (INIS)

    The amplification of climatic warming in the Arctic and the sensitivity of physical, biological, and human systems to changes in climate make the Arctic particularly vulnerable to climate changes. Large areas of the Arctic permafrost and sea ice are expected to disappear under climate warming and these changes will have considerable impacts on the natural and built environment of the north. A review is presented of some recent studies on what these impacts could be for the permafrost and sea ice environment and to identify linkages with socioeconomic activities. Terrestrial adaptation to climate change will include increases in ground temperature; melting of permafrost with consequences such as frost heave, mudslides, and substantial settlement; rotting of peat contained in permafrost areas, with subsequent emission of CO2; increased risk of forest fire; and flooding of low-lying areas. With regard to the manmade environment, structures that will be affected include buildings, pipelines, highways, airports, mines, and railways. In marine areas, climate change will increase the ice-free period for marine transport operations and thus provide some benefit to the offshore petroleum industry. This benefit will be offset by increased wave height and period, and increased coastal erosion. The offshore industry needs to be particularly concerned with these impacts since the expected design life of industry facilities (30-60 y) is of the same order as the time frame for possible climatic changes. 18 refs., 5 figs

  13. Arctic whaling: proceedings of the International Symposium Arctic Whaling February 1983

    OpenAIRE

    H.K. 's Jacob; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the biology of whales Edward Mitchell Ecology of North Atlantic Boreal and Arctic Monodontid and Mysticete Whales Allen P. McCartney History of native whaling in the Arctic and Subarctic Albert A. Dekin Jr...

  14. Health in the Arctic and climate change

    OpenAIRE

    Sloth Pedersen, Henning

    2007-01-01

    The Arctic environment is like a magnifying glass. Many of the hazards stemming from industrial activity in the South tend to concentrate in the North. This is true for DDT, PCB, heavy metals and many other substances that may endanger human health. Climate change is yet another example of how the negative impact of industrial activity may be magnified in the Arctic region.

  15. Arctic freshwater export: Status, mechanisms, and prospects

    NARCIS (Netherlands)

    Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; Woodgate, R.

    2015-01-01

    Large freshwater anomalies clearly exist in the Arctic Ocean. For example, liquid freshwater has accumulated in the Beaufort Gyre in the decade of the 2000s compared to 1980–2000, with an extra ˜ 5000 km3 — about 25% — being stored. The sources of freshwater to the Arctic from precipitation and runo

  16. Pacific Northwest Laboratory Alaska (ARCTIC) research program

    International Nuclear Information System (INIS)

    The current program continues studies of arctic ecosystems begun in 1959 as part of the Cape Thompson Program. Specific ecosystem aspects include studies of the ecology of arctic and red foxes, small mammel and bird population studies, lichen studies, and radiation ecology studies

  17. CHARACTERISTICS OF HYDROCARBON EXPLOITATION IN ARCTIC CIRCLE

    Directory of Open Access Journals (Sweden)

    Vanja Lež

    2013-12-01

    Full Text Available The existence of large quantities of hydrocarbons is supposed within the Arctic Circle. Assumed quantities are 25% of the total undiscovered hydrocarbon reserves on Earth, mostly natural gas. Over 500 major and minor gas accumulations within the Arctic Circle were discovered so far, but apart from Snøhvit gas field, there is no commercial exploitation of natural gas from these fields. Arctic gas projects are complicated, technically hard to accomplish, and pose a great threat to the return of investment, safety of people and equipment and for the ecosystem. Russia is a country that is closest to the realization of the Arctic gas projects that are based on the giant gas fields. The most extreme weather conditions in the seas around Greenland are the reason why this Arctic region is the least explored and furthest from the realization of any gas project (the paper is published in Croatian .

  18. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  19. Arctic Visiting Speakers Series (AVS)

    Science.gov (United States)

    Fox, S. E.; Griswold, J.

    2011-12-01

    The Arctic Visiting Speakers (AVS) Series funds researchers and other arctic experts to travel and share their knowledge in communities where they might not otherwise connect. Speakers cover a wide range of arctic research topics and can address a variety of audiences including K-12 students, graduate and undergraduate students, and the general public. Host applications are accepted on an on-going basis, depending on funding availability. Applications need to be submitted at least 1 month prior to the expected tour dates. Interested hosts can choose speakers from an online Speakers Bureau or invite a speaker of their choice. Preference is given to individuals and organizations to host speakers that reach a broad audience and the general public. AVS tours are encouraged to span several days, allowing ample time for interactions with faculty, students, local media, and community members. Applications for both domestic and international visits will be considered. Applications for international visits should involve participation of more than one host organization and must include either a US-based speaker or a US-based organization. This is a small but important program that educates the public about Arctic issues. There have been 27 tours since 2007 that have impacted communities across the globe including: Gatineau, Quebec Canada; St. Petersburg, Russia; Piscataway, New Jersey; Cordova, Alaska; Nuuk, Greenland; Elizabethtown, Pennsylvania; Oslo, Norway; Inari, Finland; Borgarnes, Iceland; San Francisco, California and Wolcott, Vermont to name a few. Tours have included lectures to K-12 schools, college and university students, tribal organizations, Boy Scout troops, science center and museum patrons, and the general public. There are approximately 300 attendees enjoying each AVS tour, roughly 4100 people have been reached since 2007. The expectations for each tour are extremely manageable. Hosts must submit a schedule of events and a tour summary to be posted online

  20. Arctic sea ice and Eurasian climate: A review

    OpenAIRE

    Gao, Yongqi; Sun, Jianqi; Li, Fei; HE Shengping; Sandven, Stein; Yan, Qing; Zhang, Zhongshi; Lohmann, Katja; Keenlyside, Noel; Furevik, Tore; Suo, Lingling

    2014-01-01

    The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades, including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate. Paleo, obser...

  1. THE ARCTIC: AN INDICATOR OF THE PLANET"S HEALTH

    OpenAIRE

    Callaghan, Terry

    2012-01-01

    The Arctic is a critically important component of the earth system and the Arctic is subject to dramatic change due to global warming in particular. To build capacity for better environmental monitoring and research in the Arctic, the EU has funded the SCANNET-INTERACT Consortium, which consists of partners from all the Arctic countries and 33 research infrastructures located throughout the large environmental envelope of the Arctic and a further 8 research facilities have joined as "observer...

  2. Radioactivity assessment in the Arctic Monitoring and Assessment Programme

    International Nuclear Information System (INIS)

    In 1991 ministers from eight Arctic countries committed themselves to the establishment of the Arctic Monitoring and Assessment Programme (AMAP). AMAP was asked to prepare regular State of the Arctic Environment Reports. This paper describes the background, methods and table of contents of the radioactivity section of the State of the Arctic Environment Report, being prepared for presentation to the ministers from the eight Arctic countries in 1996. 2 refs

  3. Facility engineering for Arctic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, D.M.; McClusky, K.R.; Shirley, R.; Spitzenberger, R. [Mustang Engineering Inc., Houston, TX (United States)

    2001-07-01

    The Northstar Development Project is located on Seal Island in the Beaufort Sea, north of Prudhoe Bay. The design and engineering of the facilities for the Northstar Development Project was fraught with challenges. Mustang Engineering Incorporated was involved in the design and engineering of the pipe rack, pump house, process and compressor modules. All the characteristics of an offshore facility are present, even though the project is land-based on a man-made island. A number of the strategies developed for offshore platforms of the Gulf of Mexico were adapted to the fabrication, logistics and installation of the modules. To reduce yard fabrication time, a modularized design concept was adopted. Cost savings and onsite fabrication efficiencies were realized through open communication with the operator, early discussions with vendors, regulatory agencies, and local fabrication and installation contractors. Some improvisation and deviations were required to meet the stringent requirements for operation under Arctic conditions. The lessons learned on this project will be of use in future Arctic projects. 1 tab., 6 figs.

  4. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modern ice and sea bed environments, and by interpretation of geological records imprinted in the sea floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but it is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  5. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  6. Atmospheric DMS in the High Arctic

    OpenAIRE

    Lundén, Jenny

    2010-01-01

    During the Arctic summer when the anthropogenic influence is limited, the natural marine source of sulfur in the form of gas-phase dimethyl sulfide viz. DMS(g), is of great importance for cloud formation. The harsh environment of the Arctic makes it difficult to perform in situ measurements of DMS(g) and hence regional model simulations can serve as a complement to increase our understanding of DMS related processes in the Arctic. In this thesis a regional scale meteorological forecast model,...

  7. The adaptation challenge in the Arctic

    Science.gov (United States)

    Ford, James D.; McDowell, Graham; Pearce, Tristan

    2015-12-01

    It is commonly asserted that human communities in the Arctic are highly vulnerable to climate change, with the magnitude of projected impacts limiting their ability to adapt. At the same time, an increasing number of field studies demonstrate significant adaptive capacity. Given this paradox, we review climate change adaptation, resilience and vulnerability research to identify and characterize the nature and magnitude of the adaptation challenge facing the Arctic. We find that the challenge of adaptation in the Arctic is formidable, but suggest that drivers of vulnerability and barriers to adaptation can be overcome, avoided or reduced by individual and collective efforts across scales for many, if not all, climate change risks.

  8. Politics of sustainability in the Arctic (POSUSA)

    DEFF Research Database (Denmark)

    Gad, Ulrik Pram; Jakobsen, Uffe; Strandsbjerg, Jeppe

    The concept of sustainability is of central importance in Arctic politics. However, for different actors (governments, indigenious peoples, NGOs) the concept implies different sets of precautions and opportunities. Sustainability, therefore, is much more a fundamental concept to be further...... elaborated than a definable term with a specific meaning. This is the core hypothesis in a collective research project, the POSUSA project (Politics of Sustainability in the Arctic) that aims to map and analyse the role of sustainability in various political and economic strategies in the Arctic....

  9. Introduction: World Routes in the Arctic

    Directory of Open Access Journals (Sweden)

    Art Leete

    2011-12-01

    Full Text Available The Arctic is associated in popular perception with a vast frozen snow covered empty place. Everybody who has been in the Arctic, whether in the Eurasian or North American part, knows that this stereotype is correct. Indeed, the Arctic is a place with lots of space that determines the lifestyle of the people in this area. All human activities – whether livelihood or mastering of the territory– are and always have been connected with substantial movement. Hunting, fishing, trading, the establishment of settlements and keeping them alive, all this needs the movement of goods and human resources.

  10. Radioactive contamination in the Arctic - Present situation and future challenges

    International Nuclear Information System (INIS)

    There is currently a focus on radioactivity and the Arctic region. The reason for this is the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In 1991, the International Arctic Environmental Protection Strategy (IAEPS) was launched and the Arctic Monitoring and Assessment Programme (AMAP) established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (author)

  11. Arctic and Southern Ocean Sea Ice Concentrations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly sea ice concentration for Arctic (1901 to 1995) and Southern oceans (1973 to 1990) were digitized on a standard 1-degree grid (cylindrical projection) to...

  12. Acoustic Resonance Reaction Control Thruster (ARCTIC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...

  13. Arctic Landfast Sea Ice 1953-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The files in this data set contain landfast sea ice data (monthly means) gathered from both Russian Arctic and Antarctic Research Institute (AARI) and Canadian Ice...

  14. Arctic climate change: Greenhouse warming unleashed

    Science.gov (United States)

    Mauritsen, Thorsten

    2016-04-01

    Human activity alters the atmospheric composition, which leads to global warming. Model simulations suggest that reductions in emission of sulfur dioxide from Europe since the 1970s could have unveiled rapid Arctic greenhouse gas warming.

  15. Arctic and Aleutian terns, Amchitka Island, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Baird 1980 has recently reported on the ecology of Arctic terns Sterna paradisaea and Aleutian terns Sterna aleutica from 4 areas of mainland Alaska. However, prior...

  16. Arctic Marine Transportation Program 1979-1986

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this program was to collect data relevant to developing year-round transportation capabilities in the Arctic Ocean. The US Maritime Administration...

  17. Geologic Provinces of the Arctic, 2000 (prvarcst)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This coverage includes arcs, polygons and polygon labels that describe Arctic portion of the U.S. Geological Survey defined geologic provinces of the World in 2000.

  18. Arctic shipping emissions inventories and future scenarios

    OpenAIRE

    J. J. Corbett; D. A. Lack; J. J. Winebrake; Harder, S; J. A. Silberman; Gold, M.

    2010-01-01

    This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050) scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especial...

  19. Isotopes in the Arctic atmospheric water cycle

    OpenAIRE

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen-Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-01-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-boar...

  20. The Anatomy of an Arctic Knowledge Debate

    DEFF Research Database (Denmark)

    Sejersen, Frank

    2005-01-01

    Within the last decades, the Arctic research community and the Inuit communities have focused on the question of knowledge to such an extent that we may in fact speak of a knowledge cult.......Within the last decades, the Arctic research community and the Inuit communities have focused on the question of knowledge to such an extent that we may in fact speak of a knowledge cult....

  1. Arctic cushion plants as fallout 'monitors'

    International Nuclear Information System (INIS)

    The internal distribution of fallout 137Cs was determined for arctic cushion plants Dryas integrifolia, Silene acaulis and the bryophytes Rhacomitrium lanuginosum and Polytrichum juniperinum collected at various latitudes in Canadian Arctic. The results indicate that these plants have functioned as biological monitors of radioactive fallout and it is suggested that analysis of the internal distribution of 137Cs could serve as a model for other airborne contaminants. (author)

  2. Arctic ecosystem responses to a warming climate

    DEFF Research Database (Denmark)

    Mortensen, Lars O.

    is frozen solid for the main part of the year. However, in recent decades, arctic temperatures have in-creased between two and three times that of the global averages, which have had a substantial impact on the physical environment of the arctic ecosystem, such as deglaciation of the Greenland inland ice......’ of ecosystem re-sponses to the future global climate change....

  3. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  4. Land-Based Marine Pollution in Arctic

    OpenAIRE

    Haile, Fitsum Gebreselassie

    2014-01-01

    Land-based pollution represents the single most important cause of marine pollution. The threat of land-based pollution to the marine environment is a serious one since it mainly affects coastal waters, which are sites of high biological productivity. The occurrence of high concentrations of pollutants in the Arctic environment has been a concern for many years.. Regional and international actions over the past two decades attempting to manage pollutants in the Arctic environment from land- b...

  5. Zooplankton in the Arctic outflow

    Science.gov (United States)

    Soloviev, K. A.; Dritz, A. V.; Nikishina, A. B.

    2009-04-01

    Climate changes in the Arctic cause the changes in the current system that may have cascading effect on the structure of plankton community and consequently on the interlinked and delicately balanced food web. Zooplankton species are by definition incapable to perform horizontal moving. Their transport is connected with flowing water. There are zooplankton species specific for the definite water masses and they can be used as markers for the different currents. That allows us to consider zooplankton community composition as a result of water mixing in the studied area. Little is known however about the mechanisms by which spatial and temporal variability in advection affect dynamics of local populations. Ice conditions are also very important in the function of pelagic communities. Melting time is the trigger to all "plankton blooming" processes, and the duration of ice-free conditions determines the food web development in the future. Fram Strait is one of the key regions for the Arctic: the cold water outflow comes through it with the East Greenland Current and meets warm Atlantic water, the West Spitsbergen Current, producing complicated hydrological situation. During 2007 and 2008 we investigated the structure functional characteristics of zooplankton community in the Fram Strait region onboard KV "Svalbard" (April 2007, April and May 2008) and RV "Jan Mayen" (May 2007, August 2008). This study was conducted in frame of iAOOS Norway project "Closing the loop", which, in turn, was a part of IPY. During this cruises multidisciplinary investigations were performed, including sea-ice observations, CTD and ADCP profiling, carbon flux, nutrients and primary production measurements, phytoplankton sampling. Zooplankton was collected with the Hydro-Bios WP2 net and MultiNet Zooplankton Sampler, (mouth area 0.25 m2, mesh size 180 um).Samples were taken from the depth strata of 2000-1500, 1500-1000, 1000-500,500-200, 200-100, 100-60, 60-30, 30-0 m. Gut fluorescence

  6. The great challenges in Arctic Ocean paleoceanography

    International Nuclear Information System (INIS)

    Despite the importance of the Arctic in the climate system, the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, i.e., the Lomonosov Ridge, the Alpha-Mendeleev Ridge, and the Chukchi Plateau/Northwind Ridge, the Beaufort, Kara and Laptev sea continental margins, as well as the major Arctic gateways towards the Atlantic and Pacific oceans. The new detailed climate records from the Arctic Ocean spanning time intervals from the Late Cretaceous/Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world and representing short- and long-term climate variability on scales from 10 to 106 years, will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. With this, studying the Arctic Ocean is certainly one of the major challenges in climate research for the coming decades.

  7. Influence of sea ice on Arctic precipitation.

    Science.gov (United States)

    Kopec, Ben G; Feng, Xiahong; Michel, Fred A; Posmentier, Eric S

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km(2) sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  8. Arctic response strategy: Canadian Coast Guard

    International Nuclear Information System (INIS)

    The revision of the Canadian Coast Guard's Arctic response strategy was described with particular focus on the consultative method used to ensure that all perspectives were taken into consideration. Some tankers used to re-supply fuel to remote Arctic communities carry more than 30,000 tonnes of product, putting them at risk for major spills. The Arctic response strategy was revised to emphasize recommendations for prevention, preparedness and response. Prevention was recognized as the most effective solution to oil spills in the Arctic. The leadership and coordination roles of the Canadian Coast Guard were demonstrated in relation to ship-source oil pollution. The new strategy also outlined the equipment requirements needed to respond to a large spill in the Arctic. Categorization of spill sizes as tier 1 to 4 was determined by examining southern regimes as was the characterization of corresponding equipment. Implementation of the new recommendations of the revised Arctic response strategy will take place over the next 2 years. The prevention aspect will include some legislative changes or stricter guidelines

  9. Arctic response strategy: Canadian Coast Guard

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, J.C. [Canadian Coast Guard, Sarnia, ON (Canada)

    2000-07-01

    The revision of the Canadian Coast Guard's Arctic response strategy was described with particular focus on the consultative method used to ensure that all perspectives were taken into consideration. Some tankers used to re-supply fuel to remote Arctic communities carry more than 30,000 tonnes of product, putting them at risk for major spills. The Arctic response strategy was revised to emphasize recommendations for prevention, preparedness and response. Prevention was recognized as the most effective solution to oil spills in the Arctic. The leadership and coordination roles of the Canadian Coast Guard were demonstrated in relation to ship-source oil pollution. The new strategy also outlined the equipment requirements needed to respond to a large spill in the Arctic. Categorization of spill sizes as tier 1 to 4 was determined by examining southern regimes as was the characterization of corresponding equipment. Implementation of the new recommendations of the revised Arctic response strategy will take place over the next 2 years. The prevention aspect will include some legislative changes or stricter guidelines.

  10. Long-term trends of the Polar and Arctic cells influencing the Arctic climate since 1989

    Science.gov (United States)

    Qian, Weihong; Wu, Kaijun; Leung, Jeremy Cheuk-Hin; Shi, Jian

    2016-03-01

    The strengthening and broadening trends of the Hadley cell have been revealed, while the existence of the Arctic cell has also been confirmed in previous studies. This study extends previous strengthening trend analyses of the Hadley cell to the Polar and Arctic cells in the Northern Hemisphere and explores their climate influences. Results show that the Polar cell experienced an abrupt change from a slow to a rapid strengthening trend in 1989, while the Arctic cell showed an insignificant strengthening trend and a significant weakening trend successively. The strengthening subsidence flow associated with the Polar and Arctic cells can partly explain the warming surface air temperature and declining sea ice concentration through the increasing tropospheric height and temperature trends. These results provide new insights for understanding the interdecadal relationship between atmospheric circulation and climate change in the Arctic region.

  11. ArcticDEM; A Publically Available, High Resolution Elevation Model of the Arctic

    Science.gov (United States)

    Morin, Paul; Porter, Claire; Cloutier, Michael; Howat, Ian; Noh, Myoung-Jong; Willis, Michael; Bates, Brian; Willamson, Cathleen; Peterman, Kennith

    2016-04-01

    A Digital Elevation Model (DEM) of the Arctic is needed for a large number of reasons, including: measuring and understanding rapid, ongoing changes to the Arctic landscape resulting from climate change and human use and mitigation and adaptation planning for Arctic communities. The topography of the Arctic is more poorly mapped than most other regions of Earth due to logistical costs and the limits of satellite missions with low-latitude inclinations. A convergence of civilian, high-quality sub-meter stereo imagery; petascale computing and open source photogrammetry software has made it possible to produce a complete, very high resolution (2 to 8-meter posting), elevation model of the Arctic. A partnership between the US National Geospatial-intelligence Agency and a team led by the US National Science Foundation funded Polar Geospatial Center is using stereo imagery from DigitalGlobe's Worldview-1, 2 and 3 satellites and the Ohio State University's Surface Extraction with TIN-based Search-space Minimization (SETSM) software running on the University of Illinois's Blue Water supercomputer to address this challenge. The final product will be a seemless, 2-m posting digital surface model mosaic of the entire Arctic above 60 North including all of Alaska, Greenland and Kamchatka. We will also make available the more than 300,000 individual time-stamped DSM strip pairs that were used to assemble the mosaic. The Arctic DEM will have a vertical precision of better than 0.5m and can be used to examine changes in land surfaces such as those caused by permafrost degradation or the evolution of arctic rivers and floodplains. The data set can also be used to highlight changing geomorphology due to Earth surface mass transport processes occurring in active volcanic and glacial environments. When complete the ArcticDEM will catapult the Arctic from the worst to among the best mapped regions on Earth.

  12. The Arctic Grand Challenge: Abrupt Climate Change

    Science.gov (United States)

    Wilkniss, P. E.

    2003-12-01

    Trouble in polar paradise (Science, 08/30/02), significant changes in the Arctic environment are scientifically documented (R.E. Moritz et al. ibid.). More trouble, lots more, "abrupt climate change," (R. B. Alley, et al. Science 03/28/03). R. Corell, Arctic Climate Impact Assessment team (ACIA), "If you want to see what will happen in the rest of the world 25 years from now just look what's happening in the Arctic," (Arctic Council meeting, Iceland, 08/03). What to do? Make abrupt Arctic climate change a grand challenge for the IPY-4 and beyond! Scientifically:Describe the "state" of the Arctic climate system as succinctly as possible and accept it as the point of departure.Develop a hypothesis and criteria what constitutes "abrupt climate change," in the Arctic that can be tested with observations. Observations: Bring to bear existing observations and coordinate new investments in observations through an IPY-4 scientific management committee. Make the new Barrow, Alaska, Global Climate Change Research Facility a major U.S. contribution and focal point for the IPY-4 in the U.S Arctic. Arctic populations, Native peoples: The people of the North are living already, daily, with wrenching change, encroaching on their habitats and cultures. For them "the earth is faster now," (I. Krupnik and D. Jolly, ARCUS, 2002). From a political, economic, social and entirely realistic perspective, an Arctic grand challenge without the total integration of the Native peoples in this effort cannot succeed. Therefore: Communications must be established, and the respective Native entities must be approached with the determination to create well founded, well functioning, enduring partnerships. In the U.S. Arctic, Barrow with its long history of involvement and active support of science and with the new global climate change research facility should be the focal point of choice Private industry: Resource extraction in the Arctic followed by oil and gas consumption, return the combustion

  13. Changing geo-political realities in the Arctic region

    DEFF Research Database (Denmark)

    Sørensen, Camilla T. N.

    2014-01-01

    This article analyzes and discusses how Denmark seeks to manage the changing geopolitical realities in the Arctic region specifically focusing on how Denmark seeks to manage its relations with China in the Arctic region....

  14. Hydrochemical Atlas of the Arctic Ocean (NODC Accession 0044630)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The present Hydrochemical Atlas of the Arctic Ocean is a description of hydrochemical conditions in the Arctic Ocean on the basis of a greater body of hydrochemical...

  15. A quantitative assessment of Arctic shipping in 2010–2014

    KAUST Repository

    Eguíluz, Victor M.

    2016-08-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011–2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far.

  16. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-04-01

    Full Text Available The Arctic is a sensitive region in terms of climate change and a rich natural resource for global economic activity. Arctic shipping is an important contributor to the region's anthropogenic air emissions, including black carbon – a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow. These emissions are projected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. To understand the impacts of these increased emissions, scientists and modelers require high-resolution, geospatial emissions inventories that can be used for regional assessment modeling. This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. Short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing; a first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase climate forcing due to Arctic ships by at least 17% compared to warming from these vessels' CO2 emissions (~42 000 gigagrams. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  17. Arctic shipping and China : Governance structure and future developments

    OpenAIRE

    Hjalti Þór Hreinsson 1984

    2014-01-01

    The goal of this thesis is to study China’s shipping ambitions in the Arctic and the pertinent governing instruments. Arctic shipping poses significant challenges for Arctic governance with increased access to its oceans for shipping companies. Arctic transit is driven by demanding world markets in the West and the rising economic powers of the East, looking for the most cost-efficient routes. Rapid ice melt leads to better access for vessels, but other obstacles await those interested in Arc...

  18. Tundra Rehabilitation in Alaska's Arctic

    Science.gov (United States)

    Lynn, L. A.

    2012-12-01

    Oil exploration in Alaska's Arctic has been conducted for more than 40 years, resulting in over 3,640 ha of gravel fill placed for roads, pads, and airstrips to support the industry. Likewise, tundra disturbance from burying power lines and by tundra vehicle travel are also common. Rehabilitation of disturbed sites began around 2002, with well over 150 ha that has been previously treated or is currently being rehabilitated. Two primary goals of rehabilitation efforts have been 1) revegetation by indigenous species, and 2) limiting thermokarst. Early efforts were concerned that removing gravel and having exposed bare ground would lead to extensive subsidence and eolian erosion. Native grass cultivars (e.g. Poa glauca, Arctagrostis latifolia, and Festuca rubra) were seeded to create vegetation cover quickly with the expectation that these grasses would survive only temporarily. The root masses and leaf litter were also expected to trap indigenous seed to enhance natural recolonization by indigenous plants. Due to the remote location of these sites, many of which are only accessible by helicopter, most are visited only two to three times following cultivation treatments, providing a limited data pool. At many sites, the total live seeded grass cover declined about 15% over the first 5¬-6 years (from around 30% to 15% cover), while total live indigenous vascular cover increased from no or trace cover to an average of 10% cover in that time. Cover of indigenous vascular plants at sites that were not seeded with native grass cultivars averaged just less than 10% after 10 years, showing no appreciable difference between the two approaches. Final surface elevations at the sites affect local hydrology and soil moisture. Other factors that influence the success of vegetation cover are proximity to the Arctic coast (salt effects), depth of remaining gravel, and changes in characteristics of the near-surface soil. Further development of rehabilitation techniques and the

  19. Arctic River Mobility: A Baseline Assessment

    Science.gov (United States)

    Rowland, J. C.; Wilson, C. J.; Brumby, S. P.; Pope, P. A.

    2009-12-01

    In many arctic river systems, permafrost and the presence of frozen floodplain materials provides a significant source of bank cohesion. Due to this cohesion, permafrost may play an important control of arctic river mobility and meandering dynamics. Whether changes in the rates of permafrost thawing has had or will have as significant a geomorphic impact on arctic river meandering as has already been observed for arctic coastline retreat, lake size and distribution, and hillslope stability is at present an unanswered question. The potential impact of climate driven changes in arctic river meandering has important implications for river planform morphology, floodplain dynamics, river ecology, and the export of carbon and nutrients to coastal oceans. We present results of remote sensing analysis of river mobility for the Yukon River in Alaska and sections of the Siberian Rivers including the Lena, the Kolyma and the Indigirka Rivers. Comparisons of river location at successive intervals in time were conducted using Landsat imagery archives and higher resolution aerial photographs and satellite imagery. Extraction of river channel locations was accomplished using the GeniePro automated feature extraction software. Over the period of Landsat coverage (mid-1980s to present) arctic rivers show limited to no movement at the resolution of the Landsat data (30 m per pixel). On the Yukon Flats regions of the Yukon River, the most mobile sections of the river have migration rates comparable to reach-average values reported for temperate rivers; given that large portions of the Yukon display no detectable movement, reach-averaged values are far less than observed in temperate systems. Field inspection of areas of high erosion along the Yukon River indicate that erosional processes associated with the thermal degradation of permafrost play a dominant role in many of these areas. Thermal niching and large scale bank collapse due to undercutting play a large role in bank erosion

  20. Arctic Ocean freshwater: How robust are model simulations?

    NARCIS (Netherlands)

    Jahn, A.; Aksenov, Y.; de Cuevas, B.A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the

  1. Establishing Shared Knowledge about Globalization in Asia and the Arctic

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Graczyk, Piotr

    2016-01-01

    We discuss the role of knowledge in relations between Arctic communities and Asia (the Arctic Council observer states: China, India, Japan, Singapore, South Korea). We argue that mutual and shared knowledge between Arctic communities and Asia is necessary for local benefits and comprehensively...

  2. Exploring Arctic Transpolar Drift During Dramatic Sea Ice Retreat

    DEFF Research Database (Denmark)

    Gascard, J.C.; Festy, J.; le Goff, H.;

    2008-01-01

    The Arctic is undergoing significant environmental changes due to climate warming. The most evident signal of this warming is the shrinking and thinning of the ice cover of the Arctic Ocean. If the warming continues, as global climate models predict, the Arctic Ocean will change from a perennially...

  3. Arctic shipping emissions inventories and future scenarios

    Directory of Open Access Journals (Sweden)

    J. J. Corbett

    2010-10-01

    Full Text Available This paper presents 5 km×5 km Arctic emissions inventories of important greenhouse gases, black carbon and other pollutants under existing and future (2050 scenarios that account for growth of shipping in the region, potential diversion traffic through emerging routes, and possible emissions control measures. These high-resolution, geospatial emissions inventories for shipping can be used to evaluate Arctic climate sensitivity to black carbon (a short-lived climate forcing pollutant especially effective in accelerating the melting of ice and snow, aerosols, and gaseous emissions including carbon dioxide. We quantify ship emissions scenarios which are expected to increase as declining sea ice coverage due to climate change allows for increased shipping activity in the Arctic. A first-order calculation of global warming potential due to 2030 emissions in the high-growth scenario suggests that short-lived forcing of ~4.5 gigagrams of black carbon from Arctic shipping may increase global warming potential due to Arctic ships' CO2 emissions (~42 000 gigagrams by some 17% to 78%. The paper also presents maximum feasible reduction scenarios for black carbon in particular. These emissions reduction scenarios will enable scientists and policymakers to evaluate the efficacy and benefits of technological controls for black carbon, and other pollutants from ships.

  4. Arctic Ocean Scientific Drilling: The Next Frontier

    Directory of Open Access Journals (Sweden)

    Ruediger Stein

    2010-04-01

    Full Text Available The modern Arctic Ocean appears to be changing faster than any other region on Earth. To understand the potential extent of high latitude climate change, it is necessary to sample the history stored in the sediments filling the basins and covering the ridges of the Arctic Ocean. These sediments have been imaged with seismic reflection data, but except for the superficial record, which has been piston cored, they have been sampled only on the Lomonosov Ridge in 2004 during the Arctic Coring Expedition (ACEX-IODP Leg 302; Backman et al., 2006 and in 1993 in the ice-free waters in the Fram Strait/Yermak Plateau area (ODP Leg 151; Thiede et al., 1996.Although major progress in Arctic Ocean research has been made during the last few decades, the short- and long-term paleoceanographic and paleoclimatic history as well as its plate-tectonic evolution are poorly known compared to the other oceans. Despite the importance of the Arctic in the climate system, the database we have from this area is still very weak. Large segments of geologic time have not been sampled in sedimentary sections. The question of regional variations cannot be addressed.

  5. 2nd International Arctic Ungulate Conference

    Directory of Open Access Journals (Sweden)

    A. Anonymous

    1996-01-01

    Full Text Available The 2nd International Arctic Ungulate Conference was held 13-17 August 1995 on the University of Alaska Fairbanks campus. The Institute of Arctic Biology and the Alaska Cooperative Fish and Wildlife Research Unit were responsible for organizing the conference with assistance from biologists with state and federal agencies and commercial organizations. David R. Klein was chair of the conference organizing committee. Over 200 people attended the conference, coming from 10 different countries. The United States, Canada, and Norway had the largest representation. The conference included invited lectures; panel discussions, and about 125 contributed papers. There were five technical sessions on Physiology and Body Condition; Habitat Relationships; Population Dynamics and Management; Behavior, Genetics and Evolution; and Reindeer and Muskox Husbandry. Three panel sessions discussed Comparative caribou management strategies; Management of introduced, reestablished, and expanding muskox populations; and Health risks in translocation of arctic ungulates. Invited lectures focused on the physiology and population dynamics of arctic ungulates; contaminants in food chains of arctic ungulates and lessons learned from the Chernobyl accident; and ecosystem level relationships of the Porcupine Caribou Herd.

  6. VLF propagation measurements in the Canadian Arctic

    Science.gov (United States)

    Lauber, Wilfred R.; Bertrand, Jean M.

    1993-05-01

    For the past three years, during a period of high sun spot numbers, propagation measurements were made on the reception of VLF signals in the Canadian Arctic. Between Aug. and Dec. 1989, the received signal strengths were measured on the Canadian Coast Guard icebreaker, John A. MacDonald in the Eastern Canadian Arctic. Between Jul. 1991 and Jun. 1992, the received signal strengths were measured at Nanisivik, Baffin Island. The purposes of this work were to check the accuracy and estimate variances of the Naval Ocean Systems Center's (NOSC) Long Wave Propagation Capability (LWPC) predictions in the Canadian Arctic and to gather ionospheric storm data. In addition, the NOSC data taken at Fort Smith and our data at Nanisivik were used to test the newly developed Longwave Noise Prediction (LNP) program and the CCIR noise predictions, at 21.4 and 24.0 kHz. The results of the work presented and discussed in this paper show that in general the LWPC predicts accurate values of received signal strength in the Canadian Arctic with standard deviations of 1 to 2 dB over several months. Ionospheric storms can gauge the received signal strengths to decrease some 10 dB for a period of several hours or days. However, the effects of these storms are highly dependent on the propagation path. Finally the new LNP atmospheric noise model predicts lower values of noise in the Arctic than the CCIR model and our limited measurements tend to support these lower values.

  7. The JRC and the Arctic - How JRC science can underpin the successful implementation of an EU Arctic Policy

    OpenAIRE

    WILSON Julian; Vignati, Elisabetta; DOBRICIC SRDAN; STILIANAKIS Nikolaos; Dowell, Mark; WESTRA VAN HOLTHE MARION; ZAMPIERI Alessandra; Martinsohn, Jann; VESPE MICHELE

    2015-01-01

    The Arctic is experiencing unprecedented and disproportionately high rates of environmental change due to effects of climate change. These changing conditions are making it easier to exploit the natural wealth of the Arctic (mineral, fisheries, land) while putting the existence of Arctic ecosystems and the indigenous population that rely on them under threat. EU institutions have recognised these opportunities for, and threats to, the Arctic. The EU Commission and the EEAS (European External ...

  8. AROME-Arctic: New operational NWP model for the Arctic region

    Science.gov (United States)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  9. Chytrids dominate arctic marine fungal communities.

    Science.gov (United States)

    Hassett, B T; Gradinger, R

    2016-06-01

    Climate change is altering Arctic ecosystem structure by changing weather patterns and reducing sea ice coverage. These changes are increasing light penetration into the Arctic Ocean that are forecasted to increase primary production; however, increased light can also induce photoinhibition and cause physiological stress in algae and phytoplankton that can favour disease development. Fungi are voracious parasites in many ecosystems that can modulate the flow of carbon through food webs, yet are poorly characterized in the marine environment. We provide the first data from any marine ecosystem in which fungi in the Chytridiomycota dominate fungal communities and are linked in their occurrence to light intensities and algal stress. Increased light penetration stresses ice algae and elevates disease incidence under reduced snow cover. Our results show that chytrids dominate Arctic marine fungal communities and have the potential to rapidly change primary production patterns with increased light penetration. PMID:26754171

  10. Methan Dynamics in an Arctic Wetland

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Skov

    Rising temperatures in the Arctic have the potential to increase methane (CH4) emissions from arctic wetlands due to increased decomposition, changes in vegetation cover, and increased substrate input from vegetation and thawing permafrost. The effects of warming and changes in vegetation cover on...... be used to oxidize CH4. The over all effect of the presence of sedges on the CH4 budget is unknown for most arctic species. Here the effects of warming and changes in plant cover on CH4 dynamics and emissions in a wetland in Blæsedalen, Disko Island, W. Greenland were investigated. The importance of...... CH4 oxidation in the rhizosphere of Carex aquatilis ssp. stans and Eriophorum angustifolium was quantified using a 13CH4 tracer. The results showed that rhizospheric CH4 oxidation mediated less than 2% of ecosystem CH4 emissions. No significant effects of warming or shrub removal on ecosystem CH4...

  11. Predictability of the Arctic sea ice edge

    Science.gov (United States)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  12. Fate of mercury in the Arctic (FOMA)

    DEFF Research Database (Denmark)

    Skov, H.; Christensen, J.; Asmund, G.;

    This report is the final reporting of the project FONA, funded by the Danish Environmental Protection Agency with means from the MIKA/DANCEA funds for Environmental Support to the Arctic Region. The aim of the project is to study the intercompartment mercury transport chain in the arctic area. From...... atmospheric deposition of mercury on sea surfaces to uptake in marine organisms, bio-accumulation, and finally mercury levels in mammals. The studies in the project are focused on the behaviour of mercury during the spring period where special phenomena lead to an enhanced deposition of mercury in the Arctic...... environment, at a time where the marine ecosystem is particularly active. The studies also include a comprehensive time trend study of mercury in top carnivore species. Each of these studies contributes towards establishing the knowledge necessary to develop a general model for transport and uptake of mercury...

