WorldWideScience

Sample records for arctic permafrost soil

  1. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    Science.gov (United States)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr; Diáková, Kateřina; Alves, Ricardo J. Eloy; Bárta, Jiři; Gittel, Antje; Hugelius, Gustaf; Knoltsch, Anna; Kuhry, Peter; Lashchinskiy, Nikolay; Mikutta, Robert; Palmtag, Juri; Schleper, Christa; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Torsvik, Vigdis L.; Urich, Tim; Watzka, Margarete; Šantrůčková, Hana; Guggenberger, Georg; Richter, Andreas

    2016-05-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called “priming effect” might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and upper permafrost, we found that an increased availability of plant-derived organic C particularly stimulated decomposition in subsoil horizons where most of the arctic soil carbon is located. Considering the 1,035 Pg of arctic soil carbon, such an additional stimulation of decomposition beyond the direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming.

  2. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils

    DEFF Research Database (Denmark)

    Wild, Birgit; Gentsch, Norman; Čapek, Petr;

    2016-01-01

    Arctic ecosystems are warming rapidly, which is expected to promote soil organic matter (SOM) decomposition. In addition to the direct warming effect, decomposition can also be indirectly stimulated via increased plant productivity and plant-soil C allocation, and this so called "priming effect......" might significantly alter the ecosystem C balance. In this study, we provide first mechanistic insights into the susceptibility of SOM decomposition in arctic permafrost soils to priming. By comparing 119 soils from four locations across the Siberian Arctic that cover all horizons of active layer and...... direct temperature effect can accelerate net ecosystem C losses, and amplify the positive feedback to global warming....

  3. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems

    Science.gov (United States)

    Loranty, Michael M.; Liberman-Cribbin, Wil; Berner, Logan T.; Natali, Susan M.; Goetz, Scott J.; Alexander, Heather D.; Kholodov, Alexander L.

    2016-09-01

    In arctic tundra and boreal forest ecosystems vegetation structural and functional influences on the surface energy balance can strongly influence permafrost soil temperatures. As such, vegetation changes will likely play an important role in permafrost soil carbon dynamics and associated climate feedbacks. Processes that lead to changes in vegetation, such as wildfire or ecosystem responses to rising temperatures, are of critical importance to understanding the impacts of arctic and boreal ecosystems on future climate. Yet these processes vary within and between ecosystems and this variability has not been systematically characterized across the arctic-boreal region. Here we quantify the distribution of vegetation productivity trends, wildfire, and near-surface soil carbon, by vegetation type, across the zones of continuous and discontinuous permafrost. Siberian larch forests contain more than one quarter of permafrost soil carbon in areas of continuous permafrost. We observe pervasive positive trends in vegetation productivity in areas of continuous permafrost, whereas areas underlain by discontinuous permafrost have proportionally less positive productivity trends and an increase in areas exhibiting negative productivity trends. Fire affects a much smaller proportion of the total area and thus a smaller amount of permafrost soil carbon, with the vast majority occurring in deciduous needleleaf forests. Our results indicate that vegetation productivity trends may be linked to permafrost distribution, fire affects a relatively small proportion of permafrost soil carbon, and Siberian larch forests will play a crucial role in the strength of the permafrost carbon climate feedback.

  4. Permafrost-Affected Soils of the Russian Arctic and their Carbon Pools

    Science.gov (United States)

    Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.-M.

    2014-02-01

    Permafrost-affected soils have accumulated enormous pools of organic matter during the Quaternary Period. The area occupied by these soils amounts to more than 8.6 million km2, which is about 27% of all land areas north of 50° N. Therefore, permafrost-affected soils are considered to be one of the most important cryosphere elements within the climate system. Due to the cryopedogenic processes that form these particular soils and the overlying vegetation that is adapted to the arctic climate, organic matter has accumulated to the present extent of up to 1024 Pg (1 Pg = 1015 g = 1 Gt) of soil organic carbon stored within the uppermost three meters of ground. Considering the observed progressive climate change and the projected polar amplification, permafrost-affected soils will undergo fundamental property changes. Higher turnover and mineralization rates of the organic matter are consequences of these changes, which are expected to result in an increased release of climate-relevant trace gases into the atmosphere. As a result, permafrost regions with their distinctive soils are likely to trigger an important tipping point within the global climate system, with additional political and social implications. The controversy of whether permafrost regions continue accumulating carbon or already function as a carbon source remains open until today. An increased focus on this subject matter, especially in underrepresented Siberian regions, could contribute to a more robust estimation of the soil organic carbon pool of permafrost regions and at the same time improve the understanding of the carbon sink and source functions of permafrost-affected soils.

  5. Priming in permafrost soils: High vulnerability of arctic soil organic carbon to increased input of plant-derived compounds

    Science.gov (United States)

    Wild, Birgit; Gentsch, Norman; Capek, Petr; Diakova, Katerina; Alves, Ricardo; Barta, Jiri; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Knoltsch, Anna; Mikutta, Robert; Santruckova, Hana; Schnecker, Jörg; Shibistova, Olga; Takriti, Mounir; Urich, Tim; Watzka, Margarete; Richter, Andreas

    2015-04-01

    Arctic ecosystems are warming rapidly, resulting in a stimulation of both plant primary production and soil organic matter (SOM) decomposition. In addition to this direct stimulation, SOM decomposition might also be indirectly affected by rising temperatures mediated by the increase in plant productivity. Higher root litter production for instance might decrease SOM decomposition by providing soil microorganisms with alternative C and N sources ("negative priming"), or might increase SOM decomposition by facilitating microbial growth and enzyme production ("positive priming"). With about 1,700 Pg of organic C stored in arctic soils, and 88% of that in horizons deeper than 30 cm, it is crucial to understand the controls on SOM decomposition in different horizons of arctic permafrost soils, and thus the vulnerability of SOM to changes in C and N availability in a future climate. We here report on the vulnerability of SOM in arctic permafrost soils to an increased input of plant-derived organic compounds, and on its variability across soil horizons and sites. We simulated an increased input of plant-derived compounds by amending soil samples with 13C-labelled cellulose or protein, and compared the mineralization of native, unlabelled soil organic C (SOC) to unamended control samples. Our experiment included 119 individual samples of arctic permafrost soils, covering four sites across the Siberian Arctic, and five soil horizons, i.e., organic topsoil, mineral topsoil, mineral subsoil and cryoturbated material (topsoil material buried in the subsoil by freeze-thaw processes) from the active layer, as well as thawed material from the upper permafrost. Our findings suggest that changes in C and N availability in Arctic soils, such as mediated by plants, have a high potential to alter the decomposition of SOM, but also point at fundamental differences between soil horizons. In the organic topsoil, SOC mineralization increased by 51% after addition of protein, but was not

  6. Relating the Chemical Composition of Dissolved Organic Matter Draining Permafrost Soils to its Photochemical Degradation in Arctic Surface Waters.

    Science.gov (United States)

    Ward, C.; Cory, R. M.

    2015-12-01

    Thawing permafrost soils are expected to shift the chemical composition of DOM exported to and degraded in arctic surface waters. While DOM photo-degradation is an important component of the freshwater C cycle in the Arctic, the molecular controls on DOM photo-degradation remain poorly understood, making it difficult to predict how shifting chemical composition may alter DOM photo-degradation in arctic surface waters. To address this knowledge gap, we quantified the susceptibility of DOM draining the shallow organic mat and the deeper permafrost layer to complete photo-oxidation to CO₂ and partial photo-oxidation to compounds that remain in the DOM pool, and investigated changes in DOM chemical composition following sunlight exposure. DOM leached from the organic mat contained higher molecular weight, more oxidized and unsaturated aromatic species compared to permafrost DOM. Despite significant differences in initial chemical composition, permafrost and organic mat DOM had similar susceptibilities to complete photo-oxidation to CO₂. Concurrent losses of carboxyl moieties and shifts in chemical composition during photo-degradation indicated that carboxyl-rich tannin-like compounds in both DOM sources were likely photo-decarboxylated to CO₂. Permafrost DOM had a higher susceptibility to partial photo-oxidation compared to organic mat DOM, potentially due to a lower abundance of phenolic compounds that act as "antioxidants" and slow the oxidation of DOM. These results demonstrated how chemical composition controls the photo-degradation of DOM in arctic surface waters, and that DOM photo-degradation will likely remain an important component of the freshwater C budget in the Arctic with increased export of permafrost DOM to surface waters.

  7. Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic

    Directory of Open Access Journals (Sweden)

    N. Gentsch

    2015-02-01

    Full Text Available In permafrost soils, the temperature regime and the resulting cryogenic processes are decisive for the storage of organic carbon (OC and its small-scale spatial variability. For cryoturbated soils there is a lack in the assessment of pedon-scale heterogeneity in OC stocks and the transformation of functionally different organic matter (OM fractions such as particulate and mineral-associated OM. Therefore, pedons of 28 Turbels across the Siberian Arctic were sampled in five meter wide soil trenches in order to calculate OC and total nitrogen (TN stocks within the active layer and the upper permafrost based on digital profile mapping. Density fractionation of soil samples was performed to distinguish particulate OM (light fraction, LF, −3, mineral associated OM (heavy fraction, HF, >1.6 g cm−3, and a mobilizable dissolved pool (mobilizable fraction, MoF. Mineral-organic associations were characterized by selective extraction of pedogenic Fe and Al oxides and the clay composition was analyzed by X-ray diffraction. Organic matter transformation in bulk soil and density fractions was assessed by the stable carbon isotope ratio (δ13C and element contents (C and N. Across all investigated soil profiles, total OC stocks were calculated to 20.2 ± 8.0 kg m−2 (mean ± SD to 100 cm soil depth. Of this average, 54% of the OC was located in active layer horizons (annual summer thawing layer showing evidence of cryoturbation, and another 35% was present in the permafrost. The HF-OC dominated the overall OC stocks (55% followed by LF-OC (19% in mineral and 13% in organic horizons. During fractionation about 13% of the OC was released as MoF, which likely represents the most bioavailable OM pool. Cryogenic activity combined with an impaired biodegradation in topsoil horizons (O and A horizons were the principle mechanisms to sequester large OC stocks in the subsoil (16.4 ± 8.1 kg m−2; all mineral B, C, and permafrost horizons. About 22% of the subsoil

  8. The Impact of Climate Change on Microbial Communities and Carbon Cycling in High Arctic Permafrost Soil from Spitsbergen, Northern Norway

    Science.gov (United States)

    de Leon, K. C.; Schwery, D.; Yoshikawa, K.; Christiansen, H. H.; Pearce, D.

    2014-12-01

    Permafrost-affected soils are among the most fragile ecosystems in which current microbial controls on organic matter decomposition are changing as a result of climate change. Warmer conditions in the high Arctic will lead to a deepening of the seasonal active layer of permafrost, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. The viable and non-viable fractions of the microbial community in a permafrost soil from Adventdalen, Spitsbergen, Norway were subjected to a comprehensive investigation using culture-dependent and culture-independent methods. Molecular analyses using FISH (with CTC-DAPI) and amplified rDNA restriction analysis (ARDRA) on a 257cm deep core, revealed the presence of all major microbial soil groups, with the active layer having more viable cells, and a higher microbial community diversity. Carbon dioxide (CO2) and methane (CH4) flux measurements were performed to show the amount of C stored in the sample. We demonstrated that the microbial community composition from the soil in the center of the core was most likely influenced by small scale variations in environmental conditions. Community structure showed distinct shift of presence of bacterial groups along the vertical temperature gradient profile and microbial counts and diversity was found to be highest in the surface layers, decreasing with depth. It was observed that soil properties driving microbial diversity and functional potential varied across the permafrost table. Data on the variability of CO2 and CH4 distribution described in peat structure heterogeneity are important for modeling emissions on a larger scale. Furthermore, linking microbial biomass to gas distribution may elucidate the cause of peak CO2 and CH4 and their changes in relation to environmental change and peat composition.

  9. Permafrost Soils Database for Northern Alaska 2014

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This database contains soil and permafrost stratigraphy for northern Alaska compiled from numerous project data files and reports. The Access Database has main data...

  10. Soil Organic Carbon Inventory and Permafrost Mapping in Tarfala Valley, Northern Sweden. A first estimation of the belowground soil organic carbon storage in a sub-arctic high alpine permafrost environment

    Science.gov (United States)

    Fuchs, M.

    2013-12-01

    Permafrost regions in the Northern Hemisphere store large amounts of organic carbon and are vulnerable to climate change. Due to a sustained warming of the climate, strongest in the northern high latitudes, permafrost thaws and organic carbon could be released in significant amounts which should not be neglected. This study investigates the soil organic carbon (SOC) storage in the Tarfala Valley (600 - 2,100 m a.s.l.), Northern Sweden, and aims to give a first estimation of the total carbon stock in a sub-arctic high alpine permafrost environment. Further the study describes the actual extent of permafrost in the Tarfala Valley. To achieve these aims, two field studies were carried out, one in summer to collect soil samples and one in winter to measure the bottom temperature of snow (BTS). In addition, the soil samples were analysed in the laboratory for bulk density, loss on ignition and elemental analyses. The estimated total SOC in the Tarfala catchment area of 31.2 km2 is 23.0 kt C for 0 - 30 cm and 28.2 kt C for 0 - 100 cm, which is on average 0.9 kg C m-2 for the upper meter of soil in the study area. Even though the soil organic carbon values are relatively low, these results contribute to the on-going soil organic carbon inventories in the circum-arctic. In Tarfala Valley, permafrost can be considered as continuous at an altitude above 1,561 m a.s.l., discontinuous above 1,218 m a.s.l. and sporadic above 875 m a.s.l. based on a logistic regression model with the altitude as single independent variable. This implies that most of the permafrost affected ground is at an altitude where only sparse or no vegetation is present and only low amounts of organic carbon is stored. In brief, Tarfala Valley cannot be considered as a permafrost carbon hotspot, because this sub-arctic alpine environment does not have the potential to release large amounts of carbon as a result of climate warming and permafrost thawing.

  11. Permafrost soils and carbon cycling

    OpenAIRE

    Ping, C. L.; J. D. Jastrow; Jorgenson, M. T.; Michaelson, G. J.; Y. L. Shur

    2015-01-01

    Knowledge of soils in the permafrost region has advanced immensely in recent decades, despite the remoteness and inaccessibility of most of the region and the sampling limitations posed by the severe environment. These efforts significantly increased estimates of the amount of organic carbon stored in permafrost-region soils and improved understanding of how pedogenic processes unique to permafrost environments built enormous organic carbon stocks during the Quaternary. This...

  12. Beaded streams of Arctic permafrost landscapes

    Directory of Open Access Journals (Sweden)

    C. D. Arp

    2014-07-01

    Full Text Available Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic inventory of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high-ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate relatively stable form and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene–Holocene transition. Contemporary processes, such as deep snow accumulation in stream gulches effectively insulates river ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2 °C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools stratify thermally, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m s−1, yet channel runs still move water

  13. Stability of permafrost dominated coastal cliffs in the Arctic

    Science.gov (United States)

    Hoque, Md. Azharul; Pollard, Wayne H.

    2016-03-01

    Block failure is considered to be an important component of coastal retreat in permafrost regions. A comprehensive model is developed to study the effects of thermoerosional niche and ice wedge morphology on the stability of permafrost dominated coastal cliff against block failure. The model is formulated by coupling slope stability analysis with a time dependent progression of thermoerosional niches and the morphology of the nearby ice wedges. Model computations are initially performed for failure conditions for a given cliff height, frozen soil strength, ice content, water pressure in the active layer, thermoerosional niche depth and ice wedge morphology. Under these conditions block failures are found to be predominantly overturning failures and are governed by the tensile strength of frozen soil, thermoerosional niche depth and ice wedge location and depth. The effects of ice wedges are then examined by analyzing failure conditions for ice wedges of different locations and depths. For a given cliff height, strength and thermoerosional niche, block failure may occur at a range of different combinations of ice wedge locations and depths. Two stability nomograms are developed through repeated model calculations for range of cliff heights and frozen soil tensile strength. These nomograms can be used to determine the critical combinations of thermoerosional niche depth, ice wedge distance and ice wedge depth that lead to block collapse of a cliff of known height and soil strength. Some analytical expressions are also derived to determine potential block failure criteria along Arctic coasts.

  14. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s

    Science.gov (United States)

    Walter Anthony, Katey; Daanen, Ronald; Anthony, Peter; Schneider von Deimling, Thomas; Ping, Chien-Lu; Chanton, Jeffrey P.; Grosse, Guido

    2016-09-01

    Permafrost thaw exposes previously frozen soil organic matter to microbial decomposition. This process generates methane and carbon dioxide, and thereby fuels a positive feedback process that leads to further warming and thaw. Despite widespread permafrost degradation during the past ~40 years, the degree to which permafrost thaw may be contributing to a feedback between warming and thaw in recent decades is not well understood. Radiocarbon evidence of modern emissions of ancient permafrost carbon is also sparse. Here we combine radiocarbon dating of lake bubble trace-gas methane (113 measurements) and soil organic carbon (289 measurements) for lakes in Alaska, Canada, Sweden and Siberia with numerical modelling of thaw and remote sensing of thermokarst shore expansion. Methane emissions from thermokarst areas of lakes that have expanded over the past 60 years were directly proportional to the mass of soil carbon inputs to the lakes from the erosion of thawing permafrost. Radiocarbon dating indicates that methane age from lakes is nearly identical to the age of permafrost soil carbon thawing around them. Based on this evidence of landscape-scale permafrost carbon feedback, we estimate that 0.2 to 2.5 Pg permafrost carbon was released as methane and carbon dioxide in thermokarst expansion zones of pan-Arctic lakes during the past 60 years.

  15. Resilience of Arctic Permafrost Carbon in Mackenzie River Basin: An Incubation Experiment to Observe Priming Potentials and Biodegradability of Arctic Permafrost Peatlands

    Science.gov (United States)

    Hedgpeth, A.; Beilman, D.; Crow, S. E.

    2015-12-01

    Arctic permafrost zones cover 25% of the Northern Hemisphere and hold 1672Pg of soil carbon (C) with 277Pg in Arctic permafrost peatlands, which is 1/3 of the CO2 in the atmosphere. This currently protected C is a potential source for increased emissions in a warmer climate. Longer growing seasons resulting in increased plant productivity above and below ground may create new labile C inputs with the potential to affect mineralization of previously stable SOM, known as the priming effect. This study examined the response of soil respiration to labile substrate addition in carbon-rich (42-48 %C) permafrost peatland soils along a N-S transect in the central Mackenzie River Basin (69.2-62.6°N). Active layer and near surface soils (surface Δ14C values > -140.0) were collected from four sites between -10.5 and -5.2 MAT. Soils were spiked with 0.5 mg D-glucose g-1soil, and incubated at 10°C for 23 days to determine potential, short term (i.e., apparent) priming effects. On average glucose addition increased respiration in all samples. One site showed priming evidence in active layer soils despite one-way ANOVA not illustrating statistically significant differences between control and treated final cumulative CO2. Apparent priming effects were seen in two near surface permafrost samples, however cumulative increases in CO2 were not identified as significant. When all results from all sites and depths were considered, the addition of glucose showed no significant effect on total CO2 production relative to controls (p=0.957), suggesting that these sites may be resilient to increased inputs in that little priming evidence was observed. To test the idea that the soils that showed priming effects are of poorer quality, we conducted an additional incubation experiment to explore the biodegradability of these permafrost peatland soils. Soils from these four sites were inoculated and incubated for 17 days. The two sites with observed priming showed the highest biodegradability

  16. Global warming and carbon dynamics in permafrost soils: methane production and oxidation

    OpenAIRE

    Dirk Wagner; Susanne Liebner;  ,

    2009-01-01

    The Arctic plays a key role in the Earths climate system, because global warming is predicted to be most pronounced at high latitudes, and one third of the global carbon pool is stored in ecosystems of the northern latitudes. The degradation of permafrost and the associated intensified release of methane, a climate-relevant trace gas, represent potential environmental hazards. The microorganisms driving methane production and oxidation in Arctic permafrost soils have remained poorly investiga...

  17. Metagenomics Reveals Microbial Community Composition And Function With Depth In Arctic Permafrost Cores

    Science.gov (United States)

    Jansson, J.; Tas, N.; Wu, Y.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Chakraborty, R.; Graham, D. E.; Wullschleger, S. D.

    2013-12-01

    The Arctic is one of the most climatically sensitive regions on Earth and current surveys show that permafrost degradation is widespread in arctic soils. Biogeochemical feedbacks of permafrost thaw are expected to be dominated by the release of currently stored carbon back into the atmosphere as CO2 and CH4. Understanding the dynamics of C release from permafrost requires assessment of microbial functions from different soil compartments. To this end, as part of the Next Generation Ecosystem Experiment in the Arctic, we collected two replicate permafrost cores (1m and 3m deep) from a transitional polygon near Barrow, AK. At this location, permafrost starts from 0.5m in depth and is characterized by variable ice content and higher pH than surface soils. Prior to sectioning, the cores were CT-scanned to determine the physical heterogeneity throughout the cores. In addition to detailed geochemical characterization, we used Illumina MiSeq technology to sequence 16SrRNA genes throughout the depths of the cores at 1 cm intervals. Selected depths were also chosen for metagenome sequencing of total DNA (including phylogenetic and functional genes) using the Illumina HiSeq platform. The 16S rRNA gene sequence data revealed that the microbial community composition and diversity changed dramatically with depth. The microbial diversity decreased sharply below the first few centimeters of the permafrost and then gradually increased in deeper layers. Based on the metagenome sequence data, the permafrost microbial communities were found to contain members with a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. The surface active layers had more representatives of Verrucomicrobia (potential methane oxidizers) whereas the deep permafrost layers were dominated by several different species of Actinobacteria. The latter are known to have a diverse metabolic capability and are able to adapt to stress by entering a dormant yet

  18. Molecular investigations into a globally important carbon pool: Permafrost-protected carbon in Alaskan soils

    Science.gov (United States)

    Waldrop, M.P.; Wickland, K.P.; White, Rickie; Berhe, A.A.; Harden, J.W.; Romanovsky, V.E.

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at -5 and 5 ??C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. Published 2010. This article is a US Government work and is in the public domain in the

  19. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    Science.gov (United States)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  20. Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances

    Science.gov (United States)

    Lamoureux, Scott F.; Lafrenière, Melissa J.

    2014-04-01

    Projected warming is expected to alter the Arctic permafrost regime with potential impacts on hydrological fluxes of particulate organic carbon (POC) and sediment. Previous work has focused on large Arctic basins and revealed the important contribution of old carbon in river POC, but little is known about POC fluxes from smaller coastal watersheds, particularly where widespread postglacial raised marine sediments represent a potential source of old soil carbon that could be mobilized by permafrost disturbance. To evaluate these processes, the characteristics of POC, particulate nitrogen (PN) and suspended sediment transport from paired small coastal Arctic watersheds subject to recent permafrost disturbance were investigated at the Cape Bounty Arctic Watershed Observatory (CBAWO) in the Canadian High Arctic. Approximately 2% of the total suspended sediment load from both watersheds was composed of POC and the majority of the sediment and POC fluxes occurred during the spring snowmelt period. Radiocarbon analysis of POC indicates recent permafrost disturbances deliver substantially older POC to the aquatic system. Localized permafrost slope disturbances have a measurable influence on downstream POC age and dominate (estimated up to 78% of POC) sediment fluxes during summer baseflow. The elevation of disturbances and Holocene emergence data show limited age sensitivity of POC to the location of disturbance and suggest slope failures are likely to deliver carbon with a relatively similar age range to the aquatic system, regardless of landscape location.

  1. Seasonal fluxes and age of particulate organic carbon exported from Arctic catchments impacted by localized permafrost slope disturbances

    International Nuclear Information System (INIS)

    Projected warming is expected to alter the Arctic permafrost regime with potential impacts on hydrological fluxes of particulate organic carbon (POC) and sediment. Previous work has focused on large Arctic basins and revealed the important contribution of old carbon in river POC, but little is known about POC fluxes from smaller coastal watersheds, particularly where widespread postglacial raised marine sediments represent a potential source of old soil carbon that could be mobilized by permafrost disturbance. To evaluate these processes, the characteristics of POC, particulate nitrogen (PN) and suspended sediment transport from paired small coastal Arctic watersheds subject to recent permafrost disturbance were investigated at the Cape Bounty Arctic Watershed Observatory (CBAWO) in the Canadian High Arctic. Approximately 2% of the total suspended sediment load from both watersheds was composed of POC and the majority of the sediment and POC fluxes occurred during the spring snowmelt period. Radiocarbon analysis of POC indicates recent permafrost disturbances deliver substantially older POC to the aquatic system. Localized permafrost slope disturbances have a measurable influence on downstream POC age and dominate (estimated up to 78% of POC) sediment fluxes during summer baseflow. The elevation of disturbances and Holocene emergence data show limited age sensitivity of POC to the location of disturbance and suggest slope failures are likely to deliver carbon with a relatively similar age range to the aquatic system, regardless of landscape location. (paper)

  2. Relevance of mineral-organic associations in cryoturbated permafrost soils

    Science.gov (United States)

    Gentsch, Norman; Mikutta, Robert; Bárta, Jiří; Čapek, Petr; Gittel, Antje; Richter, Andreas; Šantrůčková, Hanna; Schnecker, Jörg; Shibistova, Olga; Urich, Tim; Wild, Birgit; Guggenberger, Georg

    2014-05-01

    Enhanced microbial decomposition of deep buried organic matter (OM) increase the release of CO2and CH4from high latitude ecosystems, thus being an uncertain but potentially crucial positive feedback to global warming. The role of soil minerals as stabilization agents of OM against microbial attack gain in importance as soon abiotic soil conditions will change in permafrost soils. We investigated changes in storage and turnover of soil organic carbon (OC) and total nitrogen (TN) associated with minerals in 27 cryoturbated permafrost soils from the west to the east Siberian Arctic. Furthermore, we studied the mineral composition and the potential of OM to interact with soil minerals via different binding mechanisms. Mineral-associated organic matter (MOM) was separated from particulate plant debris by density fractionation in sodium polytungstate (density cut-off 1.6 g cm-3). Their apparent 14C ages were determined by accelerator mass spectrometry and potential mineralization rates were analyzed in a 180 days incubation experiments at 5 and 15° C. The mineral composition was analyzed by X-ray diffraction and selective extractions. Desorption experiments (stepwise extraction with KCl and NaH2PO4) using the permafrost soils as well as reference soils from temperate regions (three Stagnolsols from Germany) were performed to study OM sorbed to mineral surfaces or complexed with polyvalent metal ions. The proportion of OC associated with minerals (MOC) ranged from 5.1 to 14.9 kg m-2 (average: 11.0 kg m-2), corresponding to ~55% from the total soil OC storage (average: 20.2 ± 8.0 kg m-2) in the first meter of the Cryosols. In contrast to temperate soils, where maximum MOC concentrations are present in topsoils, cambic, or spodic horizons, cryoturbation in permafrost soils leads to high MOC concentrations within the whole solum. Cryoturbated OM-rich pockets in the subsoil store 18% (2.0 ± 1.3 kg m-2) of the MOC while another 34% (3.8 ± 3.5 kg m-2) was located in the

  3. Microbial diversity of active layer and permafrost in an acidic wetland from the Canadian High Arctic.

    Science.gov (United States)

    Wilhelm, Roland C; Niederberger, Thomas D; Greer, Charles; Whyte, Lyle G

    2011-04-01

    The abundance and structure of archaeal and bacterial communities from the active layer and the associated permafrost of a moderately acidic (pH Canada) were investigated using culture- and molecular-based methods. Aerobic viable cell counts from the active layer were ∼100-fold greater than those from the permafrost (2.5 × 10(5) CFU·(g soil dry mass)(-1)); however, a greater diversity of isolates were cultured from permafrost, as determined by 16S rRNA gene sequencing. Isolates from both layers demonstrated growth characteristics of a psychrotolerant, halotolerant, and acidotolerant community. Archaea constituted 0.1% of the total 16S rRNA gene copy number and, in the 16S rRNA gene clone library, predominantly (71% and 95%) consisted of Crenarchaeota related to Group I. 1b. In contrast, bacterial communities were diverse (Shannon's diversity index, H = ∼4), with Acidobacteria constituting the largest division of active layer clones (30%) and Actinobacteria most abundant in permafrost (28%). Direct comparisons of 16S rRNA gene sequence data highlighted significant differences between the bacterial communities of each layer, with the greatest differences occurring within Actinobacteria. Comparisons of 16S rRNA gene sequences with those from other Arctic permafrost and cold-temperature wetlands revealed commonly occurring taxa within the phyla Chloroflexi, Acidobacteria, and Actinobacteria (families Intrasporangiaceae and Rubrobacteraceae). PMID:21491982

  4. Erosion of Organic Carbon from Permafrost Zones in the Arctic as a Geological Carbon Dioxide Sink

    Science.gov (United States)

    Hilton, R. G.; Galy, V.; Gaillardet, J.; Dellinger, M.; Bryant, C.; O'Regan, M.; Gröcke, D. R.; Coxall, H.; Bouchez, J.; Calmels, D.

    2015-12-01

    Soils of the northern high latitudes store carbon over millennial timescales and contain almost double the carbon stock of the atmosphere. The exposure and decomposition of aged organic matter in these soils is a carbon dioxide (CO2) source to the atmosphere. Permafrost thaw over the coming century may result in a significant CO2 release. However, some of this soil organic carbon in permafrost zones can be eroded and input to rivers. If it escapes degradation during river transport and is buried in ocean sediments, it instead contributes to a longer-term (>104 yr), geological CO2sink. Despite this recognition, the erosional flux and fate of particulate organic carbon (POC) in large rivers draining permafrost zones remains poorly constrained. We quantify POC source, flux and fate in the Mackenzie River Basin, the main sediment supplier to the Arctic Ocean, using radiocarbon, stable carbon isotopes and element ratios to correct for rock-derived POC. The eroded biospheric POC has resided in the basin for millennia, with a mean radiocarbon age of 5800±800 yr. Rivers eroding continuous permafrost zones contribute the oldest biospheric POC. Based on the measured biospheric POC content and annual sediment flux, we calculate a biospheric POC flux of 2.2 (+1.3/-0.9) TgC yr-1 from the Mackenzie River to the Arctic Ocean, three times the CO2 drawdown by silicate weathering. Offshore we find evidence for efficient terrestrial carbon burial over the Holocene period. Our findings demonstrate how erosion of organic carbon-rich, high latitude soils can result in a significant geological CO2sink. We postulate that this geological CO2 sink is sensitive to climate conditions in the Arctic. The transfer can operate when high latitudes host carbon stocks in soil, and while rivers can erode and transfer sediments to the Arctic Ocean. Over the last 1Ma, the erosional transfer was likely to have been enhanced during interglacials. We propose that erosion of biospheric carbon by large

  5. The Arctic Coastal Dynamics Database : A New Classification Scheme and Statistics on Arctic Permafrost Coastlines

    NARCIS (Netherlands)

    Lantuit, Hugues; Overduin, Pier Paul; Couture, Nicole; Wetterich, Sebastian; Are, Felix; Atkinson, David; Brown, Jerry; Cherkashov, Georgy; Drozdov, Dmitry; Forbes, Donald Lawrence; Graves-Gaylord, Allison; Grigoriev, Mikhail; Hubberten, Hans-Wolfgang; Jordan, James; Jorgenson, Torre; Odegard, Rune Strand; Ogorodov, Stanislav; Pollard, Wayne H.; Rachold, Volker; Sedenko, Sergey; Solomon, Steve; Steenhuisen, Frits; Streletskaya, Irina; Vasiliev, Alexander

    2012-01-01

    Arctic permafrost coasts are sensitive to changing climate. The lengthening open water season and the increasing open water area are likely to induce greater erosion and threaten community and industry infrastructure as well as dramatically change nutrient pathways in the near-shore zone. The shallo

  6. Shoreface of the Arctic seas - a natural laboratory for subsea permafrost dynamics

    OpenAIRE

    Are, Felix E.

    2003-01-01

    Subsea permafrost on the Arctic shelf occupies some 13 million km2, but is poorly understood. Mathematical modeling, based on the differential equation of heat conduction, is widely used for the compilation of predictive permafrost maps. Realistic geocryological conditions on the Arctic shelf cannot however be explained simply by heat conduction. Laboratory and field investigations show that heat convection and mass transfer play an important role in marine permafrost dynamics. Correspondingl...

  7. The Ecological Situation in the Russian Arctic Permafrost Zone

    Directory of Open Access Journals (Sweden)

    Petrov Sergei

    2016-01-01

    Full Text Available The paper describes innovative approaches to ensure environmental safety in the production of hydrocarbon material in a permafrost zone. Studies the anthropogenic environmental factors, climatic and geographical and geological conditions of Purovskiy district of Yamalo-Nenets Autonomous Area (YaNAO. We consider the chemical characteristics of wastewater discharged into surface water objects, polluting emissions into the atmosphere. The conclusions of the environmental situation in Purovskiy and Ustpurovsk-Tazovskiy permafrost areas. Calculate the concentration of pollutants in the control section of the water object and the maximum ground-level concentrations of pollutants in the atmospheric air. The conclusions about the exceeding the maximum permissible concentration (MPC in the atmospheric air for solids, carbon monoxide, nitrogen dioxide. Was examined the climatic conditions of the Far North. Correlational analysis was performed between human factors and temperature conditions of the northern territories, as well as between the climate and natural features cryological and disturbed permafrost soils.

  8. Reviews and Syntheses: Effects of permafrost thaw on arctic aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    J. E. Vonk

    2015-07-01

    Full Text Available The Arctic is a water-rich region, with freshwater systems covering 16 % of the northern permafrost landscape. The thawing of this permafrost creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic and lotic systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost and deepening of the active layer (the surface soil layer that thaws and refreezes each year. Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas, vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying variables determine the degree to which permafrost thaw manifests as thermokarst, whether thermokarst leads to slumping or the formation of thermokarst lakes, and the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying variables determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted systems is also likely to change, with thaw-impacted lakes and streams having unique microbiological communities, and showing differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter and nutrient delivery. The degree to which thaw

  9. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.

    2015-12-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery

  10. Effect of Terrain Characteristics on Soil Organic Carbon and Total Nitrogen Stocks in Soils of Herschel Island, Western Canadian Arctic

    OpenAIRE

    Obu, Jaroslav; Lantuit, Hugues; Myers-Smith, Isla; Heim, Birgit; Wolter, Juliane; Fritz, Michael

    2015-01-01

    Permafrost landscapes experience different disturbances and store large amounts of organic matter, which may become a source of greenhouse gases upon permafrost degradation. We analysed the influence of terrain and geomorphic disturbances (e.g. soil creep, active-layer detachment, gullying, thaw slumping, accumulation of fluvial deposits) on soil organic carbon (SOC) and total nitrogen (TN) storage using 11 permafrost cores from Herschel Island, western Canadian Arctic. Our results indicate a...

  11. Carbon Cycling in Alpine and Arctic watersheds affected by permafrost degradation: An insight from Sweden

    Science.gov (United States)

    Roehm, C. L.; Giesler, R.; Karlsson, J.

    2009-05-01

    Linking the processes and dynamics acting within and between terrestrial and aquatic ecosystems is crucial in order to understand the impacts of environmental change on the re-distribution and transformation of energy within watersheds. Nearly 1300 Pg of carbon are stored in permafrost soils in boreal and arctic ecosystems. Permafrost degradation can result in the loss of significant amounts of terrestrial carbon, both through the release to the atmosphere in the form of carbon dioxide and methane, or through export downstream to lakes and rivers. The fate and effects of this carbon in lake ecosystems is poorly understood. We investigated the capacity of lake bacteria to utilize carbon from different adjacent mire soils in a discontinuous permafrost region of northern Sweden. We, additionally, studied other lake ecosystems by using organic matter quality as a proxy for the state of permafrost degradation within the watershed. Finally, we propose simple predictive models for the bioavailability of soils to aquatic bacteria. Our study identified three distinctive time sensitive pools of bacterial respiration whose carbon availability varied according to chemical characteristics. Soil dissolved organic carbon (DOC) was rapidly consumed by lake bacteria with nearly 85% consumed within the first 24 hours. Bacterial production was higher in the soil bioassays and increased in a lag fashion relative to bacterial respiration, resulting in increasing bacterial growth efficiencies over time as a function of C pool and soil type. The mean DOC consumption by lake bacteria was 0.087 mg C L-1 d-1 and varied between 0.382 mg L-1 d-1 and 0.491 mg L-1 d-1 when supplied with terrestrial DOC. The lake water bacterial respiration could explain a varying degree of pCO2 saturation in lakes as a function of both carbon quality and course. Carbon quality and end members can be used as proxies for the degree of permafrost degradation within the watershed. The data clearly show that export

  12. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.

    2014-01-01

    Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.

  13. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Vonk, J. E.; Tank, S. E.; Mann, P. J.; Spencer, R. G. M.; Treat, C. C.; Striegl, R. G.; Abbott, B. W.; Wickland, K. P.

    2015-12-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January-December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  14. Biodegradability of dissolved organic carbon in permafrost soils and aquatic systems: a meta-analysis

    Science.gov (United States)

    Jorien E. Vonk,; Suzanne E. Tank,; Paul J. Mann,; Robert G.M. Spencer,; Claire C. Treat,; Striegl, Rob; Benjamin W. Abbott,; Wickland, Kimberly P.

    2015-01-01

    As Arctic regions warm and frozen soils thaw, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to decomposition or transport. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the degradability of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism, yet knowledge of the mechanistic controls on DOC biodegradability is currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences commonly used in the literature. We also synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum-arctic permafrost region to examine pan-arctic trends in BDOC.An increasing extent of permafrost across the landscape resulted in higher DOC losses in both soil and aquatic systems. We hypothesize that the unique composition of (yedoma) permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively short flow path lengths and transport times, contributed to a higher overall terrestrial and freshwater DOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC in large streams and rivers, but saw no apparent change in smaller streams or soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later

  15. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    NARCIS (Netherlands)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M.P.D.; Schaepman-Strub, Gabriela

    2016-01-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing.

  16. Landscape and hydrologic changes in the permafrost regions of the Western Canadian Arctic

    Science.gov (United States)

    Marsh, P.

    2012-12-01

    The Western Canadian Arctic, in the vicinity of the Mackenzie River Delta, is characterized by long cold winters, short summers, low precipitation, thin organic soils, and ice-rich continuous permafrost. Over the last few decades, this region has undergone dramatic changes in climate, with warming air temperature and decreasing winter and summer precipitation. This has resulted in various landscape changes, including the warming of the upper layers of the permafrost, deepening of the active layer, drainage of permafrost affected lakes, an ongoing change from tundra to shrub tundra, and earlier spring breakup of streams, rivers and lakes. However, interactions between climate, hydrology, snow, and vegetation greatly affect both the spatial and temporal changes to the permafrost and hydrology of this region. Knowledge of these changes is important to the understanding of methane dynamics in this permafrost landscape, and for predicting future changes. Two examples of observed landscape change will be discussed. First, ground based observations and analysis of air photo images has demonstrated that shrub expansion is not uniform across the landscape, but instead is characterized by shrub patches of varying size. This patchiness is likely related to existing variations in soil temperature and moisture, active layer depth, snowcover, and tundra fires. As shrub patches further develop, they impact soil temperature and active layer depth. For example, small patches of shrubs typically have snow depths that are deeper than surrounding tundra areas due to the accumulation of blowing snow, and as a result have much warmer soil temperatures and deeper active layers. In contrast to these small shrub patches, large shrub patches have snow depths only slightly larger than found in the surrounding tundra and therefore only slightly warmer winter soil temperatures. However, shading of the surface during the summer may result in cooler summer soil temperatures. The overall effect

  17. Nonlinear thermal and moisture dynamics of high Arctic wetland polygons following permafrost disturbance

    Directory of Open Access Journals (Sweden)

    E. Godin

    2015-07-01

    Full Text Available Low-centre polygonal terrain developing within gentle sloping surfaces and lowlands in the high Arctic have a potential to retain snowmelt water in their bowl-shaped centre and as such are considered high latitude wetlands. Such wetlands in the continuous permafrost regions have an important ecological role in an otherwise generally arid region. In the valley of the glacier C-79 on Bylot Island (Nunavut, Canada, thermal erosion gullies are rapidly eroding the permafrost along ice wedges affecting the integrity of the polygons by breaching and collapsing the surrounding rims. While intact polygons were characterized by a relative homogeneity (topography, snow cover, maximum active layer thaw depth, ground moisture content, vegetation cover, eroded polygons had a non-linear response for the same elements following their perturbation. The heterogeneous nature of disturbed terrains impacts active layer thickness, ground ice aggradation in the upper portion of permafrost, soil moisture and vegetation dynamics, carbon storage and terrestrial green-house gas emissions.

  18. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    Directory of Open Access Journals (Sweden)

    M J L Coolen

    2015-03-01

    Full Text Available Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gases, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after eleven days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.

  19. Aliphatic side chains of proteins as potential geomarkers of NOM liberated from the melting permafrost and discharged to the Arctic Ocean by the Kolyma River run off

    Science.gov (United States)

    Dubinenkov, I. V.; Perminova, I.; Kononikhin, A.; Nikolaev, E.; Hertkorn, N.; Bulygina, E. B.; Holmes, R. M.

    2011-12-01

    The Arctic ecosystem is highly sensitive to climate change. Global warming might have considerable effects on regional carbon cycling due to permafrost melting. Permafrost in the Arctic region represents an extremely large organic carbon reservoir mostly stored in the permafrost. Mobilization of just a small portion of carbon stored in Arctic soils will have considerable impacts on the flux of organic carbon from land to the Arctic Ocean, which can affect the Arctic environment. The Kolyma River watershed is one of the Arctic Ocean's largest. It is dominated by continuous permafrost which is underlain with rich organic soils susceptible to increased fluvial transport. The goal of the work was to analyze the structure of isolated natural organic matter from different fresh water environments of the Kolyma river basin. NOM was isolated from the Kolyma River main stream, its tributaries, a thermokarst lake, a floodplain stream and the permafrost. Solid phase extraction technique was used with Bond Elute PPL cartridges. Nuclear magnetic resonance spectroscopy (NMR) and Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy (FTICRMS) was used for structural studies because of unsurpassed molecular level structural information provided by these high resolution magnetic resonance techniques. The NOM samples from the Kolyma River showed high contents of non-substituted aliphatic structures with a low content of aromatics and carbohydrates. Aliphatic nature may indicate a microbial source of NOM in the form of degraded terpenoids and hopanols. It was shown that almost all NOM samples from the rivers had similar molecular composition enriched with aliphatic units. The samples from permafrost mud streams were significantly different and contained sharp peptide signatures. In general, permafrost NOM contained much less degraded peptide residuest as compared to riverine samples. Identification of these residues showed the presence of branched amino acids (valine, alanine

  20. Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2009-05-01

    Full Text Available Permafrost thawing is likely to change the flow pathways taken by water as it moves through arctic and sub-arctic landscapes. The location and distribution of these pathways directly influence the carbon and other biogeochemical cycling in northern latitude catchments. While permafrost thawing due to climate change has been observed in the arctic and sub-arctic, direct observations of permafrost depth are difficult to perform at scales larger than a local scale. Using recession flow analysis, it may be possible to detect and estimate the rate of permafrost thawing based on a long-term streamflow record. We demonstrate the application of this approach to the sub-arctic Abiskojokken catchment in northern Sweden. Based on recession flow analysis, we estimate that permafrost in this catchment may be thawing at an average rate of about 0.9 cm/yr during the past 90 years. This estimated thawing rate is consistent with direct observations of permafrost thawing rates, ranging from 0.7 to 1.3 cm/yr over the past 30 years in the region.

  1. Effects of Temperature and Substrate Availability on Methanotrophy in Arctic Permafrost Landscapes

    Science.gov (United States)

    Roy Chowdhury, T.; Graham, D. E.; Wullschleger, S. D.

    2014-12-01

    Arctic permafrost ecosystems store ~ 50 % of global belowground carbon (C) and are a considerable source of atmospheric methane (CH4). Current estimates report that nearly 10 - 40 Tg yr-1 of CH4 is released from permafrost environments. In particular, topographic depressions on the landscape are predominantly anoxic and conducive to active methanogenesis. At the sediment-water interfaces of the water-saturated polygonal units, namely low- and flat-centered polygons, CH4 and oxygen gradients overlap and bacterial CH4 oxidation is an important process contributing to CH4 consumption. Methanotrophic bacteria represent the major terrestrial sinks for CH4 and can reduce CH4 emissions by ~70 %. Therefore, determining how the activity and abundance of methanotrophic communities respond to warming temperature conditions is critical to predicting effects of permafrost thaw and active layer warming on CH4 emissions. As ground temperature increases in the Arctic landscape, a major impact of permafrost thaw could be draining of the active layer with resultant subsidence leading to the formation of elevated and relatively oxic high-centered polygons. These changes can impact both methanogen and methanotroph communities and affect net CH4 fluxes. To understand the controls of temperature and substrate availability on CH4 oxidation, we examined process rates and temporal dynamics of methanotroph biomass in contrasting landscape gradients. We investigated the active layer and Cryoturbated permafrost organic soilsd from replicate soil cores collected from high-centered and flat-centered polygonal units in the Barrow Environmental Observatory, Barrow, AK. We used quantitative PCR to quantify methanogen (mcrA) and methanotroph (pmoA) population size by functional gene analysis. We present potential methane oxidation activity in response to three incubation temperatures (-2 oC, 4 oC, and 10 oC) that represent thaw-season ground temperatures. Our objectives were to estimate the rates

  2. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks

    NARCIS (Netherlands)

    Mann, Paul J.; Eglinton, Timothy I.; McIntyre, Cameron P.; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E.; Holmes, Robert M.; Spencer, Robert G M

    2015-01-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe 14 C and 13 C characteristi

  3. Microbial communities and processes in Arctic permafrost environments

    OpenAIRE

    Dirk Wagner

    2008-01-01

    In polar regions, huge layers of frozen ground, termed permafrost, are formed. Permafrost covers more than 25 % of the land surface and significant parts of the coastal sea shelfs. Its habitats are controlled by extreme climate and terrain conditions. Particularly, the seasonal freezing and thawing in the upper active layer of permafrost leads to distinct gradients in temperature and geochemistry. Microorganisms in permafrost environments have to survive extremely cold temperatures, freeze-th...

  4. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    Science.gov (United States)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  5. New permafrost is forming around shrinking Arctic lakes, but will it last?

    Science.gov (United States)

    Briggs, Martin A.; Walvoord, Michelle A.; McKenzie, Jeffrey M.; Voss, Clifford I.; Day-Lewis, Frederick D.; Lane, Jr., John W.

    2014-01-01

    Widespread lake shrinkage in cold regions has been linked to climate warming and permafrost thaw. Permafrost aggradation, however, has been observed within the margins of recently receded lakes, in seeming contradiction of climate warming. Here permafrost aggradation dynamics are examined at Twelvemile Lake, a retreating lake in interior Alaska. Observations reveal patches of recently formed permafrost within the dried lake margin, colocated with discrete bands of willow shrub. We test ecological succession, which alters shading, infiltration, and heat transport, as the driver of aggradation using numerical simulation of variably saturated groundwater flow and heat transport with phase change (i.e., freeze-thaw). Simulations support permafrost development under current climatic conditions, but only when net effects of vegetation on soil conditions are incorporated, thus pointing to the role of ecological succession. Furthermore, model results indicate that permafrost aggradation is transitory with further climate warming, as new permafrost thaws within seven decades.

  6. Is Thawing Permafrost as a Result of Global Warming a Possible Significant Source of Degradable Carbon for Microbiota Residing In Situ and in Arctic Rivers?

    Science.gov (United States)

    Zhu, E. Y.; Coolen, M. J.

    2008-12-01

    Northern high-latitude ecosystems contain about half of the world's soil carbon, most of which is stored in permanently frozen soil (permafrost). Global warming through the 21st century is expected to induce permafrost thaw, which will increase microbial organic matter (OM) decomposition and release large amounts of the greenhouse gasses methane and carbon dioxide into the atmosphere. In addition, Arctic rivers are a globally important source of terrestrial organic carbon to the ocean and further permafrost melting will impact surface runoff, directly affecting groundwater storage and river discharge. Up to now, it remains largely unknown to what extent the ancient OM stored in newly thawing permafrost can be consumed by microbes in situ or by microbes residing in Arctic rivers which become exposed to newly discharged permafrost OM. In addition, we know little about which microbes are capable of degrading permafrost OM. During a field trip to the Toolik Lake Arctic Long Term Ecological Research (LTER) field station in northern Alaska in August 2008, we cored permafrost located near the Kuparuk River down to 110 cm below the active layer (i.e. the top layer which melts each summer) and analyzed the initial microbial enzymatic cleavage of particulate OM (POM) stored in permafrost. Alkaline phosphatase activity remained fairly constant throughout the permafrost and was only one order of magnitude lower than in the active layer. The latter enzyme cleaves organic phosphoesters into phosphate, which could cause eutrophication of lakes and rivers via ground water discharge. Similar results were found for β-glucosidase, which cleaves cellobiose into glucose. This process could fuel heterotrophic bacteria to produce carbon dioxide which, in return, could be converted to the stronger greenhouse gas methane by methanogenic archaea. Leucine aminopeptidase activities, on the other hand, were highest in the top Sphagnum root layer and quickly dropped to below detection limit

  7. Permafrost dynamics structure species compositions of oribatid mite (Acari: Oribatida) communities in sub-Arctic palsa mires

    OpenAIRE

    Markkula, Inkeri

    2014-01-01

    Palsa mires are sub-Arctic peatland complexes, vulnerable ecosystems with patches of permafrost. Permafrost thawing in palsa mires occurs throughout Fennoscandia, probably due to local climatic warming. In palsa mires, permafrost thaw alters hydrological conditions, vegetation structure and microhabitat composition with unknown consequences for invertebrate fauna. This study's objectives were to examine the role of microhabitat heterogeneity and the effects of permafrost dynamics and thaw on ...

  8. Improved soil physics for simulating high latitude permafrost regions by the JSBACH terrestrial ecosystem model

    Directory of Open Access Journals (Sweden)

    A. Ekici

    2013-05-01

    Full Text Available State-of-the-art climate models postulate disproportionately large climate warming in the northern latitudes. Ground and satellite observations indicate recent warming is already altering the environment, evidenced by increasing permafrost temperature, deepening active layers, accelerating glacier melt and increasing river runoff. It is estimated that the circum-arctic regions contain vast amounts of soil organic carbon, whose fate is governed by climate; if temperature continues to rise, thawing of permafrost could release historic carbon initiating a positive climate-carbon cycle feedback. Consequently, projecting the future state of ecosystems in permafrost regions under changing environmental conditions is a major research challenge, but most of the associated processes are not yet adequately represented in current Earth system models. The new version of JSBACH incorporates phenomena specific to high latitudes: freeze/thaw processes, coupling thermal and hydrological processes in a layered soil scheme, defining a multi-layer snow representation and an insulating moss cover. Evaluations using the most comprehensive Arctic datasets show improvements at the site, basin, continental and circum-arctic scales. Such improvements highlight the need to include processes relevant to high latitude systems in order to capture the dynamics, and therefore realistically predict the evolution of this climatically critical biome.

  9. Landscape and Hydrological Transformation in the Canadian High Arctic: Climate Change and Permafrost Degradation As Drivers of Change

    Science.gov (United States)

    Lamoureux, S. F.; Lafreniere, M. J.

    2014-12-01

    Recent climate warming and landscape instability arising from permafrost degradation in the Canadian High Arctic have resulted in significant changes to the hydrological system. We have undertaken an integrated watershed and permafrost research program at the Cape Bounty Arctic Watershed Observatory (75°N, 109°W) in paired watershed-lake systems to assess the impact of these changes. Research has captured hydrological changes resulting from exceptional warmth, and permafrost degradation and disturbance. Results highlight the contrasting effect of thermal (deeper soil thaw) versus physical perturbation (slope failures and permafrost degradation). Thermal perturbation applies to most of the landscape, and results indicate that ground ice melt alters flow and mobilizes solutes for a number of years following a single warm year. These effects are measureable at the slope-catchment scale, especially during baseflow. By contrast, physical disturbance is highly localized and produces high sediment and particulate carbon erosion from slopes, but downstream particulate delivery is dependent on surface connectivity. Recovery from disturbances appears to occur rapidly, and continued geomorphic change and new slope channels result in sustained delivery of particulates to channels. The result is increased long term landscape heterogeneity with respect to erosion compared to the pre-disturbance condition. Downstream channel response to particulate loading further dampens the response to physical disturbance through channel storage of material. Hence, at the larger watershed scale, the effect of physical perturbation is minimal in the initial years of recovery. These results point to a landscape that has been substantially impacted by recent hydrological and permafrost changes. Understanding and distinguishing these impacts provides a basis for systematically evaluating biogeochemical cycling and ecosystem responses in aquatic settings.

  10. Correlations between the Heterogeneity of Permafrost Thaw Depth and Vegetation in Boreal Forests and Arctic Tundra in Alaska.

    Science.gov (United States)

    Uy, K. L. Q.; Natali, S.; Kholodov, A. L.; Loranty, M. M.

    2015-12-01

    Global climate change induces rapid large scale changes in the far Northern regions of the globe, which include the thickening of the active layer of arctic and subarctic soils. Active layer depth, in turn, drives many changes to the hydrology and geochemistry of the soil, making an understanding of this layer essential to boreal forest and arctic tundra ecology. Because the structure of plant communities can affect the thermal attributes of the soil, they may drive variations in active layer depth. For instance, trees and tussocks create shade, which reduces temperatures, but also hold snow, which increases temperature through insulation; these aspects of vegetation can increase or decrease summer thaw. The goal of this project is to investigate correlations between the degree of heterogeneity of active layer depths, organic layer thickness, and aboveground vegetation to determine how these facets of Northern ecosystems interact at the ecosystem scale. Permafrost thaw and organic layer depths were measured along 20m transects in twenty-four boreal forest and tundra sites in Alaska. Aboveground vegetation along these transects was characterized by measuring tree diameter at breast height (DBH), tussock dimensions, and understory biomass. Using the coefficient of variation as a measure of heterogeneity, we found a positive correlation between thaw depth variability and tussock volume variability, but little correlation between the former and tree DBH variability. Soil organic layer depth variability was also positively correlated with thaw depth variability, but weakly correlated with tree and tussock heterogeneity. These data suggest that low vegetation and organic layer control the degree of variability in permafrost thaw at the ecosystem scale. Vegetation can thus affect the microtopography of permafrost and future changes in the plant community that affect vegetation heterogeneity will drive corresponding changes in the variability of the soil.

  11. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks

    OpenAIRE

    Paul J. Mann; Eglinton, Timothy I.; Mcintyre, Cameron P.; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E.; Holmes, Robert M.; Spencer, Robert G.M.

    2015-01-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe 14 C and 13 C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (1...

  12. Susceptibility of Permafrost Soil Organic Carbon under Warming Climate

    Science.gov (United States)

    Yang, Z.; Wullschleger, S. D.; Liang, L.; Graham, D. E.; Gu, B.

    2015-12-01

    Degradation of soil organic carbon (SOC) that has been stored in permafrost is a key concern under warming climate because it could provide a positive feedback. Studies and conceptual models suggest that SOC degradation is largely controlled by the decomposability of SOC, but it is unclear exactly what portions of SOC are susceptible to rapid breakdown and what mechanisms may be involved in SOC degradation. Using a suite of analytical techniques, we examined the dynamic consumption and production of labile SOC compounds, including sugars, alcohols, and small molecular weight organic acids in incubation experiments (up to 240 days at either -2 or 8 °C) with a tundra soil under anoxic conditions, where SOC respiration and iron(III) reduction were monitored. We observe that sugars and alcohols are main components in SOC accounting for initial rapid release of CO2 and CH4 through anaerobic fermentation, whereas the fermentation products such as acetate and formate are subsequently utilized as primary substrates for methanogenesis. Iron(III) reduction is correlated to acetate production and methanogenesis, suggesting its important roles as an electron acceptor in tundra SOC respiration. These observations corroborate strongly with the glucose addition during incubation, in which rapid CO2 and CH4 production is observed concurrently with rapid production and consumption of organics such as acetate. Thus, the biogeochemical processes we document here are pertinent to understanding the accelerated SOC decomposition with temperature and could provide basis for model predicting feedbacks to climate warming in the Arctic.

  13. Nutrient Limitation of Microbial Mediated Decomposition and Arctic Soil Chronology

    Science.gov (United States)

    Melle, C. J.; Darrouzet-Nardi, A.; Wallenstein, M. D.

    2012-12-01

    Soils of northern permafrost regions currently contain twice as much carbon as the entire Earth's atmosphere. Traditionally, environmental constraints have limited microbial activity resulting in restricted decomposition of soil organic matter in these systems and accumulation of massive amounts of soil organic carbon (SOC), however climate change is reducing the constraints of decomposition in arctic permafrost regions. Carbon cycling in nutrient poor, arctic ecosystems is tightly coupled to other biogeochemical cycles. Several studies have suggested strong nitrogen limitations of primary productivity and potentially warm-season microbial activity in these nutrient deficient soils. Nitrogen is required for microbial extracellular enzyme production which drives the decomposition of soil organic matter (SOM). Nitrogen limited arctic soils may also experience limitation via labile carbon availability despite the SOM rich environment due to low extracellular enzyme production. Few studies have directly addressed nutrient induced microbial limitation in SOC rich arctic tundra soils, and even less is known about the potential for nutrient co-limitation. Additionally, through the process of becoming deglaciated, sites within close proximity to one another may have experienced drastic differences in their effective soil ages due to the varied length of their active histories. Many soil properties and nutrient deficiencies are directly related to soil age, however this chronology has not previously been a focus of research on nutrient limitation of arctic soil microbial activity. Understanding of nutrient limitations, as well as potential co-limitation, on arctic soil microbial activity has important implications for carbon cycling and the ultimate fate of the current arctic SOC reservoir. Analyses of nutrient limitation on soils of a single site are not adequate for fully understanding the controls on soil microbial activity across a vast land mass with large variation in

  14. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    Science.gov (United States)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  15. Arctic cities and climate change: climate-induced changes in stability of Russian urban infrastructure built on permafrost

    Science.gov (United States)

    Shiklomanov, Nikolay; Streletskiy, Dmitry; Swales, Timothy

    2014-05-01

    Planned socio-economic development during the Soviet period promoted migration into the Arctic and work force consolidation in urbanized settlements to support mineral resources extraction and transportation industries. These policies have resulted in very high level of urbanization in the Soviet Arctic. Despite the mass migration from the northern regions during the 1990s following the collapse of the Soviet Union and the diminishing government support, the Russian Arctic population remains predominantly urban. In five Russian Administrative regions underlined by permafrost and bordering the Arctic Ocean 66 to 82% (depending on region) of the total population is living in Soviet-era urban communities. The political, economic and demographic changes in the Russian Arctic over the last 20 years are further complicated by climate change which is greatly amplified in the Arctic region. One of the most significant impacts of climate change on arctic urban landscapes is the warming and degradation of permafrost which negatively affects the structural integrity of infrastructure. The majority of structures in the Russian Arctic are built according to the passive principle, which promotes equilibrium between the permafrost thermal regime and infrastructure foundations. This presentation is focused on quantitative assessment of potential changes in stability of Russian urban infrastructure built on permafrost in response to ongoing and future climatic changes using permafrost - geotechnical model forced by GCM-projected climate. To address the uncertainties in GCM projections we have utilized results from 6 models participated in most recent IPCC model inter-comparison project. The analysis was conducted for entire extent of Russian permafrost-affected area and on several representative urban communities. Our results demonstrate that significant observed reduction in urban infrastructure stability throughout the Russian Arctic can be attributed to climatic changes and that

  16. Modelling carbon in permafrost soils from preindustrial to the future

    Science.gov (United States)

    Kleinen, T.; Brovkin, V.

    2015-12-01

    The carbon release from thawing permafrost soils constitutes one of the large uncertainties in the carbon cycle under future climate change. Analysing the problem further, this uncertainty results from an uncertainty about the total amount of C that is stored in frozen soils, combined with an uncertainty about the areas where soils might thaw under a particular climate change scenario, as well as an uncertainty about the decomposition product since some of the decomposed C might result the release of CH4 as well as CO2. We use the land surface model JSBACH, part of the Max Planck Institute Earth System Model MPI-ESM, to quantify the release of soil carbon from thawing permafrost soils. We have extended the soil carbon model YASSO by introducing carbon storages in frozen soils, with increasing fractions of C being available to decomposition as permafrost thaws. In order to quantify the amount of carbon released as CH4, as opposed to CO2, we have also implemented a TOPMODEL-based wetland scheme, as well as anaerobic C decomposition and methane transport. We initialise the soil C pools for the preindustrial climate state from the Northern Circumpolar Soil Carbon Database to insure initial C pool sizes close to measurements. We then determine changes in soil C storage in transient model experiments following historical and future climate changes under RCP 8.5. Based on these experiments, we quantify the greenhouse gas release from permafrost C decomposition, determining both CH4 and CO2 emissions.

  17. Adaptation, spatial variability, and phylogenetic characterization of methanotrophic communities in permafrost soils of the Lena Delta, Siberia

    OpenAIRE

    Liebner, Susanne

    2008-01-01

    The Lena Delta, located in north-east Siberia in the zone of continuous permafrost, is the largest delta within the circum-arctic. The natural capacity of arctic wetlands underlain by permafrost to emit methane is currently of major concern in the context of global change, because arctic permafrost is particularly susceptible to degradation. Permafrost degradation is suggested to impose huge amounts of yet stored carbon to the atmosphere and with this to cause a positive feedback on the natur...

