WorldWideScience

Sample records for arctic lake correlate

  1. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-01-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69,p Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter 'ocean-effect' snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  2. Limnological characteristics of 56 lakes in the Central Canadian Arctic Treeline Region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2003-02-01

    Full Text Available Measured environmental variables from 56 lakes across the Central Canadian Treeline Region exhibited clear limnological differences among subpolar ecozones, reflecting strong latitudinal changes in biome characteristics (e.g. vegetation, permafrost, climate. Principal Components Analysis (PCA clearly separated forested sites from tundra sites based on distinct differences in limnological characteristics. Increases in major ions and related variables (e.g. dissolved inorganic carbon, DIC were higher in boreal forest sites in comparison to arctic tundra sites. The higher values recorded in the boreal forest lakes may be indirectly related to differences in climatic factors in these zones, such as the degree of permafrost development, higher precipitation and runoff, duration of ice-cover on the lakes, and thicker and better soil development. Similar to trends observed in DIC, substantially higher values for dissolved organic carbon (DOC were measured in boreal forest lakes than in arctic tundra lakes. This was likely due to higher amounts of catchment-derived DOC entering the lakes from coniferous leaf litter sources. Relative to arctic tundra lakes, boreal forest lakes had higher nutrient concentrations, particularly total nitrogen (TN, likely due to warmer conditions, a longer growing season, and higher precipitation, which would enhance nutrient cycling and primary productivity. Results suggest that modern aquatic environments at opposite sides of the central Canadian arctic treeline (i.e. boreal forest and arctic tundra exhibit distinct differences in water chemistry and physical conditions. These limnological trends may provide important information on possible future changes with additional warming.

  3. Holocene Temperature Reconstructions from Arctic Lakes based on Alkenone Paleothermometry and Non-Destructive Scanning Techniques

    Science.gov (United States)

    D'Andrea, W. J.; Balascio, N. L.; Bradley, R. S.; Bakke, J.; Gjerde, M.; Kaufman, D. S.; Briner, J. P.; von Gunten, L.

    2014-12-01

    Generating continuous, accurate and quantitative Holocene temperature estimates from the Arctic is an ongoing challenge. In many Arctic regions, tree ring-based approaches cannot be used and lake sediments provide the most valuable repositories for extracting paleotemperature information. Advances in lacustrine alkenone paleothermometry now allow for quantitative reconstruction of lake-water temperature based on the UK37 values of sedimentary alkenones. In addition, a recent study demonstrated the efficacy of non-destructive scanning reflectance spectroscopy in the visible range (VIS-RS) for high-resolution quantitative temperature reconstruction from arctic lake sediments1. In this presentation, I will report a new UK37-based temperature reconstruction and a scanning VIS-RS record (using the RABD660;670 index as a measure of sedimentary chlorin content) from Kulusuk Lake in southeastern Greenland (65.6°N, 37.1°W). The UK37 record reveals a ~3°C increase in summer lake water temperatures between ~10ka and ~7ka followed by sustained warmth until ~4ka and a gradual (~3°C) cooling until ~400 yr BP. The strong correlation between UK37 and RABD660;670 measured in the same sediment core provides further evidence that in arctic lakes where temperature regulates primary productivity, and thereby sedimentary chlorin content, these proxies can be combined to develop high-resolution quantitative temperature records. The Holocene temperature history of Kulusuk Lake determined using this approach corresponds to changes in the size of the glaciers adjacent to the lake, as inferred from sediment minerogenic properties measured with scanning XRF. Glaciers retreated during early Holocene warming, likely disappeared during the period of mid-Holocene warmth, and advanced after 4ka. I will also discuss new UK37 and RABD660;670 reconstructions from northwestern Svalbard and the central Brooks Range of Alaska within the framework of published regional temperature reconstructions and

  4. Factors Controlling Methane in Arctic Lakes of Southwest Greenland.

    Science.gov (United States)