  13. Mean Dynamic Topography of the Arctic Ocean

    Science.gov (United States)

    Farrell, Sinead Louise; Mcadoo, David C.; Laxon, Seymour W.; Zwally, H. Jay; Yi, Donghui; Ridout, Andy; Giles, Katherine

    2012-01-01

    ICESat and Envisat altimetry data provide measurements of the instantaneous sea surface height (SSH) across the Arctic Ocean, using lead and open water elevation within the sea ice pack. First, these data were used to derive two independent mean sea surface (MSS) models by stacking and averaging along-track SSH profiles gathered between 2003 and 2009. The ICESat and Envisat MSS data were combined to construct the high-resolution ICEn MSS. Second, we estimate the 5.5-year mean dynamic topography (MDT) of the Arctic Ocean by differencing the ICEn MSS with the new GOCO02S geoid model, derived from GRACE and GOCE gravity. Using these satellite-only data we map the major features of Arctic Ocean dynamical height that are consistent with in situ observations, including the topographical highs and lows of the Beaufort and Greenland Gyres, respectively. Smaller-scale MDT structures remain largely unresolved due to uncertainties in the geoid at short wavelengths.

  14. Arctic Ozone Depletion from UARS MLS Measurements

    Science.gov (United States)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  15. Arctic Warming as News - Perils and Possibilities

    Science.gov (United States)

    Revkin, A. C.

    2015-12-01

    A science journalist in his 30th year covering human-driven climate change, including on three Arctic reporting trips, reflects on successes and setbacks as news media, environmentalists and Arctic communities have tried to convey the significance of polar change to a public for which the ends of the Earth will always largely be a place of the imagination.Novel challenges are arising in the 24/7 online media environment, as when a paper by a veteran climate scientist proposing a mechanism for abrupt sea-level rise became a big news story before it was accepted by the open-review journal to which it had been submitted. New science is digging in on possible connections between changing Arctic sea ice and snow conditions and disruptive winter weather in more temperate northern latitudes, offering a potential link between this distant region and the lives of ordinary citizens. As cutting-edge research, such work gets substantial media attention. But, as with all new areas of inquiry, uncertainty dominates - creating the potential for distracting the public and policymakers from the many aspects of anthropogenic climate change that are firmly established - but, in a way, boring because of that.With the challenges, there are unprecedented opportunities for conveying Arctic science. In some cases, researchers on expeditions are partnering with media, offering both scientists and news outlets fresh ways to convey the story of Arctic change in an era of resource constraints.Innovative uses of crittercams, webcams, and satellite observations offer educators and interested citizens a way to track and appreciate Arctic change. But more can be done to engage the public directly without the news media as an intermediary, particularly if polar scientists or their institutions test some of the established practices honed by more experienced communicators at NASA.

  16. Arctic sea ice balance and climate

    International Nuclear Information System (INIS)

    Proxy data and local historical records show that sea ice extent has undergone large secular variations over past millennia and centuries, for reasons that are only qualitatively understood. Since the onset of systematic observations in situ and satellites, the record shows a remarkable constancy of the annual cycle of the arctic sea ice cover. This cycle is described by a continuity equation that is used to discuss the mechanisms relating ice extent and thickness to climate, and to illustrate how ice formation, transport, and melting combine to produce the seasonal cycle of sea ice cover. The heat balances and stresses at the surface and bottom of the sea ice are external forcing functions with small-scale and large-scale feedbacks. Examples are the stable stratification of the ocean boundary layer caused by bottom melting and surface drainage which suppress the vertical ocean heat flux, and the arctic summer stratus which forms over ice-covered ocean regions and limits surface melting. Recent efforts to model the seasonal cycle of sea ice in the Arctic are discussed in light of the observational record. A promising new development is the incorporation of satellite data as explicit variables carried in dynamic-thermodynamic ice models. Of special interest in the context of climate is the fresh water budget of the Arctic Basin. Its largest components, the runoff generated by mid-latitude precipitation over the Eurasian continent, and the ice export driven by the wind field over the Arctic Basin, have no immediately apparent connection. Taking into account all other components of the fresh water balance, Aagaard and Carmack estimate that the contemporary influx and outflux of fresh water at the perimeter of the Arctic Basin are equal. The unraveling of the mechanisms responsible for this equality, and the consequence of a possible imbalance remain challenging questions

  17. Bioaccumulation of radiocaesium in Arctic seals.

    Science.gov (United States)

    Carroll, Jolynn; Wolkers, Hans; Andersen, Magnus; Rissanen, Kristina

    2002-12-01

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 degrees N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23 +/- 0.045 Bq/kg f.w. 137Cs concentrations in both liver and kidney samples were near detection limits (approximately 0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed. PMID:12523541

  18. Bioaccumulation of radiocaesium in Arctic seals

    International Nuclear Information System (INIS)

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 deg. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23±0.045 Bq/kg f.w. 137Cs concentrations in both liver and kidney samples were near detection limits (∼0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed

  19. Bioaccumulation of radiocaesium in Arctic seals

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, JoLynn; Wolkers, Hans; Andersen, Magnus; Rissanen, Kristina

    2002-12-01

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 deg. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of {sup 137}Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23{+-}0.045 Bq/kg f.w. {sup 137}Cs concentrations in both liver and kidney samples were near detection limits ({approx}0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of {sup 137}Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed.

  20. Export of nutrients from the Arctic Ocean

    Science.gov (United States)

    Torres-Valdés, Sinhué; Tsubouchi, Takamasa; Bacon, Sheldon; Naveira-Garabato, Alberto C.; Sanders, Richards; McLaughlin, Fiona A.; Petrie, Brian; Kattner, Gerhard; Azetsu-Scott, Kumiko; Whitledge, Terry E.

    2013-04-01

    study provides the first physically based mass-balanced transport estimates of dissolved inorganic nutrients (nitrate, phosphate, and silicate) for the Arctic Ocean. Using an inverse model-generated velocity field in combination with a quasi-synoptic assemblage of hydrographic and hydrochemical data, we quantify nutrient transports across the main Arctic Ocean gateways: Davis Strait, Fram Strait, the Barents Sea Opening (BSO), and Bering Strait. We found that the major exports of all three nutrients occur via Davis Strait. Transports associated with the East Greenland Current are almost balanced by transports associated with the West Spitsbergen Current. The most important imports of nitrate and phosphate to the Arctic occur via the BSO, and the most important import of silicate occurs via Bering Strait. Oceanic budgets show that statistically robust net silicate and phosphate exports exist, while the net nitrate flux is zero, within the uncertainty limits. The Arctic Ocean is a net exporter of silicate (-15.7 ± 3.2 kmol s-1) and phosphate (-1.0 ± 0.3 kmol s-1; net ± 1 standard error) to the North Atlantic. The export of excess phosphate (relative to nitrate) from the Arctic, calculated at -1.1 ± 0.3 kmol s-1, is almost twice as large as previously estimated. Net transports of silicate and phosphate from the Arctic Ocean provide 12% and 90%, respectively, of the net southward fluxes estimated at 47°N in the North Atlantic. Additional sources of nutrients that may offset nutrient imbalances are explored, and the relevance and the pathway of nutrient transports to the North Atlantic are discussed.

  1. Role of Greenland meltwater in the changing Arctic

    Science.gov (United States)

    Dukhovskoy, Dmitry; Proshutinsky, Andrey; Timmermans, Mary-Louise; Myers, Paul; Platov, Gennady; Bamber, Jonathan; Curry, Beth; Somavilla, Raquel

    2016-04-01

    Observational data show that the Arctic ocean-ice-atmosphere system has been changing over the last two decades. Arctic change is manifest in the atypical behavior of the climate indices in the 21st century. Before the 2000s, these indices characterized the quasi-decadal variability of the Arctic climate related to different circulation regimes. Between 1948 and 1996, the Arctic atmospheric circulation alternated between anticyclonic circulation regimes and cyclonic circulation regimes with a period of 10-15 years. Since 1997, however, the Arctic has been dominated by an anticyclonic regime. Previous studies indicate that in the 20th century, freshwater and heat exchange between the Arctic Ocean and the sub-Arctic seas were self-regulated and their interactions were realized via quasi-decadal climate oscillations. What physical processes in the Arctic Ocean - sub-Arctic ocean-ice-atmosphere system are responsible for the observed changes in Arctic climate variability? The presented work is motivated by our hypothesis that in the 21st century, these quasi-decadal oscillations have been interrupted as a result of an additional freshwater source associated with Greenland Ice Sheet melt. Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus Greenland freshwater, the amount of which is about a third of the freshwater volume fluxed into the region during the 1970s Great Salinity Anomaly event, can spread and accumulate in the sub-Arctic seas influencing convective processes there. It is not clear, however, whether Greenland freshwater can propagate into the interior convective regions in the Labrador Sea and the Nordic Seas. In order to investigate the fate and pathways of Greenland freshwater in the sub-Arctic seas and to determine how and at what rate Greenland freshwater propagates into the convective regions, several numerical experiments using a passive tracer to

  2. Unmanned Platforms Monitor the Arctic Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs; Ivey, Mark D.; Schmid, Beat; McFarlane, Sally A.; Petty, Rickey C.

    2016-02-22

    In the Arctic, drones and tethered balloons can make crucial atmospheric measurement to provide a unique perspective on an environment particularly vulnerable to climate change. Climate is rapidly changing all over the globe, but nowhere is that change faster than in the Arctic. The evidence from recent years is clear: Reductions in sea ice (Kwok and Unstersteiner, 2011) and permafrost (Romanovsky et al., 2002), in addition to modification of the terriestrial ecosystem through melting permafrost and shifting vegetation zones (burek et al., 2008; Sturm, et al., 2001), all point to a rapidly evolving.

  3. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.;

    2010-01-01

    Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even......-scale) and lower-magnitude variability. The current reduction in Arctic ice cover started in the late 19th century, consistent with the rapidly warming climate, and became very pronounced over the last three decades. This ice loss appears to be unmatched over at least the last few thousand years and...

  4. The role of the Arctic in future global petroleum supply

    Energy Technology Data Exchange (ETDEWEB)

    Lindholt, Lars; Glomsroed, Solveig

    2011-07-01

    The Arctic has a substantial share of global petroleum resources, but at higher costs than in most other petroleum provinces. Arctic states and petroleum companies are carefully considering the potential for future extraction in the Arctic. This paper studies the oil and gas supply from 6 arctic regions during 2010-2050 along with global economic growth and different assumptions regarding petroleum prices and resource endowments. Supply is calculated based on a global model of oil and gas markets. The data on undiscovered resources for the Arctic is based on the estimates by USGS. Sensitivity studies are carried out for two alternative price scenarios and for a 50 per cent reduction of arctic undiscovered resources compared with the USGS 2008 resource estimate. Although a major part of the undiscovered arctic petroleum resources is natural gas, our results show that the relative importance of the Arctic as a world gas supplier will decline, while its importance as a global oil producer may be maintained. We also show that less than full access to undiscovered oil resources will have minor effect on total arctic oil production and a marginal effect on arctic gas extraction. The reason is that Arctic Russia is an important petroleum producer with a sufficiently large stock of already discovered resources to support their petroleum production before 2050. (Author)

  5. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    Science.gov (United States)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  6. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  7. Leading By Example: Canada and its Arctic Stewardship Role

    DEFF Research Database (Denmark)

    Burke, Danita Catherine

    2016-01-01

    The notion that Canada is the steward of the fragile Arctic environment is a part of the fabric of the Canadian narrative about the country’s relationship with the Arctic region. In light of political, legal and environmental changes impacting Arctic politics, this paper argues that it is important...... to examine the circumstances which led to the creation and success of Canada’s stewardship role and its implications for Canadian and international shipping in the Arctic region before any changes are made to the governance of the region through unilateral legislation changes or new international...... agreements. This paper explores the origins of Canada’s image as the steward of the Arctic environment which started with the 1970 Arctic Waters Pollution Prevention Act legislation and addresses the central research questions, how did Canada’s role as the steward of the Arctic environment begin and evolve...

  8. Arctic Health Research Center report no. 101: Combating mosquitoes in arctic Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers combating mosquitoes in Arctic Alaska. The physiology and biology of mosquitoes is discussed, followed by techniques to combated mosquitoes.

  9. Chapter 3: Circum-Arctic mapping project: New magnetic and gravity anomaly maps of the Arctic

    Science.gov (United States)

    Gaina, C.; Werner, S.C.; Saltus, R.; Maus, S.; Aaro, S.; Damaske, D.; Forsberg, R.; Glebovsky, V.; Johnson, K.; Jonberger, J.; Koren, T.; Korhonen, J.; Litvinova, T.; Oakey, G.; Olesen, O.; Petrov, O.; Pilkington, M.; Rasmussen, T.; Schreckenberger, B.; Smelror, M.

    2011-01-01

    New Circum-Arctic maps of magnetic and gravity anomalies have been produced by merging regional gridded data. Satellite magnetic and gravity data were used for quality control of the long wavelengths of the new compilations. The new Circum-Arctic digital compilations of magnetic, gravity and some of their derivatives have been analyzed together with other freely available regional and global data and models in order to provide a consistent view of the tectonically complex Arctic basins and surrounding continents. Sharp, linear contrasts between deeply buried basement blocks with different magnetic properties and densities that can be identified on these maps can be used, together with other geological and geophysical information, to refine the tectonic boundaries of the Arctic domain. ?? 2011 The Geological Society of London.

  10. The Useless Arctic: Exploiting Nature in the Arctic in the 1870s

    Directory of Open Access Journals (Sweden)

    Ulrike Spring

    2015-04-01

    Full Text Available What is the discursive genealogy of an ecological approach to the Arctic? Building on distinctions suggested by Francis Spufford and Gísli Pálsson, this article examines a specific juncture in the history of European–Arctic interaction – the reception of the Austro-Hungarian Arctic Expedition in 1874 – and traces the potential for ecological and relational understandings in what seems to be an orientalist and exploitative material. Examining the medial reception in Austria and in Norway, along with certain key texts in which Arctic wildlife is described, we find that the Norwegian reception of the expedition emphasizes practical issues connected with resource exploitation in the Arctic, while the Austrian reception mostly sees the Arctic as a symbolic resource with which to negotiate issues of identity and modernity. The Austrian discourse revolves around a set of paradoxical contradictions, the most central being those between materialism and idealism and emptiness and fullness; we argue it is the instability of such ambiguities which produces the possibility of a future ecological discourse.

  11. Contrasting Arctic and Antarctic sea ice temperatures

    Science.gov (United States)

    Vancoppenolle, Martin; Raphael, Marilyn; Rousset, Clément; Vivier, Frédéric; Moreau, Sébastien; Delille, Bruno; Tison, Jean-Louis

    2016-04-01

    Sea ice temperature affects the sea ice growth rate, heat content, permeability and habitability for ice algae. Large-scale simulations with NEMO-LIM suggest large ice temperature contrasts between the Arctic and the Antarctic sea ice. First, Antarctic sea ice proves generally warmer than in the Arctic, in particular during winter, where differences reach up to ~10°C. Second, the seasonality of temperature is different among the two hemispheres: Antarctic ice temperatures are 2-3°C higher in spring than they are in fall, whereas the opposite is true in the Arctic. These two key differences are supported by the available ice core and mass balance buoys temperature observations, and can be attributed to differences in air temperature and snow depth. As a result, the ice is found to be habitable and permeable over much larger areas and much earlier in late spring in the Antarctic as compared with the Arctic, which consequences on biogeochemical exchanges in the sea ice zone remain to be evaluated.

  12. Climate and man in the Arctic

    International Nuclear Information System (INIS)

    The ever-changing climate shapes the Arctic landscape, influences life conditions for plants and animals and alters the availability of the living resources that play such and important part in the economy of Arctic peoples. It is essential that we try to understand the nature of climatic change and its effects on man and his environment. Only this way can we hope to be able to predict future changes that may have great consequences for the well-being of northern residents. In recent years many research projects have been addressing the subject and important advances have been made. At the same time it has become increasingly evident that the complexity of the whole issue calls for an integration of scientific approaches and for interdisciplinary collaboration. The seminar 'Climate and Man in the Arctic' provided an opportunity both to highlight important areas of climate related research and to discuss more general aspects of arctic research. Eight papers presented at the seminar are published in this volume. (au) 22 refs

  13. The greenhouse effect and the Arctic ice

    International Nuclear Information System (INIS)

    The impact on the Arctic ice of global warming is important for many people and for the environment. Less ice means changed conditions for the Inuits, hard times for the polar bears and changed conditions for the fishing sector. There is at present some uncertainty about the thickness of the ice and what might be the cause of its oscillation. It was reported a few years ago that the thickness of the ice had almost been reduced by 50 per cent since the 1950s and some researchers suggested that within a few decades the ice would disappear during the summer. These measurements have turned out not to be representative for the whole Arctic region, and it now appears that a great deal of the measured thickness variation can be attributed to changes in the atmospheric circulation. The article discusses the Arctic Oscillation and the North Atlantic Oscillation in relation to the ice thickness, and climate models. Feedback mechanisms such as reduced albedo may have a big impact in the Arctic in a global greenhouse warming. Model simulations are at variance, and the scenarios for the future are uncertain

  14. Conflict Resolution Practices of Arctic Aboriginal Peoples

    NARCIS (Netherlands)

    R. Gendron; C. Hille

    2013-01-01

    This article presents an overview of the conflict resolution practices of indigenous populations in the Arctic. Among the aboriginal groups discussed are the Inuit, the Aleut, and the Saami. Having presented the conflict resolution methods, the authors discuss the types of conflicts that are current

  15. Rossby Waves in the Arctic Ocean

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Schmith, Torben

    The Arctic Ocean has a characteristic stable stratification with fresh and cold water occupying the upper few hundred meters and the warm and more saline Atlantic waters underneath. These water masses are separated by the cold halocline. The stability of the cold halocline regulates the upward di...

  16. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  17. Life Found Lurking under Arctic Rocks

    Institute of Scientific and Technical Information of China (English)

    Sarah Graham; 刘晓

    2004-01-01

    @@ The Arctic tundra② would not appear a welcoming environment for life. But a paper published today in the journal Nature suggests that polar deserts may house photosynthetic③ organisms in a very unlikely place--under rocks. The discovery of the photosynthetic cyanobacteria④ could potentially double estimates of the carbon sequestration⑤ potential in these extreme environments.

  18. Methane from the East Siberian Arctic shelf

    DEFF Research Database (Denmark)

    Petrenko...[], Vasilii V.; Etheridge, David M.

    2010-01-01

    release of Arctic CH4 was implied in previous climate shifts as well as in the recently renewed rise in atmospheric CH4. These claims are not supported by all the literature they cite. Their reference 5 (1) presents measurements of emissions only of carbon dioxide, not CH4. Their reference 8 (2), a study...

  19. From Cold War to Arctic Battle?

    DEFF Research Database (Denmark)

    Jensen, Boris Brorman

    2012-01-01

    Greenland and the whole Arctic region is becoming a geopolitical hot spot. The opening of new potential sail routes to Asia and the possible exploitation of oil, gas and other natural resources like rare earth minerals are creating a window of opportunity for Greenland. What are the risks and who...

  20. Water temperature controls in low arctic rivers

    Science.gov (United States)

    King, Tyler V.; Neilson, Bethany T.; Overbeck, Levi D.; Kane, Douglas L.

    2016-06-01

    Understanding the dynamics of heat transfer mechanisms is critical for forecasting the effects of climate change on arctic river temperatures. Climate influences on arctic river temperatures can be particularly important due to corresponding effects on nutrient dynamics and ecological responses. It was hypothesized that the same heat and mass fluxes affect arctic and temperate rivers, but that relative importance and variability over time and space differ. Through data collection and application of a river temperature model that accounts for the primary heat fluxes relevant in temperate climates, heat fluxes were estimated for a large arctic basin over wide ranges of hydrologic conditions. Heat flux influences similar to temperate systems included dominant shortwave radiation, shifts from positive to negative sensible heat flux with distance downstream, and greater influences of lateral inflows in the headwater region. Heat fluxes that differed from many temperate systems included consistently negative net longwave radiation and small average latent heat fluxes. Radiative heat fluxes comprised 88% of total absolute heat flux while all other heat fluxes contributed less than 5% on average. Periodic significance was seen for lateral inflows (up to 26%) and latent heat flux (up to 18%) in the lower and higher stream order portions of the watershed, respectively. Evenly distributed lateral inflows from large scale flow differencing and temperatures from representative tributaries provided a data efficient method for estimating the associated heat loads. Poor model performance under low flows demonstrated need for further testing and data collection to support the inclusion of additional heat fluxes.

  1. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm/y for the...... region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  2. EU Engagement in the Arctic: Do the Policy Responses from the Arctic States Recognise the EU as a Legitimate Stakeholder?

    Directory of Open Access Journals (Sweden)

    Kamrul Hossain

    2015-11-01

    Full Text Available The Arctic states are bound in an institutional relationship by means of their actions through the Arctic Council (AC—an organisation created by the eight Arctic states. Although a number of its European Union (EU states are both members and observers in the AC, the EU is not, despite its clear stake in the Arctic, for of a number of reasons. The AC twice postponed the application of the EU in 2013; however, it granted the EU the right to observe the AC meetings as an “observer in principle.” In addition to the significant resource and commercial interests of the EU in the Arctic, it assumes a stewardship role in the Arctic. As the leader in combating global climate change, for example, the EU is committed to assuming responsibility for protecting the Arctic environment given that climate change does have a devastating impact in the Arctic. Moreover, the EU is also concerned about its and continental Europe's only indigenous people, the Sámi, a significant proportion of whom live in its Arctic member states of Finland and Sweden. Thus, in recent years, the EU has endorsed a series of policy documents concerning the Arctic. Against the background of this development, this article examines whether the policy responses of the Arctic states with regard to the EU's increased ambition to engage in Arctic matters make it a legitimate actor or stakeholder. The article concludes that even though the Arctic states, as the primary actors, determine the region's governance approach, they see also a general partnership role for the EU with regard to the common goals of knowledge-based responsible governance and sustainable development of the Arctic.

  3. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    Science.gov (United States)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  4. A Synthesis of Arctic Weather and Climate

    Science.gov (United States)

    Bromwich, D. H.; Hines, K. M.

    2008-12-01

    In the polar regions, its is difficult to place current weather and climate trends in a long-term climatological perspective, primarily because the meteorological records there are limited in time and space in comparison with other regions of the globe. The low spatial density of polar meteorological data makes it challenging to attribute changes to local effects or to hemispheric teleconnections. Reanalyses, which assimilate all available observations into physically-consistent, regularly-spaced and comprehensive datasets, can be especially helpful in these latitudes. The timeliness of such efforts is especially pronounced given the recently-observed dramatic changes in Arctic sea ice, land ice, and permafrost regions, whose causes are being debated. A new physically-consistent synthesis of Arctic observations will be achieved through the high-resolution reanalysis of the northern high latitude region, spanning poleward from the headwaters of the northward flowing rivers. The ASR is a collaboration of the Ohio State University, the National Center Atmospheric Research, the University of Colorado, the University of Illinois, and the University of Alaska-Fairbanks. The production phase of the initial ASR has been funded by the National Science Foundation as an International Polar Year (IPY 2007-2009) project covering 2000-2010. The ASR will provide a high resolution description in space (15 km) and time (1-3 h) of the coupled atmosphere-sea ice-land surface system of the Arctic. Ingested historical data streams from the surface and space, along with measurements of the physical components of the Arctic Observing Network being developed as part of IPY will be assimilated by the ASR. Gridded output fields from the ASR will serve a variety of uses such drivers for coupled ice-ocean, land surface and other models, and will offer a focal point for coordinated model inter-comparison efforts. The ASR will permit detailed reconstructions of the Arctic system's variability

  5. The Greening of the Arctic IPY Project

    Science.gov (United States)

    Walker, D. A.; Bhatt, U. S.; Epstein, H. E.

    2008-12-01

    In 2007, Arctic sea ice extent declined to the lowest level in recorded history, 24 percent lower than the previous record in 2005. If the Arctic continues to warm over the next few decades as predicted by most arctic scientists, large changes in vegetation biomass will occur and will have important consequences to many components of the Arctic system including status of the permafrost, hydrological cycles, wildlife, and human occupation. There will also be important feedbacks to climate through changes in albedo and carbon fluxes. Changes in biomass are already happening. In Arctic Alaska from 1981 to 2001, the greenness of the landscapes as measured by satellite-derived values of the normalized difference vegetation index (NDVI) increased by 17 percent. It is uncertain what this remarkable change in greenness means with respect to plant biomass, but current NDVI-biomass relationships suggest that an average of over 100 g m-2 have been added to the tundra of northern Alaska within the past twenty years. Other studies have shown a major increase of shrub cover across northern Alaska during the past 50 years. If the Arctic Ocean becomes ice- free during the summer, some of the largest percentage increases could occur in the coldest parts of the Arctic. The three major objectives of this project are: (1) establish baseline ground observations along two transects in North American and Eurasia that traverse the entire Arctic bioclimate gradient; (2) use remote sensing and climate change analysis to determine how changes in sea ice concentrations affect land-surface temperature and the NDVI, (3) use vegetation-change models to predict how vegetation will change in the future. Strong correlations exist between sea-ice concentrations, land-surface temperatures, and the maximum and integrated NDVI). The changes in greening have been strongest in the Beaufort Sea region. Between 1982 and 2007, sea ice in the 50-km coastal strip of Beaufort Sea area during the period 18 June

  6. Global View of the Arctic Ocean

    Science.gov (United States)

    2000-01-01

    NASA researchers have new insights into the mysteries of Arctic sea ice, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete ice cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic sea ice thickness for the first time. 'Before we knew only the extent of the ice cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called Sea Ice Thickness Derived From High Resolution Radar Imagery. 'We also knew that the sea ice extent had decreased over the last 20 years, but we knew very little about ice thickness.''Since sea ice is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'Until now, observations of polar sea ice thickness have been available for specific areas, but not for the entire polar region.The new radar mapping technique has also given scientists a close look at how the sea ice cover grows and contorts over time. 'Using this new data set, we have the first estimates of how much ice has been produced and where it formed during the winter. We have never been able to do this before, ' said Kwok. 'Through our radar maps of the Arctic Ocean, we can actually see ice breaking apart and thin ice growth in the new openings. 'RADARSAT gives researchers a piece of the overall puzzle every three days by creating a complete image of the Arctic. NASA scientists then put those puzzle pieces together to create a time

  7. Modeling the summertime Arctic cloudy boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J.A.; Pinto, J.O. [Univ. of Colorado, Boulder, CO (United States); McInnes, K.L. [CSIRO Division of Atmospheric Research, Mordialloc (Australia)

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  8. Atmospheric Aspects of Recent Arctic Environmental Change

    Science.gov (United States)

    Serreze, M. C.

    2002-12-01

    Evidence assembled over the past several decades shows the Arctic system as in the midst of significant environmental change. This includes pronounced warming over most land areas, reductions in sea ice extent, alterations in precipitation, river discharge and sea ice circulation, and warming and increased areal extent of the Arctic Ocean's Atlantic layer. The accepted paradigm is that these changes relate to general dominance of the positive phase of the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO). The AO is defined as the leading mode of Northern Hemisphere sea level pressure variability. It can be considered as an index of the strength of the circumpolar vortex. Circulation variability associated with the AO is most pronounced over the Atlantic sector, such that its index is strongly correlated with that of the NAO, which describes mutual strengthening and weakening of the Icelandic Low and Azores High. Whether the AO is a more fundamental mode than the NAO is acontinuing issue of debate. In the broadest sense, environmental changes associated with the dominant positive phase of the AO/NAO are responses to alterations in surface wind regimes and transports of heat and moisture. However, linkages with some variables, such as winter discharge from the Siberian rivers, appear to be indirect. Furthermore, while the AO/NAO is best expressed in winter, many Arctic changes, such as reduced sea ice extent, are most apparent during summer. Variability in other key variables, such as precipitation over the Eurasian Arctic watersheds, exhibit only weak links. The AO/NAO are natural modes of variability which operate on a spectrum of time scales. There is ample evidence that multidecadal variability in the AO/NAO relates to variability in sea surface temperatures. However, growing evidence suggests that the recent positive tendency may contain an anthropogenic component. A leading contender is stratospheric ozone loss. In this framework, the atmospheric

  9. The Arctic Ocean and climate: A Perspective

    Science.gov (United States)

    Aagaard, K.; Carmack, E. C.

    The most likely effects of the Arctic Ocean on global climate are through the surface heat balance and the thermohaline circulation. The former is intimately related to the stratification of the Arctic Ocean, while the latter may be significantly controlled by outflow from the Arctic Ocean into the major convective regions to the south. Evaluating these issues adequately requires detailed knowledge of the density structure and circulation of the Arctic Ocean and of their variability. New long time series of temperature and salinity (T/S) from the Canadian Basin show a grainy T/S structure, probably on a horizontal scale of a few tens of kilometers. The temperature field is particularly inhomogeneous, since for cold water it is not greatly constrained by buoyancy forces. The simultaneous velocity time series show that the grainy T/S structure results from a complex eddy field, often with vertically or horizontally paired counter-rotating eddies drifting with a slow larger-scale flow. The ocean is therefore not well mixed on these scales. Finally, we note that the ventilation of the interior Arctic Ocean from the adjacent shelves appears to be highly variable on an interannual basis, and indeed may not be robust on longer time scales. In particular we note the absence, or near-absence, of deep ventilation of the Canadian Basin during the last 500 years. Based on the 14C model of Macdonald et al. [1993], however, we hypothesize that these same waters were ventilated prior to that time and that the deep convective shutdown about 500 years ago coincided with the end of the whale-hunting Thule culture. We further suggest that the two events had a common cause, viz., the increase of sea ice over the continental shelves during summer.

  10. Bioaccumulation of radiocaesium in Arctic seals

    International Nuclear Information System (INIS)

    Seals are high trophic level feeders that bioaccumulate many contaminants to a greater deg.ree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and hooded seals caught along the northeast coast of Greenland (75-80 deg.. N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle and liver samples from a total of 22 juvenile seals. The mean concentration in muscle and liver samples for all animals was 0.36±0.13 Bq/kg f.w. and 0.26±0.08 Bq/kg f.w. respectively. The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Greenland are similar to those reported earlier for the northern Barents Sea, ranging from 32-150. Comparing these values with reported BCFs from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations

  11. Radioactive contamination in Arctic - present situation and future challenges

    International Nuclear Information System (INIS)

    There is currently a focus on radioactivity and the Arctic region. The reason for this is probably the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In the last decade information has also been released concerning the nuclear situation which has caused concern in many countries. Due to such concerns, the International Arctic Environmental Protection Strategy (IAEPS) was launched in 1991 and the Arctic Monitoring and Assessment Programme (AMAP) was established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. In 1996 IAEPS became part of the Arctic Council. AMAP presented one main report in 1997 and another in 1998. There are also several other national, bilateral and international programmes in existence which deal with this issue. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (au)

  12. Radioactive contamination in Arctic - present situation and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Strand, Per [Norwegian Radiation Protection Authority, Oesteraes (Norway)

    2002-04-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is probably the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In the last decade information has also been released concerning the nuclear situation which has caused concern in many countries. Due to such concerns, the International Arctic Environmental Protection Strategy (IAEPS) was launched in 1991 and the Arctic Monitoring and Assessment Programme (AMAP) was established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. In 1996 IAEPS became part of the Arctic Council. AMAP presented one main report in 1997 and another in 1998. There are also several other national, bilateral and international programmes in existence which deal with this issue. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (au)

  13. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  14. The influence of Arctic haze and radiatively active trace gases on the arctic climate

    International Nuclear Information System (INIS)

    Increasing fossil fuel consumption and industrial activities have raised concerns of possible man-induced climate changes. The changes result mostly from increased radiatively active trace gases (RAG) and anthropogenic aerosols in the atmosphere. Among the by-products of combustion, carbon dioxide is the leading RAG. Fossil fuel combustion also generates sulfates and soot, the principal constituents of the Arctic haze. Both CO2 and Arctic haze interact with radiative processes to produce external climate forcing. Due to their strong tendency to absorb visible solar radiation, soot particles result in strong diabatic heating in the Arctic. With a mixing ratio of 10-10, a concentration 1 million times less than H2O, the solar radiative heating produced by particulate soot is still comparable to that of H2O. The Canadian Climate Centre (CCC) has recently completed a climate simulation with a double carbon dioxide scenario. Version 2 of the CCC-GCM includes a mixed-layer ocean and thermodynamic ice model. It allows for the evaluation of climate changes due to an external forcing. The aim of this paper is to compare the climate changes induced by increasing CO2 and Arctic haze. Since both signals are occurring simultaneously, the authors must investigate the individual contributions with a climate model. A preliminary sensitivity study of the Arctic haze (February to May) with interactive sea ice was done. The analysis suggests that the excess of solar radiative heating leads to increasing rates of snow and ice melt during spring and summer. The most sensitive regions are the Canadian Arctic Archipelago and the Greenland Sea. In both regions, the ice is substantially reduced. The anomaly of sea ice amount continues its propagation northward in June and July even though the Arctic haze is absent during that period

  15. Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer

    Directory of Open Access Journals (Sweden)

    J. B. Gilman

    2010-11-01

    Full Text Available The influence of halogen oxidation on the variabilities of ozone (O3 and volatile organic compounds (VOCs within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI, multi-year ice (MYI, and total ICE (FYI+MYI. O3 anti-correlated with the modeled total ICE tracer (r = −0.86 indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.

  16. Arctic Precipitation Analysis from the Arctic System Reanalysis (ASR): 2000-2012

    Science.gov (United States)

    Koyama, T.; Stroeve, J. C.

    2015-12-01

    Recent Arctic Amplification (AA), (e.g. the warming trend in the Arctic that is larger than for the Northern Hemisphere or the global average), is strongly linked to declining sea ice extent (SIE) [Serreze and Barry, 2011]. Precipitation over the Arctic Ocean is projected to increase thorough the twenty-first century, in part linked to AA and SIE decline [Kattsov et al., 2007; Bintanja and Selten, 2014]. Since mass loss from the Greenland ice sheet (GrIS) is a key element in sea level rise through the end of this century, it is important to understand how precipitation may change in the future and impact the GrIS mass balance. As the first step, we need to better understand how current ice loss may be impacting precipitation over the ice sheet. Towards this end, monthly precipitation data from the Arctic System Reanalysis (ASR) is compared with gauge observations over Greenland. ASR is a high-resolution regional assimilation of model output developed as a resource for the detection and diagnosis of change in the coupled Arctic climate system [Bromwich et al., 2015]. In order to explore linkages between precipitation over Greenland and the surrounding SIE, ASR forecast precipitation data and SIE data from the NASA Team Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Imager data set [Cavalieri et al., 1999] are statistically analyzed from 2000 to 2012. As a case study, spatial distributions of precipitation and pressure at the surface and in the middle troposphere over the Arctic are analyzed during the great Arctic cyclone of August 2012 [Simmonds and Rudeva, 2012; Parkinson and Comiso, 2013; Zhang et al., 2013].

  17. The Future of the Arctic: A Key to Global Sustainability

    Directory of Open Access Journals (Sweden)

    Francesco Stipo

    2012-10-01

    Full Text Available The USACOR Report forecasts that by 2050 the Arctic will become the major supplier of energy to the world, in particular oil and natural gas, and natural resources such as mineral water. In the coming decades, the population in the Arctic region is projected to increase significantly due to the expansion of exploration for resources. The Report recommends that a Zero emission policy be implemented throughout the Arctic area for water emissions into the seas, rivers, or estuaries and oceans. The Report recommends that the Arctic Council guarantees safe navigation and environmental protection, establishing a Fund to cover expenses to purchase icebreakers and towards the cost of the personnel in order to assist commercial navigation in the Arctic region. The Arctic Council shall also issue environmental rules to regulate the mineral exploitation in the region and ensure that the wildlife is protected and that the exploitation of resources is conducted in a sustainable manner.

  18. Future-Proofing Japan’s Interests in the Arctic

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    In May 2013 the Arctic states convened in Kiruna, Sweden, in part to decide on whether six new states should be admitted as observers to the Arctic Council. Japan’s application was accepted along with those of China,India, Italy, Singapore, and South Korea. At a glance, one might ask what...... credentials Japan has to be involved in the leading Arctic forum. However, a closer look at its engagement in the Arctic indicates that Japan has genuine interests in political, economic, and environmental developments there. This essay examines Japan’s interests in the Arctic, its new role as an observer to...... the Arctic Council, and the international relationships that will affect Japan’s engagement in the region....

  19. CARVE: The Carbon in Arctic Reservoirs Vulnerability Experiment

    Science.gov (United States)

    Miller, Charles E.; Dinardo, Steven J.

    2012-01-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. CARVE's objectives are to: (1) Directly test hypotheses attributing the mobilization of vulnerable Arctic carbon reservoirs to climate warming; (2) Deliver the first direct measurements and detailed maps of CO2 and CH4 sources on regional scales in the Alaskan Arctic; and (3) Demonstrate new remote sensing and modeling capabilities to quantify feedbacks between carbon fluxes and carbon cycle-climate processes in the Arctic (Figure 1). We describe the investigation design and results from 2011 test flights in Alaska.

  20. Chlorinated hydrocarbon contaminants in arctic marine mammals.

    Science.gov (United States)

    Norstrom, R J; Muir, D C

    1994-09-16

    By 1976, the presence of chlorinated hydrocarbon contaminants (CHCs) had been demonstrated in fur seal (Callorhinus ursinus), ringed seal (Phoca hispida), hooded seal (Cystophora cristata), bearded seal (Erignathus barbatus), walrus (Obdobenus rosmarus divergens), beluga (Delphinapterus leucas), porpoise (Phocoena phocoena) and polar bear (Ursus maritimus) in various parts of the Arctic. In spite of this early interest, very little subsequent research on contaminants in Arctic marine mammals was undertaken until the mid-1980s. Since that time, there has been an explosion of interest, resulting in a much expanded data base on contaminants in Arctic marine mammals. Except in the Russian Arctic, data have now been obtained on the temporospatial distribution of PCBs and other contaminants in ringed seal, beluga and polar bear. Contaminants in narwhal (Monodon monoceros) have also now been measured. On a fat weight basis, the sum of DDT-related compounds (S-DDT) and PCB levels are lowest in walrus (< 0.1 microgram/g), followed by ringed seal, (0.1-1 microgram/g range). Levels are an order of magnitude higher in beluga and narwhal (1-10 micrograms/g range). It appears that metabolism and excretion of S-DDT and PCBs may be less efficient in cetaceans, leading to greater biomagnification. Polar bears have similar levels of PCBs as cetaceans (1-10 micrograms/g), but with a much simpler congener pattern. DDE levels are lowest in polar bear, indicating rapid metabolism. Effects of age and sex on residue levels are found for all species where this was measured. Among cetaceans and ringed seal, sexually mature females have lower levels than males due to lactation. Although PCB levels in adult male polar bears are about twice as high as females, there is only a trivial age effect in either sex apart from an initial decrease from birth to sexual maturity (age 0-5). Comparison of levels of S-DDT and PCBs in Arctic beluga and ringed seal with those in beluga in the Gulf of St

  1. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions

    DEFF Research Database (Denmark)

    Mansfield, K.L.; Racloz, V.; McElhinney, L.M.;

    2006-01-01

    We report a Molecular epidemiological study of rabies in Arctic Countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies Virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from...... sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating ill the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group Was...... northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders....