  18. The Arctic CH4 sink and its implications for the permafrost carbon feedbacks to the global climate system

    Science.gov (United States)

    Juncher Jørgensen, Christian; Christiansen, Jesper; Mariager, Tue; Hugelius, Gustaf

    2016-04-01

    Using atmospheric methane (CH4), certain soil microbes are able to sustain their metabolism, and in turn remove this powerful greenhouse gas from the atmosphere. While the process of CH4 oxidation is a common feature in most natural and unmanaged ecosystems in temperate and boreal ecosystems, the interactions between soil physical properties and abiotic process drivers, net landscape exchange and spatial patterns across Arctic drylands remains highly uncertain. Recent works show consistent CH4 comsumption in upland dry tundra soils in Arctic and High Arctic environments (Christiansen et al., 2014, Biogeochemistry 122; Jørgensen et al., 2015, Nature Geoscience 8; Lau et al., 2015, The ISME Journal 9). In these dominantly dry or barren soil ecosystems, CH4 consumption has been observed to significantly exceed the amounts of CH4 emitted from adjacent wetlands. These observations point to a potentially important but largely overlooked component of the global soil-climate system interaction and a counterperspective to the conceptual understanding of the Arctic being a only a source of CH4. However, due to our limited knowledge of spatiotemporal occurrence of CH4 consumption across a wider range of the Arctic landscape we are left with substantial uncertainites and an overall unconstrained range estimate of this terrestrial CH4 sink and its potential effects on permafrost carbon feedback to the atmospheric CH4 concentration. To address this important knowledge gap and identify the most relevant spatial scaling parameters, we studied in situ CH4 net exchange across a large landscape transect on West Greenland. The transect representated soils formed from the dominant geological parent materials of dry upland tundra soils found in the ice-free land areas of Western Greenland, i.e. 1) granitic/gneissic parent material, 2) basaltic parent material and 3) sedimentary deposits. Results show that the dynamic variations in soil physical properties and soil hydrology exerts an

  19. Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean

    Science.gov (United States)

    Tanski, George; Couture, Nicole; Lantuit, Hugues; Eulenburg, Antje; Fritz, Michael

    2016-07-01

    Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0 mg L-1 with an estimated stock of 13.6 ± 3.0 g m-3 along the YC. An annual DOC flux of 54.9 ± 0.9 Mg yr-1 was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent.

  20. Ecosystem Carbon Dynamics in Response to Five Winters of Experimental Soil Warming and Permafrost Degradation

    Science.gov (United States)

    Mauritz, M.; Schuur, E. A. G.; Bracho, R. G.; Celis, G.; Natali, S.; Hutchings, J. A.; Salmon, V. G.; Webb, E.

    2014-12-01

    Arctic permafrost soils store 1700 Pg carbon (C), almost half the global soil C. For millennia permafrost soil C has been protected from decomposition by cold, waterlogged conditions. Warming temperatures will likely thaw permafrost, however the impact on arctic C balance is uncertain. Nutrient availability is predicted to increase with thaw depth and promote plant growth, potentially creating an ecosystem C sink. However, deeper thaw could also increase microbial respiration and eventually exceed C gains. Using data from a warming experiment in sub-arctic moist acidic tundra, designed to insulate soils in winter and stimulate permafrost degradation, we investigated spatial and temporal drivers of ecosystem C balance. Net ecosystem exchange (NEE) was measured continuously from May-September 2009-2013 using clear automated chambers; ecosystem respiration (Reco) was extrapolated from low light NEE and gross primary productivity (GPP) was derived (GPP = NEE-Reco). Five years of warming led to progressive increases in active layer depth. Active layer depth was positively correlated with cumulative growing season NEE, GPP and Reco. Although warming increased Reco the ecosystem remained a C sink during the growing season because high Reco was offset by increased plant growth and GPP. Eriophorum vaginatum growth accounted for most of the increased plant biomass, and was correlated with cumulative growing season GPP and Reco. NEE, GPP and Reco all peaked mid-season, and the mid-season amplitudes increased annually leading to higher cumulative NEE, GPP and Reco. In the shoulder seasons NEE and GPP were similar among years. In contrast, Reco increased at the end of the growing season each year, and high mid-season GPP was positively correlated with end season Reco. Thus, conditions that promoted plant growth also promoted C loss. These results suggest plant responses to permafrost thaw are an important driver of C dynamics. Reco associated with high biomass may result from

  1. Modeling Block Failure in Vertical Cliffs of Arctic Coasts Underlain by Permafrost

    Science.gov (United States)

    Pollard, W. H.

    2004-12-01

    Arctic coasts lie at the interface between terrestrial systems dominated by permafrost, and marine systems that are characterized by long periods of ice cover and short periods of open water when wave action and storm activity are important. Permafrost, sea ice and wind-wave conditions are driven by regional and local climate forcing and interact in such a way that a change in one produces feedbacks affecting the other two. However, under predicted climate change scenarios of warming, increased storm activity and sea level rise will profoundly affect all three leading to potentially devastating rates of coastal erosion and permafrost degradation. Permafrost coasts are subject to complex erosional processes, however one of the most poorly understood but probably most important is block failure. Thermo-abrasional falls or block collapses provide the most spectacular form of coastal recession in permafrost areas. This study provides computational models for block failure mechanisms and investigates the relative contribution of horizontal thermo-erosional niches and ice wedges to block failure of permafrost cliffs fronted by a beach.

  2. Changing Arctic ecosystems: sea ice decline, permafrost thaw, and benefits for geese

    Science.gov (United States)

    Flint, Paul; Whalen, Mary; Pearce, John M.

    2014-01-01

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) strives to inform resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. A key area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced a warming trend over the past 30 years, leading to reductions in sea ice and thawing of permafrost. Loss of sea ice has increased ocean wave action, leading to erosion and salt water inundation of coastal habitats. Saltwater tolerant plants are now thriving in these areas and this appears to be a positive outcome for geese in the Arctic. This finding is contrary to the deleterious effects that declining sea ice is having on habitats of ice-dependent animals, such as polar bear and walrus.

  3. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    Science.gov (United States)

    Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, J.; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  4. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    OpenAIRE

    Arp, C. D.; Whitman, M.S.; Jones, B M; G. Grosse; B. V. Gaglioti; Heim, K. C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morph...

  5. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  6. Archaeal communities of Arctic methane-containing permafrost.

    Science.gov (United States)

    Shcherbakova, Victoria; Yoshimura, Yoshitaka; Ryzhmanova, Yana; Taguchi, Yukihiro; Segawa, Takahiro; Oshurkova, Victoria; Rivkina, Elizaveta

    2016-10-01

    In the present study, we used culture-independent methods to investigate the diversity of methanogenic archaea and their distribution in five permafrost samples collected from a borehole in the Kolyma River Lowland (north-east of Russia). Total DNA was extracted from methane-containing permafrost samples of different age and amplified by PCR. The resulting DNA fragments were cloned. Phylogenetic analysis of the sequences showed the presence of archaea in all studied samples; 60%-95% of sequences belonged to the Euryarchaeota. Methanogenic archaea were novel representatives of Methanosarcinales, Methanomicrobiales, Methanobacteriales and Methanocellales orders. Bathyarchaeota (Miscellaneous Crenarchaeota Group) representatives were found among nonmethanogenic archaea in all the samples studied. The Thaumarchaeota representatives were not found in the upper sample, whereas Woesearchaeota (formerly DHVEG-6) were found in the three deepest samples. Unexpectedly, the greatest diversity of archaea was observed at a depth of 22.3 m, probably due to the availability of the labile organic carbon and/or due to the migration of the microbial cells during the freezing front towards the bottom. PMID:27312964

  7. Permafrost dynamics structure species compositions of oribatid mite (Acari: Oribatida communities in sub-Arctic palsa mires

    Directory of Open Access Journals (Sweden)

    Inkeri Markkula

    2014-10-01

    Full Text Available Palsa mires are sub-Arctic peatland complexes, vulnerable ecosystems with patches of permafrost. Permafrost thawing in palsa mires occurs throughout Fennoscandia, probably due to local climatic warming. In palsa mires, permafrost thaw alters hydrological conditions, vegetation structure and microhabitat composition with unknown consequences for invertebrate fauna. This study's objectives were to examine the role of microhabitat heterogeneity and the effects of permafrost dynamics and thaw on oribatid mite communities in palsa mires. Oribatid mites were sampled in two palsa mires in Finland and Norway. Three different types of microhabitats were examined: graminoid-dominated wet sites, herb-dominated small hummocks and evergreen shrub-dominated permafrost-underlain palsa hummocks. The results indicate that permafrost dynamics are an important factor structuring oribatid mite communities in palsa mires. The community composition of oribatid mites differed remarkably among microhabitats. Six species were significantly more abundant in permafrost-underlain microhabitats in relation to non-permafrost microhabitats. None of the species identified occurred exclusively in permafrost-underlain microhabitats. Findings suggest that permafrost thaw may not have an impact on species diversity but may alter community composition of oribatid mites in palsa mire ecosystems.

  8. Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma

    DEFF Research Database (Denmark)

    Finster, Kai; Herbert, Rodney Andrew; Lomstein, Bente Aagaard

    2009-01-01

    Two pigmented, Gram-negative, non-motile, pleomorphic rod-shaped bacteria (strains SPM-9T and SPM-10T) were isolated from a permafrost soil collected from the Adventdalen valley, Spitsbergen, northern Norway. A third isolate (strain M5-H2) was recovered from the same soil sample after the sample...... similarity to both Spirosoma linguale LMG 10896T and Spirosoma rigui WPCB 118T. The major fatty acids present in all three isolates were summed feature 3 (comprising iso-C15:0 2-OH and/or C16 : 1 7c; 43.0-48.2 % of the total), C16 : 1 5c (19.1-21.3 %), C16 : 0 (6.7-7.3 %), iso-C17 : 0 3-OH (4.7-6.0 %) and...... iso-C15 : 0 (2.6-5.7 %). On the basis of their phenotypic and genotypic characteristics, the new strains are assigned to two novel species of the genus Spirosoma, for which the names Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov. are proposed. The type strain of Spirosoma spitsbergense...

  9. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, Courtney [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Walter, Katey [Univ. of Alaska, Fairbanks, AK (United States)

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  10. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovsky, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-06-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  11. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  12. The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in a high Arctic tundra ecosystem

    Science.gov (United States)

    Cassidy, Alison E.; Christen, Andreas; Henry, Gregory H. R.

    2016-04-01

    Soil carbon stored in high-latitude permafrost landscapes is threatened by warming and could contribute significant amounts of carbon to the atmosphere and hydrosphere as permafrost thaws. Thermokarst and permafrost disturbances, especially active layer detachments and retrogressive thaw slumps, are present across the Fosheim Peninsula, Ellesmere Island, Canada. To determine the effects of retrogressive thaw slumps on net ecosystem exchange (NEE) of CO2 in high Arctic tundra, we used two eddy covariance (EC) tower systems to simultaneously and continuously measure CO2 fluxes from a disturbed site and the surrounding undisturbed tundra. During the 32-day measurement period in the 2014 growing season, the undisturbed tundra was a small net sink (NEE = -0.1 g C m-2 d-1); however, the disturbed terrain of the retrogressive thaw slump was a net source (NEE = +0.4 g C m-2 d-1). Over the measurement period, the undisturbed tundra sequestered 3.8 g C m-2, while the disturbed tundra released 12.5 g C m-2. Before full leaf-out in early July, the undisturbed tundra was a small source of CO2 but shifted to a sink for the remainder of the sampling season (July), whereas the disturbed tundra remained a source of CO2 throughout the season. A static chamber system was also used to measure daytime fluxes in the footprints of the two towers, in both disturbed and undisturbed tundra, and fluxes were partitioned into ecosystem respiration (Re) and gross primary production (GPP). Average GPP and Re found in disturbed tundra were smaller (+0.40 µmol m-2 s-1 and +0.55 µmol m-2 s-1, respectively) than those found in undisturbed tundra (+1.19 µmol m-2 s-1 and +1.04 µmol m-2 s-1, respectively). Our measurements indicated clearly that the permafrost disturbance changed the high Arctic tundra system from a sink to a source for CO2 during the majority of the growing season (late June and July).

  13. Temperature Effects on Microbial CH4 and CO2 Production in Permafrost-Affected Soils From the Barrow Environmental Observatory

    Science.gov (United States)

    Graham, D. E.; Roy Chowdhury, T.; Zheng, J.; Moon, J. W.; Yang, Z.; Gu, B.; Wullschleger, S. D.

    2015-12-01

    Warmer Arctic temperatures are increasing the annual soil thaw depth and prolonging the thaw season in Alaskan permafrost zones. This change exposes organic matter buried in the soils and permafrost to microbial degradation and mineralization to form CO2 and CH4. The proportion and fluxes of these greenhouse gases released into the atmosphere control the global feedback on warming. To improve representations of these biogeochemical processes in terrestrial ecosystem models we compared soil properties and microbial activities in core samples of polygonal tundra from the Barrow Environmental Observatory. Measurements of soil water potential through the soil column characterized water binding to the organic and mineral components. This suction combines with temperature to control freezing, gas diffusion and microbial activity. The temperature-dependence of CO2 and CH4 production from anoxic soil incubations at -2, +4 or +8 °C identified a significant lag in methanogenesis relative to CO2 production by anaerobic respiration and fermentation. Changes in the abundance of methanogen signature genes during incubations indicate that microbial population shifts caused by thawing and warmer temperatures drive changes in the mixtures of soil carbon degradation products. Comparisons of samples collected across the microtopographic features of ice-wedge polygons address the impacts of water saturation, iron reduction and organic matter content on CH4 production and oxidation. These combined measurements build process understanding that can be applied across scales to constrain key response factors in models that address Arctic soil warming.

  14. Geothermal inversion of Canadian Arctic ground temperatures and effect of permafrost aggradation at emergent shorelines

    Science.gov (United States)

    Taylor, Alan E.; Wang, Kelin

    2008-07-01

    We apply traditional geothermal spectrum inversion to precision temperature logs and thermal conductivity from 10 wells in the Canadian Arctic Archipelago (75° to 81°N). Sites lie beyond the Holocene marine limit, and no effect of deep permafrost dynamics is expected. Ground surface temperature (GST) changes correlate with the Little Ice Age and Little Climatic Optimum with average amplitudes relative to 1980 of -2.7 K and +1.6 K, respectively. Results correlate broadly with similar reconstructions for this area and Greenland ice cap holes GRIP and Dye-3 to the southeast. An offshore site in 244 m water yields a Little Ice Age seabed temperature amplitude of -0.7 K, suggesting a moderated climate impact on regional ocean temperatures. Nearshore boreholes where permafrost is aggrading owing to glacioisostatic emergence are excluded; we demonstrate that traditional inversion codes without latent heat of phase change predict the magnitude of the emergence signal but a timing far too recent.

  15. Slope Edge Deformation and Permafrost Dynamics Along the Arctic Shelf Edge, Beaufort Sea, Canada

    Science.gov (United States)

    Paull, C. K.; Dallimore, S.; Caress, D. W.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Riedel, M.; Melling, H.

    2015-12-01

    The shelf of the Canadian Beaufort Sea is underlain by relict offshore permafrost that formed in the long intervals of terrestrial exposure during glacial periods. At the shelf edge the permafrost thins rapidly and also warms. This area has a very distinct morphology that we attribute to both the formation and degradation of ice bearing permafrost. Positive relief features include circular to oval shaped topographic mounds, up to 10 m high and ~50 m in diameter which occur at a density of ~6 per km2. Intermixed are circular topographic depressions up to 20 m deep. This topography was investigated using an autonomous underwater vehicle that provides 1 m horizontal resolution bathymetry and chirp profiles, a remotely operated vehicle to document seafloor textures, and sediment cores to sample pore waters. A consistent down-core freshening at rates of 14 to 96 mM Cl- per meter was found in these pore waters near the shelf edge. Downward extrapolation of these trends indicates water with ≤335 mM Cl- should occur at 2.3 to 22.4 m sub-seafloor depths within this shelf edge deformation band. Pore water with 335 mM Cl- or less freezes at -1.4°C. As bottom water temperatures in this area are persistently (<-1.4°C) cold and ground ice was observed in some core samples, we interpret the volume changes associated with mound formation are in part due to pore water freezing. Thermal models (Taylor et al., 2014) predict brackish water along the shelf edge may be sourced in relict permafrost melting under the adjacent continental shelf. Buoyant brackish water is hypothesized to migrate along the base of the relict permafrost, to emerge at the shelf edge and then refreeze when it encounters the colder seafloor. Expansion generated by the formation of ice-bearing permafrost generates the positive relief mounds and ridges. The associated negative relief features may be related to permafrost dynamics also. Permafrost dynamics may have geohazard implications that are unique to the

  16. Permafrost: It's a gas

    Science.gov (United States)

    Christensen, Torben R.

    2016-09-01

    Climate change is causing widespread permafrost thaw in the Arctic. Measurements at 33 Arctic lakes show that old carbon from thawing permafrost is being emitted as methane, though emission rates have not changed during the past 60 years.

  17. Microbial decomposer communities in Alaskan permafrost soils and their response to thaw

    Science.gov (United States)

    Waldrop, M. P.; Wickland, K.; Harden, J.; Striegl, R.; Aiken, G.

    2007-12-01

    Permafrost protected soil carbon in boreal forest ecosystems represents a significant portion of the approximately 500 Gt C in the soil organic matter of boreal regions. The magnitude of this thermally-protected carbon pool makes it a particularly important to the global C cycle within the context of global climatic change. Permafrost has acted as a C sink for thousands of years yet currently has been warming at a rate of 1°C per decade, making the C contained within it potentially available for decomposition. Thawing permafrost opens a latch into a globally important C reservoir that could be released to the atmosphere (as CO2) and rivers (as dissolved organic carbon, DOC), affecting greenhouse warming and aquatic chemistry. A gap in our current knowledge is the extent to which permafrost-protected C is available for microbial metabolism once soils thaw. Current indications are that organic matter contained within permafrost is relatively labile since it is not protected from decomposition by physical protection or humification mechanisms. However, we have little understanding of the microbiology of permafrost soils, which could significantly affect the rate of decomposition of permafrost C after thaw. Our aim was to use quantitative molecular techniques to examine the abundance of microbial decomposer functional groups in permafrost soils, the enzymes they encode, and their rates of respiration under both aerobic and anaerobic conditions in a simulated summer thaw at 5°C. We compared microbial and chemical characteristics of active layer and permafrost soils from black spruce stands in three distinct geographic regions: Coldfoot, Hess Creek, and Smith Lake, AK. We chose these regions because they span a range of permafrost conditions from shallow active layers and mineral-associated permafrost layers to thick active layers and deep organic permafrost soils. Soil carbon and nitrogen concentrations did not differ between active layer and permafrost soils within

  18. Distribution and biophysical processes of beaded streams in Arctic permafrost landscapes

    Science.gov (United States)

    Arp, Christopher D.; Whitman, Matthew S.; Jones, Benjamin M.; Grosse, Guido; Gaglioti, Benjamin V.; Heim, Kurt C.

    2015-01-01

    Beaded streams are widespread in permafrost regions and are considered a common thermokarst landform. However, little is known about their distribution, how and under what conditions they form, and how their intriguing morphology translates to ecosystem functions and habitat. Here we report on a Circum-Arctic survey of beaded streams and a watershed-scale analysis in northern Alaska using remote sensing and field studies. We mapped over 400 channel networks with beaded morphology throughout the continuous permafrost zone of northern Alaska, Canada, and Russia and found the highest abundance associated with medium- to high- ground ice content permafrost in moderately sloping terrain. In the Fish Creek watershed, beaded streams accounted for half of the drainage density, occurring primarily as low-order channels initiating from lakes and drained lake basins. Beaded streams predictably transition to alluvial channels with increasing drainage area and decreasing channel slope, although this transition is modified by local controls on water and sediment delivery. Comparison of one beaded channel using repeat photography between 1948 and 2013 indicate a relatively stable landform and 14C dating of basal sediments suggest channel formation may be as early as the Pleistocene-Holocene transition. Contemporary processes, such as deep snow accumulation in riparian zones effectively insulates channel ice and allows for perennial liquid water below most beaded stream pools. Because of this, mean annual temperatures in pool beds are greater than 2°C, leading to the development of perennial thaw bulbs or taliks underlying these thermokarst features. In the summer, some pools thermally stratify, which reduces permafrost thaw and maintains coldwater habitats. Snowmelt generated peak-flows decrease rapidly by two or more orders of magnitude to summer low flows with slow reach-scale velocity distributions ranging from 0.1 to 0.01 m/s, yet channel runs still move water rapidly

  19. Coupling soil Carbon Fluxes, Soil Microbes, and High-Resolution Carbon Profiling in Permafrost Transitions

    Science.gov (United States)

    Anderson, C.; Stegen, J.; Bond-Lamberty, B. P.; Tfaily, M. M.; Huang, M.; Liu, Y.

    2015-12-01

    Microbial communities play a central role in the functioning of natural ecosystems by heavily influencing biogeochemical cycles. Understanding how shifts in the environment are tied to shifts in biogeochemical rates via changes in microbial communities is particularly relevant in high latitude terrestrial systems underlain by permafrost due to vast carbon stocks currently stored within thawing permafrost. There is limited understanding, however, of the interplay among soil-atmosphere CO2 fluxes, microbial communities, and SOM chemical composition. To address this knowledge gap, we leverage the distinct spatial transitions in permafrost-affected soils at the Caribou Poker Creek Research Watershed, a 104 km2 boreal watershed ~50 km north of Fairbanks, AK. We integrate a variety of data to gain new knowledge of the factors that govern observed patterns in the rates of soil CO2 fluxes associated with permafrost to non-permafrost transition zones. We show that nonlinearities in fluxes are influenced by depth to permafrost, tree stand structure, and soil C composition. Further, using 16S sequencing methods we explore microbial community assembly processes and their connection to CO2 flux across spatial scales, and suggest a path to more mechanistically link microbes to large-scale biogeochemical cycles. Lastly, we use the Community Land Model (CLM) to compare Earth System Model predictions of soil C cycling with empirical measurements. Deviations between CLM predictions and field observations of CO2 flux and soil C stocks will provide insight for how the model may be improved through inclusion of additional biotic (e.g., microbial community composition) and abiotic (e.g., organic carbon composition) features, which will be critical to improve the predictive power of climate models in permafrost-affected regions.

  20. Soil organic carbon pools and stocks in permafrost-affected soils on the tibetan plateau.

    Directory of Open Access Journals (Sweden)

    Corina Dörfer

    Full Text Available The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA and continuous permafrost (site Wudaoliang, WUD. Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (1.6 g cm(-3 of mineral associated organic matter (MOM. The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg(-1. Higher SOC contents (320 g kg(-1 were found in OPOM while MOM had the lowest SOC contents (29 g kg(-1. Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA and 22% (WUD to the total SOC stocks. In HUA mean SOC stocks (0-30 cm depth account for 10.4 kg m(-2, compared to 3.4 kg m(-2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation.

  1. Permafrost Meta-Omics and Climate Change

    Science.gov (United States)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  2. Alaskan Arctic Soils: Relationship between Microbial Carbon Usage and Soil Composition

    Science.gov (United States)

    Li, H.; Ziolkowski, L. A.

    2015-12-01

    Carbon stored in Arctic permafrost carbon is sensitive to climate change. Microbes are known to degrade Arctic soil organic carbon (OC) and potentially release vast quantitates of CO2 and CH4. Previously, it has been shown that warming of Arctic soils leads to microbes respiring older carbon. To examine this process, we studied the microbial carbon usage and its relationship to the soil OC composition in active layer soils at five locations along a latitudinal transect on the North Slope of Alaska using the compound specific radiocarbon signatures of the viable microbial community using phospholipid fatty acids (PLFA). Additional geochemical parameters (C/N, 13C, 15N and 14C) of bulk soils were measured. Overall there was a greater change with depth than location. Organic rich surface soils are rich in vegetation and have high PLFA based cell densities, while deeper in the active layer geochemical parameters indicated soil OC was degraded and cell densities decreased. As expected, PLFA indicative of Fungi and Protozoa species dominated in surface soils, methyl-branched PLFAs, indicative of bacterial origin, increased in deeper in the active layer. A group of previously unreported PLFAs, believed to correlate to anaerobic microbes, increased at the transition between the surface and deep microbial communities. Cluster analysis based on individual PLFAs of samples confirmed compositional differences as a function of depth dominated with no site to site differences. Radiocarbon data of soil OC and PLFA show the preferential consumption of younger soil OC by microbes at all sites and older OC being eaten in deep soils. However, in deeper soil, where the C/N ratio suggests lower bioavailability, less soil OC was incorporated into the microbes as indicating by greater differences between bulk and PLFA radiocarbon ages.

  3. Chemical indicators of cryoturbation and microbial processing throughout an alaskan permafrost soil depth profile

    Science.gov (United States)

    Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...

  4. Autotrophic and heterotrophic components of soil respiration in permafrost zone.

    Science.gov (United States)

    Udovenko, Maria; Goncharova, Olga

    2016-04-01

    Soil carbon dioxide emissions production is an important integral indicator of soil biological activity and it includes several components: the root respiration and microbial decomposition of organic matter. Separate determination of the components of soil respiration is necessary for studying the balance of carbon in the soil and to assessment its potential as a sink or source of carbon dioxide. The aim of this study was testing field methods of separate determination of root and microbial respiration in soils of north of West Siberia. The research took place near the town Nadym, Yamalo-Nenets Autonomous District (north of West Siberia).The study area was located in the northern taiga with sporadic permafrost. Investigations were carried out at two sites: in forest and in frozen peatland. 3 methods were tested for the separation of microbial and root respiration. 1) "Shading"; 2) "Clipping"(removing the above-ground green plant parts); 3)a modified method of roots exclusion (It is to compare the emission of soils of "peat spots", devoid of vegetation and roots, and soils located in close proximity to the spots on which there is herbaceous vegetation and moss). For the experiments on methods of "Shading" and "Clipping" in the forest and on the frozen peatland ware established 12 plots, 1 x 1 m (3 plots in the forest and at 9 plots on frozen peatland; 4 of them - control).The criterions for choosing location sites were the similarity of meso- and microrelief, the same depth of permafrost, the same vegetation. Measurement of carbon dioxide emissions (chamber method) was carried out once a day, in the evening, for a week. Separation the root and microbial respiration by "Shading" showed that in the forest the root respiration contribution is 5%, and microbial - 95%. On peatlands root respiration is 41%, 59% of the microbial. In the experiment "Clipping" in peatlands root respiration is 56%, the microbial respiration - 44%, in forest- root respiration is 17%, and

  5. The role of snow cover and soil freeze/thaw cycles affecting boreal-arctic soil carbon dynamics

    Directory of Open Access Journals (Sweden)

    Y. Yi

    2015-07-01

    Full Text Available Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (∼ 0.8–1.3 days decade−1 in the mean annual snow cover extent and frozen season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to changes in snow cover and soil freeze/thaw processes in the Pan-Arctic region over the past three decades (1982–2010. Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD cm, corresponding with widespread warming and lengthening non-frozen season. Warming promotes vegetation growth and soil heterotrophic respiration, particularly within surface soil layers (≤ 0.2 m. The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m soil layers, especially in colder climate zones (mean annual T ≤ −10 °C. Our results demonstrate the important control of snow cover in affecting northern soil freeze/thaw and soil carbon decomposition processes, and the necessity of considering both warming, and changing precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  6. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    Directory of Open Access Journals (Sweden)

    I. Antcibor

    2013-02-01

    Full Text Available Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N–69.5° N representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe, arsenic (As, manganese (Mn, zinc (Zn, nickel (Ni, copper (Cu, lead (Pb, cadmium (Cd, cobalt (Co and mercury (Hg in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were

  7. Buried glacier ice in permafrost, a window to the past: examples from Bylot Island, Canadian Arctic

    Science.gov (United States)

    Fortier, D.; Coulombe, S.; Kanevskiy, M. Z.; Paquette, M.; Shur, Y.; Stephani, E.

    2011-12-01

    Bylot Island is located north of Baffin Island (73°N, 80°W) and is extensively covered by an ice cap and its outlet glaciers flowing towards the arctic lowland of the Lancaster formation. During summers of 2009 and 2011 several active-layer detachment slides exposed large massive ice bodies and other types of debris-rich ice that were interpreted as buried glacier ice. The upper part of the massive ice and debris-rich ice were usually in contact with various types of ice-contact or glacio-fluvial sediments and in some cases they were covered by mass wasting/colluvial deposits. This suggests that their preservation was likely related to burial of the ice and refreezing of the overlying sediments following permafrost aggradation. A preliminary analysis of the ice facies and ice crystals revealed the presence of four distinct types of ice: 1) clear-ice bodies with very few sediment and no organic inclusions. The ice crystals were large (cm), randomly oriented and air bubbles were observed at the junction of crystals. These characteristics could potentially indicate an englacial (snow-neve metamorphism) origin for these clear ice bodies; 2) large, meter thick, clear ice layers with no sediment, nor organics. The ice crystals were large (cm), several cm long, oriented in the same direction, and vertically aligned. These characteristics could potentially point to water that refroze in a tunnel incised in englacial ice; 3) Successive, mm to cm thick, ice layers, separated by undulating sand and gravel bands also containing cobles to boulder size rock fragments. These characteristics could potentially represent regelation ice formed at the base of glaciers and incorporated to the glacier sole; 4) mm to cm suspended aggregate of fine-grained sediments in clear ice. These micro-suspended and suspended cryostructures were sometimes deformed and aligned in the form of thin (mm) undulating layers. These micro-structures were very similar to basal ice facies, presumably

  8. Viable Species of Flamella (Amoebozoa: Variosea) Isolated from Ancient Arctic Permafrost Sediments.

    Science.gov (United States)

    Shmakova, Lyubov; Bondarenko, Natalya; Smirnov, Alexey

    2016-02-01

    Six viable strains of amoebae belonging to the genus Flamella (Amoebozoa, Variosea) were isolated from permafrost sediments sampled in the Russian Arctic region. Two of them are from late Pleistocene permafrost in North-East Siberia, and four--from Holocene and late Pleistocene in North-West Siberia. Light- and electron-microscopic study and molecular phylogeny show that these isolates represent two new species belonging to the genus Flamella. Both species are cyst-forming. This is a remarkable case of high resistance of protozoan cysts, allowing them to survive and recover an amoebae population after a very long, geologically significant period of rest; a "snapshot" of evolution in time. This study directly shows for the first time that amoeba cysts can be conserved not only for years and decades but for many thousand years and then recover, contributing to the formation of an active microbial community. We propose to name the new species as Flamella pleistocenica n.sp. and Flamella beringiania n.sp. Phylogenetic analysis shows that the genus Flamella is a robust and potentially species-rich group of Variosea. PMID:26735346

  9. Microbes residing in young organic rich Alaskan soils contain older carbon than those residing in old mineral high Arctic soils

    Science.gov (United States)

    Ziolkowski, L. A.; Slater, G. F.; Onstott, T. C.; Whyte, L.; Townsend-Small, A.

    2013-12-01

    Arctic soils range from very organic rich to low carbon and mineral-dominated soils. At present, we do not yet fully understand if all carbon in the Arctic is equally vulnerable to mineralization in a warmer climate. Many studies have demonstrated that ancient carbon is respired when permafrost has thawed, yet our understanding of the active layer and permafrost carbon dynamics is still emerging. In an effort to remedy this disconnect between our knowledge of surface fluxes and below ground processes, we used radiocarbon to examine the microbial carbon dynamics in soil cores from organic rich soils near Barrow, Alaska and mineral soils from the Canadian high Arctic. Specifically, we compared the microbial community using lipid biomarkers, the inputs of carbon using n-alkanes and measured the 14C of both the bulk organic carbon and of the microbial lipids. In theory, the microbial lipids (phospholipid fatty acids, PLFA) represent the viable microbial community, as these lipids are hydrolyzed quickly after cell death. Variations in the PLFA distributions suggested that different microbial communities inhabit organic rich Alaskan soils and those of the Canadian high Arctic. When the PLFA concentrations were converted to cellular concentration, they were within the same order of magnitude (1 to 5 x 108 cells/g dry soil) with slightly higher cell concentrations in the organic rich Alaskan soils. When these cellular concentrations were normalized to the organic carbon content, the Canadian high Arctic soils contained a greater proportion of microbes. Although bulk organic carbon 14C of Alaskan soils indicated more recent carbon inputs into the soil than the Canadian high Arctic soils, the 14C of the PLFA revealed the opposite. For corresponding depth horizons, microbes in Alaskan soils were consuming carbon 1000 to 1500 years older than those in the Canadian high Arctic. Differences between the 14C content of bulk organic carbon and the microbial lipids were much smaller

  10. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams

    Directory of Open Access Journals (Sweden)

    J. R. Larouche

    2015-03-01

    Full Text Available In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC to aquatic ecosystems, however the magnitude of these effects compared to the natural background variability of DOC at the watershed scale is not well known. We measured DOC quantity, composition, and biodegradability from 14 river and stream reaches (watershed sizes ranging from 1.5–167 km2 some of which were impacted by permafrost collapse (thermokarst and fire. We found that region had a significant impact on quantity and biodegradability of DOC, likely driven by landscape and watershed characteristics such as lithology, soil and vegetation type, elevation, and glacial age. However, contrary to our hypothesis, we found that streams disturbed by thermokarst and fire did not contain significantly altered labile DOC fractions compared to adjacent reference waters, potentially due to rapid ecosystem recovery after fire and thermokarst as well as the limited spatial extent of thermokarst. Overall, biodegradable DOC ranged from 4 to 46% and contrary to patterns of DOC biodegradability in large Arctic rivers, seasonal variation in DOC biodegradability showed no clear pattern between sites, potentially related to stream geomorphology and position along the river network. While thermokarst and fire can alter DOC quantity and biodegradability at the scale of the feature, we conclude that tundra ecosystems are resilient to these types of disturbance.

  11. THE CURRENT DYNAMICS OF THE SUBMARINE PERMAFROST AND METHANE EMISSION ON THE SHELF OF THE EASTERN ARCTIC SEAS

    Directory of Open Access Journals (Sweden)

    O. A. Anisimov

    2012-01-01

    Full Text Available We study the methane emission over the East Siberian Arctic Shelf (ESAS under the changing sub-aquatic permafrost conditions from the time of inundation 9–6 thousand years BP to present and further until the end of the millennium. The study is based on the full-physics model of hydrothermal regime of soil. Our results indicate that the current elevated methane emission from ESAS is responsible for 0.01 ºС global air temperature rise. Even under the hypothetic climate scenario that overestimates the range of near-bottom water temperature rise, projected by the end of the millennium thawing of the bottom sediments is likely to be about90 mand will thus not reach the upper limit of the methane hydrate stability zone that is located 100–140 munderneath the sea bottom. The results of the study do not support the so called «methane bomb» hypothesis that is widely discussed in the scientific literature and in the media.

  12. Evaluating climate variables, indexes and thresholds governing Arctic urban sustainability: case study of Russian permafrost regions

    Science.gov (United States)

    Anisimov, O. A.; Kokorev, V.

    2013-12-01

    Addressing Arctic urban sustainability today forces planners to deal with the complex interplay of multiple factors, including governance and economic development, demography and migration, environmental changes and land use, changes in the ecosystems and their services, and climate change. While the latter can be seen as a factor that exacerbates the existing vulnerabilities to other stressors, changes in temperature, precipitation, snow, river and lake ice, and the hydrological regime also have direct implications for the cities in the North. Climate change leads to reduced demand for heating energy, on one hand, and heightened concerns about the fate of the infrastructure built upon thawing permafrost, on the other. Changes in snowfall are particularly important and have direct implications for the urban economy, as together with heating costs, expenses for snow removal from streets, airport runways, roofs and ventilation corridors underneath buildings erected on pile foundations on permafrost constitute the bulk of the city's maintenance budget. Many cities are located in river valleys and are prone to flooding that leads to enormous economic losses and casualties, including human deaths. The severity of the northern climate has direct implications for demographic changes governed by regional migration and labor flows. Climate could thus be viewed as an inexhaustible public resource that creates opportunities for sustainable urban development. Long-term trends show that climate as a resource is becoming more readily available in the Russian North, notwithstanding the general perception that globally climate change is one of the challenges facing humanity in the 21st century. In this study we explore the sustainability of the Arctic urban environment under changing climatic conditions. We identify key governing variables and indexes and study the thresholds beyond which changes in the governing climatic parameters have significant impact on the economy

  13. Vulnerability of Permafrost Soil Carbon to Climate Warming: Evaluating Controls on Microbial Community Composition

    Science.gov (United States)

    Abstract: Despite the fact that permafrost soils contain up to half of the carbon (C) in terrestrial pools, we have a poor understanding of the controls on decomposition in thawed permafrost. Global climate models assume that decomposition increases linearly with temperature, yet decomposition in th...

  14. Establishing Permafrost Temperature Data Reanalysis

    Science.gov (United States)

    Romanovsky, V. E.; Sazonova, T. S.; Tipenko, G. S.

    2003-12-01

    permafrost temperature data that were obtained during the 1950s and early 1960s by Max Brewer of USGS in Barrow region. Those measurements were of very high quality, with a precision of generally 0.01oC. A specific numerical model for the Barrow permafrost temperature regime was developed in 1997 at the GI Permafrost Lab. The model was calibrated using data from shallow (down to one meter) soil temperatures obtained by Ken Hinkel at a Barrow site with surface conditions similar to the Brewer site. No data from the Brewer sites were used for the calibration. The daily air temperatures and snow cover thickness during the entire period of measurements (1924-2001) at the Barrow meteorological station were used as input data for this calibrated model. As a result, a time series of daily ground temperatures for the depths between 0 and 200 meters were obtained. To compare calculated temperatures with measured data, we used the time interval between September 1951 and October 1952, when weekly measurements were available. The results of this comparison were much better than expected. For the entire period, which covers more than one year, the differences between calculated and measured permafrost temperatures were typically smaller than 0.3oC in the depth interval between 2 and 18 meters. They practically never exceeded 1oC in the upper two meters of soil and permafrost. The same approach of permafrost temperature data reanalysis was used for many other sites in Alaska and in the Russian Arctic and Sub-Arctic. The results of reconstruction of the permafrost temperature dynamics in 20th century and forecasts for the 21st century based on this approach for the Fairbanks, Barrow, Yakutsk, Tiksi, and Vorkuta sites will be presented.

  15. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes

    DEFF Research Database (Denmark)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel;

    2015-01-01

    , their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well...... activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganismsin some permafrost soils(2-4) and a rapid shift in functional gene composition during short-term thaw experiments(3). However, the fate...

  16. Comparison of soil derived tetraether membrane lipid distributions and plant-wax dD compositions for reconstruction of Canadian Arctic temperatures

    NARCIS (Netherlands)

    Pautler, B.G.; Reichart, G.-J.; Sanborn, P.T.; Simpson, M.J.; Weijers, J.W.H.

    2014-01-01

    Polar amplification of climate warming has received much attention as these rapidly rising temperatures have the potential to alter ecosystem function and biogeochemical cycles. In particular carbon preserved in Arctic tundra soil and permafrost may be especially vulnerable resulting in carbon cycle

  17. Comparison of soil derived tetraether membrane lipid distributions and plant-wax δD compositions for reconstruction of Canadian Arctic temperatures

    NARCIS (Netherlands)

    Pautler, B.G.; Reichart, G.-J.; Sanborn, P.T.; Simpson, M.J.; Weijers, J.W.H.

    2014-01-01

    Polar amplification of climate warming has received much attention as these rapidly rising temperatures have the potential to alter ecosystem function and biogeochemical cycles. In particular carbon preserved in Arctic tundra soil and permafrost may be especially vulnerable resulting in carbon cycle

  18. Storage and turnover of organic matter fractions along a Siberian Arctic soil transect

    Science.gov (United States)

    Gentsch, Norman; Mikutta, Robert; Shibistova, Olga; Guggenberger, Georg

    2013-04-01

    Recent observation and climate models demonstrate that arctic ecosystems are already affected by climate warming, as revealed by continuous permafrost degradation and increase of active layer depths. Variations of organic matter (OM) storage in different soil horizons and the OM quality are likely the major drivers of trace gas emissions to the atmosphere. A better understanding of the biogeochemical cycling of OM in permafrost environments is the key to predict future climate changes and the role of terrestrial arctic regions. This study investigates the storage and turnover patterns of OM in functionally different pools, i.e., in particulate plant debris, extractable-water-soluble OM, and mineral-associated OM in permafrost soils along a West-East Siberian transect in the Russian Arctic. We quantified the stocks of total soil organic C (OC) and the respective OM fractions for the first soil meter. Furthermore, we estimated their apparent 14C ages by accelerator mass spectrometry, and determined the mineralization rates and bioavailability of particulate, mineral-bound, and bulk OM in a 90-day incubation experiment. Particulate OM was separated from the mineral-associated OM fraction by density fractionation with sodium polytungstate (density cut-off 1.6 g cm-3) and the OM liberated by this treatment was quantified. Considerable differences in OM storage existed from the West- to the East Siberian Arctic. Cryosols of the Central- and East Siberian sampling sites stored on average 56% more OC than those in West Siberia (25 ± 7 kg m-2versus 11 ± 4 kg m-2 to 1 m soil depth). However, the proportion of the three OM fractions to total OM was similar among the sites. In mineral soil horizons, on average, 17 ± 5% of the total OM was particulate OM, 61 ± 10% was associated with minerals, and 21 ± 3% could be mobilized in dissolved forms during density fractionation. Except for West Siberian soils, ~30% of the OM of the first soil meter was stored in permafrost while

  19. DOE Final Report on Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, C. Adam [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry M. [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Anthony, Katey Walter [Univ. of Alaska, Fairbanks, AK (United States); Kicklighter, David [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Gao, Xiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-11-03

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  20. Effects of Conversion from Boreal Forest to Arctic Steppe on Soil Communities and Ecosystem Carbon Pools

    Science.gov (United States)

    Han, P. D.; Natali, S.; Schade, J. D.; Zimov, N.; Zimov, S. A.

    2014-12-01

    The end of the Pleistocene marked the extinction of a great variety of arctic megafauna, which, in part, led to the conversion of arctic grasslands to modern Siberian larch forest. This shift may have increased the vulnerability of permafrost to thawing because of changes driven by the vegetation shift; the higher albedo of grassland and low insulation of snow trampled by animals may have decreased soil temperatures and reduced ground thaw in the grassland ecosystem, resulting in protection of organic carbon in thawed soil and permafrost. To test these hypothesized impacts of arctic megafauna, we examined an experimental reintroduction of large mammals in northeast Siberia, initiated in 1988. Pleistocene Park now contains 23 horses, three musk ox, one bison, and several moose in addition to the native fauna. The park is 16 square km with a smaller enclosure (animals spend most of their time and our study was focused. We measured carbon-pools in forested sites (where scat surveys showed low animal use), and grassy sites (which showed higher use), within the park boundaries. We also measured thaw depth and documented the soil invertebrate communities in each ecosystem. There was a substantial difference in number of invertebrates per kg of organic soil between the forest (600 ± 250) and grassland (300 ± 250), though these differences were not statistically significant they suggest faster nutrient turnover in the forest or a greater proportion of decomposition by invertebrates than other decomposers. While thaw depth was deeper in the grassland (60 ± 4 cm) than in the forest (40 ± 6 cm), we did not detect differences in organic layer depth or percent organic matter between grassland and forest. However, soil in the grassland had higher bulk density, and higher carbon stocks in the organic and mineral soil layers. Although deeper thaw depth in the grassland suggests that more carbon is available to microbial decomposers, ongoing temperature monitoring will help

  1. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils

    Science.gov (United States)

    Schädel, Christina; Bader, Martin K.-F.; Schuur, Edward A. G.; Biasi, Christina; Bracho, Rosvel; Čapek, Petr; de Baets, Sarah; Diáková, Kateřina; Ernakovich, Jessica; Estop-Aragones, Cristian; Graham, David E.; Hartley, Iain P.; Iversen, Colleen M.; Kane, Evan; Knoblauch, Christian; Lupascu, Massimo; Martikainen, Pertti J.; Natali, Susan M.; Norby, Richard J.; O'Donnell, Jonathan A.; Chowdhury, Taniya Roy; Šantrůčková, Hana; Shaver, Gaius; Sloan, Victoria L.; Treat, Claire C.; Turetsky, Merritt R.; Waldrop, Mark P.; Wickland, Kimberly P.

    2016-10-01

    Increasing temperatures in northern high latitudes are causing permafrost to thaw, making large amounts of previously frozen organic matter vulnerable to microbial decomposition. Permafrost thaw also creates a fragmented landscape of drier and wetter soil conditions that determine the amount and form (carbon dioxide (CO2), or methane (CH4)) of carbon (C) released to the atmosphere. The rate and form of C release control the magnitude of the permafrost C feedback, so their relative contribution with a warming climate remains unclear. We quantified the effect of increasing temperature and changes from aerobic to anaerobic soil conditions using 25 soil incubation studies from the permafrost zone. Here we show, using two separate meta-analyses, that a 10 °C increase in incubation temperature increased C release by a factor of 2.0 (95% confidence interval (CI), 1.8 to 2.2). Under aerobic incubation conditions, soils released 3.4 (95% CI, 2.2 to 5.2) times more C than under anaerobic conditions. Even when accounting for the higher heat trapping capacity of CH4, soils released 2.3 (95% CI, 1.5 to 3.4) times more C under aerobic conditions. These results imply that permafrost ecosystems thawing under aerobic conditions and releasing CO2 will strengthen the permafrost C feedback more than waterlogged systems releasing CO2 and CH4 for a given amount of C.

  2. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    Science.gov (United States)

    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the v...

  3. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    Science.gov (United States)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker

  4. Temperature regimes of northern taiga soils in the isolated permafrost zone of Western Siberia

    Science.gov (United States)

    Goncharova, O. Yu.; Matyshak, G. V.; Bobrik, A. A.; Moskalenko, N. G.; Ponomareva, O. E.

    2015-12-01

    Soil temperature regimes were studied in three ecosystems of the north of Western Siberia in the zone of isolated permafrost: the forest ecosystem with gleyic loamy sandy podzol (Stagnic Albic Podzol), the flat-topped peat mound ecosystem with humus-impregnated loamy sandy to light loamy peat cryozem (Histic Oxyaquic Turbic Cryosol (Arenic)), and the peat mound (palsa) ecosystem with oligotrophic destructive permafrost-affected peat soil (Cryic Histosol). Annual temperature measurements in the soil profiles demonstrated that these soils function under different temperature regimes: very cold permafrost regime and cold nonpermafrost regime. The following annual temperature characteristics proved to be informative for the studied soils: sums of above-zero temperatures at the depths of 10 and 20 cm, the maximum depth of penetration of temperatures above 10°C, and the number of days with daily soil temperatures above (or below) 0°C at the depth of 20 cm. On the studied territory, the insulating effect of the snow cover in winter was at least two times more pronounced than the insulating effect of the vegetation cover in summer. Cryogenic soils of the studied region are characterized by the high buffering towards changing climatic parameters. This is explained by the presence of the litter and peat horizons with a very low thermal diffusivity and by the presence of permafrost at a relatively shallow depth with temperature gradients preventing penetration of heat to the permafrost table.

  5. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    DEFF Research Database (Denmark)

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan;

    2012-01-01

    Predicted global warming will be most pronounced in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to organic matter decomposition rates and associated carbon fluxes in Arctic permafrost soils will sign...

  6. Vertical electric sounding of selected Arctic and Antarctic soils: advances in express field investigation of the Cryosols

    Science.gov (United States)

    Abakumov, Evgeny

    2016-04-01

    Physical properties of the soils of the cold environments are underestimated. Soil and permafrost border and active layer thickness are the key classification indicators for the polar soils. That is why electrophysical research has been conducted with aim to determine the soil-permafrost layer heterogeneity and the depth of the uppermost permafrost layer on examples of selected plots in Antarctic region and Russian Arctic. The electric resistivity (ER) was measured directly in the soil profiles using the vertical electrical sounding (VERS) method, which provides data on the changes in the electrical resistivity throughout the profile from the soil surface without digging pits or drilling. This method allows dividing the soil layer vertically into genetic layers, which are different on main key properties and characteristics Different soil layers have different ER values, that is why the sharp changes in ER values in soil profile can be interpreted as results of transition of one horizon to another. In our study, the resistivity measurements were performed using four-electrode (AB + MN) arrays of the AMNB configuration with use of the Schlumberger geometry. A Landmapper ERM-03 instrument (Landviser, USA) was used for the VES measurements in this study. Electrodes were situated on the soil surface, distance between M and N was fixes, while distance from A to B were changed during the sounding. Vertical Electrical Resistivity Soundings (VERS) using Schlumberger array were carried out at stations, situated on the different plots of terrestrial ecosystems of Arctic and Antarctic. The resistance readings at every VERS point were automatically displayed on the digital readout screen and then written down on the field note book. The soils had been 'sounded' thoroughly and found to vary between 5 cm and 3-5 m in A-B distances. It was shown that use of VES methodology in soil survey is quite useful for identification of the permafrost depth without digging of soil pit. This

  7. The transcriptional response of microbial communities in thawing Alaskan permafrost soils

    OpenAIRE

    Coolen, Marco J. L.; Orsi, William D.

    2015-01-01

    Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh thro...

  8. Distribution of glacial deposits, soils, and permafrost in Taylor Valley, Antarctica

    Science.gov (United States)

    Bockheim, J.G.; Prentice, M.L.; McLeod, M.

    2008-01-01

    We provide a map of lower and central Taylor Valley, Antarctica, that shows deposits from Taylor Glacier, local alpine glaciers, and grounded ice in the Ross Embayment. From our electronic database, which includes 153 sites from the coast 50 km upvalley to Pearse Valley, we show the distribution of permafrost type and soil subgroups according to Soil Taxonomy. Soils in eastern Taylor Valley are of late Pleistocene age, cryoturbated due to the presence of ground ice or ice-cemented permafrost within 70 cm of the surface, and classified as Glacic and Typic Haploturbels. In central Taylor Valley, soils are dominantly Typic Anhyorthels of mid-Pleistocene age that have dry-frozen permafrost within the upper 70 cm. Salt-enriched soils (Salic Anhyorthels and Petrosalic Anhyorthels) are of limited extent in Taylor Valley and occur primarily on drifts of early Pleistocene and Pliocene age. Soils are less developed in Taylor Valley than in nearby Wright Valley, because of lesser salt input from atmospheric deposition and salt weathering. Ice-cemented permafrost is ubiquitous on Ross Sea, pre-Ross Sea, and Bonney drifts that occur within 28 km of the McMurdo coast. In contrast, dry-frozen permafrost is prevalent on older (???115 ky) surfaces to the west. ?? 2008 Regents of the University of Colorado.

  9. Methane and Root Dynamics in Arctic Soil

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica

    , West Greenland, and CH4 and root dynamics were assessed in response to experimentally increased winter snow precipitation, summer warming and their interaction to better understand their contribution to the C balance of the Arctic. Our results indicate that both the dry heath and barren soils have......, length and maximum growth positively responded to experimental air warming, especially in the deeper soil layers; possibly due to an indirect effect of increased canopy temperature on the above-ground biomass. These initial below-ground responses to changes in climatic regimes suggest that future summer...... warming could potentially increase below-ground C allocation. Though, long-term observations will be necessary to address the effects that shifts in plant community composition and roots depth will have on the net C balance of the Arctic....

  10. Improved quantification of microbial CH4 oxidation efficiency in Arctic wetland soils using carbon isotope fractionation

    Directory of Open Access Journals (Sweden)

    E.-M. Pfeiffer

    2012-12-01

    Full Text Available Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4. The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox and diffusion (αdiff were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1. In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3. CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18. Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009 and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the

  11. Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation

    Directory of Open Access Journals (Sweden)

    I. Preuss

    2013-04-01

    Full Text Available Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4. The observed accelerated warming of the arctic will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in water-saturated tundra soils, thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4 signatures were measured and the fractionation factors for the processes of oxidation (αox and diffusion (αdiff were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (such as landfill cover soils have assumed a gas transport dominated by advection (αtrans = 1. In tundra soils, however, diffusion is the main gas transport mechanism and diffusive stable isotope fractionation should be considered alongside oxidative fractionation. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3. CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18. Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.017 ± 0.009 and needs to be determined on a case by case basis. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by

  12. Climate change and the permafrost carbon feedback

    Science.gov (United States)

    Schuur, E.A.G.; McGuire, Anthony; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, S.M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  13. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    DEFF Research Database (Denmark)

    Weiss, Niels; Blok, Daan; Elberling, Bo;

    2016-01-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends...

  14. Soil surface organic layers in Arctic Alaska: Spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-06-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500-700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  15. Soil surface organic layers in Arctic Alaska: spatial distribution, rates of formation, and microclimatic effects

    Science.gov (United States)

    Baughman, Carson A.; Mann, Daniel H.; Verbyla, David L.; Kunz, Michael L.

    2015-01-01

    Organic layers of living and dead vegetation cover the ground surface in many permafrost landscapes and play important roles in ecosystem processes. These soil surface organic layers (SSOLs) store large amounts of carbon and buffer the underlying permafrost and its contained carbon from changes in aboveground climate. Understanding the dynamics of SSOLs is a prerequisite for predicting how permafrost and carbon stocks will respond to warming climate. Here we ask three questions about SSOLs in a representative area of the Arctic Foothills region of northern Alaska: (1) What environmental factors control the thickness of SSOLs and the carbon they store? (2) How long do SSOLs take to develop on newly stabilized point bars? (3) How do SSOLs affect temperature in the underlying ground? Results show that SSOL thickness and distribution correlate with elevation, drainage area, vegetation productivity, and incoming solar radiation. A multiple regression model based on these correlations can simulate spatial distribution of SSOLs and estimate the organic carbon stored there. SSOLs develop within a few decades after a new, sandy, geomorphic surface stabilizes but require 500–700 years to reach steady state thickness. Mature SSOLs lower the growing season temperature and mean annual temperature of the underlying mineral soil by 8 and 3°C, respectively. We suggest that the proximate effects of warming climate on permafrost landscapes now covered by SSOLs will occur indirectly via climate's effects on the frequency, extent, and severity of disturbances like fires and landslides that disrupt the SSOLs and interfere with their protection of the underlying permafrost.

  16. Characterizing Soil Organic Matter Degradation Levels in Permafrost-affected Soils using Infrared Spectroscopy

    Science.gov (United States)

    Matamala, R.; Jastrow, J. D.; Calderon, F.; Liang, C.; Miller, R. M.; Ping, C. L.; Michaelson, G. J.; Hofmann, S.

    2014-12-01

    Diffuse-reflectance Fourier-transform mid-infrared spectroscopy (MidIR) was used to (1) investigate soil quality along a latitudinal gradient of Alaskan soils, and in combination with soil incubations, (2) to assess the relative lability of soil organic matter in the active layer and upper permafrost for some of those soils. Twenty nine sites were sampled along a latitudinal gradient (78.79 N to 55.35 N deg). The sites included 8 different vegetation types (moss/lichen, non-acidic and acidic tundra, shrub areas, deciduous forests, mixed forests, coniferous forests, and grassland). At each site, soils were separated by soil horizons and analyzed for pH, cation exchange capacity (CEC), organic and inorganic C, and total N. Samples were also scanned to obtain MidIR spectra, and ratios of characteristic bands previously suggested as indicators of organic matter quality or degradation level were calculated. Principal component analysis showed that axis 1 explained 70% of the variation and was correlated with the general Organic:Mineral ratio, soil organic C, total N, and CEC, but not with vegetation type. Axis 2 explained 25% of the variation and was correlated with most of the band ratios, with negative values for the condensation index (ratio of aromatic to aliphatic organic matter) and positive values for all humification ratios (HU1: ratio of aliphatic to polysaccharides; HU2: ratio of aromatics to polysaccharides; and HU3 ratio of lignin/phenols to polysaccharides) suggesting that axis 2 variations were related to differences in level of soil organic matter degradation. Active organic, active mineral and permafrost layers from selected tundra sites were incubated for two months at -1, 1, 4, 8 and 16 ⁰C. The same band ratios were correlated with total CO2 mineralized during the incubations. Data from 4⁰C showed that the cumulative respired CO2 from the active organic layer across all sites was negatively correlated with the HU1 humification ratio, suggesting

  17. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions

    International Nuclear Information System (INIS)

    The fate of currently frozen permafrost carbon as high-latitude climate warms remains highly uncertain and existing models give widely varying estimates of the permafrost carbon-climate feedback. This uncertainty is due to many factors, including the role that permafrost thaw-induced transitions in soil hydrologic conditions will have on organic matter decomposition rates and the proportion of aerobic to anaerobic respiration. Large-scale permafrost thaw, as predicted by the Community Land Model (CLM) under an unmitigated greenhouse gas emissions scenario, results in significant soil drying due to increased drainage following permafrost thaw, even though permafrost domain water inputs are projected to rise (net precipitation minus evaporation >0). CLM predicts that drier soil conditions will accelerate organic matter decomposition, with concomitant increases in carbon dioxide (CO2) emissions. Soil drying, however, strongly suppresses growth in methane (CH4) emissions. Considering the global warming potential (GWP) of CO2 and CH4 emissions together, soil drying weakens the CLM projected GWP associated with carbon fluxes from the permafrost zone by more than 50% compared to a non-drying case. This high sensitivity to hydrologic change highlights the need for better understanding and modeling of landscape-scale changes in soil moisture conditions in response to permafrost thaw in order to more accurately assess the potential magnitude of the permafrost carbon-climate feedback. (letter)

  18. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    OpenAIRE

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A.

    2011-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic ...

  19. Multi-omics of Permafrost, Active Layer and Thermokarst Bog Soil Microbiomes

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, Jenni; Waldrop, Mark P.; Mackelprang, Rachel; David, Maude; McFarland, Jack; Blazewicz, Steven J.; Harden, Jennifer W.; Turetsky, Merritt; McGuire, A. David; Shah, Manesh B.; VerBerkmoes, Nathan C.; Lee, Lang Ho; Mavrommatis, Konstantinos; Jansson, Janet K.

    2015-03-04

    Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, if thawed may represent the largest future transfer of C from the biosphere to the atmosphere 1. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils 2-4 and a rapid shift in functional gene composition during short-term thaw experiments 3. However, the fate of permafrost C depends on climatic, hydrologic, and microbial responses to thaw at decadal scales 5, 6. Here the combination of several molecular “omics” approaches enabled us to determine the phylogenetic composition of the microbial community, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy revealed a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.

  20. Submarine groundwater discharge as a possible formation mechanism for permafrost-associated gas hydrate on the circum-Arctic continental shelf

    Science.gov (United States)

    Frederick, Jennifer M.; Buffett, Bruce A.

    2016-03-01

    Submarine groundwater discharge (SGD) is a large-scale, buoyancy-driven, offshore flow of terrestrial groundwater. If SGD occurs within the permafrost-bearing sediments of the circum-Arctic shelf, such fluid circulation may transport large amounts of dissolved methane to the circum-Arctic shelf, aiding the formation of permafrost-associated gas hydrate. We investigate the feasibility of this new permafrost-associated gas hydrate formation mechanism with a 2-D, multiphase fluid flow model, using the Canadian Beaufort Shelf as an example. The numerical model includes freeze/thaw permafrost processes and predicts the unsteady, 2-D methane solubility field for hydrate inventory calculations. Model results show that widespread, low-saturation hydrate deposits accumulate within and below submarine permafrost, even if offshore-flowing groundwater is undersaturated in methane gas. While intrapermafrost hydrate inventory varies widely depending on permafrost extent, subpermafrost hydrate stability remains largely intact across consecutive glacial cycles, allowing widespread subpermafrost accumulation over time. Methane gas escape to the sediment surface (atmosphere) is predicted along the seaward permafrost boundary during the early to middle years of each glacial epoch; however, if free gas is trapped within the forming permafrost layer instead, venting may be delayed until ocean transgression deepens the permafrost table during interglacial periods, and may be related to the spatial distribution of observed pingo-like features (PLFs) on the Canadian Beaufort Shelf. Shallow, gas-charged sediments are predicted above the gas hydrate stability zone at the midshelf to shelf edge and the upper slope, where a gap in hydrate stability allows free gas to accumulate and numerous PLFs have been observed.

  1. Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient.

    Science.gov (United States)

    Trubl, Gareth; Solonenko, Natalie; Chittick, Lauren; Solonenko, Sergei A; Rich, Virginia I; Sullivan, Matthew B

    2016-01-01

    Permafrost stores approximately 50% of global soil carbon (C) in a frozen form; it is thawing rapidly under climate change, and little is known about viral communities in these soils or their roles in C cycling. In permafrost soils, microorganisms contribute significantly to C cycling, and characterizing them has recently been shown to improve prediction of ecosystem function. In other ecosystems, viruses have broad ecosystem and community impacts ranging from host cell mortality and organic matter cycling to horizontal gene transfer and reprogramming of core microbial metabolisms. Here we developed an optimized protocol to extract viruses from three types of high organic-matter peatland soils across a permafrost thaw gradient (palsa, moss-dominated bog, and sedge-dominated fen). Three separate experiments were used to evaluate the impact of chemical buffers, physical dispersion, storage conditions, and concentration and purification methods on viral yields. The most successful protocol, amended potassium citrate buffer with bead-beating or vortexing and BSA, yielded on average as much as 2-fold more virus-like particles (VLPs) g(-1) of soil than other methods tested. All method combinations yielded VLPs g(-1) of soil on the 10(8) order of magnitude across all three soil types. The different storage and concentration methods did not yield significantly more VLPs g(-1) of soil among the soil types. This research provides much-needed guidelines for resuspending viruses from soils, specifically carbon-rich soils, paving the way for incorporating viruses into soil ecology studies. PMID:27231649

  2. The effects of permafrost thaw on soil hydrologic, thermal, and carbon dynamics in an Alaskan peatland

    Science.gov (United States)

    O'Donnell, J. A.; Jorgenson, M.T.; Harden, Jennifer W.; McGuire, A.D.; Kanevskiy, M.Z.; Wickland, K.P.