    Northington, Robert M; Saros, Jasmine E

    2016-01-01

    We surveyed 15 lakes during the growing season of 2014 in Arctic lakes of southwest Greenland to determine which factors influence methane concentrations in these systems. Methane averaged 2.5 μmol L-1 in lakes, but varied a great deal across the landscape with lakes on older landscapes farther from the ice sheet margin having some of the highest values of methane reported in lakes in the northern hemisphere (125 μmol L-1). The most important factors influencing methane in Greenland lakes included ionic composition (SO4, Na, Cl) and chlorophyll a in the water column. DOC concentrations were also related to methane, but the short length of the study likely underestimated the influence and timing of DOC on methane concentrations in the region. Atmospheric methane concentrations are increasing globally, with freshwater ecosystems in northern latitudes continuing to serve as potentially large sources in the future. Much less is known about how freshwater lakes in Greenland fit in the global methane budget compared to other, more well-studied areas of the Arctic, hence our work provides essential data for a more complete view of this rapidly changing region.

  5. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Science.gov (United States)

    Soldánová, Miroslava; Georgieva, Simona; Roháčováa, Jana; Knudsen, Rune; Kuhn, Jesper A.; Henriksen, Eirik H.; Siwertsson, Anna; Shaw, Jenny C.; Kuris, Armand M.; Amundsen, Per-Arne; Scholz, Tomáš; Lafferty, Kevin D.; Kostadinova, Aneta

    2017-01-01

    To identify trematode diversity and life-cycles in the sub-Arctic Lake Takvatn, Norway, we characterised 120 trematode isolates from mollusc first intermediate hosts, metacercariae from second intermediate host fishes and invertebrates, and adults from fish and invertebrate definitive hosts, using molecular techniques. Phylogenies based on nuclear and/or mtDNA revealed high species richness (24 species or species-level genetic lineages), and uncovered trematode diversity (16 putative new species) from five families typical in lake ecosystems (Allocreadiidae, Diplostomidae, Plagiorchiidae, Schistosomatidae and Strigeidae). Sampling potential invertebrate hosts allowed matching of sequence data for different stages, thus achieving molecular elucidation of trematode life-cycles and exploration of host-parasite interactions. Phylogenetic analyses also helped identify three major mollusc intermediate hosts (Radix balthica, Pisidium casertanum and Sphaerium sp.) in the lake. Our findings increase the known trematode diversity at the sub-Arctic Lake Takvatn, showing that digenean diversity is high in this otherwise depauperate sub-Arctic freshwater ecosystem, and indicating that sub-Arctic and Arctic ecosystems may be characterised by unique trematode assemblages.

  6. Physiological and ecological effects of increasing temperature on fish production in lakes of Arctic Alaska

    Science.gov (United States)

    Carey, Michael P.; Zimmerman, Christian E.

    2014-01-01

    Lake ecosystems in the Arctic are changing rapidly due to climate warming. Lakes are sensitive integrators of climate-induced changes and prominent features across the Arctic landscape, especially in lowland permafrost regions such as the Arctic Coastal Plain of Alaska. Despite many studies on the implications of climate warming, how fish populations will respond to lake changes is uncertain for Arctic ecosystems. Least Cisco (Coregonus sardinella) is a bellwether for Arctic lakes as an important consumer and prey resource. To explore the consequences of climate warming, we used a bioenergetics model to simulate changes in Least Cisco production under future climate scenarios for lakes on the Arctic Coastal Plain. First, we used current temperatures to fit Least Cisco consumption to observed annual growth. We then estimated growth, holding food availability, and then feeding rate constant, for future projections of temperature. Projected warmer water temperatures resulted in reduced Least Cisco production, especially for larger size classes, when food availability was held constant. While holding feeding rate constant, production of Least Cisco increased under all future scenarios with progressively more growth in warmer temperatures. Higher variability occurred with longer projections of time mirroring the expanding uncertainty in climate predictions further into the future. In addition to direct temperature effects on Least Cisco growth, we also considered changes in lake ice phenology and prey resources for Least Cisco. A shorter period of ice cover resulted in increased production, similar to warming temperatures. Altering prey quality had a larger effect on fish production in summer than winter and increased relative growth of younger rather than older age classes of Least Cisco. Overall, we predicted increased production of Least Cisco due to climate warming in lakes of Arctic Alaska. Understanding the implications of increased production of Least Cisco to