  2. Fundamental differences between Arctic and Antarctic ozone depletion

    OpenAIRE

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J.; Min, Flora

    2014-01-01

    Fundamental differences in observed ozone depletion between the Arctic and the Antarctic are shown, clarifying distinctions between both average and extreme ozone decreases in the two hemispheres. Balloon-borne and satellite measurements in the heart of the ozone layer near 18−24 km altitude show that extreme ozone decreases often observed in the Antarctic ozone hole region have not yet been measured in the Arctic in any year, including the unusually cold Arctic spring of 2011. The data provi...

  3. Climate change and the ecology and evolution of Arctic vertebrates

    OpenAIRE

    Gilg, Olivier; Kit M Kovacs; Aars, J; Fort, Jerome; Gauthier, Gilles; Gremillet, D.; Ims, Rolf A.; Meltofte, Hans; Moreau, J; Post, Eric; Schmidt, Niels Martin; Yannic, G; Bollache, L.

    2012-01-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity...

  4. Arctic air pollution: Challenges and opportunities for the next decade

    OpenAIRE

    Arnold, S.R.; Law, K. S.; Brock, C. A.; Thomas, J L; S.M. Starkweather; Von Salzen, K.; A. Stohl; Sharma, S.; Lund, M.T.; M. G. Flanner; T. Petäjä; H. Tanimoto; Gamble, J; Dibb, J. E.; M. Melamed

    2016-01-01

    Abstract The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone) and particles (e.g. black carbon, sulphate) and toxic substan...

  5. The commercial viability of the arctic shipping routes

    OpenAIRE

    Nilsen, Alexander

    2013-01-01

    It is commonly held that the Arctic Ocean and Arctic routes, presents an alternative to the traditional shipping routes through the Suez- and Panama- Channel, which is less time and cost consuming. This thesis strives to uncover weather or not this is the case by assessing the environmental developments, the distance and time characteristics of each defined route, as well as the individual costs associated with each route. The results from the alternative Arctic routes are then compared with ...

  6. Observed impact of aerosols on Arctic cloud emissivity

    OpenAIRE

    2011-01-01

    IPCC results indicate that the main bulk of uncertainties on global warming is within aerosol-cloud interactions. Based on observations this thesis aims to measure how anthropogenic aerosol from mid-latitudes increase emissivity of clouds in the Arctic, thus increasing Arctic surface temperatures. Until recently this effect have been thought insignificant, but recent studies indicate that in the Arctic, many clouds may be susceptible to changes in emissivity. This is due to the few CCN an...

  7. Arctic glacier movement monitoring with GPS method on 2005

    Institute of Scientific and Technical Information of China (English)

    Ai Songtao; E Dongchen; Yan Ming; Ren Jiawen

    2006-01-01

    During the 2005 Arctic Yellow River Station expedition, the research on monitoring the movement and mass balance of two glaciers around Ny-Alesund,Station expedition were conducted. This paper analyzes the feasibility and advantage in using GPS method to monitor the Arctic glaciers'movement, estimates the precision of first time measured GPS data and discusses the relevant problems in surveying on the Arctic Glaciers with GPS.

  8. Past Arctic aliens have passed away, current ones may stay

    OpenAIRE

    2015-01-01

    Increased human activity and climate change are expected to increase the numbers and impact of alien species in the Arctic, but knowledge of alien species is poor in most Arctic regions. Through field investigations over the last 10 years, and review of alien vascular plant records for the high Arctic Archipelago Svalbard over the past 130 years, we explored long term trends in persistence and phenology. In total, 448 observations of 105 taxa have been recorded from 28 sites. Recent surveys a...

  9. Letter. Late cretaceous seasonal ocean variability from the arctic

    OpenAIRE

    Davies, Andrew; Kemp, Alan E.S.; Pike, Jennifer

    2009-01-01

    The modern Arctic Ocean is regarded as barometer of global change and amplifier of global warming1 and therefore records of past Arctic change are of a premium for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the late Cretaceous, yet records from such times may yield important clues to its future behaviour given current global warming trends. Here we present the first seasonally resolved sedimentary record from the Cretaceous from...

  10. Arctic air pollution: Challenges and opportunities for the next decade

    Directory of Open Access Journals (Sweden)

    S.R. Arnold

    2016-05-01

    Full Text Available Abstract The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone and particles (e.g. black carbon, sulphate and toxic substances (e.g. polycyclic aromatic hydrocarbons that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies. Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1 the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2 increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3 developing improved predictive capability across a range of spatial and temporal scales.

  11. Arctic Research of the United States, Spring 1990, volume 4

    Science.gov (United States)

    Brown, Jerry; Bowen, Stephen

    This is a journal for national and international audiences of government officials, scientists, engineers, educators, Arctic residents, and other people interested in Arctic-related topics. Reports cover a broad spectrum of life in the Arctic including such topics as fish, game, health, social services, science, engineering, environment, oceanography, international activities, international cooperation, global change, conferences, polar libraries, data, policies, research, and history. The emphasis in this issue is on the importance of the Arctic Ocean and its marginal seas to U.S. national interests, including fisheries, the oil and gas industries, and global climate change processes.

  12. [Horse, cow and reindeer were converted into arctic domestic animals].

    Science.gov (United States)

    Kantanen, Juha

    2016-01-01

    Domestic animal production in the arctic region is often thought to be based exclusively on reindeer herding. There are, however, regions in Northern Europe and Siberia having a long tradition in rearing breeds of cattle and horse adapted to the northers conditions also. The development of these arctic animal breeds has been largely founded on old tradition rather than on the programs of breeding organizations. As a result of the selection carried out by nature and man, the domestic animals of arctic regions express characteristics that are metabolic, structural, associated with reproductive physiology and conducive to the adaptation to arctic conditions. PMID:27522831

  13. Methane and Root Dynamics in Arctic Soil

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica

    the global climate. We investigated two aspects of arctic ecosystem dynamics which are not well represented in climatic models: i) soil methane (CH4) oxidation in dry heath tundra and barren soils and ii) root dynamics in wetlands. Field measurements were carried out during the growing season in Disko...... Island, West Greenland, and CH4 and root dynamics were assessed in response to experimentally increased winter snow precipitation, summer warming and their interaction to better understand their contribution to the C balance of the Arctic. Our results indicate that both the dry heath and barren soils...... CH4 emissions from wetlands in a future warmer climate. At the wet fen increased winter snow precipitation delayed the onset of the growing season of about a week and reduced the relative fine root production. The use of minirhizotrons improved our understanding of root growth and phenology. Total...

  14. Influence of mountains on Arctic tropospheric ozone

    Science.gov (United States)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  15. Cartopolitics, Geopolitics and Boundaries in the Arctic

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    2012-01-01

    Critical Border Studies emphasise how distinct political spaces are produced by borders. In this article I suggest that the order of this relationship should be reversed. I argue that space precedes and conditions the manifestation of borders. The argument is based on an understanding of cartogra......Critical Border Studies emphasise how distinct political spaces are produced by borders. In this article I suggest that the order of this relationship should be reversed. I argue that space precedes and conditions the manifestation of borders. The argument is based on an understanding of...... in the Arctic, the term cartopolitics captures how the relationship between the United Nations Convention on the Law of the Sea and cartography is shaping the attempts by Arctic states to expand sovereign rights into the sea. The key is the continental shelf and how it is defined in law. In this...

  16. Big fish in a small (Arctic) pond : regime adherence as status and Arctic State identity in Norway.

    OpenAIRE

    Medby, Ingrid A.

    2015-01-01

    Despite frequent reassurances that the Arctic region’s regime of governance rests soundly on two mutually reinforcing pillars: the Arctic Council intergovernmental cooperation and the international UN Convention on the Law of the Sea (UNCLOS), doubt is still cast time and time again on the durability of Arctic peace and stability. Explanations for the regime’s strength are often based on classical theories of international relations, wherein traditional concepts of power-struggles ensure the ...

  17. Arctic smoke ? record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe

    OpenAIRE

    A. Stohl; T. Berg; Burkhart, J. F.; A. M. Fjæraa; Forster, C.; Herber, A.; Hov, Ø.; Lunder, C.; McMillan, W. W.; Oltmans, S.; Shiobara, M.; Simpson, D; S. Solberg; K. Stebel; StrÖm, J.

    2006-01-01

    International audience In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observati...

  18. Climate-derived tensions in Arctic security.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Strickland, James Hassler

    2008-09-01

    Globally, there is no lack of security threats. Many of them demand priority engagement and there can never be adequate resources to address all threats. In this context, climate is just another aspect of global security and the Arctic just another region. In light of physical and budgetary constraints, new security needs must be integrated and prioritized with existing ones. This discussion approaches the security impacts of climate from that perspective, starting with the broad security picture and establishing how climate may affect it. This method provides a different view from one that starts with climate and projects it, in isolation, as the source of a hypothetical security burden. That said, the Arctic does appear to present high-priority security challenges. Uncertainty in the timing of an ice-free Arctic affects how quickly it will become a security priority. Uncertainty in the emergent extreme and variable weather conditions will determine the difficulty (cost) of maintaining adequate security (order) in the area. The resolution of sovereignty boundaries affects the ability to enforce security measures, and the U.S. will most probably need a military presence to back-up negotiated sovereignty agreements. Without additional global warming, technology already allows the Arctic to become a strategic link in the global supply chain, possibly with northern Russia as its main hub. Additionally, the multinational corporations reaping the economic bounty may affect security tensions more than nation-states themselves. Countries will depend ever more heavily on the global supply chains. China has particular needs to protect its trade flows. In matters of security, nation-state and multinational-corporate interests will become heavily intertwined.

  19. Some Aspects of Arctic Offshore Floating Structures

    OpenAIRE

    Lubbad, Raed Khalil

    2011-01-01

    The present work highlights some aspects related to the analyses of Arctic offshore floating structures. This thesis consists of five papers, which can be divided into two main categories. One category deals with the dynamics of slender structures with an emphasis on the prediction and suppression of vortex induced vibrations (VIV), and the other category examines the process of interaction between sloping structures and sea ice with focus on developing a numerical model to simulate this proc...

  20. Invited Editorial: Vulnerable populations in the Arctic

    OpenAIRE

    Evengard, Birgitta; McMichael, Anthony

    2011-01-01

    Earth’s average surface temperature is rising unusually fast. This global warming process is deemed by international scientific assessment to be predominantly due to human economic activities. Recent research indicates that, globally, the rate of emission of greenhouse gases is increasing, as is the rise in sea level and the loss of summer Arctic sea ice. Currently, the warming trend is ‘tracking’ at the top of the range of the previously modelled forecasts. Meanwhile, concerns are growing th...

  1. Improved Sampling Strategy for Arctic Snow Distribution

    Science.gov (United States)

    Homan, J. W.; Kane, D. L.

    2012-12-01

    Watershed scale hydrologic models require good estimates of the spatially distributed snow water equivalent (SWE) at winter's end. Snow on the ground in treeless Arctic environments is susceptible to significant wind redistribution, which results in very heterogeneous snowpacks, with greater quantities of snow collection in depressions, valley bottoms and leeward sides of ridges. In the Arctic, precipitation and snow gauges are very poor indicators of the actual spatial snowpack distribution, particularly at winter's end when ablation occurs. Snow distribution patterns are similar from year to year because they are largely controlled by the interaction of topography, vegetation, and consistent weather patterns. From one year to the next, none of these controls radically change. Consequently, shallow and deep areas of snow tend to be spatially predetermined, resulting in depth (or SWE) differences that may vary as a whole, but not relative to each other, from year to year. This work attempts to identify snowpack distribution patterns at a watershed scale in the Arctic. Snow patterns are intended to be established by numerous field survey points from past end-of-winter field campaigns. All measured SWE values represent a certain percentage of a given watershed. Some may represent small-scale anomalies (local scale), while others might represent a large-scale area (regional scale). Since we are interested in identifying snowpack distribution patterns at a watershed scale, we aim to develop an improved point-source sampling strategy that only surveys regional representative areas. This will only be possible if the extreme high and low SWE measurements that represent local-scale snow conditions are removed in the sampled data set. The integration of these pattern identification methods will produce a hybrid approach to identifying snowpack distribution patterns. Improvement in our estimates of the snowpack distribution will aid in the forecasting of snowmelt runoff

  2. Canada : oil, gas, and the new Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Huebert, R. [Calgary Univ., AB (Canada). Dept. of Political Science; Calgary Univ., AB (Canada). Centre for Military and Strategic Studies

    2010-07-01

    This presentation provided a broad overview of the geopolitical issues affecting the massive transformation of the Arctic resulting from resource development, globalization, and climate change. Two Arctics are emerging, notably one European and one North American. Oil and gas companies are investing heavily in the North, and there is continued debate over pipelines and projects, but the viability of projects can shift abruptly from technological and political change. Recent examples include the emergence of shale gas, the possibility of the United States becoming a gas exporter, and the Deepwater Horizon disaster. In terms of Maritime jurisdictions and boundaries, a comparison was presented regarding the Canadian and Russian claims to the continental shelf. International cooperation and a commitment to peaceful means can be seen in the Ilulissat Declaration, the acceptance of the United Nations Convention of the Law of the Sea as rules, the scientific cooperation of Canada, the United States, and Denmark, and the recent boundary agreement between Russia and Norway. The positions of the main players in the new geopolitics of the North were outlined, particularly with respect to Russia, the United States, Norway, Denmark, and Canada. Their recent policy statements and developing arctic force capabilities were summarized. Canada's more assertive Arctic policy was outlined in more detail along with the country's base locations and recent security actions in the North. The main issues facing nations with interests in the North will be maritime and aerospace; understanding the new players on the scene; and new technological developments. 10 figs., 5 refs.

  3. Evaluation of arctic broadband surface radiation measurements

    OpenAIRE

    Matsui, N.; C. N. Long; J. Augustine; Halliwell, D.; T. Uttal; Longenecker, D.; O. Nievergall; Wendell, J.; Albee, R.

    2011-01-01

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are...

  4. Evaluation of Arctic broadband surface radiation measurements

    OpenAIRE

    Matsui, N.; C. N. Long; J. Augustine; Halliwell, D.; T. Uttal; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-01-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that ...

  5. Challenges in operating an Arctic telescope

    Science.gov (United States)

    Ivanescu, Liviu; Baibakov, Konstantin; O'Neill, Norman T.; Blanchet, Jean-Pierre; Blanchard, Yann; Saha, Auromeet; Rietze, Martin; Schulz, Karl-Heinz

    2014-07-01

    We describe our seven year experience and the specific technical and environmental challenges we had to overcome while operating a telescope in the High Arctic, at the Eureka Weather Station, during the polar winter. The facility and the solutions implemented for remote control and maintenance are presented. We also summarize the observational challenges encountered in making precise and reliable star-photometric observations at sea-level.

  6. Shallow freshwater ecosystems of the circumpolar Arctic

    DEFF Research Database (Denmark)

    Rautio, Milla; Dufresne, France; Laurion, Isabelle;

    2011-01-01

    This review provides a synthesis of limnological data and conclusions from studies on ponds and small lakes at our research sites in Subarctic and Arctic Canada, Alaska, northern Scandinavia, and Greenland. Many of these water bodies contain large standing stocks of benthic microbial mats that gr...... effects on biodiversity at all trophic levels, and increased channelling of terrestrial carbon to the atmosphere in the form of greenhouse gases....

  7. Chemical pollution in the Arctic and Sub-Arctic marine ecosystems: an overview of current knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Savinova, T.N.; Gabrielsen, G.W.; Falk-Petersen, S.

    1995-02-01

    This report is part of a research project in the framework of the Norwegian-Russian Environmental Cooperation, which was initiated in 1991 to elucidate the present status of environmental contaminants in the highly sensitive Arctic aquatic ecosystem, with special focus on sea birds. Although these ecosystems are the least polluted areas in the world, they are contaminated. The main pathways of contamination into Arctic and sub-Arctic marine ecosystems are atmospheric transport, ocean currents and rivers and in some areas, dumping and ship accidents. A literature survey reveals: (1) there is a lack of data from several trophic levels, (2) previous data are difficult to compare with recent data because of increased quality requirement, (3) not much has been done to investigate the effects of contaminants on the cellular level, at individual or population levels. 389 refs., 7 figs., 32 tabs.

  8. Dipole anomaly in the Arctic atmosphere and winter Arctic sea ice motion

    Institute of Scientific and Technical Information of China (English)

    WU; Bingyi; ZHANG; Renhe

    2005-01-01

    This paper investigates a previously-ignored atmospheric circulation anomaly-di- pole structure anomaly in the arctic atmosphere, and its relationship with the winter sea ice motion, based on analyses of the International Arctic Buoy Programme Data (1979-1998) and datasets from the National Center for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) for the period of 1960-2002. The dipole structure anomaly is the second-leading mode of EOF of monthly mean SLP north of 70(N during the winter season (Oct.-Mar.), which accounts for 13% of the variance. One of its two anomaly centers is over the Canadian Archipelago; the other is situated over northern Eurasia and the Siberian marginal seas. Due to the dipole structure anomaly's strong meridionality, it becomes an important mechanism to drive both anomalous sea ice export out of the Arctic Basin and cold air outbreaks into the Barents Sea, the Nordic Seas and northern Europe.

  9. Cesium-137 contamination in Arctic Ocean ice

    International Nuclear Information System (INIS)

    Sea ice and ice-borne sediment samples were collected across the western Arctic basin on the joint US/Canada Arctic Ocean Section during August 1994. Samples were processed on board and returned at the completion of the cruise to Oak Ridge National Laboratory for analysis. Sediment was observed on the surface and in the ice from the southern ice limit in the Chukchi Sea to the North Pole. Preliminary results on the ice-borne sediment samples show widespread elevated concentrations of 137Cs, ranging from 4.9 to 73 mBq g dry weight-1. An analysis of the measurements indicate that sea ice is primary transport mechanism by which contaminated sediments are redistributed throughout the Arctic Ocean and possibly exported into the Greenland Sea and North Atlantic through Fram Strait. The wide variability in the ice-borne sediment concentrations of 137Cs measured along the transect argues that contaminants incorporated on the Siberian shelves can follow much more variable trajectories than is suggested by mean ice drift calculations. 2 figs

  10. Waste management guidelines for remote (Arctic) regions

    Energy Technology Data Exchange (ETDEWEB)

    Owens, E.H.; Taylor, E. [Polaris Applied Sciences Inc., Bainbridge Island, WA (United States); O' Connell, K.; Smith, C. [Oil Spill Training Co., Inverness, Scotland (United Kingdom)

    2009-07-01

    Oil spill response operations in Arctic regions involve well planned logistics support due to the remoteness and lack of infrastructure in most locations. The waste material generated by oil spill response field activities must be managed, recycled or disposed. In remote areas, in-situ shoreline treatment options are preferred since they require minimal manpower and generate very little waste. The Emergency Prevention, Preparation and Response Working Group of the Arctic Council has developed guidelines and strategies for oil spill waste management in Arctic regions. In addition, a waste management calculator software program was developed to provide a planning framework to illustrate the potential consequences of different options for different shore types and oil types. Potential shoreline treatment waste generation volumes and waste types can then be identified. The planning tool identifies the preferred shoreline treatment options, estimates the amount of waste that would be generated and identifies the amount and per cent of the types of waste that are associated with each treatment option. A review of 11 case studies has shown that there is no correlation between the volumes of waste generated by shoreline treatment response activities and the original volume of spilled oil. Rather, the volume of waste generated during a response operation is a function of the nature of the spill, location, and length of oiled shoreline, combined with decisions made by the spill management team and the selected treatment methods. 10 refs., 4 tabs., 4 figs.

  11. Radioactivity in the Arctic Seas. Report for the International Arctic Seas Assessment Project (IASAP)

    International Nuclear Information System (INIS)

    This report provides comprehensive information on environmental conditions in the Arctic Seas as required for the study of possible radiological consequences from dumped high level radioactive wastes in the Kara Sea. The report describes the oceanography of the regions, with emphasis on the Kara and Barents Seas, including the East Novaya Zemlya Fjords. The ecological description concentrates on biological production, marine food-weds and fisheries in the Arctic Seas. The report presents data on radionuclide concentrations in the Kara and Barents Seas and uses these data to estimate the inventories of radionuclides currently in the marine environment of the Kara and Barents Seas

  12. Development of Exhibit on Arctic Climate Change Called The Arctic: A Friend Acting Strangely Exhibition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, Barbara W.

    2006-04-01

    The exhibition, The Arctic: A Friend Acting Strangely, was developed at the Smithsonian Institution’s National Museum of Natural History (NMNH) as a part of the museum’s Forces of Change exhibit series on global change. It opened to the public in Spring 2006, in conjunction with another Forces of Change exhibit on the Earth’s atmosphere called Change Is in the Air. The exhibit was a 2000 square-foot presentation that explored the forces and consequences of the changing Arctic as documented by scientists and native residents alike. Native peoples of the Arctic have always lived with year-to-year fluctuations in weather and ice conditions. In recent decades, they have witnessed that the climate has become unpredictable, the land and sea unfamiliar. An elder in Arctic Canada recently described the weather as uggianaqtuq —an Inuit word that can suggest strange, unexpected behavior, sometimes described as that of “a friend acting strangely.” Scientists too have been documenting dramatic changes in the Arctic. Air temperatures have warmed over most—though not all—of the Arctic since the 1950s; Arctic precipitation may have increased by as much as 8%; seasonal melting of the Greenland Ice Sheet has increased on average by 16% since 1979; polar-orbiting satellites have measured a 15¬–20% decline in sea ice extent since the 1970s; aircraft reconnaissance and ship observations show a steady decrease in sea ice since the 1950s. In response to this warming, plant distributions have begun to shift and animals are changing their migration routes. Some of these changes may have beneficial effects while others may bring hardship or have costly implications. And, many scientists consider arctic change to be a ‘bell-weather’ for large-scale changes in other regions of the world. The exhibition included text, photos artifacts, hands-on interactives and other exhibitry that illustrated the changes being documented by indigenous people and scientists alike.

  13. Evaluating Arctic warming mechanisms in CMIP5 models

    Science.gov (United States)

    Franzke, Christian L. E.; Lee, Sukyoung; Feldstein, Steven B.

    2016-07-01

    Arctic warming is one of the most striking signals of global warming. The Arctic is one of the fastest warming regions on Earth and constitutes, thus, a good test bed to evaluate the ability of climate models to reproduce the physics and dynamics involved in Arctic warming. Different physical and dynamical mechanisms have been proposed to explain Arctic amplification. These mechanisms include the surface albedo feedback and poleward sensible and latent heat transport processes. During the winter season when Arctic amplification is most pronounced, the first mechanism relies on an enhancement in upward surface heat flux, while the second mechanism does not. In these mechanisms, it has been proposed that downward infrared radiation (IR) plays a role to a varying degree. Here, we show that the current generation of CMIP5 climate models all reproduce Arctic warming and there are high pattern correlations—typically greater than 0.9—between the surface air temperature (SAT) trend and the downward IR trend. However, we find that there are two groups of CMIP5 models: one with small pattern correlations between the Arctic SAT trend and the surface vertical heat flux trend (Group 1), and the other with large correlations (Group 2) between the same two variables. The Group 1 models exhibit higher pattern correlations between Arctic SAT and 500 hPa geopotential height trends, than do the Group 2 models. These findings suggest that Arctic warming in Group 1 models is more closely related to changes in the large-scale atmospheric circulation, whereas in Group 2, the albedo feedback effect plays a more important role. Interestingly, while Group 1 models have a warm or weak bias in their Arctic SAT, Group 2 models show large cold biases. This stark difference in model bias leads us to hypothesize that for a given model, the dominant Arctic warming mechanism and trend may be dependent on the bias of the model mean state.

  14. The evolution of Arctic marine mammals.

    Science.gov (United States)

    Harington, C R

    2008-03-01

    This review deals only with the evolutionary history of core Arctic marine mammals: polar bear (Ursus maritimus), walrus (Odobenus rosmarus), bearded seal (Erignathus barbatus), harp seal (Pagophilus groenlandica), ringed seal (Phoca hispida), bowhead whale (Balaena mysticetus), white whale (Delphinapterus leucas), and narwhal (Monodon monoceras). Sections on the evolutionary background of pinnipeds and whales help to provide a better perspective on these core species. Polar bears stemmed from brown bears about the Early to Middle Pleistocene. Fossils are rare; the earliest records are from approximately Early Weichselian deposits of Kew Bridge, London, and Svalbard. Existing Pacific and Atlantic walruses probably arose from splitting of a former Holarctic range during a Pleistocene glacial phase of extensive sea ice in the Canadian Arctic. The earliest known bearded seal remains are from Early to Middle Pleistocene deposits of Norfolk, England, and Cape Deceit, Alaska. Other Pleistocene fossils of this species are recorded from the North Sea, southwestern Sweden, and the Champlain Sea that existed in eastern North America approximately 12 000-10000 BP. The harp seal is the commonest pinniped in the Weichselian deposits of the southern North Sea. The earliest recorded fossil is from about 2 million years ago (2 Ma), from Ocean Point, Alaska. The earliest known Pleistocene ringed seal fossils are from last interglacial deposits near Teshekpuk Lake, Alaska, and Thule, Greenland, although an earlier (3 Ma?) specimen from Malaspina, Alaska, has been reported. This species seems to have been relatively abundant along the coasts of Prince of Wales Island, Alaska, during the Last Glacial Maximum. The bowhead whale probably originated in the high latitudes of the Northern Hemisphere. The earliest (mid-Wisconsinan) Canadian remains are from Ellesmere and Devon islands. More than 400 radiocarbon-dated bowhead remains have been used to reconstruct Holocene sea ice history in

  15. Arctic Methane: the View from Space

    Science.gov (United States)

    Leifer, I.; Yurganov, L.; Xiong, X.

    2014-12-01

    Global increase of methane that started in 2007-2008 after a decade of stability requires investigation and explanation. Recent Arctic warming has stimulated speculation about dissociation of Arctic Ocean methane hydrates providing a potentially important new climatic positive feedback. Satellite thermal infrared (TIR) data do not require sunlight, providing key advantages for Arctic data collection compared to shortwave infrared spectroscopy. The US Atmospheric IR Sounder (AIRS) has been delivering CH4 tropospheric data since 2002; NOAA CH4 retrievals from the European Infrared Atmospheric Sounding Interferometer (IASI) radiation data are available since 2008 and analyzed here since 2009. Accuracy of TIR satellite retrievals, especially for the lower troposphere, diminishes for a cold, underlying surface. In this analysis the dependence is parameterized using the Thermal Contrast (a difference between surface temperature and air temperature at the altitude of 4 km, defined THC). A correction function was applied to CH4 data based on a data-derived relationship between THC and retrieved CH4 for areas with positive THC (in other words, without temperature inversions). The seasonal cycles of the adjusted low tropospheric data are in agreement with the surface in situ measurements. Instantaneous IASI retrievals exhibit less variability than AIRS v6 data. Maximum positive deviation of methane concentration measured by IASI for the study period was found for Baffin Bay in November-December, 2013 (Figure). It was concluded that the methane anomaly could indicate both coastal and off-shore emissions. Off-shore data were spatially consistent with a hydrate dissociation mechanisms, active for water depths below the hydrate stability zone top at ~300 m. These are hypothesized to dissociate during seasonal temperature maximum in the bottom layer of the ocean, which occurs in fall. IASI data may be considered as a reliable source of information about Arctic CH4 for conditions

  16. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  17. Factors influencing future oil and gas prospects in the Arctic

    International Nuclear Information System (INIS)

    The article explores oil and natural gas development in the Arctic. While several commentators have argued that an increase in Arctic petroleum production in the years to come will follow directly from an increased demand for energy, our study finds that oil and natural gas production in the Arctic is dependent on a range of variables. By using climate-driven changes as a baseline, we examine spill-over effects and conditions that are important for further Arctic hydrocarbon production. Using the available literature from different scientific fields, this article provides a broad and nuanced perspective on the much debated question of whether or not the Arctic will become a region driven by oil and gas production. - Highlights: ► We study Arctic oil and gas activity. ► We consider climate changes, economic conditions, and political institutions. ► Increased Arctic activity is conditioned on several factors. ► Climate changes, energy prices, energy demand, and political incentives drives Arctic activity.

  18. The progress in the study of Arctic pack ice ecology

    Institute of Scientific and Technical Information of China (English)

    何剑锋; 王桂忠; 蔡明红; 李少菁

    2004-01-01

    The sea ice community plays an important role in the Arctic marine ecosystem. Because of the predicted environmental changes in the Arctic environment and specifically related to sea ice, the Arctic pack ice biota has received more attention in recent years using modern ice-breaking research vessels. Studies show that the Arctic pack ice contains a diverse biota and besides ice algae, the bacterial and protozoan biomasses can be high. Surprisingly high primary production values were observed in the pack ice of the central Arctic Ocean. Occasionally biomass maximum were discovered in the interior of the ice floes, a habitat that had been ignored in most Arctic studies. Many scientific questions, which deserve special attention, remained unsolved due to logistic limitations and the sea ice characteristics. Little is know about the pack ice community in the central Arctic Ocean. Almost no data exists from the pack ice zone for the winter season. Concerning the abundance of bacteria and protozoa, more studies are needed to understand the microbial network within the ice and its role in material and energy flows. The response of the sea ice biota to global change will impact the entire Arctic marine ecosystem and a long-term monitoring program is needed. The techniques, that are applied to study the sea ice biota and the sea ice ecology, should be improved.

  19. The early twentieth century warming and winter Arctic sea ice

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2012-06-01

    Full Text Available The Arctic featured the strongest surface warming over the globe during the recent decades, and the temperature increase was accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the Early Twentieth Century Warming (ETCW during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM forced by estimates of the observed sea surface temperature (SST and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of Arctic sea ice extent may have also accompanied the Early Twentieth Century Warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.

  20. The early twentieth century warming and winter Arctic sea ice

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2012-11-01

    Full Text Available The Arctic has featured the strongest surface warming over the globe during the recent decades, and the temperature increase has been accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the early twentieth century warming (ETCW during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM forced by estimates of the observed sea surface temperature (SST and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of winter Arctic sea ice extent may have also accompanied the early twentieth century warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.

  1. Sea ice in the Canadian Arctic in the 21. century

    International Nuclear Information System (INIS)

    Climate warming will occur first and most intensely in Arctic regions, according to the numerical simulations of future climate performed with different Global Climate Models (GCMs). It includes the simulations performed by the Meteorological Service of Canada. The observations gathered in the Arctic indicate that the present warming has no precedent over the past four hundred years. Since the 1970s, data acquired mainly by satellite indicates that the extent of Arctic sea ice decreased at a rate of approximately three per cent per decade. Over the period 1969-2000, a similar rate of decrease has been observed within Canadian Arctic waters. Over the past forty years, estimates of the thickness of ice in the Arctic, based on submarine measurements, show a 40 per cent decrease. By 2050, if all the conditions remain as they are, the Arctic Ocean could be ice free. The most widely held scientific opinion seems to be that in the future there will be less ice in the Arctic than what was observed in the past, an opinion that is still being debated by scientists. The development of local natural resources and trans-shipment between Europe and Asia could increase dramatically in a future with less ice. Marine transportation in the Canadian Arctic would be expanded. Climatological analysis results of Canadian ice information is presented by the authors, and they have chosen to discuss various probable scenarios related to ice conditions during this century. 13 refs., 8 figs

  2. The genetic prehistory of the New World Arctic

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; DeGiorgio, Michael; Albrechtsen, Anders;

    2014-01-01

    The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska...

  3. Deep Arctic Ocean warming during the last glacial cycle

    Science.gov (United States)

    Cronin, T. M.; Dwyer, G.S.; Farmer, J.; Bauch, H.A.; Spielhagen, R.F.; Jakobsson, M.; Nilsson, J.; Briggs, W.M., Jr.; Stepanova, A.

    2012-01-01

    In the Arctic Ocean, the cold and relatively fresh water beneath the sea ice is separated from the underlying warmer and saltier Atlantic Layer by a halocline. Ongoing sea ice loss and warming in the Arctic Ocean have demonstrated the instability of the halocline, with implications for further sea ice loss. The stability of the halocline through past climate variations is unclear. Here we estimate intermediate water temperatures over the past 50,000 years from the Mg/Ca and Sr/Ca values of ostracods from 31 Arctic sediment cores. From about 50 to 11 kyr ago, the central Arctic Basin from 1,000 to 2,500 m was occupied by a water mass we call Glacial Arctic Intermediate Water. This water mass was 1–2 °C warmer than modern Arctic Intermediate Water, with temperatures peaking during or just before millennial-scale Heinrich cold events and the Younger Dryas cold interval. We use numerical modelling to show that the intermediate depth warming could result from the expected decrease in the flux of fresh water to the Arctic Ocean during glacial conditions, which would cause the halocline to deepen and push the warm Atlantic Layer into intermediate depths. Although not modelled, the reduced formation of cold, deep waters due to the exposure of the Arctic continental shelf could also contribute to the intermediate depth warming.

  4. The Arctic Climate Modeling Program: Professional Development for Rural Teachers

    Science.gov (United States)

    Bertram, Kathryn Berry

    2010-01-01

    The Arctic Climate Modeling Program (ACMP) offered yearlong science, technology, engineering, and math (STEM) professional development to teachers in rural Alaska. Teacher training focused on introducing youth to workforce technologies used in Arctic research. Due to challenges in making professional development accessible to rural teachers, ACMP…

  5. A quantitative assessment of Arctic shipping in 2010-2014.

    Science.gov (United States)

    Eguíluz, Victor M; Fernández-Gracia, Juan; Irigoien, Xabier; Duarte, Carlos M

    2016-01-01

    Rapid loss of sea ice is opening up the Arctic Ocean to shipping, a practice that is forecasted to increase rapidly by 2050 when many models predict that the Arctic Ocean will largely be free of ice toward the end of summer. These forecasts carry considerable uncertainty because Arctic shipping was previously considered too sparse to allow for adequate validation. Here, we provide quantitative evidence that the extent of Arctic shipping in the period 2011-2014 is already significant and that it is concentrated (i) in the Norwegian and Barents Seas, and (ii) predominantly accessed via the Northeast and Northwest Passages. Thick ice along the forecasted direct trans-Arctic route was still present in 2014, preventing transit. Although Arctic shipping remains constrained by the extent of ice coverage, during every September, this coverage is at a minimum, allowing the highest levels of shipping activity. Access to Arctic resources, particularly fisheries, is the most important driver of Arctic shipping thus far. PMID:27477878

  6. Evaluating pyrene toxicity on Arctic key copepod species Calanus hyperboreus

    DEFF Research Database (Denmark)

    Nørregaard, Rasmus Dyrmose; Nielsen, Torkel Gissel; Friis Møller, Eva;

    2014-01-01

    Calanus hyperboreus is a key species in the Arctic regions because of its abundance and role in the Arctic food web. Exploitation of the off shore oil reserves along Western Greenland is expected in the near future, and it is important to evaluate the acute and chronic effects of oil emissions...

  7. Beyond Thin Ice: Co-Communicating the Many Arctics

    Science.gov (United States)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  8. Dominant patterns of winter Arctic surface wind variability

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi; John Walsh; LIU Jiping; ZHANG Xiangdong

    2014-01-01

    Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWP1 and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland—Barents—Kara seas from autumn to winter, relfecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are signiifcantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70°N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily relfect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly inlfuence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume lfux is only signiifcantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of

  9. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    Science.gov (United States)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  10. Comparative Views of Arctic Sea Ice Growth

    Science.gov (United States)

    2000-01-01

    NASA researchers have new insights into the mysteries of Arctic sea ice, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete ice cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.The two images above are separated by nine days (earlier image on the left). Both images represent an area (approximately 96 by 128 kilometers; 60 by 80 miles)located in the Baufort Sea, north of the Alaskan coast. The brighter features are older thicker ice and the darker areas show young, recently formed ice. Within the nine-day span, large and extensive cracks in the ice cover have formed due to ice movement. These cracks expose the open ocean to the cold, frigid atmosphere where sea ice grows rapidly and thickens.Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic sea ice thickness for the first time. 'Before we knew only the extent of the ice cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called Sea Ice Thickness Derived From High Resolution Radar Imagery. 'We also knew that the sea ice extent had decreased over the last 20 years, but we knew very little about ice thickness.''Since sea ice is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'Until now, observations of polar sea ice thickness have been available for specific areas, but not for the entire polar region.The new radar mapping technique has also given scientists a close look at how the sea ice cover

  11. Climate change and the ecology and evolution of Arctic vertebrates

    DEFF Research Database (Denmark)

    Gilg, Olivier; Kovacs, Kit M.; Aars, J.;

    2012-01-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation......, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such...... adjustments have already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is...

  12. Landlocked Arctic charr ( Salvelinus alpinus ) population structure and lake morphometry in Greenland - is there a connection?

    DEFF Research Database (Denmark)

    Riget, F.; Jeppesen, E.; Landkildehus, F.;

    2000-01-01

    Landlocked Arctic charr (Salvelinus alphinus) populations in sub-Arctic and Arctic Greenland lakes were sampled with multi- mesh-sized survey gillnets. The study covered a range of small shallow lakes (0.01 km(2) maximum depth 200 In). Arctic charr were found in one to three different forms in la...

  13. 75 FR 25843 - Notice of Public Review and Comment Period on NOAA's Arctic Vision and Strategy

    Science.gov (United States)

    2010-05-10

    ... NOAA's Arctic Vision and Strategy AGENCY: National Oceanic and Atmospheric Administration. ACTION.... SUPPLEMENTARY INFORMATION: To view the document, go to http://www.arctic.noaa.gov/ . I. Summary of the Strategy... accountable for achieving the Arctic goals. The Arctic Action Plan will also include an engagement...

  14. The Contribution to Arctic Climate Change from Countries in the Arctic Council

    Science.gov (United States)

    Schultz, T.; MacCracken, M. C.