    2012-01-01

    Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior Alaska. We observed dramatic changes in the distribution of soil water associated with thawing of ice-rich frozen peat. The impoundment of warm water in collapse-scar bogs initiated talik formation and the lateral expansion of bogs over time. On average, Permafrost Plateaus stored 137 ± 37 kg C m-2, whereas OC storage in Young Bogs and Old Bogs averaged 84 ± 13 kg C m-2. Based on our reconstructions, the accumulation of OC in near-surface bog peat continued for nearly 1,000 years following permafrost thaw, at which point accumulation rates slowed. Rapid decomposition of thawed forest peat reduced deep OC stocks by nearly half during the first 100 years following thaw. Using a simple mass-balance model, we show that accumulation rates at the bog surface were not sufficient to balance deep OC losses, resulting in a net loss of OC from the entire peat column. An uncertainty analysis also revealed that the magnitude and timing of soil OC loss from thawed forest peat depends substantially on variation in OC input rates to bog peat and variation in decay constants for shallow and deep OC stocks. These findings suggest that permafrost thaw and the subsequent release of OC from thawed peat will likely reduce the strength of northern permafrost-affected peatlands as a carbon dioxide sink, and consequently, will likely accelerate rates of atmospheric warming.

  3. The suitability of using ASTER GDEM2 for terrain-based extraction of stream channel networks in a lowland Arctic permafrost catchment

    Directory of Open Access Journals (Sweden)

    Anna Maria Trofaier

    2015-03-01

    Full Text Available Seasonally inundated areas and water-saturated soils are common features of lowland Arctic and sub-Arctic permafrost environments. With the onset of snow melt, and water percolation down through the snowpack, a principal factor controlling stream channel flow, aside from active layer depth, is topography. This paper investigates stream channel networks derived from the advanced spaceborne thermal emission and reflection radiometer (ASTER global digital elevation model (GDEM version 2 in a static terrain-based GIS-model. The suitability of using the ASTER GDEM2 for modelling the drainage network over a low-relief terrain is assessed. The aim is to use GDEM2 for the analysis of the stream channel network and to establish the network’s connectivity to previously observed spring flood patterns over the Yamal peninsula. As such, there are two parts to this study: 1 DEM validation and 2 stream channel network analysis. The results of the DEM validation study show that the root mean square error (RMSE of the GDEM2 and reference data is approx. 10 m when compared to both reference data sets (RMSE = 12.17 m, N = 86 and RMSE = 9.64, N = 506,877, implying that the GDEM2 is sufficiently accurate for terrain-based modelling. The low connectivity between the stream channel network and seasonal inundation suggests that topographic controls play a less important role compared to the possible overbanking of lakes and basin overflow. However, drainage densities for investigated drainage basins were significantly lower than those expected from typical Arctic basins. Both more sophisticated modelling techniques as well as higher spatial resolution DEMs are needed to extract the stream channel network more accurately and hence establish a more comprehensive link between the drainage network and seasonally inundated areas.

  4. Estimation of the permafrost stability on the East Arctic shelf under the extreme climate warming scenario for the XXI century

    Directory of Open Access Journals (Sweden)

    V. V. Malakhova

    2016-01-01

    Full Text Available A state of permafrost in the Arctic is the key to understanding whether methane, stored in the permafrost related gas hydrate, can release into the atmosphere. The global warming can lead to destabilization of the submarine permafrost and, thus, cause the methane releasing into the water. The near-bottom water temperature plays a significant role in the current state of the submarine permafrost, because it specifies a depth of thawing of the permafrost. We have numerically simulated evolution of the submarine permafrost on the East Siberia Arctic shelf for the last glacial cycle. In order to estimate a possible state and stability of the submarine permafrost we did carry out a numerical run based on the ICMMG SB RAS the coupled ocean-ice and submarine permafrost model. For the atmosphere forcing, the GFDL CM3 coupled climate model output, simulated under the scenario RCP8.5, was used. The scenario RCP8.5 was used since it predicted the strongest warming by the end of the 21-st century. The GFDL СM3 model, predicting the most pronounced Arctic warming, was also used in order to put the tentative upper boundary on the submarine permafrost degradation in this century.The results obtained show that the offshore permafrost exists across the vast East Siberia shelf. This permafrost occurs continuously but its thickness changes. Thickness of the permafrost within the most part of the East Siberia shelf is estimated 470–590 m when the value of 60 W/m2 was used for the geothermal flux. Our results reveal a certain rising of the bottom layer temperature on the shelf and subsequent penetration of a heat flux into the sediments. However, our results show that even the extreme warming is not sufficient to destabilize the submarine permafrost on the shelf of both, the Laptev Sea and the East Siberian Sea. By the end of the 21st century, upper boundary of the permafrost deepens by value from 1 to 11 m only due to the thermal effects, and by 5–10 m in

  5. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    older than the host sediment. Old pore fluid age may reflect complex flow patterns, such a fluid focusing, which can cause significant lateral migration as well as regions where downward flow reverses direction and returns toward the seafloor. Longer pathlines can produce pore fluid ages much older than that expected with a one-dimensional compaction model. For steady-state models with geometry representative of Blake Ridge (USA), a well-studied hydrate province, pore fluid ages beneath regions of topography and within fractured zones can be up to 70 Ma old. Results suggest that the measurements of 129-I/127-I reflect a mixture of new and old pore fluid. However, old pore fluid need not originate at great depths. Methane within pore fluids can travel laterally several kilometers, implying an extensive source region around the deposit. Iodine age measurements support the existence of fluid focusing beneath regions of seafloor topography at Blake Ridge, and suggest that the methane source at Blake Ridge is likely shallow. The response of methane hydrate reservoirs to warming is poorly understood. The great depths may protect deep oceanic hydrates from climate change for the time being because transfer of heat by conduction is slow, but warming will eventually be felt albeit in the far future. On the other hand, unique permafrost-associated methane hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Arctic hydrates are thought to be a relict of cold glacial periods, aggrading when sea levels are much lower and shelf sediments are exposed to freezing air temperatures. During interglacial periods, rising sea levels flood the shelf, bringing dramatic warming to the permafrost- and hydrate-bearing sediments. Permafrost-associated methane hydrate deposits have been responding to warming since the last glacial maximum ~18 kaBP as a consequence of these natural glacial cycles. This `experiment,' set into motion by nature itself

  6. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.

    Science.gov (United States)

    Serrano, Paloma; Hermelink, Antje; Lasch, Peter; de Vera, Jean-Pierre; König, Nicole; Burckhardt, Oliver; Wagner, Dirk

    2015-12-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena Delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the differences observed in their resistance, we described the chemical composition of methanogenic strains from permafrost and non-permafrost environments using confocal Raman microspectroscopy (CRM). CRM is a powerful tool for microbial identification and provides fingerprint-like information about the chemical composition of the cells. Our results show that the chemical composition of methanogens from permafrost-affected soils presents a high homology and is remarkably different from strains inhabiting non-permafrost environments. In addition, we performed a phylogenetic reconstruction of the studied strains based on the functional gene mcrA to prove the different evolutionary relationship of the permafrost strains. We conclude that the permafrost methanogenic strains show a convergent chemical composition regardless of their genotype. This fact is likely to be the consequence of a complex adaptive process to the Siberian permafrost environment and might be the reason underlying their resistant nature. PMID:26499486

  7. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Benjamin; Jones, Jeremy B.; Schuur, Edward A.; Chapin, F. S.; Bowden, William B.; Bret-Harte, M. Syndonia; Epstein, Howard E.; Flannigan, Michael D.; Harms, Tamara K.; Hollingsworth, Teresa N.; Mack, Michelle; McGuire, A. David; Natali, Susan M.; Rocha, Adrian; Tank, Suzanne E.; Turetsky, Merritt; Vonk, Jorien E.; Wickland, Kimberly P.; Aiken, George R.; Alexander, Heather D.; Amon, Rainer M.; Benscoter, Brian W.; Bergeron, Yves; Bishop, Kevin; Blarquez, Olivier; Bond-Lamberty, Benjamin; Breen, Amy L.; Buffam, Ishi; Cai, Yihua; Carcaillet, Christopher; Carey, Sean K.; Chen, Jing Ming; Chen, Han Y.; Christensen, Torben R.; Cooper, Lee W.; Cornelissen, J Hans C.; de Groot, William J.; DeLuca, Thomas H.; Dorrepaal, Ellen; Fetcher, Ned; Finlay, Jacques C.; Forbes, Bruce C.; French, Nancy H.; Gauthier, Sylvie; Girardin, Martin P.; Goetz, Scott J.; Goldammer, Johann G.; Gough, Laura; Grogan, Paul; Guo, Laodong; Higuera, Philip E.; Hinzman, Larry; Hu, Feng S.; Hugelius, Gustaf; Jafarov, Elchin E.; Jandt, Randi; Johnstone, Jill F.; Karlsson, J.; Kasischke, Eric S.; Kattner, Gerhard; Kelly, Ryan; Keuper, Frida; Kling, George; Kortelainen, Pirkko; Kouki, Jari; Kuhry, Peter; Laudon, Hjalmar; Laurion, Isabelle; Macdonald, Robie W.; Mann, Paul J.; Martikainen, Pertti; McClelland, James W.; Molau, Ulf; Oberbauer, Steven F.; Olefeldt, David; Pare, David; Parisien, Marc-Andre; Payette, Serge; Peng, Changhui; Pokrovesky, Oleg S.; Rastetter, Edward B.; Raymond, Peter A.; Raynolds, Martha K.; Rein, Guillermo; Reynolds, James F.; Robards, Martin; Rogers, Brendan M.; Schadel, Christina; Schaefer, Kevin; Schmidt, Inger K.; Shvidenko, Anatoly; Sky, Jasper; Spencer, Robert G.; Starr, Gregory; Striegl, Robert G.; Teisserenc, Roman; Tranvik, Lars J.; Virtanen, Tarmo; Welker, Jeffrey M.; Zimov, Sergei

    2016-03-07

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  8. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment

    Science.gov (United States)

    Benjamin W. Abbott,; Jeremy B. Jones,; Edward A.G. Schuur,; F.S. Chapin, III; William B. Bowden,; M. Syndonia Bret-Harte,; Howard E. Epstein,; Michael D. Flannigan,; Tamara K. Harms,; Teresa N. Hollingsworth,; Michelle Mack,; McGuire, Anthony; Susan M. Natali,; Adrian V. Rocha,; Suzanne E. Tank,; Merrit R. Turetsky,; Jorien E. Vonk,; Wickland, Kimberly P.; Aiken, George R.

    2016-01-01

    As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%–85% of permafrost carbon release can still be avoided if human emissions are actively reduced.

  9. Permafrost Thermal Properties and Thaw and its Relationship to Soil and Plant Cover, Lake Hovsgol, Mongolia

    Science.gov (United States)

    Goulden, C. E.; Etzelmuller, B.; Ariuntsetseg, L.; Nandintsetseg, B.; Avirmed, O.; Batkhishig, O.; Sharkhuu, A.; Sharkhuu, N.

    2005-12-01

    Northern Mongolia represents the southern-most extension of continuous permafrost and the border of the Siberian taiga forest in Asia. The mountainous watershed valleys of Lake Hövsgöl are in a forest/steppe transition zone characterized by continuous permafrost in the upper valleys and ridge tops and discontinuous permafrost in lower valley areas. Valley bottoms and south-facing slopes have steppe vegetation dominated by grasses and sedges with increasing amounts of forbs in heavily grazed areas. North-facing slopes and ridges are covered by taiga forest, dominated by larch. The mean annual air temperature in the region is 4.5°C. Total annual precipitation averages about 300 mm with most falling in mid summer. The objectives of this research include the identification of the spatial distribution of permafrost and possible permafrost thaw associated with modifications in the watersheds due to nomadic pastoralism and to climate change. Permafrost thaw has been documented elsewhere at the Lake and there are indications that a severe thaw has occurred in the study area as a result of heavy pastoralism. We are monitoring changes and experimentally testing factors that maintain low soil temperatures and high soil moisture in six valleys that have similar meteorological conditions but affected by pastoralism ranging from heavy grazing in two northern valleys, to light or no grazing in two southern valleys, and moderate grazing in the middle two valleys. Soil temperature and soil moisture are measured in plots in each valley, composing a range of soil and plant densities and texture, largely dependent upon livestock grazing levels. Experiments are measuring decomposition rates for different plant taxa, and effect of different amounts of necromass cover on soil temperature and soil moisture. In this paper we contrast conditions in the six valleys. The area has warmed by 1.6°C between 1963 and 2004 (P <0.0001) but there has been no corresponding significant change in

  10. Environmental factors influencing trace house gas production in permafrost-affected soils

    Science.gov (United States)

    Walz, Josefine; Knoblauch, Christian; Böhme, Luisa; Pfeiffer, Eva-Maria

    2016-04-01

    The permafrost-carbon feedback has been identified as a major feedback mechanism to climate change. Soil organic matter (SOM) decomposition in the active layer and thawing permafrost is an important source of atmospheric carbon dioxide (CO2) and methane (CH4). Decomposability and potential CO2 and CH4 production are connected to the quality of SOM. SOM quality varies with vegetation composition, soil type, and soil depth. The regulating factors affecting SOM decomposition in permafrost landscapes are not well understood. Here, we incubated permafrost-affected soils from a polygonal tundra landscape in the Lena Delta, Northeast Siberia, to examine the influence of soil depth, oxygen availability, incubation temperature, and fresh organic matter addition on trace gas production. CO2 production was always highest in topsoil (0 - 10 cm). Subsoil (10 - 50 cm) and permafrost (50 - 90 cm) carbon did not differ significantly in their decomposability. Under anaerobic conditions, less SOM was decomposed than under aerobic conditions. However, in the absence of oxygen, CH4 can also be formed, which has a substantially higher warming potential than CO2. But, within the four-month incubation period (approximate period of thaw), methanogenesis played only a minor role with CH4 contributing 1-30% to the total anaerobic carbon release. Temperature and fresh organic matter addition had a positive effect on SOM decomposition. Across a temperature gradient (1, 4, 8°C) aerobic decomposition in topsoil was less sensitive to temperature than in subsoil or permafrost. The addition of labile plant organic matter (13C-labelled Carex aquatilis, a dominant species in the region) significantly increased overall CO2 production across different depths and temperatures. Partitioning the total amount of CO2 in samples amended with Carex material into SOM-derived CO2 and Carex-derived CO2, however, revealed that most of the additional CO2 could be assigned to the organic carbon from the amendment

  11. Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region

    Science.gov (United States)

    Weiss, Niels; Blok, Daan; Elberling, Bo; Hugelius, Gustaf; Jørgensen, Christian Juncher; Siewert, Matthias Benjamin; Kuhry, Peter

    2016-07-01

    This study relates soil organic matter (SOM) characteristics to initial soil incubation carbon release from upper permafrost samples in Yedoma region soils of northeastern Siberia, Russia. Carbon (C) and nitrogen (N) content, carbon to nitrogen ratios (C:N), δ13C and δ15N values show clear trends that correspond with SOM age and degree of decomposition. Incubation results indicate that older and more decomposed soil material shows higher C respiration rates per unit incubated C than younger and less decomposed samples with higher C content. This is important as undecomposed material is often assumed to be more reactive upon thawing. Large stocks of SOM and their potential decomposability, in combination with complex landscape dynamics that include one or more events of Holocene thaw in most of the landscape, are of consequence for potential greenhouse gas release from permafrost soils in the Yedoma region.

  12. Comparison of soil derived tetraether membrane lipid distributions and plant-wax dD compositions for reconstruction of Canadian Arctic temperatures

    OpenAIRE

    Pautler, B.G.; Reichart, G.-J.; Sanborn, P.T.; Simpson, M. J.; J. W. H. Weijers

    2014-01-01

    Polar amplification of climate warming has received much attention as these rapidly rising temperatures have the potential to alter ecosystem function and biogeochemical cycles. In particular carbon preserved in Arctic tundra soil and permafrost may be especially vulnerable resulting in carbon cycle perturbations providing an additional positive feedback to climate change. Reliable methods for reconstructing past temperature changes in polar regions have been established from ice cores and ma...

  13. Color characterization of Arctic Biological Soil Crusts

    Science.gov (United States)

    Mele, Giacono; Gargiulo, Laura; Ventura, Stefano

    2015-04-01

    Global climate change makes large areas lacking the vegetation coverage continuously available to primary colonization by biological soil crusts (BSCs). This happens in many different environments, included high mountains and Polar Regions where new areas can become available due to glaciers retreat. Presence of BSCs leads to the stabilization of the substrate and to a possible development of protosoil, with an increase of fertility and resilience against erosion. Polar BSCs can exhibit many different proportions of cyanobacteria, algae, microfungi, lichens, and bryophytes which induce a large variability of the crust morphology and specific ecosystem functions. An effective and easy way for identifying the BSCs in the field would be very useful to rapidly recognize their development stage and help in understanding the overall impact of climate change in the delicate polar environments. Color analysis has long been applied as an easily measurable physical attribute of soil closely correlated with pedogenic processes and some soil functions. In this preliminary work we used RGB and CIE-L*a*b* color models in order to physically characterize fourteen different BSCs identified in Spitsbergen island of Svalbard archipelago in Arctic Ocean at 79° north latitude. We found that the "redness parameter "a*" of CIE-L*a*b* model was well correlated to the succession process of some BSCs at given geomorphology condition. Most of color parameters showed, moreover, a great potential to be correlated to photosynthetic activity and other ecosystem functions of BSCs.

  14. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils

    Directory of Open Access Journals (Sweden)

    Christopher Ryan Penton

    2015-07-01

    Full Text Available Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH, and denitrifying (nirS, nirK, nosZ soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK and the active layer above permafrost in Alaska (AK. Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH to 862 (NirK. The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only one year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations

  15. Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra

    Science.gov (United States)

    Kaverin, D. A.; Pastukhov, A. V.; Lapteva, E. M.; Biasi, C.; Marushchak, M.; Martikainen, P.

    2016-05-01

    The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol'shezemel'skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil-geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer-upper permafrost-underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50-90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.

  16. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  17. Permafrost collapse alters soil carbon stocks, respiration, CH4 , and N2O in upland tundra.

    Science.gov (United States)

    Abbott, Benjamin W; Jones, Jeremy B

    2015-12-01

    Release of greenhouse gases from thawing permafrost is potentially the largest terrestrial feedback to climate change and one of the most likely to occur; however, estimates of its strength vary by a factor of thirty. Some of this uncertainty stems from abrupt thaw processes known as thermokarst (permafrost collapse due to ground ice melt), which alter controls on carbon and nitrogen cycling and expose organic matter from meters below the surface. Thermokarst may affect 20-50% of tundra uplands by the end of the century; however, little is known about the effect of different thermokarst morphologies on carbon and nitrogen release. We measured soil organic matter displacement, ecosystem respiration, and soil gas concentrations at 26 upland thermokarst features on the North Slope of Alaska. Features included the three most common upland thermokarst morphologies: active-layer detachment slides, thermo-erosion gullies, and retrogressive thaw slumps. We found that thermokarst morphology interacted with landscape parameters to determine both the initial displacement of organic matter and subsequent carbon and nitrogen cycling. The large proportion of ecosystem carbon exported off-site by slumps and slides resulted in decreased ecosystem respiration postfailure, while gullies removed a smaller portion of ecosystem carbon but strongly increased respiration and N2 O concentration. Elevated N2 O in gully soils persisted through most of the growing season, indicating sustained nitrification and denitrification in disturbed soils, representing a potential noncarbon permafrost climate feedback. While upland thermokarst formation did not substantially alter redox conditions within features, it redistributed organic matter into both oxic and anoxic environments. Across morphologies, residual organic matter cover, and predisturbance respiration explained 83% of the variation in respiration response. Consistent differences between upland thermokarst types may contribute to the

  18. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra

    Science.gov (United States)

    Juszak, Inge; Eugster, Werner; Heijmans, Monique M. P. D.; Schaepman-Strub, Gabriela

    2016-07-01

    Vegetation changes, such as shrub encroachment and wetland expansion, have been observed in many Arctic tundra regions. These changes feed back to permafrost and climate. Permafrost can be protected by soil shading through vegetation as it reduces the amount of solar energy available for thawing. Regional climate can be affected by a reduction in surface albedo as more energy is available for atmospheric and soil heating. Here, we compared the shortwave radiation budget of two common Arctic tundra vegetation types dominated by dwarf shrubs (Betula nana) and wet sedges (Eriophorum angustifolium) in North-East Siberia. We measured time series of the shortwave and longwave radiation budget above the canopy and transmitted radiation below the canopy. Additionally, we quantified soil temperature and heat flux as well as active layer thickness. The mean growing season albedo of dwarf shrubs was 0.15 ± 0.01, for sedges it was higher (0.17 ± 0.02). Dwarf shrub transmittance was 0.36 ± 0.07 on average, and sedge transmittance was 0.28 ± 0.08. The standing dead leaves contributed strongly to the soil shading of wet sedges. Despite a lower albedo and less soil shading, the soil below dwarf shrubs conducted less heat resulting in a 17 cm shallower active layer as compared to sedges. This result was supported by additional, spatially distributed measurements of both vegetation types. Clouds were a major influencing factor for albedo and transmittance, particularly in sedge vegetation. Cloud cover reduced the albedo by 0.01 in dwarf shrubs and by 0.03 in sedges, while transmittance was increased by 0.08 and 0.10 in dwarf shrubs and sedges, respectively. Our results suggest that the observed deeper active layer below wet sedges is not primarily a result of the summer canopy radiation budget. Soil properties, such as soil albedo, moisture, and thermal conductivity, may be more influential, at least in our comparison between dwarf shrub vegetation on relatively dry patches and

  19. Effect of soil property uncertainties on permafrost thaw projections: a calibration-constrained analysis

    Science.gov (United States)

    Harp, D. R.; Atchley, A. L.; Painter, S. L.; Coon, E. T.; Wilson, C. J.; Romanovsky, V. E.; Rowland, J. C.

    2016-02-01

    The effects of soil property uncertainties on permafrost thaw projections are studied using a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis. The null-space Monte Carlo method is used to identify soil hydrothermal parameter combinations that are consistent with borehole temperature measurements at the study site, the Barrow Environmental Observatory. Each parameter combination is then used in a forward projection of permafrost conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP) 8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of predictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate variability due to year to year differences in CESM climate forcings. After calibrating to measured borehole temperature data at this well-characterized site, soil property uncertainties are still significant and result in significant predictive uncertainties in projected active layer thickness and annual thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected soil moisture content and Stefan number are small. A volume- and time-integrated Stefan number decreases significantly, indicating a shift in subsurface energy utilization in the future climate (latent heat of phase change becomes more important than heat conduction). Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is highly dependent on the mineral soil residual saturation and moderately dependent on peat residual saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using different climate models, we quantify the relative magnitude of soil

  20. Hydrological and Biogeochemical Trajectories Change in Response to Permafrost Thaw in Arctic and Subarctic Regions

    Science.gov (United States)

    Striegl, R. G.; Walvoord, M. A.

    2012-12-01

    High latitude regions are particularly susceptible to changes in hydrology, carbon and nutrient biogeochemistry, and ecosystem dynamics in response to climate warming. However, these regions are vast, have few historical data, and are difficult to study because of their remoteness. Large-scale studies of water and materials exports by river systems inform on changes that are occurring on the basin scale, but provide limited process level information. Conversely, process studies in small watersheds and catchments provide bounds on responses to environmental change, but have limited value in scaling to larger systems, unless the variability of controlling conditions has been adequately captured and the distribution of these conditions is known. Regional process-based models that accurately account for spatial and temporal variability can inform on the potential location and intensity of change in a basin or region. We use the Yukon River basin of Alaska USA and NW Canada as a model for understanding the trajectories of hydrologic and carbon cycle changes in permafrost-dominated landscapes. Early measurements of carbon exports by the Yukon River suggested that recent changes in hydrology were affecting C exports; this was confirmed by historical analyses of change in groundwater contributions to river flow. Since all carbon cycling processes are directly linked to water distribution, availability, and movement, we recognized the need for implementing hydrologic models to quantify the role of permafrost on water flow and distribution and to accurately project hydrologic conditions, based on historical hydrologic information, current and projected land surface and subsurface information, and current and projected climatic information. Coupling of hydrologic projections with source, sink, and other process understanding of carbon biogeochemistry resulted in improved basin scale understanding of current and future carbon dynamics in permafrost-dominated landscapes.

  1. Remote sensing of freeze-thaw transitions in Arctic soils using the complex resistivity method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin [Lawrence Berkeley National Laboratory (LBNL); Hubbard, Susan S [Lawrence Berkeley National Laboratory (LBNL); Ulrich, Craig [Lawrence Berkeley National Laboratory (LBNL); Wullschleger, Stan D [ORNL

    2013-01-01

    Our ability to monitor freeze - thaw transitions is critical to developing a predictive understanding of biogeochemical transitions and carbon dynamics in high latitude environments. In this study, we conducted laboratory column experiments to explore the potential of the complex resistivity method for monitoring the freeze - thaw transitions of the arctic permafrost soils. Samples for the experiment were collected from the upper active layer of Gelisol soils at the Barrow Environmental Observatory, Barrow Alaska. Freeze - thaw transitions were induced through exposing the soil column to controlled temperature environments at 4 C and -20 C. Complex resistivity and temperature measurements were collected regularly during the freeze - thaw transitions using electrodes and temperature sensors installed along the column. During the experiments, over two orders of magnitude of resistivity variations were observed when the temperature was increased or decreased between -20 C and 0 C. Smaller resistivity variations were also observed during the isothermal thawing or freezing processes that occurred near 0 C. Single frequency electrical phase response and imaginary conductivity at 1 Hz were found to be exclusively related to the unfrozen water in the soil matrix, suggesting that these geophysical 24 attributes can be used as a proxy for the monitoring of the onset and progression of the freeze - thaw transitions. Spectral electrical responses and fitted Cole Cole parameters contained additional information about the freeze - thaw transition affected by the soil grain size distribution. Specifically, a shift of the observed spectral response to lower frequency was observed during isothermal thawing process, which we interpret to be due to sequential thawing, first from fine then to coarse particles within the soil matrix. Our study demonstrates the potential of the complex resistivity method for remote monitoring of freeze - thaw transitions in arctic soils. Although

  2. Pan-arctic land cover mapping and fire assessment for the ESA Data User Element Permafrost

    NARCIS (Netherlands)

    Urban, M.; Hese, S.; Herold, M.; Pöcking, S.; Schmullius, C.

    2010-01-01

    The paper presents first results of a pan-boreal scale land cover harmonization and classification. A methodology is presented that combines global and regional vegetation datasets to extract percentage cover information for different vegetation physiognomy and barren for the pan-arctic region withi

  3. Bioremediation treatment of hydrocarbon-contaminated Arctic soils: influencing parameters.

    Science.gov (United States)

    Naseri, Masoud; Barabadi, Abbas; Barabady, Javad

    2014-10-01

    The Arctic environment is very vulnerable and sensitive to hydrocarbon pollutants. Soil bioremediation is attracting interest as a promising and cost-effective clean-up and soil decontamination technology in the Arctic regions. However, remoteness, lack of appropriate infrastructure, the harsh climatic conditions in the Arctic and some physical and chemical properties of Arctic soils may reduce the performance and limit the application of this technology. Therefore, understanding the weaknesses and bottlenecks in the treatment plans, identifying their associated hazards, and providing precautionary measures are essential to improve the overall efficiency and performance of a bioremediation strategy. The aim of this paper is to review the bioremediation techniques and strategies using microorganisms for treatment of hydrocarbon-contaminated Arctic soils. It takes account of Arctic operational conditions and discusses the factors influencing the performance of a bioremediation treatment plan. Preliminary hazard analysis is used as a technique to identify and assess the hazards that threaten the reliability and maintainability of a bioremediation treatment technology. Some key parameters with regard to the feasibility of the suggested preventive/corrective measures are described as well.

  4. The influence of vegetation and soil characteristics on active-layer thickness of permafrost soils in boreal forest.

    Science.gov (United States)

    Fisher, James P; Estop-Aragonés, Cristian; Thierry, Aaron; Charman, Dan J; Wolfe, Stephen A; Hartley, Iain P; Murton, Julian B; Williams, Mathew; Phoenix, Gareth K

    2016-09-01

    Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active-layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active-layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site-specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0-6 cm) promoted increased ALTs, whereas deeper soil moisture (11-16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict

  5. Linking water and permafrost dynamics

    OpenAIRE

    Sjöberg, Ylva

    2015-01-01

    The extent and dynamics of permafrost are tightly linked to the distribution and movement of water in arctic landscapes. As the Arctic warms more rapidly than the global average, profound changes are expected in both permafrost and hydrology; however, much is still not known about the interactions between these two systems. The aim of this thesis is to provide new knowledge on the links between permafrost and hydrology under varying environmental conditions and across different scales. The ob...

  6. Organic carbon stocks in permafrost-affected soils from Admiralty Bay, Antarctica

    Science.gov (United States)

    Simas, F.N.B.; Schaefer, C.E.G.R.; Mendonça, E.S.; Silva, I.R.; Santana, R.M.; Ribeiro, A.S.S.

    2007-01-01

    Recent works show that organic matter accumulation in some soils from coastal Antarctica is higher than previously expected. The objective of the present work was to estimate the organic C stocks for soils from maritime Antarctica. Cryosols from subpolar desert landscapes presented the lowest organic C stocks. Ornithogenic soils are the most important C reservoirs in terrestrial ecosystems in this part of Antarctica. Although these soils correspond to only 2.5 % of the ice-free areas at Admiralty Bay, they contain approximately 20 % of the estimated C stock. Most of the organic C in the studied soils is stored in the active layer but in some cases the C is also stored in the permafrost.

  7. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil

    OpenAIRE

    Serrano, P; Hermelink, A.; Lasch, P.; de Vera, J.-P.; König, N.; Burckhardt, O.; Wagner, D.

    2015-01-01

    Methanogenic archaea are widespread anaerobic microorganisms responsible for the 25 production of biogenic methane. Several new species of psychrotolerant methanogenic archaea were recently isolated from a permafrost-affected soil in the Lena delta (Siberia, Russia), showing an exceptional resistance against desiccation, osmotic stress, low temperatures, starvation, UV and ionizing radiation when compared to methanogens from non-permafrost environments. To gain a deeper insight into the diffe...

  8. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers

    Institute of Scientific and Technical Information of China (English)

    HU HongChang; WANG GenXu; WANG YiBo; LIU GuangSheng; LI TaiBing; REN DongXing

    2009-01-01

    The response of soil temperature and moisture to vegetative cover in the active layer of permafrost and seasonally frozen soil were assessed and compared. Soil temperature and moisture, under a range of vegetation covers (92%, 65% and 30%) in the permafrost and vegetation covers (95%, 70%-80%, 40%-50% and 10%) in the seasonally frozen soil, were measured on a daily basis. A decline in vege-tation cover led to e decrease in the integral of freezing depth of active permafrost layer, but an in-crease in seasonally frozen soil. The maximum invasion depth and duration of the negative isotherm during the frozen period and of the positive isotherm during the non-frozen period clearly increased when vegetation cover declined. With a reduction of vegetation cover, the soil moisture in the active layer of the permafrost decreased for depths of 0.20-0.60 m, but increased for depths of 0.60-0.80 m, while for seasonally frozen soil, soil moisture of the entire profile (0.10-1.20 m) increased. Variation in vegetation cover alters soil heat-water processes, but the response to it is different between permafrost and seasonally frozen soil.

  9. Permafrost and the International Polar Year

    Science.gov (United States)

    Brown, J.; Boelhouwers, J.; Rachold, V.; Christiansen, H. H.

    2005-12-01

    Three permafrost projects are in the planning stages for 2007-2008 IPY. (1) The Permafrost Observatory Project: A Contribution to the Thermal State of Permafrost (TSP) will obtain a "snapshot" of permafrost temperatures in existing and new boreholes throughout both hemispheres. The project is a field campaign of the existing Global Terrestrial Network on Permafrost (GTN-P) that also includes the Circumpolar Active Layer Monitoring (CALM) project. (2) The Antarctic and sub-Antarctic Permafrost, Periglacial and Soil Environments project (ANTPAS) is aimed at integrating existing and new data on the distribution, thickness, age, history and physical and geochemical properties of permafrost, soils and the active-layer on the Antarctic continent and sub-Antarctic islands. A monitoring network, a regional subset of GTN-P and consisting of borehole temperatures, active-layer thickness, and periglacial and soil observations, will be established along selected environmental gradients. (3) The Arctic Circum-Polar Coastal Observatory Network (ACCO-Net) proposes to investigate approximately 20 key coastal sites including deltas and estuaries of major Siberian and North American rivers at which physical, ecological, biochemical and socio-economic changes will be observed. Both educational outreach and data management activities are key elements in the three projects and will contribute to the overall IPY goals and its legacy. Our Permafrost Legacy is to create the basis for a new generation of researcher and the "snapshot" of existing conditions as a baseline for future change assessment. The Joint Committee of the IPY has approved the three projects that include approximately 150 individuals from the 25- member International Permafrost Association (IPA). The IPA is coordinating these projects in cooperation with the International Union of Geological Sciences (IUGS), the Scientific Committee for Antarctic Research (SCAR), the Land-Ocean Interactions in the Coastal Zone (LOICZ

  10. Forest decline caused by high soil water conditions in a permafrost region

    Directory of Open Access Journals (Sweden)

    H. Iwasaki

    2010-02-01

    Full Text Available In the permafrost region near Yakutsk, eastern Siberia, Russia, annual precipitation (June–May in 2005–2006 and 2006–2007 exceeded the 26-year (1982–2008 mean of 222±68 mm by 185 mm and 128 mm, respectively, whereas in 2007–2008 the excedent was only 48 mm, well within the range of variability. Yellowing and browning of larch (Larix cajanderi Mayr. trees occurred in an undisturbed forest near Yakutsk in the 2007 summer growing season. Soil water content at a depth of 0.20 m was measured along a roughly 400 m long line transect running through areas of yellowing and browning larch trees (YBL and of normal larch trees (NL. In the two years of supranormal precipitation, soil water content was very high compared to values recorded for the same area in previous studies. For both wet years, the mean degree of saturation (s was significantly greater in YBL than NL areas, whereas the converse was the case for the gas diffusivity in soil. This implies that rather than mitigating water stress suffered during normal precipitation years, elevated soil water conditions adversely affected the growth of larch trees. Eastern Siberia's taiga forest extends widely into the permafrost region. Was such supranormal annual precipitation to extend for more than two years, as might be expected under impending global climate changes, forest recovery may not be expected and emission of greenhouse gas might continue in future.

  11. Legacy Effects of Warming on Permafrost Carbon Release

    Science.gov (United States)

    Blok, D.; Faucherre, S.; Banyasz, I.; Michelsen, A.; Elberling, B.

    2015-12-01

    Warming in arctic tundra may thaw currently frozen upper permafrost layers, potentially releasing organic carbon (C) that was preserved by cold conditions for hundreds or thousands of years. Apart from the direct control of temperature on permafrost carbon dioxide (CO2) production, warming may alter permafrost CO2 production rates through changes in either permafrost C quality or changes in microbial communities. We incubated exogenous permafrost cores in four different warming experiments in NE-Greenland. The experiments were located in both Salix- and Cassiope-dominated sub-sites and were established in 2004 (old site) and 2007 (new site). Permafrost cores were buried as "open incubators" (free vertical water flow) at both 5-10cm depth (shallow) and 15-20cm depth (deep) in both non-manipulated (control) and warmed plots (warmed) and incubated for 2 years in the field. After retrieval from the field, permafrost cores were kept undisturbed in a lab fridge for three months, after which sub-samples were incubated at 5°C in glass vials. Permafrost CO2 production rates were subsequently measured after one week, four weeks and three months incubation in the lab. We measured the legacy effects of in situ conditions, including experimental warming in the field, on permafrost respiration under controlled laboratory conditions. We assessed the effects of plot type, vegetation type, experiment age, and incubation depth on permafrost CO2 production rates. After 3 months incubation in the lab, we measured a positive effect of warming on permafrost CO2 production rates for shallow-incubated cores, but not for deep-incubated cores. Production rates of CO2 were significantly higher for cores incubated in the old site compared to the new site. Our results suggest that warming may not only directly stimulate permafrost C release, but also indirectly through the effects of infiltrating water, nutrients and microbes from near-surface soil layers.

  12. The VULCAN Project: Toward a better understanding of the vulnerability of soil organic matter to climate change in permafrost ecosystems

    Science.gov (United States)

    Plaza, C.; Schuur, E.; Maestre, F. T.

    2015-12-01

    Despite much recent research, high uncertainty persists concerning the extent to which global warming influences the rate of permafrost soil organic matter loss and how this affects the functioning of permafrost ecosystems and the net transfer of C to the atmosphere. This uncertainty continues, at least in part, because the processes that protect soil organic matter from decomposition and stabilize fresh plant-derived organic materials entering the soil are largely unknown. The objective of the VULCAN (VULnerability of soil organic CArboN to climate change in permafrost and dryland ecosystems) project is to gain a deeper insight into these processes, especially at the molecular level, and to explore potential implications in terms of permafrost ecosystem functioning and feedback to climate change. We will capitalize on a globally unique ecosystem warming experiment in Alaska, the C in Permafrost Experimental Heating Research (CiPEHR) project, which is monitoring soil temperature and moisture, thaw depth, water table depth, plant productivity, phenology, and nutrient status, and soil CO2 and CH4 fluxes. Soil samples have been collected from the CiPEHR experiment from strategic depths, depending on thaw depth, and allow us to examine effects related to freeze/thaw, waterlogging, and organic matter relocation along the soil profile. We will use physical fractionation methods to separate soil organic matter pools characterized by different preservation mechanisms of aggregation and mineral interaction. We will determine organic C and total N content, transformation rates, turnovers, ages, and structural composition of soil organic matter fractions by elemental analysis, stable and radioactive isotope techniques, and nuclear magnetic resonance tools. Acknowledgements: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 654132. Web site: http://vulcan.comule.com

  13. Cryopegs as destabilization factor of intra-permafrost gas hydrates

    Science.gov (United States)

    Chuvilin, Evgeny; Bukhanov, Boris; Istomin, Vladimir

    2016-04-01

    A characteristic feature of permafrost soils in the Arctic is widespread intra-permafrost unfrozen brine lenses - cryopegs. They are often found in permafrost horizons in the north part of Western Siberia, in particular, on the Yamal Peninsula. Cryopegs depths in permafrost zone can be tens and hundreds of meters from the top of frozen strata. The chemical composition of natural cryopegs is close to sea waters, but is characterized by high mineralization. They have a sodium-chloride primary composition with a minor amount of sulphate. Mineralization of cryopegs brine is often hundreds of grams per liter, and the temperature is around -6…-8 °C. The formation of cryopegs in permafrost is associated with processes of long-term freezing of sediments and cryogenic concentration of salts and salt solutions in local areas. The cryopegs' formation can take place in the course of permafrost evolution at the sea transgressions and regressions during freezing of saline sea sediments. Very important feature of cryopegs in permafrost is their transformation in the process of changing temperature and pressure conditions. As a result, the salinity and chemical composition are changed and in addition the cryopegs' location can be changed during their migration. The cryopegs migration violates the thermodynamic conditions of existence intra-permafrost gas hydrate formations, especially the relic gas hydrates deposits, which are situated in the shallow permafrost up to 100 meters depth in a metastable state [1]. The interaction cryopegs with gas hydrates accumulations can cause decomposition of intra-permafrost hydrates. Moreover, the increasing of salt and unfrozen water content in sedimentary rocks sharply reduce the efficiency of gas hydrates self-preservation in frozen soils. It is confirmed by experimental investigations of interaction of frozen gas hydrate bearing sediments with salt solutions [2]. So, horizons with elevated pressure can appear, as a result of gas hydrate

  14. Ice Complex permafrost of MIS5 age in the Dmitry Laptev Strait coastal region (East Siberian Arctic)

    Science.gov (United States)

    Wetterich, Sebastian; Tumskoy, Vladimir; Rudaya, Natalia; Kuznetsov, Vladislav; Maksimov, Fedor; Opel, Thomas; Meyer, Hanno; Andreev, Andrei A.; Schirrmeister, Lutz

    2016-09-01

    Ice Complex deposits (locally known as the Buchchagy Ice Complex) are exposed at both coasts of the East Siberian Dmitry Laptev Strait and preserved below the Yedoma Ice Complex that formed during MIS3 and MIS2 (Marine Isotope Stage) and lateglacial-Holocene thermokarst deposits (MIS1). Radioisotope disequilibria (230Th/U) of peaty horizons date the Buchchagy Ice Complex deposition to 126 + 16/-13 kyr and 117 + 19/-14 kyr until 98 ± 5 kyr and 89 ± 5 kyr. The deposit is characterised by poorly-sorted medium-to-coarse silts with cryogenic structures of horizontal ice bands, lens-like, and lens-like reticulated segregation ice. Two peaty horizons within the Buchchagy Ice Complex and syngenetic ice wedges (2-4 m wide, up to 10 m high) are striking. The isotopic composition (δ18O, δD) of Buchchagy ice-wedge ice indicates winter conditions colder than during the MIS3 interstadial and warmer than during MIS2 stadial, and similar atmospheric winter moisture sources as during the MIS2 stadial. Buchchagy Ice Complex pollen spectra reveal tundra-steppe vegetation and harsher summer conditions than during the MIS3 interstadial and rather similar vegetation as during the MIS2 stadial. Short-term climatic variability during MIS5 is reflected in the record. Even though the regional chronostratigraphic relationship of the Buchchagy Ice Complex to the Last Interglacial remains unclear because numerical dating is widely lacking, the present study indicates permafrost (Ice Complex) formation during MIS5 sensu lato, and its preservation afterwards. Palaeoenvironmental insights into past climate and the periglacial landscape dynamics of arctic lowlands in eastern Siberia are deduced from the record.

  15. Virgibacillus arcticus sp. nov., a moderately halophilic, endospore-forming bacterium from permafrost in the Canadian high Arctic.

    Science.gov (United States)

    Niederberger, Thomas D; Steven, Blaire; Charvet, Sophie; Barbier, Beatrice; Whyte, Lyle G

    2009-09-01

    A novel, moderately halophilic, endospore-forming bacterial strain, designated Hal 1T, was isolated from a permafrost core collected from the Canadian high Arctic. The temperature for growth of strain Hal 1T was 0-30 degrees C with no growth observed at either -5 or 37 degrees C (optimum growth at about 25 degrees C). Strain Hal 1T was able to grow at NaCl concentrations of 0-20% (w/v) and did not have an absolute NaCl requirement for growth; optimal growth was at 5% (w/v) NaCl. The level of 16S rRNA gene sequence similarity between strain Hal 1T and the type strains of Virgibacillus carmonensis and Virgibacillus necropolis was 98.2%; values with respect to the type strains of other recognized Virgibacillus species were below 96.0%. The DNA G+C content of strain Hal 1T was 38.2 mol%. Levels of DNA-DNA relatedness between strain Hal 1T and the type strains of V. carmonensis and V. necropolis were 14.0 and 21.0%, respectively. The major fatty acid of strain Hal 1T was anteiso-C15:0, consistent with species of the genus Virgibacillus. The cell-wall peptidoglycan of strain Hal 1T was type A1alpha and the major respiratory quinone was MK-7. On the basis of genotypic and physiological results, strain Hal 1T (=DSM 19574T=JCM 14839T) is proposed as the type strain of a novel species of the genus Virgibacillus, namely Virgibacillus arcticus sp. nov. PMID:19605723

  16. Due Permafrost: a Circumpolar Remote Sensing Service for Permafrost - Evaluation and Application Case Studies

    Science.gov (United States)

    Heim, B.; Bartsch, A.; Elger, K. K.; Rinke, A.; Gellhorn, C.; Matthes, H.; Buchhorn, M.; Klehmet, K.; Soliman, A. S.; Duguay, C.; Hachem, S.; Schwamborn, G.; Muster, S.; Langer, M.; Boike, J.; Lantuit, H.; Herzschuh, U.; Seifert, F.

    2012-12-01

    The task of the ESA Data User Element DUE Permafrost project is to build up a Remote Sensing Service for permafrost applications. The DUE Permafrost remote sensing products are land temperature, soil moisture, frozen/thawed surface status, terrain parameters, land cover, and surface waters. The DUE Permafrost products are freely available for download under http://www.ipf.tuwien.ac.at/permafrost/. The products are also published at the world data centre PANGAEA (doi:10.1594/PANGAEA.780111, 2012: ESA Data User Element Permafrost), Snow parameters (snow extent and snow water equivalent) can be derived from the ESA DUE project GlobSnow. A major component is the evaluation of the DUE Permafrost products to test their scientific validity for high-latitudinal permafrost landscapes. The primary programme providing ground data is the Global Terrestrial Network for Permafrost (GTN-P) initiated by the International Permafrost Association (IPA). The involvement of scientific stakeholders and the IPA, and the ongoing evaluation of the remote sensing derived products make the DUE Permafrost products accepted by the scientific community. We show evaluation case studies of DUE Permafrost remote sensing products using GTN-P in-situ data in Alaska and Siberia. The Helmholtz Climate Initiative REKLIM (Regionale Klimaänderungen/Regional climate change) is a climate research program where regional observations and process studies are innovatively coupled with model simulations (http://www.reklim.de/en/home/). Within the REKLIM framework we spatio-temporally compare the geophysical surface parameters derived from regional climate modelling with the DUE Permafrost and DUE GlobSnow remote sensing products. The case studies are: i) spatio-temporal comparison of the ESA GlobSnow satellite-derived snow-water equivalent data with the output from the regional climate model COSMO-CLM for Central Siberia for 1987-2010. ii) circum-arctic spatio-temporal comparison of the ESA DUE Permafrost

  17. Texture and geochemistry of surface horizons of Arctic soils from a non-glaciated catchment, SW Spitsbergen

    Directory of Open Access Journals (Sweden)

    Szymański Wojciech

    2016-09-01

    Full Text Available Physical and chemical properties of Arctic soils and especially the properties of surface horizons of the soils are very important because they are responsible for the rate and character of plant colonization, development of vegetation cover, and influence the rate and depth of thawing of soils and development of active layer of permafrost during summer. The main aim of the present study is to determine and explain the spatial diversity of selected physical and chemical properties of surface horizons of Arctic soils from the non-glaciated Fuglebekken catchment located in the Hornsund area (SW Spitsbergen by means of geostatistical approach. Results indicate that soil surface horizons in the Fuglebekken catchment are characterized by highly variable physical and chemical properties due to a heterogeneous parent material (marine sediments, moraine, rock debris, tundra vegetation types, and non-uniform influence of seabirds. Soils experiencing the strongest influence of seabird guano have a lower pH than other soils. Soils developed on the lateral moraine of the Hansbreen glacier have the highest pH due to the presence of carbonates in the parent material and a lack or presence of a poorly developed and discontinuous A horizon. The soil surface horizons along the coast of the Hornsund exhibit the highest content of the sand fraction and SiO2. The surface of soils occurring at the foot of the slope of Ariekammen Ridge is characterized by the highest content of silt and clay fractions as well as Al2O3, Fe2O3, and K2O. Soils in the central part of the Fuglebekken catchment are depleted in CaO, MgO, and Na2O in comparison with soils in the other sampling sites, which indicates the highest rate of leaching in this part of the catchment.

  18. Northern Alaska Landscape/Permafrost GIS Data

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This data set represents an updated Ecological Subsection Map for Northern Alaska. This update includes permafrost mapping to include the following new layers:...

  19. ESA Data User Element PERMAFROST: a spaceborne permafrost monitoring and information system

    Science.gov (United States)

    Bartsch, A.; Heim, B.; Boike, J.; Elger, K.; Muster, S.; Langer, M.; Westermann, S.; Sobiech, J.

    2010-12-01

    Permafrost is a subsurface phenomenon whose ground thermal regime is mainly influenced by air temperature, land cover, soil and rock properties and snow parameters. Many spaceborne applications are potentially indicative for the thermal state of Permafrost, such as ‘land surface temperature’, ‘surface moisture’, ‘freeze/thaw’, ‘terrain’, ‘vegetation’ and ‘changes of surface waters’. The major task of the ESA Data User Element Permafrost project is to develop circumarctic/-boreal Earth Observation services of these parameters with extensive involvement of the permafrost research community The DUE PERMAFROST datasets will be processed in the EO-PERMAFROST Information System and provided via a WebGIS-interface. Further information is available at www.ipf.tuwien.ac.at/ permafrost. In order to set up the required validation tasks and information services, a target area approach with specified case study regions is used. Most of the foreseen DUE PERMAFROST remote sensing applications are well established and can optimally become operational. The goal of DUE PERMAFROST is to lend confidence in their scientific utility for high-latitude permafrost landscapes. Therefore, a major component is the evaluation of the DUE PERMAFROST products. Ground measurements in the high-latitude landscapes involve challenging logistics and are networked on multidisciplinary and circum-arctic level by the Permafrost community. The International Permafrost Association (IPA) has built up the Global Terrestrial Network for Permafrost (GTN-P) that is a network of the Circumpolar Active Layer Monitoring (CALM) and the Thermal State of Permafrost (TSP) projects. A major part of the DUE PERMAFROST core User group is contributing to GTN-P. Additional members of these programs and circum-arctic networks have also been involved in the consulting process and ground data providing process. Match-up data sets of ground data and remote sensing products coincident in time and

  20. Temperature and moisture effects on ammonia oxidizer communities in cryoturbated Arctic soils

    Science.gov (United States)

    Aiglsdorfer, Stefanie; Alves, Ricardo J. E.; Bárta, Jiří; Kohoutová, Iva; Bošková, Hana; Diáková, Katerina; Čapek, Petr; Schnecker, Jörg; Wild, Birgit; Mooshammer, Maria; Urich, Tim; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Mikutta, Robert; Lashchinskiy, Nikolay; Richter, Andreas; Šantrůčková, Hana; Shibistova, Olga; Schleper, Christa

    2014-05-01

    Arctic permafrost-affected soils contain large amounts of soil organic carbon (SOC) and are expected to experience drastic changes in environmental conditions, such as moisture and temperature, due to the high surface temperature increase predicted for these regions. Although the SOC decomposition processes driven by the microbiota are considered to be nitrogen (N) limited, little information about the microbial groups involved in N cycle is currently available, including their reactions to environmental changes. Here, we investigate the presence of ammonia oxidizing archaea (AOA) and bacteria (AOB) in distinct soil horizons from the Taymyr peninsula (Siberia, Russia), and investigate their activities under changing temperature and moisture regimes. These two groups of organisms perform the first step in nitrification, an important and rate limiting process in the global N cycle, which involves the oxidation of ammonia to nitrate via nitrite. The soil samples were separated into different horizons: organic topsoil (O) and subducted organic topsoil (Ajj). The samples were incubated for 18 weeks at 4, 12 and 20° C and 50, 80 and 100 % water holding capacity (WHC). AOA and AOB abundances were quantified by quantitative PCR targeting genes of the key metabolic enzyme, ammonia monooxygenase. AOA diversity was analyzed in-depth by high-throughput amplicon sequencing of the same gene. Additionally, gross and net nitrification and mineralization rates were determined in order to investigate potential relationships between AOA and AOB populations and these processes, in response to the incubation treatments. We found higher abundances of AOA than AOB in the organic topsoil, whereas AOB dominated in the subducted organic topsoil. Increased temperature resulted in higher numbers of both groups at low WHC %, with AOB showing a more pronounced response. However, these effects were not observed under anaerobic conditions (100 % WHC). Deep sequencing of AOA amoA genes revealed

  1. Role of Siderophores in Dissimilatory Iron Reduction in Arctic Soils : Effect of Direct Amendment of Siderophores to Arctic Soil

    Science.gov (United States)

    Srinivas, A. J.; Dinsdale, E. A.; Lipson, D.

    2014-12-01

    Dissimilatory iron reduction (DIR), where ferric iron (Fe3+) is reduced to ferrous iron (Fe2+) anaerobically, is an important respiratory pathway used by soil bacteria. DIR contributes to carbon dioxide (CO2) efflux from the wet sedge tundra biome in the Arctic Coastal Plain (ACP) in Alaska, and could competitively inhibit the production of methane, a stronger greenhouse gas than CO2, from arctic soils. The occurrence of DIR as a dominant anaerobic process depends on the availability of substantial levels of Fe3+ in soils. Siderophores are metabolites made by microbes to dissolve Fe3+ from soil minerals in iron deficient systems, making Fe3+ soluble for micronutrient uptake. However, as the ACP is not iron deficient, siderophores in arctic soils may play a vital role in anaerobic respiration by dissolving Fe3+ for DIR. We studied the effects of direct siderophore addition to arctic soils through a field study conducted in Barrow, Alaska, and a laboratory incubation study conducted at San Diego State University. In the field experiment, 50μM deferroxamine mesylate (a siderophore), 50μM trisodium nitrilotriacetate (an organic chelator) or an equal volume of water was added to isolated experimental plots, replicated in clusters across the landscape. Fe2+ concentrations were measured in soil pore water samples collected periodically to measure DIR over time in each. In the laboratory experiment, frozen soil samples obtained from drained thaw lake basins in the ACP, were cut into cores and treated with the above-mentioned compounds to the same final concentrations. Along with measuring Fe2+ concentrations, CO2 output was also measured to monitor DIR over time in each core. Experimental addition of siderophores to soils in both the field and laboratory resulted in increased concentrations of soluble Fe3+ and a sustained increase in Fe2+concentrations over time, along with increased respiration rates in siderophore-amended cores. These results show increased DIR in

  2. Soil Moisture Data for the Validation of Permafrost Models Using Direct and Indirect Measurement Approaches at Three Alpine Sites

    OpenAIRE

    Pellet, Cécile; Hilbich, Christin; Marmy, Antoine; Hauck, Christian

    2016-01-01

    In regions affected by seasonal and permanently frozen conditions soil moisture influences the thermal regime of the ground as well as its ice content, which is one of the main factors controlling the sensitivity of mountain permafrost to climate changes. In this study, several well established soil moisture monitoring techniques were combined with data from geophysical measurements to assess the spatial distribution and temporal evolution of soil moisture at three high elevation sites with d...

  3. Soil moisture data for the validation of permafrost models using direct and indirect measurement approaches at three alpine sites

    OpenAIRE

    Cécile ePellet; Christin eHilbich; Antoine eMarmy; Christian eHauck

    2016-01-01

    In regions affected by seasonal and permanently frozen conditions soil moisture influences the thermal regime of the ground as well as its ice content, which is one of the main factors controlling the sensitivity of mountain permafrost to climate changes. In this study, several well established soil moisture monitoring techniques were combined with data from geophysical measurements to assess the spatial distribution and temporal evolution of soil moisture at three high elevation sites with d...

  4. Soil data from fire and permafrost-thaw chronosequences in upland Picea mariana stands near Hess Creek and Tok, interior Alaska

    Science.gov (United States)

    O'Donnell, Jonathan A.; Harden, Jennifer W.; Manies, Kristen L.; Jorgenson, M. Torre; Kanevskiy, Mikhail; Xu, Xiaomei

    2013-01-01

    Soils of the Northern Circumpolar Permafrost region harbor 1,672 petagrams (Pg) (1 Pg = 1,000,000,000 kilograms) of organic carbon (OC), nearly 50 percent of the global belowground OC pool (Tarnocai and others, 2009). Of that soil OC, nearly 88 percent is presently stored in perennially frozen ground. Recent climate warming at northern latitudes has resulted in warming and thawing of permafrost in many regions (Osterkamp, 2007), which might mobilize OC stocks from associated soil reservoirs via decomposition, leaching, or erosion. Warming also has increased the magnitude and severity of wildfires in the boreal region (Turetsky and others, 2011), which might exacerbate rates of permafrost degradation relative to warming alone. Given the size and vulnerability of the soil OC pool in permafrost soils, permafrost thaw will likely function as a strong positive feedback to the climate system (Koven and others, 2011; Schaefer and others, 2011). In this report, we report soil OC inventories from two upland fire chronosequences located near Hess Creek and Tok in Interior Alaska. We sampled organic and mineral soils in the top 2 meters (m) across a range of stand ages to evaluate the effects of wildfire and permafrost thaw on soil C dynamics. These data were used to parameterize a simple process-based fire-permafrost-carbon model, which is described in detail by O’Donnell and others (2011a, b). Model simulations examine long-term changes in soil OC storage in response to fire, permafrost thaw, and climate change. These data also have been used in other papers, including Harden and others (2012), which examines C recovery post-fire, and Johnson and others (2011), which synthesizes data within the Alaska Soil Carbon Database. Findings from these studies highlight the importance of climate and disturbance (wildfire, permafrost thaw) on soil C storage, and loss of soil C from high-latitude ecosystems.

  5. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges

    Science.gov (United States)

    Mishra, U.; Jastrow, J.D.; Matamala, R.; Hugelius, G.; Koven, C.D.; Harden, J.W.; Ping, S.L.; Michaelson, G.J.; Fan, Z.; Miller, R.M.; McGuire, A.D.; Tarnocai, C.; Kuhry, P.; Riley, W.J.; Schaefer, K.; Schuur, E.A.G.; Jorgenson, M.T.; Hinzman, L.D.

    2013-01-01

    The vast amount of organic carbon (OC) stored in soils of the northern circumpolar permafrost region is a potentially vulnerable component of the global carbon cycle. However, estimates of the quantity, decomposability, and combustibility of OC contained in permafrost-region soils remain highly uncertain, thereby limiting our ability to predict the release of greenhouse gases due to permafrost thawing. Substantial differences exist between empirical and modeling estimates of the quantity and distribution of permafrost-region soil OC, which contribute to large uncertainties in predictions of carbon–climate feedbacks under future warming. Here, we identify research challenges that constrain current assessments of the distribution and potential decomposability of soil OC stocks in the northern permafrost region and suggest priorities for future empirical and modeling studies to address these challenges.