  7. Anthropogenic mercury deposition to arctic lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hermanson, M.H. [Westchester University, Westchester, PA (United States). Dept. of Health

    1998-01-01

    The history of atmospheric mercury inputs to remote arctic regions can be measured in lake sediment cores using lead-210 chronology. In the investigation, total mercury deposition is measured in sediments from Imitavik and Annak Lakes on the Belcher Islands in southeastern Hudson Bay, an area in the southern Canadian Arctic with no history of local industrial or agricultural sources of contamination. Both lakes received background and atmospheric inputs of mercury while Annak also received mercury from raw domestic sewage from the Hamlet of Sanikiluaq, a growing Inuit community of about 550 established in the late 1960s. Results from Imitavik show that anthropogenic mercury inputs, apparently transported through the atmosphere, began to appear in the mid-eighteenth century, and continued to the 1990s. Annak had a similar mercury history until the late 1960s when disposal of domestic sewage led to increased sediment and contaminant accumulation. The high input of mercury to Annak confirms that Sanikiluaq residents are exposed to mercury through native food sources. 39 refs., 7 figs., 3 tabs.

  8. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( pangaea.de/10.1594/PANGAEA.868349" target="_blank">https://doi.pangaea.de/10.1594/PANGAEA.868349.

  9. Shifting balance of thermokarst lake ice regimes across the Arctic Coastal Plain of northern Alaska

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Lu, Zong; Whitman, Matthew S.

    2012-01-01

    The balance of thermokarst lakes with bedfast- and floating-ice regimes across Arctic lowlands regulates heat storage, permafrost thaw, winter-water supply, and over-wintering aquatic habitat. Using a time-series of late-winter synthetic aperture radar (SAR) imagery to distinguish lake ice regimes in two regions of the Arctic Coastal Plain of northern Alaska from 2003–2011, we found that 18% of the lakes had intermittent ice regimes, varying between bedfast-ice and floating-ice conditions. Comparing this dataset with a radar-based lake classification from 1980 showed that 16% of the bedfast-ice lakes had shifted to floating-ice regimes. A simulated lake ice thinning trend of 1.5 cm/yr since 1978 is believed to be the primary factor driving this form of lake change. The most profound impacts of this regime shift in Arctic lakes may be an increase in the landscape-scale thermal offset created by additional lake heat storage and its role in talik development in otherwise continuous permafrost as well as increases in over-winter aquatic habitat and winter-water supply.

  10. Arctic deltaic lake sediments as recorders of fluvial organic matter deposition

    Directory of Open Access Journals (Sweden)