    2013-12-01

    The conventional accounting frameworks for greenhouse gas (GHG) emissions used today, established under the Kyoto Protocol 25 years ago, exclude short lived climate pollutants (SLCPs), and do not include regional effects on the climate. However, advances in climate science now suggest that mitigation of SLCPs can reduce up to 50% of global warming by 2050. It has also become apparent that regions such as the Arctic have experienced a much greater degree of anthropogenic warming than the globe as a whole, and that efforts to slow this warming could benefit the larger effort to slow climate change around the globe. A draft standard for life cycle assessment (LCA), LEO-SCS-002, being developed under the American National Standards Institute process, has integrated the most recent climate science into a unified framework to account for emissions of all radiatively significant GHGs and SLCPs. This framework recognizes four distinct impacts to the oceans and climate caused by GHGs and SLCPs: Global Climate Change; Arctic Climate Change; Ocean Acidification; and Ocean Warming. The accounting for Arctic Climate Change, the subject of this poster, is based upon the Absolute Regional Temperature Potential, which considers the incremental change to the Arctic surface temperature resulting from an emission of a GHG or SLCP. Results are evaluated using units of mass of carbon dioxide equivalent (CO2e), which can be used by a broad array of stakeholders, including scientists, consumers, policy makers, and NGOs. This poster considers the contribution to Arctic Climate Change from emissions of GHGs and SLCPs from the eight member countries of the Arctic Council; the United States, Canada, Russia, Denmark, Finland, Iceland, Norway, and Sweden. Of this group of countries, the United States was the largest contributor to Arctic Climate Change in 2011, emitting 9600 MMT CO2e. This includes a gross warming of 11200 MMT CO2e (caused by GHGs, black and brown carbon, and warming effects

  15. Climate Change: Science and Policy in the Arctic Climate Change: Science and Policy in the Arctic

    Science.gov (United States)

    Bigras, S. C.

    2009-12-01

    It is an accepted fact that the Earth’s climate is warming. Recent research has demonstrated the direct links between the Arctic regions and the rest of the planet. We have become more aware that these regions are feeling the effects of global climate change more intensely than anywhere else on Earth -- and that they are fast becoming the new frontiers for resources and political disputes. This paper examines some of the potential climate change impacts in the Arctic and how the science of climate change can be used to develop policies that will help mitigate some of these impacts. Despite the growing body of research we do not yet completely understand the potential consequences of climate change in the Arctic. Climate models predict significant changes and impacts on the northern physical environment and renewable resources, and on the communities and societies that depend on them. Policies developed and implemented as a result of the research findings will be designed to help mitigate some of the more serious consequences. Given the importance of cost in making policy decisions, the financial implications of different scenarios will need to be considered. The Arctic Ocean Basin is a complex and diverse environment shared by five Arctic states. Cooperation among the states surrounding the Arctic Ocean is often difficult, as each country has its own political and social agenda. Northerners and indigenous peoples should be engaged and able to influence the direction of northern adaptation policies. Along with climate change, the Arctic environment and Arctic residents face many other challenges, among them safe resource development. Resource development in the Arctic has always been a controversial issue, seen by some as a solution to high unemployment and by others as an unacceptably disruptive and destructive force. Its inherent risks need to be considered: there are needs for adaptation, for management frameworks, for addressing cumulative effects, and for

  16. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin

    Science.gov (United States)

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-06-01

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the `atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate.

  17. Approaches to estimating the transfer of radionuclides to arctic biota

    International Nuclear Information System (INIS)

    There is increasing concern over potential radioactive contamination of the Arctic due to the wide range of nuclear sources. Environmental characteristics of the Arctic also suggest that it may be comparatively vulnerable to contaminants. Here we review collated data and available models for estimating the transfer of radionuclides to terrestrial biota within the Arctic. The most abundant data are for radiocaesium and radiostrontium although many data for natural radionuclides were available from studies in the Arctic. For some radionuclides no data are available for describing transfer to Arctic biota. Allometric-kinetic models have been used to provide estimates of transfer for radionuclide biota combinations for which data were lacking. Predicted values were in good agreement with observed data for some radionuclides (e.g. Cs, U) although less so for others. However, for some radionuclides where comparison appeared poor there were relatively little observed data with which to compare and the models developed were simplistic excluding some potentially important transfer pathways (e.g. soil ingestion). There are no bespoke models to enable the dynamic prediction of radionuclide transfer to Arctic biota. A human food chain model is available which includes limited parameterization for Cs and Sr transfer in Arctic ecosystems. This has been relatively easily adapted to estimate 137Cs and 90Sr transfer to some Arctic biota and could be readily adapted to other radionuclide-biota combinations. There are many factors of Arctic ecosystems which may influence radionuclide behaviour including short growing seasons, prolonged freezing of soil, and effects of low temperatures on biological rates. However, these are not included within existing predictive models (for human or biota exposure). If exposure to ionising radiation within Arctic ecosystems is to be robustly predicted such factors must be fully understood and properly incorporated into models. (author)

  18. The future of Arctic benthos: Expansion, invasion, and biodiversity

    Science.gov (United States)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  19. Seeing the risks of multiple Arctic amplifying feedbacks.

    Science.gov (United States)

    Carter, P.

    2014-12-01

    There are several potentially very large sources of Arctic amplifying feedbacks that have been identified. They present a great risk to the future as they could become self and inter-reinforcing with uncontrollable knock-on, or cascading risks. This has been called a domino effect risk by Carlos Duarte. Because of already committed global warming and the millennial duration of global warming, these are highly policy relevant. These Arctic feedback processes are now all operant with emissions of carbon dioxide methane and nitrous oxide detected. The extent of the risks from these feedback sources are not obvious or easy to understand by policy makers and the public. They are recorded in the IPCC AR5 as potential tipping points, as is the irreversibility of permafrost thaw. Some of them are not accounted for in the IPCC AR5 global warming projections because of quantitative uncertainty. UNEP issued a 2012 report (Policy Implications of Thawing Permafrost) advising that by omitting carbon feedback emissions from permafrost, carbon budget calculations by err on the low side. There is the other unassessed issue of a global warming safety limit for preventing uncontrollable increasing Arctic feedback emissions. Along with our paper, we provide illustrations of the Arctic feedback sources and processes from satellite imagery and flow charts that allows for their qualitative consideration. We rely on the IPCC assessments, the 2012 paper Possible role of wetlands permafrost can methane hydrates in the methane cycle under future climate change; a review, by Fiona M. O'Connor et al., and build on the WWF 2009 Arctic Climate Feedbacks: Global Implications. The potential sources of Arctic feedback processes identified include: Arctic and Far North snow albedo decline, Arctic summer sea ice albedo decline, Greenland summer ice surface melting albedo loss, albedo decline by replacement of Arctic tundra with forest, tundra fires, Boreal forest fires, Boreal forest die

  20. FRAM - FRontiers in Arctic marine Monitoring: Permanent Observations in a Gateway to the Arctic Ocean

    Science.gov (United States)

    Soltwedel, Thomas

    2015-04-01

    Our ability to understand the complex interactions of biological, chemical, physical, and geological processes in the ocean is still limited by the lack of integrative and interdisciplinary observation infrastructures. The main purpose of the open-ocean infrastructure FRAM (FRontiers in Arctic marine Monitoring) is permanent presence at sea, from surface to depth, for the provision of near real-time data on climate variability and ecosystem change in an Arctic marine environment. The Alfred-Wegener-Institut I Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), together with partner institutes in Germany and Europe, aims at providing such infrastructure for the polar ocean as a major contribution to international efforts towards comprehensive Global Earth Observation. The FRAM Ocean Observing System targets the gateway between the North Atlantic and the Central Arctic, representing a highly climate-sensitive and rapidly changing region of the Earth system. It will serve national and international tasks towards a better understanding of the effects of change in ocean circulation, water mass properties and sea-ice retreat on Arctic marine ecosystems and their main functions and services. FRAM integrates and develops already existing observatories, i.e. the oceanographic mooring array HAFOS (Hybrid Arctic/Antarctic Float Observing System) and the Long-Term Ecological Research (LTER) site HAUSGARTEN. It will implement existing and next-generation sensors and observatory platforms, allowing synchronous observation of relevant ocean variables, as well as the study of physical, chemical and biological processes in the water column and at the seafloor. Experimental and event-triggered platforms will complement observational platforms. Products of the infrastructure are continuous long-term data with appropriate resolution in space and time, as well as ground-truthing information for ocean models and remote sensing.

  1. Will Arctic ground squirrels impede or accelerate climate-induced vegetation changes to the Arctic tundra?

    Science.gov (United States)

    Dalton, J.; Flower, C. E.; Brown, J.; Gonzalez-Meler, M. A.; Whelan, C.

    2014-12-01

    Considerable attention has been given to the climate feedbacks associated with predicted vegetation shifts in the Arctic tundra in response to global environmental change. However, little is known regarding the extent to which consumers can facilitate or respond to shrub expansion. Arctic ground squirrels, the largest and most northern ground squirrel, are abundant and widespread throughout the North American tundra. Their broad diet of seeds, flowers, herbage, bird's eggs and meat speaks to the need to breed, feed, and fatten in a span of some 12-16 weeks that separate their 8-9 month bouts of hibernation with the potential consequence to impact ecosystem dynamics. Therefore Arctic ground squirrels are a good candidate to evaluate whether consumers are mere responders (bottom-up effects) or drivers (top-down) of the observed and predicted vegetation changes. As a start towards this question, we measured the foraging intensity (giving-up densities) of Arctic ground squirrels in experimental food patches within which the squirrels experience diminishing returns as they seek the raisins and peanuts that we provided at the Toolik Lake field station in northern Alaska. If the squirrels show their highest feeding intensity in the shrubs, they may impede vegetation shifts by slowing the establishment and expansion of shrubs in the tundra. Conversely, if they show their lowest feeding intensity within shrub dominated areas, they may accelerate vegetation shifts. We found neither. Feeding intensity varied most among transects and times of day, and least along a tundra-to-shrub vegetation gradient. This suggests that the impacts of squirrels will be heterogeneous - in places responders and in others drivers. We should not be surprised then to see patches of accelerated and impeded vegetation changes in the tundra ecosystem. Some of these patterns may be predictable from the foraging behavior of Arctic ground squirrels.

  2. Crustal types of the Circumpolar Arctic

    Science.gov (United States)

    Kashubin, Sergey; Pavlenkova, Ninel; Petrov, Oleg; Milshtein, Evgenia; Shokalsky, Sergey; Erinchek, Yuri

    2016-04-01

    Deep seismic studies revealed unusual crustal structure in the Arctic Ocean. The thin (about 10 km) oceanic crust with seismic velocities Vp= 6.8-7.2 km/s is observed only in the narrow mid-oceanic ridge zone (the Gakkel ridge). The thick (25-35 km) continental crust covers the whole continental margins and the central part of the ocean. The continental type of the magnetic field with large local anomalies of different signs and irregular shapes is also observed in this area. However, the crust of the central Arctic (the Lomonosov, Mendeleev and Alpha ridges) differ from the crust of the Eurasia by the lower thickness of the upper granite-gneiss layer (velocities Vp=6.0-6.6 km/s): it is only 5-7 km in comparison with 15-20 km in the continent. The origin of such crust may be explained in two ways. Most frequently it is accounted for by the destruction and transformation of the continental crust by the basification that implies the enrichment of the crust by the rocks of basic composition from the mantle and the metamorphization of the continental rocks at the higher temperature and pressure. But in the central part of the Arctic Ocean the crust looks as an original one. The regular form of the large ridges and the continental type magnetic field were not destroyed by the basification processes which are usually irregular and most intensive in some local zones. The basification origin may be proposed for the Canadian and the South-Barents deep sedimentary basins with "suboceanic" crust (10-15 km of sediments and 10-15 km of the lower crust with Vp= 6.8-7.2 km/s). The other basins which stretch along fault zones outlined the central deep water part of the Arctic Ocean have the ''subcontinental' crust: the thickness of the granite-gneiss layer decreases in these basins and sometimes the high velocity intrusions are observed in the lower parts. The different crustal types are observed in the North Atlantic where the oceanic crust with linear magnetic anomalies is

  3. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Shnoro, R. S.; Eicken, H.; Francis, J. A.; Scambos, T. A.; Schuur, E. A.; Straneo, F.; Wiggins, H. V.

    2013-12-01

    SEARCH is an interdisciplinary, interagency program that works with academic and government agency scientists and stakeholders to plan, conduct, and synthesize studies of Arctic change. Over the past three years, SEARCH has developed a new vision and mission, a set of prioritized cross-disciplinary 5-year goals, an integrated set of activities, and an organizational structure. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. SEARCH's 5-year science goals include: 1. Improve understanding, advance prediction, and explore consequences of changing Arctic sea ice. 2. Document and understand how degradation of near-surface permafrost will affect Arctic and global systems. 3. Improve predictions of future land-ice loss and impacts on sea level. 4. Analyze societal and policy implications of Arctic environmental change. Action Teams organized around each of the 5-year goals will serve as standing groups responsible for implementing specific goal activities. Members will be drawn from academia, different agencies and stakeholders, with a range of disciplinary backgrounds and perspectives. 'Arctic Futures 2050' scenarios tasks will describe plausible future states of the arctic system based on recent trajectories and projected changes. These scenarios will combine a range of data including climate model output, paleo-data, results from data synthesis and systems modeling, as well as expert scientific and traditional knowledge. Current activities include: - Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. - Arctic Sea Ice Outlook - an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. A newly-launched Sea Ice Prediction Network

  4. Review of arctic Norwegian bioremediation research

    International Nuclear Information System (INIS)

    Traditional oil spill onshore clean up in arctic and sub-arctic parts of Norway involves methods that are both time-consuming, and labor intensive. The applicability of the methods depends both on the environmental constraints of the area, and the availability of man-power. If oil exploration is successful this will mean that the exploitation of oil moves north into the arctic regions of Norway. This area is remote, both in terms of accessability and lack of inhabitants. The threat to natural resources that always accompanies oil activities, will move into areas that are considered vulnerable, and which are also highly valued in terms of natural resources. Contingency measures must be adapted both to be feasible and to meet the framework in which they must operate. This situation has increased the focus on alternative methods for oil spill clean-ups, especially on shorelines. SINTEF (The Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology) Applied Chemistry has evaluated the application of fertilizers as a practical measure in oil spill treatment for years. Several fertilizers have been assessed, in different environments. The effect of these products is difficult to establish categorically since their efficiency seems to be greatly dependent on the environment in which the test is conducted, as well as the design of the test. The aim of this paper is to summarize and evaluate a series of tests conducted with INIPOL EAP22, an oil soluble fertilizer developed by Elf Aquitaine, and water soluble fertilizers. The paper will emphasize treatment failure and success, and point out some necessary prerequisites that must be met for fertilizers to work. 14 refs., 3 figs

  5. Oceanographic Aspects of Recent Changes in the Arctic

    Science.gov (United States)

    Morison, J. H.

    2002-12-01

    In the Arctic recent decadal-scale changes have marked the atmosphere, ocean, and land. Connections between the oceanographic changes and large-scale atmospheric circulation changes are emerging. Surface atmospheric pressure has shown a declining trend over the Arctic. In the 1990s, the Arctic Ocean circulation took on a more cyclonic character, and the front separating Atlantic-derived waters of the Eurasian Basin and the Pacific-derived waters of the Canadian Basin shifted counterclockwise. The temperature of Atlantic water in the Arctic Ocean reached record levels. The cold halocline, which isolates the surface from the warm Atlantic water, grew thinner disappearing entirely from the Amundsen Basin at one point [Steele and Boyd, 1998]. Arctic sea ice extent has decreased 3% per decade since the 1970s [Parkinson et al., 1999]. Sea ice thickness over much of the Arctic decreased 43% between 1958-1976 and 1993-1997 [Rothrock et al., 1999]. Arctic ecosystems have responded to these changes. Sea ice studies in the late 1990s indicate that the sea ice algal species composition changed from decades before, with the species recently being characterized by more brackish and freshwater forms. Barents Sea fisheries have shifted north following reductions in ice extent. Pacific salmon species have been found entering rivers in the Arctic. There is evidence that this complex of pan-Arctic changes is connected with the rising trend in the Arctic Oscillation (AO) or Northern Hemisphere atmospheric polar vortex in the 1990s. Theoretical evidence that a positive trend in the AO index might be indicative of greenhouse warming raises the possibility that the recent complex of changes is an Arctic characteristic of global climate change. Also, the changes in ice cover manifest a connection between the complex of change and global climate through ice-albedo feedback, by which reductions in ice cover reduce the amount of sunlight reflected from the earth's surface. Another important

  6. Carbon cycle uncertainty in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    J. B. Fisher

    2014-02-01

    Full Text Available Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ against the mean (x for each quantity. Mean annual uncertainty (σ/x was largest for net ecosystem exchange (NEE (−0.01± 0.19 kg C m−2 yr−1, then net primary production (NPP (0.14 ± 0.33 kg C m−2 yr−1, autotrophic respiration (Ra (0.09 ± 0.20 kg C m−2 yr−1, gross primary production (GPP (0.22 ± 0.50 kg C m−2 yr−1, ecosystem respiration (Re (0.23 ± 0.38 kg C m−2 yr−1, CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1, heterotrophic respiration (Rh (0.14 ± 0.20 kg C m−2 yr−1, and soil carbon (14.0± 9.2 kg C m−2. The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity analysis was conducted of 20th century NEE to CO2 fertilization (β and climate (γ, which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.

  7. Are we approaching an Arctic ozone hole

    International Nuclear Information System (INIS)

    Observations during the last decade in the Arctic areas mainly made by satellite, on the ground and by probes and sensors in the stratosphere are presented. Future perspectives are deducted from the results. Factors that may influence the ozone layer negatively are: Emission rate of ozone destroying compounds, the rapidly increasing use of some substitutes, increased concentrations of steam from aeroplanes and increased amount of methane, decreasing temperature in the stratosphere due to increasing amounts of climatic gases, large volcanic eruptions and altered timing for the polar whirl dissolution. It is concluded that the ozone reduction will be larger than observed at present in the next 10 to 20 years

  8. Airborne organochlorines in the Canadian High Arctic

    OpenAIRE

    PATTON, G. W.; HINCKLEY, D. A.; Walla, M D; T. F. Bidleman; HARGRAVE, B. T.

    2011-01-01

    In 1984, the Canadian Polar Continental Shelf Project established a research camp on a floating ice island in the Beaufort Sea. The 7 × 4 km island is presently located about 50 km off Ellesmere Island at about 81°N, 100°W. Air samples of 1400–3000 m3 were collected on the island in August-September 1986 and June 1987, using a filter-solid adsorbent train. Organochlorines in melted snow and Arctic Ocean surface water were preconcentrated using solid adsorbent cartridges. Samples were analyzed...

  9. Trichinella infections in arctic foxes from Greenland

    DEFF Research Database (Denmark)

    Kapel, C. M O; Henriksen, S. A.; Berg, T. B.;

    1995-01-01

    Studies were carried out to determine the predilection sites of Trichinella nativa muscle larvae in arctic foxes (Alopex lagopus) caught in Greenland. The highest number of larvae per gram of tissue was found in the muscles of the eyes and the legs. With regard to predilection sites no significant...... differences were demonstrated either between age groups or between foxes with high and low total parasite burdens. Predilection sites were comparable with those recorded earlier in experimentally infected caged foxes and in other carnivorous species. Hypotheses on predilection sites of Trichinella muscle...

  10. ARCTIC FOOTBALL FORUMIN VISUAALISEN IDENTITEETIN SUUNNITTELU

    OpenAIRE

    Tanninen, Aki

    2015-01-01

    Opinnäytetyöni aiheena on visuaalisen identiteetin suunnitteleminen Arctic Football Forum -jalkapallokonferenssille. Toteutin työn työskennellessäni mainostoimisto Familyssä. Työskentelytapa oli itsenäinen, mutta työskentely tapahtui mainos-toimistossa ja minulla oli mahdollisuus saada konsultointia muilta graafisilta suunnittelijoilta. Tutkin opinnäytetytössäni visuaalisen identiteetin rakennetta ja sen yhteyttä onnistuneeseen visuaaliseen lopputulokseen. Avaan käytännö...

  11. Arctic climate change in 21st century CMIP5 simulations with EC-Earth

    OpenAIRE

    Koenigk, Torben; Brodeau, Laurent; Graversen, Rune Grand; Karlsson, Johannes; Svensson, Gunilla; Tjernström, Michael; Willén, Ulrika; Wyser, Klaus

    2012-01-01

    The Arctic climate change is analyzed in anensemble of future projection simulations performed withthe global coupled climate model EC-Earth2.3. EC-Earthsimulates the twentieth century Arctic climate relativelywell but the Arctic is about 2 K too cold and the sea icethickness and extent are overestimated. In the twenty-firstcentury, the results show a continuation and strengtheningof the Arctic trends observed over the recent decades,which leads to a dramatically changed Arctic climate,especi...

  12. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea

    OpenAIRE

    James E. Overland; Kevin R. Wood; Wang, Muyin

    2011-01-01

    Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episo...

  13. Arctic indigenous peoples as representations and representatives of climate change.

    Science.gov (United States)

    Martello, Marybeth Long

    2008-06-01

    Recent scientific findings, as presented in the Arctic Climate Impact Assessment (ACIA), indicate that climate change in the Arctic is happening now, at a faster rate than elsewhere in the world, and with major implications for peoples of the Arctic (especially indigenous peoples) and the rest of the planet. This paper examines scientific and political representations of Arctic indigenous peoples that have been central to the production and articulation of these claims. ACIA employs novel forms and strategies of representation that reflect changing conceptual models and practices of global change science and depict indigenous peoples as expert, exotic, and at-risk. These portrayals emerge alongside the growing political activism of Arctic indigenous peoples who present themselves as representatives or embodiments of climate change itself as they advocate for climate change mitigation policies. These mutually constitutive forms of representation suggest that scientific ways of seeing the global environment shape and are shaped by the public image and voice of global citizens. Likewise, the authority, credibility, and visibility of Arctic indigenous activists derive, in part, from their status as at-risk experts, a status buttressed by new scientific frameworks and methods that recognize and rely on the local experiences and knowledges of indigenous peoples. Analyses of these relationships linking scientific and political representations of Arctic climate change build upon science and technology studies (STS) scholarship on visualization, challenge conventional notions of globalization, and raise questions about power and accountability in global climate change research. PMID:19069077

  14. Episodic fresh surface waters in the Eocene Arctic Ocean

    Science.gov (United States)

    Brinkhuis, Henk; Schouten, Stefan; Collinson, Margaret E.; Sluijs, Appy; Damsté, Jaap S. Sinninghe; Dickens, Gerald R.; Huber, Matthew; Cronin, Thomas M.; Onodera, Jonaotaro; Takahashi, Kozo; Bujak, Jonathan P.; Stein, Ruediger; van der Burgh, Johan; Eldrett, James S.; Harding, Ian C.; Lotter, André F.; Sangiorgi, Francesca; Cittert, Han Van Konijnenburg-Van; de Leeuw, Jan W.; Matthiessen, Jens; Backman, Jan; Moran, Kathryn; Expedition 302 Scientists

    2006-06-01

    It has been suggested, on the basis of modern hydrology and fully coupled palaeoclimate simulations, that the warm greenhouse conditions that characterized the early Palaeogene period (55-45Myr ago) probably induced an intensified hydrological cycle with precipitation exceeding evaporation at high latitudes. Little field evidence, however, has been available to constrain oceanic conditions in the Arctic during this period. Here we analyse Palaeogene sediments obtained during the Arctic Coring Expedition, showing that large quantities of the free-floating fern Azolla grew and reproduced in the Arctic Ocean by the onset of the middle Eocene epoch (~50Myr ago). The Azolla and accompanying abundant freshwater organic and siliceous microfossils indicate an episodic freshening of Arctic surface waters during an ~800,000-year interval. The abundant remains of Azolla that characterize basal middle Eocene marine deposits of all Nordic seas probably represent transported assemblages resulting from freshwater spills from the Arctic Ocean that reached as far south as the North Sea. The termination of the Azolla phase in the Arctic coincides with a local sea surface temperature rise from ~10°C to 13°C, pointing to simultaneous increases in salt and heat supply owing to the influx of waters from adjacent oceans. We suggest that onset and termination of the Azolla phase depended on the degree of oceanic exchange between Arctic Ocean and adjacent seas.

  15. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    Science.gov (United States)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  16. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    Science.gov (United States)

    Cody, R. P.; Manley, W. F.; Gaylord, A. G.; Kassin, A.; Villarreal, S.; Barba, M.; Dover, M.; Escarzaga, S. M.; Habermann, T.; Kozimor, J.; Score, R.; Tweedie, C. E.

    2015-12-01

    Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress over such a large expanse of the Arctic. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and other related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 7700 observation sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. During 2015, the web mapping application has been enhanced by the addition of a query builder that allows users to create rich and complex queries. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. Substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies, the AOV data set has been structured and centralized within a relational database and the application front-end has been ported to HTML5 to enable mobile access. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches and an administration web based data management system that allows administrators to add, update, and delete information in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but

  17. Using a nuclear submarine for Arctic research

    Science.gov (United States)

    Keigwin, Lloyd D.; Johnson, G. Leonard

    Oceanographers have been accused of not thinking big enough. Where is our Hubble Space Telescope? Where is our Superconducting Super Collider? Where is our project to map the human genome? An example of a highly successful “big” project in the marine sciences is the Ocean Drilling Program, currently funded at about $42 million per year. That effort is small by comparison to big projects in astronomy and in highenergy physics.Ocean-ice-atmosphere interactions in polar regions play a major role in driving deep ocean circulation and in regulating Earth's climate, and Arctic regions in particular are expected to be the first to respond to the predicted global warming. Despite the fundamental importance of polar regions to the habitability of planet Earth, most oceanographers have used only the most inefficient methods for exploring the ocean beneath the ice: drifting on floating ice camps and bashing through the ice with ice breakers. Neither of these methods is an effective way to explore a feature as large and as physiographically varied as the Arctic basin.

  18. Microbial nitrogen cycling in Arctic snowpacks

    International Nuclear Information System (INIS)

    Arctic snowpacks are often considered as chemical reactors for a variety of chemicals deposited through wet and dry events, but are overlooked as potential sites for microbial metabolism of reactive nitrogen species. The fate of deposited species is critical since warming leads to the transfer of contaminants to snowmelt-fed ecosystems. Here, we examined the role of microorganisms and the potential pathways involved in nitrogen cycling in the snow. Next generation sequencing data were used to follow functional gene abundances and a 16S rRNA (ribosomal ribonucleic acid) gene microarray was used to follow shifts in microbial community structure during a two-month spring-time field study at a high Arctic site, Svalbard, Norway (79° N). We showed that despite the low temperatures and limited water supply, microbial communities inhabiting the snow cover demonstrated dynamic shifts in their functional potential to follow several different pathways of the nitrogen cycle. In addition, microbial specific phylogenetic probes tracked different nitrogen species over time. For example, probes for Roseomonas tracked nitrate concentrations closely and probes for Caulobacter tracked ammonium concentrations after a delay of one week. Nitrogen cycling was also shown to be a dominant process at the base of the snowpack. (letter)

  19. Arctic Clouds Infrared Imaging Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J. A. [Montana State Univ., Bozeman, MT (United States)

    2016-03-01

    The Infrared Cloud Imager (ICI), a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. Thermal imaging of the sky from the ground provides high radiometric contrast during night and polar winter when visible sensors and downward-viewing thermal sensors experience low contrast. In addition to demonstrating successful operation in the Arctic for an extended period and providing data for Arctic cloud studies, a primary objective of this deployment was to validate novel instrument calibration algorithms that will allow more compact ICI instruments to be deployed without the added expense, weight, size, and operational difficulty of a large-aperture onboard blackbody calibration source. This objective was successfully completed with a comparison of the two-year data set calibrated with and without the onboard blackbody. The two different calibration methods produced daily-average cloud amount data sets with correlation coefficient = 0.99, mean difference = 0.0029 (i.e., 0.29% cloudiness), and a difference standard deviation = 0.054. Finally, the ICI instrument generally detected more thin clouds than reported by other ARM cloud products available as of late 2015.

  20. The Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  1. Military aspects of Russia's Arctic policy

    Energy Technology Data Exchange (ETDEWEB)

    Zysk, Katarzyna

    2013-03-01

    Russia's Arctic policies have a strong bearing on the regional strategic environment for a number of factors. One obvious reason is the geography and the fact that Russia's Arctic shoreline covers nearly half of the latitudinal circle, which gives the country a unique potential to influence future Arctic activities. Second, despite radical changes in the regional security environment after the end of the Cold War, the Arctic and the High North (the European Arctic), in particular has maintained its central role in Russian strategic thinking and defense policy. Russia still has a strong military presence in the region, with a variety of activities and interests, despite weaknesses and problems facing the Russian armed forces. Third, and finally, Russia has enormous petroleum and other natural riches in the Arctic, and the leadership is laying on ambitious plans for development of commercial activities in the region. Understanding Russia's approaches to security is thus clearly important to surrounding Arctic nations and other stakeholders. Russian military activity in the Arctic has tangibly increased in recent years, adding perhaps the most controversial topic in debates on the region's future security. Combined with political assertiveness and rhetorical hostility toward the West, which was a particular feature of Vladimir Putin's second presidential term (2004#En Dash#2008), the intensified presence of the Russian naval and air forces operating in the region has drawn much of the international attention and contributed to the image of Russia as the wild card in the Arctic strategic equation.(Author)

  2. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    International Nuclear Information System (INIS)

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of 134Cs, 137Cs and 90Sr from these sources has been decreasing during the 1990's, while 129I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest 137Cs, 129I and 90Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived 137Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990's the fraction to total 137Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of 239, 240Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  3. Ocean surface waves in an ice-free Arctic Ocean

    Science.gov (United States)

    Li, Jian-Guo

    2016-08-01

    The retreat of the Arctic ice edge implies that global ocean surface wave models have to be extended at high latitudes or even to cover the North Pole in the future. The obstacles for conventional latitude-longitude grid wave models to cover the whole Arctic are the polar problems associated with their Eulerian advection schemes, including the Courant-Friedrichs-Lewy (CFL) restriction on diminishing grid length towards the Pole, the singularity at the Pole and the invalid scalar assumption for vector components defined relative to the local east direction. A spherical multiple-cell (SMC) grid is designed to solve these problems. It relaxes the CFL restriction by merging the longitudinal cells towards the Poles. A round polar cell is used to remove the singularity of the differential equation at the Pole. A fixed reference direction is introduced to define vector components within a limited Arctic part in mitigation of the scalar assumption errors at high latitudes. The SMC grid has been implemented in the WAVEWATCH III model and validated with altimeter and buoy observations, except for the Arctic part, which could not be fully tested due to a lack of observations as the polar region is still covered by sea ice. Here, an idealised ice-free Arctic case is used to test the Arctic part and it is compared with a reference case with real ice coverage. The comparison indicates that swell wave energy will increase near the ice-free Arctic coastlines due to increased fetch. An expanded Arctic part is used for comparisons of the Arctic part with available satellite measurements. It also provides a direct model comparison between the two reference systems in their overlapping zone.

  4. Isotopes in the Arctic atmospheric water cycle

    Science.gov (United States)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  5. ARCTIC LEGAL SYSTEM: A N EW SUSTAINABLE DEVELOPMENT MODEL

    OpenAIRE

    KUMAR SAHU MANJEET

    2016-01-01

    Historically, the term ‘Arctic’ was used synonymously with the term ‘ice’, but climate change and Arctic hydrocarbon grabbed the attention of the world community as an opportunity to make the Arctic an ‘Energy Hub’. Exploration of oil and gas over the past six decades in the Arctic has made the region as places in the world. All major players in the market have endeavored to approach this new energy basket to utilize its maximum benefit. Commercial exploitation of natural resources has made t...

  6. Effective Planning of the Future of the Arctic

    International Nuclear Information System (INIS)

    The problems of the Arctic region have become the most important ones in the world. Political risks hinder the industrial development of the region. This paper addresses the problem of planning and modeling the future of this region. It presents the problems of developing a model of the future due to the ideologies and strategies of two main actors in the Arctic, the United States and the Russian Federation. The effects of a bipolar perception of the future of the region and of the whole world are shown. A model of the effective planning of the future of the Arctic region is proposed

  7. Arctic Research of the United States, Fall 1991, volume 4

    Science.gov (United States)

    Brown, Jerry; Bowen, Stephen

    This is a journal for national and international audiences of government officials, scientists, engineers, educators, Arctic residents, and other people interested in Arctic-related topics. Reports cover a broad spectrum of life in the Arctic including such topics as fish, game, health, social services, science, engineering, environment, oceanography, international activities, international cooperation, global change, conferences, polar libraries, data, policies, research, and history. The emphasis in this issue is on international activities, including the environment, research ships, and the Bering Sea region's history and resources.

  8. State of the Arctic Coast 2010: Scientific Review and Outlook

    Science.gov (United States)

    Rachold, V.; Forbes, D. L.; Kremer, H.; Lantuit, H.

    2010-12-01

    The coast is a key interface in the Arctic environment. It is a locus of human activity, a rich band of biodiversity, critical habitat, and high productivity, and among the most dynamic components of the circumpolar landscape. The Arctic coastal interface is a sensitive and important zone of interaction between land and sea, a region that provides essential ecosystem services and supports indigenous human lifestyles; a zone of expanding infrastructure investment and growing security concerns; and an area in which climate warming is expected to trigger landscape instability, rapid responses to change, and increased hazard exposure. Starting with a collaborative workshop in October 2007, the International Arctic Science Committee (IASC), the Land-Ocean Interactions in the Coastal Zone (LOICZ) Project and the International Permafrost Association (IPA) decided to jointly initiate an assessment of the state of the Arctic coast. The goal of this report is to draw on initial findings regarding climate change and human dimensions for the Arctic as a whole provided by the Arctic Climate Impact Assessment (ACIA) and Arctic Human Development Report (AHDR) to develop a comprehensive picture of status and current and anticipated change in the most sensitive Arctic coastal areas. Underlying is the concept of a social ecological system perspective that explores the implications of change for the interaction of humans with nature. The report is aimed to be a first step towards a continuously updated coastal assessment and to identify key issues seeking future scientific concern in an international Earth system research agenda. The report titled “State of the Arctic Coast 2010: Scientific Review and Outlook” is the outcome of this collaborative effort. It is organized in three parts: the first provides an assessment of the state of Arctic coastal systems under three broad disciplinary themes - physical systems, ecological systems, and human concerns in the coastal zone; the

  9. International Arctic Systems for Observing the Atmosphere (IASOA)

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk; Skov, Henrik; Massling, Andreas

    2016-01-01

    IASOA activities and partnerships were initiated as a part of the 2007-2009 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the U.S., Canada, Russia......, Norway, Finland, and Greenland, to create synthesis science that leads to an understanding of why, and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in...

  10. Development of wind power production in arctic climate

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E.; Kaas, J.; Aarnio, E. [Kemijoki Oy (Finland)

    1998-10-01

    The project Development of wind power production in arctic climate is a direct continuation of Arctic wind energy research project, which started in 1989. The main topics in 1996-97 have been production development and commercialising the blade heating systems, development of operation and maintenance practices of arctic wind power plants, preparations for new wind farms and various network connection and energy system studies. Practical operations have taken place in Pyhaetunturi test power plant and in Paljasselkae and Lammashovi power plants, which are in commercial operation

  11. Experimentally determined temperature thresholds for Arctic plankton community metabolism

    OpenAIRE

    Holding, J. M.; Duarte, C. M.; J. M. Arrieta; R. Vaquer-Sunyer; Coello-Camba, A.; P. Wassmann; Agustí, S.

    2013-01-01

    Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half of its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase the rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rat...

  12. Climate change and zoonotic infections in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Boris Revich

    2012-07-01

    Full Text Available Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  13. Changing Arctic ecosystems--research to understand and project changes in marine and terrestrial ecosystems of the Arctic

    Science.gov (United States)

    Geiselman, Joy; DeGange, Anthony R.; Oakley, Karen; Derksen, Dirk; Whalen, Mary

    2012-01-01

    Ecosystems and their wildlife communities are not static; they change and evolve over time due to numerous intrinsic and extrinsic factors. A period of rapid change is occurring in the Arctic for which our current understanding of potential ecosystem and wildlife responses is limited. Changes to the physical environment include warming temperatures, diminishing sea ice, increasing coastal erosion, deteriorating permafrost, and changing water regimes. These changes influence biological communities and the ways in which human communities interact with them. Through the new initiative Changing Arctic Ecosystems (CAE) the U.S. Geological Survey (USGS) strives to (1) understand the potential suite of wildlife population responses to these physical changes to inform key resource management decisions such as those related to the Endangered Species Act, and (2) provide unique insights into how Arctic ecosystems are responding under new stressors. Our studies examine how and why changes in the ice-dominated ecosystems of the Arctic are affecting wildlife and will provide a better foundation for understanding the degree and manner in which wildlife species respond and adapt to rapid environmental change. Changes to Arctic ecosystems will be felt broadly because the Arctic is a production zone for hundreds of species that migrate south for the winter. The CAE initiative includes three major research themes that span Arctic ice-dominated ecosystems and that are structured to identify and understand the linkages between physical processes, ecosystems, and wildlife populations. The USGS is applying knowledge-based modeling structures such as Bayesian Networks to integrate the work.

  14. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean: Is China a Threat for Arctic Ocean Security?

    OpenAIRE

    Cassotta, Sandra; Hossain, Kamrul; Ren, Jingzheng; Goodsite, Michael Evan

    2015-01-01

    The impact of climate change in the Arctic Ocean such as ice melting and ice retreat facilitatesnatural resources extraction. Arctic fossil fuel becomes the drivers of geopolitical changes in theArctic Ocean. Climate change facilitates natural resource extractions and increases competitionbetween states and can result in tensions, even military ones. This article investigates through apolitical and legal analysis the role of China as an emerging regulatory sea power in the ArcticOcean given i...