  6. Topographic control of the depth of ground thaw in a peat covered continuous permafrost site in the Canadian arctic tundra

    Science.gov (United States)

    Endrizzi, Stefano; Marsh, Philip; Quinton, William; Dall'Amico, Matteo

    2010-05-01

    Recent research has suggested an energy-based framework for delineating runoff contributing areas for permafrost dominated, tundra environments, where end of winter snow cover, and turbulent and radiant fluxes of energy and water are affected by topography, and control both snowmelt and the depth of ground thaw. The resulting spatially variable thaw depth, when combined with spatially variable water supply, spatially variable organic soil thickness, and depth variable hydraulic conductivity in organic soils, has a significant impact on the flow of water from uplands to the stream channel. In order to consider the effects of a spatially variable depth of thaw on runoff in a tundra basin, the hydrologic model GEOtop was applied to the Siksik Creek drainage basin located approximately 50 km north of Inuvik, NWT, Canada, characterized by a relatively gentle topography, with elevation ranging from 0 and 80 m a.s.l.. The small surface area of the basin (approximately 1 km2) allows the model to be run at a relatively high resolution. GEOtop is a grid based model with a complete surface energy balance scheme that accounts for variations in both the turbulent fluxes of sensible and latent heat, as well as for variations in radiant fluxes. The model also has a complete subsurface heat and water flux scheme that is able to route water and energy both vertically between a large number of soil layers, and horizontally between grids. Field data for model validation include meteorological data, depth of thaw, and runoff data for a 3 year period between 1992 and 1994, and high resolution DEM and vegetation height data obtained from airborne LiDAR in 2004. The purpose of this work is studying how topography controls the depth of thaw, and, therefore, the effects of a spatially variable snow cover are intentionally neglected. GEOtop was then run in a simple configuration, assuming an initial condition of uniform frost table at the ground surface at the end of snow melt, with snow

  7. Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations based on the DUE PERMAFROST Circumpolar Remote Sensing Service for Permafrost

    Science.gov (United States)

    Heim, Birgit; Bartsch, Annett; Elger, Kirsten; Rinke, Annette; Matthes, Heidrun; Zhou, Xu; Klehmet, Katharina; Buchhorn, Marcel; Duguay, Claude

    2014-05-01

    Permafrost is a subsurface phenomenon. However, monitoring from Earth Observation (EO) platforms can provide spatio-temporal data sets on permafrost-related indicators and geophysical parameters used in modelling and monitoring. The ESA Data User Element (DUE) Permafrost project (2009-2012) developed a suite of EO satellite-derived products: Land Surface Temperature (LST), Surface Soil Moisture (SSM), Surface Frozen and Thawed State (Freeze/Thaw), Terrain, Land Cover, and Surface Water. The satellite-derived products are weekly and monthly averages of the bio- and geophysical terrestrial parameters and static circum-Arctic maps. The final DUE Permafrost products cover the years 2007 to 2011 with a circum-Arctic coverage (north of 50°N). The products were released in 2012, and updated in 2013. Further information is available at geo.tuwien.ac.at/permafrost/. The remote sensing service also supports the EU-FP7 funded project PAGE21 - Changing Permafrost in the Arctic and its Global Effects in the 21st Century (www.page21.eu). The Global Terrestrial Network for Permafrost (GTN-P), initiated by the International Permafrost Association (IPA), is the prime program concerned with monitoring of permafrost. It provides an important database for the evaluation of EO-derived products and climate and permafrost models. GTN-P ground data ranges from air-, ground-, and borehole temperature data to active layer monitoring, soil moisture measurements, and the description of landform and vegetation. The involvement of scientific stakeholders and the IPA, and the ongoing evaluation of the satellite-derived products make the DUE Permafrost products relevant to the scientific community. The Helmholtz Climate Initiative REKLIM (Regionale KlimaAnderungen/Regional Climate Change) is a climate research program where regional observations and process studies are coupled with model simulations (http://www.reklim.de/en/home/). ESA DUE Permafrost User workshops initiated the use of EO

  8. ESA Data User Element DUE PERMAFROST Circumpolar Remote Sensing Service for Permafrost - Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations

    Science.gov (United States)

    Heim, Birgit; Bartsch, Annett; Elger, Kirsten; Rinke, Annette; Matthes, Heidrun; Zhou, Xu; Klehmet, Katharina; Rockel, Burkhardt; Lantuit, Hugues; Duguay, Claude

    2015-04-01

    Permafrost is a subsurface phenomenon. However, monitoring from Earth Observation (EO) platforms can provide spatio-temporal data sets on permafrost-related indicators and quantities used in modelling and monitoring. The ESA Data User Element (DUE) Permafrost project (2009-2012) developed a suite of EO satellite-derived products: Land Surface Temperature (LST), Surface Soil Moisture (SSM), Surface Frozen and Thawed State (Freeze/Thaw), Terrain, Land Cover, and Surface Water. The satellite-derived products are weekly and monthly averages of the bio- and geophysical terrestrial parameters and static circum-Arctic maps. The final DUE Permafrost products cover the years 2007 to 2011, some products up to 2013, with a circum-Arctic coverage (north of 50°N). The products were released in 2012, and updated in 2013 and 2014. Further information is available at geo.tuwien.ac.at/permafrost/. The remote sensing service also supports the EU-FP7 funded project PAGE21 - Changing Permafrost in the Arctic and its Global Effects in the 21st Century (www.page21.eu). The Global Terrestrial Network for Permafrost (GTN-P), initiated by the International Permafrost Association (IPA), is the prime program concerned with monitoring of permafrost. It provides an important database for the evaluation of EO-derived products and climate and permafrost models. GTN-P ground data ranges from air-, ground-, and borehole temperature data to active layer monitoring, soil moisture measurements, and the description of landform and vegetation. The involvement of scientific stakeholders and the IPA, and the ongoing evaluation of the satellite-derived products make the DUE Permafrost products relevant to the scientific community. The Helmholtz Climate Initiative REKLIM (Regionale KlimaAnderungen/Regional Climate Change) is a climate research program where regional observations and process studies are coupled with model simulations (http://www.reklim.de/en/home/). ESA DUE Permafrost User workshops

  9. Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in continuous permafrost terrain

    Directory of Open Access Journals (Sweden)

    S. Hachem

    2011-05-01

    Full Text Available In Arctic and sub-Arctic regions, meteorological stations are scattered and poorly distributed geographically; they are mostly located along coastal areas and are often unreachable by road. Given that high-latitude regions are the ones most significantly affected by recent climate warming, there is a need to supplement existing meteorological station networks with spatially continuous measurements such as those obtained by spaceborne platforms. In particular, land surface (skin temperature (LST retrieved from satellite sensors offer the opportunity to utilize remote sensing technology to obtain a consistent coverage of a key parameter for climate, permafrost, and hydrological research. The Moderate Resolution Imaging Spectroradiometer (MODIS sensor aboard the Terra and Aqua satellite platforms offers the potential to provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS were compared to ground-based near-surface air and soil temperature measurements obtained at herbaceous and shrub tundra sites located in the continuous permafrost zone of northern Québec, Canada, and the North Slope of Alaska, USA. LST values were found to be better correlated with near-surface air temperature (1–2 m above the ground than with soil temperature (3–5 cm below the ground measurements. A comparison between mean daily air temperature from ground-based station measurements and mean daily MODIS LST, calculated from daytime and nighttime temperature values of both Terra and Aqua acquisitions, for all sites and all seasons pooled together reveals a high correlation between the two sets of measurements (R>0.93 and mean difference of −1.86 °C. Mean differences ranged between −0.51 °C and −5.13 °C due to the influence of surface heterogeneity within the MODIS 1 km2 grid cells at some sites. Overall, it is concluded that MODIS offers a great potential for monitoring surface temperature changes in

  10. Comparison of MODIS-derived land surface temperatures with near-surface soil and air temperature measurements in continuous permafrost terrain

    Science.gov (United States)

    Hachem, S.; Duguay, C. R.; Allard, M.

    2011-05-01

    In Arctic and sub-Arctic regions, meteorological stations are scattered and poorly distributed geographically; they are mostly located along coastal areas and are often unreachable by road. Given that high-latitude regions are the ones most significantly affected by recent climate warming, there is a need to supplement existing meteorological station networks with spatially continuous measurements such as those obtained by spaceborne platforms. In particular, land surface (skin) temperature (LST) retrieved from satellite sensors offer the opportunity to utilize remote sensing technology to obtain a consistent coverage of a key parameter for climate, permafrost, and hydrological research. The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellite platforms offers the potential to provide spatial estimates of near-surface temperature values. In this study, LST values from MODIS were compared to ground-based near-surface air and soil temperature measurements obtained at herbaceous and shrub tundra sites located in the continuous permafrost zone of northern Québec, Canada, and the North Slope of Alaska, USA. LST values were found to be better correlated with near-surface air temperature (1-2 m above the ground) than with soil temperature (3-5 cm below the ground) measurements. A comparison between mean daily air temperature from ground-based station measurements and mean daily MODIS LST, calculated from daytime and nighttime temperature values of both Terra and Aqua acquisitions, for all sites and all seasons pooled together reveals a high correlation between the two sets of measurements (R>0.93 and mean difference of -1.86 °C). Mean differences ranged between -0.51 °C and -5.13 °C due to the influence of surface heterogeneity within the MODIS 1 km2 grid cells at some sites. Overall, it is concluded that MODIS offers a great potential for monitoring surface temperature changes in high-latitude tundra regions and provides a

  11. Testaceans (Protozoa: Testacea) in Quaternary Permafrost Sediments of Bykovsky Peninsula, Arctic Yakutia

    OpenAIRE

    Bobrov, Anatoly A.; Siegert, Christine; Andreev, Andrei A.; Schirrmeister, Lutz

    2003-01-01

    The results of the first protozoological study in terms of paleoecology of long-term sediments and buried soils formed in the cryolite zone of northeastern Siberia are discussed. The data on testaceans (Protozoa: Testacea) inhabiting various sites of Bykovsky Peninsula, Laptev Sea coast near estuary of Lena, within the last 53 000 years (Late Pleistocene and Holocene) are presented.

  12. Long Term Thawing Experiment on High Arctic Polygonal Tundra: Spring Thaw Gas Flux Dynamics and Soil Properties

    Science.gov (United States)

    Stackhouse, B. T.; Mykytczuk, N. C.; Lamarche-Gagnon, G.; Layton, A. C.; Pfiffner, S. M.; Vishnivetskaya, T. A.; Saad, N.; Whyte, L.; Onstott, T. C.

    2012-12-01

    Global climate models predict that over the coming century increasing Arctic temperature will lead to increases in the release of greenhouse gases, CO2 and CH4, from thawing the permafrost, which is a major repository of soil carbon. The magnitude and rate of this positive feedback is highly uncertain due to lack of detailed field observations and long-term experimental simulations. To this end long-term core thawing experiments are being carried out to examine gas flux from the Arctic active layer and permafrost under various environmental conditions. Eighteen 1-m long cores were collected before seasonal thaw from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station (MARS) at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45). The cores contained ~5% organic carbon in the top 15 cm and decreased to ~1% for the remainder of the core, with a solid phase organic carbon δ13C of -26.5‰. The cores were progressively thawed from the top down to the permafrost table over six weeks and held at 4° C under the following conditions: maintenance of an in situ permafrost table depth at 70 cm below surface versus fully thawed permafrost layer, in situ water saturation conditions versus fully water saturated conditions using artificial rain fall, and surface light versus no surface light. Core headspaces were monitored on a weekly basis for concentration of CO2, CH4, and δ13C-CO2. Over the thawing period, the CH4 flux out of the soil decreased from the initial rate of 2.2 μmol CH4/m2/day to 0.12 μmol CH4/m2/day, indicating that CH4 trapped in the soil outgassed as temperatures rose above freezing but the flux rapidly diminished. Introduction of 2 PPMV CH4 into the headspace of under-saturated core treatments revealed net depletion of CH4 was taking place at -3.6 μmol CH4/m2/day, an observation consistent with field measurements of methanotrophy at Axel Heiberg Island during spring and summer and with laboratory microcosm experiments

  13. Assessing effects of permafrost thaw on C fluxes based on a multi-year modeling across a permafrost thaw gradient at Stordalen, Sweden

    Directory of Open Access Journals (Sweden)

    J. Deng

    2014-03-01

    Full Text Available Northern peatlands in permafrost regions contain large amount of organic carbon (C in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST, into a biogeochemical model, DeNitrification-DeComposition (DNDC, to model C dynamics in high-latitude peatland ecosystems. The enhanced model was applied to assess effects of permafrost thaw on C fluxes of a sub-arctic peatland at Stordalen, Sweden. DNDC simulated soil freeze/thaw dynamics, net ecosystem exchange of CO2 (NEE, and CH4 fluxes across three typical land cover types, which represent different stages in the process of ongoing permafrost thaw at Stordalen. Model results were compared with multi-year field measurements and the validation indicates that DNDC was able to simulate observed differences in soil thaw, NEE, and CH4 fluxes across the three land cover types at Stordalen. Consistent with the results from field studies, the modeled C fluxes across the permafrost thaw gradient demonstrate that permafrost thaw and the associated changes in soil hydrology and vegetation increase net uptake of C from the atmosphere, but also increase the radiative forcing impacts on climate due to increased CH4 emissions. This study indicates the potential of utilizing biogeochemical models, such as DNDC, to predict soil thermal regime in permafrost areas and to investigate impacts of permafrost thaw on ecosystem C fluxes after incorporating a permafrost component into the model framework.

  14. Comparison of CO2 fluxes in a larch forest on permafrost and a pine forest on non-permafrost soils in Central Siberia

    Science.gov (United States)

    Zyryanov, V.; Tchebakova, N. M.; Nakai, Y.; Zyryanova, O.; Parfenova, E. I.; Matsuura, Y.; Vygodskaya, N.

    2013-12-01

    Inter-annual and seasonal variations of energy, water and carbon fluxes and associated climate variables in a middle taiga pine (Pinus sylvestris) forest on warm sandy soils and a northern taiga larch (Larix gmelini) forest on permafrost in Central Siberia were studied from eddy covariance measurements obtained during growing seasons of 1998-2000 and 2004-2008 (except 2006) respectively. Both naturally regenerated after fire forests grew in different environments and differed by their tree stand characteristics. The pure Gmelin larch stand was 105 yr old, stem density of living trees was about 5480 trees/ha, LAI was 0.6 m2/m2, biomass (dry weight) was 0.0044 kg/m2, with average diameter of the trees at breast height 7.1 cm and mean tree height 6.8 m. The pure Scots pine stand was 215 yr old, stand structure was relatively homogenous with a stem density of 468 living trees/ha, LAI was 1.5 m2/m2, biomass (dry weight) was 10.7 kg/m2, with average diameter of the trees at breast height 28 cm and mean tree height 23 m. The climatic and soil conditions of these ecosystems were very distinctive. The habitat of the larch forest was much colder and dryer than that of the pine forest: the growing season was 1 month shorter and growing-degree days 200°C less and winters were about one month longer and colder with January temperature -37°C versus -23°C; annual precipitation was 400 mm in the larch versus 650 mm in the pine forest and maximal snow pack was 40 cm vs 70 cm. The soils were Gelisols with permafrost table within the upper 1 m in the larch stand and Pergelic Cryochrept, alluvial sandy soil with no underlying permafrost. Average daily net ecosystem exchange (NEE) was significantly smaller in the larch ecosystem - (-3-6) μmol/m2s compared to that in the pine forest (-7-8) μmol/m2s, however daily maximal NEE was about the same. Seasonal NEE in the larch forest on continuous permafrost varied from -53 to -107 and in the pine forest on non-permafrost from -180 to

  15. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses

    DEFF Research Database (Denmark)

    Schostag, Morten; Stibal, Marek; Jacobsen, Carsten S.;

    2015-01-01

    The active layer of soil overlaying permafrost in the Arctic is subjected to dramatic annual changes in temperature and soil chemistry, which likely affect bacterial activity and community structure. We studied seasonal variations in the bacterial community of active layer soil from Svalbard (78º...

  16. Forest decline caused by high soil water conditions in a permafrost region

    Directory of Open Access Journals (Sweden)

    H. Iwasaki

    2009-09-01

    Full Text Available In the permafrost region near Yakutsk, eastern Siberia, Russia, annual precipitation (June–May in 2005–2006 and 2006–2007 exceeded the 26-year (1982–2008 mean of 222±68 mm by 185 mm and 128 mm, respectively, whereas in 2007–2008 the excedent was only 48 mm, well within the range of variability. Yellowing and browning of larch (Larix cajanderi Mayr. trees occurred in an undisturbed forest near Yakutsk in the 2007 summer growing season. Soil water content at a depth of 0.20 m was measured along a roughly 400 m long line transect running through areas of yellowing and browning larch trees (YBL and of normal larch trees (NL. In the two years of supranormal precipitation, soil water content was very high compared to values recorded for the same area in previous studies. For both wet years, the mean degree of saturation (s was significantly greater in YBL than NL areas, whereas the converse was the case for the relative gas diffusivity (DP/D0. This implies that rather than mitigating water stress suffered during normal precipitation years, elevated soil water conditions adversely affected the growth of larch trees. Eastern Siberia's taiga forest extends widely into the permafrost region. Was such supranormal annual precipitation to extend for more than two years, as might be expected under impending global climate changes, forest decline would be expanded and a danger of accelerating greenhouse gas emissions could result.

  17. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo

    2016-01-01

     A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyze simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models and compare them with observations from 268 Russian stations. There are large across-model differences as expressed by simulated differences between near-surface soil and air temperatures, (ΔT), of 3 to 14 K, in the gradients between soil and air temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, and hence guide improvements to the model’s conceptual structure and process parameterizations. Models with better performance apply multi-layer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (12–16 million km2). However, there is not a simple relationship between the quality of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, likely because several other factors such as differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation also provide important controls on simulated permafrost distribution.

  18. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Decharme, Bertrand; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Delire, Christine; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo; Sherstiukov, Artem B.

    2016-08-01

    A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.

  19. Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway

    Institute of Scientific and Technical Information of China (English)

    JIN Huijun; ZHAO Lin; WANG Shaoling; JIN Rui

    2006-01-01

    Permafrost on the Qinghai-Tibet Plateau (QTP) is widespread, thin, and thermally unstable. Under a warming climate during the past few decades, it has been degrading extensively with generally rising ground temperatures, the deepening of the maximum summer thaw, and with lessening of the winter frost penetration. The permafrost has degraded downward, upward and laterally.Permafrost has thinned or, in some areas, has totally disappeared. The modes of permafrost degradation have great significance in geocryology, in cold regions engineering and in cold regions environmental management. Permafrost in the interior of the QTP is well represented along the Qing-hal-Tibet Highway (QTH), which crosses the Plateau through north to south and traverses 560 km of permafrost-impacted ground. Horizontally, the degradation of permafrost occurs more visibly in the sporadic permafrost zone in the vicinity of the lower limit of permafrost (LLP), along the margins of taliks, and around permafrost islands. Downward degradation develops when the maximum depth of seasonal thaw exceeds the maximum depth of seasonal frost, and it generally results in the formation of a layered talik disconnecting the permafrost from the seasonal frost layer. The downward degradation is divided into four stages: 1) initial degradation, 2) accelerated degradation, 3) layered talik and 4)finally the conversion of permafrost to seasonally frozen ground (SFG). The upward degradation occurs when the geothermal gradient in permafrost drops to less than the geothermal gradients in the underlying thawed soil layers. Three types of permafrost temperature curves (stable, degrading, and phase-changing transitory permafrost) illustrate these modes. Although strong differentiations in local conditions and permafrost types exist, the various combinations of the three degradation modes will ultimately transform permafrost into SFG. Along the QTH, the downward degradation has been proceeding at annual rates of 6 to 25 cm

  20. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest

    Science.gov (United States)

    Waldrop, M.P.; Harden, J.W.

    2008-01-01

    Boreal forests contain significant quantities of soil carbon that may be oxidized to CO2 given future increases in climate warming and wildfire behavior. At the ecosystem scale, decomposition and heterotrophic respiration are strongly controlled by temperature and moisture, but we questioned whether changes in microbial biomass, activity, or community structure induced by fire might also affect these processes. We particularly wanted to understand whether postfire reductions in microbial biomass could affect rates of decomposition. Additionally, we compared the short-term effects of wildfire to the long-term effects of climate warming and permafrost decline. We compared soil microbial communities between control and recently burned soils that were located in areas with and without permafrost near Delta Junction, AK. In addition to soil physical variables, we quantified changes in microbial biomass, fungal biomass, fungal community composition, and C cycling processes (phenol oxidase enzyme activity, lignin decomposition, and microbial respiration). Five years following fire, organic surface horizons had lower microbial biomass, fungal biomass, and dissolved organic carbon (DOC) concentrations compared with control soils. Reductions in soil fungi were associated with reductions in phenol oxidase activity and lignin decomposition. Effects of wildfire on microbial biomass and activity in the mineral soil were minor. Microbial community composition was affected by wildfire, but the effect was greater in nonpermafrost soils. Although the presence of permafrost increased soil moisture contents, effects on microbial biomass and activity were limited to mineral soils that showed lower fungal biomass but higher activity compared with soils without permafrost. Fungal abundance and moisture were strong predictors of phenol oxidase enzyme activity in soil. Phenol oxidase enzyme activity, in turn, was linearly related to both 13C lignin decomposition and microbial respiration

  1. In-situ studies of microbial CH4 oxidation efficiency in Arctic wetland soils. Applications of stable carbon isotopes

    International Nuclear Information System (INIS)

    Arctic wetland soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the Arctic is expected to cause deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water-saturated permafrost-affected tundra soils thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. This study improved the in-situ quantification of microbial CH4 oxidation efficiency in arctic wetland soils in Russia's Lena River Delta based on stable isotope signatures of CH4. In addition to the common practice of determining the stable isotope fractionation during oxidation, additionally the fractionation effect of diffusion, an important gas transport mechanism in tundra soils, was investigated for both saturated and unsaturated conditions. The isotopic fractionation factors αox and αdiff were used to calculate the CH4 oxidation efficiency from the CH4 stable isotope signatures of wet polygonal tundra soils of different hydrology. Further, the method was used to study the short-term effects of temperature increase with a climate manipulation experiment. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with αdiff = 1.001 ± 0.0002 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). For the studied sites the fractionation factor for diffusion under saturated conditions αdiff = 1.001 seems to be of utmost importance for the quantification of the CH4 oxidation efficiency, since most of the CH4 is oxidized in the saturated part at the aerobic-anaerobic interface. Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.018 ± 0.009) and needs

  2. Methylocapsa palsarum sp. nov., a methanotroph isolated from a subArctic discontinuous permafrost ecosystem.

    Science.gov (United States)

    Dedysh, Svetlana N; Didriksen, Alena; Danilova, Olga V; Belova, Svetlana E; Liebner, Susanne; Svenning, Mette M

    2015-10-01

    An aerobic methanotrophic bacterium was isolated from a collapsed palsa soil in northern Norway and designated strain NE2T. Cells of this strain were Gram-stain-negative, non-motile, non-pigmented, slightly curved thick rods that multiplied by normal cell division. The cells possessed a particulate methane monooxygenase enzyme (pMMO) and utilized methane and methanol. Strain NE2T grew in a wide pH range of 4.1–8.0 (optimum pH 5.2–6.5) at temperatures between 6 and 32 °C (optimum 18–25 °C), and was capable of atmospheric nitrogen fixation under reduced oxygen tension. The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C16 : 1ω7c, and the DNA G+C content was 61.7 mol%. The isolate belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the facultative methanotroph Methylocapsa aurea KYGT (98.3 % 16S rRNA gene sequence similarity and 84 % PmoA sequence identity). However, strain NE2T differed from Methylocapsa aurea KYGT by cell morphology, the absence of pigmentation, inability to grow on acetate, broader pH growth range, and higher tolerance to NaCl. Therefore, strain NE2T represents a novel species of the genus Methylocapsa, for which we propose the name Methylocapsa palsarum sp. nov. The type strain is NE2T ( = LMG 28715T = VKM B-2945T). PMID:26297585

  3. Stabilization Techniques for Road Lower Structure and Roadbed Constructed on Permafrost Soil

    Directory of Open Access Journals (Sweden)

    Vorontsov Vyacheslav

    2016-01-01

    Full Text Available The perspective development of Yamal-Nenets Autonomous District, which is rich in mineral resources is impossible without creation of the road network for communication between settlements, oil and gas fields and transport hubs. Yamal-Nenets Autonomous District is characterized by complex engineering-geological conditions where different geological and geocryological phenomena and processes are being developed causing specific approaches to design and construction of engineering structures to be used. In this regard, an urgent task is to develop constructional solutions making it possible to stabilize the road lower structure and the roadbed, prolong periods between repairs on individual sections and improve operational reliability of roads in general. The paper describes the proposed and implemented constructional and technological solutions to stabilize the road lower structure and the roadbed constructed on permafrost soils. The results of two-year geotechnical monitoring of the road sections with implemented solutions are given.

  4. Exploring Viral Mediated Carbon Cycling in Thawing Permafrost Microbial Communities

    Science.gov (United States)

    Trubl, G. G.; Solonenko, N.; Moreno, M.; Sullivan, M. B.; Rich, V. I.

    2014-12-01

    Viruses are the most abundant biological entities on Earth and their impact on carbon cycling in permafrost habitats is poorly understood. Arctic C cycling is particularly important to interpret due to the rapid climate change occurring and the large amount of C stockpiled there (~1/3 of global soil C is stored in permafrost). Viruses of microbes (i.e. phages) play central roles in C cycling in the oceans, through cellular lysis (phage drive the largest ocean C flux about 150 Gt yr-1, dwarfing all others by >5-fold), production of associated DOC, as well as transport and expression during infection (1029 transduction events day-1). C cycling in thawing permafrost systems is critical in understanding the climate trajectory and phages may be as important for C cycling here as they are in the ocean. The thawed C may become a food source for microbes, producing CO2 and potentially CH4, both potent greenhouse gases. To address the potential role of phage in C cycling in these dynamic systems, we are examining phage from an arctic permafrost thaw gradient in northern Sweden. We have developed a protocol for successfully extracting phage from peat soils and are quantifying phage in 15 peat and 2 lake sediment cores, with the goal of sequencing viromes. Preliminary data suggest that phage are present at 109 g-1 across the permafrost thaw gradient (compared to the typical marine count ~105 ml-1), implying a potentially robust phage-host interaction web in these changing environments. We are examining phage from 11 depth intervals (covering the active and permafrost layer) in the cores to assess phage-host community dynamics. Phage morphology and abundance for each layer and environment are being determined using qTEM and EFM. Understanding the phage that infect bacteria and archaea in these rapidly changing habitats will provide insight into the controls on current and future CH4 and CO2 emissions in permafrost habitats.

  5. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    Science.gov (United States)

    Porada, Philipp; Ekici, Altug; Beer, Christian

    2016-09-01

    Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg). The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a) bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b) a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will be the basis for an improved

  6. Soil moisture data for the validation of permafrost models using direct and indirect measurement approaches at three alpine sites

    Directory of Open Access Journals (Sweden)

    Cécile ePellet

    2016-01-01

    Full Text Available In regions affected by seasonal and permanently frozen conditions soil moisture influences the thermal regime of the ground as well as its ice content, which is one of the main factors controlling the sensitivity of mountain permafrost to climate changes. In this study, several well established soil moisture monitoring techniques were combined with data from geophysical measurements to assess the spatial distribution and temporal evolution of soil moisture at three high elevation sites with different ground properties and thermal regimes. The observed temporal evolution of measured soil moisture is characteristic for sites with seasonal freeze/thaw cycles and consistent with the respective site-specific properties, demonstrating the general applicability of continuous monitoring of soil moisture at high elevation areas. The obtained soil moisture data were then used for the calibration and validation of two different model approaches in permafrost research in order to characterize the lateral and vertical distribution of ice content in the ground. Calibration of the geophysically based four-phase model (4PM with spatially distributed soil moisture data yielded satisfactory two dimensional distributions of water-, ice- and air content. Similarly, soil moisture time series significantly improved the calibration of the one-dimensional heat and mass transfer model COUP, yielding physically consistent soil moisture and temperature data matching observations at different depths.

  7. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    NARCIS (Netherlands)

    Wisser, D.; Marchenko, S.; Talbot, J.; Treat, C.; Frolking, S.

    2011-01-01

    Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth’s carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of clim

  8. ADAPT: building conceptual models of the physical and biological processes across permafrost landscapes

    Science.gov (United States)

    Allard, M.; Vincent, W. F.; Lemay, M.

    2012-12-01

    Fundamental and applied permafrost research is called upon in Canada in support of environmental protection, economic development and for contributing to the international efforts in understanding climatic and ecological feedbacks of permafrost thawing under a warming climate. The five year "Arctic Development and Adaptation to Permafrost in Transition" program (ADAPT) funded by NSERC brings together 14 scientists from 10 Canadian universities and involves numerous collaborators from academia, territorial and provincial governments, Inuit communities and industry. The geographical coverage of the program encompasses all of the permafrost regions of Canada. Field research at a series of sites across the country is being coordinated. A common protocol for measuring ground thermal and moisture regime, characterizing terrain conditions (vegetation, topography, surface water regime and soil organic matter contents) is being applied in order to provide inputs for designing a general model to provide an understanding of transfers of energy and matter in permafrost terrain, and the implications for biological and human systems. The ADAPT mission is to produce an 'Integrated Permafrost Systems Science' framework that will be used to help generate sustainable development and adaptation strategies for the North in the context of rapid socio-economic and climate change. ADAPT has three major objectives: to examine how changing precipitation and warming temperatures affect permafrost geosystems and ecosystems, specifically by testing hypotheses concerning the influence of the snowpack, the effects of water as a conveyor of heat, sediments, and carbon in warming permafrost terrain and the processes of permafrost decay; to interact directly with Inuit communities, the public sector and the private sector for development and adaptation to changes in permafrost environments; and to train the new generation of experts and scientists in this critical domain of research in Canada

  9. Comparison of effects of cold-region soil/snow processes and the uncertainties from model forcing data on permafrost physical characteristics

    Science.gov (United States)

    Barman, Rahul; Jain, Atul K.

    2016-03-01

    We used a land surface model to (1) evaluate the influence of recent improvements in modeling cold-region soil/snow physics on near-surface permafrost physical characteristics (within 0-3 m soil column) in the northern high latitudes (NHL) and (2) compare them with uncertainties from climate and land-cover data sets. Specifically, four soil/snow processes are investigated: deep soil energetics, soil organic carbon (SOC) effects on soil properties, wind compaction of snow, and depth hoar formation. In the model, together they increased the contemporary NHL permafrost area by 9.2 × 106 km2 (from 2.9 to 12.3—without and with these processes, respectively) and reduced historical degradation rates. In comparison, permafrost area using different climate data sets (with annual air temperature difference of ˜0.5°C) differed by up to 2.3 × 106 km2, with minimal contribution of up to 0.7 × 106 km2 from substantial land-cover differences. Individually, the strongest role in permafrost increase was from deep soil energetics, followed by contributions from SOC and wind compaction, while depth hoar decreased permafrost. The respective contribution on 0-3 m permafrost stability also followed a similar pattern. However, soil temperature and moisture within vegetation root zone (˜0-1 m), which strongly influence soil biogeochemistry, were only affected by the latter three processes. The ecosystem energy and water fluxes were impacted the least due to these soil/snow processes. While it is evident that simulated permafrost physical characteristics benefit from detailed treatment of cold-region biogeophysical processes, we argue that these should also lead to integrated improvements in modeling of biogeochemistry.

  10. Site- and horizon-specific patterns of microbial community structure and enzyme activities in permafrost-affected soils of Greenland

    DEFF Research Database (Denmark)

    Gittel, Antje; Barta, Jiri; Kohoutova, Iva;

    2014-01-01

    on its impact on the carbon budget are thus still highly uncertain. However, the fate of OC is not only determined by abiotic factors, but closely tied to microbial activity. We investigated eight soil profiles in northeast Greenland comprising two sites with typical tundra vegetation and one wet fen......Permafrost-affected soils in the Northern latitudes store huge amounts of organic carbon (OC) that is prone to microbial degradation and subsequent release of greenhouse gases to the atmosphere. In Greenland, the consequences of permafrost thaw have only recently been addressed, and predictions......, diversity and activity, the wet fen site exhibiting higher potential enzyme activities and presumably being a hot spot for anaerobic degradation processes such as fermentation and methanogenesis. Lowest fungal to bacterial ratios were found in topsoils that had been relocated by cryoturbation (“buried...

  11. Abundance, Distribution and Potential Activity of Methane Oxidising Bacteria in Permafrost Soils from the Lena Delta, Siberia

    OpenAIRE

    Susanne Liebner; Dirk Wagner;  

    2007-01-01

    The methane oxidation potential of active layer profiles of permafrost soils from the Lena Delta, Siberia, was studied with regard to its respond to temperature, and abundance and distribution of type I and type II methanotrophs. Our results indicate vertical shifts within the optimal methane oxidation temperature and within the distribution of type I and type II methanotrophs. In the upper active layer, maximum methane oxidation potentials were detected at 21 °C. Deep active layer zones that...

  12. The effect of permafrost on soil erosion using meteoric 10Be, 137Cs and 239+240Pu in the Eastern Swiss Alps

    Science.gov (United States)

    Pichler, Barbara; Brandovà, Dagmar; Alewell, Christine; Ivy-Ochs, Susan; Kubik, Peter W.; Kneisel, Christof; Meusburger, Katrin; Ketterer, Michael; Egli, Markus

    2013-04-01

    Permafrost ecosystems are highly sensitive to climate warming. The expected changes in the thermal and hydrological soil regime might have crucial consequences on soil erosion processes. Therefore, the determination of erosional activities on the long- (since the beginning of soil formation) and mid-term (last 50-60 yr) using cosmogenic and anthropogenic radionuclides can provide important information on past and ongoing processes. Permafrost soils in the Alps and their behaviour with climate change are only rarely studied. The expected new insights will lead to a better understanding of the processes of high mountain soils and are a further step towards improving climate-related modelling of fast warming scenarios and increasing system disequilibria. Our aim is to quantify soil erosion processes in permafrost soils and nearby unfrozen soils in the Alpine (sites at 2700 m asl) and the sub-Alpine (sites 1800 m asl) range of the Swiss Alps (Upper Engadine). We hypothesise that permafrost soils differ distinctly in their long- and mid-term soil erosion rates due to different water retention capacities. Long-term soil erosion was assessed using meteoric 10Be. Meteoric 10Be in a soil profile was estimated assuming that it is has been deposited as a function of precipitation and adsorbed in the fine earth fraction (

  13. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss

    Science.gov (United States)

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Kanevskiy, M.Z.; Jorgenson, M.T.; Xu, X.

    2011-01-01

    High-latitude regions store large amounts of organic carbon (OC) in active-layer soils and permafrost, accounting for nearly half of the global belowground OC pool. In the boreal region, recent warming has promoted changes in the fire regime, which may exacerbate rates of permafrost thaw and alter soil OC dynamics in both organic and mineral soil. We examined how interactions between fire and permafrost govern rates of soil OC accumulation in organic horizons, mineral soil of the active layer, and near-surface permafrost in a black spruce ecosystem of interior Alaska. To estimate OC accumulation rates, we used chronosequence, radiocarbon, and modeling approaches. We also developed a simple model to track long-term changes in soil OC stocks over past fire cycles and to evaluate the response of OC stocks to future changes in the fire regime. Our chronosequence and radiocarbon data indicate that OC turnover varies with soil depth, with fastest turnover occurring in shallow organic horizons (~60 years) and slowest turnover in near-surface permafrost (>3000 years). Modeling analysis indicates that OC accumulation in organic horizons was strongly governed by carbon losses via combustion and burial of charred remains in deep organic horizons. OC accumulation in mineral soil was influenced by active layer depth, which determined the proportion of mineral OC in a thawed or frozen state and thus, determined loss rates via decomposition. Our model results suggest that future changes in fire regime will result in substantial reductions in OC stocks, largely from the deep organic horizon. Additional OC losses will result from fire-induced thawing of near-surface permafrost. From these findings, we conclude that the vulnerability of deep OC stocks to future warming is closely linked to the sensitivity of permafrost to wildfire disturbance. ?? 2010 Blackwell Publishing Ltd.

  14. Soil Biota and Litter Decay in High Arctic Ecosystems

    Science.gov (United States)

    González, G.; Rivera, F.; Makarova, O.; Gould, W. A.

    2006-12-01

    Frost heave action contributes to the formation of non-sorted circles in the High Arctic. Non-sorted circles tend to heave more than the surrounding tundra due to deeper thaw and the formation of ice lenses. Thus, the geomorphology, soils and vegetation on the centers of the patterned-ground feature (non-sorted circles) as compared to the surrounding soils (inter-circles) can be different. We established a decomposition experiment to look at in situ decay rates of the most dominant graminoid species on non-sorted circles and adjacent inter-circle soils along a climatic gradient in the Canadian High Arctic as a component of a larger study looking at the biocomplexity of small-featured patterned ground ecosystems. Additionally, we investigated variation in soil chemical properties and biota, including soil microarthropods and microbial composition and biomass, as they relate to climate, topographic position, and litter decay rates. Our three sites locations, from coldest to warmest, are Isachsen, Ellef Ringnes Island (ER), NU (bioclimatic subzone A); Mould Bay (MB), Prince Patrick Island, NT (bioclimatic subzone B), and Green Cabin (GC), Aulavik National Park, Thomsen River, Banks Island, NT (bioclimatic subzone C). Our sample design included the selection of 15 non-sorted circles and adjacent inter-circle areas within the zonal vegetation at each site (a total of 90 sites), and a second set of 3 non-sorted circles and adjacent inter-circle areas in dry, mesic and wet tundra at each of the sites. Soil invertebrates were sampled at each site using both pitfall traps, soil microbial biomass was determined using substrate induced respiration and bacterial populations were determined using the most probable number method. Decomposition rates were measured using litterbags and as the percent of mass remaining of Carex misandra, Luzula nivalis and Alopecuris alpinus in GC, MB and ER, respectively. Our findings indicate these graminoid species decayed significantly over

  15. Western Arctic Coastal Plain, IFSAR-derived, Digital Surface Model. University of Alaska Fairbanks, Geophysical Institute Permafrost Laboratory (2013).

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This dataset consists of a mosaic created from an Interferometric Synthetic Aperture Radar (IfSAR) derived digital surface model (DSM) acquired over the National...

  16. Seward Peninsula, Alaska, Permafrost Distribution in the Recent Past, Present and Future

    Science.gov (United States)

    Busey, R. C.; Hinzman, L. D.

    2006-12-01

    Permafrost extent has been estimated for three different time periods, the early twentieth century, the present, and the end of the twenty-first century using the TTOP model. The TTOP model has been used before to estimate Canadian permafrost but it is applicable in other locations for looking generally at permafrost distributions. This region of sub-Arctic Alaska is a proxy for a warmer Arctic due to the broad expanses of tussock tundra, invading shrubs, and fragile permafrost. With average air temperatures just below freezing and very warm permafrost, the area is quite susceptible to dramatic change in response to a warming climate. The distributions use n-factors calculated from stations on the Peninsula and air temperature defined using MicroMet (Liston and Elder, 2005) to estimate surface temperatures. Source data for the distributed model varied depending on the time period of interest. Early twentieth century data is from Nome, present day data came from eleven meteorological stations across the Seward Peninsula from the National Weather Service, SNOTEL, RAWS, and our own stations and finally, the twenty-first century data set is the result of meshing outputs from thirteen GCM models from the IPCC. These estimates of permafrost extent enable us to compare the current distribution to that existing during past climates and to estimate the future state of permafrost on the Seward Peninsula. The broadest impacts of climate warming to the terrestrial arctic regions will result in changing permafrost structure and extent. As the climate differentially warms in summer and winter, the permafrost will become warmer, the active layer (the layer of soil above the permafrost that annually experiences freeze and thaw) will grow thicker, the lower boundary of permafrost will slowly become shallower and permafrost extent will decrease in area. These simple structural changes will affect every aspect of the surface water and energy balances. As extent decreases, there is

  17. The Influence of Earth Temperature on the Dynamic Characteristics of Frozen Soil and the Parameters of Ground Motion on Sites of Permafrost

    Institute of Scientific and Technical Information of China (English)

    Wang Lanmin; Zhang Dongli; Wu Zhijian; Ma Wei; Li Xiaojun

    2004-01-01

    Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motion acceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.

  18. DUE PERMAFROST: A Circumpolar Remote Sensing Service for Permafrost - Evaluation Case Studies and Intercomparison with Regional Climate Model Simulations

    Science.gov (United States)

    Heim, B.; Bartsch, A.; Elger, K. K.; Rinke, A.; Matthes, H.; Zhou, X.; Klehmet, K.; Buchhorn, M.; Soliman, A. S.; Duguay, C. R.

    2013-12-01

    The objective of the ESA Data User Element DUE Permafrost project (https://www.ipf.tuwien.ac.at/permafrost/) was to establish a Remote Sensing Service for permafrost applications. Permafrost has been addressed as one of the Essential Climate Variables (ECVs) in the Global Climate Observing System (GCOS). Permafrost is a subground phenomenon but Earth Observation can provide permafrost-related indicators and geophysical parameters used in modelling and monitoring. Climate and permafrost modelers as well as field investigators are associated users including the International Permafrost Association (IPA). http://www.page21.eu/ The ESA DUE Permafrost project (2009-2012) developed a suite of remote sensing products indicative for the subsurface phenomenon permafrost: Land Surface Temperature (LST), Surface Soil Moisture (SSM), Surface Frozen and Thawed State (Freeze/Thaw), Terrain, Land Cover, and Surface Water. Snow parameters (Snow Extent and Snow Water Equivalent) are being developed through the DUE GlobSnow project (Global Snow Monitoring for Climate Research, 2008-2011). The final DUE Permafrost remote sensing products cover the years 2007 to 2011 with a circumpolar coverage (north of 50°N). The products were released in 2012, to be used to analyze the temporal dynamics and map the spatial patterns of permafrost indicators. Further information is available at www.ipf.tuwien.ac.at/ permafrost. The remote sensing service also supports the FP7 funded project PAGE21 - Changing Permafrost in the Arctic and its Global Effects in the 21st Century, http://www.page21.eu/. The primary programme providing various ground data for the evaluation is the Global Terrestrial Network for Permafrost (GTN-P) initiated by the International Permafrost Association (IPA). Ground data ranges from active layer- and snow depths, to air-, ground-, and borehole temperature data as well as soil moisture measurements and the description of landform and vegetation. The involvement of scientific

  19. Zn isotope fractionation in a pristine larch forest on permafrost-dominated soils in Central Siberia.

    Science.gov (United States)

    Viers, Jerome; Prokushkin, Anatoly S; Pokrovsky, Oleg S; Kirdyanov, Alexander V; Zouiten, Cyril; Chmeleff, Jerome; Meheut, Merlin; Chabaux, Francois; Oliva, Priscia; Dupré, Bernard

    2015-01-01

    Stable Zn isotopes fractionation was studied in main biogeochemical compartments of a pristine larch forest of Central Siberia developed over continuous permafrost basalt rocks. Two north- and south-oriented watershed slopes having distinctly different vegetation biomass and active layer depth were used as natural proxy for predicting possible future climate changes occurring in this region. In addition, peat bog zone exhibiting totally different vegetation, hydrology and soil temperature regime has been studied. The isotopic composition of soil profile from Central Siberia is rather constant with a δ(66)Zn value around 0.2‰ close to the value of various basalts. Zn isotopic composition in mosses (Sphagnum fuscum and Pleurozium schreberi) exhibits differences between surface layers presenting values from 0.14 to 0.2‰ and bottom layers presenting significantly higher values (0.5 - 0.7‰) than the underlain mineral surface. The humification of both dead moss and larch needles leads to retain the fraction where Zn bound most strongly thus releasing the lighter isotopes in solution and preserving the heavy isotopes in the humification products, in general accord with previous experimental and modeling works [GCA 75:7632-7643, 2011]. The larch (Larix gmelinii) from North and South-facing slopes is enriched in heavy isotopes compared to soil reservoir while larch from Sphagnum peatbog is enriched in light isotopes. This difference may result from stronger complexation of Zn by organic ligands and humification products in the peat bog compared to mineral surfaces in North- and South-facing slope. During the course of the growing period, Zn followed the behavior of macronutrients with a decrease of concentration from June to September. During this period, an enrichment of larch needles by heavier Zn isotopes is observed in the various habitats. We suggest that the increase of the depth of rooting zone, and the decrease of DOC and Zn concentration in soil solution

  20. ESA DUE Permafrost: An Earth observation (EO) permafrost monitoring system

    OpenAIRE

    Birgit Heim; Annett Bartsch; Kirsten Elger; Hugues Lantuit; Julia Boike; Sina Muster; Moritz Langer; Claude Duguay; Sonia Hachem; Aiman Soliman; Christoph Paulik; Tazio Strozzi; Frank-Martin Seifert

    2011-01-01

    The task of the ESA Data User Element (DUE) Permafrost project is to build up an Earth Observation service for permafrost applications with extensive involvement of the permafrost research community. The DUE Permafrost remote sensing products are ‘Land Surface Temperature’ (LST), ‘Surface Soil Moisture’ (SSM), ‘Frozen/ Thawed Surface Status’ (Freeze/Thaw), ‘Terrain’, ‘Land Cover’ (LC), and ‘Surface Waters’. A major component is the evaluation of the DUE Permafrost products to test their s...

  1. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source

    DEFF Research Database (Denmark)

    Nauta, Ake L.; Heijmans, Monique P.D.; Blok, Daan;

    2015-01-01

    Arctic tundra ecosystems are warming almost twice as fast as the global average1. Permafrost thaw and the resulting release of greenhouse gases from decomposing soil organic carbon have the potential to accelerate climate warming2,3. In recent decades, Arctic tundra ecosystems have changed rapidly4......, including expansion of woody vegetation5,6, in response to changing climate conditions. How such vegetation changes contribute to stabilization or destabilization of the permafrost is unknown. Here we present six years of field observations in a shrub removal experiment at a Siberian tundra site. Removing...... the shrub part of the vegetation initiated thawing of ice-rich permafrost, resulting in collapse of the originally elevated shrub patches into waterlogged depressions within five years. This thaw pond development shifted the plots from a methane sink into a methane source. The results of our field...

  2. Effects of Permafrost Degradation on Soil Hydrological Processes in Alpine Steppe on the Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    Yin Zhifang; Ouyang Hua; Yang Zhaoping

    2012-01-01

    Permafrost degradation is prevalent on the Qinghai-Ti-bet Plateau. This may lead to changes in water and heat transition in soils and thus affect the structure and function of ecosystems. In this paper, using the measured data of alpine steppe in Wud- aoliang assessed the model performance in simulating soil freezing and thawing processes. Comparison of the simulated results by simultaneous heat and water (SHAW) model to the measured data showed that SHAW model performed satisfactorily. Based on analyzing the simulated and predicted results, two points were obtained: (1) freezing and thawing of the active layer proceeded both from the soil surface downward. Compared with the freezing process, the thawing process was slower. The freezing period persisted in the surface layer (4 cm depth) for about 5 months; (2) in the next 50 years, frozen period would be shorten about 20 days in the top 100 cm depth while the thawing would start earlier 40 days than present. Soil water storage in the 0-60 cm would de- crease by 22% averagely, especially from June to August when the vegetation is at the dominating water consumed stage. Therefore, this kind of permafrost degradation as active layer freezing and thawing processes changes will reduce soil water content and thus influence those ecosystems above it.

  3. The long-term fate of permafrost peatlands under rapid climate warming.

    Science.gov (United States)

    Swindles, Graeme T; Morris, Paul J; Mullan, Donal; Watson, Elizabeth J; Turner, T Edward; Roland, Thomas P; Amesbury, Matthew J; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  4. The microbial ecology of permafrost

    DEFF Research Database (Denmark)

    Jansson, Janet; Tas, Neslihan

    2014-01-01

    Permafrost constitutes a major portion of the terrestrial cryosphere of the Earth and is a unique ecological niche for cold-adapted microorganisms. There is a relatively high microbial diversity in permafrost, although there is some variation in community composition across different permafrost......-gas emissions. This Review describes new data on the microbial ecology of permafrost and provides a platform for understanding microbial life strategies in frozen soil as well as the impact of climate change on permafrost microorganisms and their functional roles....

  5. Development of bearing capacity of fine grained permafrost deposits in western greenland urban areas subject to soil temperature changes

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2012-01-01

    The bearing capacity of frozen soils is high, compared to non-frozen soils of same composition. Projected climatic warming in the Arctic will increase the soil temperature, thus affecting the bearing capacity and the deformation properties. Western Greenland temperatures are projected to increase...... excess ice free samples. Unfrozen water contents are seen to be directly inversely proportional to the undrained shear strength when both are normalized, which may reduce costs for establishing reliable soil strength parameters. It is suggested that a relation to deformation parameters are investigated...

  6. An underestimated methane sink in Arctic mineral soils

    Science.gov (United States)

    Oh, Y.; Medvigy, D.; Stackhouse, B. T.; Lau, M.; Onstott, T. C.; Jørgensen, C. J.; Elberling, B.; Emmerton, C. A.; St Louis, V. L.; Moch, J.

    2015-12-01

    Atmospheric methane has more than doubled since the industrial revolution, yet the sources and sinks are still poorly constrained. Though soil methane oxidation is the largest terrestrial methane sink, it is inadequately represented in current models. We have conducted laboratory analysis of mineral cryosol soils from Axel Heiberg Island in the Canadian high arctic. Microcosm experiments were carried out under varying environmental conditions and used to parameterize methane oxidation models. One-meter long intact soil cores were also obtained from Axel Heiberg Island and analyzed in the laboratory. A controlled core thawing experiment was carried out, and observed methane fluxes were compared to modeled methane fluxes. We find that accurate model simulation of methane fluxes needs to satisfy two requirements:(1) microbial biomass needs to be dynamically simulated, and (2) high-affinity methanotrophs need to be represented. With these 2 features, our model is able to reproduce observed temperature and soil moisture sensitivities of high affinity methanotrophs, which are twice as sensitive to temperature than the low affinity methanotrophs and are active under saturated moisture conditions. The model is also able to accurately reproduce the time rate of change of microbial oxidation of atmospheric methane. Finally, we discuss the remaining biases and uncertainties in the model, and the challenges of extending models from the laboratory scale to the landscape scale.

  7. Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Benjamin F.; Chen, Hong-Mei; Herndon, Elizabeth M.; Chu, Rosalie K.; Tolic, Nikola; Portier, Evan; Chowdhury, Taniya R.; Robinson, Errol W.; Callister, Stephen J.; Wullschleger, Stan D.; Graham, David E.; Liang, Liyuan; Gu, Baohua

    2015-06-12

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observed degradation potentials. Compounds with a CHO index score between –1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.

  8. Using ground data of the Global Terrestrial Network of Permafrost (GTN-P) for the evaluation of ESA Data User Element (DUE) Permafrost remote sensing derived products

    Science.gov (United States)

    Elger, K.; Heim, B.; Bartsch, A.; Paulik, Ch.; Duguay, C.; Hachem, S.; Soliman, A.; Boike, J.; Langer, M.; Lantuit, H.

    2012-04-01

    Permafrost is one of the essential climate variables addressed by the Global Terrestrial Observing System (GCOS). Remote sensing data provide area-wide monitoring of e.g. surface temperatures or soil surface status (frozen or thawed state) in the Arctic and Subarctic, where ground data collection is difficult and restricted to local measurements at few monitoring sites. The task of the ESA Data User Element (DUE) Permafrost project is to build-up an Earth observation service for northern high-latitudinal permafrost applications with extensive involvement of the international permafrost research community (www.ipf.tuwien.ac.at/permafrost). The satellite-derived DUE Permafrost products are Land Surface Temperature, Surface Soil Moisture, Surface Frozen and Thawed State, Digital Elevation Model (locally as remote sensing product and circumpolar as non-remote sensing product) and Subsidence, and Land Cover. Land Surface Temperature, Surface Soil Moisture, and Surface Frozen and Thawed State will be provided for the circumpolar permafrost area north of 55° N with 25 km spatial resolution. In addition, regional products with higher spatial resolution were developed for five case study regions in different permafrost zones of the tundra and taiga (Laptev Sea [RU], Central Yakutia [RU], Western Siberia [RU], Alaska N-S transect, [US] Mackenzie River and Valley [CA]). This study shows the evaluation of two DUE Permafrost regional products, Land Surface Temperature and Surface Frozen and Thawed State, using freely available ground truth data from the Global Terrestrial Network of Permafrost (GTN-P) and monitoring data from the Russian-German Samoylov research station in the Lena River Delta (Central Siberia, RU). The GTN-P permafrost monitoring sites with their position in different permafrost zones are highly qualified for the validation of DUE Permafrost remote sensing products. Air and surface temperatures with high-temporal resolution from eleven GTN-P sites in Alaska

  9. The Impact of Global Warming on the Carbon Cycle of Arctic Permafrost: An Experimental and Field Based Study

    Energy Technology Data Exchange (ETDEWEB)

    Onstott, Tullis C [Princeton University; Pffifner, Susan M; Chourey, Karuna [Oak Ridge National Laboratory

    2014-11-07

    Our results to date indicate that CO2 and CH4 fluxes from organic poor, Arctic cryosols on Axel Heiberg Island are net CH4 sinks and CO2 emitters in contrast to organic-rich peat deposits at sub-Arctic latitudes. This is based upon field observations and a 1.5 year long thawing experiment performed upon one meter long intact cores. The results of the core thawing experiments are in good agreement with field measurements. Metagenomic, metatranscriptomic and metaproteomic analyses indicate that high affinity aerobic methanotrophs belong to the uncultivated USCalpha are present in <1% abundance in these cryosols are are active in the field during the summer and in the core thawing experiments. The methanotrophs are 100 times more abundant than the methanogens. As a result mineral cryosols, which comprise 87% of Arctic tundra, are net methane sinks. Their presence and activity may account for the discrepancies observed between the atmospheric methane concentrations observed in the Arctic predicted by climate models and the observed seasonal fluctuations and decadal trends. This has not been done yet.

  10. Two years of CarboPerm: achievements and further steps of an interdisciplinary Russian-German project on the formation, turnover and release of carbon in Siberian permafrost landscape

    Science.gov (United States)

    Zubrzycki, S.

    2015-12-01

    Permafrost-affected soils of the northern hemisphere have accumulated large pools of soil organic carbon (SOC) since continuous low temperatures in the permafrost prevented organic matter (OM) decomposition. According to recent estimates these soils contain 1300 ± 200 Pg of SOC, or about twice as much the carbon within the global vegetation. Rising arctic temperatures will likely result in increased permafrost thawing with the consequence of increased mobilization and degradation of formerly frozen OM. This degradation process will presumably result in an increased formation of trace gases such as methane and carbon dioxide which can be released to the atmosphere. Rising trace gas concentrations due to permafrost thawing would thereby induce a positive feedback on climate warming. CarboPerm, is a joint German-Russian research project funded by the German Federal Ministry of Education and Research. It comprises multi-disciplinary investigations on the formation, turnover and release of SOC in Siberian permafrost. It aims to gain increased understanding of how permafrost-affected landscapes will respond to global warming and how this response will influence the local, regional and global trace gas balance. CarboPerm strengthens permafrost research in underrepresented areas which are hardly accessible to international researchers. The obtained results improve our understanding of the future development of the sensitive and economically relevant arctic permafrost regions. With this contribution we want to inform the interested community about the new knowledge resulting from results of all scientific work packages: (i) the origin, properties, and dynamics of fossil carbon, (ii) the age and quality of organic matter, (iii) the recent carbon dynamics in permafrost landscapes, (iv) the microbial transformation of organic carbon in permafrost, and (v) process-driven modeling of soil carbon dynamics in permafrost areas.

  11. 2.5 years of CarboPerm: achievements and further steps of an interdisciplinary Russian-German project on the formation, turnover and release of carbon in Siberian permafrost landscapes

    Science.gov (United States)

    Zubrzycki, Sebastian

    2016-04-01

    Permafrost-affected soils of the northern hemisphere have accumulated large pools of soil organic carbon (SOC) since continuous low temperatures in the permafrost prevented organic matter (OM) decomposition. According to recent estimates these soils contain 1300 ± 200 Pg of SOC, or about twice as much the carbon within the global vegetation. Rising arctic temperatures will likely result in increased permafrost thawing with the consequence of increased mobilization and degradation of formerly frozen OM. This degradation process will presumably result in an increased formation of trace gases such as methane and carbon dioxide which can be released to the atmosphere. Rising trace gas concentrations due to permafrost thawing would thereby induce a positive feedback on climate warming. CarboPerm, is a joint German-Russian research project funded by the German Federal Ministry of Education and Research. It comprises multi-disciplinary investigations on the formation, turnover and release of SOC in Siberian permafrost. It aims to gain increased understanding of how permafrost-affected landscapes will respond to global warming and how this response will influence the local, regional and global trace gas balance. CarboPerm strengthens permafrost research in underrepresented areas which are hardly accessible to international researchers. The obtained results improve our understanding of the future development of the sensitive and economically relevant arctic permafrost regions. With this contribution we want to inform the interested community about the new knowledge resulting from results of all scientific work packages: (i) the origin, properties, and dynamics of fossil carbon, (ii) the age and quality of organic matter, (iii) the recent carbon dynamics in permafrost landscapes, (iv) the microbial transformation of organic carbon in permafrost, and (v) process-driven modeling of soil carbon dynamics in permafrost areas.

  12. The effect of vegetation type and fire on permafrost thaw: An empirical test of a process based model

    Science.gov (United States)

    Thierry, Aaron; Estop-Aragones, Cristian; Fisher, James; Hartley, Iain; Murton, Julian; Phoenix, Gareth; Street, Lorna; Williams, Mathew

    2015-04-01

    As conditions become more favourable for plant growth in the high latitudes, most models predict that these areas will take up more carbon during the 21st century. However, vast stores of carbon are frozen in boreal and arctic permafrost, and warming may result in some of this carbon being released to the atmosphere. The recent inclusion of permafrost thaw in large-scale model simulations has suggested that the permafrost feedback could potentially substantially reduce the predicted global net uptake of carbon by terrestrial ecosystems, with major implications for the rate of climate change. However, large uncertainties remain in predicting rates of permafrost thaw and in determining the impacts of thaw in contrasting ecosystems, with many of the key processes missing from carbon-climate models. The role that different plant communities play in insulating soils and protecting permafrost is poorly quantified, with key groups such as mosses absent in many models. But it is thought that they may play a key role in determining permafrost resilience. In order to test the importance of these ecological processes we use a new specially acquired dataset from sites in the Canadian arctic to develop, parameterise and evaluate a detailed process-based model of vegetation-soil-permafrost interactions which includes an insulating moss understory. We tested the sensitivity of modelled active layer depth to a series of factors linked to fire disturbance, which is common in boreal permafrost areas. We show how simulations of active layer depth (ALD) respond to removals of (i) vascular vegetation, (ii) moss cover, and (iii) organic soil layers. We compare model responses to observed patterns from Canada. We also describe the sensitivity of our modelled ALD to changes in temperature and precipitation. We found that four parameters controlled most of the sensitivity in the modelled ALD, linked to conductivity of organic soils and mosses.

  13. Thawing permafrost increases old soil and autotrophic respiration in tundra: partitioning ecosystem respiration using δ(13) C and ∆(14) C.

    Science.gov (United States)

    Hicks Pries, Caitlin E; Schuur, Edward A G; Crummer, Kathryn G

    2013-02-01

    Ecosystem respiration (Reco ) is one of the largest terrestrial carbon (C) fluxes. The effect of climate change on Reco depends on the responses of its autotrophic and heterotrophic components. How autotrophic and heterotrophic respiration sources respond to climate change is especially important in ecosystems underlain by permafrost. Permafrost ecosystems contain vast stores of soil C (1672 Pg) and are located in northern latitudes where climate change is accelerated. Warming will cause a positive feedback to climate change if heterotrophic respiration increases without corresponding increases in primary production. We quantified the response of autotrophic and heterotrophic respiration to permafrost thaw across the 2008 and 2009 growing seasons. We partitioned Reco using Δ(14) C and δ(13) C into four sources-two autotrophic (above - and belowground plant structures) and two heterotrophic (young and old soil). We sampled the Δ(14) C and δ(13) C of sources using incubations and the Δ(14) C and δ(13) C of Reco using field measurements. We then used a Bayesian mixing model to solve for the most likely contributions of each source to Reco . Autotrophic respiration ranged from 40 to 70% of Reco and was greatest at the height of the growing season. Old soil heterotrophic respiration ranged from 6 to 18% of Reco and was greatest where permafrost thaw was deepest. Overall, growing season fluxes of autotrophic and old soil heterotrophic respiration increased as permafrost thaw deepened. Areas with greater thaw also had the greatest primary production. Warming in permafrost ecosystems therefore leads to increased plant and old soil respiration that is initially compensated by increased net primary productivity. However, barring large shifts in plant community composition, future increases in old soil respiration will likely outpace productivity, resulting in a positive feedback to climate change. PMID:23504799

  14. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    Directory of Open Access Journals (Sweden)

    D. Wisser

    2011-06-01

    Full Text Available Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20 % of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.

  15. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    Directory of Open Access Journals (Sweden)

    D. Wisser

    2011-02-01

    Full Text Available Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20% of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.

  16. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    Science.gov (United States)

    Wisser, D.; Marchenko, S.; Talbot, J.; Treat, C.; Frolking, S.

    2011-06-01

    Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20 % of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.

  17. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada

    Directory of Open Access Journals (Sweden)

    J. Majorowicz

    2012-03-01

    Full Text Available Atmospheric methane from episodic gas hydrate (GH destabilization, the "clathrate gun" hypothesis, is proposed to affect past climates, possibly since the Phanerozoic began or earlier. In the terrestrial Beaufort-Mackenzie Basin (BMB, GHs occur commonly below thick ice-bearing permafrost (IBP, but they are rare within it. Two end-member GH models, where gas is either trapped conventionally (Case 1 or where it is trapped dynamically by GH formation (Case 2, were simulated using profile (1-D models and a 14 Myr ground surface temperature (GST history based on marine isotopic data, adjusted to the study setting, constrained by deep heat flow, sedimentary succession conductivity, and observed IBP and Type I GH contacts in Mallik wells. Models consider latent heat effects throughout the IBP and GH intervals. Case 1 GHs formed at ~0.9 km depth only ~1 Myr ago by in situ transformation of conventionally trapped natural gas. Case 2 GHs begin to form at ~290–300 m ~6 Myr ago in the absence of lithological migration barriers. During glacial intervals Case 2 GH layers expand both downward and upward as the permafrost grows downward through and intercalated with GHs. The distinctive model results suggest that most BMB GHs resemble Case 1 models, based on the observed distinct and separate occurrences of GHs and IBP and the lack of observed GH intercalations in IBP. Case 2 GHs formed >255 m, below a persistent ice-filled permafrost layer that is as effective a seal to upward methane migration as are Case 1 lithological seals. All models respond to GST variations, but in a delayed and muted manner such that GH layers continue to grow even as the GST begins to increase. The models show that the GH stability zone history is buffered strongly by IBP during the interglacials. Thick IBP and GHs could have persisted since ~1.0 Myr ago and ~4.0 Myr ago for Cases 1 and 2, respectively. Offshore BMB IBP and GHs formed terrestrially during Pleistocene sea level low

  18. Pre-late Weichselian podzol soil, permafrost features and lithostratigraphy at Penttilänkangas, western Finland

    Directory of Open Access Journals (Sweden)

    Reijo Pitkäranta

    2009-06-01

    Full Text Available The ridge-shaped Penttilänkangas accumulation in western Finland is glaciofluvial in origin: probably an ice-marginal subaquatic fan, reworked and covered with younger deep water, littoral, eolian and glacial sediments. Two cycles of glacial melting and land emergence tolittoral and subaerial conditions can be distinguished at Penttilänkangas, separated by one glacial advance. Special attention is paid to a fairly well preserved buried podzol soil profile and to permafrost features. The podzol soil is interpreted as having developed in littoral sand and subsequently covered with eolian sand and till. The permafrost features are observable in all the sediments below the covering till, indicating prolonged periglacial ice-freeconditions after the soil formation and before the latest glacial advance. The physical properties (content of <0.0625 mm fraction, magnetic susceptibility, colour, dry bulk density and LOI of the buried podzol soil profile are compared to the Holocene podzol soil with similar parent material in the same area. These properties, as well as the identified microfossils and cell tissue, imply that the paleosol probably developed over a longer period and/or in similar or warmer and moister conditions than the Holocene soil. The podzolisation possibly initiated in the Eemian Stage (MIS 5e, and according to the OSL datings, it ceased in the beginning of the Middle Weichselian Substage (MIS 4. After that, ice-free permafrostconditions prevailed for several thousand years before the Weichselian ice-sheet advanced to western Finland around 65 ka at the earliest.

  19. Thermal state of permafrost in North America: A contribution to the international polar year

    Science.gov (United States)

    Smith, S.L.; Romanovsky, V.E.; Lewkowicz, A.G.; Burn, C.R.; Allard, M.; Clow, G.D.; Yoshikawa, K.; Throop, J.