    Jorien E Vonk

    2016-08-01

    Full Text Available Arctic deltas are dynamic and vulnerable regions that play a key role in land-ocean interactions and the global carbon cycle. Delta lakes may provide valuable historical records of the quality and quantity of fluvial fluxes, parameters that are challenging to investigate in these remote regions. Here we study lakes from across the Mackenzie Delta, Arctic Canada, that receive fluvial sediments from the Mackenzie River when spring flood water levels rise above natural levees. We compare downcore lake sediments with suspended sediments collected during the spring flood, using bulk (% organic carbon, % total nitrogen, 13C, 14C and molecular organic geochemistry (lignin, leaf waxes. High-resolution age models (137Cs, 210Pb of downcore lake sediment records (n=11 along with lamina counting on high-resolution radiographs show sediment deposition frequencies ranging between annually to every 15 years. Down-core geochemical variability in a representative delta lake sediment core is consistent with historical variability in spring flood hydrology (variability in peak discharge, ice jamming, peak water levels. Comparison with earlier published Mackenzie River depth profiles shows that (i lake sediments reflect the riverine surface suspended load, and (ii hydrodynamic sorting patterns related to spring flood characteristics are reflected in the lake sediments. Bulk and molecular geochemistry of suspended particulate matter from the spring flood peak and lake sediments are relatively similar showing a mixture of modern higher-plant derived material, older terrestrial permafrost material, and old rock-derived material. This suggests that deltaic lake sedimentary records hold great promise as recorders of past (century-scale riverine fluxes and may prove instrumental in shedding light on past behaviour of arctic rivers, as well as how they respond to a changing climate.

  11. Differentiating TOC sources, preservation, and potential methane emissions in sub-Arctic lakes in Sweden

    Science.gov (United States)

    Johnson, J. E.; Varner, R. K.; Wik, M.; Chanton, J.; Crill, P. M.

    2015-12-01

    Organic carbon-rich sediments from high latitude, shallow lakes and ponds are significant sources of methane throughout the Arctic. The origin and evolution of these lakes and ponds, however, is often not the same. Several lake types have been identified based on (1) hydrological conditions (melt-water fed, rain water fed, groundwater influenced, evaporation dominated, drained) (2) permafrost condition (thermokarst), and (3) time of origin (glacial or post-glacial). Given sufficient time (100's to 1000's years) many of these lake types may morph into others. In sub-Arctic Sweden, near Abisko and within the zone of discontinuous permafrost, the elongate glacial lake Torneträsk is fed by several streams draining the surrounding highlands. Lake Tornetrask is one of several NW-SE trending glacial lakes common in the landscape throughout northern and western Sweden. Between and alongside these glacial lakes, several small (ponds exist in low-lying mires. Sediment cores from the lakes in the Stordalen Mire are characterized by high total organic carbon (TOC) content (10-50 wt. %) in the uppermost ~50 cm and commonly underlain by glaciofluvial derived sediments with lower TOC (emissions from several of these lakes has also been measured and is driven by heat input. Coincident young ages of carbon in the sediments and in methane indicate in situ production. A published record from Lake Torneträsk shows sediments there contain significantly less TOC (1-2.5 wt. %) that is derived primarily from old, terrestrial organic carbon delivered via rivers to the lake. Although the larger and deeper glacial lakes currently occupy much of the landscape it is becoming clear that as the Arctic warms TOC preservation and methane production in the smaller lakes and ponds play a more significant, immediate role in emission of methane to the atmosphere. With continued warming in the Arctic, terrestrial TOC will be relinquished from highland watersheds to glacial lakes, but the methane

  12. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    Science.gov (United States)

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John; Gaglioti, Benjamin V.; Czimzik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3–4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  13. Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon

    Science.gov (United States)

    Elder, Clayton D.; Xu, Xiaomei; Walker, Jennifer; Schnell, Jordan L.; Hinkel, Kenneth M.; Townsend-Small, Amy; Arp, Christopher D.; Pohlman, John W.; Gaglioti, Benjamin V.; Czimczik, Claudia I.

    2018-01-01

    Climate-sensitive Arctic lakes have been identified as conduits for ancient permafrost-carbon (C) emissions and as such accelerate warming. However, the environmental factors that control emission pathways and their sources are unclear; this complicates upscaling, forecasting and climate-impact-assessment efforts. Here we show that current whole-lake CH4 and CO2 emissions from widespread lakes in Arctic Alaska primarily originate from organic matter fixed within the past 3-4 millennia (modern to 3,300 ± 70 years before the present), and not from Pleistocene permafrost C. Furthermore, almost 100% of the annual diffusive C flux is emitted as CO2. Although the lakes mostly processed younger C (89 ± 3% of total C emissions), minor contributions from ancient C sources were two times greater in fine-textured versus coarse-textured Pleistocene sediments, which emphasizes the importance of the underlying geological substrate in current and future emissions. This spatially extensive survey considered the environmental and temporal variability necessary to monitor and forecast the fate of ancient permafrost C as Arctic warming progresses.