  15. Below the Arctic Seas. International Arctic Seas assessment project: summing up

    International Nuclear Information System (INIS)

    In 1993, the IAEA responded to the concern of its Member States and the request of the Contracting Parties to the Convention on Prevention of Marine Pollution by Dumping of Wastes and Other Matter by launching the International Arctic Seas Assessment Project (IASAP). It had two objectives: to assess the risks to human health and to the environment associated with the radioactive wastes dumped in the Kara and Barents Seas, and to examine possible remedial actions related to the dumped wastes and to advise on their necessity and justification. The Project involved more than fifty experts from fourteen countries and was steered by an International Advisory Group. Its working areas consisted of: examination of the radiological situation in Arctic waters; prediction of potential future releases from the dumped wastes; modelling of environmental transport of released nuclides and assessing the associated radiological impact on humans and biota; and examination of the feasibility, costs and benefits of possible remedial measures

  16. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    Science.gov (United States)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    Of all the components of the Earth climate system, the cryosphere is arguably the least understood even though it is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect exchanges of momentum, heat, and mass between the ocean and the atmosphere, and have profound socio-economic impacts on transportation, fisheries, hunting, polar animal habitat and more. In the last three decades, the Arctic underwent significant changes in sea ice as part of the accelerated global climate change. With the recently developed One-dimensional Thermodynamic Ice Model (OTIM), sea and lake ice thickness and trends can be reasonably estimated. The OTIM has been extensively validated against submarine and moored upward-looking sonar measurements, meteorological station measurements, and comprehensive numerical model simulations. The Extended AVHRR Polar Pathfinder (APP-x) dataset has 25 climate parameters covering surface, cloud, and sea ice properties as well as surface and top-of-atmosphere radiative fluxes for the period 1982 - 2004 over the Arctic and Antarctic at 25 km resolution. The OTIM has been used with APP-x dataset for Arctic sea ice thickness and volume estimation. Statistical analysis of spatial and temporal distributions and trends in sea ice extent, thickness, and volume over the satellite period has been performed, along with the temporal analysis of first year and multiple year sea ice extent changes. Preliminary results show clear evidence that Arctic sea ice has been experiencing significant changes over the last two decades of the 20th century. The Arctic sea ice has been shrinking unexpectedly fast with the declines in sea ice extent, thickness, and volume, most apparent in the fall season. Moreover, satellites provide an unprecedented opportunity to observe Arctic sea ice and its changes with high spatial and temporal coverage that is making it an ideal data source for mitigating

  17. Polychlorinated naphthalenes (PCNs) in sub-Arctic and Arctic marine mammals, 1986–2009

    International Nuclear Information System (INIS)

    A selection of PCN congeners was analyzed in pooled blubber samples of pilot whale (Globicephala melas), ringed seal (Phoca hispida), minke whale (Balaenoptera acutorostrata), fin whale (Balaenoptera physalus), harbour porpoise (Phocoena phocoena), hooded seal (Cystophora cristata) and Atlantic white-sided dolphin (Lagenorhynchus acutus), covering a time period of more than 20 years (1986–2009). A large geographical area of the North Atlantic and Arctic areas was covered. PCN congeners 48, 52, 53, 66 and 69 were found in the blubber samples between 0.03 and 5.9 ng/g lw. Also PCBs were analyzed in minke whales and fin whales from Iceland and the total PCN content accounted for 0.2% or less of the total non-planar PCB content. No statistically significant trend in contaminant levels could be established for the studied areas. However, in all species except minke whales caught off Norway the lowest ∑PCN concentrations were found in samples from the latest sampling period. - Highlights: ► PCN concentrations are described in a wide variety of marine mammal species. ► A large geographical area of the North Atlantic and Arctic areas is covered. ► Pooled blubber samples covering a time period of 23 years are evaluated. ► Species- and geographic-dependent PCN congener distribution is seen. ► A decrease in the PCN load is indicated in the studied areas in recent years. - Analysis of PCNs in seven marine mammal species sampled over a 23 year period indicates a decline in the PCN load in sub-Arctic and Arctic areas in recent years.

  18. Games in the Arctic: applying game theory insights to Arctic challenges

    Directory of Open Access Journals (Sweden)

    Scott Cole

    2014-08-01

    Full Text Available We illustrate the benefits of game theoretic analysis for assisting decision-makers in resolving conflicts and other challenges in a rapidly evolving region. We review a series of salient Arctic issues with global implications—managing open-access fisheries, opening Arctic areas for resource extraction and ensuring effective environmental regulation for natural resource extraction—and provide insights to help reach socially preferred outcomes. We provide an overview of game theoretic analysis in layman's terms, explaining how game theory can help researchers and decision-makers to better understand conflicts, and how to identify the need for, and improve the design of, policy interventions. We believe that game theoretic tools are particularly useful in a region with a diverse set of players ranging from countries to firms to individuals. We argue that the Arctic Council should take a more active governing role in the region by, for example, dispersing information to “players” in order to alleviate conflicts regarding the management of common-pool resources such as open-access fisheries and natural resource extraction. We also identify side payments—that is, monetary or in-kind compensation from one party of a conflict to another—as a key mechanism for reaching a more biologically, culturally and economically sustainable Arctic future. By emphasizing the practical insights generated from an academic discipline, we present game theory as an influential tool in shaping the future of the Arctic—for individual researchers, for inter-disciplinary research and for policy-makers themselves.

  19. Circum-arctic plate accretion - Isolating part of a pacific plate to form the nucleus of the Arctic Basin

    Science.gov (United States)

    Churkin, M., Jr.; Trexler, J.H., Jr.

    1980-01-01

    A mosaic of large lithospheric plates rims the Arctic Ocean Basin, and foldbelts between these plates contain numerous allochthonous microplates. A new model for continental drift and microplate accretion proposes that prior to the late Mesozoic the Kula plate extended from the Pacific into the Arctic. By a process of circumpolar drift and microplate accretion, fragments of the Pacific basin, including parts of the Kula plate, were cut off and isolated in the Arctic Ocean, the Yukon-Koyukuk basin in Alaska, and the Bering Sea. ?? 1980.

  20. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  1. Contaminant and Water Quality Baseline Data for the Arctic National Wildlife Refuge, Alaska, 1988 - 1989. Volume 2, Raw Data.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Metal, hydrocarbon, or nutrient data have not been recorded for the Arctic coastal plain 1002 area of the Arctic National Wildlife Refuge (Arctic Refuge) in areas...

  2. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1994 calendar year. The report begins with a summary of the year's highlights...

  3. ARCTIC FOUNDATIONS, INC. FREEZE BARRIER SYSTEM - SITE TECHNOLOGY CAPSULE

    Science.gov (United States)

    Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tec...

  4. ARCTIC FOUNDATIONS, INC. FREEZE BARRIER TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    Arctic Foundations, Inc. (AFI), of Anchorage, Alaska has developed a freeze barrier technology designed to prevent the migration of contaminants in groundwater by completely isolating contaminant source areas until appropriate remediation techniques can be applied. With this tech...

  5. Climate Prediction Center Monthly(CPC)Arctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic Oscillation (AO) is a leading teleconnection pattern in the Northern Hemisphere circulation. It is calculated as the first Empirical Orthogonal Function...

  6. Climate Prediction Center(CPC)Daily Arctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic Oscillation (AO) is a leading teleconnection pattern in the Northern Hemisphere circulation. It is calculated as the first Empirical Orthogonal Function...

  7. Arctic cisco stomach content data, Prudhoe Bay, August 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set documents the stomach contents of age-0 Arctic cisco (Coregonus autumnalis) captured in Prudhoe Bay, Alaska in August 2009. The analysis of this data...

  8. Salt Marshes of the Arctic National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this study was to map all salt marshes along the coastline of the Arctic National Wildlife Refuge, from the Canning River to the Canadian border....

  9. Aerial Images of Alaska's Arctic Coastal Plain; 1974-1979

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset is comprised of 10 aerial images of three different study areas on Alaska's Arctic Coastal Plain flown by NASA in 1974, 1977, 1979 and obtained from...

  10. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1986

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1986 calendar year. The report begins with a summary of the year's highlights...

  11. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1985 calendar year. The report begins with a summary of the year's highlights...

  12. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1987 calendar year. The report begins with a summary of the year's highlights...

  13. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1988

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1988 calendar year. The report begins with a summary of the year's highlights...

  14. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1993

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1993 calendar year. The report begins with a summary of the year's highlights...

  15. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1990

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1990 calendar year. The report begins with a summary of the year's highlights...

  16. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1992

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1992 calendar year. The report begins with a summary of the year's highlights...

  17. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1991

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1991 calendar year. The report begins with a summary of the year's highlights...

  18. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1996

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1996 calendar year. The report begins with a summary of the year's highlights...

  19. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1989

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1989 calendar year. The report begins with a summary of the year's highlights...

  20. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1997

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1997 calendar year. The report begins with a summary of the year's highlights...

  1. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1995

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1995 calendar year. The report begins with a summary of the year's highlights...

  2. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1984

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1984 calendar year. The report begins with a summary of the year's highlights...

  3. USGS Arctic Ocean Carbon Cruise 2012: Discrete Underway Laboratory data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be...

  4. Volatility of Nuclei Mode Arctic Aerosol Particles during Summer

    Czech Academy of Sciences Publication Activity Database

    Biskos, J.G.; Vratolis, S.; Ondráček, Jakub; Karanasioy, A.A.; Eleftheriadis, K.

    -: -, 2009, T160A13. [European Aerosol Conference 2009. Karlsruhe (DE), 06.09.2009-11.09.2009] Institutional research plan: CEZ:AV0Z40720504 Keywords : arctic aerosol * nucleation mode * volatility Subject RIV: CF - Physical ; Theoretical Chemistry

  5. SEDNA: Sea ice Experiment - Dynamic Nature of the Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Ice Experiment - Dynamic Nature of the Arctic (SEDNA) is an international collaborative effort to improve the understanding of the interaction between sea...

  6. Biological control of Aleutian Island arctic fox: Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Empirical and literature data on the resource utilization patterns of arctic fox (Alopex lagopus) and red fox (Vulpes vulpes) are evaluated to assess the potential...

  7. Staging the Arctic 1819–1909 and 2014

    Directory of Open Access Journals (Sweden)

    Heidi Hansson

    2015-04-01

    Full Text Available Throughout the long nineteenth century and beyond, outside representations of the Arctic on stage have circulated a stereotypical image of the region. The two most long-standing emblems are ice and indigenous culture, and as commodity, the Arctic is identified as mystical, authentic, natural and pre-modern. These images are circulated in popular, cultural events like theatre performances, panoramic displays, music hall shows, and musical comedy but their presence in a popular cultural context also contributes to destabilise the signifiers. At the best, theatre productions about the Arctic may produce a kind of history from below, including a cautious critique of the colonial project and the ideal of heroic masculinity. Their radical potential should not be overstated, however, since the historical meanings of the stereotypes even when they are being debunked. At least on stage, conventional images of the Arctic continue to dominate.

  8. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS......) placed on sea-ice, at six different sites north of Greenland for the preliminary study of sea surface height (SSH), and tidal analysis to improve tide models in the Central Arctic. The GPS measurements are compared with the Arctic tide model AOTIM-5, which assimilates tide-gauges and altimetry data. The...... results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  9. Arctic National Wildlife Range : Narrative 1971-72

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1971-1972 calendar years. The report begins by summarizing the weather...

  10. Arctic tern survey on Adak Island, Alaska, 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is on an Arctic Tern survey on Adak Island in Alaska during 1987. Study area, methods and results are discussed. Pictures and data are also included.

  11. USGS Arctic Ocean Carbon Cruise 2010: Discrete Lab data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be...

  12. Methane emissions from a high arctic valley: findings and challenges

    DEFF Research Database (Denmark)

    Mastepanov, Mikhail; Sigsgaard, Charlotte; Ström, Lena; Tagesson, Torbern; Tamstorf, Mikkel Peter; Christensen, Torben R.

    2008-01-01

    analyses of controls on interannual and seasonal variations in emissions. To help fill this gap we initiated a measurement program in a productive high arctic fen in the Zackenberg valley, NE Greenland. Methane flux measurements have been carried out at the same location since 1997. Compared with the......Wet tundra ecosystems are well-known to be a significant source of atmospheric methane. With the predicted stronger effect of global climate change on arctic terrestrial ecosystems compared to lower-latitudes, there is a special obligation to study the natural diversity and the range of possible...... feedback effects on global climate that could arise from Arctic tundra ecosystems. One of the prime candidates for such a feedback mechanism is a potential change in the emissions of methane. Long-term datasets on methane emissions from high arctic sites are almost non-existing but badly needed for...

  13. Skill improvement of dynamical seasonal Arctic sea ice forecasts

    Science.gov (United States)

    Krikken, Folmer; Schmeits, Maurice; Vlot, Willem; Guemas, Virginie; Hazeleger, Wilco

    2016-05-01

    We explore the error and improve the skill of the outcome from dynamical seasonal Arctic sea ice reforecasts using different bias correction and ensemble calibration methods. These reforecasts consist of a five-member ensemble from 1979 to 2012 using the general circulation model EC-Earth. The raw model reforecasts show large biases in Arctic sea ice area, mainly due to a differently simulated seasonal cycle and long term trend compared to observations. This translates very quickly (1-3 months) into large biases. We find that (heteroscedastic) extended logistic regressions are viable ensemble calibration methods, as the forecast skill is improved compared to standard bias correction methods. Analysis of regional skill of Arctic sea ice shows that the Northeast Passage and the Kara and Barents Sea are most predictable. These results show the importance of reducing model error and the potential for ensemble calibration in improving skill of seasonal forecasts of Arctic sea ice.

  14. The swans and geese of Alaska's arctic slope

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — A mid-summer aerial search was made on the 23,000 square miles of waterfowl habitat on Alaska's Arctic slope. Observations included 159 whistling swan (Olor...

  15. U.S. Arctic Voyage Planning Guide (AVPG)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic Voyage Planning Guide is a compilation of official U.S. Government information and references to sources of information that may be consulted by mariners...

  16. USGS Arctic Ocean Carbon Cruise 2011: Discrete Lab data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be...

  17. USGS Arctic Ocean Carbon Cruise 2011: Discrete Underway data

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Models project the Arctic Ocean will become undersaturated with respect to carbonate minerals in the next decade. Recent field results indicate parts may already be...

  18. Arctic National Wildlife Range, 1962: Summer field work report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The objective of the summer field work outlined in this report was to determine the feasibility of hiking and back-packing as a recreational use of Arctic National...

  19. Botanical studies in the Arctic National Wildlife Range: Field report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report is a botanical study in the Arctic National Wildlife Range during 1970. Cooperative studies on flora and fauna were done on selected sites. Sites...

  20. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1976

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Arctic NWR outlines Refuge accomplishments during the 1976 calendar year. The report begins with an introduction to the Refuge and...

  1. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Arctic NWR outlines Refuge accomplishments during the 1980 calendar year. The report begins with an introduction to the Refuge and...

  2. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1979

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Arctic NWR outlines Refuge accomplishments during the 1979 calendar year. The report begins with an introduction to the Refuge and...

  3. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1978

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Arctic NWR outlines Refuge accomplishments during the 1978 calendar year. The report begins with an introduction to the Refuge and...

  4. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1977

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Arctic NWR outlines Refuge accomplishments during the 1977 calendar year. The report begins with an introduction to the Refuge and...

  5. Arctic National Wildlife Refuge : Annual narrative report : Calendar year 1981

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Arctic NWR outlines Refuge accomplishments during the 1981 calendar year. The report begins with a summary of the year's highlights...

  6. Arctic Tern Homing Experiment Petit Manan Island, Maine 1968

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose the author’s work and trip to this island was to conduct homing experiments with Arctic Terns, to determine if this is a suitable species for...

  7. Arctic cisco stable isotope data, Prudhoe Bay, August 2009

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set documents the carbon and nitrogen stable isotope ratios of age-0 Arctic cisco (Coregonus autumnalis) captured in Prudhoe Bay, Alaska in August 2009....

  8. Arctic Ocean Regional Climatology Online Atlas (NODC Accession 0115771)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To provide an improved oceanographic foundation and reference for multi-disciplinary studies of the Arctic Ocean, NODC developed a new set of high-resolution...

  9. Notes on village economies and wildlife utilization in arctic Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Visits were made to 12 Eskimo villages in Arctic Alaska during the spring of 1954. At each settlement information was collected regarding the economy and the...

  10. The Arctic Observing Viewer: A Web-mapping Application for U.S. Arctic Observing Activities

    Science.gov (United States)

    Kassin, A.; Gaylord, A. G.; Manley, W. F.; Villarreal, S.; Tweedie, C. E.; Cody, R. P.; Copenhaver, W.; Dover, M.; Score, R.; Habermann, T.

    2014-12-01

    Although a great deal of progress has been made with various arctic observing efforts, it can be difficult to assess such progress when so many agencies, organizations, research groups and others are making such rapid progress. To help meet the strategic needs of the U.S. SEARCH-AON program and facilitate the development of SAON and related initiatives, the Arctic Observing Viewer (AOV; http://ArcticObservingViewer.org) has been developed. This web mapping application compiles detailed information pertaining to U.S. Arctic Observing efforts. Contributing partners include the U.S. NSF, USGS, ACADIS, ADIwg, AOOS, a2dc, AON, ARMAP, BAID, IASOA, INTERACT, and others. Over 6100 sites are currently in the AOV database and the application allows users to visualize, navigate, select, advance search, draw, print, and more. AOV is founded on principles of software and data interoperability and includes an emerging "Project" metadata standard, which uses ISO 19115-1 and compatible web services. In the last year, substantial efforts have focused on maintaining and centralizing all database information. In order to keep up with emerging technologies and demand for the application, the AOV data set has been structured and centralized within a relational database; furthermore, the application front-end has been ported to HTML5. Porting the application to HTML5 will now provide access to mobile users utilizing tablets and cell phone devices. Other application enhancements include an embedded Apache Solr search platform which provides users with the capability to perform advance searches throughout the AOV dataset, and an administration web based data management system which allows the administrators to add, update, and delete data in real time. We encourage all collaborators to use AOV tools and services for their own purposes and to help us extend the impact of our efforts and ensure AOV complements other cyber-resources. Reinforcing dispersed but interoperable resources in this

  11. Influence analysis of Arctic tide gauges using leverages

    OpenAIRE

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using the statistical leverage of each individual gauge. This may be of help in determining appropriate procedures for data preprocessing, of particular importance for the Arctic area as the GIA is hard to ...

  12. A temperature inversion in "Chinese Arctic Research Expedition 1999"

    Institute of Scientific and Technical Information of China (English)

    刘宇; 周立波; 邹捍

    2002-01-01

    Using the boundary layer observation data collected by "Arctic Upper Air Observation 1999" in Chinese Arctic Research Expedition 1999, a strong temperature inversion in summer is studied. It shows that the intensity (6.3℃/(100 m)) is much stronger than the climatology average value in summer and winter. The temperature inversion took on a remarkable diurnal variation. The intensity of inversion gradually weakened from night to daytime.

  13. Tourism and Arctic Observation Systems : exploring the relationships

    OpenAIRE

    de la Barre, Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, Machiel; Liggett, Daniela; Müller, Dieter; Pashkevich, Albina; Stewart, Emma

    2016-01-01

    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS) contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in ...

  14. Antimicrobial natural products from Arctic and sub-Arcticmarine invertebrates

    OpenAIRE

    Tadesse, Margey

    2010-01-01

    Infectious diseases are a leading cause of death world-wide and there is a growing need for new anti-infective agents to combat multi-resistant strains of bacteria and fungi. Marine natural products are promising sources of novel antimicrobial compounds. In the present thesis, an investigation into the antimicrobial metabolites of Arctic and sub-Arctic marine invertebrate species is presented. Extracts of seven ascidian species, six sponge species, a soft-alcyonid coral and a bryozoan species...

  15. One Health - a strategy for resilience in a changing arctic

    OpenAIRE

    Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of c...

  16. Ecological diversity in the polymorphic fish Arctic charr (Salvelinus alpinus)

    OpenAIRE

    Woods, Pamela J., 1979-

    2011-01-01

    The Arctic charr Salvelinus alpinus is extremely diverse and its differentiation may indicate ecological speciation. This dissertation aims to compare trends in ecological diversity across broad geographical regions and place it within an ecosystem context by comparing study systems in Iceland and Alaska. In the first chapter, gut contents of Arctic charr across ~50 lakes in Iceland were analyzed to form 6 habitat-associated prey categories. Consumption of zooplankton was related to high sili...

  17. The seasonal dynamics of Arctic surface hydrology in permafrost environments

    OpenAIRE

    Trofaier, Anna Maria

    2014-01-01

    Climate-induced landscape evolution is resulting in changes to biogeochemical and hydrologi- cal cycling. In the Arctic and sub-Arctic permafrost zones, rising air temperatures are warming, and in some regions even thawing, the frozen ground. Permafrost is a carbon sink. The thermal state of the ground therefore has important implications on carbon exchange with the atmo- sphere. Permafrost thaw mobilises previously sequestered carbon stocks, potentially turning these high latitude regions in...

  18. Bioluminescence in the high Arctic during the polar night

    OpenAIRE

    Berge, Jørgen; Båtnes, Anna Solvang; Johnsen, Geir; Blackwell, Susan; Mark A. Moline

    2012-01-01

    This study examines the composition and activity of the planktonic community during the polar night in the high Arctic Kongsfjord, Svalbard. Our results are the first published evidence of bioluminescence among zooplankton during the Arctic polar night. The observations were collected by a bathyphotometer detecting bioluminescence, integrated into an autonomous underwater vehicle, to determine the concentration and intensity of bioluminescent flashes as a function of time of day and depth. To...

  19. Tourism and Arctic Observation Systems: exploring the relationships

    OpenAIRE

    Barre, de la, Suzanne; Maher, Patrick; Dawson, Jackie; Hillmer-Pegram, Kevin; Huijbens, Edward; Lamers, M.A.J.; Liggett, D.; Müller, D.; Pashkevich, A.; Stewart, Emma

    2016-01-01

    The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS) contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in ...

  20. Toolkit to estimate the organizational structure of Arctic industrial complexes

    OpenAIRE

    Tarasova, Olga

    2014-01-01

    Severe climatic conditions, low population density, lack of infrastructure leave as the only possible nodular economic development of Arctic territories of the Russian Federation. In this case, a natural question arises: how to define points of growth, how to delineate those "patches of economic activity"? In today's economic conditions, growth points for Arctic territories will be resource projects. Analysis of the mineral complex projects in terms of minerals markets, as well as alternative...

  1. Climate change and sexual size dimorphism in an Arctic spider

    OpenAIRE

    Høye, Toke Thomas; Hammel, Jörg U; Fuchs, Thomas; Toft, Søren

    2009-01-01

    Climate change is advancing the onset of the growing season and this is happening at a particularly fast rate in the High Arctic. However, in most species the relative fitness implications for males and females remain elusive. Here, we present data on 10 successive cohorts of the wolf spider Pardosa glacialis from Zackenberg in High-Arctic, northeast Greenland. We found marked inter-annual variation in adult body size (carapace width) and this variation was greater in females than in males. E...

  2. Transition in the fractal geometry of Arctic melt ponds

    OpenAIRE

    C. Hohenegger; B. Alali; Steffen, K. R.; D. K. Perovich; Golden, K. M.

    2012-01-01

    During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice–albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate...

  3. Transition in the fractal geometry of Arctic melt ponds

    OpenAIRE

    C. Hohenegger; B. Alali; Steffen, K. R.; D. K. Perovich; Golden, K. M.

    2012-01-01

    During the Arctic melt season, the sea ice surface undergoes a remarkable transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a major role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a significant challenge to improving climate...

  4. Nonlinear controls on evapotranspiration in Arctic coastal wetlands

    OpenAIRE

    A. K. Liljedahl; Hinzman, L. D.; Harazono, Y.; Zona, D.; C. E. Tweedie; Hollister, R. D.; R. Engstrom; Oechel, W.C. (ed.)

    2011-01-01

    Projected increases in air temperature and precipitation due to climate change in Arctic wetlands could dramatically affect ecosystem functioning. As a consequence, it is important to define the controls on evapotranspiration, which is the major pathway of water loss from these systems. We quantified the multi-year controls on midday arctic coastal wetland evapotranspiration measured with the eddy covariance method at two vegetated drained thaw lake basins near Barrow, Alaska. Variations in n...

  5. Nonlinear controls on evapotranspiration in arctic coastal wetlands

    OpenAIRE

    A. K. Liljedahl; Hinzman, L. D.; Harazono, Y.; Zona, D.; C. E. Tweedie; Hollister, R. D.; R. Engstrom; Oechel, W.C. (ed.)

    2011-01-01

    Projected increases in air temperature and precipitation due to climate change in Arctic wetlands could dramatically affect ecosystem function. As a consequence, it is important to define controls on evapotranspiration, the major pathway of water loss from these systems. We quantified the multi-year controls on midday Arctic coastal wetland evapotranspiration, measured with the eddy covariance method at two vegetated, drained thaw lake basins near Barrow, Alaska. Variations ...

  6. Nonlinear controls on evapotranspiration in arctic coastal wetlands

    OpenAIRE

    A. K. Liljedahl; Hinzman, L. D.; Harazono, Y.; Zona, D.; C. E. Tweedie; Hollister, R. D.; R. Engstrom; Oechel, W.C. (ed.)

    2011-01-01

    Projected increases in air temperature and precipitation due to climate change in Arctic wetlands could dramatically affect ecosystem function. As a consequence, it is important to define controls on evapotranspiration, the major pathway of water loss from these systems. We quantified the multi-year controls on midday Arctic coastal wetland evapotranspiration, measured with the eddy covariance method at two vegetated, drained thaw lake basins near Barrow, Alaska. Variations in near-surface so...

  7. Multiyear Arctic Ice Classification Using ASCAT and SSMIS

    OpenAIRE

    David B. Lindell; Long, David G.

    2016-01-01

    The concentration, type, and extent of sea ice in the Arctic can be estimated based on measurements from satellite active microwave sensors, passive microwave sensors, or both. Here, data from the Advanced Scatterometer (ASCAT) and the Special Sensor Microwave Imager/Sounder (SSMIS) are employed to broadly classify Arctic sea ice type as first-year (FY) or multiyear (MY). Combining data from both active and passive sensors can improve the performance of MY and FY ice classification. The class...

  8. Global warming triggers the loss of a key Arctic refugium

    OpenAIRE

    K. M. Rühland; Paterson, A. M.; Keller, W; Michelutti, N.; Smol, J.P.

    2013-01-01

    We document the rapid transformation of one of the Earth's last remaining Arctic refugia, a change that is being driven by global warming. In stark contrast to the amplified warming observed throughout much of the Arctic, the Hudson Bay Lowlands (HBL) of subarctic Canada has maintained cool temperatures, largely due to the counteracting effects of persistent sea ice. However, since the mid-1990s, climate of the HBL has passed a tipping point, the pace and magnitude of which is exceptional eve...

  9. Arctic Ecologies: The Politics and Poetics of Northern Literary Environments

    OpenAIRE

    Athens, Allison Katherine

    2013-01-01

    Allison K. Athens"Arctic Ecologies: The Politics and Poetics of Northern Literary Environments" This dissertation examines the lives of humans and animals in the North American Arctic and the types of narrative modes used to describe them. My project seeks to elucidate the poetics of place, or how language creates and shapes the specificity of social and ecological environments in the north. This poetics is not neutral, however, as language, chiefly the language of writing but also that of fi...

  10. Oceanic heat advection to the Arctic in the last Millennium

    OpenAIRE

    Spielhagen, Robert F.; Werner, Kirstin; Aagaard-Sørensen, Steffen; Zamelczyk, Katarzyna; Kandiano, Evguenia; Budeus, Gereon; Husum, Katrine; Marchitto, Thomas M.; Hald, Morten

    2011-01-01

    EGU2011-8738 At present, the Arctic is responding faster to global warming than most other areas on earth, as indicated by rising air temperatures, melting glaciers and ice sheets and a decline of the sea ice cover. As part of the meridional overturning circulation which connects all ocean basins and influences global climate, northward flowing Atlantic Water is the major means of heat and salt advection towards the Arctic where it strongly affects the sea ice distribution. Records of its ...

  11. The International Polar Year: continuing the Arctic human health legacy

    OpenAIRE

    Parkinson, A J

    2012-01-01

    The International Polar Year (IPY) presenteda unique opportunity to further advance thecircumpolar human health agendas of theInternational Union for Circumpolar Healthand the Arctic Council. The Arctic HumanHealth Initiative (AHHI) was an IPY coordinatingproject that aimed to serve as a focalpoint for human health research, education,outreach, and communication activities duringIPY (2007-2009).International Journal of Circumpolar Health 70:5 2011

  12. Alaska Arctic marine fish ecology catalog

    Science.gov (United States)

    2016-01-01

    The marine fishes in waters of the United States north of the Bering Strait have received new and increased scientific attention over the past decade (2005–15) in conjunction with frontier qualities of the region and societal concerns about the effects of Arctic climate change. Commercial fisheries are negligible in the Chukchi and Beaufort Seas, but many marine species have important traditional and cultural values to Alaska Native residents. Although baseline conditions are rapidly changing, effective decisions about research and monitoring investments must be based on reliable information and plausible future scenarios. For the first time, this synthesis presents a comprehensive evaluation of the marine fish fauna from both seas in a single reference. Although many unknowns and uncertainties remain in the scientific understanding, information presented here is foundational with respect to understanding marine ecosystems and addressing dual missions of the U.S. Department of the Interior for energy development and resource conservation. 

  13. Summertime Arctic Mixed-Phase Clouds

    Science.gov (United States)

    Zuidema, P.

    2005-12-01

    3 mixed-phase clouds observed during July of the Surface Heat Budget of the Arctic experiment are discussed. The analysis relies on a combination of surface-based remote sensing measurements and aircraft data. The clouds were multi-layered ice clouds with liquid layers either embedded within the ice phase (July 8) or overlying the ice phase (July 15 and 23). The liquid layers have temperatures ranging between -20 to -5 Celsius. Thin boundary layer clouds or fog underlie the mixed-phase clouds. The boundary layer clouds are liquid but possess temperatures close to the surface temperature of near zero Celsius. The 3 cases all coincide with meltpond-ice surfaces with albedos of approximately 0.5. The cloud microphysical characteristics, radiative impact, and lifecycles will be discussed.

  14. Trichinella in arctic, subarctic and temperate regions

    DEFF Research Database (Denmark)

    Kapel, C. M O

    1997-01-01

    The transmission and occurrence of Trichinella spp according to the zoogeography of different climatic conditions, socioeconomy and human activity are discussed. Comparing arctic, subarctic and temperate regions, it appears that the species of Trichinella present, the composition of the fauna and...... domestic trichinellosis differ widely. Denmark is regarded as Trichinella-free, in the case of domestic trichinellosis and sylvatic trichinellosis is very rare. In Sweden and Norway. Trichinella is found in wildlife but domestic trichrnellosis is rare. In Finland, both domestic and sylvatic trichinellosis...... have increased dramatically during the last decade. Among the Scandinavian countries, Finland also has the largest populations of carnivorous mammals. In the Baltic states, Trichinella is frequently found in wildlife and domestic trichinellosis is increasingly diagnosed. The high prevalence in the...

  15. Moving Facts in an Arctic field

    DEFF Research Database (Denmark)

    Hastrup, Kirsten Blinkenberg; Flora, Janne; Andersen, Astrid Oberborbeck

    2016-01-01

    This article reflects on the merits of the expedition as an anthropological method on the basis of a recent cross-disciplinary experience, involving biologists, archaeologists and anthropologists working together in High Arctic Greenland. True to the term, the expedition had chartered a vessel from...... where the team could go ashore in places that would otherwise have been difficult to access, and where the individual perspectives could cross-fertilize each other in actual practice. It is argued that anthropology itself is a mode of experimentation in practice, which enables new trains of thought, and...... an engagement with other disciplinary practices. The gain of our cross-disciplinary experiment was therefore not only to know more about the makings of a particular landscape in a multi-disciplinary perspective, but also to understand how anthropology makes sense of inherently moving facts....

  16. Arctic Shield 2015 Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Robert A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    During the week of July 13, 2015, the U.S. Coast Guard’s (USCG) Research and Development Center partnered with Conoco Phillips through a Cooperative Research and Development Agreement to conduct a Search and Rescue (SAR) exercise off of Oliktok Point, Alaska. The Coast Guard was interested in exploring how unmanned aircraft systems (UAS) can be used to enhance capabilities for its SAR mission and gain a better understanding of how it could work jointly with private industry for response operations in remote regions. Participants in the exercise included Coast Guard Pacific Area Command, Coast Guard Cutter Healy, Coast Guard District Seventeen, Coast Guard Air Station Kodiak, and Conoco Phillips. Joining Conoco Phillips were their partners Insitu (a Boeing company), Era Helicopter, and Era Helicopter’s partner Priority One. Other government agencies supporting the exercise were the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility, the National Oceanic and Atmospheric Administration, the Federal Aviation Administration, and the North Slope Borough of the state of Alaska. The exercise scenario involved a simulated small aircraft crash offshore where the survivors took refuge in a 6-man life raft. The aircraft’s last known position and asset availability required the Coast Guard to coordinate the response with Conoco Phillips. This included the use of an Insitu-operated ScanEagle UAS, flown from DOE-ARM’s Sandia National Laboratory-operated facility at Oliktok Point, and manned aircraft provided by both the Coast Guard’s Forward Operating Location in Deadhorse and Era Helicopter. Lessons learned from this exercise will help the Coast Guard understand how to best collaborate with private industry on the North Slope during response operations and develop requirements for UAS performing Coast Guard missions in the Arctic environment. For the ARM facility, the exercise demonstrated some of the opportunities and

  17. Arctic Freshwater Synthesis: Summary of key emerging issues

    Science.gov (United States)

    Prowse, T.; Bring, A.; Mârd, J.; Carmack, E.; Holland, M.; Instanes, A.; Vihma, T.; Wrona, F. J.

    2015-10-01

    In response to a joint request from the World Climate Research Program's Climate and Cryosphere Project, the International Arctic Science Committee, and the Arctic Council's Arctic Monitoring and Assessment Program an updated scientific assessment has been conducted of the Arctic Freshwater System (AFS), entitled the Arctic Freshwater Synthesis (AFSΣ). The major reason behind the joint request was an increasing concern that changes to the AFS have produced, and could produce even greater, changes to biogeophysical and socioeconomic systems of special importance to northern residents and also produce extra-Arctic climatic effects that will have global consequences. The AFSΣ was structured around six key thematic areas: atmosphere, oceans, terrestrial hydrology, terrestrial ecology, resources, and modeling, the review of each coauthored by an international group of scientists and published as separate manuscripts in this special issue of Journal of Geophysical Research-Biogeosciences. This AFSΣ summary manuscript reviews key issues that emerged during the conduct of the synthesis, especially those that are cross-thematic in nature, and identifies future research required to address such issues.

  18. The Arctic DP Research Project: Effective Stationkeeping in Ice

    Directory of Open Access Journals (Sweden)

    Roger Skjetne

    2014-10-01

    Full Text Available Stress on the environment from a potentially growing energy use is set to rise. Without doubt the energy resources in Arctic regions will be developed. An important goal will be to exploit the resources offered by for instance the Barents Sea as a new European energy province, and to do this in accordance with the principles of sustainable development that have successfully been used e.g. in the North Sea. The special edition of MIC on Arctic DP presents a set of articles that summarize to an extent the activities of the research project Arctic DP: Safe and green dynamic positioning operations of offshore vessels in an Arctic environment. This project was awarded in 2010 by the Research Council of Norway (RCN as a competence-building project (KMB project to NTNU and its partners Kongsberg Maritime, DNV GL, and Statoil. The objective was to target some of the challenges related to safe Arctic offshore operations by dynamic positioning. In this first article of the Arctic DP special edition we discuss the background for and establishment of the project, its planning and execution, and project closure. An overview is given for the scientific and engineering research performed in the project, with an account of what we have considered as Effective stationkeeping in ice by dynamic positioning. The corresponding research activities conducted under this main theme is summarized.

  19. Late Cenozoic Paleoceanography of the Central Arctic Ocean

    International Nuclear Information System (INIS)

    The Arctic Ocean is the smallest and perhaps least accessible of the worlds oceans. It occupies only 26% of the global ocean area, and less than 10% of its volume. However, it exerts a disproportionately large influence on the global climate system through a complex set of positive and negative feedback mechanisms directly or indirectly related to terrestrial ice and snow cover and sea ice. Increasingly, the northern high latitude cryosphere is seen as an exceptionally fragile part of the global climate system, a fact exemplified by observed reductions in sea ice extent during the past decades [2]. The paleoceanographic evolution of the Arctic Ocean can provide important insights into the physical forcing mechanisms that affect the form, intensity and permanence of ice in the high Arctic, and its sensitivity to these mechanisms in vastly different climate states of the past. However, marine records capturing the late Cenozoic paleoceanography of the Arctic are limited - most notably because only a single deep borehole exists from the central parts of this Ocean. This paper reviews the principal late Cenozoic (Neogene/Quaternary) results from the Arctic Coring Expedition to the Lomonosov Ridge and in light of recent data and observations on modern sea ice, outlines emerging questions related to three main themes: 1) the establishment of the 'modern' Arctic Ocean and the opening of the Fram Strait 2) the inception of perennial sea ice 3) The Quaternary intensification of Northern Hemisphere glaciations.

  20. China in the Arctic: interests, actions and challenges

    Directory of Open Access Journals (Sweden)

    Njord Wegge

    2014-07-01

    Full Text Available This article gives an overview of China’s interest in and approach to the Arctic region. The following questions are raised: 1.Why is China getting involved in the Arctic, 2. How is China’s engagement in the Arctic playing out? 3, What are the most important issues that need to be solved in order for China to increase its relevance and importance as a political actor and partner in the Arctic. In applying a rationalist approach when answering the research questions, I identify how China in the last few years increasingly has been accepted as a legitimate stakeholder in the Arctic, with important stakes and activities in areas such as shipping, resource utilization and environmental science.  The article concludes with pointing out some issues that remain to be solved including Chinas role in issues of global politics, the role of observers in the Arctic Council as well as pointing out how China itself needs to decide important aspects of their future role in the region.