    2010-01-01

    A snapshot of the thermal state of permafrost in northern North America during the International Polar Year (IPY) was developed using ground temperature data collected from 350 boreholes. More than half these were established during IPY to enhance the network in sparsely monitored regions. The measurement sites span a diverse range of ecoclimatic and geological conditions across the continent and are at various elevations within the Cordillera. The ground temperatures within the discontinuous permafrost zone are generally above -3°C, and range down to -15°C in the continuous zone. Ground temperature envelopes vary according to substrate, with shallow depths of zero annual amplitude for peat and mineral soils, and much greater depths for bedrock. New monitoring sites in the mountains of southern and central Yukon suggest that permafrost may be limited in extent. In concert with regional air temperatures, permafrost has generally been warming across North America for the past several decades, as indicated by measurements from the western Arctic since the 1970s and from parts of eastern Canada since the early 1990s. The rates of ground warming have been variable, but are generally greater north of the treeline. Latent heat effects in the southern discontinuous zone dominate the permafrost thermal regime close to 0°C and allow permafrost to persist under a warming climate. Consequently, the spatial diversity of permafrost thermal conditions is decreasing over time.

  20. Permafrost in Svalbard: a review of research history, climatic background and engineering challenges

    OpenAIRE

    Humlum, Ole; Instanes, Arne; Sollid, Johan Ludvig

    2003-01-01

    This paper reviews permafrost in High Arctic Svalbard, including past and current research, climatic background, how permafrost is affected by climatic change, typical permafrost landforms and how changes in Svalbard permafrost may impact natural and human systems. Information on active layer dynamics, permafrost and ground ice characteristics and selected periglacial features is summarized from the recent literature and from unpublished data by the authors. Permafrost thickness ranges from l...

  1. High biolability of ancient permafrost carbon upon thaw

    NARCIS (Netherlands)

    Vonk, Jorien E.; Mann, Paul J.; Davydov, Sergey; Davydova, Anna; Spencer, Robert G. M.; Schade, John; Sobczak, William V.; Zimov, Nikita; Zimov, Sergei; Bulygina, Ekaterina; Eglinton, Timothy I.; Holmes, Robert M.

    2013-01-01

    Ongoing climate warming in the Arctic will thaw permafrost and remobilize substantial terrestrial organic carbon (OC) pools. Around a quarter of northern permafrost OC resides in Siberian Yedoma deposits, the oldest form of permafrost carbon. However, our understanding of the degradation and fate of

  2. InSAR detects increase in surface subsidence caused by an Arctic tundra fire

    Science.gov (United States)

    Liu, Lin; Jafarov, Elchin E.; Schaefer, Kevin M.; Jones, Benjamin M.; Zebker, Howard A.; Williams, Christopher A.; Rogan, John; Zhang, Tingjun

    2014-01-01

    Wildfire is a major disturbance in the Arctic tundra and boreal forests, having a significant impact on soil hydrology, carbon cycling, and permafrost dynamics. This study explores the use of the microwave Interferometric Synthetic Aperture Radar (InSAR) technique to map and quantify ground surface subsidence caused by the Anaktuvuk River fire on the North Slope of Alaska. We detected an increase of up to 8 cm of thaw-season ground subsidence after the fire, which is due to a combination of thickened active layer and permafrost thaw subsidence. Our results illustrate the effectiveness and potential of using InSAR to quantify fire impacts on the Arctic tundra, especially in regions underlain by ice-rich permafrost. Our study also suggests that surface subsidence is a more comprehensive indicator of fire impacts on ice-rich permafrost terrain than changes in active layer thickness alone.

  3. Geotechnical characterization and finite element pipe/soil interaction modeling of a pipeline installed in an actively moving, permafrost slope

    Energy Technology Data Exchange (ETDEWEB)

    Bidwell, A. [AMEC Earth and Environmental, Calgary, AB (Canada); Sen, M.; Pederson, I. [Enbridge Pipelines Inc., Edmonton, AB (Canada); Yoosef-Ghodsi, N. [C-FER Technologies, Edmonton, AB (Canada)

    2010-07-01

    This paper discussed a pipeline integrity analysis for a buried crude-oil pipeline at a site characterized by unstable permafrost slopes. Data collected from piezometers, inclinometers, and thermistor cables installed as part of a comprehensive geotechnical monitoring program were used to determine the geotechnical character of the site and model pipe/soil interactions. A finite element pipe/soil interaction model was developed to estimate the potential strain to the pipeline capacity in a worst-case scenario involving mass soil movement. The purpose was to determine the necessity of costly mitigation measures. The model showed that the pipeline strain capacity is unlikely to be exceeded in the event of a sudden ground movement at the slope. The soil, permafrost, and slope movement conditions at the site were described along with the methodology and results of the pipe/soil interaction model. The model, in which the pipeline is considered as a continuous structural beam, was used to analyze both the estimated current slope movement and the worst case large magnitude slope movement. To assess the pipeline integrity in the event of mass slope movement, the expected strain demand was compared to the strain capacity, taking into account whether the pipe is heavy wall, line pipe, or containing girth welds. The analysis indicated that the risk of pipeline failure is low in the event of a large magnitude slope movement. The pipe strain measurements were found to be within the design limits for the pipeline. The analysis is relevant to other northern pipeline and linear infrastructure developments. 8 refs., 6 figs.

  4. 植被和气候对阿拉斯加和加拿大北部北极苔原地区多年冻土活动层厚度的影响%Role of Vegetation and Climate in Permafrost Active Layer Depth in Arctic Tundra of Northern Alaska and Canada

    Institute of Scientific and Technical Information of China (English)

    Alexia M. Kelley; Howard E. Epstein; Donald A. Walker

    2004-01-01

    The active layer is the top layer of permafrost soils that thaws during the summer season due to increased ambient temperatures and solar radiation inputs. This layer is important because almost all biological activity takes place there luring the summer. The depth of active layer thaw is influenced by climatic conditions. Vegetation has also been found to have a strong impact on active layer thaw, because it can intercept incoming radiation, thereby insulating the soil from ambient conditions. In order to look at the role of vegetation and climate on active layer thaw, we measured thaw depth and the Normalized Difference Vegetation Index (NDVI; a proxy for aboveground plant biomass) along a latitudinal temperature gradient in arctic Alaska and Canada. At each site several measurements of thaw and NDVI were taken in areas with high amounts of vegetation and areas with little to no vegetation. Results show that the warmest regions, which had the greatest levels of NDVI, had relatively shallow thaw depths, and the coldest regions, which had the lowest levels of NDVI, also had relatively shallow thaw depths. The intermediate regions, which had moderate levels of NDVI and air temperature, had the greatest depth of thaw. These results indicate that temperature and vegetation interact to control the depth of the active layer across a range of arctic ecosystems. By developing a relationship to explain thaw depth through NDVI and temperature or latitude, the possibility exists to extrapolate thaw depth over large scales via remote sensing applications.

  5. In-situ studies of microbial CH{sub 4} oxidation efficiency in Arctic wetland soils. Applications of stable carbon isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Preuss, Inken-Marie

    2013-07-05

    Arctic wetland soils are significant sources of the climate-relevant trace gas methane (CH{sub 4}). The observed accelerated warming of the Arctic is expected to cause deeper permafrost thawing followed by increased carbon mineralization and CH{sub 4} formation in water-saturated permafrost-affected tundra soils thus creating a positive feedback to climate change. Aerobic CH{sub 4} oxidation is regarded as the key process reducing CH{sub 4} emissions from wetlands, but quantification of turnover rates has remained difficult so far. This study improved the in-situ quantification of microbial CH{sub 4} oxidation efficiency in arctic wetland soils in Russia's Lena River Delta based on stable isotope signatures of CH{sub 4}. In addition to the common practice of determining the stable isotope fractionation during oxidation, additionally the fractionation effect of diffusion, an important gas transport mechanism in tundra soils, was investigated for both saturated and unsaturated conditions. The isotopic fractionation factors α{sub ox} and α{sub diff} were used to calculate the CH{sub 4} oxidation efficiency from the CH{sub 4} stable isotope signatures of wet polygonal tundra soils of different hydrology. Further, the method was used to study the short-term effects of temperature increase with a climate manipulation experiment. For the first time, the stable isotope fractionation of CH{sub 4} diffusion through water-saturated soils was determined with α{sub diff} = 1.001 ± 0.0002 (n = 3). CH{sub 4} stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was α{sub diff} = 1.013 ± 0.003 (n = 18). For the studied sites the fractionation factor for diffusion under saturated conditions α{sub diff} = 1.001 seems to be of utmost importance for the quantification of the CH{sub 4} oxidation efficiency, since most of the CH{sub 4} is oxidized in the saturated part at the aerobic-anaerobic interface. Furthermore

  6. 2015 DOE Final UF Report. Effects of Warming the Deep Soil and Permafrost on Ecosystem Carbon Balance in Alaskan Tundra. A Coupled Measurement and Modeling Approach

    Energy Technology Data Exchange (ETDEWEB)

    Schuur, Edward [Univ. of Florida, Gainesville, FL (United States)

    2015-06-11

    The major research goal of this project was to understand and quantify the fate of carbon stored in permafrost ecosystems using a combination of field and laboratory experiments to measure isotope ratios and C fluxes in a tundra ecosystem exposed to experimental warming. Field measurements centered on the establishment of a two-factor experimental warming using a snow fence and open top chambers to increase winter and summer temperatures alone, and in combination, at a tundra field site at the Eight Mile Lake watershed near Healy, Alaska. The objective of this experimental warming was to significantly raise air and deep soil temperatures and increase the depth of thaw beyond that of previous warming experiments. Detecting the loss and fate of the old permafrost C pool remains a major challenge. Because soil C has been accumulating in these ecosystems over the past 10,000 years, there is a strong difference between the radiocarbon isotopic composition of C deep in the soil profile and permafrost compared to that near the soil surface. This large range of isotopic variability is unique to radiocarbon and provides a valuable and sensitive fingerprint for detecting the loss of old soil C as permafrost thaws.

  7. Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire

    DEFF Research Database (Denmark)

    Abbott, Benjamin W.; Jones, Jeremy B.; Schuur, Edward A. G.;

    2016-01-01

    -region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments...

  8. International Field School on Permafrost, Polar Urals, 2012

    Science.gov (United States)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    The international field school on permafrost was held in the Polar Urals region from June, 30 to July 9, 2012 right after the Tenth International Conference on Permafrost which was held in Salekhard, Russia. The travel and accommodation support generously provided by government of Yamal-Nenets Autonomous Region allowed participation of 150 permafrost young research scientists, out of which 35 students from seven countries participated in the field school. The field school was organized under umbrella of International Permafrost Association and Permafrost Young Research Network. The students represented diverse educational backgrounds including hydrologists, engineers, geologists, soil scientists, geocryologists, glaciologists and geomorphologists. The base school camp was located near the Harp settlement in the vicinity of Polar Urals foothills. This unique location presented an opportunity to study a diversity of cryogenic processes and permafrost conditions characteristic for mountain and plain regions as well as transition between glacial and periglacial environments. A series of excursions was organized according to the following topics: structural geology of the Polar Urals and West Siberian Plain (Chromite mine "Centralnaya" and Core Storage in Labitnangy city); quaternary geomorphology (investigation of moraine complexes and glacial conditions of Ronamantikov and Topographov glaciers); principles of construction and maintains of structures built on permafrost (Labitnangy city and Obskaya-Bovanenkovo Railroad); methods of temperature and active-layer monitoring in tundra and forest-tundra; cryosols and soil formation in diverse landscape condition; periglacial geomorphology; types of ground ice, etc. Every evening students and professors gave a series of presentations on climate, vegetation, hydrology, soil conditions, permafrost and cryogenic processes of the region as well as on history, economic development, endogenous population of the Siberia and the

  9. A microbial functional group-based module for simulating methane production and consumption: Application to an incubated permafrost soil

    Science.gov (United States)

    Xu, Xiaofeng; Elias, Dwayne A.; Graham, David E.; Phelps, Tommy J.; Carroll, Sue L.; Wullschleger, Stan D.; Thornton, Peter E.

    2015-07-01

    Accurately estimating methane (CH4) flux in terrestrial ecosystems is critically important for investigating and predicting biogeochemistry-climate feedbacks. Improved simulations of CH4 flux require explicit representations of the microbial processes that account for CH4 dynamics. A microbial functional group-based module was developed, building on the decomposition subroutine of the Community Land Model 4.5. This module considers four key mechanisms for CH4 production and consumption: methanogenesis from acetate or from single-carbon compounds and CH4 oxidation using molecular oxygen or other inorganic electron acceptors. Four microbial functional groups perform these processes: acetoclastic methanogens, hydrogenotrophic methanogens, aerobic methanotrophs, and anaerobic methanotrophs. This module was used to simulate dynamics of carbon dioxide (CO2) and CH4 concentrations from an incubation experiment with permafrost soils. The results show that the model captures the dynamics of CO2 and CH4 concentrations in microcosms with top soils, mineral layer soils, and permafrost soils under natural and saturated moisture conditions and three temperature conditions of -2°C, 3°C, and 5°C (R2 > 0.67 P temperature conditions. Sensitivity analysis confirmed the importance of acetic acid's direct contribution as substrate and indirect effects through pH feedback on CO2 and CH4 production and consumption. This study suggests that representing the microbial mechanisms is critical for modeling CH4 production and consumption; it is urgent to incorporate microbial mechanisms into Earth system models for better predicting trace gas dynamics and the behavior of the climate system.

  10. The impacts of recent permafrost thaw on land–atmosphere greenhouse gas exchange

    International Nuclear Information System (INIS)

    Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed ‘active layer’ above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this ‘permafrost carbon feedback’ in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period. (paper)

  11. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics.

    Science.gov (United States)

    Perron, Gabriel G; Whyte, Lyle; Turnbaugh, Peter J; Goordial, Jacqueline; Hanage, William P; Dantas, Gautam; Desai, Michael M

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes.

  12. Quantifying the effect of lichen and bryophyte cover on permafrost soil within a global land surface model

    Science.gov (United States)

    Porada, Philipp; Ekici, Altug; Beer, Christian

    2016-04-01

    Vegetation near the surface, such as bryophytes and lichens, has an insulating effect on the soil at high latitudes and it can therefore protect permafrost conditions. Warming due to climate change, however, may change the average surface coverage of bryophytes and lichens. This can result in permafrost thawing associated with a release of soil carbon to the atmosphere, which may lead to a positive feedback on atmospheric CO2. Thus, it is important to predict how the bryophyte and lichen cover at high latitudes will react to environmental change. However, current global land surface models so far contain mostly empirical approaches to represent bryophytes and lichens, which makes it impractical to predict their future state and function. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH. We explicitly represent dynamic thermal properties of the bryophyte and lichen cover and their relation to climate. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect. We estimate an annual average cooling effect of the bryophyte and lichen cover of 2.7 K on topsoil temperature for the northern high latitudes under current climate. Locally, the cooling may reach up to 5.7 K. Moreover, we show that neglecting dynamic properties of the bryophyte and lichen cover by using a simple, empirical scheme only results in an average cooling of around 0.5 K. This suggests that bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and also that a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect.

  13. Demequina lutea sp. nov., isolated from a high Arctic permafrost soil

    DEFF Research Database (Denmark)

    Finster, Kai; Herbert, Rodney Andrew; Kjeldsen, Kasper Urup;

    2009-01-01

    up to 2 % NaCl (w/v) in the growth medium. Growth under anaerobic conditions was slow and weak. The peptidoglycan of both isolates was of the A4β type with L-ornithine as the diamino acid and serine as a component of the interpeptide bridge with either D-aspartate (SV45T) or D-glutamate (SV47...... the name Demequina lutea sp. nov. is proposed. The type strain is SV45T (=LMG 24795T =DSM 19970T)....

  14. Food and soil-borne Penicillia in Arctic environments: Chemical diversity

    DEFF Research Database (Denmark)

    Frisvad, Jens Christian

    Penicillia are very common inhabitants of cold environments, including arctic soil, plants, animals, and foods. We have investigated the mycobiota of Greenland inland ice and soil, and found a very unique and pronounced diversity among the Penicillia. Nearly all species were new to science....... The species found in inland ice were both of the soil-borne type, and Penicillia that grow and sporulate well at 25°C. The latter group of Penicillia have been found earlier in refrigerated foods, including P. nordicum, and in glacier ice and melting water from Svalbard (se Sonjak et al., this conference......). This “food-borne group” of arctic fungi also contained some new species, but not as many as in arctic soil. The chemical diversity of the Penicillium species was remarkably high and in most cases even larger than the chemical diversity of Penicillia in the tropics. Several new secondary metabolites were...

  15. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica.

    Science.gov (United States)

    Goordial, Jacqueline; Davila, Alfonso; Lacelle, Denis; Pollard, Wayne; Marinova, Margarita M; Greer, Charles W; DiRuggiero, Jocelyn; McKay, Christopher P; Whyte, Lyle G

    2016-07-01

    Some of the coldest and driest permafrost soils on Earth are located in the high-elevation McMurdo Dry Valleys (MDVs) of Antarctica, but little is known about the permafrost microbial communities other than that microorganisms are present in these valleys. Here, we describe the microbiology and habitable conditions of highly unique dry and ice-cemented permafrost in University Valley, one of the coldest and driest regions in the MDVs (1700 m above sea level; mean temperature -23 °C; no degree days above freezing), where the ice in permafrost originates from vapour deposition rather than liquid water. We found that culturable and total microbial biomass in University Valley was extremely low, and microbial activity under ambient conditions was undetectable. Our results contrast with reports from the lower-elevation Dry Valleys and Arctic permafrost soils where active microbial populations are found, suggesting that the combination of severe cold, aridity, oligotrophy of University Valley permafrost soils severely limit microbial activity and survival. PMID:27323892

  16. Soil moisture control over autumn season methane flux, Arctic Coastal Plain of Alaska

    OpenAIRE

    C. S. Sturtevant; Oechel, W. C.; Zona, D.; Emerson, C. E.

    2011-01-01

    Two shortfalls in estimating current and future seasonal budgets of methane efflux in Arctic regions are the paucity of non-summer measurements and an incomplete understanding of the sensitivity of methane emissions to changes in tundra moisture. A recent study in one Arctic region highlighted the former by observing a previously unknown large methane pulse during the onset of autumn soil freeze. This study addresses these research gaps by presenting an analysis of eddy covariance measurement...

  17. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region

    Science.gov (United States)

    Hugelius, G.; Bockheim, J.G.; Camill, P.; Elberling, B.; Grosse, G.; Harden, J.W.; Johnson, K.; Jorgenson, T.; Koven, C.D.; Kuhry, P.; Michaelson, G.; Mishra, U.; Palmtag, J.; Ping, C.-L.; O'Donnell, J.; Schirrmeister, L.; Schuur, E.A.G.; Sheng, Y.; Smith, L.C.; Strauss, J.; Yu, Z.

    2013-01-01

    High-latitude terrestrial ecosystems are key components in the global carbon cycle. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify stocks of soil organic carbon (SOC) in the northern circumpolar permafrost region (a total area of 18.7 × 106 km2). The NCSCD is a geographical information system (GIS) data set that has been constructed using harmonized regional soil classification maps together with pedon data from the northern permafrost region. Previously, the NCSCD has been used to calculate SOC storage to the reference depths 0–30 cm and 0–100 cm (based on 1778 pedons). It has been shown that soils of the northern circumpolar permafrost region also contain significant quantities of SOC in the 100–300 cm depth range, but there has been no circumpolar compilation of pedon data to quantify this deeper SOC pool and there are no spatially distributed estimates of SOC storage below 100 cm depth in this region. Here we describe the synthesis of an updated pedon data set for SOC storage (kg C m-2) in deep soils of the northern circumpolar permafrost regions, with separate data sets for the 100–200 cm (524 pedons) and 200–300 cm (356 pedons) depth ranges. These pedons have been grouped into the North American and Eurasian sectors and the mean SOC storage for different soil taxa (subdivided into Gelisols including the sub-orders Histels, Turbels, Orthels, permafrost-free Histosols, and permafrost-free mineral soil orders) has been added to the updated NCSCDv2. The updated version of the data set is freely available online in different file formats and spatial resolutions that enable spatially explicit applications in GIS mapping and terrestrial ecosystem models. While this newly compiled data set adds to our knowledge of SOC in the 100–300 cm depth range, it also reveals that large uncertainties remain. Identified data gaps include spatial coverage of deep (> 100 cm) pedons in many regions as well as the spatial extent of areas

  18. Cold loving methanotrophic communities in permafrost soils of the Lena Delta, Siberia

    OpenAIRE

    Liebner, S.; Wagner, Dirk

    2005-01-01

    Wet tundra environments of the Siberian Artic are considerable natural sources of methane, a climate relevant trace gas. The Arctic is observed to warm more rapidly and to a greater extend than the rest of the earth surface. It is suggested, that the tundra in Alaska and Russia has changed from a net sink to a net source of atmospheric carbon. The potential impact on the Arctic carbon reservoirs is highly influenced by changes in microbial processes like methanogenesis and methane oxidation.T...

  19. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Science.gov (United States)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  20. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Directory of Open Access Journals (Sweden)

    B. K. Biskaborn

    2015-03-01

    Full Text Available The Global Terrestrial Network for Permafrost (GTN-P provides the first dynamic database associated with the Thermal State of Permafrost (TSP and the Circumpolar Active Layer Monitoring (CALM programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change

  1. Permafrost in Space: first results of experiment "EXOBIOFROST"

    Science.gov (United States)

    Spirina, Elena; Rivkina, Elizaveta; Shmakova, Lubov; Mironov, Vasiliy; Shatilovich, Anastasiya

    Experiment "EXOBIOFROST" was conducted as part of BION-M project of Russian Space Agency. We investigated a response of microbial complexes, including the pure cultures of microorganisms isolated from permafrost and the initial permafrost samples of different origin and age on space conditions. Duration of experiment was 1 month, from April, 19 to May, 19, 2013. All samples were investigated before and after the space flight. For the experiment we selected five samples of permafrost soil from Kolyma-Indigirka Lowland and Antarctica, and also the cultures of microorganisms: Exiguobacterium sibiricum - gram negative bacteria; Colpoda Steinii and Exocolpoda augustini — ciliates, and two strains of Acanthamoeba castelliane. Studies have revealed differences in structure and composition of microbial communities in control and in post-flight samples. All Arctic samples were characterized by a significant, 3-5 orders of magnitude, increase in the number of microorganisms compared to the control samples. However, there is a marked reduction in the amount of extracted DNA in post-flight permafrost samples. Post-flight analysis of ciliates, Colpoda Steinii and Exocolpoda augustini, revealed that 70-97% of cysts are damaged. In general, the primary post-flight analysis and a comparison with the control samples showed that the modern tundra colpoda more resistant to space conditions than they from the ancient permafrost sediments and strain of Colpoda steinii more resistant than the strain Exocolpoda augustini. Post-flight analysis of Acanthamoeba castelliane showed presence of viable cysts capable of excystation. Thus, we can conclude that the experiment "EXOBIOFROST" conducted in open space on the apparatus BION-M №1 does not prove fatal to permafrost microorganisms.

  2. Future active layer dynamics and carbon dioxide production from thawing permafrost layers in Northeast Greenland

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Elberling, Bo; Jansson, P.E.

    2011-01-01

    from a moist permafrost soil in High-Arctic Greenland with observed heat production and carbon dioxide (CO2) release rates from decomposition of previously frozen organic matter. Observations show that the maximum thickness of the active layer at the end of the summer has increased 1 cm yr-1 since 1996......Thawing permafrost and the resulting mineralization of previously frozen organic carbon (C) is considered an important future feedback from terrestrial ecosystems to the atmosphere. Here, we use a dynamic process oriented permafrost model, the CoupModel, to link surface and subsurface temperatures....... The model is successfully adjusted and applied for the study area and shown to be able to simulate active layer dynamics. Subsequently, the model is used to predict the active layer thickness under future warming scenarios. The model predicts an increase of maximum active layer thickness from today 70 to 80...

  3. Impact processes, permafrost dynamics, and climate and environmental variability in the terrestrial Arctic as inferred from the unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia - A review

    Science.gov (United States)

    Wennrich, Volker; Andreev, Andrei A.; Tarasov, Pavel E.; Fedorov, Grigory; Zhao, Wenwei; Gebhardt, Catalina A.; Meyer-Jacob, Carsten; Snyder, Jeffrey A.; Nowaczyk, Norbert R.; Schwamborn, Georg; Chapligin, Bernhard; Anderson, Patricia M.; Lozhkin, Anatoly V.; Minyuk, Pavel S.; Koeberl, Christian; Melles, Martin

    2016-09-01

    Lake El'gygytgyn in Far East Russia is a 3.6 Myr old impact crater lake. Located in an area that has never been affected by Cenozoic glaciations nor desiccation, the unique sediment record of the lake represents the longest continuous sediment archive of the terrestrial Arctic. The surrounding crater is the only impact structure on Earth developed in mostly acid volcanic rocks. Recent studies on the impactite, permafrost, and sediment sequences recovered within the framework of the ICDP "El'gygytgyn Drilling Project" and multiple pre-site surveys yielded new insight into the bedrock origin and cratering processes as well as permafrost dynamics and the climate and environmental history of the terrestrial Arctic back to the mid-Pliocene. Results from the impact rock section recovered during the deep drilling clearly confirm the impact genesis of the El'gygytgyn crater, but indicate an only very reduced fallback impactite sequence without larger coherent melt bodies. Isotope and element data of impact melt samples indicate a F-type asteroid of mixed composition or an ordinary chondrite as the likely impactor. The impact event caused a long-lasting hydrothermal activity in the crater that is assumed to have persisted for c. 300 kyr. Geochemical and microbial analyses of the permafrost core indicate a subaquatic formation of the lower part during lake-level highstand, but a subaerial genesis of the upper part after a lake-level drop after the Allerød. The isotope signal and ion compositions of ground ice is overprinted by several thaw-freeze cycles due to variations in the talik underneath the lake. Modeling results suggest a modern permafrost thickness in the crater of c. 340 m, and further confirm a pervasive character of the talik below Lake El'gygytgyn. The lake sediment sequences shed new leight into the Pliocene and Pleistocene climate and environmental evolution of the Arctic. During the mid-Pliocene, significantly warmer and wetter climatic conditions in

  4. Exploring the sensitivity of soil carbon dynamics to climate change, fire disturbance and permafrost thaw in a black spruce ecosystem

    Science.gov (United States)

    O'Donnell, J. A.; Harden, J.W.; McGuire, A.D.; Romanovsky, V.E.

    2011-01-01

    In the boreal region, soil organic carbon (OC) dynamics are strongly governed by the interaction between wildfire and permafrost. Using a combination of field measurements, numerical modeling of soil thermal dynamics, and mass-balance modeling of OC dynamics, we tested the sensitivity of soil OC storage to a suite of individual climate factors (air temperature, soil moisture, and snow depth) and fire severity. We also conducted sensitivity analyses to explore the combined effects of fire-soil moisture interactions and snow seasonality on OC storage. OC losses were calculated as the difference in OC stocks after three fire cycles (???500 yr) following a prescribed step-change in climate and/or fire. Across single-factor scenarios, our findings indicate that warmer air temperatures resulted in the largest relative soil OC losses (???5.3 kg C mg-2), whereas dry soil conditions alone (in the absence of wildfire) resulted in the smallest carbon losses (???0.1 kg C mg-2). Increased fire severity resulted in carbon loss of ???3.3 kg C mg-2, whereas changes in snow depth resulted in smaller OC losses (2.1-2.2 kg C mg-2). Across multiple climate factors, we observed larger OC losses than for single-factor scenarios. For instance, high fire severity regime associated with warmer and drier conditions resulted in OC losses of ???6.1 kg C mg-2, whereas a low fire severity regime associated with warmer and wetter conditions resulted in OC losses of ???5.6 kg C mg-2. A longer snow-free season associated with future warming resulted in OC losses of ???5.4 kg C mg-2. Soil climate was the dominant control on soil OC loss, governing the sensitivity of microbial decomposers to fluctuations in temperature and soil moisture; this control, in turn, is governed by interannual changes in active layer depth. Transitional responses of the active layer depth to fire regimes also contributed to OC losses, primarily by determining the proportion of OC into frozen and unfrozen soil layers

  5. Collaboration in Education: International Field Class on Permafrost

    Science.gov (United States)

    Streletskiy, D. A.; Shiklomanov, N. I.; Grebenets, V. I.

    2011-12-01

    Field work is a dominant research component in the earth sciences. Understanding and proper use of field methods can enhance the quality of research, while lack of understanding in acquiring data can lead to misleading interpretation of results. Early involvement in field work helps students to bridge the gap between theoretical knowledge and practical applications and to be better prepared for future jobs. However, many University curriculums lack adequate, required field methods courses. Presented are results of collaboration between the George Washington and Moscow State Universities in organization of field courses on Arctic physical and social environments. The latest field course took place in summer 2011 in the Central Siberian region and is a part of the International Permafrost Association education and outreach effort initiated during International Polar Year. The 25 day course involved fifteen Russian and US students who traveled from Moscow to Krasnoyarsk, and then along Yenisey river to Norilsk. This route was chosen as having diversity of natural conditions and variety of economic, engineering, and demographic problems associated with development. The main goal of the class was to investigate permafrost conditions of Central Siberia; dynamics of upper permafrost due to changing climate and under anthropogenic influence; and to understand factors responsible for the diversity of permafrost conditions in the region. The students and instructors were required to make presentations on a variety of topics focusing on the region or research methods, such as climate, vegetation, hydrology, history of development, economics, remote sensing, etc. The emphasis in the field was made on understanding permafrost in relation to other components of the natural system. For example, landscape conditions (including microclimatic, biogeographic and pedologic conditions) were described at every site located in natural settings. Sites located in settlements were evaluated

  6. The impacts of permafrost thaw on land-atmosphere greenhouse gas exchange

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Daniel J [ORNL; Kicklighter, David W. [Ecosystem Center, The; McGuire, A. David [University of Alaska; Chen, Min [Purdue University; Zhuang, Qianlai [Purdue University; Yuan, Fengming [ORNL; Melillo, Jerry [Marine Biological Laboratory; Wullschleger, Stan [ORNL

    2014-01-01

    Permafrost thaw and the subsequent mobilization of carbon stored in previously frozen soil organic matter (SOM) would be a strong positive feedback to climate1. As the northern permafrost region experiences double the rate of warming as the rest of the Earth2, the vast amount of carbon in permafrost soils3 is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases (GHG). Here, we employ a process-based model simulation experiment to assess the net effect of this so-called permafrost carbon feedback (PCF) in recent decades. Results show a wide-spread increase in the depth to permafrost between 1990 and 2006, with simulated active layer thickness (ALT) capturing the mean and spatial variability of the observational data. Analysis of the simulation experiment provides an estimate of a 2.8 mm/yr increase in permafrost depth, which translates to 281 TgC/yr thawed from previously frozen SOM. Overall, we estimate a net GHG forcing of 534 MtCO2eq/yr directly tied to ALT dynamics, while accounting for CO2 (562 MtCO2eq/yr) and CH4 (52 MtCO2eq/yr) release as well as CO2 uptake by vegetation (-80 MtCO2eq/yr). This net forcing represents a significant factor in the estimated 640 MtCO2eq/yr pan-arctic GHG source4, and an additional 6.9% contribution on top of the combined 7792 MtCO2eq/yr fossil fuel emissions from the eight Arctic nations over this time period5.

  7. Western Arctic Coastal Plain, IfSAR DSM-derived coastline and coastal features. University of Alaska Fairbanks, Geophysical Institute Permafrost Laboratory (2012).

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This dataset consists of a polyline depicting the coast and coastal features of the western Arctic Coastal Plain as derived from a mosaic created from an...

  8. Airborne electromagnetic imaging of discontinuous permafrost

    Science.gov (United States)

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ???1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ???4 million years and the configuration of permafrost to depths of ???100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface-groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ???1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments. ?? 2012 by the American Geophysical Union.

  9. ESA DUE Permafrost: Evaluation of remote sensing derived products using ground data from the Global Terrestrial Network of Permafrost (GTN-P)

    Science.gov (United States)

    Elger, K. K.; Heim, B.; Lantuit, H.; Boike, J.; Bartsch, A.; Paulik, C.; Duguay, C. R.; Hachem, S.; Soliman, A. S.

    2011-12-01

    The task of the ESA DUE Permafrost project is to build up an Earth observation service for high-latitudinal permafrost applications with extensive involvement of the permafrost research community. The DUE Permafrost products derived from remote sensing are land surface temperature (LST), surface soil moisture (SSM), surface frozen and thawed state (freeze/ thaw), terrain, land cover, and surface waters. Weekly and monthly averages for most of the DUE Permafrost products will be made available for the years 2007-2010. The DUE Permafrost products are provided for the circumpolar permafrost area (north of 55°N) with 25 km spatial resolution. In addition, regional products with higher spatial resolution (300-1000 m/ pixel) were developed for five case study regions. These regions are: (1) the Laptev Sea and Eastern Siberian Sea Region (RU, continuous very cold permafrost/ tundra), (2) the Yakutsk Region (RU, continuous cold permafrost/ taiga), (3) the Western Siberian transect including Yamal Peninsula and Ob Region (RU, continuous to discontinuous/ taiga-tundra), (4) the Alaska Highway Transect (US, continuous to discontinuous/ taiga-tundra), and (5) the Mackenzie Delta and Valley Transect (CA, continuous to discontinuous/ taiga-tundra). The challenge of the programme is to adapt remote sensing products that are well established and tested in agricultural low and mid-latitudinal areas for highly heterogeneous taiga/ tundra permafrost landscapes in arctic regions. Ground data is essential for the evaluation of DUE Permafrost products and is provided by user groups and global networks. A major part of the DUE Permafrost core user group is contributing to GTN-P, the Global Terrestrial Network of Permafrost. Its main programmes, the Circumpolar Active Layer Monitoring (CALM) and the Thermal State of Permafrost (TSP) have been thoroughly overhauled during the last International Polar Year (2007-2008). Their spatial coverage has been extended to provide a true circumpolar

  10. Spatial variance of methane oxidation rates in Siberian permafrost soils in dependence of the temperature: An indicator for microbial changes of structure and diversity?

    OpenAIRE

    Liebner, S.; Wagner, Dirk

    2005-01-01

    Wet tundra environments of the Siberian Arctic are considerable natural sources of methane, a climate relevant trace gas. The Arctic appears to warm more rapidly and to a greater extend than the rest of the earth surface and it is suggested, that the tundra in Alaska and Russia has changed from a net sink to a net source of atmospheric carbon [1]. The potential impact on the carbon reservoirs of Arctic soils is highly influenced by changes in microbial processes like methanogenesis and methan...

  11. Estimation of Mercury Storage in Permafrost and Potential Release to the Environment by Thaw

    Science.gov (United States)

    Schuster, P. F.; Kamark, B. L.; Striegl, R. G.; Aiken, G.

    2011-12-01

    Changing climatic conditions in northern regions are causing perennially frozen soils (permafrost) to thaw. This thawing may have major implications for the cycling of carbon and metals, particularly mercury (Hg) in arctic and subarctic ecosystems. Hg is a ubiquitous pollutant that can impact aquatic resources and pose serious threat to human health. Northern regions of the world have the potential to contribute substantially to the global Hg cycling pool due to 1) enhanced deposition as a result of arctic springtime Hg depletion events, 2) increasing atmospheric Hg sources from rapidly expanding Asian industrialization, and perhaps most significantly, 3) the release of Hg historically sequestered in permafrost due to recent and potential future thawing. Total Hg concentrations (THg) were measured in three permafrost cores collected within the Yukon River basin of Alaska. Core 1, averaging 38 percent organic matter, was collected in a low-lying region of black spruce underlain by continuous permafrost; Core 2, a mineral-rich core averaging 8 percent organic matter, was collected in an upland region on a north facing slope of white spruce underlain by discontinuous permafrost; Core 3, also an organic-rich core, was collected in a low-lying collapsed bog region of discontinuous permafrost. All three cores were subsampled for THg at 1-2 cm intervals and represent a large range of permafrost soil conditions extending back about 10,000 years. Preliminary results show THg concentrations were highly variable ranging from 67 to 207 ng per g of soil (dry weight, n=94). Core 1 exhibited elevated Hg concentrations (50% above the mean) spanning several thousand years. Core 2 contained a lens of lightly-colored material (likely volcanic ash known as the White River Tephra based on XRD analysis) coincident with the some of the highest Hg concentrations in all three cores. Studies have shown that volcanic ash may have elevated concentrations of Hg. Preliminary estimates for the

  12. Chloroform formation in Arctic and Subarctic soils - mechanism and emissions to the atmosphere

    Science.gov (United States)

    Albers, Christian N.; Johnsen, Anders R.; Jacobsen, Ole S.

    2015-04-01

    It is well established that halogenated organic compounds are formed naturally in the terrestrial environment. These compounds include volatiles such as trihalomethanes that may escape to the atmosphere. In deed most of the atmospheric chloroform (and other trihalomethane species) is regarded to have a natural origin. This origin may be both marine and terrestrial. Chloroform formation in soil has been reported in a number of studies, mostly conducted in temperate and (sub-) tropical environments. We hereby report that also colder soils emit chloroform naturally. We measured in situ the fluxes of chloroform from soil to atmosphere in 6 Subarctic and 5 Arctic areas covering different dwarf heath, wetland and forest biotopes in Greenland and Northern Sweden. Emissions were largest from the forested areas, but all areas emitted measurable amounts of chloroform. Also the brominated analog bromodichloromethane was formed in Arctic and Subarctic soils but the fluxes to the atmosphere were much lower than the corresponding chloroform emissions. No other volatile poly-halogenated organic compounds were found to be emitted from the study areas. It has previously been proposed that chloroform is formed in temperate forest soils through trichloroacetyl intermediates formed by unspecific enzymatic chlorination of soil organic matter. We found positive relationships between chloroform emissions and the concentration of trichloroacetyl groups in soil within the various biotopes. The hydrolysis of trichloroacetyl compounds is, however, very pH dependent, excluding a simple relationship between trichloroacetyl concentration and chloroform emission in any given soil. However, our results show that at low pH, turnover time of soil trichloroacetyl compounds may be counted in decades while at pH above 6, turnover time may be just a few months. We found no relationship between trichloroacetyl concentration and total organic chlorine concentration in the soils indicating that more than

  13. The effect of temporal variability of soil moisture on mountain permafrost: a combined model and monitoring approach

    Science.gov (United States)

    Pellet, Cécile; Hauck, Christian; Stähli, Manfred

    2016-04-01

    Soil moisture is a key factor controlling the energy and mass exchange processes at the soil-atmosphere interface. In permanently frozen ground it strongly affects the thermal behaviour of the ground by influencing its physical properties such as ice content, thermal conductivity and heat capacity. It also influences other processes like evaporation, infiltration, refreezing rate and runoff and modifies the electrical and electromagnetic properties such as electrical conductivity and permittivity that are used in indirect geophysical and remote sensing methods. In a first attempt to quantify the role of water content, a soil moisture network along an altitudinal gradient in middle and high mountain areas in Switzerland has been initiated, and first results confirm the importance of different water related processes that are dominant at different elevation bands. At very high elevations, in permafrost regions, these processes have not yet been analysed in detail, and current state-of-the-art climate and climate impact simulations are neither calibrated nor validated regarding water content in the subsurface, mostly due to missing data. Using the data from the new soil moisture network in combination with measured in-situ ground temperatures and meteorological parameters (air temperature, global radiation, and wind speed), we calibrated the one dimensional heat and mass transfer model COUP (Jansson, 2012) at all locations. This model was then used to analyse the water balance and more precisely the specific repartition of precipitations into runoff, evaporation and change in moisture content. Finally, we analysed the relations between infiltrating water from the snow cover, phase changes and latent heat release and its influence on subsurface temperature in frozen terrains. REFERENCES Jansson, P.-E. 2012: Coupmodel: Model Use, Calibration and Validation, Transaction of the Asabe, 55(4), 1335-1344.

  14. Herbivore impact on moss depth, soil temperature and arctic plant growth

    NARCIS (Netherlands)

    van der Wal, R; Loonen, MJJE

    2001-01-01

    We provide evidence for a mechanism by which herbivores may influence plant abundance in arctic ecosystems, These systems are commonly dominated by mosses, the thickness of which influences the amount of heat reaching the soil surface. Herbivores can reduce the thickness of the moss layer by means o

  15. Improved estimates show large circumpolar stocks of permafrost carbon while quantifying substantial uncertainty ranges and identifying remaining data gaps

    Directory of Open Access Journals (Sweden)

    G. Hugelius

    2014-03-01

    Full Text Available Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC. This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but stock estimates are poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of the permafrost SOC pool, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for deeper sediments (>3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. The revised estimates are based on significantly larger databases compared to previous studies. Compared to previous studies, the number of individual sites/pedons has increased by a factor ×8–11 for soils in the 1–3 m depth range,, a factor ×8 for deltaic alluvium and a factor ×5 for Yedoma region deposits. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 15 and 472 ± 34 Pg for the 0–0.3 m and 0–1 m soil depths, respectively (±95% confidence intervals. Depending on the regional subdivision used to upscale 1–3 m soils (following physiography or continents, estimated 0–3 m SOC storage is 1034 ± 183 Pg or 1104 ± 133 Pg. Of this, 34 ± 16 Pg C is stored in thin soils of the High Arctic. Based on generalised calculations, storage of SOC in deep deltaic alluvium (>3 m to ≤60 m depth of major Arctic rivers is estimated to 91 ± 39 Pg (of which 69 ± 34 Pg is in permafrost. In the Yedoma region, estimated >3 m SOC stocks are 178 +140/−146 Pg, of which 74 +54/−57 Pg is stored in intact, frozen Yedoma (late Pleistocene ice- and organic-rich silty sediments with the remainder in refrozen thermokarst deposits (±16/84th percentiles of bootstrapped estimates. A total estimated mean storage for the permafrost region of ca. 1300–1370 Pg with an uncertainty range of 930–1690 Pg encompasses the combined revised

  16. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset

    Directory of Open Access Journals (Sweden)

    E. E. Jafarov

    2012-06-01

    Full Text Available Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions.

    To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. The model input parameters are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content that are specific for each soil class and geographical location. As a climate forcing, we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP group.

    In this paper, we present the modeling results based on input of a five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance, we compared simulated active layer thicknesses with observed data from Circumpolar Active Layer Monitoring (CALM stations. The calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show widespread permafrost degradation in Alaska could begin between 2040–2099 within the vast area southward from the Brooks Range, except for the high altitude regions of the Alaska Range and Wrangell Mountains.

  17. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset

    Directory of Open Access Journals (Sweden)

    E. E. Jafarov

    2012-01-01

    Full Text Available Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions. To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. Input parameters to the model are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content which are specific for each soil class and geographical location. As a climate forcing we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP group.

    In this paper we present the preliminary modeling results based on input of five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance we compared simulated active layer thicknesses with observed data from CALM active layer monitoring stations. Calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show the widespread permafrost degradation in Alaska could begin in 2040–2099 time frame within the vast area southward from the Brooks Range except for the high altitudes of the Alaska Range and Wrangell Mountains.

  18. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates

    DEFF Research Database (Denmark)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode;

    2015-01-01

    experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover...... microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow...

  19. The invertebrate fauna of anthropogenic soils in the High-Arctic settlement of Barentsburg, Svalbard

    OpenAIRE

    Coulson, Steve J.; Fjellberg, Arne; Dariusz J. Gwiazdowicz; Lebedeva, Natalia V.; Elena N. Melekhina; Solhøy, Torstein; Erséus, Christer; Maraldo, Kristine; Miko, Ladislav; Schatz, Heinrich; Rüdiger M. Schmelz; Søli, Geir; Stur,Elisabeth

    2013-01-01

    The terrestrial environment of the High Arctic consists of a mosaic of habitat types. In addition to the natural habitat diversity, various human-influenced types may occur. For the resident invertebrate fauna, these anthropogenic habitats may be either unusually favourable or detrimental. In the town of Barentsburg, Svalbard, soils were imported for the greenhouses from southern Russia. These soils were subsequently discarded outside the greenhouses and have become augmented with manure from...

  20. Dissolved inorganic and organic carbon yields and fluxes in a permafrost catchment on the Qinghai-Tibet Plateau

    Science.gov (United States)

    Wang, G.; Mao, T.; Zhang, T.; Chen, X.

    2015-12-01

    Riverine transport of carbon from terrestrial to the aquatic ecosystems is an important component of the global carbon cycle. A warming climate can inevitably accelerate the microbial breakdown of organic carbon and the release of carbon dioxide especially in frozen soils (permafrost) within Arctic and sub-Arctic regions. In addition, high hydraulic conductivity and low sorption capacity of the shallow soil active layer overlying impermeable permafrost together lead to quick DOM transport to streams. In different regions, the response of dissolved carbon to climate warming is different due to the differences in hydrology, climatic conditions, soil types, vegetation conditions, permafrost distribution, catchment size, flow paths. The Qinghai-Tibet Plateau (QTP), of which a significant portion is underlain by permafrost, is considered to be more sensitive to climatic warming than other regions. However, the knowledge of dissolved inorganic and organic carbon transport in the QTP is very limited. We compared the yields and fluxes of DIC/DOC in a small tropical permafrost catchment. Our results showed that: (1) the concentrations ranged from 7.8 to 30.9 mg L-1 for the DIC and ranged from 2.3 to 6.4 mg L-1 for the DOC, the ratio of DIC/DOC concentrations ranged from 2.2 to 5.7 with a mean value of 4.3; (2) the annual export approximately 3.56 t km-2 year-1 for the DIC and 0.73 t km-2 year-1 for the DOC, indicating that the dissolved carbon transported in majority under the inorganic form; (3) the seasonal variations in DIC/DOC export are strongly regulated by variability in runoff, meanwhile the concentration of DIC/DOC showed significant positive correlation with the thawing depth of the active layer and vegetation coverage. Our results provided an understanding about the characteristics of riverine dissolved carbons transport at a permafrost catchment scale on the QTP.

  1. The invertebrate fauna of anthropogenic soils in the High-Arctic settlement of Barentsburg, Svalbard

    Directory of Open Access Journals (Sweden)

    Torstein Solhøy

    2013-05-01

    Full Text Available The terrestrial environment of the High Arctic consists of a mosaic of habitat types. In addition to the natural habitat diversity, various human-influenced types may occur. For the resident invertebrate fauna, these anthropogenic habitats may be either unusually favourable or detrimental. In the town of Barentsburg, Svalbard, soils were imported for the greenhouses from southern Russia. These soils were subsequently discarded outside the greenhouses and have become augmented with manure from the cowsheds. Both the greenhouse and the cowsheds are now derelict. This site represents an unusually nutrient-rich location with considerable development of organic soils, in stark contrast to the naturally forming organic soils in Svalbard, which are typically thin and nutrient poor. Few previous studies have examined the soil invertebrate communities of human-disturbed or -created habitats in the Arctic. In an often nutrient-poor terrestrial environment, it is unclear how the invertebrate fauna will react to such nutrient enhancement. In these soils, 46 species of invertebrates were determined. Eleven species have not been recorded from other habitats in Svalbard and are hence likely to have been introduced. The native species assemblage in the anthropogenic soils was not atypical for many natural sites in Svalbard. Despite the enriched organic soils and highly ameliorated winter temperature conditions, the soil invertebrate fauna biodiversity does not appear to be enhanced beyond the presence of certain probably introduced species.

  2. Thawing of permafrost may disturb historic cattle burial grounds in East Siberia

    Directory of Open Access Journals (Sweden)

    Boris A. Revich

    2011-11-01

    Full Text Available Climate warming in the Arctic may increase the risk of zoonoses due to expansion of vector habitats, improved chances of vector survival during winter, and permafrost degradation. Monitoring of soil temperatures at Siberian cryology control stations since 1970 showed correlations between air temperatures and the depth of permafrost layer that thawed during summer season. Between 1900s and 1980s, the temperature of surface layer of permafrost increased by 2–4°C; and a further increase of 3°C is expected. Frequent outbreaks of anthrax caused death of 1.5 million deer in Russian North between 1897 and 1925. Anthrax among people or cattle has been reported in 29,000 settlements of the Russian North, including more than 200 Yakutia settlements, which are located near the burial grounds of cattle that died from anthrax. Statistically significant positive trends in annual average temperatures were established in 8 out of 17 administrative districts of Yakutia for which sufficient meteorological data were available. At present, it is not known whether further warming of the permafrost will lead to the release of viable anthrax organisms. Nevertheless, we suggest that it would be prudent to undertake careful monitoring of permafrost conditions in all areas where an anthrax outbreak had occurred in the past.

  3. Biogeochemistry: Long-term effects of permafrost thaw

    Science.gov (United States)

    Zona, Donatella

    2016-09-01

    Carbon emissions from the Arctic tundra could increase drastically as global warming thaws permafrost. Clues now obtained about the long-term effects of such thawing on carbon dioxide emissions highlight the need for more data.

  4. Sphingomonas qilianensis sp. nov., Isolated from Surface Soil in the Permafrost Region of Qilian Mountains, China.

    Science.gov (United States)

    Piao, Ai-Lian; Feng, Xiao-Min; Nogi, Yuichi; Han, Lu; Li, Yonghong; Lv, Jie

    2016-04-01

    A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated X1(T), was isolated from the permafrost region of Qilian Mountains in northwest of China. Phylogenetic analyses of 16S rRNA gene sequence revealed that strain X1(T) was a member of the genus Sphingomonas and shared the highest 16S rRNA gene sequence similarity with Sphingomonas oligophenolica JCM 12082(T) (96.9%), followed by Sphingomonas glacialis CGMCC 1.8957(T) (96.7%) and Sphingomonas alpina DSM 22537(T) (96.4%). Strain X1(T) was able to grow at 15-30 °C, pH 6.0-10.0 and with 0-0.3% NaCl (w/v). The DNA G+C content of the isolate was 64.8 mol%. Strain X1(T)-contained Q-10 as the dominant ubiquinone and C(18:1)ω7c, C(16:1)ω7c, C(16:0) and C(14:0) 2-OH as the dominant fatty acids. The polar lipid profile of strain XI(T)-contained sphingoglycolipid, phosphatidylglycerol, phosphatidylethanolamine, one unidentified glycolipid and two unidentified phospholipid. Due to the phenotypic and genetic distinctiveness and other characteristic studied in this article, we consider X1(T) as a novel species of the genus Sphingomonas and propose to name it Sphingomonas qilianensis sp. nov. The type strain is X1(T) (=CGMCC 1.15349(T) = KCTC 42862(T)). PMID:26676296

  5. Soil Temperature Station Data from Permafrost Regions of Russia (Selection of Five Stations), 1880s - 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set includes soil temperature data from boreholes located at five stations in Russia: Yakutsk, Verkhoyansk, Pokrovsk, Isit', and Churapcha. The data have...

  6. The Frozen Ground Data Center: New Data for the International Permafrost Community

    Science.gov (United States)

    Parsons, M. A.; Zhang, T.

    2002-12-01

    Permafrost and seasonally frozen ground regions occupy about 24 percent and 60 percent, respectively, of the exposed land surface in the Northern Hemisphere. Data and information on frozen ground collected over many decades and in the future are critical for fundamental process understanding, environmental change detection and impact assessment, model validation, and engineering application in seasonal frost and permafrost regions. However, many of these data sets and information remain widely dispersed and relatively unavailable to the national and international science and engineering community, and some are in danger of being lost permanently. The International Permafrost Association (IPA) has long recognized the inherent and lasting value of data and information and has worked to prioritize and assess permafrost data requirements and to identify critical data sets for scientific and engineering purposes. At the Seventh International Conference on Permafrost in 1998 in Yellowknife, Canada, the first Circumpolar Active-Layer Permafrost System (CAPS) CD-ROM was published and delivered to the Conference delegates. To continue the IPA strategy for data and information management and to meet the requirements by cold regions science, engineering, and modeling community, the World Data Center (WDC) for Glaciology, Boulder in collaboration with the International Arctic Research Center (IARC) has initiated a new Frozen Ground Data Center (FGDC) as a key node in the IPA's Global Geocryological Data (GGD) system. The FGDC has expanded access to the 1998 CAPS data, is expanding data holdings, and is creating a new version of the CD to be distributed at the July 2003 IPA conference in Zurich. The FGDC has improved access to existing data through an online search and order system and availability in the Global Change Master Directory. The FGDC has also expanded and updated current holdings with global and regional permafrost, soil temperature, and soil classification maps in

  7. Rapid Arctic Changes due to Infrastructure and Climate (RATIC) in the Russian North

    Science.gov (United States)

    Walker, D. A.; Kofinas, G.; Raynolds, M. K.; Kanevskiy, M. Z.; Shur, Y.; Ambrosius, K.; Matyshak, G. V.; Romanovsky, V. E.; Kumpula, T.; Forbes, B. C.; Khukmotov, A.; Leibman, M. O.; Khitun, O.; Lemay, M.; Allard, M.; Lamoureux, S. F.; Bell, T.; Forbes, D. L.; Vincent, W. F.; Kuznetsova, E.; Streletskiy, D. A.; Shiklomanov, N. I.; Fondahl, G.; Petrov, A.; Roy, L. P.; Schweitzer, P.; Buchhorn, M.

    2015-12-01

    The Rapid Arctic Transitions due to Infrastructure and Climate (RATIC) initiative is a forum developed by the International Arctic Science Committee (IASC) Terrestrial, Cryosphere, and Social & Human working groups for developing and sharing new ideas and methods to facilitate the best practices for assessing, responding to, and adaptively managing the cumulative effects of Arctic infrastructure and climate change. An IASC white paper summarizes the activities of two RATIC workshops at the Arctic Change 2014 Conference in Ottawa, Canada and the 2015 Third International Conference on Arctic Research Planning (ICARP III) meeting in Toyama, Japan (Walker & Pierce, ed. 2015). Here we present an overview of the recommendations from several key papers and posters presented at these conferences with a focus on oil and gas infrastructure in the Russian north and comparison with oil development infrastructure in Alaska. These analyses include: (1) the effects of gas- and oilfield activities on the landscapes and the Nenets indigenous reindeer herders of the Yamal Peninsula, Russia; (2) a study of urban infrastructure in the vicinity of Norilsk, Russia, (3) an analysis of the effects of pipeline-related soil warming on trace-gas fluxes in the vicinity of Nadym, Russia, (4) two Canadian initiatives that address multiple aspects of Arctic infrastructure called Arctic Development and Adaptation to Permafrost in Transition (ADAPT) and the ArcticNet Integrated Regional Impact Studies (IRIS), and (5) the effects of oilfield infrastructure on landscapes and permafrost in the Prudhoe Bay region, Alaska.

  8. The new database of the Global Terrestrial Network for Permafrost (GTN-P)

    Science.gov (United States)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-09-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness (ALT) data from Arctic, Antarctic and mountain permafrost regions. The purpose of GTN-P is to establish an early warning system for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we introduce the GTN-P database and perform statistical analysis of the GTN-P metadata to identify and quantify the spatial gaps in the site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the data management system in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies based on national correspondents. Assessment of the metadata and data quality reveals 63 % metadata completeness at active layer sites and 50 % metadata completeness for boreholes. Voronoi tessellation analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides a potential method to locate additional permafrost research sites by improving the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73 % are shallower than 25 m and 27 % are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations, which are illustrated with maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global

  9. Variability of methane fluxes over high latitude permafrost wetlands

    OpenAIRE

    Andrei Serafimovich; Hartmann, J.; Eric Larmanou; Torsten Sachs

    2013-01-01

    Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmo...

  10. Physical characteristics, terrain associations and soil properties of arctic fox (Alopex lagopus) dens in northern Yukon Territory, Canada: Final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Physical and soil characteristics of arctic fox (Alopex lagopus) dens on Herschel Island and the Yukon Coastal Plain, Yukon Territory, Canada are described....

  11. Predicting permafrost stability in northern peatlands with climate change and disturbance

    Science.gov (United States)

    Treat, C. C.; Wisser, D.; Marchenko, S.; Humphreys, E. R.; Frolking, S. E.; Huemmrich, K. F.

    2010-12-01

    Permafrost thaw may cause significant carbon loss from northern organic soils, a large terrestrial carbon pool. To predict permafrost stability in organic soils, we adapted an existing soil temperature model (GIPL 2.0) to peatlands by including a three-layer peat soil column and dynamic soil moisture. GIPL 2.0 numerically solves the 1-dimensional heat transfer equation. We evaluated the model at Daring Lake Fen, a sedge-dominated Arctic Fen in the Northwest Territories, Canada and College Peat, a permafrost muskeg in Fairbanks, AK. We examined the sensitivity of the model to seasonality and total soil moisture, thermal properties and organic layer thickness. We also evaluated active layer depth for future climate scenarios. Finally, we compared the relative magnitude of climate change impacts on soil temperatures to the effects of current and predicted wildfire. We simulated wildfire by removing the surface soil (5 - 15 cm) and increasing air temperatures post-fire due to changes in surface energy balance. We found that air temperature, rather than changes in soil moisture, was the most important predictor of changes in active layer depth and permafrost stability. Also, the seasonality of soil moisture was relatively unimportant, while changes in temperature seasonality were important to active layer depths. In the climate change scenarios (using IPCC scenario A1b), active layer depths and the length of the growing season (determined as soil thawed at 10 cm) increased significantly by 2100. Warmer soil temperatures at depth due to higher air temperatures resulted in an increase of liquid water in the soil and the possibility of increased biological activity. Soil temperatures and active layer depths increased following disturbance, but the increases were relatively short-lived (decades) and were strongly correlated with post-fire temperature changes. The simulated removal of a shallow layer of surface organic soil following disturbance has limited long-term effects

  12. Nitrous oxide production and emission in high arctic soils of NW Greenland

    Science.gov (United States)

    Stills, A.; Lupascu, M.; Czimczik, C. I.; Sharp, E. D.; Welker, J. M.; Schaeffer, S. M.

    2010-12-01

    Nitrous oxide (N2O) is a potent ozone depleting greenhouse gas with a global warming potential 298 times larger than carbon dioxide (CO2 on a 100-year time scale. Recent studies identified arctic soils undergoing thawing and changes in drainage as potentially large sources of N2O to the atmosphere. More in situ2O production in and emission from arctic soils are needed to understand ecosystem feedbacks to climate change in high arctic tundra, and the role of high latitudes in the global N2O budget. We monitored the concentration of N2O in soils and emissions of N2O to the atmosphere from prostrate shrub tundra in NW Greenland under current and future climate conditions. Measurements were made monthly from June to August 2010 at a long-term climate change experiment started in 2003 consisting of +2oC warming (T1), +4oC warming (T2), +50% summer precipitation (W), +4oC × +50% summer precipitation (T2W), and control (C). In each treatment, N2O was monitored from vegetated and barren soils. In addition, we quantified nitrogen (N) mineralization rates. The concentration of N2O in soils was measured by sampling air from permanent wells ranging from 20 to 90 cm soil depth. N2O emissions were measured every 15 minutes for one hour using opaque, static chambers. Nitrous oxide samples were collected manually with syringes and stored in pre-evacuated glass vials with butyl rubber septa and aluminum crimp. The vials were sealed with silicon, shipped to UC Irvine, and analyzed by GC-ECD (Shimadzu GC-2014). To determine soil N mineralization rates, resin bags were installed under PVC cores from 8 to 10 cm in early spring in all treatments. Bags were removed at peak season. A second set was installed to capture end-of-season mineralization rates. Resin bags were extracted for future analysis of total accumulated ammonium and nitrate. Soil cores concurrently collected with resin bag installation and removal will be analyzed for % C and N, and were extracted for future analysis of

  13. Snow distribution, soil temperature and late winter CO2 efflux from soils at the Arctic treeline in northwest Alaska

    Science.gov (United States)

    Sullivan, P.

    2009-12-01

    The Arctic treeline is advancing in many areas and changes in ecosystem-atmosphere energy and CO2 exchange are anticipated. Differences in surface energy exchange between arctic tundra and treeline forests are well known and a positive feedback between treeline advance and regional warming is expected. Differences in CO2 exchange across the Arctic treeline are less well known and contrasting conclusions have been drawn from studies that used different approaches. Measurements of CO2 exchange in tundra and an adjacent treeline forest showed the forest was a greater carbon (C) sink during the growing season in northern Canada. There is reason to expect forests may lose more C than tundra during the wintertime, as forests may accumulate and retain more snow. Deeper snow insulates the soil and warmer soils should lead to greater rates of CO2 efflux. In this study, I tested the hypotheses that treeline forests maintain a deeper snowpack, have warmer soils and lose more C during the winter than adjacent tundra at the Arctic treeline in northwest Alaska. Estimates of CO2 efflux through the snowpack were made at five forest and two treeline sites in late winter when soil temperatures were near their annual minima in three consecutive winters. Snow depth, soil temperature and CO2 efflux were greater in the forest than at the treeline, particularly in years with greater snowfall. A simple modeling exercise showed differences in winter C loss between the treeline and forest could be sufficient to offset greater C gain by the forest during the summer.

  14. Stable Isotope Probing Analysis of the Diversity and Activity of Methanotrophic Bacteria in Soils from the Canadian High Arctic

    OpenAIRE

    Martineau, Christine; Whyte, Lyle G.; Greer, Charles W.

    2010-01-01

    The melting of permafrost and its potential impact on CH4 emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH4 emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmer...

  15. The role of organic soil layer on the fate of Siberian larch forest and near-surface permafrost under changing climate: A simulation study

    Science.gov (United States)

    SATO, H.; Iwahana, G.; Ohta, T.