  14. The predominance of young carbon in Arctic whole-lake CH4 and CO2 emissions and implications for Boreal yedoma lakes.

    Science.gov (United States)

    Elder, C.; Xu, X.; Walker, J. C.; Walter Anthony, K. M.; Pohlman, J.; Arp, C. D.; Townsend-Small, A.; Hinkel, K. M.; Czimczik, C. I.

    2017-12-01

    Lakes in Arctic and Boreal regions are hotspots for atmospheric exchange of the greenhouse gases CO2 and CH4. Thermokarst lakes are a subset of these Northern lakes that may further accelerate climate warming by mobilizing ancient permafrost C (> 11,500 years old) that has been disconnected from the active C cycle for millennia. Northern lakes are thus potentially powerful agents of the permafrost C-climate feedback. While they are critical for projecting the magnitude and timing these feedbacks from the rapidly warming circumpolar region, we lack datasets capturing the diversity of northern lakes, especially regarding their CH4contributions to whole-lake C emissions and their ability to access and mobilize ancient C. We measured the radiocarbon (14C) ages of CH4 and CO2 emitted from 60 understudied lakes and ponds in Arctic and Boreal Alaska during winter and summer to estimate the ages of the C sources yielding these gases. Integrated mean ages for whole-lake emissions were inferred from the 14C-age of dissolved gases sampled beneath seasonal ice. Additionally, we measured concentrations and 14C values of gases emitted by ebullition and diffusion in summer to apportion C emission pathways. Using a multi-sourced mass balance approach, we found that whole-lake CH4 and CO2 emissions were predominantly sourced from relatively young C in most lakes. In Arctic lakes, CH4 originated from 850 14C-year old C on average, whereas dissolved CO2 was sourced from 400 14C-year old C, and represented 99% of total dissolved C flux. Although ancient C had a minimal influence (11% of total emissions), we discovered that lakes in finer-textured aeolian deposits (Yedoma) emitted twice as much ancient C as lakes in sandy regions. In Boreal, yedoma-type lakes, CH4 and CO2 were fueled by significantly older sources, and mass balance results estimated CH4-ebullition to comprise 50-60% of whole-lake CH4 emissions. The mean 14C-age of Boreal emissions was 6,000 14C-years for CH4-C, and 2

  15. Cesium in Arctic char lakes - effects of the Chernobyl accident

    International Nuclear Information System (INIS)

    Hammar, J.; Notter, M.; Neumann, G.

    1991-01-01

    Fallout radiocesium from the Chernobyl accident caused extensive contamination in a region of previously well studied alpine lake ecosystems in northern Sweden. Levels of Cs-137 in the barren catchment basins reached 20-50 kBq/m 2 during 1986. The distribution, pathways and major transport mechanisms of radiocesium through the lake ecosystems were studied during 1986-1990. Levels of Cs-137, Cs-134 and K-40 in water, surface sediment, detritus (sediment traps) and different trophic levels of the food chains of Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) were monitored in a series of lakes forming a matrix of 4 natural lakes and 3 lake reservoirs, with or without the introduced new fish food organism, Mysis relicta. The reservoirs were found to act as sinks for radiocesium with extensive accumulation recorded in water, detritus, sediment, invertebrates and salmonids. Whereas concentrations in water and biota have declined from the extreme peak levels in 1986-1987, the levels in surface sediment increased extensively until fall of 1988. The concentration of Cs-137 in fish populations feeding on benthic invertebrates, i.e. mysids and amphipods, were significantly higher than in planktivorous fish. During the three first winters a significant increase in levels of Cs-137 in winter active Arctic char were recorded, whereas the levels declined during the succeeding summers. The introduced Mysis relicta were found to enhance the transport of Cs-137 from zooplankton and settling particles to Arctic char and brown trout. The results suggest a successive change in transport of radiocesium from water via zooplankton to planktivorous fish during the early summer of 1986 to post-depositional mobilization via benthic organisms to benthic fish in successive years. (213 refs.) (au)