  1. Changes to freshwater systems affecting Arctic infrastructure and natural resources

    Science.gov (United States)

    Instanes, Arne; Kokorev, Vasily; Janowicz, Richard; Bruland, Oddbjørn; Sand, Knut; Prowse, Terry

    2016-03-01

    The resources component of the Arctic Freshwater Synthesis focuses on the potential impact of future climate and change on water resources in the Arctic and how Arctic infrastructure and exploration and production of natural resources are affected. Freshwater availability may increase in the Arctic in the future in response to an increase in middle- and high-latitude annual precipitation. Changes in type of precipitation, its seasonal distribution, timing, and rate of snowmelt represent a challenge to municipalities and transportation networks subjected to flooding and droughts and to current industries and future industrial development. A reliable well-distributed water source is essential for all infrastructures, industrial development, and other sectorial uses in the Arctic. Fluctuations in water supply and seasonal precipitation and temperature may represent not only opportunities but also threats to water quantity and quality for Arctic communities and industrial use. The impact of future climate change is varying depending on the geographical area and the current state of infrastructure and industrial development. This paper provides a summary of our current knowledge related to the system function and key physical processes affecting northern water resources, industry, and other sectorial infrastructure.

  2. External forcing of the early 20th century Arctic warming

    Directory of Open Access Journals (Sweden)

    Lingling Suo

    2013-12-01

    Full Text Available The observed Arctic warming during the early 20th century was comparable to present-day warming in terms of magnitude. The causes and mechanisms for the early 20th century Arctic warming are less clear and need to be better understood when considering projections of future climate change in the Arctic. The simulations using the Bergen Climate Model (BCM can reproduce the surface air temperature (SAT fluctuations in the Arctic during the 20th century reasonably well. The results presented here, based on the model simulations and observations, indicate that intensified solar radiation and a lull in volcanic activity during the 1920s–1950s can explain much of the early 20th century Arctic warming. The anthropogenic forcing could play a role in getting the timing of the peak warming correct. According to the model the local solar irradiation changes play a crucial role in driving the Arctic early 20th century warming. The SAT co-varied closely with local solar irradiation changes when natural external forcings are included in the model either alone or in combination with anthropogenic external forcings. The increased Barents Sea warm inflow and the anomalous atmosphere circulation patterns in the northern Europe and north Atlantic can also contribute to the warming. In summary, the early 20th century warming was largely externally forced.

  3. Problems encountered when defining Arctic amplification as a ratio.

    Science.gov (United States)

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  4. Tourism and Arctic Observation Systems: exploring the relationships

    Directory of Open Access Journals (Sweden)

    Suzanne de la Barre

    2016-03-01

    Full Text Available The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

  5. Problems encountered when defining Arctic amplification as a ratio

    Science.gov (United States)

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-07-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.

  6. Some alternatives for the use of Arctic natural gas

    International Nuclear Information System (INIS)

    In the development of remote Arctic gas fields, a major part of the investment is required for the transportation system. Two alternatives to pipeline transport are assessed: sea transport of liquefied natural gas (LNG) from gas liquefaction plants, and conversion of natural gas into synthetic gasoline using existing storage, tanker transport, and receiving facilities. The technology and economics of these two alternatives are evaluated. The costs of Arctic LNG plants are viewed as comparable to those in temperate zones. However, the transport costs in LNG tankers will be greater from Arctic locations due to longer distances, ice-strengthened vessel capital costs, and delays in transit due to ice conditions. This suggests that delivery of Arctic LNG, even from tidewater locations, will be delayed until the year 2000 or beyond. The capital costs of a gas-to-gasoline conversion plant, estimated on the basis of an existing plant in New Zealand, are ca US$18/bbl of gasoline produced. For very inexpensive large Arctic gas reservoirs near tidewater, and considering labor costs in Eurasia, there is a possibility that such a plant would provide a reasonable operating profit, depending on the tax incentives offered, and upon the world market for gasoline in the next 30 y. Further analysis of specific Arctic projects in these terms is suggested. 11 refs., 2 figs., 3 tabs

  7. Mapping the future expansion of Arctic open water

    Science.gov (United States)

    Barnhart, Katherine R.; Miller, Christopher R.; Overeem, Irina; Kay, Jennifer E.

    2016-03-01

    Sea ice impacts most of the Arctic environment, from ocean circulation and marine ecosystems to animal migration and marine transportation. Sea ice has thinned and decreased in age over the observational record. Ice extent has decreased. Reduced ice cover has warmed the surface ocean, accelerated coastal erosion and impacted biological productivity. Declines in Arctic sea-ice extent cannot be explained by internal climate variability alone and can be attributed to anthropogenic effects. However, extent is a poor measure of ice decline at specific locations as it integrates over the entire Arctic basin and thus contains no spatial information. The open water season, in contrast, is a metric that represents the duration of open water over a year at an individual location. Here we present maps of the open water season over the period 1920-2100 using daily output from a 30-member initial-condition ensemble of business-as-usual climate simulations that characterize the expansion of Arctic open water, determine when the open water season will move away from pre-industrial conditions (`shift’ time) and identify when human forcing will take the Arctic sea-ice system outside its normal bounds (`emergence’ time). The majority of the Arctic nearshore regions began shifting in 1990 and will begin leaving the range of internal variability in 2040. Models suggest that ice will cover coastal regions for only half of the year by 2070.

  8. The expedition ARCTIC `96 of RV `Polarstern` (ARK XII) with the Arctic Climate System Study (ACSYS). Cruise report; Die Expedition ARCTIC `96 des FS `Polarstern` (ARK XII) mit der Arctic Climate System Study (ACSYS). Fahrtbericht

    Energy Technology Data Exchange (ETDEWEB)

    Augstein, E.

    1997-11-01

    The multinational expedition ARCTIC `96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climte System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the Arctic Ocean and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. (orig.) [Deutsch] Die Expedition ARCTIC `96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, Grossbritannien, Irland, Kanada, Norwegen, Russland, Schweden und den Vereinigten Staaten von Amerika durchgefuehrt. Die physikalischen Projekte auf der POLARSTERN dienten ueberwiegend der Unterstuetzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungsprogramms, die auf die Erforschung der vorherrschenden ozeanischen, atmosphaerischen, kryosphaerischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. (orig.)

  9. Experimentally determined temperature thresholds for Arctic plankton community metabolism

    Directory of Open Access Journals (Sweden)

    J. M. Holding

    2013-01-01

    Full Text Available Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 °C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half of its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase the rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rates and thus both the rate of primary production and respiration will increase. However, these predictions do not consider the specific metabolic balance of the communities. We tested, experimentally, the response of Arctic plankton communities to seawater temperature spanning from 1 °C to 10 °C. Two types of communities were tested, open-ocean Arctic communities from water collected in the Barents Sea and Atlantic influenced fjord communities from water collected in the Svalbard fjord system. Metabolic rates did indeed increase as suggested by metabolic theory, however these results suggest an experimental temperature threshold of 5 °C, beyond which the metabolism of plankton communities shifts from autotrophic to heterotrophic. This threshold is also validated by field measurements across a range of temperatures which suggested a temperature 5.4 °C beyond which Arctic plankton communities switch to heterotrophy. Barents Sea communities showed a much clearer threshold response to temperature manipulations than fjord communities.

  10. New views on changing Arctic vegetation

    Science.gov (United States)

    Kennedy, Robert E.

    2012-03-01

    As climate changes, how will terrestrial vegetation respond? Because the fates of many biogeochemical, hydrological and economic cycles depend on vegetation, this question is fundamental to climate change science but extremely challenging to address. This is particularly true in the Arctic, where temperature change has been most acute globally (IPCC 2007) and where potential feedbacks to carbon, energy and hydrological cycles have important implications for the rest of the Earth system (Chapin et al 2000). It is well known that vegetation is tightly coupled to precipitation and temperature (Whittaker 1975), but predicting the response of vegetation to changes in climate involves much more than invoking the limitations of climate envelopes (Thuiller et al 2008). Models must also consider efficacy of dispersal, soil constraints, ecological interactions, possible CO2 fertilization impacts and the changing impact of other, more proximal anthropogenic effects such as pollution, disturbance, etc (Coops and Waring 2011, Lenihan et al 2008, Scheller and Mladenoff 2005). Given this complexity, a key test will be whether models can match empirical observations of changes that have already occurred. The challenge is finding empirical observations of change that are appropriate to test hypothesized impacts of climate change. As climate gradually changes across broad bioclimatic gradients, vegetation condition may change gradually as well. To capture these gradual trends, observations need at least three characteristics: (1) they must quantify a vegetation attribute that is expected to change, (2) they must measure that attribute in exactly the same way over long periods of time, and (3) they must sample diverse communities at geographic scales commensurate with the scale of expected climatic shifts. Observation networks meeting all three criteria are rare anywhere on the globe, but particularly so in remote areas. For this reason, satellite images have long been used as a

  11. What is “Arctic governance”? A critical assessment of the diverse meanings of “Arctic governance"

    DEFF Research Database (Denmark)

    Pelaudeix, Cecile

    2015-01-01

    -makers in general, centered on a Westphalian or state-centered understanding of governance, the scientific production on Arctic governance is characterized by four categories of approaches - pragmatic, prescriptive, functional and critical – which do not attempt to coincide with disciplinary borders or theoretical......, as well as the diverging views on governance amongst the actors concerned, the concept of governance has provided a valuable tool, affording complementary or contrasting insights, in understanding the state of the Arctic and anticipating its future....

  12. A Possible Feedback Mechanism Involving the Arctic Freshwater,the Arctic Sea Ice, and the North Atlantic Drift

    Institute of Scientific and Technical Information of China (English)

    Odd Helge OTTER(A); Helge DRANGE

    2004-01-01

    Model studies point to enhanced warming and to increased freshwater fluxes to high northern latitudes in response to global warming. In order to address possible feedbacks in the ice-ocean system in response to such changes, the combined effect of increased freshwater input to the Arctic Ocean and Arctic warming--the latter manifested as a gradual melting of the Arctic sea ice--is examined using a 3-D isopycnic coordinate ocean general circulation model. A suite of three idealized experiments is carried out: one control integration, one integration with a doubling of the modern Arctic river runoff, and a third more extreme case, where the river runoff is five times the modern value. In the two freshwater cases, the sea ice thickness is reduced by 1.5-2 m in the central Arctic Ocean over a 50-year period. The modelled ocean response is qualitatively the same for both perturbation experiments: freshwater propagates into the Atlantic Ocean and the Nordic Seas, leading to an initial weakening of the North Atlantic Drift.Furthermore, changes in the geostrophic currents in the central Arctic and melting of the Arctic sea ice lead to an intensified Beaufort Gyre, which in turn increases the southward volume transport through the Canadian Archipelago. To compensate for this southward transport of mass, more warm and saline Atlantic water is carried northward with the North Atlantic Drift. It is found that the increased transport of salt into the northern North Atlantic and the Nordic Seas tends to counteract the impact of the increased freshwater originating from the Arctic, leading to a stabilization of the North Atlantic Drift.

  13. Arctic Browning: vegetation damage and implications for carbon balance.

    Science.gov (United States)

    Treharne, Rachael; Bjerke, Jarle; Emberson, Lisa; Tømmervik, Hans; Phoenix, Gareth

    2016-04-01

    'Arctic browning' is the loss of biomass and canopy in Arctic ecosystems. This process is often driven by climatic and biological extreme events - notably extreme winter warm periods, winter frost-drought and severe outbreaks of defoliating insects. Evidence suggests that browning is becoming increasingly frequent and severe at the pan-arctic scale, a view supported by observations from more intensely observed regions, with major and unprecedented vegetation damage reported at landscape (>1000km2) and regional (Nordic Arctic Region) scales in recent years. Critically, the damage caused by these extreme events is in direct opposition to 'Arctic greening', the well-established increase in productivity and shrub abundance observed at high latitudes in response to long-term warming. This opposition creates uncertainty as to future anticipated vegetation change in the Arctic, with implications for Arctic carbon balance. As high latitude ecosystems store around twice as much carbon as the atmosphere, and vegetation impacts are key to determining rates of loss or gain of ecosystem carbon stocks, Arctic browning has the potential to influence the role of these ecosystems in global climate. There is therefore a clear need for a quantitative understanding of the impacts of browning events on key ecosystem carbon fluxes. To address this, field sites were chosen in central and northern Norway and in Svalbard, in areas known to have been affected by either climatic extremes or insect outbreak and subsequent browning in the past four years. Sites were chosen along a latitudinal gradient to capture both conditions already causing vegetation browning throughout the Norwegian Arctic, and conditions currently common at lower latitudes which are likely to become more damaging further North as climate change progresses. At each site the response of Net Ecosystem CO2 Exchange to light was measured using a LiCor LI6400 Portable Photosynthesis system and a custom vegetation chamber with

  14. Seasonal and Intra-annual Controls on CO2 Flux in Arctic Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, Walter [San Diego State Univ., CA (United States); Kalhori, Aram [San Diego State Univ., CA (United States)

    2015-12-01

    In order to advance the understanding of the patterns and controls on the carbon budget in the Arctic region, San Diego State University has maintained eddy covariance flux towers at three sites in Arctic Alaska, starting in 1997.

  15. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cassotta Pertoldi-Bianchi, Sandra; Hossain, Kamrul; Ren, Jingzheng;

    2015-01-01

    on the Law of the Sea (UNCLOS) and the Arctic Council (AC) are taken into consideration under climate change effects, to assess how global legal frameworks and institutions can deal with China’s strategy in the Arctic Ocean. China’s is moving away from its role as “humble power” to one of “informal......The impact of climate change in the Arctic Ocean such as ice melting and ice retreat facilitates natural resources extraction. Arctic fossil fuel becomes the drivers of geopolitical changes in the Arctic Ocean. Climate change facilitates natural resource extractions and increases competition...... imperialistic” resulting in substantial impact on the Arctic and Antartic dynamism. Due to ice-melting, an easy access to natural resources, China’s Arctic strategy in the Arctic Ocean has reinforced its military martitime strategy and has profoundly changed its maritime military doctrine shifting from regional...

  16. Sea Ice Edge Location and Extent in the Russian Arctic, 1933-2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Ice Edge Location and Extent in the Russian Arctic, 1933-2006 data are derived from sea ice charts from the Arctic and Antarctic Research Institute (AARI),...

  17. Technological and economic factors in the future development and utilization of Arctic natural gas

    International Nuclear Information System (INIS)

    Development of Arctic gas reserves will be accelerated during the next two decades in response to higher oil prices, environmental and safety advantages of gas, and the potentially low costs of tapping giant reservoirs. Total Arctic gas reserves are estimated at over 63 trillion m3. Due to low population and industrial activity in the Arctic, only limited markets for Arctic gas exist in the Arctic itself. The main part of Arctic gas must therefore be transported over long distances. Giant Arctic gas fields will provide a basis for different production alternatives including both pipeline gas, liquefied gas, and converted gas products. Transportation systems are the most critical part of Arctic natural gas development and the sector requiring the greatest investment. Major investment decisions will depend on accurate estimates of gas transport technology and economics, as well as on perceived energy market share growth and geopolitical stability. 27 refs., 4 figs., 3 tabs

  18. Arctic Legal System: a New Sustainable Development Model

    Directory of Open Access Journals (Sweden)

    Kumar Sahu Manjeet

    2016-01-01

    Full Text Available Historically, the term ‘Arctic’ was used synonymously with the term ‘ice’, but climate change and Arctic hydrocarbon grabbed the attention of the world community as an opportunity to make the Arctic an ‘Energy Hub’. Exploration of oil and gas over the past six decades in the Arctic has made the region as places in the world. All major players in the market have endeavored to approach this new energy basket to utilize its maximum benefit. Commercial exploitation of natural resources has made this place a center for the regulation of oil and gas activities. However, petroleum exploration and its operation have had significant local detrimental impacts on the atmosphere, inhabitants and marine environment. Geologists have always believed in the huge reserves of oil and gas in the Arctic Region. However, the exploration of oil and gas started as recently as the mid-1950s. An increase in the demand of oil and gas in the international market, as well as its growing scarcity, compelled the world to locate oil and gas reserves in various regions. It is significant to note that the Arctic states are strategically going to control the excessive exploitation of Arctic hydrocarbon with much profitability. However, it is still a far sighted question ‘whether Arctic will provide direct competition to the Middle East’ and become another hub in the energy market.

  19. International Arctic Research Collaborations: Past, Present and Future

    Science.gov (United States)

    Kintisch, E. S.

    2015-12-01

    International cooperation on Arctic research has a long and storied history, predating even the first International Polar Year in 1881. But scientists want to improve and expand current efforts to conduct international Arctic research, despite politcal and legal barriers that can hamper it. A review of the past and present aspects of such research can inform that effort. As part of a six month fellowship at the Center for Science Diplomacy at the American Association for the Advancement of Science I studied the history and current status of international cooperation in the Arctic. I will report on my findings, which include the fact that some of the first substantial international environmental research and regulatory cooperation began in the far North. My session will identify the elements that make international research collaborations successful, for example more than a century of cooperative work by Russian and Norwegian fishery scientists to monitor and regulate the cod trade in the Barents Sea. And it will explore the challenges that can threaten such collaborations. These can include rules that stymie data collection, block the import of certain analytical equipment across national boundaries, and bar the export of soil or water samples. I will mention specific complications to recent international arctic research projects. These include the SWERUS cruise, a joint effort between Sweden, Russia and the US, an effort to study carbon fluxes over the East Siberian Arctic Shelf in 2014. The session will also review progress towards a new international agreeement, first proposed by the US, on improving arctic research cooperation. That deal is focused on removing the bureacratic and legal barriers to scientists seeking to conduct arctic research on foreign waters and land.

  20. Bromine measurements in ozone depleted air over the Arctic Ocean

    Directory of Open Access Journals (Sweden)

    J. A. Neuman

    2010-07-01

    Full Text Available In situ measurements of ozone, photochemically active bromine compounds, and other trace gases over the Arctic Ocean in April 2008 are used to examine the chemistry and geographical extent of ozone depletion in the arctic marine boundary layer (MBL. Data were obtained from the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC study and the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS study. Fast (1 s and sensitive (detection limits at the low pptv level measurements of BrCl and BrO were obtained from three different chemical ionization mass spectrometer (CIMS instruments, and soluble bromide was measured with a mist chamber. The CIMS instruments also detected Br2. Subsequent laboratory studies showed that HOBr rapidly converts to Br2 on the Teflon instrument inlets. This detected Br2 is identified as active bromine and represents a lower limit of the sum HOBr + Br2. The measured active bromine is shown to likely be HOBr during daytime flights in the arctic. In the MBL over the Arctic Ocean, soluble bromide and active bromine were consistently elevated and ozone was depleted. Ozone depletion and active bromine enhancement were confined to the MBL that was capped by a temperature inversion at 200–500 m altitude. In ozone-depleted air, BrO rarely exceeded 10 pptv and was always substantially lower than soluble bromide that was as high as 40 pptv. BrCl was rarely enhanced above the 2 pptv detection limit, either in the MBL, over Alaska, or in the arctic free troposphere.

  1. Exposing the structure of an Arctic food web.

    Science.gov (United States)

    Wirta, Helena K; Vesterinen, Eero J; Hambäck, Peter A; Weingartner, Elisabeth; Rasmussen, Claus; Reneerkens, Jeroen; Schmidt, Niels M; Gilg, Olivier; Roslin, Tomas

    2015-09-01

    How food webs are structured has major implications for their stability and dynamics. While poorly studied to date, arctic food webs are commonly assumed to be simple in structure, with few links per species. If this is the case, then different parts of the web may be weakly connected to each other, with populations and species united by only a low number of links. We provide the first highly resolved description of trophic link structure for a large part of a high-arctic food web. For this purpose, we apply a combination of recent techniques to describing the links between three predator guilds (insectivorous birds, spiders, and lepidopteran parasitoids) and their two dominant prey orders (Diptera and Lepidoptera). The resultant web shows a dense link structure and no compartmentalization or modularity across the three predator guilds. Thus, both individual predators and predator guilds tap heavily into the prey community of each other, offering versatile scope for indirect interactions across different parts of the web. The current description of a first but single arctic web may serve as a benchmark toward which to gauge future webs resolved by similar techniques. Targeting an unusual breadth of predator guilds, and relying on techniques with a high resolution, it suggests that species in this web are closely connected. Thus, our findings call for similar explorations of link structure across multiple guilds in both arctic and other webs. From an applied perspective, our description of an arctic web suggests new avenues for understanding how arctic food webs are built and function and of how they respond to current climate change. It suggests that to comprehend the community-level consequences of rapid arctic warming, we should turn from analyses of populations, population pairs, and isolated predator-prey interactions to considering the full set of interacting species. PMID:26380710

  2. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Clayden, Meredith G., E-mail: meredith.clayden@gmail.com [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Arsenault, Lilianne M. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada); Kidd, Karen A. [Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, NB E2L 4L5 (Canada); O' Driscoll, Nelson J. [Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6 (Canada); Mallory, Mark L. [Department of Biology, Acadia University, Wolfville, NS B4P 2R6 (Canada)

    2015-03-15

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ{sup 13}C and δ{sup 15}N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ{sup 15}N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas.

  3. Mercury bioaccumulation and biomagnification in a small Arctic polynya ecosystem

    International Nuclear Information System (INIS)

    Recurring polynyas are important areas of biological productivity and feeding grounds for seabirds and mammals in the Arctic marine environment. In this study, we examined food web structure (using carbon and nitrogen isotopes, δ13C and δ15N) and mercury (Hg) bioaccumulation and biomagnification in a small recurring polynya ecosystem near Nasaruvaalik Island (Nunavut, Canada). Methyl Hg (MeHg) concentrations increased by more than 50-fold from copepods (Calanus hyperboreus) to Arctic terns (Sterna paradisaea), the abundant predators at this site. The biomagnification of MeHg through members of the food web – using the slope of log MeHg versus δ15N – was 0.157 from copepods (C. hyperboreus) to fish. This slope was higher (0.267) when seabird chicks were included in the analyses. Collectively, our results indicate that MeHg biomagnification is occurring in this small polynya and that its trophic transfer is at the lower end of the range of estimates from other Arctic marine ecosystems. In addition, we measured Hg concentrations in some poorly studied members of Arctic marine food webs [e.g. Arctic alligatorfish (Ulcina olrikii) and jellyfish, Medusozoa], and found that MeHg concentrations in jellyfish were lower than expected given their trophic position. Overall, these findings provide fundamental information about food web structure and mercury contamination in a small Arctic polynya, which will inform future research in such ecosystems and provide a baseline against which to assess changes over time resulting from environmental disturbance. - Highlights: • Polynyas are recurring sites of open water in polar marine areas • Mercury (Hg) biomagnification was studied in a small polynya near Nasaruvaalik Island, NU, Canada • Hg biomagnification estimates for invertebrates to fish were low compared to other Arctic systems • Factors underlying this result are unknown but may relate to primary productivity in small polynyas

  4. SEARCH: Study of Environmental Arctic Change--A System-scale, Cross-disciplinary, Long-term Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Schlosser, P.; Loring, A. J.; Warnick, W. K.; Committee, S. S.

    2008-12-01

    The Study of Environmental Arctic Change (SEARCH) is a multi-agency effort to observe, understand, and guide responses to changes in the arctic system. Interrelated environmental changes in the Arctic are affecting ecosystems and living resources and are impacting local and global communities and economic activities. Under the SEARCH program, guided by the Science Steering Committee (SSC), the Interagency Program Management Committee (IPMC), and the Observing, Understanding, and Responding to Change panels, scientists with a variety of expertise--atmosphere, ocean and sea ice, hydrology and cryosphere, terrestrial ecosystems, human dimensions, and paleoclimatology--work together to achieve goals of the program. Over 150 projects and activities contribute to SEARCH implementation. The Observing Change component is underway through National Science Foundation's (NSF) Arctic Observing Network (AON), NOAA-sponsored atmospheric and sea ice observations, and other relevant national and international efforts, including the EU- sponsored Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES) Program. The Understanding Change component of SEARCH consists of modeling and analysis efforts, with strong linkages to relevant programs such as NSF's Arctic System Synthesis (ARCSS) Program. The Responding to Change element is driven by stakeholder research and applications addressing social and economic concerns. As a national program under the International Study of Arctic Change (ISAC), SEARCH is also working to expand international connections in an effort to better understand the global arctic system. SEARCH is sponsored by eight (8) U.S. agencies, including: the National Science Foundation (NSF), the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the Department of Energy (DOE), the Department of the Interior (DOI), the Smithsonian

  5. Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    M. Tjernström

    2012-08-01

    Full Text Available Understanding the rapidly changing climate in the Arctic is limited by a lack of understanding of underlying strong feedback mechanisms that are specific to the Arctic. Progress in this field can only be obtained by process-level observations; this is the motivation for intensive ice-breaker-based campaigns such as the Arctic Summer Cloud-Ocean Study (ASCOS, described here. However, detailed field observations also have to be put in the context of the larger-scale meteorology, and short field campaigns have to be analysed within the context of the underlying climate state and temporal anomalies from this.

    To aid in the analysis of other parameters or processes observed during this campaign, this paper provides an overview of the synoptic-scale meteorology and its climatic anomaly during the ASCOS field deployment. It also provides a statistical analysis of key features during the campaign, such as key meteorological variables, the vertical structure of the lower troposphere and clouds, and energy fluxes at the surface. In order to assess the representativity of the ASCOS results, we also compare these features to similar observations obtained during three earlier summer experiments in the Arctic Ocean: the AOE-96, SHEBA and AOE-2001 expeditions.

    We find that these expeditions share many key features of the summertime lower troposphere. Taking ASCOS and the previous expeditions together, a common picture emerges with a large amount of low-level cloud in a well-mixed shallow boundary layer, capped by a weak to moderately strong inversion where moisture, and sometimes also cloud top, penetrate into the lower parts of the inversion. Much of the boundary-layer mixing is due to cloud-top cooling and subsequent buoyant overturning of the cloud. The cloud layer may, or may not, be connected with surface processes depending on the depths of the cloud and surface-based boundary layers and on the relative strengths of surface-shear and

  6. Arctic Study of Tropospheric Aerosol and Radiation (ASTAR) 2000: Arctic haze case study

    OpenAIRE

    T. Yamanouchi; R. Treffeisen; A. Herber; Shiobara, M.; S. Yamagata; Hara, K.; Sato, K; Yabuki, M.; Tomikawa, Y.; Rinke, A.; R. Neuber; Schumachter, R.; M. Kriews; J. Ström; O. Schrems

    2005-01-01

    The ASTAR 2000 (Arctic Study of Tropospheric Aerosol and Radiation) campaign ran from 12 March until 25 April 2000 with extensive flight operations in the vicinity of Svalbard (Norway) from Longyearbyen airport (78.25°N, 15.49°E). It was a joint Japanese (NIPR Tokyo)–German (AWI Bremerhaven/Potsdam) airborne measurement campaign using AWI aircraft POLAR 4 (Dornier 228-101). Simultaneous ground-based measurements were done at the international research site Ny-Ålesund (78.95°N, 11.93°E) in Sva...

  7. Gender specific reproductive strategies of an arctic key species (Boreogadus saida) and implications of climate change

    OpenAIRE

    Nahrgang, Jasmine; Varpe, Øystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G.; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present ba...

  8. New insights on Arctic Quaternary climate variability from palaeo-records and numerical modelling

    OpenAIRE

    Jakobsson, Martin; Long, A; Ingólfsson, Ó.; Kjaer, K. H.; Spielhagen, R. F.

    2010-01-01

    Terrestrial and marine geological archives in the Arctic contain information on environmental change through Quaternary interglacial–glacial cycles. The Arctic Palaeoclimate and its Extremes (APEX) scientific network aims to better understand the magnitude and frequency of past Arctic climate variability, with focus on the “extreme” versus the “normal” conditions of the climate system. One important motivation for studying the amplitude of past natural environmental changes in the Arctic is t...

  9. Review of Arctic fox. Life at the top of the world, by Gary Hamilton

    OpenAIRE

    Ims, Rolf A.

    2009-01-01

    The Arctic fox is the only truly Arctic species among the terrestrial carnivorous mammals of the world. It is distributed across the circumpolar Arctic region. Like polar bears, Arctic foxes regularly traverse the pack ice of the polar basin, a fact that astonished Fridtjof Nansen during his attempt to reach the North Pole more than 100 years ago. However, despite its unique lifestyle, which in some respects is more fascinating than that of the polar bear, there has been no popular book (exce...

  10. Contemporary estimates of Pan-Arctic freshwater discharge from GRACE and reanalysis

    OpenAIRE

    Syed, T. H; J. S. Famiglietti; Zlotnicki, V.; Rodell, M.

    2007-01-01

    Streamflow from Arctic river basins has been increasing in recent decades in response to warming climate. In addition to being a sensitive indicator of global change, Arctic discharge is a critical component of the freshwater budget of the Arctic Ocean, where increasing freshwater flows may slow rates of North Atlantic Deep Water formation and heat transport by the thermohaline circulation. However, quantifying rates of freshwater discharge from the entire Pan-Arctic drainage has been trouble...

  11. Review of technology for Arctic offshore oil and gas recovery. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W. M.

    1980-06-06

    This volume contains appendices of the following: US Geological Survey Arctic operating orders, 1979; Det Noske Vertas', rules for the design, construction and inspection of offshore technology, 1977; Alaska Oil and Gas Association, industry research projects, March 1980; Arctic Petroleum Operator's Association, industry research projects, January 1980; selected additional Arctic offshore bibliography on sea ice, icebreakers, Arctic seafloor conditions, ice-structures, frost heave and structure icing.

  12. Compositional clues to sources and sinks of terrestrial organic matter transported to the Eurasian Arctic shelf

    OpenAIRE

    Karlsson, Emma

    2015-01-01

    The amount of organic carbon (OC) present in Siberian Arctic permafrost soils is estimated at twice the amount of carbon currently in the atmosphere. The shelf seas of the Arctic Ocean receive large amounts of this terrestrial OC from Eurasian Arctic rivers and from coastal erosion. Degradation of this land-derived material in the sea would result in the production of dissolved carbon dioxide and may then add to the atmospheric carbon dioxide reservoir. Observations from the Siberian Arctic s...

  13. The Arctic Boundary Layer Expedition (ABLE 3A): July–August 1988

    OpenAIRE

    Harriss, R. C.; Wofsy, Steven Charles; Bartlett, D. S.; Shipham, M. C.; Jacob, Daniel James; Hoell, J. M.; Bendura, R. J.; Drewry, J. W.; McNeal, R. J.; Navarro, R. L.; Gidge, R. N.; Rabine, V. E.

    1992-01-01

    The Arctic Boundary Layer Expedition (ABLE 3A) used measurements from ground, aircraft, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over Arctic and sub-Arctic regions of North America during July and August 1988. The primary objectives of ABLE 3A were to investigate the magnitude and variability of methane emissions from the tundra ecosystem, and to elucidate factors controlling ozone production and destruction in the Arctic atmosphere. This pape...

  14. Microbial Ecology at an Arctic Geothermal Spring

    Science.gov (United States)

    Starke, V.; Fogel, M. L.; Steele, A.; Arctic Mars Analog Svalbard Expedition (Amase)

    2011-12-01

    A critical question in microbial ecology concerns how variations in environmental conditions affect microbial community makeup. Arctic thermal springs provide an exceptional opportunity to study this question because they have very steep gradients in temperature, moisture, and mobility that place strong selective pressures on microorganisms. Troll Springs, located near 79°23'N, 13°26E in the Svalbard archipelago north of Norway, is one of the northernmost documented thermal springs on land. Precipitation of travertine (calcium carbonate) from Troll's carbonate-rich waters has built a complex terrace structure. Biological materials are present at all levels of the spring structure. To investigate this microbial community in detail, we analyzed DNA extracted from wet biofilms, granular samples and endoliths with 454 parallel-tagged pyrosequencing and automated ribosomal intergenic spacer analysis (ARISA). The aim is to provide a comprehensive overview of how the community at Troll Springs changes over the gradients in environmental conditions present. The 454 and ARISA data were analyzed using multivariate methods, including non-metric multidimensional scaling (nMDS). Results show a gradual transition in the makeup of the microbial community as the environment changes from aquatic to lithologic. These observations suggest a mechanism by which the rocks are colonized by microorganisms: biofilm becomes entrapped during carbonate precipitation. Use of a range of parameters and techniques in the data processing and multidimensional scaling provides additional insight into how community makeup varies across the environments present at the spring. Some more adaptable species are found across most environments, but change markedly in abundance as the conditions change. Other less adaptable species are found in fewer environments, being wholly absent in most. Continued analysis will help reveal which species are the most adaptable, and how their adaptive capabilities

  15. Beaded streams of Arctic permafrost landscapes

    Directory of Open Access Journals (Sweden)

    C. D. Arp

    2014-07-01

    Full Text Available Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene–Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s−1, yet channel runs still move water

  16. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    Energy Technology Data Exchange (ETDEWEB)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  17. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of {sup 134}Cs, {sup 137}Cs and {sup 90}Sr from these sources has been decreasing during the 1990`s, while {sup 129}I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest {sup 137}Cs, {sup 129}I and {sup 90}Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived {sup 137}Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990`s the fraction to total {sup 137}Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of {sup 239}, {sup 240}Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  18. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Science.gov (United States)

    Friedman, Carey L.; Selin, Noelle E.

    2016-03-01

    We present a spatially and temporally resolved global atmospheric polychlorinated biphenyl (PCB) model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere midlatitudes and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for seven PCB congeners, and we demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that midlatitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  19. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model

    Directory of Open Access Journals (Sweden)

    C. L. Friedman

    2015-11-01

    Full Text Available We present a spatially and temporally resolved global atmospheric PCB model, driven by meteorological data, that is skilled at simulating mean atmospheric PCB concentrations and seasonal cycles in the Northern Hemisphere mid-latitudes, and mean Arctic concentrations. However, the model does not capture the observed Arctic summer maximum in atmospheric PCBs. We use the model to estimate global budgets for the International Council for the Exploration of the Sea 7 PCBs, and demonstrate that congeners that deposit more readily show lower potential for long-range transport, consistent with a recently-described "differential removal hypothesis" regarding the hemispheric transport of PCBs. Using sensitivity simulations to assess processes within, outside, or transport to the Arctic, we examine the influence of climate- and emissions-driven processes on Arctic concentrations and their effect on improving the simulated Arctic seasonal cycle. We find evidence that processes occurring outside the Arctic have a greater influence on Arctic atmospheric PCB levels than processes that occur within the Arctic. Our simulations suggest that re-emissions from sea ice melting or from the Arctic Ocean during summer would have to be unrealistically high in order to capture observed temporal trends of PCBs in the Arctic atmosphere. We conclude that mid-latitude processes are likely to have a greater effect on the Arctic under global change scenarios than re-emissions within the Arctic.

  20. The Arctic Summer Cloud Ocean Study (ASCOS) : Overview and experimental design

    NARCIS (Netherlands)

    Tjernström, M.; Leck, C.; Birch, C.E.; Bottenheim, J.W.; Brooks, B.J.; Brooks, I.M.; Bäcklin, L.; Chang, R.Y.W.; Leeuw, G. de; Liberto, L. di; Rosa, S. de la; Granath, E.; Graus, M.; Hansel, A.; Heintzenberg, J.; Held, A.; Hind, A.; Johnston, P.; Knulst, J.; Martin, M.; Matrai, P.A.; Mauritsen, T.; Müller, M.; Norris, S.J.; Orellana, M.V.; Orsini, D.A.; Paatero, J.; Persson, P.O.G.; Gao, Q.; Rauschenberg, C.; Ristovski, Z.; Sedlar, J.; Shupe, M.D.; Sierau, B.; Sirevaag, A.; Sjogren, S.; Stetzer, O.; Swietlicki, E.; Szczodrak, M.; Vaattovaara, P.; Wahlberg, N.; Westberg, M.; Wheeler, C.R.

    2014-01-01

    The climate in the Arctic is changing faster than anywhere else on earth. Poorly understood feedback processes relating to Arctic clouds and aerosol-cloud interactions contribute to a poor understanding of the present changes in the Arctic climate system, and also to a large spread in projections of

  1. 50 CFR 216.108 - Requirements for monitoring and reporting under incidental harassment authorizations for Arctic...

    Science.gov (United States)

    2010-10-01

    ... under incidental harassment authorizations for Arctic waters. 216.108 Section 216.108 Wildlife and... for monitoring and reporting under incidental harassment authorizations for Arctic waters. (a) Holders of an incidental harassment authorization in Arctic waters and their employees, agents, and...

  2. The security aspects in the Arctic : the potential role of NATO

    OpenAIRE

    Irina Zhilina

    2013-01-01

    This paper addresses military security issues in the Arctic region and assesses in particular NATO’s Arctic agenda by giving a historical retrospective on the militarization of the High North. Also, it provides a theoretical background to understand the contemporary strategic situation and analyze how the enduring nuclear-weapon-based security strategies can influence the future international relations in the Arctic.

  3. Brent goose colonies near snowy owls: Internest distances in relation to breeding arctic fox densities

    NARCIS (Netherlands)

    Kharitonov, S.P.; Ebbinge, B.S.; Fouw, de J.

    2013-01-01

    It was shown that in the years when the numbers of the Arctic foxes are high, even though the lemming numbers are high as well, Brent geese nest considerably closer to owls' nests than in the years with low Arctic fox numbers. At values of the Arctic fox densities greater than one breeding pair per

  4. Status and trends in the structure of Arctic benthic food webs

    NARCIS (Netherlands)

    Kędra, M.; Moritz, C.; Choy, E.S.; David, C.; Degen, R.; Duerksen, S.; Ellingsen, I.; Górska, B.; Grebmeier, J.M.; Kirievskaya, D.; van Oevelen, D.; Piwosz, K.; Samuelsen, A.; We? slawski, J.M.

    2015-01-01

    Ongoing climate warming is causing a dramatic loss of sea ice in the Arctic Ocean, and it is projected that the Arctic Ocean will become seasonally ice-free by 2040. Many studies of local Arctic food webs now exist, and with this review paper we aim to synthesize these into a large-scale assessment

  5. Technical Report 14-11 Overview of Danish Contributions to Monitoring of SLCPs in the Arctic

    DEFF Research Database (Denmark)

    Korsholm, Ulrik Smith; Krogh Andersen, Katrine; Christensen, Tina;

    2014-01-01

    In the Tromsø Declaration (2009) the Arctic Council noted the role that shorter-lived climate forcers such as black carbon, methane and tropospheric ozone precursors may play in Arctic climate change, and recognized that reductions of emissions have the potential to slow the rate of Arctic snow...

  6. Exploring the practice of assessing cumulative impacts related to offshore oil activities in the Arctic

    DEFF Research Database (Denmark)

    Kirkfeldt, Trine Skovgaard; Olsen, Pernille; Mortensen, Lucia;

    2016-01-01

    The Arctic Region is characterised by vulnerable ecosystems and residing indigenous people, dependent on nature for fishing and hunting. The Arctic also contains a wealth of non-living natural resources such as minerals and hydrocarbons. Synergies between increased access and growing global demand...... of methodology for assessment of cumulative impacts, knowledge gap of Arctic ecosystems and other....