    2013-12-01

    Siberian larch forest is the largest coniferous forest region in the world. In this vast region, larch often forms nearly pure stands, regenerated by recurrent fire. This region is characterized by a short and dry growing season; the annual mean precipitation for Yakutsk was only about 240 mm. To maintain forest ecosystem under such small precipitation, underlying permafrost and seasonal soil freezing-thawing-cycle have been supposed to play important roles; (1) frozen ground inhibits percolation of soil water into deep soil layers, and (2) excess soil water at the end of growing season can be carried over until the next growing season as ice, and larch trees can use the melt water. As a proof for this explanation, geographical distribution of Siberian larch region highly coincides with continuous and discontinuous permafrost zone. Recent observations and simulation studies suggests that existences of larch forest and permafrost in subsurface layer are co-dependent; permafrost maintains the larch forest by enhancing water use efficiency of trees, while larch forest maintains permafrost by inhibiting solar radiation and preventing heat exchanges between soil and atmosphere. Owing to such complexity and absence of enough ecosystem data available, current-generation Earth System Models significantly diverse in their prediction of structure and key ecosystem functions in Siberian larch forest under changing climate. Such uncertainty should in turn expand uncertainty over predictions of climate, because Siberian larch forest should have major role in the global carbon balance with its huge area and vast potential carbon pool within the biomass and soil, and changes in boreal forest albedo can have a considerable effect on Northern Hemisphere climate. In this study, we developed an integrated ecosystem model, which treats interactions between plant-dynamics and freeze-thaw cycles. This integrated model contains a dynamic global vegetation model SEIB-DGVM, which simulates

  16. Velocity models and images using full waveform inversion and reverse time migration for the offshore permafrost in the Canadian shelf of Beaufort Sea, Arctic

    Science.gov (United States)

    Kang, S. G.; Hong, J. K.; Jin, Y. K.; Kim, S.; Kim, Y. G.; Dallimore, S.; Riedel, M.; Shin, C.

    2015-12-01

    During Expedition ARA05C (from Aug 26 to Sep 19, 2014) on the Korean icebreaker RV ARAON, the multi-channel seismic (MCS) data were acquired on the outer shelf and slope of the Canadian Beaufort Sea to investigate distribution and internal geological structures of the offshore ice-bonded permafrost and gas hydrates, totaling 998 km L-km with 19,962 shots. The MCS data were recorded using a 1500 m long solid-type streamer with 120 channels. Shot and group spacing were 50 m and 12.5 m, respectively. Most MCS survey lines were designed perpendicular and parallel to the strike of the shelf break. Ice-bonded permafrost or ice-bearing sediments are widely distributed under the Beaufort Sea shelf, which have formed during periods of lower sea level when portions of the shelf less than ~100m water depth were an emergent coastal plain exposed to very cold surface. The seismic P-wave velocity is an important geophysical parameter for identifying the distribution of ice-bonded permafrost with high velocity in this area. Recently, full waveform inversion (FWI) and reverse time migration (RTM) are commonly used to delineate detailed seismic velocity information and seismic image of geological structures. FWI is a data fitting procedure based on wave field modeling and numerical analysis to extract quantitative geophysical parameters such as P-, S-wave velocities and density from seismic data. RTM based on 2-way wave equation is a useful technique to construct accurate seismic image with amplitude preserving of field data. In this study, we suggest two-dimensional P-wave velocity model (Figure.1) using the FWI algorithm to delineate the top and bottom boundaries of ice-bonded permafrost in the Canadian shelf of Beaufort Sea. In addition, we construct amplitude preserving migrated seismic image using RTM to interpret the geological history involved with the evolution of permafrost.

  17. Bacterial community composition and diversity of five different permafrost-affected soils of Northeast Greenland.

    Science.gov (United States)

    Ganzert, Lars; Bajerski, Felizitas; Wagner, Dirk

    2014-08-01

    Greenland is one of the regions of interest with respect to climate change and global warming in the Northern Hemisphere. Little is known about the structure and diversity of the terrestrial bacterial communities in ice-free areas in northern Greenland. These soils are generally poorly developed and usually carbon- and nitrogen-limited. Our goal was to provide the first insights into the soil bacterial communities from five different sites in Northeast Greenland using culture-independent and culture-dependent methods. The comparison of environmental and biological data showed that the soil bacterial communities are diverse and significantly pH-dependent. The most frequently detected OTUs belonged to the phyla Acidobacteria, Bacteroidetes and (Alpha-, Beta-, Delta-) Proteobacteria. Low pH together with higher nitrogen and carbon concentrations seemed to support the occurrence of (Alpha-, Beta-, Delta-) Proteobacteria (at the expense of Acidobacteria), whereas Bacteroidetes were predominant at higher values of soil pH. Our study indicates that pH is the main factor for shaping bacterial community, but carbon and nitrogen concentrations as well may become important, especially for selecting oligotrophic microorganisms.

  18. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Directory of Open Access Journals (Sweden)

    Sizhong Yang

    Full Text Available The buried China-Russia Crude Oil Pipeline (CRCOP across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs. The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  19. Nitrification rates in Arctic soils are associated with functionally distinct populations of ammonia-oxidizing archaea

    Science.gov (United States)

    Alves, Ricardo J. E.; Wanek, Wolfgang; Zappe, Anna; Richter, Andreas; Svenning, Mette M.; Schleper, Christa; Urich, Tim

    2014-05-01

    The functioning of Arctic soil ecosystems is crucially important for global climate, although basic knowledge regarding their biogeochemical processes is lacking. Nitrogen (N) is the major limiting nutrient in these environments, and therefore it is particularly important to gain a better understanding of the microbial populations catalyzing transformations that influence N bioavailability. However, microbial communities driving this process remain largely uncharacterized in Arctic soils, namely those catalyzing the rate-limiting step of ammonia (NH3) oxidation. Eleven Arctic soils from Svalbard were analyzed through a polyphasic approach, including determination of gross nitrification rates through a 15N pool dilution method, qualitative and quantitative analyses of ammonia-oxidizing archaea (AOA) and bacteria (AOB) populations based on the functional marker gene amoA (encoding the ammonia monooxygenase subunit A), and enrichment of AOA in laboratory cultures. AOA were the only NH3 oxidizers detected in five out of 11 soils, and outnumbered AOB by 1 to 3 orders of magnitude in most others. AOA showed a great overall phylogenetic diversity that was differentially distributed across soil ecosystems, and exhibited an uneven population composition that reflected the dominance of a single AOA phylotype in each population. Moreover, AOA populations showed a multifactorial association with the soil properties, which reflected an overall distribution associated with tundra type and with several physico-chemical parameters combined, namely pH and soil moisture and N contents (i.e., NO3- and dissolved organic N). Remarkably, the different gross in situ and potential nitrification rates between soils were associated with distinct AOA phylogenetic clades, suggesting differences in their nitrifying potential, both under the native NH3 conditions and as a response to higher NH3 availability. This was further supported by the selective enrichment of two AOA clades that exhibited

  20. Carbon cycling and carbon metabolism by soil fungi in a boreal forest: impacts of wildfire and permafrost on functional genes, isotope signatures, and ectomycorrhizae

    Science.gov (United States)

    Waldrop, M. P.; Harden, J. W.

    2006-12-01

    Understanding the mechanisms that control the stabilization and destabilization of soil carbon within boreal forest ecosystems is of great importance to the global carbon budget. Much is currently known about boreal soil carbon dynamics in relation to biophysical and landscape variables such as temperature, moisture, wildfire intensity, and stand age. We have less information regarding the controls on decomposition at the molecular scale, where interactions between microbial communities, their genetic `potential' for decomposition, functional genes, enzyme synthesis, and organic matter transformations occur. We have entered an age in which these connections can be made at the molecular scale, but what form do they take, and can they scale up to affect carbon dynamics at the level of the ecosystem? We examined these molecular scale processes in mature boreal forest soils and soils that had been impacted by wildfire near Delta Junction, Alaska. We also examined the interactive effect of permafrost presence, which reduces soil drainage, with wildfire. We focused on three themes: linking microbial communities and laccase functional genes to soil laccase enzyme activity and lignin decomposition, assessing substrate availability using the natural abundance δ13C isotope ratios of microbial biomass, and the influence of ectomycorrhizal mats on decomposition. Wildfire reduced fungal biomass, laccase functional gene abundance, laccase activity, and δ13C-lignin decomposition. Relationships between gene abundance and microbial activity were significant and logarithmic in form. Soil drainage, which is mediated by the presence of permafrost, had little effect on the abundance of fungi, functional genes, or potential process rates. Microbial biomass δ13C was always enriched relative to soil organic matter, and this difference was greater in control soils compared to wildfire-affected soils, indicating that ÄΔδ13C MB-SOIL may indicate the level of bioavailability of soil

  1. A Two-dimensional Heat Transfer Model for Atmosphere-land System in the Lake-dominated Alaskan Arctic

    Institute of Scientific and Technical Information of China (English)

    LING Feng; ZHANG Ting-jun

    2002-01-01

    Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-dimensional, non-steady mathematical model is developed for studying the role of shallow tundra lakes in the Alaskan Arctic. Both the radiation absorption in lake water and the phasechange in permafrost are considerd in the model. The materials the model includes are snow, ice, water, unfrozen and frozen soil (peat, silt,sand and gravel). The basic inputs to the model observed mean daily air temperature and snow depth. The ability of this model to simulate lake ice growth and thickness variation, lake water temperature distribution, the thermal regime of permafrost and talik dynamics beneath lakes, and thawing rate of permafrost below and adjacent to shallow thaw lakes offers the potential to describe the effects of climate change in the Alaskan Arctic.

  2. Metagenomic Analysis of the Bioremediation of Diesel-Contaminated Canadian High Arctic Soils

    OpenAIRE

    Yergeau, Etienne; Sanschagrin, Sylvie; Beaumier, Danielle; Greer, Charles W.

    2012-01-01

    As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorga...

  3. Polycyclic aromatic hydrocarbons in insular and coastal soils of the Russian Arctic

    Science.gov (United States)

    Abakumov, E. V.; Tomashunas, V. M.; Lodygin, E. D.; Gabov, D. N.; Sokolov, V. T.; Krylenkov, V. A.; Kirtsideli, I. Yu.

    2015-12-01

    The content and individual component compositions of polycyclic aromatic hydrocarbons in polar soils of the Russian Arctic sector have been studied. The contamination of soils near research stations is identified from the expansion of the range of individual polycyclic aromatic hydrocarbons, the abrupt increase in the content of heavy fractions, and the accumulation of benzo[ a]pyrene. Along with heavy hydrocarbons, light hydrocarbons (which are not only natural compounds, but also components of organic pollutants) are also accumulated in the contaminated soils. Heavy polycyclic aromatic hydrocarbons are usually of technogenic origin and can serve as markers of anthropogenic impact in such areas as Cape Sterligov, Cape Chelyuskin, and the Izvestii TsIK Islands. The content of benzo[ a]pyrene, the most hazardous organic toxicant, appreciably increases in soils around the stations, especially compared to the control; however, the level of MPC is exceeded only for the soils of Cape Chelyuskin.

  4. Diversity and Composition of Bacterial Community in Soils and Lake Sediments from an Arctic Lake Area

    Science.gov (United States)

    Wang, Neng Fei; Zhang, Tao; Yang, Xiao; Wang, Shuang; Yu, Yong; Dong, Long Long; Guo, Yu Dong; Ma, Yong Xing; Zang, Jia Ye

    2016-01-01

    This study assessed the diversity and composition of bacterial communities within soils and lake sediments from an Arctic lake area (London Island, Svalbard). A total of 2,987 operational taxonomic units were identified by high-throughput sequencing, targeting bacterial 16S rRNA gene. The samples from four sites (three samples in each site) were significantly different in geochemical properties and bacterial community composition. Proteobacteria and Acidobacteria were abundant phyla in the nine soil samples, whereas Proteobacteria and Bacteroidetes were abundant phyla in the three sediment samples. Furthermore, Actinobacteria, Chlorobi, Chloroflexi, Elusimicrobia, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria significantly varied in their abundance among the four sampling sites. Additionally, members of the dominant genera, such as Clostridium, Luteolibacter, Methylibium, Rhodococcus, and Rhodoplanes, were significantly different in their abundance among the four sampling sites. Besides, distance-based redundancy analysis revealed that pH (p soils and sediments from a lake area in the Arctic harbor a high diversity of bacterial communities, which are influenced by many geochemical factors of Arctic environments.

  5. Vegetation-Soil-Active Layer Relationships Along a Low-Arctic Bioclimate Gradient, Alaska

    Science.gov (United States)

    Walker, D. A.; Jia, G. J.; Epstein, H. E.; Shiklomanov, N.; Nelson, F.; Hinzman, L. D.; Romanovsky, V. E.

    2002-12-01

    Northern Alaska has three of five Arctic bioclimate subzones, which are representative of the circumpolar Low Arctic. This portion of the Arctic has more or less continuous tundra plant cover and well-developed moss canopies. We examined the biomass and remotely sensed spectral properties of the vegetation canopy, active-layer thickness, and the soil properties at 21 sites on the Arctic Slope and Seward Peninsula of Alaska. The sites were grouped into three bioclimate subzones according the summer warmth at the sites. The summer warmth index (SWI) is the sum of the mean monthly temperatures greater than 0 degrees C. Subzone C, the coldest subzone, occurs in a narrow strip along the northern coast of the Alaska. Subzone D covers most of the Arctic Coastal Plain and the northwest portion of the Seward Peninsula, and Subzone E covers most of the Foothills and most of the unforested portion of the Seward Peninsula. The SWIs in Subzones C, D, and E are generally less than 10-15 degrees C, 15-25 degrees C, and 25-35 degrees C respectively. The average active layer depths were 44, 55, and 47 cm respectively The shallow active layer in Subzone E is to a large degree a response to the denser vegetation canopies in Subzone E. Total plant biomass in Subzone C, D, and E averaged 421 g m-2, 503 g m-2, and 1178 g m-2 respectively. The much higher biomass in Subzone E was due primarily to woody shrubs (40 g m-2 in Subzone C, 51 g m-2 in Subzone D, and 730 g m-2 in Subzone E). The normalized difference vegetation index (NDVI) is one measure of greenness. Highest NDVI values were obtained from acidic tundra regions in Subzone E, and the lowest NDVI values were obtained in the nonacidic areas of Subzone C. In summary, the insulative properties of the vegetation play a very important role controlling the thickness of the active layer, and the amount of vegetation biomass differs according to summer warmth and soil properties. Acidic soils in the warmest parts of the Arctic (Subzone E

  6. An eddy covariance derived annual carbon budget for an arctic terrestrial ecosystem (Disko, Greenland)

    Science.gov (United States)

    McConnell, Alistair; Lund, Magnus; Friborg, Thomas

    2016-04-01

    Ecosystems with underlying permafrost cover nearly 25% of the ice-free land area in the northern hemisphere and store almost half of the global soil carbon. Future climate changes are predicted to have the most pronounced effect in northern latitudes. These Arctic ecosystems are therefore subject to dramatic changes following thawing of permafrost, glacial retreat, and coastal erosion. The most dramatic effect of permafrost thawing is the accelerated decomposition and potential mobilization of organic matter stored in the permafrost. This will impact global climate through the mobilization of carbon and nitrogen accompanied by release of greenhouses gases, including carbon dioxide. This study presents the initial findings and first full annual carbon (CO2) budget, derived from eddy covariance measurements, for an Arctic landscape in West Greenland. The study site, a terrestrial Arctic maritime climate, is located at Østerlien, near Qeqertarsuaq, on the southern coast of Disko Island in central West Greenland (69° 15' N, 53° 34' W) within the transition zone from continuous to discontinuous permafrost. The mean annual air temperature is -5 C and the annual precipitation as rain is 150-200 mm. Arctic ecosystem feedback mechanisms and processes interact on micro, local and regional scales. This is further complicated by several potential feedback mechanisms likely to occur in permafrost-affected ecosystems, involving the interactions of microorganisms, vegetation and soil. The eddy covariance method allows us to interrogate the processes and drivers of land-atmosphere carbon exchange at extremely high temporary frequency (10 Hz), providing landscape-scale measurements of CO2, H2O and heat fluxes for the site, which are processed to derive daily, monthly and now, annual carbon fluxes. We discuss the scientific methodology, challenges, and analysis, as well as the practical and logistic challenges of working in the Arctic, and present an annual carbon budget

  7. The effect of abrupt permafrost thaw on the water table, vegetation and carbon feedback: results from a sub-arctic peatland

    Science.gov (United States)

    Malhotra, A.; Roulet, N. T.

    2015-12-01

    Uncertainty in estimating the carbon loss from thawing ice-rich permafrost is attributed, in part, to the abrupt changes in ecosystem structure and function after thaw. In a thawing peat plateau in the discontinuous permafrost zone (Stordalen, Mire, Sweden; ST), we tested for the occurrence of abrupt changes in hydrology and the effects of these changes on the water table and vegetation feedback. Using a chronosequence approach along three transects that capture several transitional thaw stages, we found abrupt hydrological changes following thaw, wherein adjacent areas (1 m apart) had unrelated water table depth (WTD) fluctuations. Despite these abrupt changes, surprisingly, the same Gaussian model of plant abundance explained by WTD could be applied to data from both ST and an undisturbed ombrotrophic peatland (Mer Bleue Bog, Canada; MB). However, the Gaussian model fit was better at MB than at ST. Furthermore, explanatory power of the model at ST decreased with increasing permafrost thaw. While water table and vegetation feedback in a thawing landscape is similar to that of a peatland without transitional land cover types, the vegetation and carbon feedback is complicated by non-linear shifts in the partitioning of gaseous effluxes between CO2 and CH4. These results will be presented along with key implications for modeling carbon loss from thawing landscapes.

  8. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils.

    Science.gov (United States)

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  9. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils

    Science.gov (United States)

    Li, Zhiwei; Zhao, Rong; Hu, Jun; Wen, Lianxing; Feng, Guangcai; Zhang, Zeyu; Wang, Qijie

    2015-01-01

    This paper presents a novel method to estimate active layer thickness (ALT) over permafrost based on InSAR (Interferometric Synthetic Aperture Radar) observation and the heat transfer model of soils. The time lags between the periodic feature of InSAR-observed surface deformation over permafrost and the meteorologically recorded temperatures are assumed to be the time intervals that the temperature maximum to diffuse from the ground surface downward to the bottom of the active layer. By exploiting the time lags and the one-dimensional heat transfer model of soils, we estimate the ALTs. Using the frozen soil region in southern Qinghai-Tibet Plateau (QTP) as examples, we provided a conceptual demonstration of the estimation of the InSAR pixel-wise ALTs. In the case study, the ALTs are ranging from 1.02 to 3.14 m and with an average of 1.95 m. The results are compatible with those sparse ALT observations/estimations by traditional methods, while with extraordinary high spatial resolution at pixel level (~40 meter). The presented method is simple, and can potentially be used for deriving high-resolution ALTs in other remote areas similar to QTP, where only sparse observations are available now. PMID:26480892

  10. The long-term fate of permafrost peatlands under rapid climate warming

    Science.gov (United States)

    Swindles, Graeme T.; Morris, Paul J.

    2016-04-01

    High-latitude permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, there is much concern that climate warming and subsequent permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Unfortunately, field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to rapid warming in the twentieth century. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in Subarctic Sweden in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, and thus peatland ecosystem services are resumed, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. We outline our plans to test the model published in Swindles et al. (2015) using the same methodological approach in other high-latitude locations, including zones of continuous and discontinuous permafrost. Reference: Swindles, G.T., Morris, P.J., Mullan, D., Watson, E.J., Turner, T.E., Roland, T., Amesbury, M.J., Kokfelt, U., Schoning, K., Pratte, S., Gallego-Sala, A., Charman, D.J., Sanderson, N., Garneau, M., Carrivick, J.L., Woulds, C

  11. Role of mineralogy and particle-size distribution on patterned ground genesis in no-permafrost soils. Majella massif (Italy) and English Lake District (United Kingdom)

    Science.gov (United States)

    Cioci, C.; Basili, M.; Cocco, S.; Agnelli, A.; Warburton, J.; Corti, G.

    2009-04-01

    Patterned ground soils form by self-organization thanks to soil heaving caused by seasonal variation of ice table, but also in no-permafrost affected soils thanks to diurnal or seasonal freeze/thaw cycles. The genesis of the superficial soil pattern is thought to be due to cryo-selection of the skeletal particles, which is induced by freezing/thawing cycles of the water present in the saturated active soil layer. Other conditions required for the formation of a patterned ground are: moderate to null slope, scarce vegetation and the presence of a sufficient amount of fine materials (fines). If all this attains, the stones are easily pushed out the freezing area, so producing sorted features where skeleton and fines are rather segregated. Patterned ground soils were described in a wide range of no-permafrost affected environments. Here, we report on the role of soil mineralogy and particle-size distribution in the genesis of patterned ground in two sites where permafrost is some meters deep (Majella massif, Central Italy) or absent (English Lake District, North West England). Majella massif (Monte Amaro, 2793 m a.s.l.) is at 42° North of latitude and is mainly composed by limestone, while English Lake District (Scafell Pike, 978 m a.s.l.) is at 54° North of latitude and is mainly composed by laminated mudstone and siltstone. Patterned ground soils described on the Majella massif are smaller than those at English Lake: the sorted circles of Majella massif have a diameter of about 5-7 cm while those of the English Lake have a diameter of about 15-20 cm. In each site several soil profiles were dug till about 1 m of depth, described and sampled according to the recognized horizons. All the soils are well drained thanks to high skeleton content (60 to 80%), which is also responsible of preventing soil saturation. The results of mineralogical and particles-size analysis show that the formation of a saturated active layer is possible thanks to the formation of an

  12. The Frozen Ground Data Center: A Continuing Task for the International Permafrost Community

    Science.gov (United States)

    Parsons, M. A.; Zhang, T.; Barry, R. G.; Brown, J.

    2001-12-01

    Permafrost and seasonally frozen ground underlie about 24% and 60% of the surface of the Northern Hemisphere respectively. Data and information on frozen ground collected over many decades and in the future are critical for fundamental process understanding, environmental change detection, impact assessment, model validation, and engineering applications. However, many of these data sets and information remain widely dispersed and relatively unavailable to the science and engineering community, and some are in danger of being lost permanently. The International Permafrost Association (IPA) has long recognized the inherent and lasting value of data and information, and has developed a strategy for data and information management to meet the requirements of the cold regions science, engineering, and modeling community. NSIDC has played an active role in implementing this strategy by developing and distributing the first Circumpolar Active-Layer Permafrost System (CAPS) CD-ROM including the Global Geocryological Database (GGD). Now, NSIDC, in collaboration with the International Arctic Research Center (IARC), seeks to expand the CAPS data holdings, update the GGD, and improve frozen ground data access and utility through a new web-based "Frozen Ground Data Center." NSIDC plans to reformat several existing data sets and create value-added products such as gridded fields for model validation and analysis. We also plan to acquire and distribute certain key data sets, including data from: (1) the Global Terrestrial Network for Permafrost (GTN-P) and its Borehole and updated Circumpolar Active Layer Monitoring (CALM) components (Burgess et al 2000), (2) the Arctic Coastal Dynamics project, (3) the Cryosol database and maps, and (4) various permafrost maps and soil temperature time series for Russia and China. NSIDC seeks the help of the frozen ground research community through data contributions and suggestions on data acquisition, management and distribution. The IPA

  13. ESA DUE PERMAFROST: Evaluation of geophysical remote sensing products for permafrost

    OpenAIRE

    Heim, Birgit; Bartsch, Annett; Boike, Julia; Duguay, Claude; Elger, Kirsten; Langer, Moritz; Lantuit, Hugues; Muster, Sina

    2011-01-01

    Permafrost is a subsurface phenomenon whose ground thermal regime is mainly influenced by air temperature, land cover, soil and rock properties and snow parameters. Many spaceborne-derived parameters are potentially indicative of the thermal state of Permafrost, such as land surface temperature, surface moisture, surface frozen/thawed state, terrain displacement, vegetation cover, and changes in surface waters. The major task of the ESA DUE PERMAFROST project is to develop high-la...

  14. Mapping permafrost with airborne electromagnetics

    Science.gov (United States)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  15. Spatially Distributed Model of Permafrost Dynamics in Alaska

    Science.gov (United States)

    Tipenko, G.; Marchenko, S.; Romanovsky, V.; Groshev, V.; Sazonova, T.

    2004-12-01

    Given the possibility of climate warming in the near future, an evaluation of the magnitude of changes in the ground thermal regime becomes desirable for assessments of possible ecosystem responses and impacts on infrastructure in the Arctic and sub-Arctic regions. In the past, a soil model GIPL 1.0 developed at the Geophysical Institute Permafrost Lab was used to simulate the dynamics of the active layer thickness and mean annual ground temperature, both retrospectively and prognostically, using climate forcing from Global Climate Models. The GIPL 1.0 model is a quasi-transitional, spatially distributed, analytical model for the active layer thickness and mean annual ground temperature. This model is incorporated into GIS, which contains the information on geology, soils properties, vegetation, and snow distribution. GIS allows visualization of input and output parameters and their representation in the form of digital maps. As a further significant step in the GIPL model development, we replaced the analytical solution with a numerical model based on a finite difference method for the non-linear Heat Conduction Equation. In this model the process of soil freezing/thawing is occurring in accordance with the unfrozen water content curve, which is specific for each soil layer and for each geographical location. For each grid point on the map we used a one-dimensional multi-layer model of soil down to the depth of a constant geothermal heat flux (typically 500 to 1000 m). At the upper boundary, there are insulating layers of snow and vegetation that can change their properties with time. Special Enthalpy formulation of the energy conservation law makes it possible to use a coarse vertical resolution without loss of latent heat effects in phase transition zone even in case of fast temporally and spatially varying temperature fields. The new version of GIPL (GIPL 2.0) calculates soil temperature and liquid water content fields for the entire spatial domain with daily

  16. Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach

    NARCIS (Netherlands)

    Meij, van der W.M.; Temme, A.J.A.M.; Kleijn, de Christian; Reimann, T.; Heuvelink, G.B.M.; Zwoliński, Zbigniew; Rachlewicz, Grzegorz; Rymer, Krzysztof; Sommer, Michael

    2016-01-01

    Soils in Arctic regions currently enjoy attention because of their sensitivity to climate change. It is therefore important to understand the natural processes and rates of development of these soils. Specifically, there is a need to quantify the rates and interactions between various landscape- and

  17. An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China

    Science.gov (United States)

    Hu, Guojie; Wu, Xiaodong; Zhao, Lin; Li, Ren; Wu, Tonghua; Xie, Changwei; Pang, Qiangqiang; Cheng, Guodong

    2016-06-01

    Soil temperature plays a key role in hydro-thermal processes in environments and is a critical variable linking surface structure to soil processes. There is a need for more accurate temperature simulation models, particularly in Qinghai-Xizang (Tibet) Plateau (QXP). In this study, a model was developed for the simulation of hourly soil surface temperatures with air temperatures. The model incorporated the thermal properties of the soil, vegetation cover, solar radiation, and water flux density and utilized field data collected from Qinghai-Xizang (Tibet) Plateau (QXP). The model was used to simulate the thermal regime at soil depths of 5 cm, 10 cm and 20 cm and results were compared with those from previous models and with experimental measurements of ground temperature at two different locations. The analysis showed that the newly developed model provided better estimates of observed field temperatures, with an average mean absolute error (MAE), root mean square error (RMSE), and the normalized standard error (NSEE) of 1.17 °C, 1.30 °C and 13.84 %, 0.41 °C, 0.49 °C and 5.45 %, 0.13 °C, 0.18 °C and 2.23 % at 5 cm, 10 cm and 20 cm depths, respectively. These findings provide a useful reference for simulating soil temperature and may be incorporated into other ecosystem models requiring soil temperature as an input variable for modeling permafrost changes under global warming.

  18. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie;

    2015-01-01

    Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold...... season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... vegetation types, but the leaf sizes were unchanged. Leaves of Bistorta and Luzula were significantly larger but only significantly so in one moist vegetation type. Increased N and chlorophyll concentrations in leaves indicate a potential for increased growth (C uptake), supported by large leaf sizes...

  19. Recent Trends in Permafrost Temperature From North American Sites Contributing to the Global Terrestrial Network for Permafrost

    Science.gov (United States)

    Smith, S.; Burgess, M.; Romanovsky, V.; Clow, G.; Brown, J.

    2004-05-01

    The Global Terrestrial Network for Permafrost (GTN-P) was established in 1999 to provide long-term field observations of active layer and permafrost thermal state that are required to determine the present permafrost conditions and to detect changes in permafrost stability. The data supplied by this network enhances our ability to predict the consequences of permafrost degradation associated with climate warming and to develop adaptation strategies to respond to these changes. The GTN-P contributes to the World Meteorological Organization's Global Climate Observing System and Global Terrestrial Observing System. This paper focuses on the thermal monitoring component of the GTN-P. To date, over 300 thermal monitoring sites have been identified from 16 countries for inclusion in the GTN-P. Site descriptions (metadata) and summary data are disseminated through the GTN-P web site (www.gtnp.org). Plans are being developed for a GTN-P contribution to the International Polar Year which will involve a collection of data from all monitoring sites if possible in 2006 and 2007. This paper reports initial results from North American sites. The results show that although recent warming of permafrost has been observed across the North American permafrost zone, the magnitude and timing of this warming varies. For example, warming has been observed since the early to mid 1980s in the western North American Arctic. Warming however in the Canadian eastern and high Arctic occurred in the late 1990s with cooler permafrost temperature generally occurring in the 1980s and early 1990s. These trends in permafrost temperature are consistent with air temperature trends observed since the 1970s in the Canadian Arctic. Variability in snow cover especially in the high Arctic, is also an important factor influencing the spatial and temporal trends in permafrost temperature.

  20. Biogeochemical modeling of tundra recovery following thermal erosion of permafrost

    Science.gov (United States)

    Pearce, A. R.; Rastetter, E. B.; Bowden, W. B.

    2011-12-01

    We simulate the biogeochemical recovery of tundra from a thermal erosion disturbance using the Multiple Element Limitation model (MEL) and compare model results with soil organic matter and nutrient chemistry measurements collected across a chronosequence of thermal erosion features. Thermal erosion of permafrost initially depletes the tundra of much of its vegetation and shallow soil organic matter. However, several decades later, there is often little distinguishing these scars from the surrounding undisturbed tundra. As thermal erosion features become more abundant on the arctic landscape, we desire to understand how the pools of carbon and nutrients rebuild after these disturbances. MEL is a plot-scale, process-based model that optimizes the acquisition of eight resources (light, water, CO2, PO4, NH4, NO3, DON and N-fixation) by vegetation based on how much of each is required and the effort needed to acquire it. Model output includes pool sizes of carbon, nitrogen and phosphorus in vegetation, litter, young soil organic matter and old soil organic matter and the fluxes among these pools over time. This calibration of MEL, operating on a daily timestep, was created with published data collected at or near the Toolik Field Station (Toolik Lake, AK, USA) from moist acidic tussock tundra sites. We corroborate our calibration with data from plot manipulations (N and P fertilization, greenhouse, and shade house) performed as part of the NSF Arctic LTER project. The initial conditions for the recovery simulations reflect post-failure observations of some of the variation in soil organic matter, and soil and water nutrient chemistry. With sufficient nutrients from residual soil or supplied in soil water from upslope, the model indicates that vegetation can recover within several decades, but recovery of C and nutrients lost from soils may take hundreds of years.

  1. Collaborative efforts to solve problems in permafrost science and engineering

    Science.gov (United States)

    Hinzman, Larry D.; Hinkel, Kenneth M.; Romanovsky, Vladimir E.

    2012-10-01

    Tenth International Conference on Permafrost; Salekhard, Russia, 25-29 June 2012 To recognize permafrost's growing significance in the Earth climate system, to stimulate interaction among the scientific communities, and to share results of the increasing numbers of permafrost investigations and discoveries currently taking place, the Tenth International Conference on Permafrost (TICOP) was held in late June in Salekhard, a town in the Yamal-Nenets autonomous district of Russia that is situated precisely on the Arctic Circle and underlain by discontinuous permafrost. TICOP marked the tenth iteration of the long-running conference series, which started in 1963, and is the conference's first return to Russia since the Second International Conference on Permafrost in 1973.

  2. Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology.

    Science.gov (United States)

    Leya, Thomas; Rahn, Andreas; Lütz, Cornelius; Remias, Daniel

    2009-03-01

    Ten algal strains from snow and permafrost substrates were tested for their ability to produce secondary carotenoids and alpha-tocopherol in response to high light and decreased nitrogen levels. The Culture Collection of Cryophilic Algae at Fraunhofer IBMT in Potsdam served as the bioresource for this study. Eight of the strains belong to the Chlorophyceae and two strains are affiliated to the Trebouxiophyceae. While under low light, all 10 strains produced the normal spectrum of primary pigments known to be present in Chlorophyta, only the eight chlorophyceaen strains were able to synthesize secondary carotenoids under stress conditions, namely canthaxanthin, echinenone and astaxanthin; seven of them were also able to synthesize minor amounts of adonixanthin and an unidentified hydroxyechinenone. The two trebouxiophyceaen species of Raphidonema exhibited an unusually high pool of primary xanthophyll cycle pigments, possibly serving as a buffering reservoir against excessive irradiation. They also proved to be good alpha-tocopherol producers, which might also support the deactivation of reactive oxygen species. This study showed that some strains might be interesting novel candidates for biotechnological applications. Cold-adapted, snow and permafrost algae might serve as valuable production strains still exhibiting acceptable growth rates during the cold season in temperate regions. PMID:19159422

  3. Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone

    Science.gov (United States)

    Johnson, Kristofer D.; Harden, Jennifer W.; McGuire, A. David; Clark, Mark; Yuan, Fengming; Finley, Andrew O.

    2013-01-01

    Permafrost is tightly coupled to the organic soil layer, an interaction that mediates permafrost degradation in response to regional warming. We analyzed changes in permafrost occurrence and organic layer thickness (OLT) using more than 3000 soil pedons across a mean annual temperature (MAT) gradient. Cause and effect relationships between permafrost probability (PF), OLT, and other topographic factors were investigated using structural equation modeling in a multi-group analysis. Groups were defined by slope, soil texture type, and shallow (soils (OLTs) due to an insulation effect, but PF decreased in deep OLT soils (OLTd) by 0.06 for every 10-cm increase. Across the MAT gradient, PF in sandy soils varied little, but PF in loamy and silty soils decreased substantially from cooler to warmer temperatures. The change in OLT was more heterogeneous across soil texture types—in some there was no change while in others OLTs soils thinned and/or OLTd soils thickened at warmer locations. Furthermore, when soil organic carbon was estimated using a relationship with thickness, the average increase in carbon in OLTd soils was almost four times greater compared to the average decrease in carbon in OLTs soils across all soil types. If soils follow a trajectory of warming that mimics the spatial gradients found today, then heterogeneities of permafrost degradation and organic layer thinning and thickening should be considered in the regional carbon balance.

  4. Reducing uncertainty in methane emission estimates from permafrost peatlands

    Science.gov (United States)

    Christensen, Torben R.

    2016-04-01

    Reducing uncertainty in methane emission estimates from permafrost peatlands Torben R. Christensen1,2 and coworkers 1) Department of Physical Geography and Ecosystem Science, Lund University, Sweden 2) Arctic Research Centre, Aarhus University, Denmark Depending on factors including temperature, snow duration and soil moisture conditions, emissions of the greenhouse gas methane from permafrost peatlands can vary by factors of 2-4 between years. This variability is clear in atmospheric measurements of the gas, but a lack of ground-based data is making it hard to locate the methane sources responsible. Methane monitoring in the Arctic is expensive, requiring sophisticated analysis equipment such as power requiring laser spectrometer analysis made in remote places. This also puts demands on the logistics where infrastructures and field stations that offer line-power in the field are in high demand but very rarely found. Research projects therefore typically focus on one site, and run for a year or two. Longer term monitoring programs, which document climate, hydrology, phenology and population dynamics of birds and mammals, rarely include carbon fluxes since it is technically challenging to measure. One that does is the Greenland Ecosystem Monitoring program that started at the Zackenberg research station, which has recorded substantial methane flux variations for almost a decade in North-east Greenland. Such multi-year studies show that, while there is some connection between the amounts of methane released from one year to the next, accurate forecasting is difficult. They also highlight the importance of extending monitoring beyond the growing period into the frozen season, both in spring and autumn. A spatially distributed network of long-term monitoring stations in the Arctic, with consistency between measurements, is badly needed to improve this situation. Productive methane 'hot spots', many sporadic, have also been identified in recent studies. By ventilating

  5. Metabolic and growth characteristics of novel diverse microbes isolated from deep cores collected at the Next Generation Ecosystem Experiment (NGEE)-Arctic site in Barrow, Alaska

    Science.gov (United States)

    Chakraborty, R.; Pettenato, A.; Tas, N.; Hubbard, S. S.; Jansson, J.

    2013-12-01

    The Arctic is characterized by vast amounts of carbon stored in permafrost and is an important focal point for the study of climate change as increasing temperature may accelerate microbially mediated release of Carbon stored in permafrost into the atmosphere as CO2 and CH4. Yet surprisingly, very little is known about the vulnerability of permafrost and response of microorganisms in the permafrost to their changing environment. This deficiency is largely due to the difficulty in study of largely uncultivated and unknown permafrost microbes. As part of the U.S. Department of Energy (DOE) Next Generation Ecosystem Experiment (NGEE) in the Arctic, we collected permafrost cores in an effort to isolate resident microbes. The cores were from the Barrow Environmental Observatory (BEO), located at the northern most location on the Alaskan Arctic Coastal Plain near Barrow, AK, and up to 3m in depth. In this location, permafrost starts from 0.5m in depth and is characterized by variable water content and higher pH than surface soils. Enrichments for heterotrophic bacteria were initiated at 4°C and 1°C in the dark in several different media types, under both aerobic and anaerobic conditions. Positive enrichments were identified by an increase in optical density and cell counts after incubation period ranging from two to four weeks. After serial transfers into fresh media, individual colonies were obtained on agar surface. Several strains were isolated that include Firmicutes such as Bacillus, Clostridium, Sporosarcina, and Paenibacillus species and Iron-reducing Betaproteobacteria such as Rhodoferax species. In addition, methanogenic enrichments continue to grow and produce methane gas at 2°C. In this study, we present the characterization, carbon substrate utilization, pH, temperature and osmotic tolerance, as well as the effect of increasing climate change parameters on the growth rate and respiratory gas production from these permafrost isolates.

  6. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.

    Science.gov (United States)

    Chang, Wonjae; Klemm, Sara; Beaulieu, Chantale; Hawari, Jalal; Whyte, Lyle; Ghoshal, Subhasis

    2011-02-01

    Several studies have shown that biostimulation in ex situ systems such as landfarms and biopiles can facilitate remediation of petroleum hydrocarbon contaminated soils at sub-Arctic sites during summers when temperatures are above freezing. In this study, we examine the biodegradation of semivolatile (F2: C10-C16) and nonvolatile (F3: C16-C34) petroleum hydrocarbons and microbial respiration and population dynamics at post- and presummer temperatures ranging from -5 to 14 °C. The studies were conducted in pilot-scale tanks with soils obtained from a historically contaminated sub-Arctic site in Resolution Island (RI), Canada. In aerobic, nutrient-amended, unsaturated soils, the F2 hydrocarbons decreased by 32% during the seasonal freeze-thaw phase where soils were cooled from 2 to -5 °C at a freezing rate of -0.12 °C d(-1) and then thawed from -5 to 4 °C at a thawing rate of +0.16 °C d(-1). In the unamended (control) tank, the F2 fraction only decreased by 14% during the same period. Biodegradation of individual hydrocarbon compounds in the nutrient-amended soils was also confirmed by comparing their abundance over time to that of the conserved diesel biomarker, bicyclic sesquiterpanes (BS). During this period, microbial respiration was observed, even at subzero temperatures when unfrozen liquid water was detected during the freeze-thaw period. An increase in culturable heterotrophs and 16S rDNA copy numbers was noted during the freezing phase, and the (14)C-hexadecane mineralization in soil samples obtained from the nutrient-amended tank steadily increased. Hydrocarbon degrading bacterial populations identified as Corynebacterineae- and Alkanindiges-related strains emerged during the freezing and thawing phases, respectively, indicating there were temperature-based microbial community shifts. PMID:21194195

  7. River mobility in a permafrost dominated floodplain

    Science.gov (United States)

    Rowland, J.; Wilson, C.; Brumby, S.; Pope, P.

    2009-04-01

    Along arctic coastlines, recent studies have attributed dramatic increases in the rates of shoreline erosion to global climate change and permafrost degradation. While across much of the arctic, changes in the size and number of lakes have been interpreted as the result of permafrost degradation altering surface water dynamics. The potential influence of climate change and permafrost thawing on the mobility and form of arctic rivers, however, has been relatively unexplored to date. In rivers located within permafrost, some to potentially most, of the cohesive bank strength may be derived from frozen materials. It is likely that, as permafrost thaws, river bank erosion may increase, in turn influencing both migration rates and channel planform. Using automated feature extraction software (GeniePro), we quantified the of the mobility of a 200 km reach of the Yukon River through the Yukon Flats region located just north of Fairbanks, Alaska, USA. The Yukon Flats is an area of comprised of both continuous and discontinuous permafrost. Based on both changes in lake distributions and wintertime river base flows, it has been suggested that permafrost in this area has been experiencing recent thawing. In this reach, the Yukon River transitions from a 2 km wide braided channel to a multi-thread meandering channel where individual threads are approximately 1 km wide and the floodplain preserves prior meander cutoffs and oxbow lakes. Preliminary results from thirty years of LANDSAT imagery shows a surprising stability of channel location (at the image resolution of 30m/pixel) given the channel form. Within the braid-belt there is localized relocation of channel threads and mid-channel islands, though along much of the reach, the change in the location of channels banks is close to the resolution of the imagery. At the most active bends, bank migration rates range from 0.007 to 0.02 channel widths per year. These rates are comparable to system wide average rates observed on

  8. Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils.

    Directory of Open Access Journals (Sweden)

    Etienne Yergeau

    Full Text Available As human activity in the Arctic increases, so does the risk of hydrocarbon pollution events. On site bioremediation of contaminated soil is the only feasible clean up solution in these remote areas, but degradation rates vary widely between bioremediation treatments. Most previous studies have focused on the feasibility of on site clean-up and very little attention has been given to the microbial and functional communities involved and their ecology. Here, we ask the question: which microorganisms and functional genes are abundant and active during hydrocarbon degradation at cold temperature? To answer this question, we sequenced the soil metagenome of an ongoing bioremediation project in Alert, Canada through a time course. We also used reverse-transcriptase real-time PCR (RT-qPCR to quantify the expression of several hydrocarbon-degrading genes. Pseudomonas species appeared as the most abundant organisms in Alert soils right after contamination with diesel and excavation (t = 0 and one month after the start of the bioremediation treatment (t = 1m, when degradation rates were at their highest, but decreased after one year (t = 1y, when residual soil hydrocarbons were almost depleted. This trend was also reflected in hydrocarbon degrading genes, which were mainly affiliated with Gammaproteobacteria at t = 0 and t = 1m and with Alphaproteobacteria and Actinobacteria at t = 1y. RT-qPCR assays confirmed that Pseudomonas and Rhodococcus species actively expressed hydrocarbon degradation genes in Arctic biopile soils. Taken together, these results indicated that biopile treatment leads to major shifts in soil microbial communities, favoring aerobic bacteria that can degrade hydrocarbons.

  9. Current and Projected Changes in Permafrost and Societal Impacts of Permafrost Degradation (Invited)

    Science.gov (United States)

    Romanovsky, V. E.; Marchenko, S. S.; Brubaker, M.

    2010-12-01

    diminished quality and community water availability because of permafrost thaw related impacts to lakes and rivers. The combination of thawing permafrost and erosion are also damaging community infrastructure such as buildings, roads, airports, water and sanitation facilities, and communication systems. In some severe instances, permafrost thaw and related coastal erosion are forcing the relocation of entire communities. The possible direct ecological and economical damage from degrading permafrost is just started to be recognized, as are indirect threats from newly mobilized environmental contaminants. Also of concern are the potential impacts on fisheries in the Atlantic and Arctic from damaged oil and gas pipelines as a direct impact from the degrading and thawing permafrost in the Arctic regions. To mitigate these possible impacts, an accurate and timely forecast of changes in permafrost should be established.

  10. The Arctic Soil Bacterial Communities in the Vicinity of a Little Auk Colony.

    Science.gov (United States)

    Zielińska, Sylwia; Kidawa, Dorota; Stempniewicz, Lech; Łoś, Marcin; Łoś, Joanna M

    2016-01-01

    Due to deposition of birds' guano, eggshells or feathers, the vicinity of a large seabirds' breeding colony is expected to have a substantial impact on the soil's physicochemical features as well as on diversity of vegetation and the soil invertebrates. Consequently, due to changing physicochemical features the structure of bacterial communities might fluctuate in different soil environments. The aim of this study was to investigate the bacterial assemblages in the Arctic soil within the area of a birds' colony and in a control sample from a topographically similar location but situated away from the colony's impact area. A high number of OTUs found in both areas indicates a highly complex microbial populations structure. The most abundant phyla in both of the tested samples were: Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, with different proportions in the total share. Despite differences in the physicochemical soil characteristics, the soil microbial community structures at the phylum level were similar to some extent in the two samples. The only share that was significantly higher in the control area when compared to the sample obtained within the birds' colony, belonged to the Actinobacteria phylum. Moreover, when analyzing the class level for each phylum, several differences between the samples were observed. Furthermore, lower proportions of Proteobacteria and Acidobacteria were observed in the soil sample under the influence of the bird's colony, which most probably could be linked to higher nitrogen concentrations in that sample. PMID:27667982

  11. The Arctic Soil Bacterial Communities in the Vicinity of a Little Auk Colony

    Science.gov (United States)

    Zielińska, Sylwia; Kidawa, Dorota; Stempniewicz, Lech; Łoś, Marcin; Łoś, Joanna M.

    2016-01-01

    Due to deposition of birds' guano, eggshells or feathers, the vicinity of a large seabirds' breeding colony is expected to have a substantial impact on the soil's physicochemical features as well as on diversity of vegetation and the soil invertebrates. Consequently, due to changing physicochemical features the structure of bacterial communities might fluctuate in different soil environments. The aim of this study was to investigate the bacterial assemblages in the Arctic soil within the area of a birds' colony and in a control sample from a topographically similar location but situated away from the colony's impact area. A high number of OTUs found in both areas indicates a highly complex microbial populations structure. The most abundant phyla in both of the tested samples were: Proteobacteria, Acidobacteria, Actinobacteria, and Chloroflexi, with different proportions in the total share. Despite differences in the physicochemical soil characteristics, the soil microbial community structures at the phylum level were similar to some extent in the two samples. The only share that was significantly higher in the control area when compared to the sample obtained within the birds' colony, belonged to the Actinobacteria phylum. Moreover, when analyzing the class level for each phylum, several differences between the samples were observed. Furthermore, lower proportions of Proteobacteria and Acidobacteria were observed in the soil sample under the influence of the bird's colony, which most probably could be linked to higher nitrogen concentrations in that sample.

  12. 表生风化作用下多年冻土土壤的理论粒径分布%Theoretical Grain Size Distribution of Permafrost Soils as a Generalized Consequence of Hypergene Processes

    Institute of Scientific and Technical Information of China (English)

    Igor E. Guryanov

    2004-01-01

    The paper discusses the distinctive features of grain size distribution of permafrost soils formed under conditions of continental lithogenesis and cryogenic weathering of rocks. As a functional consequence of surface erosion of mineral particles, the log-normal distribution of the density function of grain size is derived confirmed for any conditions and sediment types.

  13. 黄河源区冻土分布制图及其热稳定性特征模拟%Mapping Frozen Soil Distribution and Modeling Permafrost Stability in the Source Area of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    李静; 盛煜; 吴吉春; 冯子亮; 宁作君; 胡晓莹; 张秀敏

    2016-01-01

    The source area of the Yellow River (SAYR) is located in the eastern-to-medium part of the Qing-hai-Tibet Plateau. Permafrost in the SAYR experienced remarkable degradation in the past. Taking distribution patterns of frozen soil and permafrost stability as research object, the characteristics of permafrost development and distribution patterns at various terrains and land covers were analyzed based on a large amount of field in-vestigations and the measurements. In addition, thermal features of permafrost were analyzed based on the mea-sured ground temperatures at various depths. The effects of the geological and geographic factors on permafrost distribution and thermal stability were discussed. It was indicated that:1) Permafrost was occasionally devel-oped in the various fluvial and proluvial plains with elevation generally lower than 4300 m;2) Permafrost was widely distributed in the mountains higher than 4350 m except for the sunny slope terrain, where local terrain played an important role in permafrost development and distribution;3) The combinations of local terrain, surfi-cial vegetation, soil wetness and moisture conditions all contributed to the formation and distribution of perma-frost in the low hills and mountains where elevation ranged in 4300-4350 m.Taking the annual mean ground temperature (MAGT) as the basis, an experiential-statistical MAGT-based model was constructed, of which lati-tude, longitude and elevation were set up as independent variables. Together with DEM data, permafrost MAGTs were primarily modeled using the statistically regression model. And then, the modeled results in the south-facing areas were slightly adjusted, and a secondly model was constructed to model permafrost distribu-tion in the shady areas. Thirdly, the combined modeling results were locally adjusted using the measurements. The frozen soil map in the SAYR was thus compiled. Taking 0oC as the boundary between permafrost and sea-sonally frozen soil, it was indicated

  14. Scaling Issues Between Plot and Satellite Radiobrightness Observations of Arctic Tundra

    Science.gov (United States)

    Kim, Edward J.; England, Anthony W.; Judge, Jasmeet; Zukor, Dorothy J. (Technical Monitor)

    2000-01-01

    Data from generation of satellite microwave radiometer will allow the detection of seasonal to decadal changes in the arctic hydrology cycle as expressed in temporal and spatial patterns of moisture stored in soil and snow This nw capability will require calibrated Land Surface Process/Radiobrightness (LSP/R) model for the principal terrains found in the circumpolar Arctic. These LSP/R models can than be used in weak constraint. Dimensional Data Assimilation (DDA)of the daily satellite observation to estimate temperature and moisture profiles within the permafrost in active layer.

  15. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana;

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients, temperat....... Experiments have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination......Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients...

  16. Remediation of oil-contaminated soil in Arctic Climate

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Fritt-Rasmussen, Janne; Rodrigo, Ana P.;

    Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients, temperat...... have been made with excavated oil-contaminated soil from the Greenlandic town Sisimiut to study different low-tech and low-cost solutions for remediation of oil-contamination.......Oil spill is a problem in towns in Greenland, where oil is used for heating and transport. The problem may increase in the future with expected oil exploitation in Greenlandic marine areas and related terrestrial activities. Oil undergoes natural microbial degradation in which nutrients...

  17. Predicting/Extrapolating Active Layer Thickness Using Statistical Learning from Remotely-Sensed High-resolution Data in Arctic Permafrost Landscapes: Improved parameterization of Ice-wedge polygons from LiDAR/WorldView-2 derived metrics

    Science.gov (United States)

    Gangodagamage, C.; Rowland, J. C.; Hubbard, S. S.; Brumby, S. P.; Liljedahl, A.; Wainwright, H. M.; Sloan, V. L.; Altmann, G.; Skurikhin, A. N.; Shelef, E.; Wilson, C. J.; Dafflon, B.; Peterson, J.; Ulrich, C.; Gibbs, A.; Tweedie, C. E.; Painter, S. L.; Wullschleger, S. D.

    2014-12-01

    Landscape attributes that vary with micro-topography, such as active layer thickness (ALT) in ice-wedge polygon ground, are labor-intensive to document in the field at large spatial extents, necessitating remotely sensed methods. Robust techniques to estimate ALT over large areas would improve understanding of coupled dynamics between permafrost, hydrology and landsurface processes, and improve simulations of the rate and timing of release of soil carbon from permafrost settings. In particular, it would provide critically needed data to parameterize and initialize soil property information in permafrost models and evaluate model predictions for large, complex domains. In this work, we demonstrate a new data fusion approach using high-resolution remotely sensed data for estimating cm scale ALT in a 5 km2 area of ice-wedge polygon terrain in Barrow, Alaska. We used topographic (directed distance, slope, wavelet-curvature) and spectral (NDVI) metrics derived from multisensor data obtained from LiDAR and WorldView-2 platforms to develop a simple data fusion algorithm using statistical machine learning. This algorithm was used to estimate ALT (2 m spatial resolution) across the study area. A comparison of the estimates with ground-based measurements documented the accuracy (±4.4 cm, r2=0.76) of the approach. Our findings suggest that the broad climatic variability associated with warming air temperature will govern the regional averages of ALT, but the smaller-scale variability could be controlled by local eco-hydro-geomorphic variables. This work demonstrates a path forward for mapping subsurface properties over large areas from readily available remote sensing data. Methodology of Mapping and Characterization Polygons:We convolve LiDAR elevations with multiscale wavelets and objectively chose appropriate scales to map interconnected troughs of high- and low-centered polygons. For the ice wedges where LiDAR surface expressions (troughs) are not well developed, we used

  18. Assessing effects of permafrost thaw on C fluxes based on multiyear modeling across a permafrost thaw gradient at Stordalen, Sweden

    OpenAIRE

    Deng, J.; C Li; Frolking, S; Zhang, Y.; Bäckstrand, K.; Crill, P.

    2014-01-01

    Northern peatlands in permafrost regions contain a large amount of organic carbon (C) in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST), into a biogeochemical model, DeNitrification-DeComposition (DNDC), to model C dynamics in high-latitude peatland ecosystems. The enhanc...

  19. Application of a Bayesian belief network for assessing the vulnerability of permafrost to thaw and implications for greenhouse gas production and climate feedback

    International Nuclear Information System (INIS)

    Highlights: • Permafrost areas are subject to accelerated rates of climate change leading to thaw. • Thaw will increase decomposition rates, exacerbating climate feedback. • We present a Bayesian belief network as a tool to examine interacting factors. • Organic soil (Hudson Plain region) and mineral soil (Arctic region) are contrasted. • Hudson Plain has contributed more to climate feedback than Arctic, but gap closing. - Abstract: Permafrost affected soils are an important component of the Boreal, Subarctic, and Arctic ecosystems of Canada. These areas are undergoing accelerated rates of climate change and have been identified as being at high risk for thaw. Thaw will expose soil to warmer conditions that support increased decomposition rates, which in turn will affect short- and long-term carbon storage capacity and result in feedback to global climate. We present a tool in the form of a Bayesian belief network influence diagram that will allow policymakers and managers to understand how interacting factors contribute to permafrost thaw and resulting effects on greenhouse gas (GHG) production and climate feedback. A theoretical example of expected responses from an organic soil typical of the Hudson Plain region and a mineral soil typical in the Arctic region demonstrate variability in responses across different combinations of climate and soil conditions within Canada. Based on the network results, the Arctic has historically had higher probability of thaw, but the Hudson Plain has had higher probability of producing carbon dioxide (CO2) and methane (CH4). Under past and current climate conditions, the Hudson Plain has, on a per unit area basis, contributed more to climate feedback than the Arctic. However, the gap in contribution between the two regions is likely to decrease as thaw progresses more rapidly in the Arctic than Hudson Plain region, resulting in strong positive feedback to climate warming from both regions. The flexible framework

  20. Psychrotrophic lipase producers from Arctic soil and sediment samples.

    Science.gov (United States)

    Rasol, R; Rashidah, A R; Nazuha, R Siti Nur; Smykla, J; Maznah, W O Wan; Alias, S A

    2014-01-01

    Culturable microorganisms were successfully isolated from soil and sediment samples collected in 2011 on the northern coast of Hornsund, West Spitsbergen. A total of 63 single colony isolates from three sampling sites obtained were subjected to temperature dependence study to assess whether they are obligate psychrophilic or psychrotrophic strains. From initial temperature screening, only 53 psychrotrophic isolates were selected that are capable of growing between 4-28 degrees C. The rest that were capable of tolerating higher temperatures up to 37 degrees C were not included in this study. These isolates were chosen for lipase enzyme screening confirmation with the standard plate assay of olive oil and fluorescent dye Rhodamine B. Six lipase positive isolates were also subjected for subsequent lipase enzyme plate screening on tributyrin, triolein, olive oil and palm oil agar. Lipase production by these six isolates was further assayed by using colorimetric method with palm oil and olive oil as the substrate. These isolates with promising lipase activity ranging from 20 U/ml up to 160 U/ml on palm oil and olive oil substrate were successfully identified. Molecular identification by using 16S rRNA revealed that five out of six isolates were Gram-negative Proteobacteria and the other one was a Gram-positive Actinobacteria. PMID:25033666

  1. Arctic soil development on a series of marine terraces on central Spitsbergen, Svalbard: a combined geochronology, fieldwork and modelling approach

    Science.gov (United States)

    van der Meij, W. Marijn; Temme, Arnaud J. A. M.; de Kleijn, Christian M. F. J. J.; Reimann, Tony; Heuvelink, Gerard B. M.; Zwoliński, Zbigniew; Rachlewicz, Grzegorz; Rymer, Krzysztof; Sommer, Michael

    2016-06-01

    Soils in Arctic regions currently enjoy attention because of their sensitivity to climate change. It is therefore important to understand the natural processes and rates of development of these soils. Specifically, there is a need to quantify the rates and interactions between various landscape- and soil-forming processes. Soil chronosequences are ideal natural experiments for this purpose. In this contribution, we combine field observations, luminescence dating and soil-landscape modelling to improve and test our understanding of Arctic soil formation. The field site is a Holocene chronosequence of gravelly raised marine terraces in central Spitsbergen. Field observations show that soil-landscape development is mainly driven by weathering, silt translocation, aeolian deposition and rill erosion. Spatial soil variation is mainly caused by soil age, morphological position within a terrace and depth under the surface. Luminescence dating confirmed existing radiocarbon dating of the terraces, which are between ˜ 1.5 and ˜ 13.3 ka old. The soil-landscape evolution model LORICA was used to test our hypothesis that the field-observed processes indeed dominate soil-landscape development. Model results additionally indicated the importance of aeolian deposition as a source of fine material in the subsoil for both sheltered and vegetated trough positions and barren ridge positions. Simulated overland erosion was negligible. Consequently, an un-simulated process must be responsible for creating the observed erosion rills. Dissolution and physical weathering both play a major role. However, using present-day soil observations, the relative contribution of physical and chemical weathering could not be disentangled. Discrepancies between field and model results indicate that soil formation is non-linear and driven by spatially and temporally varying boundary conditions which were not included in the model. To conclude, Arctic soil and landscape development appears to be more

  2. Terrimonas arctica sp. nov., isolated from Arctic tundra soil.

    Science.gov (United States)

    Jiang, Fan; Qiu, Xia; Chang, Xulu; Qu, Zhihao; Ren, Lvzhi; Kan, Wenjing; Guo, Youhao; Fang, Chengxiang; Peng, Fang

    2014-11-01

    A novel, Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated R9-86(T), was isolated from tundra soil collected near Ny-Ålesund, Svalbard Archipelago, Norway (78° N). Growth occurred at 4-28 °C (optimum, 22-25 °C) and at pH 6.0-9.0 (optimum, pH 7.0). Flexirubin-type pigments were absent. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain R9-86(T) belonged to the genus Terrimonas in the family Chitinophagaceae. 16S rRNA gene sequence similarities between strain R9-86(T) and the type strains of species of the genus Terrimonas with validly published names ranged from 93.7 to 95.0%. Strain R9-86(T) contained iso-C(15:1)-G (25.7%), iso-C(15:0) (24.5%), iso-C(17:0)-3OH (18.3%) and summed feature 3 (C(16:1)ω7c and/or C(16:1)ω6c, 8.7%) as its major cellular fatty acids; phosphatidylethanolamine and an unknown polar lipid as its main polar lipids, and MK-7 as its predominant respiratory quinone. The DNA G+C content was 48.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain R9-86(T) is considered to represent a novel species of the genus Terrimonas, for which the name Terrimonas arctica sp. nov. is proposed. The type strain is R9-86(T) ( =CCTCC AB 2011004(T) =NRRL B-59114(T)). PMID:25142212

  3. Why Permafrost Is Thawing, Not Melting

    Science.gov (United States)

    Grosse, Guido; Romanovsky, Vladimir; Nelson, Frederick E.; Brown, Jerry; Lewkowicz, Antoni G.

    2010-03-01

    As global climate change is becoming an increasingly important political and social issue, it is essential for the cryospheric and global change research communities to speak with a single voice when using basic terminology to communicate research results and describe underlying physical processes. Experienced science communicators have highlighted the importance of using the correct terms to communicate research results to the media and general public [e.g., Akasofu, 2008; Hassol, 2008]. The consequences of scientists using improper terminology are at best oversimplification, but they more likely involve misunderstandings of the facts by the public. A glaring example of scientifically incorrect terminology appearing frequently in scientific and public communication relates to reports on the degradation of permafrost. Numerous research papers have appeared in recent years, broadly echoed in the news media, describing the “melting of permafrost,” its effects in the Arctic, and its feedbacks on climate through the carbon cycle. Although permafrost researchers have attempted to distinguish between the appropriate term “permafrost thawing” and the erroneous “permafrost melting” [e.g., van Everdingen, 2005; French, 2002], the latter is still used widely. A Web-based search using the phrase “permafrost melting” reveals hundreds of occurrences, many from highly regarded news and scientific organizations, including Reuters, New Scientist, ABC, The Guardian, Discovery News, Smithsonian magazine, the National Science Foundation, and others.

  4. Recent ecohydrological change in relation to permafrost degradation in eastern Siberia

    Science.gov (United States)

    Iijima, Y.; Fedorov, A. N.; Maximov, T. C.