  16. Persistent toxic substances in remote lake and coastal sediments from Svalbard, Norwegian Arctic: Levels, sources and fluxes

    International Nuclear Information System (INIS)

    Jiao Liping; Zheng, Gene J.; Minh, Tu Binh; Richardson, Bruce; Chen Liqi; Zhang Yuanhui; Yeung, Leo W.; Lam, James C.W.; Yan, Xulin; Lam, Paul K.S.; Wong, Ming H.

    2009-01-01

    Surface sediments from remote lakes and coastal areas from Ny-Alesund, Svalbard, Norwegian Arctic were analyzed for polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Relatively high levels of PAHs were encountered from several lakes from Ny-Alesund, which were within the range of levels reported for European high mountain lakes and some urban/industrialized areas in the world, pointing to the role of remote Arctic lakes as potential reservoir of semi-volatile organic compounds. Specific patterns of PBDEs were observed, showing higher concentrations of lower brominated compounds such as BDE-7, 17 and 28. Estimated surface sediment fluxes of PAHs in Ny-Alesund remote lakes were similar to those observed for some European high mountain lakes. The current PAH levels in sediments from three lakes exceeded Canadian sediment quality guidelines, suggesting the presence of possible risks for aquatic organisms and the need for further studies. - High levels of PAHs and specific patterns of PBDEs were found in sediments from the remote Norwegian Arctic lakes

  17. Factors affecting biotic mercury concentrations and biomagnification through lake food webs in the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Lescord, Gretchen L., E-mail: glescord@gmail.com [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kidd, Karen A. [University of New Brunswick/Canadian Rivers Institute, 100 Tucker Park Rd, Saint John, NB E2L 4A6 (Canada); Kirk, Jane L. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada); O' Driscoll, Nelson J. [Acadia University, 15 University Ave, Wolfville, NS B4P 2R6 (Canada); Wang, Xiaowa; Muir, Derek C.G. [Environment Canada, Aquatic Contaminants Research Division, 867 Lakeshore Rd, Burlington, ON L7S 1A1 (Canada)

    2015-03-15

    In temperate regions of Canada, mercury (Hg) concentrations in biota and the magnitude of Hg biomagnification through food webs vary between neighboring lakes and are related to water chemistry variables and physical lake features. However, few studies have examined factors affecting the variable Hg concentrations in landlocked Arctic char (Salvelinus alpinus) or the biomagnification of Hg through their food webs. We estimated the food web structure of six high Arctic lakes near Resolute Bay, Nunavut, Canada, using stable carbon (δ{sup 13}C) and nitrogen (δ{sup 15}N) isotopes and measured Hg (total Hg (THg) in char, the only fish species, and methylmercury (MeHg) in chironomids and zooplankton) concentrations in biota collected in 2010 and 2011. Across lakes, δ{sup 13}C showed that benthic carbon (chironomids) was the dominant food source for char. Regression models of log Hg versus δ{sup 15}N (of char and benthic invertebrates) showed positive and significant slopes, indicting Hg biomagnification in all lakes, and higher slopes in some lakes than others. However, no principal components (PC) generated using all water chemistry data and physical characteristics of the lakes predicted the different slopes. The PC dominated by aqueous ions was a negative predictor of MeHg concentrations in chironomids, suggesting that water chemistry affects Hg bioavailability and MeHg concentrations in these lower-trophic-level organisms. Furthermore, regression intercepts were predicted by the PCs dominated by catchment area, aqueous ions, and MeHg. Weaker relationships were also found between THg in small char or MeHg in pelagic invertebrates and the PCs dominated by catchment area, and aqueous nitrate and MeHg. Results from these high Arctic lakes suggest that Hg biomagnification differs between systems and that their physical and chemical characteristics affect Hg concentrations in lower-trophic-level biota. - Highlights: • Mercury (Hg) in Arctic char and invertebrates