  7. Food and water security in a changing arctic climate

    International Nuclear Information System (INIS)

    In the Arctic, permafrost extends up to 500 m below the ground surface, and it is generally just the top metre that thaws in summer. Lakes, rivers, and wetlands on the arctic landscape are normally not connected with groundwater in the same way that they are in temperate regions. When the surface is frozen in winter, only lakes deeper than 2 m and rivers with significant flow retain liquid water. Surface water is largely abundant in summer, when it serves as a breeding ground for fish, birds, and mammals. In winter, many mammals and birds are forced to migrate out of the Arctic. Fish must seek out lakes or rivers deep enough to provide good overwintering habitat. Humans in the Arctic rely on surface water in many ways. Surface water meets domestic needs such as drinking, cooking, and cleaning as well as subsistence and industrial demands. Indigenous communities depend on sea ice and waterways for transportation across the landscape and access to traditional country foods. The minerals, mining, and oil and gas industries also use large quantities of surface water during winter to build ice roads and maintain infrastructure. As demand for this limited, but heavily-relied-upon resource continues to increase, it is now more critical than ever to understand the impacts of climate change on food and water security in the Arctic

  8. Arctic Solutions The Frozen (Thawing) Relations of the High North

    International Nuclear Information System (INIS)

    It's cold, inhospitable and deadly. The image of the Arctic in years past is one of bewilderment, ignorance and awe. How the image of the Arctic has changed in recent years can be directly linked to our recognition that the Arctic has a great deal to offer in meeting the basic needs of future generations. Although we are still in awe of the Arctic's cruel beauty, new technologies are making it easier to explore the once unmanageable environment. The Arctic has moved into the mainstream with a host of suitors jockeying for position in the race to possess the Arctic and all that it contains. To highlight this increased interest, Russia's 'National Security Until 2020' initiative, has upgraded the High North to one of Russia's main priorities and identifies the Arctic as liable to produce military conflict in the future linked to competition for the Arctic's abundant raw materials.1 Even Canada, a peaceful and respectful country, has stepped outside the box of traditional Canadian rhetoric by giving Canada's Northern Strategy a tag line: 'Our North, our heritage, our future'. The Arctic is increasingly viewed as central to meeting the challenges of an ever changing world where climate change and economic benefit drive international agreements and policies. However Canada and Russia are not the only actors here. The other Arctic Five states: Denmark, Norway, and the United States of America all lay claims to some area or activity within the Arctic region. The Arctic is a unique part of this world, one that has been left largely untouched by human hands, and one that is on the brink of being changed forever. To fully understand Arctic issues, resource figures must be taken into account. Every nation involved in the Arctic debate has considered and based its policies on its set of numbers and resource estimates. A U.S. Geological Survey (USGS) in 2009 put Arctic resource figures in the range of thirty percent of the remaining world reserves of natural gas and ten percent

  9. Arctic Climate Variability and Trends from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Xuanji Wang

    2012-01-01

    Full Text Available Arctic climate has been changing rapidly since the 1980s. This work shows distinctly different patterns of change in winter, spring, and summer for cloud fraction and surface temperature. Satellite observations over 1982–2004 have shown that the Arctic has warmed up and become cloudier in spring and summer, but cooled down and become less cloudy in winter. The annual mean surface temperature has increased at a rate of 0.34°C per decade. The decadal rates of cloud fraction trends are −3.4%, 2.3%, and 0.5% in winter, spring, and summer, respectively. Correspondingly, annually averaged surface albedo has decreased at a decadal rate of −3.2%. On the annual average, the trend of cloud forcing at the surface is −2.11 W/m2 per decade, indicating a damping effect on the surface warming by clouds. The decreasing sea ice albedo and surface warming tend to modulate cloud radiative cooling effect in spring and summer. Arctic sea ice has also declined substantially with decadal rates of −8%, −5%, and −15% in sea ice extent, thickness, and volume, respectively. Significant correlations between surface temperature anomalies and climate indices, especially the Arctic Oscillation (AO index, exist over some areas, implying linkages between global climate change and Arctic climate change.

  10. Moisture advection to the Arctic : forecasted, analysed and observed

    Science.gov (United States)

    Dufour, Ambroise; Zolina, Olga

    2015-04-01

    Besides its contribution to the Arctic hydrological budget, moisture imports from mid-latitudes are also influential on shorter time scales since water vapour advection tends to occur together with extratropical cyclones. Influx of moisture to the Arctic cause the formation of clouds that have an immediate impact on the surface energy budget especially in winter. In the long run, inaccuracies in the description of cloud cover and phase lead to temperature biases in CMIP5 models. The ECMWF workshop on polar prediction has highlighted moisture advection as one of the problematic physical processes limiting the quality of forecasts. Verifying the accuracy of medium-term forecasts is of interest beyond weather prediction : it points to the ability of models to bring adequate quantities of moisture to the Arctic when they are less constrained by observations than in analyses. In this study, we have compared forecasted moisture flux fields with analyses and observations over the period 2000-2010. ECMWF's ERA-Interim provided the forecasts, extending to ten days. For the analyses, in addition to ERA-Interim, we used the Arctic System Reanalysis whose forecast model is optimized for the polar regions and runs at high resolution (30 km). Finally, the Integrated Global Radiosonde Archive data over the Arctic allowed a validation by observations.

  11. Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.

    Science.gov (United States)

    Laxon, S; McAdoo, D

    1994-07-29

    The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown. PMID:17752757

  12. Seismicity, structure and tectonics in the Arctic region

    Institute of Scientific and Technical Information of China (English)

    Masaki Kanao; Vladimir D. Suvorov; Shigeru Toda; Seiji Tsuboi

    2015-01-01

    The“Arctic”region, where the North Pole occupies the center of the Arctic Ocean, has been affecting the environmental variation of the Earth from geological time to the present. However, the seismic activities in the area are not adequately monitored. Therefore, by conducting long term monitoring of seismic phenomenon as sustainable parameters, our understanding of both the tectonic evolution of the Earth and the dynamic interaction between the cryosphere and geosphere in surface layers of the Earth will increase. In this paper, the association of the seismicity and structure of the Arctic region, particularly focused on Eurasian continent and surrounding oceans, and its relationship with regional evolution during the Earth’s history is studied. The target areas cover representative tectonic provinces in the Eurasian Arctic, such as the wide area of Siberia, Baikal Rift Zone, Far East Russia, Arctic Ocean together with Greenland and Northern Canada. Based on discussion including characteristics of seismicity, het-erogeneous structure of the crust and upper mantle, tectonic history and recent dynamic features of the Earth’s surface in the Arctic are summarized.

  13. A Scientific Synthesis and Assessment of the Arctic Carbon Cycle

    Science.gov (United States)

    Hayes, Daniel J.; Guo, Laodong; McGuire, A. David

    2007-06-01

    The Arctic Monitoring and Assessment Programme (AMAP), along with the Climate and Cryosphere (CliC) Project and the International Arctic Science Committee (IASC), sponsored the Arctic Carbon Cycle Assessment Workshop, at the Red Lion Hotel in Seattle, Wash., between 27 February and 1 March 2007. The workshop was held in a general effort toward the scientific synthesis and assessment of the Arctic system carbon cycle, as well as to generate feedback on the working draft of an assessment document. The initial assessment was prepared by the Arctic carbon cycle assessment writing team, which is led by A. David McGuire (University of Alaska Fairbanks) and includes Leif Anderson (Goteborg University, Sweden), Torben Christensen (Lund University, Sweden), Scott Dallimore (Natural Resources Canada), Laodong Guo (University of Southern Mississippi), Martin Heimann (Max Planck Institute, Germany), Robie MacDonald (Department of Fisheries and Oceans, Canada), and Nigel Roulet (McGill University, Canada). The workshop brought together leading researchers in the fields of terrestrial, marine, and atmospheric science to report on and discuss the current state of knowledge on contemporary carbon stocks and fluxes in the Artie and their potential responses to a changing climate. The workshop was attended by 35 scientists representing institutions from 10 countries in addition to two representatives of the sponsor agencies (John Calder for AMAP and Diane Verseghy for CliC).

  14. Temperature thresholds for Arctic plankton community metabolism: an experimental assessment

    Directory of Open Access Journals (Sweden)

    J. M. Holding

    2011-11-01

    Full Text Available Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 °C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rates and thus both the rate of primary production and respiration will increase. However, these predictions do not consider the specific metabolic balance of the communities. We tested experimentally the response of Arctic plankton communities to seawater temperature spanning from 1 °C to 10 °C. Two types of communities were tested, open-ocean Arctic communities from water collected in the Barents Sea and Atlantic influenced fjord communities from water collected in the Svalbard fjord system. Metabolic rates did indeed increase as suggested by metabolic theory, however these results suggest a temperature threshold of 5 °C, beyond which the metabolism of plankton communities shifts from autotrophic to heterotrophic. Barents Sea communities showed a much clearer threshold response to temperature manipulations than fjord communities.

  15. Inhomogeneous field theory inside the arctic circle

    Science.gov (United States)

    Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo

    2016-05-01

    Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.

  16. RAMS data collection under Arctic conditions

    International Nuclear Information System (INIS)

    Reliability, availability, maintainability and supportability analysis is an important step in the design and operation of production processes and technology. Historical data such as time between failures and time to repairs play an important role in such analysis. The data must reflect the conditions that equipment has experienced during its operating time. To have a precise understanding of the conditions experienced, all influence factors on the failure and repair processes of a production facility in Arctic environment need to be identified and collected in the database. However, there is a lack of attention to collect the effect of influence factors in the reliability, availability, maintainability and supportability database. Hence, the aim of this paper is to discuss the challenges of the available methods of data collection and suggest a methodology for data collection considering the effect of environmental conditions. Application of the methodology will make the historical RAMS data of a system more applicable and useful for the design and operation of the system in different types of operational environments. - Highlights: • The challenges related to use of the available RAMS data is discussed. • It is important to collect information about operational condition in RAMS data. • A methodology for RAMS data collection considering environment condition is suggested. • Information about influence factors will make the result of RAMS analysis more applicable

  17. Temperature and precipitation history of the Arctic

    DEFF Research Database (Denmark)

    Miller, G.H.; Alley, R.B.; Anderson, L.;

    2010-01-01

    As the planet cooled from peak warmth in the early Cenozoic, extensive Northern Hemisphere ice sheets developed by 2.6 Ma ago, leading to changes in the circulation of both the atmosphere and oceans. From w2.6 to w1.0 Ma ago, ice sheets came and went about every 41 ka, in pace with cycles in the...... tilt of Earth’s axis, but for the past 700 ka, glacial cycles have been longer, lasting w100 ka, separated by brief, warm interglaciations, when sea level and ice volumes were close to present. The cause of the shift from 41 ka to 100 ka glacial cycles is still debated. During the penultimate...... limits were substantially smaller than their 20th century average, and the flow of Atlantic water into the Arctic Ocean was substantially greater. As summer solar energy decreased in the second half of the Holocene, glaciers reestablished or advanced, sea ice expanded, and the flow of warm Atlantic water...

  18. Supersaturation, dehydration, and denitrification in Arctic cirrus

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2005-03-01

    Full Text Available A polar cirrus case study is discussed with the help of a one-dimensional model with explicit aerosol and ice microphysics. It is demonstrated that continuous cooling of air in regions with small amounts of ice and slow ice deposition rates of water vapor drives 5 significant in-cloud supersaturations over ice, with potentially important consequences for heterogeneous halogen activation. Radiatively important cloud properties such as ice crystal size distributions are investigated, showing the presence of high number concentrations of small crystals in the cloud top region at the tropopause, broad but highly variable size spectra in the cloud interior, and mostly large crystals at the cloud 10 base. It is found that long-lived and vertically extended Arctic cirrostratus are highly efficient at dehydrating the upper troposphere. Estimating nitric acid uptake in cirrus clouds with an unprecedented treatment of diffusional burial in growing ice crystals suggests that such clouds could also denitrify upper tropospheric air masses efficiently, but a closer comparison to observations is needed to draw a definite conclusion on this 15 point. It is also shown that low temperatures, high relative humidities, and the absence of ice above but close to the cloud top region cause efficient uptake of nitric acid in background aerosol particles.

  19. Supersaturation, dehydration, and denitrification in Arctic cirrus

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2005-01-01

    Full Text Available A polar cirrus case study is discussed with the help of a one-dimensional model with explicit aerosol and ice microphysics. It is demonstrated that continuous cooling of air in regions with small amounts of ice and slow ice deposition rates of water vapor drives significant in-cloud supersaturations over ice, with potentially important consequences for heterogeneous halogen activation. Radiatively important cloud properties such as ice crystal size distributions are investigated, showing the presence of high number concentrations of small crystals in the cloud top region at the tropopause, broad but highly variable size spectra in the cloud interior, and mostly large crystals at the cloud base. It is found that weakly forced Arctic cirrostratus are highly efficient at dehydrating upper tropospheric air. Estimating nitric acid uptake in cirrus with an unprecedented treatment of diffusion-limited trapping in growing ice crystals suggests that such clouds could also denitrify upper tropospheric air masses efficiently, but a closer comparison to suitable observations is needed to draw a definite conclusion on this point. It is also shown that low temperatures, high ice supersaturations, and the absence of ice above but close to the cloud top region cause efficient uptake of nitric acid in background aerosol particles.

  20. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    Science.gov (United States)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  1. Episodical CO2 emission during shoulder seasons in the arctic

    DEFF Research Database (Denmark)

    Friborg, Thomas; Elberling, Bo; Hansen, Birger; Lund, Magnus; Mastepanov, Mikael

    soils. Our knowledge about the exchanges of CO2 and other trace gas fluxes in the arctic region has been constrained by the limited availability of measurements during the long winter season. For that reason only a small number of sites have been able to produce annual budgets of C exchange and the......Carbon cycling and trace gas emissions from high latitude ecosystems has over the last decade received increasing attention due to the dramatic climate change experienced and predicted by GCM scenarios for the region, and the effect that such changes may have on the carbon stored in the arctic...... driving processes behind winter time exchange of CO2 are not fully understood. Here we present two very different examples of CO2 exchange from shoulder seasons in the Arctic. In an example from NE Greenland, eddy covariance measurements show that the snow cover has a significant effect on the release of...

  2. A Comparative Study of Antarctic Arctic and Himalayan Ice

    Directory of Open Access Journals (Sweden)

    R. C. Pathak

    1989-07-01

    Full Text Available Arctic, Antarctic and inaccessible lofty regions of Himalayas,which are geographically diverse areas and have been a constant source of inspiration, envisages a challenging field of study 'by early adventurers and scientists of the world. Characteristics of ice obtained at Arctic and Antarctic do not possess similar properties. Even thesalient properties of snow and ice of western and central Himalayas vary due to its differing free water content. A study has been carriedout based on recent Antarctic Expedition by Indian scientists and the data gathered along litha-tectonic regions of Himalayas and their characteristics have been compared, wkich brings out stratigraphic and metamorphic characteristics of the ice and snow. In the present paper,an analysis of the ice and snow properties of Arctic, Antarctic and Himalayan regions has been presented.

  3. What are the toxicological effects of mercury in Arctic biota?

    Science.gov (United States)

    Dietz, Rune; Sonne, Christian; Basu, Niladri; Braune, Birgit; O'Hara, Todd; Letcher, Robert J; Scheuhammer, Tony; Andersen, Magnus; Andreasen, Claus; Andriashek, Dennis; Asmund, Gert; Aubail, Aurore; Baagøe, Hans; Born, Erik W; Chan, Hing M; Derocher, Andrew E; Grandjean, Philippe; Knott, Katrina; Kirkegaard, Maja; Krey, Anke; Lunn, Nick; Messier, Francoise; Obbard, Marty; Olsen, Morten T; Ostertag, Sonja; Peacock, Elizabeth; Renzoni, Aristeo; Rigét, Frank F; Skaare, Janneche Utne; Stern, Gary; Stirling, Ian; Taylor, Mitch; Wiig, Øystein; Wilson, Simon; Aars, Jon

    2013-01-15

    This review critically evaluates the available mercury (Hg) data in Arctic marine biota and the Inuit population against toxicity threshold values. In particular marine top predators exhibit concentrations of mercury in their tissues and organs that are believed to exceed thresholds for biological effects. Species whose concentrations exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char (Salvelinus alpinus). Toothed whales appear to be one of the most vulnerable groups, with high concentrations of mercury recorded in brain tissue with associated signs of neurochemical effects. Evidence of increasing concentrations in mercury in some biota in Arctic Canada and Greenland is therefore a concern with respect to ecosystem health. PMID:23231888

  4. Performance of municipal waste stabilization ponds in the Canadian Arctic

    DEFF Research Database (Denmark)

    Ragush, Colin M.; Schmidt, Jordan J.; Krkosek, Wendy H.;

    2015-01-01

    The majority of small remote communities in the Canadian arctic territory of Nunavut utilize waste stabilization ponds (WSPs) for municipal wastewater treatment because of their relatively low capital and operational costs, and minimal complexity. New national effluent quality regulations have been...... implemented in Canada, but not yet applied to Canada’s Arctic due to uncertainty related to the performance of current wastewater treatment systems. Waste stabilization pond (WSP) treatment performance is impacted by community water use, pond design, and climate. The greatest challenge arctic communities...... experience when using passive wastewater treatment technologies is the constraints imposed by the extreme climate, which is characterized as having long cold winters with short cool summers that can be solar intense. The removal of carbonaceous biochemical oxygen demand (CBOD5), total suspended solids (TSS...

  5. Towards Arctic Resource Governance of Marine Invasive Species

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Kaiser, Brooks; Fernandez, Linda

    2015-01-01

    available. Through analysis of marine invasions in the Arctic, we work to identify and assess patterns in the knowledge gaps regarding invasive species in the Arctic that affect the ability to generate improved governance outcomes. These patterns are expected to depend on multiple aspects of scientific...... research into invasive species threats in the Arctic, including the ways in which known marine invasions are related to different stakeholder groups and existing disparate national and international experiences with invasive species. Stakeholdergroups include dominant industries (fishing, shipping, tourism...... agreements (regarding introductions and mitigations) and existing prevention programs (regional, national and international). We intend to help focus domestic and international governance and research initiatives regarding introduced species on the most valuable, cost effective options, given the knowledge...

  6. Marine Invasive Species Management: Adapting in the Arctic

    DEFF Research Database (Denmark)

    Kaiser, Brooks

    2014-01-01

    as a barrier to their establishment. The same characteristics that have previously made the Arctic less open to the establishment and spread of invasive species are ones that make the potential problem so expansive. At stake are unique species and co-evolved systems that have taken millennia to develop. Small...... perturbations in the fragile Arctic ecosystems are likely to have outsized impacts both ecologically and economically. This paper discusses the optimal management of invasive species threats as a process that begins before the arrival of any species, with prevention, and continues in an integrated fashion......The rapid pace of climate change and increased human disturbance of ecosystems in the Arctic is bringing urgency to concern over non-native species introductions and their potential threats to the marine environment and its economic productivity, where before environmental conditions served...

  7. High-Arctic butterflies become smaller with rising temperatures.

    Science.gov (United States)

    Bowden, Joseph J; Eskildsen, Anne; Hansen, Rikke R; Olsen, Kent; Kurle, Carolyn M; Høye, Toke T

    2015-10-01

    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500 individuals collected annually between 1996 and 2013 from Zackenberg, Greenland and found that wing length significantly decreased at a similar rate in both species in response to warmer summers. Body size is strongly related to dispersal capacity and fecundity and our results suggest that these Arctic species could face severe challenges in response to ongoing rapid climate change. PMID:26445981

  8. Aerosol black carbon over Svalbard regions of Arctic

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Thakur, Roseline C.; Chaubey, Jai Prakash; Nair, Vijayakumar S.

    2016-03-01

    In view of the climate impact of aerosol Black Carbon (BC) over snow covered regions (through enhanced absorption of radiation as well as snow-albedo forcing), and in view of the increasing anthropogenic presence and influence in the northern polar regions, continuous long term measurements of airborne BC have been undertaken from the Svalbard region of Norwegian Arctic (Ny-Ålesund, 79°N, 12°E, 8 m a.s.l.). This study, employing data over a period of 4-years (2010-2013) have shown a consistent spring-time enhancement in BC concentrations, having a (climatological) seasonal mean value of ∼50.3 ± 19.5 ng m-3, nearly 3-times higher than the lowest BC concentrations in summer (∼19.5 ± 6.5 ng m-3). Spectral variation of absorbance indicates that long-range transported biomass burning aerosols contribute as high as 25% to the high BC concentrations in the Arctic atmosphere in spring. Concurrent estimates of BC concentrations in the Arctic snow (for an ensemble of snow samples collected over a period of time during spring) showed values ranging from 0.6 ppb to 4.1 ppb. These values have been used to estimate the BC scavenging ratio (SR). Our studies revealed a mean value of SR ∼98 ± 46, which varied over wide range from 40 to 184 for individual samples. In a broader perspective, the seasonal variations of atmospheric BC concentrations at the Arctic are similar to those seen at the high altitude Himalayas; even though the concentrations are much lower at Arctic. It is found that synoptic conditions mainly influence the high altitude Himalayas, while the influences of local anthropogenic influences are not negligible at the Arctic in modulating the seasonal variations of absorbing aerosols.

  9. Climate sensitivity to Arctic seaway restriction during the early Paleogene

    Science.gov (United States)

    Roberts, Christopher D.; LeGrande, Allegra N.; Tripati, Aradhna K.

    2009-09-01

    The opening and closing of ocean gateways affects the global distribution of heat, salt, and moisture, potentially driving climatic change on regional to global scales. Between 65 and 45 million years ago (Ma), during the early Paleogene, exchange between the Arctic and global oceans occurred through two narrow and shallow seaways, the Greenland-Norway seaway and the Turgai Strait. Sediments from the Arctic Ocean suggest that, during this interval, the surface ocean was warm, brackish, and episodically enabled the freshwater fern Azolla to bloom. The precise mechanisms responsible for the development of these conditions in the Paleogene Arctic remain uncertain. Here we show results from an isotope-enabled, atmosphere-ocean general circulation model, which indicate that Northern Hemisphere climate would have been very sensitive to the degree of oceanic exchange through the Arctic seaways. We also present modelled estimates of seawater and calcite δ18O for the Paleogene. By restricting these seaways, we simulate freshening of the surface Arctic Ocean to ~ 6 psu and warming of sea-surface temperatures by 2 °C in the North Atlantic and 5-10 °C in the Labrador Sea. Our results may help explain the occurrence of low-salinity tolerant taxa in the Arctic Ocean during the Eocene and provide a mechanism for enhanced warmth in the north western Atlantic. We propose that the formation of a volcanic land-bridge between Greenland and Europe could have caused increased ocean convection and warming of intermediate waters in the Atlantic. If true, this result is consistent with the theory that bathymetry changes may have caused thermal destabilisation of methane clathrates and supports a tectonic trigger hypothesis for the Paleocene Eocene Thermal Maximum (PETM).

  10. Seasonal variability in Arctic temperatures during the early Eocene

    Science.gov (United States)

    Eberle, J. J.; Fricke, H. C.; Humphrey, J.; Hackett, L.; Newbrey, M.; Hutchison, H.

    2009-12-01

    As a deep time analog for today’s rapidly warming Arctic region, early Eocene (~53 Ma) rocks on Ellesmere Island, Arctic Canada (~79° N.) preserve evidence of lush swamp forests inhabited by turtles, alligators, primates, tapirs, and hippo-like Coryphodon. Although the rich flora and fauna of the early Eocene Arctic imply warmer, wetter conditions that at present, quantitative estimates of Eocene Arctic climate are rare. By analyzing oxygen isotope ratios of biogenic phosphate from mammal, fish, and turtle fossils from a single locality on central Ellesmere Island, we provide estimates of early Eocene Arctic temperature, including mean annual temperature (MAT) of ~ 8° C, mean annual range in temperature (MART) of ~ 16.5° C, warm month mean temperature (WMMT) of 16 - 19° C, and cold month mean temperature (CMMT) of 0 - 1° C. Our seasonal range in temperature is similar to the range in estimated MAT obtained using different proxies. In particular, unusually high estimates of early Eocene Arctic MAT and sea surface temperature (SST) by others that are based upon the distribution of branched glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in terrestrial soil bacteria and marine Crenarchaeota fall within our range of WMMT, suggesting a bias towards summer values. Consequently, caution should be taken when using these methods to infer MAT and SST that, in turn, are used to constrain climate models. From a paleontologic perspective, our temperature estimates verify that alligators and tortoises, by way of nearest living relative-based climatic inference, are viable paleoclimate proxies for mild, above-freezing year-round temperatures. Although in both of these reptiles, past temperature tolerances were greater than in their living descendants.

  11. Influence of climate model variability on projected Arctic shipping futures

    Science.gov (United States)

    Stephenson, Scott R.; Smith, Laurence C.

    2015-11-01

    Though climate models exhibit broadly similar agreement on key long-term trends, they have significant temporal and spatial differences due to intermodel variability. Such variability should be considered when using climate models to project the future marine Arctic. Here we present multiple scenarios of 21st-century Arctic marine access as driven by sea ice output from 10 CMIP5 models known to represent well the historical trend and climatology of Arctic sea ice. Optimal vessel transits from North America and Europe to the Bering Strait are estimated for two periods representing early-century (2011-2035) and mid-century (2036-2060) conditions under two forcing scenarios (RCP 4.5/8.5), assuming Polar Class 6 and open-water vessels with medium and no ice-breaking capability, respectively. Results illustrate that projected shipping viability of the Northern Sea Route (NSR) and Northwest Passage (NWP) depends critically on model choice. The eastern Arctic will remain the most reliably accessible marine space for trans-Arctic shipping by mid-century, while outcomes for the NWP are particularly model-dependent. Omitting three models (GFDL-CM3, MIROC-ESM-CHEM, and MPI-ESM-MR), our results would indicate minimal NWP potential even for routes from North America. Furthermore, the relative importance of the NSR will diminish over time as the number of viable central Arctic routes increases gradually toward mid-century. Compared to vessel class, climate forcing plays a minor role. These findings reveal the importance of model choice in devising projections for strategic planning by governments, environmental agencies, and the global maritime industry.

  12. Geological Structure and History of the Arctic Ocean

    Science.gov (United States)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Pospelov, Igor; Tolmacheva, Tatiana; Petrov, Eugeny

    2016-04-01

    New data on geological structure of the deep-water part of the Arctic Basin have been integrated in the joint project of Arctic states - the Atlas of maps of the Circumpolar Arctic. Geological (CGS, 2009) and potential field (NGS, 2009) maps were published as part of the Atlas; tectonic (Russia) and mineral resources (Norway) maps are being completed. The Arctic basement map is one of supplements to the tectonic map. It shows the Eurasian basin with oceanic crust and submerged margins of adjacent continents: the Barents-Kara, Amerasian ("Amerasian basin") and the Canada-Greenland. These margins are characterized by strained and thinned crust with the upper crust layer, almost extinct in places (South Barents and Makarov basins). In the Central Arctic elevations, seismic studies and investigation of seabed rock samples resulted in the identification of a craton with the Early Precambrian crust (near-polar part of the Lomonosov Ridge - Alpha-Mendeleev Rise). Its basement presumably consists of gneiss granite (2.6-2.2 Ga), and the cover is composed of Proterozoic quartzite sandstone and dolomite overlain with unconformity and break in sedimentation by Devonian-Triassic limestone with fauna and terrigenous rocks. The old crust is surrounded by accretion belts of Timanides and Grenvillides. Folded belts with the Late Precambrian crust are reworked by Caledonian-Ellesmerian and the Late Mesozoic movements. Structures of the South Anuy - Angayucham ophiolite suture reworked in the Early Cretaceous are separated from Mesozoides proper of the Pacific - Verkhoyansk-Kolyma and Koryak-Kamchatka belts. The complicated modern ensemble of structures of the basement and the continental frame of the Arctic Ocean was formed as a result of the conjugate evolution and interaction of the three major oceans of the Earth: Paleoasian, Paleoatlantic and Paleopacific.

  13. Aquatorialities of the Arctic Region – A Systems Theoretical Analysis of Risks

    Directory of Open Access Journals (Sweden)

    Gorm Harste

    2013-06-01

    Full Text Available In order to describe the Arctic system I propose using a concept functionally equivalent to territoriality, namely aquatoriality. Whether communicating about territoriality or aquatoriality, concepts and delimitations are both contingent to forms of communication systems. I will distinguish between six communications systems that differentiated from each other could become involved in the new deals emerging around the Arctic. Apart of an economic communication code about the Arctic, a legal code, ecological communication codes, and tourist communication codes, I will cope with the military coding of the Arctic. These codes could then appear structurally coupled to a political system that in an organizational way appears in the Arctic Council.

  14. Vital arctic graphics. People and global heritage on our last wild shores

    International Nuclear Information System (INIS)

    Vital Arctic Graphics is a compilation of illustrations and case studies intended to describe the Arctic, the livelihoods of Arctic indigenous peoples and the future well-being of this region. It summarizes some of the key threats to the future sustainability of the Arctic including the rapid pace of climate change, worrying levels of persistent organic and heavy metal pollutants, and increasing natural resource exploration. The coastal regions are particularly important to the peoples of the Arctic and their current protection status is therefore given particular focus

  15. Aggregation methodology for the circum-arctic resource appraisal

    Science.gov (United States)

    Schuenemeyer, John H.; Gautier, Donald L.

    2009-01-01

    This paper presents a methodology that intends to aggregate the results of a recent assessment of undiscovered conventional oil and gas resources of the Arctic by the U.S. Geological Survey. The assessment occurred in 48 geologically defined regions called assessment units. The methodology includes using assessor specified pair-wise correlations as the basis to construct a correlation matrix. Sampling from this matrix generates more realistic uncertainty estimates of aggregated resources than if assumptions of total independence or total dependence are made. The latter two assumptions result in overly narrow or overly broad estimates. Aggregation results for resources in regions north of the Arctic Circle are presented.

  16. Arctic Air Pollution: New Insights from POLARCAT-IPY

    OpenAIRE

    Law, Kathy S.; Stohl, Andreas; Quinn, Patricia K.; Brock, Charles; Burkhart, John; Paris, Jean-Daniel; Ancellet, Gerard; Singh, Hanwant B.; Roiger, Anke; Schlager, Hans; Dibb, Jack; Jacob, Daniel James; Arnold, Steve R.; Pelon, Jacques; Thomas, Jennie L.

    2014-01-01

    Given the rapid nature of climate change occurring in the Arctic and the difficulty for climate models to quantitatively reproduce observed changes such as sea ice loss, it is important to improve understanding of the processes leading to climate change in this region, including the role of short-lived climate pollutants such as aerosols and ozone. It has long been known that pollution produced from emissions at mid-latitudes can be transported to the Arctic resulting in a winter/spring aeros...

  17. Is climate change affecting wolf populations in the high Arctic?

    Science.gov (United States)

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  18. Arctic Ocean freshwater as a trigger for abrupt climate change

    Science.gov (United States)

    Bradley, Raymond; Condron, Alan; Coletti, Anthony

    2016-04-01

    The cause of the Younger Dryas cooling remains unresolved despite decades of debate. Current arguments focus on either freshwater from Glacial Lake Agassiz drainage through the St Lawrence or the MacKenzie river systems. High resolution ocean modeling suggests that freshwater delivered to the North Atlantic from the Arctic Ocean through Fram Strait would have had more of an impact on Atlantic Meridional Overturning Circulation (AMOC) than freshwater from the St Lawrence. This has been interpreted as an argument for a MacKenzie River /Lake Agassiz freshwater source. However, it is important to note that although the modeling identifies Fram Strait as the optimum location for delivery of freshwater to disrupt the AMOC, this does not mean the freshwater source came from Lake Agassiz. Another potential source of freshwater is the Arctic Ocean ice cover itself. During the LGM, ice cover was extremely thick - many tens of meters in the Canada Basin (at least), resulting in a hiatus in sediment deposition there. Extreme ice thickness was related to a stagnant circulation, very low temperatures and continuous accumulation of snow on top of a base of sea-ice. This resulted in a large accumulation of freshwater in the Arctic Basin. As sea-level rose and a more modern circulation regime became established in the Arctic, this freshwater was released from the Arctic Ocean through Fram Strait, leading to extensive sea-ice formation in the North Atlantic (Greenland Sea) and a major reduction in the AMOC. Here we present new model results and a review of the paleoceanographic evidence to support this hypothesis. The bottom line is that the Arctic Ocean was likely a major player in causing abrupt climate change in the past, via its influence on the AMOC. Although we focus here on the Younger Dryas, the Arctic Ocean has been repeatedly isolated from the world ocean during glacial periods of the past. When these periods of isolation ended, it is probable that there were significant

  19. Atmospheric transport, clouds and the Arctic longwave radiation paradox

    Science.gov (United States)

    Sedlar, Joseph

    2016-04-01

    Clouds interact with radiation, causing variations in the amount of electromagnetic energy reaching the Earth's surface, or escaping the climate system to space. While globally clouds lead to an overall cooling radiative effect at the surface, over the Arctic, where annual cloud fractions are high, the surface cloud radiative effect generally results in a warming. The additional energy input from absorption and re-emission of longwave radiation by the clouds to the surface can have a profound effect on the sea ice state. Anomalous atmospheric transport of heat and moisture into the Arctic, promoting cloud formation and enhancing surface longwave radiation anomalies, has been identified as an important mechanism in preconditioning Arctic sea ice for melt. Longwave radiation is emitted equally in all directions, and changes in the atmospheric infrared emission temperature and emissivity associated with advection of heat and moisture over the Arctic should correspondingly lead to an anomalous signal in longwave radiation at the top of the atmosphere (TOA). To examine the role of atmospheric heat and moisture transport into the Arctic on TOA longwave radiation, infrared satellite sounder observations from AIRS during 2003-2014 are analyzed for summer (JJAS). Thermodynamic metrics are developed to identify months characterized by a high frequency of warm and moist advection into the Arctic, and segregate the 2003-14 time period into climatological and anomalously warm, moist summer months. We find that anomalously warm, moist months result in a significant TOA longwave radiative cooling, which is opposite the forcing signal that the surface experiences during these months. At the timescale of the advective events, 3-10 days, the TOA cooling can be as large as the net surface energy budget during summer. When averaged on the monthly time scale, and over the full Arctic basin (poleward of 75°N), summer months experiencing frequent warm, moist advection events are

  20. Emergent Activities in the Arctic: A Space Weather Opportunity

    Science.gov (United States)

    Goodman, John

    2008-02-01

    On 2 August 2007, the Russian Federation planted its flag on the seabed beneath the North Pole, reminiscent of the flag-raising by the United States when American astronauts first stepped on the lunar surface. Though many dismiss this as a stunt, it does indicate the importance of the polar region from a geopolitical perspective. With the warming of the Arctic, and the gradual opening of shipping lanes coupled with the potentially large and untapped resources that are made available for exploitation, a rush to the Arctic is inevitable. There are a number of obvious stakeholders with military interests, commercial interests, and environmental concerns.

  1. Breaking the ice: Theorizing the mechanisms of Arctic thaw

    Science.gov (United States)

    Rennermalm, Asa K.; Mioduszewski, John; Moustafa, Samiah

    2012-10-01

    Breaking the Ice: Theorizing the Arctic Thaw;New Brunswick, New Jersey, 12-14 April 2012 Some of the most striking contemporary environmental changes are the warming of the Arctic region and increased mass loss from the Greenland ice sheet. For example, areas of summer melt atop Greenland's massive ice sheet continue to expand, sending large volumes of ice and meltwater into surrounding seas and oceans. This may have profound implications for regional hydrology and marine biogeochemical cycles, as well as global sea level rise. While these trends are readily observable, urgent questions regarding how the Greenland ice sheet will respond to future climate change remain unanswered.

  2. Malocclusion in the jaws of captive bred Arctic wolves

    Science.gov (United States)

    Federoff, N.E.

    1996-01-01

    Similar abnormalities in the skulls of captive Arctic Wolves (Canis lupus arctos) and a wild Arctic wolf found dead on Ellesmere Island, Canada, in 1986 are described. The malocclusion is likely to be recessively inherited and would be expressed more frequently in association with increased levels of inbreeding. A re-shaping of the skulls may have occurred due to the effects of the malocclusive trait. The Ellesmere skull was short and wide in comparison to the captive skulls which were long and narrow. The focus of effect was in a foreshortening of the rostrum and the resulting shortened toothrow.

  3. Carbon Isotopic Constraints on Arctic Methane Sources, 2008-2010

    Science.gov (United States)

    Fisher, R. E.; Lowry, D.; Lanoiselle, M.; Sriskantharajah, S.; Nisbet, E. G.

    2010-12-01

    Arctic methane source strengths are particularly vulnerable to large changes with year-to year meteorological variations and with climatic change. A global increase in methane seen in 2007 (Dlugokencky et al., 2009) may have been in part be due to elevated wetland emissions caused by a warm, wet summer over large parts of Siberia. In 2010 wildfires over large areas of Russia will have added methane to the Arctic atmosphere. Carbon isotopic composition of methane in air from the Arctic arriving at a measurement station can be used to identify sources of the gas. Measurement of methane δ13C in air close to sources, including wetlands, permafrost, pine forest and submarine methane clathrate has extended the available data of source signatures of methane from northern sources. Keeling plot analysis of diurnal records from field campaigns in Arctic wetlands show that bulk wetland methane emissions are typically close to δ13CCH4 -69±1 ‰. Air samples from Zeppelin (Spitsbergen, Norway), Pallas (Finland) and Barra (Outer Hebrides, Scotland) have been regularly analysed for methane δ13C. Summer campaigns at Zeppelin point to a 13C depleted bulk Arctic source of dominantly biogenic origin, at -67‰. In spring, while the wetlands are still frozen, the source signature is more enriched, -53‰, with trajectory analysis implying a large contribution from onshore gas fields. Arctic methane emissions respond rapidly to warming with strong positive feedbacks. With rapid warming there is the potential to release large stores of carbon from permafrost and methane hydrates. Isotopic data are powerful discriminants of sources. High frequency, ideally continuous, monitoring of methane δ13C from a number of Arctic sites, onshore and offshore, coupled with back-trajectory analysis and regional modelling, will be important if future changes in Arctic source strengths are to be quantified. Reference: Dlugokencky, E. J., et al. (2009), Observational constraints on recent increases

  4. Enabling Use of Unmanned Aircraft Systems for Arctic Environmental Monitoring

    DEFF Research Database (Denmark)

    Storvold, Rune; la Cour-Harbo, Anders; Mulac, Brenda;

    , satellites and manned aircraft are the traditional platforms on which scientists gather data of the atmosphere, sea ice, glaciers, fauna and vegetation. However, significant data gaps still exist over much of the Arctic because there are few research stations, satellites are often hindered by cloud cover......, poor resolution, and the complicated surface of snow and ice. Measurements made from manned aircraft are also limited because of range and endurance, as well as the danger and costs presented by operating manned aircraft in harsh and remote environments like the Arctic. Unmanned aircraft systems (UAS...