    2010-12-01

    Recently, our continuous observations during the last decade revealed considerable evidence of abrupt land surface moistening and synchronized rapid soil warming within active layer and upper part of permafrost in the central Lena River basin in eastern Siberia. The present study focuses firstly on the linkage between atmospheric and land surface variations in eastern Siberia in terms of the hydrothermal variations within the surface layer of the permafrost and influence of storm track activity in Arctic during pre-winter and snow start season and moreover on the linkage between the permafrost degradation and ecohydrological change in this region. We utilized soil temperature, moisture and active layer thickness data from the observational network in the left and right banks of the Lena River in the Yakutsk area. Daily data of precipitation and snow depth and reanalysis dataset were used to analyze the large-scale atmospheric fields and determine storm-track activity. The peculiar feature of the warming is that the soil moisture correspondingly increases within the active layer observed at many sites in the Yakutsk area. This hydro-thermal change is primarily due to wetting climate conditions rather than atmospheric warming with abnormally large amounts of winter snow accumulation and summer precipitation in the central and southern part of the Lena River basin. The wetting conditions in eastern Siberia are likely due to enhancement of cyclonic anomaly over the Arctic Ocean and eastward propagation of storm activities in summer and early winter. Water vapor flux from Pacific side (Okhotsk sea) was enhanced in conjunction with the manifested precipitation over the eastern Siberia. As results, consecutive positive anomalies of winter snow accumulation and next summer precipitation which had seldom occurred in the second half of the last century in eastern Siberia effectively humidified land surface on the permafrost region after 2005 resulting abrupt soil warming in

  5. Seasonal variation of ecosystem respiration delta 13C in response to experimental permafrost thaw and vegetation removal in moist acidic tundra

    Science.gov (United States)

    Mauritz, M.; Pegoraro, E.; Salmon, V. G.; Natali, S.; Schuur, E.

    2015-12-01

    Permafrost soils store twice as much carbon (C) as is contained in the atmosphere and about one-third of global soil C. Under a warmer future climate, permafrost is expected to thaw and decompose, releasing C to the atmosphere, further amplifying global warming. However, studies show that warmer arctic temperatures promote plant growth, in addition to stimulating losses from the soil C pool. Using delta 13C of ecosystem respiration (Reco) during the seasonal cycle of active layer thaw, we seek to understand the effect of permafrost thaw on the relative contributions from microbial decomposition of soil C and more recently fixed, plant-dominated C. We measured weekly CO2 flux rates and delta 13C of Reco from experimentally warmed plots with rapid permafrost thaw and control thaw. Vegetation removal plots, in un-warmed tundra, were monitored to isolate the seasonal contributions from soil alone. We expected delta 13C to be dominated by plant activity in vegetated plots, particularly in areas with greater permafrost thaw because they have highest plant biomass. In vegetation removal plots we expected to see greater contribution from deep soil as seasonal thaw progressed. From May to July delta 13C was extremely variable early in the growing season, but became more uniform as vegetation greened and thaw deepened. In vegetated plots CO2 fluxes doubled, but remained constant in vegetation removal plots. This indicates that, with thaw, microbes had access to a more spatially uniform C substrate, but this had little effect on the magnitude of CO2 flux. Overall delta 13C in rapidly thawed plots was least enriched (-29.4 ‰), control plots intermediate (-28.9 ‰), and vegetation removal plots were most enriched (-28.5 ‰). This suggests that in vegetation removal plots microbes used more decomposed soil C as substrate, and much of the increase in CO2 flux in vegetated plots was the result of C recently fixed and contributed by plants.

  6. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine;

    2006-01-01

    densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  7. Consequences of artic ground squirrels on soil carbon loss from Siberian tundra

    Science.gov (United States)

    Golden, N. A.; Natali, S.; Zimov, N.

    2014-12-01

    A large pool of organic carbon (C) has been accumulating in the Arctic for thousands of years. Much of this C has been frozen in permafrost and unavailable for microbial decomposition. As the climate warms and permafrost thaws, the fate of this large C pool will be driven not only by climatic conditions, but also by ecosystem changes brought about by arctic animal populations. In this project we studied arctic ground squirrels (Spermophilus parryii), which are widely-distributed throughout the Arctic. These social mammals create subterranean burrows that mix soil layers, increase aeration, alter soil moisture and temperature, and redistribute soil nutrients, all of which may impact microbial decomposition. We examined the effects of arctic ground squirrel activity on soil C mineralization in dry heath tundra underlain by continuous permafrost in the Kolyma River watershed in northeast Siberia, Russia. Vegetation cover was greatly reduced on the ground squirrel burrows (80% of ground un-vegetated), compared to undisturbed sites (35% of ground un-vegetated). Soils from ground squirrel burrows were also significantly dryer and warmer. To examine effects of ground squirrel activity on microbial respiration, we conducted an 8-day incubation of soil fromburrows and from adjacent undisturbed tundra. In addition, we assessed the impact of nutrient addition by including treatments with low and high levels of nitrogen addition. Microbial respiration (per gram soil) was three-fold higher in incubated soils from the undisturbed sites compared to soils collected from the burrows. The lower rates of respiration from the disturbed soils may have been a result of lower carbon quality or low soil moisture. High nitrogen addition significantly increased respiration in the undisturbed soils, but not in the disturbed burrow soils, which suggests that microbial respiration in the burrow soils was not primarily limited by nitrogen. These results demonstrate the importance of wildlife

  8. Suggested best practice for geotechnical characterisation of permafrost in the Nordic countries

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas; Foged, Niels Nielsen

    2012-01-01

    Even though permafrost is a specialty within Nordic geotechnical engineering, engineers and researcher will be faced with managing the consequences of projected climatic influences to construction design in permafrost areas. This requires the determination of the frozen soil engineering properties...

  9. PERMAFROST META-OMICS AND CLIMATE CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Mackelprang, Rachel; Saleska, Scott; Jacobsen , Carsten S.; Jansson, Janet K.; Tas, Neslihan

    2016-06-01

    Permafrost (i.e., soil that has been frozen for at least 2 consecutive years) represents a habitat for microbial life at subzero temperatures (Gilichinsky et al. 2008). Approximately one quarter of the Earth’s surface is underlain by permafrost, which contains 25-50% of the total global soil carbon pool (Schuur et al. 2008, Tarnocai et al. 2009). This carbon is largely protected from microbial decomposition by reduced microbial activity in frozen conditions, but climate change is threatening to induce large-scale permafrost thaw thus exposing it to degradation. The resulting emissions of greenhouse gasses (GHGs) can produce a positive feedback loop and significantly amplify the effects of global warming. Increasing temperatures at high latitudes, changes in precipitation patterns, and frequent fire events have already initiated a widespread degradation of permafrost (Schuur et al. 2015).

  10. Uncertainty assessment of a polygon database of soil organic carbon for greenhouse gas reporting in Canada’s Arctic and sub-arctic

    Directory of Open Access Journals (Sweden)

    M.F. Hossain

    2014-08-01

    Full Text Available Canada’s Arctic and sub-arctic consist 46% of Canada’s landmass and contain 45% of the total soil organic carbon (SOC. Pronounced climate warming and increasing human disturbances could induce the release of this SOC to the atmosphere as greenhouse gases. Canada is committed to estimating and reporting the greenhouse gases emissions and removals induced by land use change in the Arctic and sub-arctic. To assess the uncertainty of the estimate, we compiled a site-measured SOC database for Canada’s north, and used it to compare with a polygon database, that will be used for estimating SOC for the UNFCCC reporting. In 10 polygons where 3 or more measured sites were well located in each polygon, the site-averaged SOC content agreed with the polygon data within ±33% for the top 30 cm and within ±50% for the top 1 m soil. If we directly compared the SOC of the 382 measured sites with the polygon mean SOC, there was poor agreement: The relative error was less than 50% at 40% of the sites, and less than 100% at 68% of the sites. The relative errors were more than 400% at 10% of the sites. These comparisons indicate that the polygon database is too coarse to represent the SOC conditions for individual sites. The difference is close to the uncertainty range for reporting. The spatial database could be improved by relating site and polygon SOC data with more easily observable surface features that can be identified and derived from remote sensing imagery.

  11. Mapping of permafrost surface and active layer properties using GPR: a comparison of frequency dependencies

    DEFF Research Database (Denmark)

    Gacitua, Guisella; Uribe, José Andrés; Tamstorf, Mikkel Peter;

    2011-01-01

    Ground penetrating radar (GPR) was used to detect internal features and conditions in the active layer of Zackenberg valley in North-East Greenland. For about 16 years there has been a monitoring programme that registers the physical and biological processes in the ecosystem.We aim to improve...... the monitoring accuracy of the active layer development and estimated soil water content. We used two different GPR frequencies to study their performance in High-Arctic cryoturbated soils. Here we present the analysis of the signal received by quantifying the power of the signal that is reflected from the top...... of the permafrost and from the internal features in the unfrozen soil. These results will be further used to determine the distribution of dielectric heterogeneities to support water content estimated from the same profiles. Comparing results from 400 and 800 MHz, we found that although both frequencies...

  12. Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf

    Science.gov (United States)

    Bischoff, Juliane; Sparkes, Robert B.; Doğrul Selver, Ayça; Spencer, Robert G. M.; Gustafsson, Örjan; Semiletov, Igor P.; Dudarev, Oleg V.; Wagner, Dirk; Rivkina, Elizaveta; van Dongen, Bart E.; Talbot, Helen M.

    2016-09-01

    The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk δ13C measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'soil ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R'soil displays a negative linear correlation with bulk δ13C measurements (r2 = -0.73, p = soil shows limited variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'soil of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R'soil correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental conditions (e.g. temperature, pH), but other physiological controls on microbial bacteriohopanepolyol (BHP) production under psychrophilic conditions are as yet unknown.

  13. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  14. Integrated metagenomics and field measurements of polygon features at the NGEE-Arctic Barrow site

    Science.gov (United States)

    Tas, N.; Wu, Y.; Smith, L. J.; Ulrich, C.; Kneafsey, T. J.; Torn, M. S.; Hubbard, S. S.; Wullschleger, S. D.; Jansson, J.

    2013-12-01

    Arctic soils contain an estimated 12-42% of terrestrial carbon, most of which is sequestered in permafrost. High latitudes have experienced the greatest regional warming in recent decades and observations suggest that permafrost degradation is now commonly observed in the region. With increasing global temperatures, permafrost soils are becoming a potential source of greenhouse gas (GHG) emissions. Because of widespread permafrost thaw much of the soil organic matter may be available for rapid mineralization by microorganisms in the soil. Yet little is known about the vulnerability of permafrost and the potential response of soil microorganisms to availability of new carbon sources. On the Alaskan North Slope the collapse and rise of soil due to formation of ice wedges and permafrost thaw create distinct features called polygons. As part of the U.S. Department of Energy (DOE) Next Generation Ecosystem Experiment (NGEE) in the Arctic, we aimed to determine the distribution of microbial populations across a range of polygon features and to correlate the microbial data to GHG flux data. To determine the microbial community distribution and metabolic potential, we collected seasonally thawed active layer soil samples along two polygon transects (Site 0 and AB), including high-centered, transitional and low-centered polygons. Illumina HiSeq technology was used to sequence 16SrRNA genes and metagenomes from these active layer soils. The sequence data was correlated to GHG flux measurements and to environmental data from the site, including geophysical and geochemical soil characteristics. Both the microbial communities and the flux measurements varied along the polygon transect. Each polygon had a distinct microbial community structure; however, these microbial communities shared many metabolic capabilities. For example, many genes involved in degradation of chitin could be found all three polygons. Functional genes involved in methanogenesis and CH4-flux measurements

  15. Characterisation of the Permafrost Carbon Pool

    Science.gov (United States)

    Kuhry, P.; Grosse, G.; Harden, J.W.; Hugelius, G.; Koven, C.D.; Ping, C.-L.; Schirrmeister, L.; Tarnocai, C.

    2013-01-01

    The current estimate of the soil organic carbon (SOC) pool in the northern permafrost region of 1672 Petagrams (Pg) C is much larger than previously reported and needs to be incorporated in global soil carbon (C) inventories. The Northern Circumpolar Soil Carbon Database (NCSCD), extended to include the range 0–300 cm, is now available online for wider use by the scientific community. An important future aim is to provide quantitative uncertainty ranges for C pool estimates. Recent studies have greatly improved understanding of the regional patterns, landscape distribution and vertical (soil horizon) partitioning of the permafrost C pool in the upper 3 m of soils. However, the deeper C pools in unconsolidated Quaternary deposits need to be better constrained. A general lability classification of the permafrost C pool should be developed to address potential C release upon thaw. The permafrost C pool and its dynamics are beginning to be incorporated into Earth System models, although key periglacial processes such as thermokarst still need to be properly represented to obtain a better quantification of the full permafrost C feedback on global climate change.

  16. Diversity of soil organisms in alpine and arctic soils in Europe. Review an research needs

    OpenAIRE

    Broll, Gabrielle

    1998-01-01

    The diversity of soil organisms and soil ecological processes in different mountain regions of Europe are reviewed. Detailed taxonomic studies on soil organisms have been made in the Alps and in Northern Europe since the end of the last century, however, there is a paucity of data from Southern Europe. Future studies could include the re-sampling of historic study sites to assess if there has been a change in the soil fauna and microorganisms. The role of key abiotic processes such as cryotur...

  17. Coupled Northern Hemisphere permafrost-ice sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2015-02-01

    Full Text Available Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2 and the coupled Northern Hemisphere (NH permafrost-ice sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modelled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the last glacial maximum (LGM agrees well with reconstructions and previous modelling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over Central Siberia and the Arctic Archipelago permafrost is presently up to 200–500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 kya. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  18. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.

    Science.gov (United States)

    Convey, Peter; Abbandonato, Holly; Bergan, Frode; Beumer, Larissa Teresa; Biersma, Elisabeth Machteld; Bråthen, Vegard Sandøy; D'Imperio, Ludovica; Jensen, Christina Kjellerup; Nilsen, Solveig; Paquin, Karolina; Stenkewitz, Ute; Svoen, Mildrid Elvik; Winkler, Judith; Müller, Eike; Coulson, Stephen James

    2015-12-01

    The extreme polar environment creates challenges for its resident invertebrate communities and the stress tolerance of some of these animals has been examined over many years. However, although it is well appreciated that standard air temperature records often fail to describe accurately conditions experienced at microhabitat level, few studies have explicitly set out to link field conditions experienced by natural multispecies communities with the more detailed laboratory ecophysiological studies of a small number of 'representative' species. This is particularly the case during winter, when snow cover may insulate terrestrial habitats from extreme air temperature fluctuations. Further, climate projections suggest large changes in precipitation will occur in the polar regions, with the greatest changes expected during the winter period and, hence, implications for the insulation of overwintering microhabitats. To assess survival of natural High Arctic soil invertebrate communities contained in soil and vegetation cores to natural winter temperature variations, the overwintering temperatures they experienced were manipulated by deploying cores in locations with varying snow accumulation: No Snow, Shallow Snow (30 cm) and Deep Snow (120 cm). Air temperatures during the winter period fluctuated frequently between +3 and -24 °C, and the No Snow soil temperatures reflected this variation closely, with the extreme minimum being slightly lower. Under 30 cm of snow, soil temperatures varied less and did not decrease below -12 °C. Those under deep snow were even more stable and did not decline below -2 °C. Despite these striking differences in winter thermal regimes, there were no clear differences in survival of the invertebrate fauna between treatments, including oribatid, prostigmatid and mesostigmatid mites, Araneae, Collembola, Nematocera larvae or Coleoptera. This indicates widespread tolerance, previously undocumented for the Araneae, Nematocera or Coleoptera, of

  19. Content and distribution of trace metals in pristine permafrost environments of Northeastern Siberia, Russia

    Science.gov (United States)

    Antcibor, I.; Eschenbach, A.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2012-04-01

    Arctic regions are one of the most sensitive areas with respect to climatic changes and human impacts. Research is required to discover how the function of permafrost soils as a buffering system for metal pollutants could change in response to the predicted changes. The goal of this work is to determine the background levels of trace metals in the pristine arctic ecosystems of the Lena River Delta in Northeastern Siberia and to evaluate the possible effect of human impacts on this arctic region. The Lena River Delta represents areas with different dominating geomorphologic processes that can generally be divided between accumulation and erosion sites. Frequent changes of the river water level create different periods of sedimentation and result in the formation of stratified soils and sediment layers which are dominated either by mineral substrates with allochthonous organic matter or pure autochthonous peat. The deposited sediments that have formed the delta islands are mostly composed of sand fractions; therefore the buffering effects of clay materials can be neglected. Samoylov Island is representative of the south-central and eastern modern delta surfaces of the Lena River Delta and is selected as a pilot study site. We determined total element contents of Fe, Mn, Zn, Cd, Ni, Cu, As, Pb, Co and Hg in soil horizons from different polygonal elevated rims, polygonal depressed centers and the middle floodplain. High gravimetric concentrations (related to dry mass of soil material) of Mn and Fe are found within all soil profiles and vary from 0.14 to 1.39 g kg-1 and from 10.7 to 41.2 g kg-1, respectively. While the trace element concentrations do not exceed typical crustal abundances, the maximum values of most of the metals are observed within the soil profile situated at the middle floodplain. This finding suggests that apart from the parent material the second potential source of trace metals is due to allochthonous substance input during annual flooding of the

  20. Using ground data from the Global Terrestrial Network of Permafrost (GTN-P) for the Evaluation of the ESA DUE Permafrost remote sensing derived Products Land Surface Temperature and ASCAT Surface State Flag

    OpenAIRE

    Kirsten Elger; Birgit Heim; Annett Bartsch; Christoph Paulik; Claude Duguay; Sonia Hachem; Aiman Soliman; Hugues Lantuit; Julia Boike; Frank Martin Seifert

    2012-01-01

    The ESA Data User Element (DUE) Permafrost project provides a mid-to-long-term Earth observation service for permafrost remote sensing derived applications for Northern high-latitudinal permafrost areas. The DUE Permafrost remote sensing products are land surface temperature, surface soil moisture, frozen/thawed surface status, elevation, land cover and surface waters. A major component is the evaluation of the DUE Permafrost products to test their scientific validity for high-latitude per...

  1. Characterizing thermo-erosional landforms in Siberian ice-rich permafrost. Morphometric investigations in the Lena Delta using high-resolution satellite imagery and digital elevation models

    OpenAIRE

    Stettner, Samuel / SS

    2015-01-01

    Rapid warming of the Arctic promotes widespread degradation of permafrost and affects the stability of arctic ecosystems. Thermokarst and thermal erosion are two major processes of permafrost degradation. The spatial extent of thermo-erosional processes and related landforms (e.g. gullies and valleys) and their impact on the widespread degradation of permafrost remains not well quantified. Addressing this research gap, this study is using a combination of field data, high-resolution satellite...

  2. Modelling unfrozen water content in a silty clay permafrost deposit

    DEFF Research Database (Denmark)

    Agergaard, Frederik Ancker; Ingeman-Nielsen, Thomas

    2011-01-01

    of a calibration equation for determining the unfrozen water content of a Greenlandic silty clay permafrost deposit. Calibration experiments have been conducted for water contents in the interval 0 – 10 % at both 5 °C and 22 °C. Calibration equations are verified against permittivity data from a permafrost core......The mechanical properties of both unfrozen soils and permafrost soils are influenced by the amount of unfrozen water in the pore space. When dealing with foundation engineering in permafrost areas it is essential to estimate the unfrozen water content (wu). This paper deals with the establishing...... of material properties similar to the test soil. The calibration for 5°C is seen to make a good fit to the permafrost core data. Further experiments should be performed in order to extend the range of water contents tested and hence the range of validity of the calibration equation....

  3. Comparative Metagenomic Analysis Of Microbial Communities From Active Layer And Permafrost After Short-Term Thaw

    Science.gov (United States)

    Vishnivetskaya, T. A.; Chauhan, A.; Saarunya, G.; Murphy, J.; Williams, D.; Layton, A. C.; Pfiffner, S. M.; Stackhouse, B. T.; Sanders, R.; Lau, C. M.; myneni, S.; Phelps, T. J.; Fountain, A. G.; Onstott, T. C.

    2012-12-01

    .Permafrost areas occupy 20-25% of the Earth and extend of 1 km depths. The total number of prokaryotes and their biomass in cold regions are estimated to be 1 x 1030 cells and 140 x1015 g of C, respectively. Thus these environments serve as a reservoir of microbial and biogeochemical activity, which is likely to increase upon thawing. We are currently performing long-term thawing experiments at 4o C on 18, geochemically well-characterized, 1 meter long, intact cores consisting of active-layer (0-70 cm depth) and permafrost, collected from a 7 meter diameter ice-wedge polygon located at the McGill Arctic Research Station on Axel Heiberg Island, Nunavut, Canada. The organic carbon content of these cores averages ~1% at depth but increases to 5.4% in the top 10 cm. The cores were subdivided into four treatment groups: saturated cores (thawed while receiving artificial rain), drained cores (being thawed under natural hydrological conditions), dark cores (thawed under natural hydrological conditions with no light input) and control cores (maintain permafrost table at 70 cm depth). Over the course of 10 weeks the cores were progressively thawed from -4oC to 4oC from the top down to simulate spring thaw conditions in the Arctic. The temperatures at 5 cm, 35 cm, 65 cm, and below the permafrost table in the core were recorded continuously. Pore water and gas samples from 4 depths in each core were collected every two weeks and analyzed for pH, anions, cations, H2, CH4, CO, O2, N2, CO2 and δ13C of CO2. Headspace gas samples were collected weekly and analyzed for the same gases as the pore gases. Sediment sub-samples from the 4 depths were collected and total community genomic DNA (gDNA) was isolated using FastDNA SPIN kit followed by Qiagen column purification. The average yield of gDNA was ~3.5 μg/g of soil for the upper 5 cm active layers and decreased to ~1.5 μg/g of soil in the permafrost. The bacterial 16S copy numbers estimated by real-time quantitative PCR

  4. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms

    Science.gov (United States)

    Tang, Guoping; Zheng, Jianqiu; Xu, Xiaofeng; Yang, Ziming; Graham, David E.; Gu, Baohua; Painter, Scott L.; Thornton, Peter E.

    2016-09-01

    Soil organic carbon turnover to CO2 and CH4 is sensitive to soil redox potential and pH conditions. However, land surface models do not consider redox and pH in the aqueous phase explicitly, thereby limiting their use for making predictions in anoxic environments. Using recent data from incubations of Arctic soils, we extend the Community Land Model with coupled carbon and nitrogen (CLM-CN) decomposition cascade to include simple organic substrate turnover, fermentation, Fe(III) reduction, and methanogenesis reactions, and assess the efficacy of various temperature and pH response functions. Incorporating the Windermere Humic Aqueous Model (WHAM) enables us to approximately describe the observed pH evolution without additional parameterization. Although Fe(III) reduction is normally assumed to compete with methanogenesis, the model predicts that Fe(III) reduction raises the pH from acidic to neutral, thereby reducing environmental stress to methanogens and accelerating methane production when substrates are not limiting. The equilibrium speciation predicts a substantial increase in CO2 solubility as pH increases, and taking into account CO2 adsorption to surface sites of metal oxides further decreases the predicted headspace gas-phase fraction at low pH. Without adequate representation of these speciation reactions, as well as the impacts of pH, temperature, and pressure, the CO2 production from closed microcosms can be substantially underestimated based on headspace CO2 measurements only. Our results demonstrate the efficacy of geochemical models for simulating soil biogeochemistry and provide predictive understanding and mechanistic representations that can be incorporated into land surface models to improve climate predictions.

  5. Ancient bacteria in permafrost soils fact or artefact? Considerations in recovering microbial DNA from geological ancient settings

    Science.gov (United States)

    Willerslev, E.

    2003-04-01

    Several recent reports claim that prokaryotic genetic sequences or viable cultures can survive for millions of years in geological settings. If substantiated, these findings could fundamentally alter views about bacterial physiology, ecology and evolution. However, both the culturing of microbes and the amplification of ancient DNA molecules from fossil remains are beset with difficulties. First, theoretical and empirical studies have shown that small DNA fragments (100 200 bp) do not survive in the geosphere for more than 104 years in temperate environments and 105 years in colder ones due to hydrolytic and oxidative damage. Therefore, the revivals of dormant bacteria with no active DNA repair from remains hundreds of thousands to millions of years old is, from a theoretical point, expected to be difficult, if not impossible. Second, the no specificity of the media used to culture micro organisms, as well as the great sensitivity of PCR, makes the risk of contamination with contemporary ubiquitous microbial cells and exogenous DNA molecules extremely high. Contamination poses risks at all stages of sample processing (e.g.) within the samples themselves, in the chemical reagents, on laboratory disposables or through the air. The high risk of contamination strongly suggests the need for standardized procedures within the field such as independent replication of results. This criterion of authenticity has not yet been full field in any of the studies claiming million year old microbial cultures or DNA. In order to tests the long-term survival of ancient bacteria DNA a study on permafrost was conducted using ancient DNA precautions, controls and criteria. Permafrost must be considered among the most promising environments for long term DNA survival due to its constant low temperatures (-10C to 12C Siberian or 20C Antarctica) and high cell numbers (107). We found that bacteria DNA could reproducibly be obtained from samples dated up to 300-400,000 years B.P. but not

  6. Natural Radioactivity Accumulated in the Arctic from Long-range Atmospheric Transport - Observations in Canadian Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Zhang, Weihua [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1 (Canada)

    2014-07-01

    In the environment, the main sources of naturally occurring radionuclides come from radionuclides in the uranium decay series. Activity concentrations of uranium decay series radionuclides may vary considerably from place to place depending on the geological characteristics at the location. Their releases to the atmosphere are mainly through radon ({sup 222}Rn), a radioactive noble gas occurring naturally as an indirect decay product of uranium in soils and rocks. Due to the abundance of uranium, radon continuously emanates from continental land masses. With radon as the main source of naturally occurring radioactivity in the environment, one would think that the Arctic should be an area of low background radiation, because a considerable area of the Arctic is covered by glaciers and permafrost, and radon emanation rate has been reported to be negligible from those glacier and permafrost areas. However, available data have shown the opposite. The elevated level of naturally occurring radioactivity in the Arctic is due to natural sources outside of the Arctic, mainly through long-range atmospheric transport of radon and radon progeny. In some cases, natural radioactivity can accumulate to relatively high levels and become a health concern or a limiting factor of country food consumption. By definition, contaminants are undesirable substances which can cause harm to the environment, the biota, and humans. We can call these naturally accumulating radiological burdens to the Arctic 'natural contaminants' to distinguish them from the traditional meaning of contamination, the 'artificial contaminants' which are attributable to industrial or man-made sources. This paper reviews information available in the literature, analyses long-term atmospheric monitoring data in the Canadian high Arctic, sub-Arctic and mid-latitude sites, and provides discussion on research needed to address questions, such as how heavily the Arctic has been impacted by the

  7. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-07-21

    This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska, and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography, but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes, dominated by fermenters (Bacteroidetes and Firmicutes).

  8. Changes in microbial communities along redox gradients in polygonized Arctic wet tundra soils

    Energy Technology Data Exchange (ETDEWEB)

    Lipson, David A.; Raab, Theodore K.; Parker , Melanie; Kelley , Scott T.; Brislawn, Colin J.; Jansson, Janet K.

    2015-08-01

    Summary This study investigated how microbial community structure and diversity varied with depth and topography in ice wedge polygons of wet tundra of the Arctic Coastal Plain in northern Alaska and what soil variables explain these patterns. We observed strong changes in community structure and diversity with depth, and more subtle changes between areas of high and low topography, with the largest differences apparent near the soil surface. These patterns are most strongly correlated with redox gradients (measured using the ratio of reduced Fe to total Fe in acid extracts as a proxy): conditions grew more reducing with depth and were most oxidized in shallow regions of polygon rims. Organic matter and pH also changed with depth and topography but were less effective predictors of the microbial community structure and relative abundance of specific taxa. Of all other measured variables, lactic acid concentration was the best, in combination with redox, for describing the microbial community. We conclude that redox conditions are the dominant force in shaping microbial communities in this landscape. Oxygen and other electron acceptors allowed for the greatest diversity of microbes: at depth the community was reduced to a simpler core of anaerobes,

  9. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    Directory of Open Access Journals (Sweden)

    W. Wang

    2015-03-01

    Full Text Available We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic. We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes. There is good agreement (99–135 x 104 km2 between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2. However the uncertainty (1–128 x 104 km2 using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index, while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan

  10. Crossing the Threshold - Reviewed Evidence for Regime Shifts in Arctic Terrestrial Ecosystems

    Science.gov (United States)

    Mård Karlsson, J.; Destouni, G.; Peterson, G.; Gordon, L.

    2009-12-01

    The Arctic is rapidly changing, and the Arctic terrestrial ecosystems may respond to changing conditions in different ways. We review the evidence of regime shifts (ecosystem change from one set of mutually reinforcing feedbacks to another) in Arctic terrestrial ecosystems in relation to the hydrological cycle, as part of a larger interdisciplinary research project on Pan-Arctic ice-water-biogeochemical system responses and social-ecological resilience effects in a warming climate, which has in turn been part of the International Polar Year project Arctic-HYDRA. Such regime shifts may have implications for the Earth system as a whole, through changes in water flows and energy balance that yield feedbacks to hydrology and the local and global climate. Because the presence or absence of permafrost is a main control on local hydrological processes in the Arctic, we use the ecological response to permafrost warming to define three types of regime shifts: 1) Conversion of aquatic to terrestrial ecosystems due to draining of lakes and wetlands caused by permafrost degradation and thermokarst processes, which may have a large impact on local people and animals that depend on these ecosystems for food, domestic needs, and habitat, and on climate as the water conditions influence the direction of CO2 exchange. 2) Conversion of terrestrial to aquatic ecosystems as forests are being replaced by wet sedge meadows, bogs, and thermokarst ponds that favor aquatic birds and mammals, as thawing permafrost atop continuous permafrost undermines and destroys the root zone, leading to collapse and death of the trees. 3) Shifts in terrestrial ecosystems due to transition from tundra to shrubland and/or forest, caused by warming of air and soil, resulting in increased surface energy exchanges and albedo, which may in turn feed back to enhanced warming at the local-regional scale. We compare the impact, scale and key processes for each of these regime shifts, and assess the degree to

  11. Determining the Diversity and Species Abundance Patterns in Arctic Soils using Rational Methods for Exploring Microbial Diversity

    Science.gov (United States)

    Ovreas, L.; Quince, C.; Sloan, W.; Lanzen, A.; Davenport, R.; Green, J.; Coulson, S.; Curtis, T.

    2012-12-01

    Arctic microbial soil communities are intrinsically interesting and poorly characterised. We have inferred the diversity and species abundance distribution of 6 Arctic soils: new and mature soil at the foot of a receding glacier, Arctic Semi Desert, the foot of bird cliffs and soil underlying Arctic Tundra Heath: all near Ny-Ålesund, Spitsbergen. Diversity, distribution and sample sizes were estimated using the rational method of Quince et al., (Isme Journal 2 2008:997-1006) to determine the most plausible underlying species abundance distribution. A log-normal species abundance curve was found to give a slightly better fit than an inverse Gaussian curve if, and only if, sequencing error was removed. The median estimates of diversity of operational taxonomic units (at the 3% level) were 3600-5600 (lognormal assumed) and 2825-4100 (inverse Gaussian assumed). The nature and origins of species abundance distributions are poorly understood but may yet be grasped by observing and analysing such distributions in the microbial world. The sample size required to observe the distribution (by sequencing 90% of the taxa) varied between ~ 106 and ~105 for the lognormal and inverse Gaussian respectively. We infer that between 5 and 50 GB of sequencing would be required to capture 90% or the metagenome. Though a principle components analysis clearly divided the sites into three groups there was a high (20-45%) degree of overlap in between locations irrespective of geographical proximity. Interestingly, the nearest relatives of the most abundant taxa at a number of most sites were of alpine or polar origin. Samples plotted on first two principal components together with arbitrary discriminatory OTUs

  12. Arctic terrestrial hydrology: A synthesis of processes, regional effects, and research challenges

    Science.gov (United States)

    Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mârd, J.; Mernild, S. H.; Prowse, T.; Semenova, O.; Stuefer, S. L.; Woo, M.-K.

    2016-03-01

    Terrestrial hydrology is central to the Arctic system and its freshwater circulation. Water transport and water constituents vary, however, across a very diverse geography. In this paper, which is a component of the Arctic Freshwater Synthesis, we review the central freshwater processes in the terrestrial Arctic drainage and how they function and change across seven hydrophysiographical regions (Arctic tundra, boreal plains, shield, mountains, grasslands, glaciers/ice caps, and wetlands). We also highlight links between terrestrial hydrology and other components of the Arctic freshwater system. In terms of key processes, snow cover extent and duration is generally decreasing on a pan-Arctic scale, but snow depth is likely to increase in the Arctic tundra. Evapotranspiration will likely increase overall, but as it is coupled to shifts in landscape characteristics, regional changes are uncertain and may vary over time. Streamflow will generally increase with increasing precipitation, but high and low flows may decrease in some regions. Continued permafrost thaw will trigger hydrological change in multiple ways, particularly through increasing connectivity between groundwater and surface water and changing water storage in lakes and soils, which will influence exchange of moisture with the atmosphere. Other effects of hydrological change include increased risks to infrastructure and water resource planning, ecosystem shifts, and growing flows of water, nutrients, sediment, and carbon to the ocean. Coordinated efforts in monitoring, modeling, and processing studies at various scales are required to improve the understanding of change, in particular at the interfaces between hydrology, atmosphere, ecology, resources, and oceans.

  13. Mapping ice-bonded permafrost with electrical methods in Sisimiut, West Greenland

    DEFF Research Database (Denmark)

    Ingeman-Nielsen, Thomas

    2006-01-01

    Permafrost delineation and thickness determination is of great importance in engineering related projects in arctic areas. In this paper, 2D geoelectrical measurements are applied and evaluated for permafrost mapping in an area in West Greenland. Multi-electrode resistivity profiles (MEP) have been...... of horizontal ice-lenses in the frozen clay deposits. It is concluded that where the resistivity method perform well for lateral permafrost mapping, great care should be taken in evaluating permafrost thickness based on 2D resistivity profiles alone. Additional information from boreholes or other geophysical...

  14. International Field School on Permafrost: Yenisei, Russian Federation - 2013

    Science.gov (United States)

    Nyland, K. E.; Streletskiy, D. A.; Grebenets, V. I.

    2013-12-01

    The International Field School on Permafrost was established in Russia as part of International Polar Year activities. The first course was offered in 2007 in Northwestern Siberia and attracted students from Russia, Germany, and the United States. Over the past seven years undergraduate and graduate students representing eight different countries in North America, Europe, and Asia have participated in the field school. This annual summer field course visits different regions of the Russian Arctic each year, but the three course foci remain consistent, which are to make in depth examinations of, 1) natural permafrost characteristics and conditions, 2) field techniques and applications, and 3) engineering practices and construction on permafrost. During these field courses students participate in excursions to local museums and exhibitions, meet with representatives from local administrations, mining and construction industries, and learn field techniques for complex permafrost investigations, including landscape and soil descriptions, temperature monitoring, active-layer measurements, cryostratigraphy, and more. During these courses students attend an evening lecture series by their professors and also give presentations on various regionally oriented topics of interest, such as the local geology, climate, or historical development of the region. This presentation will relate this summer's (July 2013) field course which took place in the Yenisei River region of central Siberia. The course took place along a bioclimatic transect from south to north along the Yenisei River and featured extended stays in the cities of Igarka and Noril'sk. This year's students (undergraduate, masters, and one PhD student) represented universities in the United States, Canada, and the Russian Federation. The organization of this course was accomplished through the cooperation of The George Washington University's Department of Geography and the Lomonosov Moscow State University

  15. Assessment of three mitigation techniques for permafrost protection

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr

    . This problem, has in the last decades, been amplified by the climate warming, which has been most evident in the arctic regions. The construction of a road embankment usually results in an increased mean annual surface temperature, which will increase the thawing of permafrost and expose the road embankment......The presence of permafrost is an important aspect in civil engineering in arctic regions. The construction of engineering structures, such as road and airfield embankments, will change the thermal regime of the ground, and may lead to permafrost degradation under or adjacent to such structures...... to thaw settlements. To avoid or at least minimize the damages caused by thaw settlements, different mitigation techniques have been developed. This thesis concerns laboratory tests and field studies of three mitigation techniques: air convection embankment, heat drain and reflective surfaces. The main...

  16. Archaeal Ammonia Oxidizers and Total Production of N2O and CH4 in Arctic Polar Desert Soils

    Science.gov (United States)

    Brummell, Martin; Robert, Stan; Bodrossy, Levente; Abell, Guy; Siciliano, Steven

    2014-05-01

    Ammonia-oxidizing Archaea are abundant in Arctic desert soils and appear to be responsible for the majority of ammonia oxidation activity in these cold and dry ecosystems. We used DNA microarrays to characterize the microbial community consisting of ammonia-oxidizing Archaea and methane-oxidizing Bacteria in three polar deserts from Ellesmere Island, Canada. Patterns of net greenhouse gas production, including production and consumption of CO2, CH4, and N2O were compared with community relative richness and abundance in a structural equation model that tested causal hypotheses relating edaphic factors to the biological community and net gas production. We extracted and amplified DNA sequences from soils collected at three polar deserts on Ellesmere Island in the Canadian high Arctic, and characterized the community structure using DNA microarrays. The functional genes Archaeal AmoA and pMMO were used to compare patterns of biological community structure to the observed patterns of net greenhouse gas production from those soils, as measured in situ. Edaphic factors including water content, bulk density, pH, and nutrient levels such as nitrate, ammonia, and extractable organic carbon were also measured for each soil sample, resulting in a highly multivariate dataset. Both concentration and net production of the three greenhouse gases were correlated, suggesting underlying causal factors. Edaphic factors such as soil moisture and pH had important, direct effects on the community composition of both functional groups of microorganisms, and pH further had a direct effect on N2O production. The structural relationship between the examined microbial communities and net production of both N2O and CH4 was strong and consistent between varying model structures and matrices, providing high confidence that this model relationship accurately reflects processes occurring in Arctic desert soils.

  17. Shaping a Sustainability Strategy for the Arctic

    OpenAIRE

    Azcarate, Juan; Balfors, Berit; Destouni, Georgia; Bring, Arvid

    2011-01-01

    The development of the Arctic is shaped by the opportunities and constraints brought by climate change and technological advances. In the Arctic, warmer climate is expected to affect ecosystems, local communities and infrastructure due to a combination of effects like reduced sea ice and glaciers, thawing permafrost and increased frequency of floods. Less ice and new technologies mean openings to exploit natural resources in the Arctic. Fishing, mining, hydrocarbon extraction and vessel trans...

  18. Diversity of soil organisms in alpine and arctic soils in Europe. Review an research needs

    Directory of Open Access Journals (Sweden)

    Broll, Gabrielle

    1998-12-01

    Full Text Available The diversity of soil organisms and soil ecological processes in different mountain regions of Europe are reviewed. Detailed taxonomic studies on soil organisms have been made in the Alps and in Northern Europe since the end of the last century, however, there is a paucity of data from Southern Europe. Future studies could include the re-sampling of historic study sites to assess if there has been a change in the soil fauna and microorganisms. The role of key abiotic processes such as cryoturbation should be quantified and further research should focus on identifying indicator organisms, keystone species and functional groups. In addition, studies on soil organic matter and particularly on humus forms, the products of soil ecological processes should be encouraged. Ecotones, where the influence of spatial heterogeneity on soil biodiversity is likely to be particularly pronounced, appear to be the most rewarding for such studies.

    [fr] La diversité des organismes du sol et les différents processus écologiques ayant lié dans les diverses régions de montagne en Europe sont détaillés. Des études approfondies sur la taxonomie des organismes du sol ont été développées dans les Alpes et en Europe du Nord depuis la fin du siècle dernier, mais par contre il y a peu de données sur l'Europe du Sud. Dans l'avenir on pourrait re-étudier les sites bien connus de façon à savoir s'il y a eu de changements dans la faune et les microorganismes du sol. Il faudrait quantifier le rôle des processus abiotiques comme la cryoturbation, identifier les organismes indicateurs, les espèces-clé et les groupes fonctionnels. Il est aussi indispensable de développer les études sur la matière organique et en particulier les types d'humus, en tant que résultat des processus écologiques du sol. Les ecotones, dans lesquels l'influence de l’heterogeneité spatiale sur la biodiversité du sol est particulièrement prononcée, semblent les plus

  19. Assessing effects of permafrost thaw on C fluxes based on a multi-year modeling across a permafrost thaw gradient at Stordalen, Sweden

    OpenAIRE

    Deng, J.; C Li; Frolking, S; Zhang, Y.; Bäckstrand, K.; Crill, P.

    2014-01-01

    Northern peatlands in permafrost regions contain large amount of organic carbon (C) in the soil. Climate warming and associated permafrost degradation are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is uncertain. We incorporated a permafrost model, Northern Ecosystem Soil Temperature (NEST), into a biogeochemical model, DeNitrification-DeComposition (DNDC), to model C dynamics in high-latitude peatland ecosyst...

  20. Thermal State Of Permafrost In Urban Environment Under Changing Climatic Conditions

    Science.gov (United States)

    Streletskiy, D. A.; Grebenets, V. I.; Kerimov, A. G.; Kurchatova, A.; Andruschenko, F.; Gubanov, A.

    2015-12-01

    Risks and damage, caused by deformation of building and constructions in cryolithozone, are growing for decades. Worsening of cryo-ecological situation and loss of engineering-geocryological safety are induced by both technogenic influences on frozen basement and climate change. In such towns on permafrost as Vorkuta, Dixon more than 60% of objects are deformed, in Yakutsk, Igarka- nearly 40%, in Norilsk, Talnakh, Mirnij 35%, in old indigenous villages - approximately 100%; more than 80% ground dams with frozen cores are in poor condition. This situation is accompanied by activation of dangerous cryogenic processes. For example in growing seasonally-thaw layer is strengthening frost heave of pipeline foundation: only on Yamburg gas condensate field (Taz Peninsula) are damaged by frost heave and cut or completely replaced 3000 - 5000 foundations of gas pipelines. Intensity of negative effects strongly depends on regional geocryology, technogenic loads and climatic trends, and in Arctic we see a temperature rise - warming, which cause permafrost temperature rise and thaw). In built areas heat loads are more diverse: cold foundations (under the buildings with ventilated cellars or near termosyphons) are close to warm areas with technogenic beddings (mainly sandy), that accumulate heat, close to underground collectors for communications, growing thaw zones around, close to storages of snows, etc. Note that towns create specific microclimate with higher air temperature. So towns are powerful technogenic (basically, thermal) presses, placed on permafrost; in cooperation with climate changes (air temperature rise, increase of precipitation) they cause permafrost degradation. The analysis of dozens of urban thermal fields, formed in variable cryological and soil conditions, showed, that nearly 70% have warming trend, 20% - cooling and in 10% of cases the situation after construction is stable. Triggered by warming of climate changes of vegetation, depth and temperature of

  1. Impact of interactive vegetation phenology on the simulated pan-Arctic land surface state

    Science.gov (United States)

    Teufel, Bernardo; Sushama, Laxmi

    2016-04-01

    The pan-Arctic land surface is undergoing rapid changes in a warming climate, with near-surface permafrost projected to degrade significantly during the 21st century. This can have important impacts on the regional climate and hydrology through various feedbacks, including vegetation-related feedbacks. In this study, the impact of interactive phenology on the land surface state, including near-surface permafrost, is assessed by comparing two simulations of the Canadian Land Surface Scheme (CLASS) - one with interactive phenology, modelled using the Canadian Terrestrial Ecosystem Model (CTEM), and the other with prescribed phenology. These simulations are performed for the 1979-2012 period, using atmospheric forcing from ECMWF's ERA-Interim reanalysis. The impact of interactive phenology on projected changes to the land surface state are also assessed by comparing two simulations of CLASS (with and without interactive phenology), spanning the 1961-2100 period, driven by atmospheric forcing from a transient climate change simulation of the 5th generation Canadian Regional Climate Model (CRCM5) for the Representative Concentration Pathway 8.5 (RCP8.5). Comparison of the CLASS coupled to CTEM simulation with available observational estimates of plant area index, primary productivity, spatial distribution of permafrost and active layer thickness suggests that the model captures reasonably well the general distribution of vegetation and permafrost. Significant differences in evapotranspiration, leading to differences in runoff, soil temperature and active layer thickness are noted when comparing CLASS simulations with and without interactive phenology. Furthermore, the CLASS simulations with and without interactive phenology for RCP8.5 show extensive near-surface permafrost degradation by the end of the 21st century, with slightly accelerated degradation of permafrost in the simulation with interactive phenology, pointing towards a positive feedback of changes in

  2. Reducing Uncertainty in Methane Emission Estimates from Permafrost Environments

    Science.gov (United States)

    Christensen, T. R.; Mastepanov, M.; Lund, M.; Tamstorf, M. P.; Parmentier, F. J. W.; Rysgård, S.; Lilienthal, A. J.

    2014-12-01

    Depending on factors including temperature, snow duration and soil moisture conditions, emissions of the greenhouse gas methane from permafrost wetlands can vary by factors of 2-4 between years. This variability is clear in atmospheric measurements of the gas, but a lack of ground-based data is making it hard to locate the methane sources responsible. Methane monitoring in the Arctic is expensive, requiring sophisticated analysis equipment such as power requiring laser spectrometer analysis made in remote places. This also puts demands on the logistics where infrastructures and field stations that offer line-power in the field are in high demand but very rarely found. Research projects therefore typically focus on one site, and run for a year or two. Longer term monitoring programs, which document climate, hydrology, phenology and population dynamics of birds and mammals, rarely include carbon fluxes since it is technically challenging to measure. One that does is the Greenland Ecosystem Monitoring program that started at the Zackenberg research station, which has recorded substantial methane flux variations for almost a decade in North-east Greenland. Such multi-year studies show that, while there is some connection between the amounts of methane released from one year to the next, accurate forecasting is difficult. They also highlight the importance of extending monitoring beyond the growing period into the frozen season, both in spring and autumn. A spatially distributed network of long-term monitoring stations in the Arctic, with consistency between measurements, is badly needed to improve this situation. Productive methane 'hot spots', many sporadic, have also been identified in recent studies. By ventilating surface waters, storms trigger emissions in the East Siberian Sea Shelf. Shallow lakes formed when permafrost thaws can belch methane from decomposing old organic deposits, of which there are huge amounts in the Arctic. All of these potentially important

  3. Source, transport and fate of soil organic matter inferred from microbial biomarker lipids on the East Siberian Arctic Shelf

    Science.gov (United States)

    Bischoff, Juliane; Sparkes, Robert B.; Doğrul Selver, Ayça; Spencer, Robert G. M.; Gustafsson, Örjan; Semiletov, Igor P.; Dudarev, Oleg V.; Wagner, Dirk; Rivkina, Elizaveta; van Dongen, Bart E.; Talbot, Helen M.

    2016-09-01

    The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk δ13C measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'soil ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R'soil displays a negative linear correlation with bulk δ13C measurements (r2 = -0.73, p = < 0.001). When compared to the GDGT-based OC proxy, the branched and isoprenoid tetraether (BIT) index, a decoupled (non-linear) behaviour on the shelf was observed, particularly in the Buor-Khaya Bay, where the R'soil shows limited variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion, whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'soil of 0.5 for the Lena Delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further east showed higher values (0.6-0.85). Although R'soil correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete, with variations between the different East Siberian Arctic regions potentially reflecting differences in environmental

  4. Pan-Arctic linkages between snow accumulation and growing-season air temperature, soil moisture and vegetation

    Directory of Open Access Journals (Sweden)

    K. A. Luus

    2013-11-01

    Full Text Available Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1 insights into the present-day linkages between snow and growing-season land surface characteristics; and (2 the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE, and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity. Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE, as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions

  5. Impact of permafrost degradation on embankment deformation of Qinghai-Tibet Highway in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    彭惠; 马巍; 穆彦虎; 金龙

    2015-01-01

    Based on long-term monitoring data, the relationships between permafrost degradation and embankment deformation are analyzed along the Qinghai−Tibet Highway (QTH). Due to heat absorbing effect of asphalt pavement and climate warming, permafrost beneath asphalt pavement experienced significant warming and degradation. During the monitoring period, warming amplitude of the soil at depth of 5 m under asphalt ranged from 0.21 °C at the XD1 site to 0.5 °C at the KL1 site. And at depth of 10 m, the increase amplitude of ground temperature ranged from 0.47 °C at the NA1 site to 0.07 °C at the XD1 site. Along with ground temperature increase, permafrost table beneath asphalt pavement decline considerably. Amplitude of permafrost table decline varied from 0.53 m at the KL1 site to 3.51 m at the NA1 site, with mean amplitude of 1.65 m for 8 monitoring sites during the monitoring period. Due to permafrost warming and degradation, the embankment deformation all performed as settlement at these sites. At present, those settlements still develop quickly and are expected to continue to increase in the future. The embankment deformations can be divided into homogeneous deformation and inhomogeneous deformation. Embankment longitudinal inhomogeneous deformation causes the wave deformations and has adverse effects on driving comfort and safety, while lateral inhomogeneous deformation causes longitudinal cracks and has an adverse effect on stability. Corresponding with permafrost degradation processes, embankment settlement can be divided into four stages. For QTH, embankment settlement is mainly comprised of thawing consolidation of ice-rich permafrost and creep of warming permafrost beneath permafrost table.

  6. Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth

    Science.gov (United States)

    Schmid, M.-O.; Baral, P.; Gruber, S.; Shahi, S.; Shrestha, T.; Stumm, D.; Wester, P.

    2015-11-01

    The extent and distribution of permafrost in the mountainous parts of the Hindu Kush Himalayan (HKH) region are largely unknown. A long tradition of permafrost research, predominantly on rather gentle relief, exists only on the Tibetan Plateau. Two permafrost maps are available digitally that cover the HKH and provide estimates of permafrost extent, i.e., the areal proportion of permafrost: the manually delineated Circum-Arctic Map of Permafrost and Ground Ice Conditions (Brown et al., 1998) and the Global Permafrost Zonation Index, based on a computer model (Gruber, 2012). This article provides a first-order assessment of these permafrost maps in the HKH region based on the mapping of rock glaciers. Rock glaciers were used as a proxy, because they are visual indicators of permafrost, can occur near the lowermost regional occurrence of permafrost in mountains, and can be delineated based on high-resolution remote sensing imagery freely available on Google Earth. For the mapping, 4000 square samples (~ 30 km2) were randomly distributed over the HKH region. Every sample was investigated and rock glaciers were mapped by two independent researchers following precise mapping instructions. Samples with insufficient image quality were recorded but not mapped. We use the mapping of rock glaciers in Google Earth as first-order evidence for permafrost in mountain areas with severely limited ground truth. The minimum elevation of rock glaciers varies between 3500 and 5500 m a.s.l. within the region. The Circum-Arctic Map of Permafrost and Ground Ice Conditions does not reproduce mapped conditions in the HKH region adequately, whereas the Global Permafrost Zonation Index does so with more success. Based on this study, the Permafrost Zonation Index is inferred to be a reasonable first-order prediction of permafrost in the HKH. In the central part of the region a considerable deviation exists that needs further investigations.

  7. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  8. Isotopic insights into methane production, oxidation, and emissions in Arctic polygon tundra.

    Science.gov (United States)

    Vaughn, Lydia J S; Conrad, Mark E; Bill, Markus; Torn, Margaret S

    2016-10-01

    Arctic wetlands are currently net sources of atmospheric CH4 . Due to their complex biogeochemical controls and high spatial and temporal variability, current net CH4 emissions and gross CH4 processes have been difficult to quantify, and their predicted responses to climate change remain uncertain. We investigated CH4 production, oxidation, and surface emissions in Arctic polygon tundra, across a wet-to-dry permafrost degradation gradient from low-centered (intact) to flat- and high-centered (degraded) polygons. From 3 microtopographic positions (polygon centers, rims, and troughs) along the permafrost degradation gradient, we measured surface CH4 and CO2 fluxes, concentrations and stable isotope compositions of CH4 and DIC at three depths in the soil, and soil moisture and temperature. More degraded sites had lower CH4 emissions, a different primary methanogenic pathway, and greater CH4 oxidation than did intact permafrost sites, to a greater degree than soil moisture or temperature could explain. Surface CH4 flux decreased from 64 nmol m(-2)  s(-1) in intact polygons to 7 nmol m(-2)  s(-1) in degraded polygons, and stable isotope signatures of CH4 and DIC showed that acetate cleavage dominated CH4 production in low-centered polygons, while CO2 reduction was the primary pathway in degraded polygons. We see evidence that differences in water flow and vegetation between intact and degraded polygons contributed to these observations. In contrast to many previous studies, these findings document a mechanism whereby permafrost degradation can lead to local decreases in tundra CH4 emissions.

  9. Microarray and Real-Time PCR Analyses of the Responses of High-Arctic Soil Bacteria to Hydrocarbon Pollution and Bioremediation Treatments▿

    OpenAIRE

    Yergeau, Etienne; Arbour, Mélanie; Brousseau, Roland; Juck, David; Lawrence, John R.; Masson, Luke; Whyte, Lyle G; Greer, Charles W.

    2009-01-01

    High-Arctic soils have low nutrient availability, low moisture content, and very low temperatures and, as such, they pose a particular problem in terms of hydrocarbon bioremediation. An in-depth knowledge of the microbiology involved in this process is likely to be crucial to understand and optimize the factors most influencing bioremediation. Here, we compared two distinct large-scale field bioremediation experiments, located at the Canadian high-Arctic stations of Alert (ex situ approach) a...

  10. CMIP5 permafrost degradation projection:A comparison among different regions

    Science.gov (United States)

    Guo, Donglin; Wang, Huijun

    2016-05-01

    concentration pathway (RCP)4.5, permafrost retreats toward the Arctic, and the thaw in every region mainly occurs at the southern edge of the permafrost area. Under RCP8.5, almost no permafrost is expected to remain in China, the United States, and the Tibetan Plateau. Permafrost in Russia will remain mainly in the western part of the east Siberian Mountains, and permafrost in Canada will retreat to the north of 65°N. Possible uncertainties in this study are primarily attributed to the climate model's coarse horizontal resolution. The results of the present study will be useful for understanding future permafrost degradation from the regional perspective.

  11. Permafrost-associated gas hydrate: is it really approximately 1% of the global system?

    Science.gov (United States)

    Ruppel, Carolyn

    2015-01-01

    Permafrost-associated gas hydrates are often assumed to contain ∼1 % of the global gas-in-place in gas hydrates based on a study26 published over three decades ago. As knowledge of permafrost-associated gas hydrates has grown, it has become clear that many permafrost-associated gas hydrates are inextricably linked to an associated conventional petroleum system, and that their formation history (trapping of migrated gas in situ during Pleistocene cooling) is consistent with having been sourced at least partially in nearby thermogenic gas deposits. Using modern data sets that constrain the distribution of continuous permafrost onshore5 and subsea permafrost on circum-Arctic Ocean continental shelves offshore and that estimate undiscovered conventional gas within arctic assessment units,16 the done here reveals where permafrost-associated gas hydrates are most likely to occur, concluding that Arctic Alaska and the West Siberian Basin are the best prospects. A conservative estimate is that 20 Gt C (2.7·1013 kg CH4) may be sequestered in permafrost-associated gas hydrates if methane were the only hydrate-former. This value is slightly more than 1 % of modern estimates (corresponding to 1600 Gt C to 1800 Gt C2,22) for global gas-in-place in methane hydrates and about double the absolute estimate (11.2 Gt C) made in 1981.26

  12. Site-level model intercomparison of high latitude and high altitude soil thermal dynamics in tundra and barren landscapes

    Directory of Open Access Journals (Sweden)

    A. Ekici

    2014-09-01

    Full Text Available Modelling soil thermal dynamics at high latitudes and altitudes requires representations of specific physical processes such as snow insulation, soil freezing/thawing, as well as subsurface conditions like soil water/ice content and soil texture type. We have compared six different land models (JSBACH, ORCHIDEE, JULES, COUP, HYBRID8, LPJ-GUESS at four different sites with distinct cold region landscape types (i.e. Schilthorn-Alpine, Bayelva-high Arctic, Samoylov-wet polygonal tundra, Nuuk-non permafrost Arctic to quantify the importance of physical processes in capturing observed temperature dynamics in soils. This work shows how a range of models can represent distinct soil temperature regimes in permafrost and non-permafrost soils. Snow insulation is of major importance for estimating topsoil conditions and must be combined with accurate subsoil temperature dynamics to correctly estimate active layer thicknesses. Analyses show that land models need more realistic surface processes (such as detailed snow dynamics and moss cover with changing thickness/wetness as well as better representations of subsoil thermal dynamics (i.e. soil heat transfer mechanism and correct parameterization of heat conductivity/capacities.

  13. Simulations of permafrost evolution at Olkiluoto

    Energy Technology Data Exchange (ETDEWEB)

    Hartikainen, J. [Aalto Univ., Espoo (Finland)

    2013-07-15

    This report provides numerical estimations of the evolution of permafrost and perennially frozen ground at Olkiluoto on time-scales of 60,000 and 125,000 years using Olkiluoto's site-specific information on time histories of ground level temperatures, ice sheet thickness, basal conditions, shoreline migration, soil and vegetation cover as well as heat generation from the spent fuel at a depth of 420 metres. When considering environmental conditions akin to the last glacial cycle for a 125,000 years long period, the maximum permafrost depth over the repository area can exceed the depth of 300 m and the maximum depth of perennially frozen ground the depth of 270 m. If Olkiluoto, after a 50,000 years long temperate phase of boreal climate, was subjected to a 10,000 years long periglacial period with air temperature decreased between -5 deg C and -10 deg C, the maximum permafrost depth would range between 60 and 240 m and the maximum depth of perennially frozen ground between 50 and 220 m. Furthermore, permafrost would reach the repository depth in 10,000 years, if the air temperature was lowered down to -15 deg C and the ground surface had a very thin vegetation and snow cover. Alternatively, if Olkiluoto experienced a 125,000 years long glacial cycle with a very long periglacial periods of low air temperatures and thin vegetation and snow cover and without any ice sheet development, permafrost would reach the depth of 400 m in 98,000 years and perennially frozen ground in 101,000 years. The areal distribution of permafrost and perennially frozen ground are broadly affected by the snow cover, lakes and the peat areas, especially when an extensive peat growth occurs. The lack of snow cover can enhance the evolution of the maximum depth of permafrost and perennially frozen ground by over 50 %. In addition, ground thermal conditions and the heat generation from the spent fuel modify the spatial and temporal development of permafrost and perennially frozen ground. A

  14. The International Permafrost Association: current initiatives for cryospheric research

    Science.gov (United States)

    Schollaen, Karina; Lewkowicz, Antoni G.; Christiansen, Hanne H.; Romanovsky, Vladimir E.; Lantuit, Hugues; Schrott, Lothar; Sergeev, Dimitry; Wei, Ma

    2015-04-01

    landscapes, and defining permafrost research priorities - a roadmap for the future. The latter project is a joint effort with the Climate and Cryosphere initiative (CliC) and a contribution to the upcoming International Conference on Arctic Research Planning III (ICARP III). The product stemming from the effort will consist of a journal publication listing permafrost research priorities and putting them into context. In all of these activities, the IPA emphasizes the involvement of young researchers (especially through the Permafrost Young Researchers Network and APECS) as well as its collaboration with international partner organizations such as IASC, SCAR, CliC, IACS, IUGS and WMO.

  15. The Role of Disturbance in Arctic Ecosystem Response to a Changing Climate

    Science.gov (United States)

    Hinzman, L. D.

    2014-12-01

    Wildfires in the tundra regions and the boreal forest project an immediate effect upon the surface energy and water budget by drastically altering the surface albedo, roughness, infiltration rates, and moisture absorption capacity in organic soils. Although fires create a sudden and drastic change to the landcover, it is only the beginning of a long process of recovery and perhaps a shift to a different successional pathway. In permafrost regions, these effects become part of a process of long-term (20-50 years) cumulative impacts. Burn severity may largely determine immediate impacts and long-term disturbance trajectories. As transpiration decreases or ceases, soil moisture increases markedly, remaining quite wet throughout the year. Because the insulating quality of the organic layer is removed during fires, permafrost begins to thaw near the surface and warm to greater depths. Within a few years, it may thaw to the point where it can no longer completely refreeze every winter, creating a permanently thawed layer in the soil called a talik. After formation of a talik, soils can drain internally throughout the year. At this point, soils may become quite dry, as the total precipitation received annually in the Arctic is quite low. The local ecological community must continuously adapt to the changing soil thermal and moisture regimes. The wet soils found over shallow permafrost favor black spruce forests. After a fire creates a deeper permafrost table (thicker active layer) the invading tree species tend to be birch or alder. The hydrologic and thermal regime of the soil is the primary factor controlling these vegetation trajectories and the subsequent changes in surface mass and energy fluxes. The complexities of a changing climate accentuate these processes of change and complicate predictions of the resulting vegetation trajectories. Understanding these shifts in vegetative communities and quantifying the consequences of thawing permafrost can only be

  16. Assessment of permafrost distribution maps in the Hindu Kush-Himalayan region using rock glaciers mapped in Google Earth

    Science.gov (United States)

    Schmid, M.-O.; Baral, P.; Gruber, S.; Shahi, S.; Shrestha, T.; Stumm, D.; Wester, P.