  18. Patterns of lake occupancy by fish indicate different adaptations to life in a harsh Arctic environment

    Science.gov (United States)

    Haynes, Trevor B.; Rosenberger, Amanda E.; Lindberg, Mark S.; Whitman, Matthew; Schmutz, Joel A.

    2014-01-01

    Summary For six fish species sampled from 86 lakes on the Arctic Coastal Plain, Alaska, we examined whether lake occupancy was related to variables representing lake size, colonisation potential and/or the presence of overwintering habitat.

  19. Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway)

    NARCIS (Netherlands)

    Donk, van E.; Faafeng, B.A.; Lange, de H.J.

    2001-01-01

    Incubation experiments demonstrated a differential sensitivity to natural UV-radiation among the dominant phytoplankton species from three Arctic lakes, situated near Ny-Ålesund, Spitsbergen (79° N). The growth of small chlorophytes, diatoms and picocyanobacteria from two oligotrophic lakes was

  20. Quantifying the Variability of CH4 Emissions from Pan-Arctic Lakes with Lake Biogeochemical and Landscape Evolution Models

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.

    2014-12-01

    Recent studies in the arctic and subarctic show that CH4 emissions from pan-arctic lakes are playing much more significant roles in the regional carbon cycling than previously estimated. Permafrost thawing due to pronounced warming at northern high latitudes affects lake morphology, changing its CH4 emissions. Thermokarst can enlarge the extent of artic lakes, exposing stable ancient carbon buried in the permafrost zone for degradation and changing a previously known carbon sink to a large carbon source. In some areas, the thawing of subarctic discontinuous and isolated permafrost can diminish thermokarst lakes. To date, few models have considered these important hydrological and biogeochemical processes to provide adequate estimation of CH4 emissions from these lakes. To fill this gap, we have developed a process-based climate-sensitive lake biogeochemical model and a landscape evolution model, which have been applied to quantify the state and variability of CH4 emissions from this freshwater system. Site-level experiments show the models are capable to capture the spatial and temporal variability of CH4 emissions from lakes across Siberia and Alaska. With the lake biogeochemical model solely, we estimate that the magnitude of CH4 emissions from lakes is 13.2 Tg yr-1 in the north of 60 ºN at present, which is on the same order of CH4 emissions from northern high-latitude wetlands. The maximum increment is 11.8 Tg CH4 yr-1 by the end of the 21st century when the worst warming scenario is assumed. We expect the landscape evolution model will improve the existing estimates.

  1. PeRL: A circum-Arctic Permafrost Region Pond and Lake database

    Science.gov (United States)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A.B.K.; Sjoberg, Ylva; Gunther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, J.; Siewert, Matthias B.; Riley, William J.; Koven, Charles; Boike, Julia

    2017-01-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area

  2. Cyanotoxins in arctic lakes of southwestern Greenland and the potential for toxin transfer within-lake and across the aquatic-terrestrial boundary

    Science.gov (United States)

    Trout-Haney, J. V.; Cottingham, K. L.