  5. Long-range transport of air pollution into the Arctic

    Science.gov (United States)

    Stohl, A.; Berg, T.; Breivik, K.; Burkhart, J. F.; Eckhardt, S.; Fjæraa, A.; Forster, C.; Herber, A.; Lunder, C.; McMillan, W. W.; None, N.; Manø, S.; Oltmans, S.; Shiobara, M.; Stebel, K.; Hirdman, D.; Stroem, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.; Andrews, E.; Kowal, D.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stone, R.; Hoch, S.; Wehrli, C.

    2007-12-01

    This paper presents an overview of air pollution transport into the Arctic. The major transport processes will be highlighted, as well as their seasonal, interannual, and spatial variability. The source regions of Arctic air pollution will be discussed, with a focus on black carbon (BC) sources, as BC can produce significant radiative forcing in the Arctic. It is found that Europe is the main source region for BC in winter, whereas boreal forest fires are the strongest source in summer, especially in years of strong burning. Two case studies of recent extreme Arctic air pollution events will be presented. In summer 2004, boreal forest fires in Alaska and Canada caused pan-Arctic enhancements of black carbon. The BC concentrations measured at Barrow (Alaska), Alert (Canada), Summit (Greenland) and Zeppelin (Spitsbergen) were all episodically elevated, as a result of the long-range transport of the biomass burning emissions. Aerosol optical depth was also episodically elevated at these stations, with an almost continuous elevation over more than a month at Summit. During the second episode in spring 2006, new records were set for all measured air pollutant species at the Zeppelin station (Spitsbergen) as well as for ozone in Iceland. At Zeppelin, BC, AOD, aerosol mass, ozone, carbon monoxide and other compounds all reached new record levels, compared to the long-term monitoring record. The episode was caused by transport of polluted air masses from Eastern Europe deep into the Arctic, a consequence of the unusual warmth in the European Arctic during the episode. While fossil fuel combustion sources certainly contributed to this episode, smoke from agricultural fires in Eastern Europe was the dominant pollution component. We also suggest a new revolatilization mechanism for persistent organic pollutants (POPs) stored in soils and vegetation by fires, as POPs were strongly elevated during both episodes. All this suggests a considerable influence of biomass burning on

  6. Is climate change affecting wolf populations in the high arctic?

    Energy Technology Data Exchange (ETDEWEB)

    Mech, L.D. [Northern Prairie Wildlife Research Center, Biological Resources Division, U.S. Geological Survey, 8711-37th St., SE, 58401-7317 Jamestown, North Dakota (United States)

    2004-11-01

    Global climate change may affect wolves in Canadas High Arctic (80{sup o} N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  7. The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Verlinde, J

    2010-10-18

    The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.

  8. What are the toxicological effects of mercury in Arctic biota?

    DEFF Research Database (Denmark)

    Dietz, Rune; Sonne, Christian; Basu, Niladri;

    2012-01-01

    This review critically evaluates the available mercury (Hg) data in Arctic marine biota and the Inuit population against toxicity threshold values. In particular marine top predators exhibit concentrations of mercury in their tissues and organs that are believed to exceed thresholds for biological...... to be one of the most vulnerable groups, with high concentrations of mercury recorded in brain tissue with associated signs of neurochemical effects. Evidence of increasing concentrations in mercury in some biota in Arctic Canada and Greenland is therefore a concern with respect to ecosystem health....

  9. Feasibility of hydrogen from renewable energy in the Arctic

    International Nuclear Information System (INIS)

    'Full text:' There is an abundance of renewable resources in the Canadian Arctic. Despite that diesel is still the conventional source used by homes and businesses for their electrical and space heating needs. Electrolysis of water to produce hydrogen using renewable resources is under investigation. A techno-economic feasibility has been conducted for hybrid systems including wind turbine, photovoltaic system, electrolyser and fuel cells. Different scenarios have been considered for meeting the needs of a small, remote community in the Arctic. Results will be presented indicating the most cost-effective Wind-PV-Electrolyser-Fuel Cell system for combined heat and power. (author)

  10. UV radiation below an Arctic vortex with severe ozone depletion

    Directory of Open Access Journals (Sweden)

    B. M. Knudsen

    2005-01-01

    Full Text Available The erythemally weighted (UV irradiance below the severely depleted Arctic vortices in spring 1996 and 1997 were substantially elevated. On average the UV increased 36 and 33% relative to the 1979-1981 mean assuming clear skies from day 80-100 in 1996 and 1997, respectively. On clear sky days large regions of the Arctic experienced maximum UV increases exceeding 70 and 50% on single days in 1996 and 1997, respectively. A minor fraction of these increases are not anthropogenic and have a dynamical origin as seen by comparison to 1982, when hardly any ozone depletion is expected.

  11. High-Arctic butterflies become smaller with rising temperatures

    DEFF Research Database (Denmark)

    Bowden, Joseph James; Eskildsen, Anne; Hansen, Rikke Reisner;

    2015-01-01

    The response of body size to increasing temperature constitutes a universal response to climate change that could strongly affect terrestrial ectotherms, but the magnitude and direction of such responses remain unknown in most species. The metabolic cost of increased temperature could reduce body...... species could face severe challenges in response to ongoing rapid climate change....... size but long growing seasons could also increase body size as was recently shown in an Arctic spider species. Here, we present the longest known time series on body size variation in two High-Arctic butterfly species: Boloria chariclea and Colias hecla. We measured wing length of nearly 4500...

  12. Harvest estimates of the Western Arctic caribou herd, Alaska

    Directory of Open Access Journals (Sweden)

    Bob Sutherland

    2005-05-01

    Full Text Available A generalized least squares regression model was developed to estimate local harvest of the Western Arctic caribou (Rangifer tarandus granti herd. This model provides herd and community level harvest based on community size, proximity of the herd to the village. The model utilizes community harvest survey information from the Alaska Department of Fish and Game, Subsistence Division and cooperation from the nonprofit organizations Maniliq and Kawerak. The model will assist in an annual selection of communities to survey. The predicted local resident harvest of the Western Arctic caribou herd is 14 700 with 95% lower and upper confidence limits of 10 100 and 19 700 respectively.

  13. UV-B radiation: a health risk in the Arctic?

    OpenAIRE

    Noonan, Frances P.; C. de Fabo, Edward

    1999-01-01

    Seasonal stratospheric ozone depletion in the Arctic has raised the question of whether the associated increases in ultraviolet-B (290-320 nm) constitute a significant health risk in Arctic populations. Increases in skin cancer in Europe and the USA from excess UV-B resulting from ozone depletion have been predicted. Skin cancer is, however, rare in Inuit populations. UV-B also causes a selective down regulation of the immune system which may be a natural regulatory mechanism evolved to preve...

  14. Climate change and zoonotic infections in the Russian Arctic

    OpenAIRE

    Revich, Boris; Tokarevich, Nikolai; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arct...

  15. Climate change and zoonotic infections in the Russian Arctic

    OpenAIRE

    Boris Revich; Nikolai Tokarevich; Parkinson, Alan J.

    2012-01-01

    Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in th...

  16. Arctic smoke ? record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006

    OpenAIRE

    A. Stohl; T. Berg; Burkhart, J. F.; Fjǽraa, A. M.; Forster, C.; Herber, A.; Hov, Ø.; Lunder, C.; McMillan, W. W.; Oltmans, S.; Shiobara, M.; Simpson, D; S. Solberg; K. Stebel; StrÖm, J.

    2007-01-01

    In spring 2006, the European Arctic was abnormally warm, setting new historical temperature records. During this warm period, smoke from agricultural fires in Eastern Europe intruded into the European Arctic and caused the most severe air pollution episodes ever recorded there. This paper confirms that biomass burning (BB) was indeed the source of the observed air pollution, studies the transport of the smoke into the Arctic, and presents an overview of the observations take...

  17. Area use of Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in an Arctic fjord system - a two year acoustic telemetry study

    OpenAIRE

    Kirkemoen, Odin Lagerborg

    2016-01-01

    The Arctic charr Salvelinus alpinus (L.) and the brown trout Salmo trutta L. are fish species with complex and comparable life strategies. However, there are also differences between the two species. The migratory behavior of Arctic charr and brown trout at sea is poorly understood compared to their far more studied behavior in fresh water. Because of the declining populations of anadromous Arctic charr the last decades, this species is particularly important to understand in order to mitigat...

  18. Hydromedusae from the Arctic in 2010 during the 4th Chinese National Arctic Research Expedition (CHINARE 4)

    Institute of Scientific and Technical Information of China (English)

    WANG Chunguang; HUANG Jiaqi; XIANG Peng; WANG Yanguo; XU Zhenzu; GUO Donghui; LIN Mao

    2014-01-01

    Fifty-seven stations (48 grid stations and nine stratified stations) were sampled across the study region (67.000°-88.394°N, 152.500°-178.643°W ) during the 4th Chinese National Arctic Research Expedition (CHI-NARE 4) from July to August 2010 by the icebreaker R/V Xuelong. A total of 24 species of Hydromedusae were identified from 130 zooplankton samples, of which seven species belonged to Automedusa, eight species to Anthomedusae, four species to Leptomedudae, and three species to Siphonophora. Catablema multicir-ratum Kishinouye, 1910, Bougainvillia bitentaculata Uchida, 1925, and Euphysa japonica (Maas, 1909) were recorded for the first time in the Arctic sea. In the present paper, 18 species of Hydromedusae were described and illustrated, of which three species were described for the first time in the Arctic sea, and 15 species were described for the first time in China.

  19. Acoustic Monitoring of the Arctic Ice Cap

    Science.gov (United States)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  20. UV albedo of arctic snow in spring

    Directory of Open Access Journals (Sweden)

    O. Meinander

    2008-02-01

    Full Text Available The relevance of snow for climate studies is based on its physical properties, such as high surface reflectivity. Surface ultraviolet (UV albedo is an essential parameter for various applications based on radiative transfer modeling. Here, new continuous measurements of the local UV albedo of natural Arctic snow were made at Sodankylä (67.37° N, 26.63° E, 179 m a.s.l. during the spring of 2007. The data were logged at 1-min intervals. The accumulation of snow was up to 68 cm. The surface layer thickness varied from 0.5 to 35 cm with the snow grain size between 0.2 and 2.5 mm. The midday erythemally weighted UV albedo ranged from 0.6 to 0.8 in the accumulation period and 0.5–0.7 during melting. During the snow melt period, under cases of an almost clear sky and variable cloudiness, an unexpected diurnal decrease of 0.05 in albedo soon after midday, and recovery thereafter, was detected. This diurnal decrease in albedo was found to be asymmetric with respect to solar midday, thus indicating a change in the properties of the snow. Independent UV albedo results with two different types of instruments confirm these findings. The measured temperature of the snow surface was below 0°C on the following mornings. Hence, the reversible diurnal change, evident for ~1–2 h, could be explained by the daily metamorphosis of the surface of the snowpack, in which the temperature of the surface increases, melting some of the snow to liquid water, after which the surface freezes again.

  1. On particles in the Arctic stratosphere

    Directory of Open Access Journals (Sweden)

    T. S. Jørgensen

    2003-06-01

    Full Text Available Soon after the discovery of the Antarctic ozone hole it became clear that particles in the polar stratosphere had an infl uence on the destruction of the ozone layer. Two major types of particles, sulphate aerosols and Polar Stratospheric Clouds (PSCs, provide the surfaces where fast heterogeneous chemical reactions convert inactive halogen reservoir species into potentially ozone-destroying radicals. Lidar measurements have been used to classify the PSCs. Following the Mt. Pinatubo eruption in June 1991 it was found that the Arctic stratosphere was loaded with aerosols, and that aerosols observed with lidar and ozone observed with ozone sondes displayed a layered structure, and that the aerosol and ozone contents in the layers frequently appeared to be negatively correlated. The layered structure was probably due to modulation induced by the dynamics at the edge of the polar vortex. Lidar observations of the Mt. Pinatubo aerosols were in several cases accompanied by balloon-borne backscatter soundings, whereby backscatter measurements in three different wavelengths made it possible to obtain information about the particle sizes. An investigation of the infl uence of synoptic temperature histories on the physical properties of PSC particles has shown that most of the liquid type 1b particles were observed in the process of an ongoing, relatively fast, and continuous cooling from temperatures clearly above the nitric acid trihydrate condensation temperature (TNAT. On the other hand, it appeared that a relatively long period, with a duration of at least 1-2 days, at temperatures below TNAT provide the conditions which may lead to the production of solid type 1a PSCs.

  2. Indirect interactions in the High Arctic.

    Directory of Open Access Journals (Sweden)

    Tomas Roslin

    Full Text Available Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders. We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8% larvae of S. nigrita as do parasitoids (8%, and that spiders kill many more (38%. Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate

  3. Indirect interactions in the High Arctic.

    Science.gov (United States)

    Roslin, Tomas; Wirta, Helena; Hopkins, Tapani; Hardwick, Bess; Várkonyi, Gergely

    2013-01-01

    Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders). We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8%) larvae of S. nigrita as do parasitoids (8%), and that spiders kill many more (38%). Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate change. PMID

  4. Northern gas : Arctic Canada and Alaska

    International Nuclear Information System (INIS)

    This paper discusses supply challenges in relation to Northern gas availability in Arctic Canada and Alaska. A background of BP Canada Energy Company was provided. It was suggested that gas from traditional North American basins would not meet demand, and that incremental sources of supply would be needed. A map of traditional and non-tradition supply sources was presented along with details of supply and infrastructure investment requirements from 2003-2025. The roles of producers, local distribution companies, pipelines and policy makers in infrastructure development were examined. Potential resources in Alaska and the Mackenzie Delta were discussed, along with details of the Mackenzie Valley Pipeline project and exploration activities. Alaska's North Slope gas resource was reviewed. Several large projects devolving from the Alaska Gas Pipeline represent an anticipated total investment of $20 billion. Various regulatory and economic conditions necessary for the successful completion of the project include the Alaska Fiscal Contract; Alaska gas provisions in the Federal Energy Bill; details of the Canadian regulatory process; and cost reductions and market outlooks. It was concluded that the Alaska Gas Pipeline would provide thousands of jobs and provide stability of long-term gas prices as well as meeting North America's energy needs. In addition, the pipeline would provide $16 billion in Canadian government revenues and $40 billion in US government revenues. The pipeline would provide 4.5 billion cubic feet per day of clean energy, with half the carbon dioxide emissions of coal. It would also provide hundreds of billions of dollars in consumer savings. tabs, figs

  5. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S., III; Walsh, J.E.; Wirth, C.

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  6. The influence of human activity in the Arctic on climate and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, H.P. [23834 The Clearing Dr., Eagle River, AK 99577 (United States); Boyle, M. [Institute for Resources, Environment and Sustainability, University of British Columbia, 2202 Main Mall, Vancouver, BC, V6S 1K4 (Canada); Flowers, G.E. [Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6 (Canada); Weatherly, J.W. [Snow and Ice Division, Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, NH 03755 (United States); Hamilton, L.C. [Department of Sociology, University of New Hampshire, 20 College Road, Durham, NH 03824 (United States); Hinzman, L. [Water and Environment Research Center, University of Alaska Fairbanks, P.O. Box 755860, Fairbanks, AK 99775 (United States); Gerlach, C. [Department of Anthropology, University of Alaska Fairbanks, P.O. Box 757720, Fairbanks, AK 99775 (United States); Zulueta, R. [Department of Biology, Global Change Research Group, San Diego State University, 5500 Campanile Drive, PS-240, San Diego, CA 92182 (United States); Nicolson, C. [Department of Natural Resources Conservation, University of Massachusetts, 160 Holdsworth Way, Amherst, MA , 01003 (United States); Overpeck, J. [Institute for the Study of Planet Earth, University of Arizona, 715 North Park Avenue, 2nd Floor, Tucson, AZ, 85721 (United States)

    2007-05-15

    Human activities in the Arctic are often mentioned as recipients of climate-change impacts. In this paper we consider the more complicated but more likely possibility that human activities themselves can interact with climate or environmental change in ways that either mitigate or exacerbate the human impacts. Although human activities in the Arctic are generally assumed to be modest, our analysis suggests that those activities may have larger influences on the arctic system than previously thought. Moreover, human influences could increase substantially in the near future. First, we illustrate how past human activities in the Arctic have combined with climatic variations to alter biophysical systems upon which fisheries and livestock depend. Second, we describe how current and future human activities could precipitate or affect the timing of major transitions in the arctic system. Past and future analyses both point to ways in which human activities in the Arctic can substantially influence the trajectory of arctic system change.

  7. Indicators of food and water security in an Arctic Health context - results from an international workshop discussion

    OpenAIRE

    Nilsson, Lena Maria; Berner, James; Dudarev, Alexey A.; Mulvad, Gert; Odland, Jon Øyvind; Parkinson, Alan J.; Rautio, Arja; Tikhonov, Constantine; Evengård, Birgitta

    2013-01-01

    In August 2012, a literature search with the aim of describing indicators on food and water security in an Arctic health context was initialized in collaboration between the Arctic Human Health Expert Group, SDWG/AHHEG and the AMAP (Arctic Monitoring and Assessment Programme within the Arctic Council) Human Health Assessment Group, AMAP/HHAG. In December 2012, workshop discussions were performed with representatives from both of these organizations, including 7 Arctic countries. The aim of th...

  8. Pristine Arctic: Background mapping of PAHs, PAH metabolites and inorganic trace elements in the North-Atlantic Arctic and sub-Arctic coastal environment

    Energy Technology Data Exchange (ETDEWEB)

    Jörundsdóttir, Hrönn Ólína, E-mail: hronn.o.jorundsdottir@matis.is [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Jensen, Sophie [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Hylland, Ketil; Holth, Tor Fredrik [Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo (Norway); Gunnlaugsdóttir, Helga [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Svavarsson, Jörundur [University of Iceland, Department of Life and Environmental Sciences, Askja - Natural Science Building, Sturlugata 7, 101 Reykjavík (Iceland); Ólafsdóttir, Ásdís [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland); El-Taliawy, Haitham [Matis Ltd., Icelandic Food and Biotech R and D, Vinlandsleid 12, 113 Reykjavik (Iceland); Rigét, Frank; Strand, Jakob [Department of Bioscience, Arctic Research Centre, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde (Denmark); Nyberg, Elisabeth; Bignert, Anders [Swedish Museum of Natural History, P.O. Box 50007, 104 05 Stockholm (Sweden); Hoydal, Katrin S. [The Faroese Environment Agency, Traðagøta 38, P.O. Box 2048, FO-165 Argir, the Faroe Islands (Faroe Islands); Halldórsson, Halldór Pálmar [The University of Iceland´s Research Centre in Sudurnes, Gardvegi 1, 245 Sandgerdi (Iceland)

    2014-09-15

    As the ice cap of the Arctic diminishes due to global warming, the polar sailing route will be open larger parts of the year. These changes are likely to increase the pollution load on the pristine Arctic due to large vessel traffic from specific contaminant groups, such as polycyclic aromatic hydrocarbons (PAHs). A well-documented baseline for PAH concentrations in the biota in the remote regions of the Nordic Seas and the sub-Arctic is currently limited, but will be vital in order to assess future changes in PAH contamination in the region. Blue mussels (Mytilus edulis) were collected from remote sites in Greenland, Iceland, the Faroe Islands, Norway and Sweden as well as from urban sites in the same countries for comparison. Cod (Gadus morhua) was caught north of Iceland and along the Norwegian coast. Sixteen priority PAH congeners and the inorganic trace elements arsenic, cadmium, mercury and lead were analysed in the blue mussel samples as well as PAH metabolites in cod bile. Σ{sub 16}PAHs ranged from 28 ng/g dry weight (d.w.) (Álftafjörður, NW Iceland) to 480 ng/g d.w. (Ísafjörður, NW Iceland). Mussel samples from Mjóifjörður, East Iceland and Maarmorilik, West Greenland, contained elevated levels of Σ{sub 16}PAHs, 370 and 280 ng/g d.w., respectively. Levels of inorganic trace elements varied with highest levels of arsenic in mussels from Ísafjörður, Iceland (79 ng/g d.w.), cadmium in mussels from Mjóifjörður, Iceland (4.3 ng/g d.w.), mercury in mussels from Sørenfjorden, Norway (0.23 ng/g d.w.) and lead in mussels from Maarmorilik, Greenland (21 ng/g d.w.). 1-OH-pyrene was only found above limits of quantification (0.5 ng/mL) in samples from the Norwegian coast, ranging between 44 and 140 ng/ml bile. Generally, PAH levels were low in mussels from the remote sites investigated in the study, which indicates limited current effect on the environment. - Highlights: • Low levels of PAHs in blue mussels from remote areas of the Arctic. • Low

  9. Pristine Arctic: Background mapping of PAHs, PAH metabolites and inorganic trace elements in the North-Atlantic Arctic and sub-Arctic coastal environment

    International Nuclear Information System (INIS)

    As the ice cap of the Arctic diminishes due to global warming, the polar sailing route will be open larger parts of the year. These changes are likely to increase the pollution load on the pristine Arctic due to large vessel traffic from specific contaminant groups, such as polycyclic aromatic hydrocarbons (PAHs). A well-documented baseline for PAH concentrations in the biota in the remote regions of the Nordic Seas and the sub-Arctic is currently limited, but will be vital in order to assess future changes in PAH contamination in the region. Blue mussels (Mytilus edulis) were collected from remote sites in Greenland, Iceland, the Faroe Islands, Norway and Sweden as well as from urban sites in the same countries for comparison. Cod (Gadus morhua) was caught north of Iceland and along the Norwegian coast. Sixteen priority PAH congeners and the inorganic trace elements arsenic, cadmium, mercury and lead were analysed in the blue mussel samples as well as PAH metabolites in cod bile. Σ16PAHs ranged from 28 ng/g dry weight (d.w.) (Álftafjörður, NW Iceland) to 480 ng/g d.w. (Ísafjörður, NW Iceland). Mussel samples from Mjóifjörður, East Iceland and Maarmorilik, West Greenland, contained elevated levels of Σ16PAHs, 370 and 280 ng/g d.w., respectively. Levels of inorganic trace elements varied with highest levels of arsenic in mussels from Ísafjörður, Iceland (79 ng/g d.w.), cadmium in mussels from Mjóifjörður, Iceland (4.3 ng/g d.w.), mercury in mussels from Sørenfjorden, Norway (0.23 ng/g d.w.) and lead in mussels from Maarmorilik, Greenland (21 ng/g d.w.). 1-OH-pyrene was only found above limits of quantification (0.5 ng/mL) in samples from the Norwegian coast, ranging between 44 and 140 ng/ml bile. Generally, PAH levels were low in mussels from the remote sites investigated in the study, which indicates limited current effect on the environment. - Highlights: • Low levels of PAHs in blue mussels from remote areas of the Arctic. • Low levels of

  10. Arctic Ocean circulation during the anoxic Eocene Azolla event

    Science.gov (United States)

    Speelman, Eveline; Sinninghe Damsté, Jaap; März, Christian; Brumsack, Hans; Reichart, Gert-Jan

    2010-05-01

    The Azolla interval, as encountered in Eocene sediments from the Arctic Ocean, is characterized by organic rich sediments ( 4wt% Corg). In general, high levels of organic matter may be caused by increased productivity, i.e. extensive growth of Azolla, and/or enhanced preservation of organic matter, or a combination of both. Anoxic (bottom) water conditions, expanded oxygen minimum zones, or increased sedimentation rates all potentially increase organic matter preservation. According to plate tectonic, bathymetric, and paleogeographic reconstructions, the Arctic Ocean was a virtually isolated shallow basin, with one possible deeper connection to the Nordic Seas represented by a still shallow Fram Strait (Jakobsson et al., 2007), hampering ventilation of the Arctic Basin. During the Azolla interval surface waters freshened, while at the same time bottom waters appear to have remained saline, indicating that the Arctic was highly stratified. The restricted ventilation and stratification in concert with ongoing export of organic matter most likely resulted in the development of anoxic conditions in the lower part of the water column. Whereas the excess precipitation over evaporation maintained the freshwater lid, sustained input of Nordic Sea water is needed to keep the deeper waters saline. To which degree the Arctic Ocean exchanged with the Nordic Seas is, however, still largely unknown. Here we present a high-resolution trace metal record (ICP-MS and ICP-OES) for the expanded Early/Middle Eocene section capturing the Azolla interval from Integrated Ocean Drilling Program (IODP) Expedition 302 (ACEX) drilled on the Lomonosov Ridge, central Arctic Ocean. Euxinic conditions throughout the interval resulted in the efficient removal of redox sensitive trace metals from the water column. Using the sedimentary trace metal record we also constrained circulation in the Arctic Ocean by assessing the relative importance of trace metal input sources (i.e. fluvial, eolian, and

  11. The contiguous domains of Arctic Ocean advection: Trails of life and death

    Science.gov (United States)

    Wassmann, P.; Kosobokova, K. N.; Slagstad, D.; Drinkwater, K. F.; Hopcroft, R. R.; Moore, S. E.; Ellingsen, I.; Nelson, R. J.; Carmack, E.; Popova, E.; Berge, J.

    2015-12-01

    The central Arctic Ocean is not isolated, but tightly connected to the northern Pacific and Atlantic Oceans. Advection of nutrient-, detritus- and plankton-rich waters into the Arctic Ocean forms lengthy contiguous domains that connect subarctic with the arctic biota, supporting both primary production and higher trophic level consumers. In turn, the Arctic influences the physical, chemical and biological oceanography of adjacent subarctic waters through southward fluxes. However, exports of biomass out of the Arctic Ocean into both the Pacific and Atlantic Oceans are thought to be far smaller than the northward influx. Thus, Arctic Ocean ecosystems are net biomass beneficiaries through advection. The biotic impact of Atlantic- and Pacific-origin taxa in arctic waters depends on the total supply of allochthonously-produced biomass, their ability to survive as adults and their (unsuccessful) reproduction in the new environment. Thus, advective transport can be thought of as trails of life and death in the Arctic Ocean. Through direct and indirect (mammal stomachs, models) observations this overview presents information about the advection and fate of zooplankton in the Arctic Ocean, now and in the future. The main zooplankton organisms subjected to advection into and inside the Arctic Ocean are (a) oceanic expatriates of boreal Atlantic and Pacific origin, (b) oceanic Arctic residents and (c) neritic Arctic expatriates. As compared to the Pacific gateway the advective supply of zooplankton biomass through the Atlantic gateways is 2-3 times higher. Advection characterises how the main planktonic organisms interact along the contiguous domains and shows how the subarctic production regimes fuel life in the Arctic Ocean. The main differences in the advective regimes through the Pacific and Atlantic gateways are presented. The Arctic Ocean is, at least in some regions, a net heterotrophic ocean that - during the foreseeable global warming trend - will more and more rely

  12. The Arctic response to remote and local forcing of black carbon

    Directory of Open Access Journals (Sweden)

    M. Sand

    2012-07-01

    Full Text Available Recent studies suggest that the Arctic temperature response to black carbon (BC forcing depend on the location of the forcing. We investigate how BC in the mid-latitudes remotely influence the Arctic climate, and compare this with the response to BC located in the Arctic it self. In this study, idealized climate simulations are carried out with a fully coupled Earth System Model, which includes a comprehensive treatment of aerosol microphysics. In order to determine how BC transported to the Arctic and BC sources not reaching the Arctic impact the Arctic climate, forcing from BC aerosols is artificially increased by a factor of 10 in different latitude bands in the mid-latitudes (28° N–60° N and in the Arctic (60° N–90° N, respectively. Estimates of the impact on the Arctic energy budget are represented by analyzing radiation fluxes at the top of the atmosphere, at the surface and at the lateral boundaries. Our calculations show that increased BC forcing in the Arctic atmosphere reduces the surface air temperature in the Arctic with a corresponding increase in the sea-ice fraction, despite the increased planetary absorption of sunlight. The analysis indicates that this effect may be due to a combination of a weakening of the northward heat transport caused by a reduction in the meridional temperature gradient and a reduction in the turbulent mixing of heat downward to the surface. The latter factor is explained by the fact that most of the BC is located in the free troposphere and causes a warming at higher altitudes which increases the static stability in the Arctic. On the other hand we find that BC forcing at the mid-latitudes warms the Arctic surface significantly and decreases the sea-ice fraction. Our model calculations indicate that atmospheric BC forcing outside the Arctic is more important for the Arctic climate change than the forcing in the Arctic itself. Although the albedo effect of BC on snow does show a more regional

  13. Arctic environments and global change: Evidence in deep permafrost temperatures, Canadian arctic archipelago

    International Nuclear Information System (INIS)

    In considering the role of the polar regions in future global change, one may look toward these regions for evidence of past environmental change. Deep ground temperatures provide one window on past surface temperatures, which may be interpreted in terms not only of past climate but also of past environmental conditions. Across the Canadian Arctic Archipelago, there is no consistent curvature in deep ground temperature profiles that can be modeled in terms of warming of the past century. This contrasts with the result reported by Lachenbruch et al. [1986] for the Prudhoe Bay area of Alaska and may be a consequence of the much larger region and wider well spacing considered in the Canadian case. Any curvature present varies from well to well and may be interpreted in terms of surface temperature changes of the order of 1-3 K on the scale of decades to centuries. However, there is some evidence that these surface temperature histories may arise from long-term changes in paleoenvironmental factors as well as climate. For instance, the paleoclimate derived from oxygen isotope data at the Agassiz Ice Cap has been compared with the geothermal signature at a well some 180 km to the west. For the Little Ice Age (LIA), the Agassiz paleoclimate explains only half the measured variation in ground temperatures at the geothermal site; the remaining variation may be due to other environmental effects, such as an increase in snow cover following the LIA. This is consistent with extrapolated surface temperatures 7 K higher than other Arctic sites and the unusually deep snow cover observed today

  14. Tracer studies with Arctic and subArctic coupled ice-ocean models: dispersion of radionuclides and oxygen isotopes

    International Nuclear Information System (INIS)

    Full text: Natural and man-made soluble isotopes which enter the oceanic environment are advected by the ocean-currents or the ice-drift and are distributed over large areas far from their sources. By this they trace the dominant flow patterns and exchanges processes on timescales from years to decades. By introducing such isotopes as tracers into coupled ice-ocean models used to study the climate system of the Arctic and Subarctic we receive progress in two areas: The intercomparison of model derived tracer distributions with observations offers the opportunity to validate the model experiments. If consistent with observations, the model experiments in turn may serve as an interpretative tool to understand the evolution of the observed distributions. The latter is especially valuable in areas like the Arctic Ocean, where the observations are sparse in time and space. We present examples from two projects introducing the natural isotope δ18O as a tracer for river water in the Arctic and the man-made radionuclide Technetium-99, which has been emitted from west-European nuclear reprocessing facilities in increased amounts in the 1990s. The natural isotope δ18O enters the Arctic Ocean via the rivers carrying runoff from the Siberian and North American catchment areas. Since the signature of δ18O for the rivers is markedly different from oceanic values it can serve as a tracer for the riverine component of freshwater. The investigation of the dynamics of freshwater in form of ice, ice-melt and river water in the Arctic Ocean is closely linked to a better understanding of the variability of the global thermohaline circulation. The latter is apparently influenced by the amount of freshwater released from the Arctic Ocean into the convective areas of the Nordic Seas and the Labrador Sea. The intercomparison of the modelled and observed patterns of δ18O leads to better insight of the state of the large circulation systems which store and advect freshwater in the

  15. A Science Plan for Development of an Arctic System Model

    Science.gov (United States)

    Hinzman, L.; Cassano, J.; Doescher, R.; Holland, M.; Mitsudera, H.; Roberts, A.; Sumi, A.; Walsh, J.

    2008-12-01

    In the last 50 years a wide variety of changes in the Arctic have been documented. Regardless of the driving forces, the combined observations and documentation suggest that the arctic system may be entering a state unprecedented in the history of civilization. The complex interplay of physical, chemical, biological and social processes interact to such a degree that it is not possible to understand future trajectories without developing holistic perspectives of the complete system. A central justification for developing an 'Arctic System Model' is to strengthen our understanding of the inter-connections among system components and related feedback processes, thereby enhancing the predictive capability required for societal planning and response to future change. A recent community workshop has identified the objectives and strategic elements that comprise a plan for Arctic System Model development and implementation. The objective encompasses our understanding of change, attribution of change, and effects of change. The plan includes the use of a limited area model, driven at the boundaries by a global model. The limited-area model approach allows for the use of computationally sophisticated algorithms and very high resolution to resolve processes parameterized in global models. The implementation strategy includes the utilization of ongoing efforts in component modeling, together with community oversight and a dedicated vehicle for the provision of coordination, support activities, and liaison with the observational and user communities.

  16. Patterned-ground facilitates shrub expansion in Low Arctic tundra

    International Nuclear Information System (INIS)

    Recent expansion of tall shrubs in Low Arctic tundra is widely seen as a response to climate warming, but shrubification is not occurring as a simple function of regional climate trends. We show that establishment of tall alder (Alnus) is strongly facilitated by small, widely distributed cryogenic disturbances associated with patterned-ground landscapes. We identified expanding and newly established shrub stands at two northwest Siberian sites and observed that virtually all new shrubs occurred on bare microsites (‘circles’) that were disturbed by frost-heave. Frost-heave associated with circles is a widespread, annual phenomenon that maintains mosaics of mineral seedbeds with warm soils and few competitors that are immediately available to shrubs during favorable climatic periods. Circle facilitation of alder recruitment also plausibly explains the development of shrublands in which alders are regularly spaced. We conclude that alder abundance and extent have increased rapidly in the northwest Siberian Low Arctic since at least the mid-20th century, despite a lack of summer warming in recent decades. Our results are consistent with findings in the North American Arctic which emphasize that the responsiveness of Low Arctic landscapes to climate change is largely determined by the frequency and extent of disturbance processes that create mineral-rich seedbeds favorable for tall shrub recruitment. Northwest Siberia has high potential for continued expansion of tall shrubs and concomitant changes to ecosystem function, due to the widespread distribution of patterned-ground landscapes. (letter)

  17. Photoheterotrophic Microbes in the Arctic Ocean in Summer and Winter▿

    OpenAIRE

    Cottrell, Matthew T.; Kirchman, David L.

    2009-01-01

    Photoheterotrophic microbes, which are capable of utilizing dissolved organic materials and harvesting light energy, include coccoid cyanobacteria (Synechococcus and Prochlorococcus), aerobic anoxygenic phototrophic (AAP) bacteria, and proteorhodopsin (PR)-containing bacteria. Our knowledge of photoheterotrophic microbes is largely incomplete, especially for high-latitude waters such as the Arctic Ocean, where photoheterotrophs may have special ecological relationships and distinct biogeochem...

  18. One Health - a strategy for resilience in a changing arctic.

    Science.gov (United States)

    Ruscio, Bruce A; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W

    2015-01-01

    The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human-animal-environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722

  19. Arctic indigenous women consume greater than acceptable levels of organochlorines.

    Science.gov (United States)

    Kuhnlein, H V; Receveur, O; Muir, D C; Chan, H M; Soueida, R

    1995-10-01

    Exposure to polychlorinated biphenyls and organochlorine pesticides through traditional food resources was examined for Arctic Indigenous women living in two cultural and environmental areas of the Canadian Arctic--one community representing Baffin Island Inuit in eastern Arctic and two communities representing Sahtú Dene/Métis in western Arctic. Polychlorinated biphenyls, toxaphene, chlorobenzenes, hexachlorocyclohexanes, dichlorodiphenyltrichloroethane, chlordane-related compounds and dieldrin were determined in local food resources as normally prepared and eaten. Quantified dietary recalls taken seasonally reflected normal consumption patterns of these food resources by women in three age groups: 20-40 y, 41-60 y and > or = 61 y. There was wide variation of intake of all organochlorine contaminants in both areas and among age groups for the Sahtú. Fifty percent of the intake recalls collected from the Baffin Inuit exceeded the acceptable daily intake for chlordane-related compounds and toxaphene, and a substantial percentage of the intake records for dieldrin and polychlorinated biphenyls exceeded the acceptable or tolerable daily intake levels. Primary contributing foods to organochlorine contaminants intake for the Baffin Inuit were meat and blubber of ringed seal, blubber of walrus and mattak and blubber of narwal. Important foods contributing organochlorine contaminant to the Sahtú Dene/Métis were caribou, whitefish, inconnu, trout and duck. The superior nutritional benefits and potential health risks of traditional food items are reviewed, as are implications for monitoring organochlorine contaminant contents of food, clinical symptoms and food use. PMID:7562084

  20. Interdisciplinary cooperation on impacts of climate change in the Arctic

    Science.gov (United States)

    Wardell, Lois; Chen, Linling; Strey, Sara

    2012-09-01

    Impact of Climate Change on Resources, Maritime Transport and Geopolitics in the Arctic and the Svalbard Area; Svalbard, Norway, 21-28 August 2011 Drastic changes in the Arctic climate directly relate to resource and transport development and complex geopolitical challenges in the Arctic. To encourage future interdisciplinary cooperation among political, social, and climate scientists, 30 early-career researchers from varied backgrounds—including climate change, resources, polar maritime transport, and geopolitics—assembled in Svalbard, Norway. Ola Johannessen, president of the Norwegian Scientific Academy of Polar Research, led this diverse group to highlight the importance of collaboration across disciplines for broadening the terms in which assessments are defined, thus collapsing distinctions between the physical and the human Arctic. He also highlighted the feasibility of conducting effective assessment exercises within short time frames. The group was also mentored by Willy Østreng, author of Science Without Boundaries: Interdisciplinarity in Research, Society, and Politics, who aided participants in understanding the process of interdisciplinary collaboration rather than creating an assemblage of discrete findings.