    2014-10-01

    The extent and distribution of permafrost in the mountainous parts of the Hindu Kush-Himalayan (HKH) region have barely been investigated and are largely unknown. Only on the Tibetan Plateau a long tradition of permafrost research on rather gentle relief exists. Two permafrost maps are available that cover the HKH and provide estimates of permafrost extent, i.e. the areal proportion of permafrost: the manually delineated Circum-Arctic Map of Permafrost and Ground Ice Conditions (Brown et al., 1998) and the Global Permafrost Zonation Index, based on a computer model (Gruber, 2012). This article provides first-order assessment of permafrost maps of the HKH region based on the mapping of rock glaciers. Rock glaciers were used as a proxy, because they are visual indicators of permafrost, often occurring near the lowermost regional occurrence of permafrost in mountains, and because they can be delineated based on high-resolution remote sensing imagery freely available on Google Earth. For the mapping 4000 square samples (approx. 30 km2) were randomly distributed over the HKH region. Every sample was investigated and rock glaciers were mapped by two independent researchers following precise mapping instructions. Samples with insufficient image quality were recorded but not mapped. It is shown that mapping of rock glaciers in Google Earth can be used as first-order evidence for permafrost in mountain areas with severely limited ground truth. The minimum elevation of rock glaciers varies between 3500 and 5500 m a.s.l. within the region. The Circum-Arctic Map of Permafrost and Ground Ice Conditions does not reproduce mapped conditions in the HKH region adequately, whereas the Global Permafrost Zonation Index appears to be a reasonable first-order prediction of permafrost in the HKH. Only in the central part of the region a considerable deviation exists that needs further investigations.

  17. Characterizing the Drivers of Intermittent Flow in Arctic Alaska Streams

    Science.gov (United States)

    Betts, E.; Kane, D. L.; Stephan, N.

    2012-12-01

    Fish and wildlife species in the Arctic have developed life history strategies to deal with the extreme climate of the North. In the case of Arctic grayling, these strategies include long life, yearly spawning and migration.. In order to understand how such a species will be affected by a changing climate, we must first determine how these adaptive strategies may be at odds with the changing Arctic landscape. Arctic grayling migrate to spawning grounds just after spring break-up; then they migrate to feeding sites in early summer and finally in the fall migrate back to their overwintering sites. Low precipitation and high evapotranspiration rates during the summer can lead to low water levels and a fragmentation of the hydrologic landscape. This fragmentation creates a barrier to fish migration. The Kuparuk River is a perennial stream originating in the foothills of the Brooks Range on the North Slope of Alaska. The basin is underlain by continuous permafrost which essentially blocks the surface system from interacting with the subpermafrost groundwater system. Shallow subsurface flow occurs in the active layer, that area above permafrost which undergoes seasonal thawing in the summer. Sections of the Kuparuk are intermittent in that during low flows in the system these reaches appear dry (no flow in channel). Water reappears in the channel, downstream of these dry reaches, and it is believed that water continues to flow below the surface through the unfrozen thaw bulb beneath these reaches. These dry reaches act as summer barriers to fish migration within the Kuparuk River system. Previous research of this phenomenon sought to understand the location and timing of these dry events. The current research to be presented here attempts to determine the drivers of these dry channel events. Dye tracers and discharge measurements are used to determine the amount of hyporheic flow along these dry reaches and a statistical model incorporating soil moisture, precipitation

  18. Impacts of permafrost change on landscape stability and water quality

    Science.gov (United States)

    Lamoureux, S. F.; Lafreniere, M. J.

    2015-12-01

    Communities and northern development depend on knowledge to support safe infrastructure design and to define appropriate environmental targets. Projected climate change is expected to have substantial impacts on permafrost through increased seasonal thaw. These changes will likely result in changing hydrological processes that will alter surface and subsurface water flow and quality. Similarly, in settings with ice-rich surficial materials, changing active layer depth and hydrological conditions can contribute to permafrost degradation and land instability. Predicting these impacts is an important need for sustainable development in permafrost regions. We have investigated these processes through a long term integrated watershed program at the Cape Bounty Arctic Watershed Observatory (CBAWO) in the Canadian Arctic. Surface water discharge and quality has been assessed since 2005 and in particular, through a period of record summer temperatures that resulted in substantial active layer perturbation and resulted in widespread localized disturbance. Research has documented the impact and recovery from these permafrost changes and demonstrate several key linkages between changing hydrological conditions, quality, and landscape sensitivity to disturbance. Deeper active layer thaw appears to alter subsurface flow paths, resulting sustained changes to water quality through increased solute fluxes and changes to nutrients. These effects are widespread across the landscape, while physical disturbance due to permafrost slope failures are dispersed and generate impacts ranging from minimal to locally-significant increases in downstream sediment and solute transport. We note that this strong spatial contrast between "thermal" and "physical" perturbation of the shallow permafrost system represents a key impact in these settings. Further, subsurface water pressurization appears to be localized but linked to physical disturbance. Hence, results indicate the benefit of an

  19. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  20. Morphology and physical properties of soil material in cryogenic cracks of permafrost-affected meadow-chernozemic soils of the Trans-Baikal Region

    Science.gov (United States)

    Tsybenov, Yu. B.; Chimitdorzhieva, G. D.; Chimitdorzhieva, E. O.; Egorova, R. A.; Mil'kheev, E. Yu.; Davydova, T. V.; Korsunova, Ts. D.-Ts.

    2016-08-01

    Meadow-chernozemic soils (Turbic Chernozems Molliglossic) in the western Trans-Baikal Region are dissected by large cryogenic cracks penetrating to the depth of 100-120 cm and filled with humified material. The depth of humus pockets is 50-80 cm, and their width in the upper part is 50-90 cm. The lower boundary of most of the humus pockets lies at the depth of 60-70 cm. The development of cryogenic cracks proceeded due to their penetration into the frozen ground, which is evidenced by their sharply narrowing lower part. The fraction of physical clay (humus content in this material. The contents of humus and adsorbed bases sharply decrease down through the soil profile in the soil mass between the cracks and remain relatively stable in the material filling the cracks. The soil mass in humus pockets is less compact that that in the background soil mass at the same depth, which is explained by the higher humus content in the pockets. Humified soil material in the pockets is also characterized by a higher porosity and, hence, higher water permeability than the surrounding soil mass.

  1. Great challenges of and innovative solutions to the unstable permafrost in Central and High Asia under a warming climate-the first Asian Conference on Permafrost

    Institute of Scientific and Technical Information of China (English)

    Huijun Jin; Jerry Brown

    2007-01-01

    @@ The first Asian Conference on Permafrost (ACOP) was co-sponsored by the State Key Laboratory of Frozen Soils Engineering(SKLFSE) of the Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), the Geographical Society of China (GSA), and the Intema-tional Permafrost Association (IPA), and cochaired by Academician Guodong Cheng,President of the Chinese Academy of Sci-ences Lanzhou Branch, and Professor Jerry Brown, President, International Permafrost Association.

  2. Permafrost, heat flow, and the geothermal regime at Prudhoe Bay, Alaska.

    Science.gov (United States)

    Lachenbruch, A.H.; Sass, J.H.; Marshall, B.V.; Moses, T.H., Jr.

    1982-01-01

    Temperature measurements through permafrost in the oil field at Prudhoe Bay, Alaska, combined with laboratory measurements of the thermal conductivity of drill cutting permit an evaluation of in situ thermal properties and an understanding of the general factors that control the geothermal regime. A sharp contrast in temperatire gradient at c600m represents a contrast in thermal conductivity caused by the downward change from interstitial ice to interstitial water at the base of permafrost under near steady state conditions. These results yield a heat flow of c1.3HFU, which is similar to other values on the Alaskan Arctic Coast: the anomalously deep permafrost is a result of the anomalously high conductivity of the siliceous ice-rich sediments. With confirmation of the permafrost configuration by offshore drilling, heat conduction models can yield reliable new information on the chronology of arctic shoreline. -from Authors

  3. Unmanned Platforms Monitor the Arctic Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs; Ivey, Mark D.; Schmid, Beat; McFarlane, Sally A.; Petty, Rickey C.

    2016-02-22

    In the Arctic, drones and tethered balloons can make crucial atmospheric measurement to provide a unique perspective on an environment particularly vulnerable to climate change. Climate is rapidly changing all over the globe, but nowhere is that change faster than in the Arctic. The evidence from recent years is clear: Reductions in sea ice (Kwok and Unstersteiner, 2011) and permafrost (Romanovsky et al., 2002), in addition to modification of the terriestrial ecosystem through melting permafrost and shifting vegetation zones (burek et al., 2008; Sturm, et al., 2001), all point to a rapidly evolving.

  4. Transient thermal modeling of permafrost conditions in Southern Norway

    OpenAIRE

    Westermann, S.; T. V. Schuler; K. Gisnås; B. Etzelmüller

    2013-01-01

    Thermal modeling is a powerful tool to infer the temperature regime of the ground in permafrost areas. We present a transient permafrost model, CryoGrid 2, that calculates ground temperatures according to conductive heat transfer in the soil and in the snowpack. CryoGrid 2 is forced by operational air temperature and snow-depth products for potential permafrost areas in Southern Norway for the period 1958 to 2009 at 1 km2 spatial resolution. In total, an area of about 80 000 km2 is covered. T...

  5. Technical-Environmental Permafrost Observatories (TEPO) of northern West Siberia

    Science.gov (United States)

    Kurchatova, A. N.; Griva, G. I.; Osokin, A. B.; Smolov, G. K.

    2005-12-01

    During the last decade one of the most developed topics in environmental studies was the effect of global climate change. This has been shown to be especially pronounced in northern regions, having an important influence on the subsequent transformation of frozen soil distribution and potential permafrost degradation. In West Siberia such studies are especially important with the prospect of plans for development of oil-gas fields (Yamal, Gydan and Kara Sea shelf). Presently the enterprises independently determine the necessary research for ecological control of the territory. Therefore, the Tyumen State Oil and Gas University (TSOGU) together with one of the leading gas enterprises "Nadymgasprom" started to create an observational network along the meridian transect of northern West Siberia (Yamal-Nenets administrative district). Observational network consists from a number of monitoring sites - Technical-Environmental permafrost Observatories (TEPO). The research complex includes temperature observations in boreholes (depths of 30) equipped with automatic systems for registration and data collection; seasonal field investigations on spatial distribution and temporal variability of the snow cover and vegetation and soil distribution. TSOGU and "Nadymgasprom" plan for the realization of long-term monitoring to obtain representative results on permafrost-climate interaction. At present there are three monitoring observatories located in the main landscape types and gas fields in use since 1972 (Medvezhye), 1992 (Yubileynoe) and in development (Harasavey). The next contribution to International Polar Year (2007-2008) will be renewal of one of the former monitoring sites (established in 1972) with a long-term period of observation and creation of a new site at the Yamal peninsula (Arctic tundra zone). At the last site the installation of an automatic Climate-Soil Station is being planned in the framework of the INTAS Infrastructure Action project with cooperation of

  6. Permafrost: An International Approach to 21th Century Challenges

    Science.gov (United States)

    Brown, J.

    2003-12-01

    . Cryosol (Antarctic soil map, soil database). 4. Glacier and Permafrost Hazards in High Mountains (interaction of ice and permafrost on slopes). 5. Isotopes and Geochemistry of Permafrost (paleo-reconstruction, modern processes). 6. Mapping and Modelling of Mountain Permafrost (standardize map legends and maps, multi-dimensional models). 7. Periglacial Processes and Environments (past and present processes, field manual of measurements). 8. Permafrost and Climate (monitoring, impact assessments, inter-comparisons of models). 9. Permafrost Astrobiology (survivability of life on planets and analogous Earth environments). 10. Permafrost Engineering (case studies, climate impacts on infrastructure). The Data Committee facilitates recovery of data, web access, and CD data production. These activities will provide added insight into past, present and future occurrences and responses of permafrost to climate change. They can contribute to activities of the International Polar Year. Results will be reported at the Ninth ICOP in Fairbanks, Alaska, in summer 2008. Current information is available on the IPA web site and in annual issues of Frozen Ground.

  7. Assessing Silicate Weathering in Permafrost-Dominated Catchments Using Lithium Isotopes: The Lena River, Siberia

    Science.gov (United States)

    Murphy, M. J.; Pogge von Strandmann, P.; Porcelli, D.; Katchinoff, J. A.; Moreras Martí, A.; Hirst, C. A.; Andersson, P. S.; Maximov, T. C.

    2015-12-01

    Rising global temperatures have the potential to influence the Earth's climate feedback cycles due to permafrost thawing, altering the freshwater input and trace metal and carbon fluxes into the ocean and atmosphere. Riverine lithium isotope ratios (d7Li) are a tracer of silicate weathering processes, which are key in the removal of atmospheric CO2 over geological timescales. Despite this, little is known about the effects of permafrost thawing on d7Li variations. Strong seasonal changes in the thawed active layer thickness dictate surficial water flow paths, which may influence intra-annual riverine d7Li signatures. We present a study of the dissolved d7Li from the large permafrost-dominated watersheds of the Lena River (Siberia), which drain into the Arctic Ocean. This work comprises a temporal study during the May 2015 spring flood, from ice breakup through peak flooding, thus monitoring changes in water-rock and water-soil interaction, both processes that control weathering and hence Li isotopes. Before riverine ice started to break up, high [Li] are observed as the river signature is governed by winter base flow conditions. As the river ice breaks up, surface runoff flows over the impermeable permafrost, interacting with leaf litter, diluting the [Li]. We compare d7Li over the spring flood period with a greater spatial study conducted over two summer field seasons (2012/2013) of the main Lena River channel and its tributaries, which drain a variety of lithologies/topographies. During the summer, the thawed active layer promotes deeper water flow paths, greater water-rock interaction and enhanced secondary minerals formation which preferentially take up 6Li. Summer riverine d7Li typically fall between +14.5 ‰ to +28.5 ‰, with rivers draining the Central Siberian Plateau typically exhibiting high [Li], but similar δ7Li to rivers draining the Verkhoyansk Mountain Range. Overall, this study demonstrates how Li isotopes respond to weathering in a permafrost

  8. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic turbulence experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Bareiss

    2009-08-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in an Arctic landscape. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formula currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an untypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that only the use of a hydrodynamic three-layer temperature-profile model achieves enough accuracy for heat flux calculations as it reliably reproduces the temporal variability of the surface temperature.

  9. The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006

    Directory of Open Access Journals (Sweden)

    J. Lüers

    2010-01-01

    Full Text Available The observed rapid climate warming in the Arctic requires improvements in permafrost and carbon cycle monitoring, accomplished by setting up long-term observation sites with high-quality in-situ measurements of turbulent heat, water and carbon fluxes as well as soil physical parameters in Arctic landscapes. But accurate quantification and well adapted parameterizations of turbulent fluxes in polar environments presents fundamental problems in soil-snow-ice-vegetation-atmosphere interaction studies. One of these problems is the accurate estimation of the surface or aerodynamic temperature T(0 required to force most of the bulk aerodynamic formulae currently used. Results from the Arctic-Turbulence-Experiment (ARCTEX-2006 performed on Svalbard during the winter/spring transition 2006 helped to better understand the physical exchange and transport processes of energy. The existence of an atypical temperature profile close to the surface in the Arctic spring at Svalbard could be proven to be one of the major issues hindering estimation of the appropriate surface temperature. Thus, it is essential to adjust the set-up of measurement systems carefully when applying flux-gradient methods that are commonly used to force atmosphere-ocean/land-ice models. The results of a comparison of different sensible heat-flux parameterizations with direct measurements indicate that the use of a hydrodynamic three-layer temperature-profile model achieves the best fit and reproduces the temporal variability of the surface temperature better than other approaches.

  10. In situ petroleum hydrocarbon bioremediation in the Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Greer, C.; Bell, T.; Lee, K.; Delisle, S.; Kovanen, D.; Craig, D.; Juck, D. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    2010-07-01

    This presentation reported on the in-situ bioremediation of diesel contaminated soils at the Canadian Forces Station CFS-Alert, in the Arctic. The soil was amended with monoammonium phosphate (MAP). The operation was designed to take place in a 2 month period during the brief thaw season. This presentation described the installation of the bioventing stacks, the turning of soil, and the application of an oxygen release compound (ORC) at the surface of the permafrost. A significant decrease in petroleum hydrocarbons (PC) was noted over 2 months. The effect of MAP amendment was a slight decrease in biomass in the pristine environment and a significant increase in biomass in the contaminated environment. The alkB gene was found to be important in the biodegradation of alkanes. Stable isotope probing (SIP) was used to identify active organisms. This bioremediation study showed that even in harsh Arctic climates, soils that are moderately contaminated with petroleum hydrocarbons can be remediated effectively and economically via biodegradation. tabs., figs.

  11. Temporal Behavior of Lake Size-Distribution in a Thawing Permafrost Landscape in Northwestern Siberia

    Directory of Open Access Journals (Sweden)

    Johanna Mård Karlsson

    2014-01-01

    Full Text Available Arctic warming alters regional hydrological systems, as permafrost thaw increases active layer thickness and in turn alters the pathways of water flow through the landscape. Further, permafrost thaw may change the connectivity between deeper and shallower groundwater and surface water altering the terrestrial water balance and distribution. Thermokarst lakes and wetlands in the Arctic offer a window into such changes as these landscape elements depend on permafrost and are some of the most dynamic and widespread features in Arctic lowland regions. In this study we used Landsat remotely sensed imagery to investigate potential shifts in thermokarst lake size-distributions, which may be brought about by permafrost thaw, over three distinct time periods (1973, 1987–1988, and 2007–2009 in three hydrological basins in northwestern Siberia. Results revealed fluctuations in total area and number of lakes over time, with both appearing and disappearing lakes alongside stable lakes. On the whole basin scales, there is no indication of any sustained long-term change in thermokarst lake area or lake size abundance over time. This statistical temporal consistency indicates that spatially variable change effects on local permafrost conditions have driven the individual lake changes that have indeed occurred over time. The results highlight the importance of using multi-temporal remote sensing data that can reveal complex spatiotemporal variations distinguishing fluctuations from sustained change trends, for accurate interpretation of thermokarst lake changes and their possible drivers in periods of climate and permafrost change.

  12. GlobPermafrost - how space supports understanding of permafrost?

    Science.gov (United States)

    Bartsch, Annett; Grosse, Guido; Kääb, Andreas; Westermann, Sebastian; Strozzi, Tazio; Wiesmann, Andreas; Duguay, Claude; Seifert, Frank Martin

    2016-04-01

    The GlobPermafrost project (2016-2019) develops, validates and implements information products to support the research communities and related international organisations like IPA and CliC in their work on understanding permafrost better by integration of EO data. Permafrost cannot be directly detected from space, but many surface features of permafrost terrains and typical periglacial landforms are observable with a variety of EO sensors ranging from very high to medium resolution in various wavelengths. Prototype cases will cover different aspects of permafrost by integrating in situ measurements of subsurface permafrost properties (active layer depth, active layer and permafrost temperatures, organic layer thickness, liquid water content in the active layer and permafrost), surface properties (vegetation cover, snow depth)and modelling to provide a better understanding of permafrost today. The techniques will extend point source process and permafrost monitoring to a broader spatial domain, to support permafrost distribution modelling and mapping techniques implemented in a GIS framework and will complement active layer and thermal observing networks. Initial user requirements have been gathered at the DUE-IPA-GTNP-CliC workshop in Frascati in February 2014, which have been further consolidated within the Permafrost community during 2014 in request of the WMO Polar Space Task Group. A subset of these requirements will be demonstrated within GlobPermafrost and assessed by user organisations: -Circumpolar permafrost extend -Permafrost dedicated land cover class prototype -Local investigations around long term monitoring sites -Regional transects for "hot spot" identification -Mountain permafrost areas The initial observation scenario is presented, discussing challenges in methods as well as data availability.

  13. Transient thermal modeling of permafrost conditions in Southern Norway

    Directory of Open Access Journals (Sweden)

    S. Westermann

    2013-04-01

    Full Text Available Thermal modeling is a powerful tool to infer the temperature regime of the ground in permafrost areas. We present a transient permafrost model, CryoGrid 2, that calculates ground temperatures according to conductive heat transfer in the soil and in the snowpack. CryoGrid 2 is forced by operational air temperature and snow-depth products for potential permafrost areas in Southern Norway for the period 1958 to 2009 at 1 km2 spatial resolution. In total, an area of about 80 000 km2 is covered. The model results are validated against borehole temperatures, permafrost probability maps from "bottom temperature of snow" measurements and inventories of landforms indicative of permafrost occurrence. The validation demonstrates that CryoGrid 2 can reproduce the observed lower permafrost limit to within 100 m at all validation sites, while the agreement between simulated and measured borehole temperatures is within 1 K for most sites. The number of grid cells with simulated permafrost does not change significantly between the 1960s and 1990s. In the 2000s, a significant reduction of about 40% of the area with average 2 m ground temperatures below 0 °C is found, which mostly corresponds to degrading permafrost with still negative temperatures in deeper ground layers. The thermal conductivity of the snow is the largest source of uncertainty in CryoGrid 2, strongly affecting the simulated permafrost area. Finally, the prospects of employing CryoGrid 2 as an operational soil-temperature product for Norway are discussed.

  14. GIPL1.3 simulated mean annual ground temperature (MAGT) in Celsius averaged for particular decade for the entire Alaskan permafrost domain. NAD83, Alaska Albers projection

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated mean annual ground temperature (MAGT) in...

  15. GIPL1.3 simulated maximum active layer thickness (ALT) in meters averaged for particular decade for the entire Alaskan permafrost domain. NAD83, Alaska Albers projection

    Data.gov (United States)

    Arctic Landscape Conservation Cooperative — This raster, created in 2010, is output from the Geophysical Institute Permafrost Lab (GIPL) model and represents simulated active layer thickness (ALT) in meters...

  16. Methane from the East Siberian Arctic shelf

    DEFF Research Database (Denmark)

    Petrenko...[], Vasilii V.; Etheridge, David M.

    2010-01-01

    In their Report “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf” (5 March, p. 1246), N. Shakhova et al. write that methane (CH4) release resulting from thawing Arctic permafrost “is a likely positive feedback to climate warming.” They add that the rel......In their Report “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf” (5 March, p. 1246), N. Shakhova et al. write that methane (CH4) release resulting from thawing Arctic permafrost “is a likely positive feedback to climate warming.” They add...... we conducted, suggests that a very large (~50%) increase in atmospheric CH4 concentration associated with an abrupt warming event ~11,600 years ago was driven mainly by wetlands, without distinguishing between high and low latitudes. Their reference 9 (3) was published in 1993 and is not relevant...

  17. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ13C and Δ14C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are consistent

  18. Soil Warming and Fertilization Effects on Growth Ring Widths of Arctic Shrubs - Application of a Novel Dendroecological Approach.

    Science.gov (United States)

    Iturrate Garcia, M.; Heijmans, M.; Schweingruber, F. H.; Niklaus, P. A.; Schaepman-Strub, G.

    2015-12-01

    Climate warming is suggested as the main driver of shrub expansion in arctic tundra regions. Shrub expansion may have consequences on biodiversity and climate, especially through its feedbacks with the energy budget. A better understanding of shrub expansion mechanisms, including growth rate patterns and stem anatomy changes, and their sensitivity to climate is needed in order to quantify related feedbacks. We present a novel dendroecological approach to determine the response of three arctic shrub species to increased soil temperature and nutrients. A full factorial block-design experiment was run for four years with a total of thirty plots. Six individuals of each species were sampled from each plot to test for treatment effects on growth rate and stem anatomy. We compared the ring width of the four years of experiment with the one of the four previous years. The preliminary results for Betula nana and Salix pulchra suggest a significant effect of the treatments on the growth ring width. The response is stronger in Salix pulchra than in Betula nana individuals. And, while Salix pulchra is more sensitive to the combined soil warming and fertilization treatment, Betula nana is to the fertilization treatment. We could not observe an effect of treatment on the stem anatomy, likely because bark thickness co-varies with age. We found significant positive correlations of cork, cortex and phloem thickness with xylem thickness (used as a proxy of age), and a significant difference in stem anatomy between species. The results suggest species-specific growth sensitivity to soil warming and nutrient enhancement. The use of experimental dendroecology by manipulating environmental conditions according to future climate scenarios and testing effects on shrub anatomy and annual growth will increase our understanding on shrub expansion mechanisms. Ongoing plant trait analysis and consecutive application in a 3D radiative transfer model will allow to quantify the feedback of

  19. Ecosystem-Vegetation Dynamics in sub-arctic Stordalen Mire, Sweden

    Science.gov (United States)

    Mugnani, M. P.; Varner, R. K.; Steele, K.; Frey, S. D.; Crill, P. M.

    2012-12-01

    Increased global temperatures have contributed to the thaw of permafrost and a subsequent atmospheric release of stored methane (CH4) from sub-arctic ecosystems. Palsas, small frost uplifted mounds that support specialized dry-tolerant vegetation species, degrade when permafrost thaws, allowing other species such a Sphagnum and Eriophorum to encroach on the microhabitats and outcompete other species, altering the carbon feedback into the thin arctic soil. Other climate change-related events including increased precipitation, seasonal temperature abnormalities and changes in humidity and nutrient availability may alter vegetation dynamics in terms of diversity and abundance in sub-arctic regions. During July 2012, measurements of vegetation composition and species abundance estimates were made in Stordalen Mire (68° 21' N, 19° 03' E), Abisko Sweden, two hundred kilometers north of the Arctic Circle. The mire is an area of discontinuous permafrost populated by micro-ecosystems that vary in vegetation species and abundance depending on growth conditions. All ecosystems provide beneficial services to support a range of life forms including rodents, birds, insects and reindeer. Five representative ecosystems of the mire were chosen to conduct studies on vegetation diversity and percent cover-based abundance: palsa, Eriophorum-dominated fen, Sphagnum-dominated peatland, lakeshore edge and lakeside heath. In each ecosystem vegetation species were recorded in six transects with quadrats along with a corresponding percent cover estimation and scale number based on the Braun-Blanquet percent cover method. To determine nutrient dynamics between ecosystems, soil peat samples were also taken at random from all ecosystem transects. These were analyzed for carbon and inorganic nitrogen as well as ammonium and nitrate. In the vegetation data analysis, the Shannon-Wiener Diversity Index showed that the lakeside heath ecosystem was the most diverse and even in species distribution

  20. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    Science.gov (United States)

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future

  1. Terrain influence on soil organic carbon and total nitrogen sorage in soils of Herschel Island

    OpenAIRE

    Obu, Jaroslav; Lantuit, Hugues; Fritz, Michael; Myers-Smith, Isla; Heim, Birgit; Wolter, Juliane

    2015-01-01

    The Arctic-wide increase of permafrost temperatures and subsequent thaw is mobilising large amounts of organic matter that is stored in permafrost environments. Organic matter decomposition results in the release of carbon dioxide and methane, which will amplify the warming and will cause so called permafrost carbon feedback. Increasing air temperatures due to greenhouse gas emissions from permafrost is not yet incorporated into Earth System Models. The lack of high-resolution carbon storage ...

  2. Seeing the risks of multiple Arctic amplifying feedbacks.

    Science.gov (United States)

    Carter, P.

    2014-12-01

    There are several potentially very large sources of Arctic amplifying feedbacks that have been identified. They present a great risk to the future as they could become self and inter-reinforcing with uncontrollable knock-on, or cascading risks. This has been called a domino effect risk by Carlos Duarte. Because of already committed global warming and the millennial duration of global warming, these are highly policy relevant. These Arctic feedback processes are now all operant with emissions of carbon dioxide methane and nitrous oxide detected. The extent of the risks from these feedback sources are not obvious or easy to understand by policy makers and the public. They are recorded in the IPCC AR5 as potential tipping points, as is the irreversibility of permafrost thaw. Some of them are not accounted for in the IPCC AR5 global warming projections because of quantitative uncertainty. UNEP issued a 2012 report (Policy Implications of Thawing Permafrost) advising that by omitting carbon feedback emissions from permafrost, carbon budget calculations by err on the low side. There is the other unassessed issue of a global warming safety limit for preventing uncontrollable increasing Arctic feedback emissions. Along with our paper, we provide illustrations of the Arctic feedback sources and processes from satellite imagery and flow charts that allows for their qualitative consideration. We rely on the IPCC assessments, the 2012 paper Possible role of wetlands permafrost can methane hydrates in the methane cycle under future climate change; a review, by Fiona M. O'Connor et al., and build on the WWF 2009 Arctic Climate Feedbacks: Global Implications. The potential sources of Arctic feedback processes identified include: Arctic and Far North snow albedo decline, Arctic summer sea ice albedo decline, Greenland summer ice surface melting albedo loss, albedo decline by replacement of Arctic tundra with forest, tundra fires, Boreal forest fires, Boreal forest die

  3. National Atlas of Arctic: structure and creation approaches

    Directory of Open Access Journals (Sweden)

    N. S. Kasimov

    2015-01-01

    Full Text Available On the instructions of President and Government of the Russian Federation, works for development of National Atlas of Arctic are started in the country. In this article the authors present their ideas from viewpoint of geographers who are well experienced in the field of cartographic works. A structure of future Atlas and lines of approaches to its development are proposed. The totality of experiences of preparation of other geographical atlases in both, the USSR and Russia, as well as the latest achievements of cartography, aerospace sources and GIS-technologies are recommended to be used. The National Atlas of Arctic is understood as a collection of knowledge of spatial-temporal information about geographical, ecological, economic, historical-ethnographic, cultural and social features of the Arctic. This cartographic model of the territory is designed for using in a wide range of scientific, managing, economic, defensive and social activities. A hard copy of the atlas is intended to be used as scientific-reference publication while its electronic version will make it possible to renovate its content and to improve it by means of actualization according to various directions of its practical use 16 sections proposed in a draft of the Atlas content are as follows: introductory, geological structure, relief, mineral resources, environment evolution, climate, land waters, seas, seashores, snow cover, glaciers, permafrost, soils, flora and fauna, state of the environment and the Nature protection, population, economics, and prospects for future. The popular-scientific edition of the Atlas is intended for use by wide circle of readers and also as a textbook for all levels of education. Presentation of material in the Atlas should combine a high scientific level and accessible language. In a popular form it will clarify traditions of careful treatment to the Nature and the nature-protective ethics of religious confessions of local people

  4. Methane turnover and methanotrophic communities in arctic aquatic ecosystems of the Lena Delta, Northeast Siberia.

    Science.gov (United States)

    Osudar, Roman; Liebner, Susanne; Alawi, Mashal; Yang, Sizhong; Bussmann, Ingeborg; Wagner, Dirk

    2016-08-01

    Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity. PMID:27230921

  5. Technological monitoring of subgrade construction on high-temperature permafrost

    Institute of Scientific and Technical Information of China (English)

    Svyatoslav Ya. Lutskiy; Taisia V. Shepitko; Alexander M. Cherkasov

    2015-01-01

    Three stages of complex technological monitoring for the increase of high-temperature-permafrost soil bearing capacity are described. The feasibility of process monitoring to improve the targeted strength properties of subgrade bases on frozen soils is demonstrated. The rationale for the necessity of predictive modeling of freeze-thaw actions during the subgrade construction period is provided.

  6. Acidobacteria dominate the active bacterial communities of Arctic tundra with widely divergent winter-time snow accumulation and soil temperatures.

    Science.gov (United States)

    Männistö, Minna K; Kurhela, Emilia; Tiirola, Marja; Häggblom, Max M

    2013-04-01

    The timing and extent of snow cover is a major controller of soil temperature and hence winter-time microbial activity and plant diversity in Arctic tundra ecosystems. To understand how snow dynamics shape the bacterial communities, we analyzed the bacterial community composition of windswept and snow-accumulating shrub-dominated tundra heaths of northern Finland using DNA- and RNA-based 16S rRNA gene community fingerprinting (terminal restriction fragment polymorphism) and clone library analysis. Members of the Acidobacteria and Proteobacteria dominated the bacterial communities of both windswept and snow-accumulating habitats with the most abundant phylotypes corresponding to subdivision (SD) 1 and 2 Acidobacteria in both the DNA- and RNA-derived community profiles. However, different phylotypes within Acidobacteria were found to dominate at different sampling dates and in the DNA- vs. RNA-based community profiles. The results suggest that different species within SD1 and SD2 Acidobacteria respond to environmental conditions differently and highlight the wide functional diversity of these organisms even within the SD level. The acidic tundra soils dominated by ericoid shrubs appear to select for diverse stress-tolerant Acidobacteria that are able to compete in the nutrient poor, phenolic-rich soils. Overall, these communities seem stable and relatively insensitive to the predicted changes in the winter-time snow cover.

  7. Shrub expansion and climate feedbacks in Arctic tundra

    Science.gov (United States)

    Loranty, Michael M.; Goetz, Scott J.

    2012-03-01

    Arctic tundra ecosystems stand to play a substantial role in both the magnitude and rate of global climate warming over the coming decades and centuries. The exact nature of this role will be determined by the combined effects of currently amplified rates of climate warming in the Arctic (Serreze et al 2000) and a series of related positive climate feedbacks that include mobilization of permafrost carbon (Schuur et al 2008), decreases in surface albedo (Chapin et al 2005) and evapotranspiration (ET) mediated increases in atmospheric water vapor (Swann et al 2010). Conceptually, these feedback mechanisms are intuitive and readily comprehensible: warming-induced permafrost thaw will make new soil carbon pools accessible for microbial respiration, and increased vegetation productivity, expansion of shrubs in particular, will lower surface reflectance and increase ET. However, our current understanding of these feedback mechanisms relies largely on limited and local field studies and, as such, the quantitative estimates of feedback effects on regional and global climate require spatial upscaling and uncertainty estimates derived from models. Moreover, the feedback mechanisms interact and their combined net effect on climate is highly variable and not well characterized. A recent study by Bonfils et al (2012) is among the first to explicitly examine how shrub expansion in tundra ecosystems will impact regional climate. Using an Earth system model, Bonfils et al find that an idealized 20% increase in shrub cover north of 60°N latitude will lead to annual temperature increases of 0.66 °C and 1.84 °C, respectively, when the shrubs are 0.5 m and 2 m tall. The modeled temperature increases arise from atmospheric heating as a combined consequence of decreased albedo and increased ET. The primary difference between the two cases is associated with the fact that tall shrubs protrude above the snow, thus reducing albedo year round, whereas short shrubs are completely

  8. Effects of winter seismic exploration on vegetation and soil of the Coastal Plain of the Arctic National Wildlife Refuge, Alaska

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — When winter seismic exploration was conducted on the coastal plain of the Arctic National Wildlife Refuge Arctic NWR, little data were available on the longterm...

  9. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones

    Science.gov (United States)

    Olefeldt, David; Turetsky, Merritt R.; Crill, Patrick M.; McGuire, A. David

    2013-01-01

    Methane (CH4) emissions from the northern high-latitude region represent potentially significant biogeochemical feedbacks to the climate system. We compiled a database of growing-season CH4 emissions from terrestrial ecosystems located across permafrost zones, including 303 sites described in 65 studies. Data on environmental and physical variables, including permafrost conditions, were used to assess controls on CH4 emissions. Water table position, soil temperature, and vegetation composition strongly influenced emissions and had interacting effects. Sites with a dense sedge cover had higher emissions than other sites at comparable water table positions, and this was an effect that was more pronounced at low soil temperatures. Sensitivity analysis suggested that CH4 emissions from ecosystems where the water table on average is at or above the soil surface (wet tundra, fen underlain by permafrost, and littoral ecosystems) are more sensitive to variability in soil temperature than drier ecosystems (palsa dry tundra, bog, and fen), whereas the latter ecosystems conversely are relatively more sensitive to changes of the water table position. Sites with near-surface permafrost had lower CH4 fluxes than sites without permafrost at comparable water table positions, a difference that was explained by lower soil temperatures. Neither the active layer depth nor the organic soil layer depth was related to CH4 emissions. Permafrost thaw in lowland regions is often associated with increased soil moisture, higher soil temperatures, and increased sedge cover. In our database, lowland thermokarst sites generally had higher emissions than adjacent sites with intact permafrost, but emissions from thermokarst sites were not statistically higher than emissions from permafrost-free sites with comparable environmental conditions. Overall, these results suggest that future changes to terrestrial high-latitude CH4 emissions will be more proximately related to changes in moisture, soil

  10. Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway

    Science.gov (United States)

    Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.

    2009-01-01

    Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.

  11. Mapping permafrost in the boreal forest with Thematic Mapper satellite data

    Science.gov (United States)

    Morrissey, L. A.; Strong, L. L.; Card, D. H.

    1986-01-01

    A geographic data base incorporating Landsat TM data was used to develop and evaluate logistic discriminant functions for predicting the distribution of permafrost in a boreal forest watershed. The data base included both satellite-derived information and ancillary map data. Five permafrost classifications were developed from a stratified random sample of the data base and evaluated by comparison with a photo-interpreted permafrost map using contingency table analysis and soil temperatures recorded at sites within the watershed. A classification using a TM thermal band and a TM-derived vegetation map as independent variables yielded the highest mapping accuracy for all permafrost categories.

  12. The long-term fate of permafrost peatlands under rapid climate warming

    DEFF Research Database (Denmark)

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal;

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon...... stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological...... approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed...

  13. High Methylmercury in Arctic and Subarctic Ponds is Related to Nutrient Levels in the Warming Eastern Canadian Arctic.

    Science.gov (United States)

    MacMillan, Gwyneth A; Girard, Catherine; Chételat, John; Laurion, Isabelle; Amyot, Marc

    2015-07-01

    Permafrost thaw ponds are ubiquitous in the eastern Canadian Arctic, yet little information exists on their potential as sources of methylmercury (MeHg) to freshwaters. They are microbially active and conducive to methylation of inorganic mercury, and are also affected by Arctic warming. This multiyear study investigated thaw ponds in a discontinuous permafrost region in the Subarctic taiga (Kuujjuarapik-Whapmagoostui, QC) and a continuous permafrost region in the Arctic tundra (Bylot Island, NU). MeHg concentrations in thaw ponds were well above levels measured in most freshwater ecosystems in the Canadian Arctic (>0.1 ng L(-1)). On Bylot, ice-wedge trough ponds showed significantly higher MeHg (0.3-2.2 ng L(-1)) than polygonal ponds (0.1-0.3 ng L(-1)) or lakes (waters of Subarctic thaw ponds near Kuujjuarapik (0.1-3.1 ng L(-1)). High water MeHg concentrations in thaw ponds were strongly correlated with variables associated with high inputs of organic matter (DOC, a320, Fe), nutrients (TP, TN), and microbial activity (dissolved CO2 and CH4). Thawing permafrost due to Arctic warming will continue to release nutrients and organic carbon into these systems and increase ponding in some regions, likely stimulating higher water concentrations of MeHg. Greater hydrological connectivity from permafrost thawing may potentially increase transport of MeHg from thaw ponds to neighboring aquatic ecosystems.

  14. Temperature data acquired from the DOI/GTN-P Deep Borehole Array on the Arctic Slope of Alaska, 1973–2013

    OpenAIRE

    G. D. Clow

    2014-01-01

    A homogeneous set of temperature measurements obtained from the DOI/GTN-P Deep Borehole Array between 1973 and 2013 is presented; DOI/GTN-P is the US Department of the Interior contribution to the Global Terrestrial Network for Permafrost (GTN-P). The 23-element array is located on the Arctic Slope of Alaska, a region of cold continuous permafrost. Most of the monitoring wells are situated on the Arctic coastal plain between the Brooks Range and the Arctic ...

  15. Recent dynamics of thermokarst ponds in discontinuous permafrost: a paleolimnological study from subarctic Quebec, Canada

    Science.gov (United States)

    Bouchard, F.; Francus, P.; Pienitz, R.

    2011-12-01

    Accelerated thawing and erosion of permafrost is leading to the release of organic carbon through greenhouse gas emissions, especially in thermokarst (thaw) ponds and lakes. These aquatic ecosystems are widespread throughout arctic and subarctic regions; however their natural variability and temporal evolution recorded in the bottom sediments are poorly understood. Here we present a multi-proxy study conducted in a subarctic site with many thermokarst ponds near Kuujjuarapik-Whapmagoostui, on the eastern shore of Hudson Bay, at the southern edge of the discontinuous and scattered permafrost zone. Sedimentological, geochemical and biological (diatoms) analyses have been performed on short sediment cores (10-20 cm) retrieved from limnologically contrasted ponds. Long-term (14C) and short-term (210Pb, 137Cs) chronologies were also established. Analyses revealed two distinct sedimentary facies, from bottom to top: 1) massive marine silts and clays deposited during postglacial Tyrrell Sea transgression (ca. 8000 to 6000 cal yr BP), subsequently emerged by glacio-isostatic rebound and more recently (ca. 1500 to 400 cal yr BP) affected by permafrost inception and growth; 2) laminated organic-rich lacustrine muds deposited since permafrost thawing and subsidence, i.e. since thermokarst pond inception (the last centuries). Almost absent from the bottom sediments (lower facies), benthic and planktonic diatoms appeared highly abundant in surface lacustrine sediments (upper facies) and reflected past changes in bottom water properties (e.g., pH, dissolved organic carbon, water color). Despite displaying strikingly different water colors, the study ponds showed similar long-term developmental patterns regarding their biogeochemical properties (as recorded in the sediments), such as: decreasing mineral grain size (from silts to clays); decreasing major chemical element concentrations; increasing organic matter content and decreasing pH (establishment of peatland vegetation/soils

  16. Optimization in the use of Air Convection Embankments for Protection of Underlying Permafrost

    DEFF Research Database (Denmark)

    Jørgensen, Anders Stuhr; Ingeman-Nielsen, Thomas

    2012-01-01

    Since the beginning of the 1990s a significant increase in the mean annual air temperatures has been recorded all over the arctic regions. This has lead to a degrading of permafrost, which is now threatening the stability of airport and road embankments. To minimize the damages caused by thaw...

  17. Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Climate warming must lead the mainly air temperature controlled permafrost to degrade.Based on the numerical simulation,the process of permafrost degradation can be divided into five stages,i.e.,starting stage,temperature rising stage,zero geothermal gradient stage,talic layers stage,and disappearing stage,according to the shape of ground temperature profile.Permafrost on the Qinghai-Tibet Plateau (QTP) is generally considered a relic from late Pleistocene,and has been degenerating as a whole during Holocene.According to spatial-temporal compensation,the present thermal state discrepancy of permafrost in different areas on the QTP may correspond with their degradation stages.On the QTP,permafrost in the high and middle mountains belongs to temperature rising stage,the permafrost thermal state is transiting from late rising temperature stage to zero geothermal gradient stage that is distributed in the middle-low-mountains.Permafrost that is in a zero gradient stage mainly appears in the high plateau and valley,whereas the transition from zero gradient stage to talic layers stage of permafrost is located in the vicinity of the lower limit of permafrost,and permafrost is disappearing from margin of perennially frozen ground.There are two modes of perennially frozen ground thawing,thawing from top to bottom and thawing from bottom to top respectively.During the temperature rising stage,when the heat flux in the perennially frozen soil layer is less than that in the unfrozen soil underlying frozen soil layer,the geothermal flux is partly used to thaw the base of permafrost,and permafrost thaws from bottom to top.With the decrease of thermal gradient in the perennially frozen ground,the heat that is used to thaw permafrost base increases,and geothermal heat will be entirely consumed to thaw the base of permafrost until the temperature gradient reaches zero thermal gradient state.On the other hand,the disappearance of permafrost may be delayed by "thermal offset" and

  18. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts.

    Science.gov (United States)

    Larsen, Thomas; Ventura, Marc; Maraldo, Kristine; Triadó-Margarit, Xavier; Casamayor, Emilio O; Wang, Yiming V; Andersen, Nils; O'Brien, Diane M

    2016-09-01

    Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts have been well studied; however, supplementation of de novo synthesized nutrients to hosts by extracellular gut symbionts is poorly documented, especially for generalists with relatively undifferentiated intestinal tracts. Although gut symbionts facilitate degradation of resources that would otherwise remain inaccessible to the host, such digestive actions alone cannot make up for dietary insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. To answer this poorly understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in Arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins of amino acids to bacteria, fungi and plants in enchytraeids. Enchytraeids collected from Arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed on higher fibre diets, whereas most of the enchytraeids' EAA derived from dietary sources when fed on lower fibre diets. Our gene sequencing results of gut microbiota showed that the worms harbour several taxa in their gut lumen absent from their diets and substrates. Almost all gut taxa are candidates for EAA supplementation because almost all belong to clades capable of biosynthesizing EAA. Our study provides the first evidence of extensive symbiotic supplementation of EAA by microbial

  19. Arctic River organic matter transport

    Science.gov (United States)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  20. Minimum distribution of subsea ice-bearing permafrost on the US Beaufort Sea continental shelf

    Science.gov (United States)

    Brothers, Laura L.; Hart, Patrick E.; Ruppel, Carolyn D.

    2012-01-01

    Starting in Late Pleistocene time (~19 ka), sea level rise inundated coastal zones worldwide. On some parts of the present-day circum-Arctic continental shelf, this led to flooding and thawing of formerly subaerial permafrost and probable dissociation of associated gas hydrates. Relict permafrost has never been systematically mapped along the 700-km-long U.S. Beaufort Sea continental shelf and is often assumed to extend to ~120 m water depth, the approximate amount of sea level rise since the Late Pleistocene. Here, 5,000 km of multichannel seismic (MCS) data acquired between 1977 and 1992 were examined for high-velocity (>2.3 km s−1) refractions consistent with ice-bearing, coarse-grained sediments. Permafrost refractions were identified along permafrost, which does not extend seaward of 30 km offshore or beyond the 20 m isobath.

  1. New high through put approach to study ancient microbial phylogenetic diversity in permafrost

    Science.gov (United States)

    Spirina, E.; Cole, J.; Chai, B.; Gilichinksy, D.; Tiedje, J.

    2003-04-01

    The study of microbial diversity in the deep ancient permafrost can help to answer many questions: (1) what kind of mechanisms keeps microbial cells alive, (2) how many of phylogenetic groups exist in situ and never had been cultivated, (3) what is the difference between modern and ancient microorganisms? From this point, distinct environments were examined: Arctic and Antarctic modern soil and permafrost. 16S rDNA genes were amplified from genomic DNA extracted from both original frozen samples and the same samples incubated at 10oC for 8 weeks under both aerobic and anaerobic conditions to determine those capable to grow. High throughput DNA sequencing was performed on the cloned PCR products to obtain partial 16S rDNA gene sequences. The unique script was written to automatically compare over 2,000 partial sequences with those rrn sequences in the Ribosomal Database Project (RDP) release 8.1 using the SEQUENCE MATCH. Sequences were grouped into categories from the RDPs phylogenetic hierarchy based on the closest database matches. Investigation revealed significant microbial diversity; two phylogenetic groups were predominant in all samples: Proteobacteria and Gram Positive Bacteria. Microbial community composition within those groups is different from sample to sample. However, similar genera, such as Arthrobacter, Bacillus, Citrobacter, Caulobacter, Comamonas, Flavobacterium, Nocardioides, Pseudomonas, Rhodocyclus, Rhodococcus, Sphingobacterium, Sphingomonas, Streptococcus, Terrabacter appeared in both polar regions. The greatest microbial diversity was detected in Arctic surface samples. According to RDPs phylogenetic hierarchy those organisms are related to Proteobacteria_SD, Gram Positive Bacteria_SD, Leptospirillum-Nitrospira, Nitrospina_SD, Flexibacter-Cytophaga-Bacteroides, Planctomyces and Relatives. Both the aerobic and anaerobic low temperatures soil incubation yielded some microbes not detected in the original samples. It should be possible, using

  2. Arctic River Mobility: A Baseline Assessment

    Science.gov (United States)

    Rowland, J. C.; Wilson, C. J.; Brumby, S. P.; Pope, P. A.

    2009-12-01

    In many arctic river systems, permafrost and the presence of frozen floodplain materials provides a significant source of bank cohesion. Due to this cohesion, permafrost may play an important control of arctic river mobility and meandering dynamics. Whether changes in the rates of permafrost thawing has had or will have as significant a geomorphic impact on arctic river meandering as has already been observed for arctic coastline retreat, lake size and distribution, and hillslope stability is at present an unanswered question. The potential impact of climate driven changes in arctic river meandering has important implications for river planform morphology, floodplain dynamics, river ecology, and the export of carbon and nutrients to coastal oceans. We present results of remote sensing analysis of river mobility for the Yukon River in Alaska and sections of the Siberian Rivers including the Lena, the Kolyma and the Indigirka Rivers. Comparisons of river location at successive intervals in time were conducted using Landsat imagery archives and higher resolution aerial photographs and satellite imagery. Extraction of river channel locations was accomplished using the GeniePro automated feature extraction software. Over the period of Landsat coverage (mid-1980s to present) arctic rivers show limited to no movement at the resolution of the Landsat data (30 m per pixel). On the Yukon Flats regions of the Yukon River, the most mobile sections of the river have migration rates comparable to reach-average values reported for temperate rivers; given that large portions of the Yukon display no detectable movement, reach-averaged values are far less than observed in temperate systems. Field inspection of areas of high erosion along the Yukon River indicate that erosional processes associated with the thermal degradation of permafrost play a dominant role in many of these areas. Thermal niching and large scale bank collapse due to undercutting play a large role in bank erosion

  3. Assessing climate impacts and risks of ocean albedo modification in the Arctic

    Science.gov (United States)

    Mengis, N.; Martin, T.; Keller, D. P.; Oschlies, A.

    2016-05-01

    The ice albedo feedback is one of the key factors of accelerated temperature increase in the high northern latitudes under global warming. This study assesses climate impacts and risks of idealized Arctic Ocean albedo modification (AOAM), a proposed climate engineering method, during transient climate change simulations with varying representative concentration pathway (RCP) scenarios. We find no potential for reversing trends in all assessed Arctic climate metrics under increasing atmospheric CO2 concentrations. AOAM only yields an initial offset during the first years after implementation. Nevertheless, sea ice loss can be delayed by 25(60) years in the RCP8.5(RCP4.5) scenario and the delayed thawing of permafrost soils in the AOAM simulations prevents up to 40(32) Pg of carbon from being released by 2100. AOAM initially dampens the decline of the Atlantic Meridional Overturning and delays the onset of open ocean deep convection in the Nordic Seas under the RCP scenarios. Both these processes cause a subsurface warming signal in the AOAM simulations relative to the default RCP simulations with the potential to destabilize Arctic marine gas hydrates. Furthermore, in 2100, the RCP8.5 AOAM simulation diverts more from the 2005-2015 reference state in many climate metrics than the RCP4.5 simulation without AOAM. Considering the demonstrated risks, we conclude that concerning longer time scales, reductions in emissions remain the safest and most effective way to prevent severe changes in the Arctic.

  4. Dominant hydrological processes at three contrasting small permafrost watersheds in changing climate

    Science.gov (United States)

    Lebedeva, Liudmila; Semenova, Olga

    2016-04-01

    The most pronounced climatic changes are observed and projected in the Arctic. Large part of the Arctic is influenced by permanently or seasonally frozen ground that controls river runoff generation. The research aims at assessment of observed and projected changes of hydrological regime and identification of dominant hydrological processes at three small watersheds in different landscape and permafrost conditions of Siberia for the last sixty years by data analysis and process-based modelling. Three studied watersheds are located within the Yenisei, Lena and Kolyma river basins. The Graviyka river basin (323 km2) is situated in discontinuous permafrost in transition zone between tundra and taiga ecotones in the lower Yenisei region. Mean annual precipitation is 510 mm/year and air temperature is -8°C (1936-2014). Both air temperature and precipitation have shown significant increase for the last forty years. The Shestakovka river basin (170 km2), a tributary of the Lena river near Yakutsk, is characterized by extremely dry (240 mm/year) and cold (-9.5°C) climate of Central Yakutiya. Larch and pine forests grow on sandy deposits covered by continuous permafrost. Air temperature and river flow have increased for the last thirty years but precipitation have shown no significant changes. The Kontaktovy creek watershed (22 km2) is located in mountains of upper Kolyma river basin. The permafrost is continuous. Main land cover types are bare rocks, mountain tundra and sparse larch forest. Only insignificant changes of air temperature, precipitation and river flow were detected for the last decades. To assess dominant hydrological processes and to project their future changes in each studied watershed the process-based Hydrograph model was applied to historical and future time periods using temperate and extreme climate scenarios. The Hydrograph model does not rely on calibration and the parameters were estimated using all available a-priori information - thematic maps

  5. Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw.

    Science.gov (United States)

    Salmon, Verity G; Soucy, Patrick; Mauritz, Marguerite; Celis, Gerardo; Natali, Susan M; Mack, Michelle C; Schuur, Edward A G

    2016-05-01

    Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330-1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools. PMID:26718892

  6. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009

    Science.gov (United States)

    McGuire, A. David; Koven, Charles; Lawrence, David M.; Clein, Joy S.; Xia, Jiangyang; Beer, Christian; Burke, Eleanor; Chen, Guangsheng; Chen, Xiaodong; Delire, Christine; Jafarov, Elchin; MacDougall, Andrew H.; Marchenko, Sergey; Nicolsky, Dmitry; Peng, Shushi; Rinke, Annette; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Ekici, Altug; Gouttevin, Isabelle; Hajima, Tomohiro; Hayes, Daniel J.; Ji, Duoying; Krinner, Gerhard; Lettenmaier, Dennis P.; Luo, Yiqi; Miller, Paul A.; Moore, John C.; Romanovsky, Vladimir; Schädel, Christina; Schaefer, Kevin; Schuur, Edward A. G.; Smith, Benjamin; Sueyoshi, Tetsuo; Zhuang, Qianlai

    2016-07-01

    A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3 m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8 × 103 km2 yr-1). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954 Tg C yr-1 between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets

  7. Effects of 45 Years of Heavy Road Traffic and Infrastructure on Permafrost and Tundra at Prudhoe Bay, Alaska

    Science.gov (United States)

    Walker, D. A.; Buchhorn, M.; Raynolds, M. K.; Kanevskiy, M. Z.; Matyshak, G. V.; Shur, Y.; Peirce, J.

    2015-12-01

    The upper permafrost of the Prudhoe Bay Oilfield, the largest oil field in both the United States and in North America, contains significant amounts of excess ground ice, mainly in ice wedges. An increase in infrastructure development and road traffic since the initial development of the Prudhoe Bay Oilfield in 1968 has resulted in extensive flooding, accumulation of road dust, and roadside snowbanks, all of which affect the vegetation and alter the thermal properties of the ground surface. As part of the NSF's Arctic Science, Engineering, and Education for Sustainability (ArcSEES) project, we established four transects in 2014 and 2015 to document the effects of infrastructure and heavy road traffic on adjacent tundra. Two transects were established perpendicular to the Prudhoe Bay Spine Road north of Lake Colleen and two perpendicular to the Dalton Highway next to the Deadhorse airstrip. Prior to infrastructure development in 1949, rather homogeneous networks of low-centered polygons with less than 30 cm of trough-rim elevation contrast covered both locations. We present the detailed results of vegetation analysis, ice-core drilling, and extensive topographic surveys along the transects. A time series of aerial photographs from 1949 to 2014 (yearly since 1969) documents the changing landscapes in relationship to the record of air-temperature, active layer depths, and permafrost temperatures at Deadhorse. Flooding, road dust, and snow drifts have all contributed to creating warmer soil temperatures and deeper active layers near the road. These factors have all contributed in different ways to alteration of the plant canopy. The altered plant canopies in turn further altered the surface albedo and the ground temperatures. Historical photos indicate that between 1989 and 2012 a regional thawing of the ice-wedges occurred, increasing the extent of thermokarst. Our analysis demonstrates the cumulative effects of infrastructure-related and climate-related factors to

  8. Decadal dynamics of Arctic continental water cycle in the framework of MONARCH-A .

    Science.gov (United States)

    Dhomps, A.-L.; Zakharova, E. A.; Kouraev, A. V.; Biancamaria, S.; Mognard, N. M.

    2012-04-01

    The main objective of MONARCH-A FP7 European program is to generate a dedicated information package tailored to a subset of multidisciplinary essential climate variables and their mutual forcing and feedback mechanisms associated with changes in terrestrial carbon and water fluxes, sea level and ocean circulation and the marine carbon cycle in the high latitude and Arctic regions. High latitude regions are predicted to suffer much greater warming than lower latitudes as a result of climate change. This will cause drastic changes in the carbon and water balance of the region, with associated large effects on snow cover, soil freeze-thaw periods, soil moisture, permafrost, growing season, land cover, greenhouse gas fluxes and albedo. Of crucial concern are the feedbacks between these land surface processes and climate warming; this is recognized as one of the greatest sources of uncertainty in climate prediction (IPCC 2007). Decadal change in snow properties and dynamics of high latitude water bodies are analyzed over the last 20 years. Snow cover, depth and duration are good indicators of climate change and have strong effects on fresh water discharge into the Arctic Ocean, albedo, plant growth and vegetation growing periods. While the large numbers of lakes at high latitudes are important for evapo-transpiration, runoff, groundwater and methane emissions. We analyze various satellite-derived (SSM/I and radar altimeters) environmental parameters (snow extent, depth and duration, fraction of water surface and wet zones extent) in the context of climatic changes (from reanalysis and in situ data) and their role in the Arctic water cycle with specific attention to Western Siberia. We gratefully acknowledge the ESA DUE Permafrost for the data used for the inter-comparison. This research has been done in the framework of the FP7 MONARCH-A project, Russian-French cooperation GDRI "CAR-WET-SIB", French ANR "CLASSIQUE" project.

  9. Phytomass, LAI, and NDVI in northern Alaska: Relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar Arctic

    Science.gov (United States)

    Walker, D. A.; Epstein, H. E.; Jia, G. J.; Balser, A.; Copass, C.; Edwards, E. J.; Gould, W. A.; Hollingsworth, J.; Knudson, J.; Maier, H. A.; Moody, A.; Raynolds, M. K.

    2003-01-01

    We examined the effects of summer warmth on leaf area index (LAI), total aboveground phytomass (TAP), and normalized difference vegetation index (NDVI) across the Arctic bioclimate zone in Alaska and extrapolated our results to the circumpolar Arctic. Phytomass, LAI, and within homogeneous areas of vegetation on acidic and nonacidic soils were regressed against the total summer warmth index (SWI) at 12 climate stations in northern Alaska (SWI = sum of mean monthly temperatures greater than 0°C). SWI varies from 9°C at Barrow to 37°C at Happy Valley. A 5°C increase in the SWI is correlated with about a 120 g m-2 increase in the aboveground phytomass for zonal vegetation on acidic sites and about 60 g m-2 on nonacidic sites. Shrubs account for most of the increase on acidic substrates, whereas mosses account for most of the increase on nonacidic soils. LAI is positively correlated with SWI on acidic sites but not on nonacidic sites. The NDVI is positively correlated with SWI on both acidic and nonacidic soils, but the NDVI on nonacidic parent material is consistently lower than the NDVI on acidic substrates. Extrapolation to the whole Arctic using a five-subzone zonation approach to stratify the circumpolar NDVI and phytomass data showed that 60% of the aboveground phytomass is concentrated in the low-shrub tundra (subzone 5), whereas the high Arctic (subzones 1-3) has only 9% of the total. Estimated phytomass densities in subzones 1-5 are 47, 256, 102, 454, and 791 g m-2, respectively. Climate warming will likely result in increased phytomass, LAI, and NDVI on zonal sites. These changes will be most noticeable in acidic areas with abundant shrub phytomass.

  10. Symbiosis of Marshes and Permafrost in Da and Xiao Hinggan Mountains in Northeastern China

    Institute of Scientific and Technical Information of China (English)

    JIN Huijun; SUN Guangyou; YU Shaopeng; JIN Rui; HE Ruixia

    2008-01-01

    Recently, the degradation of permafrost and marsh environments in the Da and Xiao Hinggan Mountainshas become a great concern as more human activities and pronounced climate warming were observed during the past30 years and projected for the near future. The distribution patterns and development mechanisms of the permafrostand marshes have been examined both in theories and in field observations, in order to better understand the symbiosisof permafrost and marshes. The permafrost and marshes in the Da and Xiao Hinggan Mountains display discerniblezonations in latitude and elevation. The marsh vegetation canopy, litter and peat soil have good thermal insulationproperties for the underlying permafrost, resulting in a thermal offset of 3℃ to 4℃ and subsequently suppressing soiltemperature, In addition, the much higher thermal conductivity of frozen and ice-rich peat in the active layer is condu-cive to the development or in favor of the protection of permafrost due to the semi-conductor properties of the soilsoverlying the permafrost. On the other hand, because permafrost is almost impervious, the osmosis of water in marshsoils can be effectively reduced, timely providing water supplies for helophytes growth or germination in spring. In theDa and Xiao Hinggan Mountains, the permafrost degradation has been accelerating due to the marked climate warming,ever increasing human activities, and the resultant eco-environmental changes. Since the permafrost and marsh envi-ronments are symbiotic and interdependent, they need to be managed or protected in a well-coordinated and integratedway.

  11. Distribution of permafrost in Finland

    Directory of Open Access Journals (Sweden)

    Seppälä, M.

    1997-12-01

    Full Text Available Two main types of permafrost are found in northern Finland. The most widely known occurence is in mires, in peat mounds with permanently frozen cores known as palsas. Some fully new, small occurrences have been found in pounus, small peat humps over large areas in Lapland. The second main type of permafrost occurrence is located above the tree line on barren fell summits there permafrost means continuous temperature below 0°C in the bedrock .Some massive cave ice has been found in Lapland, too. The climatic conditions at permafrost sites are still poorly know because the local topography affects the temperature conditions. Only sporadic recordings are available from the summits of fells and from palsa mires. In general, the mean annual air temperature for permafrost formation should be below -1°C. Snow depth seems to be the most critical factor for permafrost formation in Lapland: thin snow cover promotes frost penetration. Vegetation provides a useful indicator of snow depth and of possible permafrost sites. Some proposals are made for permafrost studies in Lapland.

  12. Carbon loss and chemical changes from permafrost collapse in the northern Tibetan Plateau

    Science.gov (United States)

    Mu, Cuicui; Zhang, Tingjun; Zhang, Xiankai; Li, Lili; Guo, Hong; Zhao, Qian; Cao, Lin; Wu, Qingbai; Cheng, Guodong

    2016-07-01

    Permafrost collapse, known as thermokarst, can alter soil properties and carbon emissions. However, little is known regarding the effects of permafrost collapse in upland landscapes on the biog