    2015-12-01

    Arctic lakes are often characterized as low-resource environments in which the autotrophic community is limited by factors such as nutrients, temperature, and light. Studies of cyanotoxins have traditionally focused on nutrient-rich lakes with conspicuous blooms, however toxigenic cyanobacteria are confined to neither high nutrient environments nor planktonic taxa. We quantified the occurrence of cyanotoxins across 19 arctic lakes of varying size and depth in the Kangerlussuaq region of southwestern Greenland. Whole lake water microcystins (MC) were detected in all lakes and ranged from low (100 ng/L) concentrations. Benthic colonial cyanobacteria of the genus Nostoc are a prominent feature of certain lakes in this region, with estimated densities ranging between 500 and >500,000 colonies per lake. MC were present in the tissue of Nostoc colonies (95% CI, 1638.9 - 3237.6 pg MC (g wet weight)-1) and were actively released by colonies into surrounding water in laboratory trials. These results highlight the potential importance of toxic benthic cyanobacteria in lake ecosystems. Further, we investigated the transfer of these cyanotoxins to other organisms in the lake as well as several mechanisms (i.e., emerging insects, aerosols) that may influence the movement of toxins into the terrestrial ecosystem. The presence and movement of cyanotoxins in the coupled terrestrial-aquatic ecosystem demonstrate that high-latitude lakes can support toxigenic cyanobacteria, and that we may be underestimating the potential for these systems to develop high levels of toxicity in the future.

  3. A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.; Whitman, Matthew S.; Nigro, Debora A.; Nitze, Ingmar; Beaver, John; Gadeke, Anne; Zuck, Callie; Liljedahl, Anna K.; Daanen, Ronald; Torvinen, Eric; Fritz, Stacey; Grosse, Guido

    2017-01-01

    Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.

  4. Trends in historical mercury deposition inferred from lake sediment cores across a climate gradient in the Canadian High Arctic.

    Science.gov (United States)

    Korosi, Jennifer B; Griffiths, Katherine; Smol, John P; Blais, Jules M

    2018-06-02

    Recent climate change may be enhancing mercury fluxes to Arctic lake sediments, confounding the use of sediment cores to reconstruct histories of atmospheric deposition. Assessing the independent effects of climate warming on mercury sequestration is challenging due to temporal overlap between warming temperatures and increased long-range transport of atmospheric mercury following the Industrial Revolution. We address this challenge by examining mercury trends in short cores (the last several hundred years) from eight lakes centered on Cape Herschel (Canadian High Arctic) that span a gradient in microclimates, including two lakes that have not yet been significantly altered by climate warming due to continued ice cover. Previous research on subfossil diatoms and inferred primary production indicated the timing of limnological responses to climate warming, which, due to prevailing ice cover conditions, varied from ∼1850 to ∼1990 for lakes that have undergone changes. We show that climate warming may have enhanced mercury deposition to lake sediments in one lake (Moraine Pond), while another (West Lake) showed a strong signal of post-industrial mercury enrichment without any corresponding limnological changes associated with warming. Our results provide insights into the role of climate warming and organic carbon cycling as drivers of mercury deposition to Arctic lake sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The structuring role of fish in Greenland lakes: an overview based on contemporary and paleoecological studies of 87 lakes from the low and the high Arctic

    DEFF Research Database (Denmark)

    Jeppesen, Erik; Lauridsen, Torben L.; Christoffersen, Kirsten S.

    2017-01-01

    largest between fishless lakes and lakes hosting only sticklebacks (Gasterosteus aculeatus), while lakes with both Arctic charr (Salvelinus arcticus) and stickleback revealed a more modest response, indicating that presence of charr modulates the predation effect of sticklebacks. It is predicted that more...

  6. Millennial-scale variability in Holocene aquatic productivity from Burial Lake, Arctic Alaska

    Science.gov (United States)

    Finkenbinder, Matthew S.; Abbott, Mark B.; Stoner, Joseph S.; Ortiz, Joseph D.; Finney, Bruce P.; Dorfman, Jason M.; Stansell, Nathan D.

    2018-05-01

    Holocene records of lacustrine primary production are commonly used to reconstruct past changes in environmental and climatic conditions. While several methods exist to infer paleoproductivity trends, few studies to date have applied multiple geochemical indices in the same core sequence from Arctic lakes to evaluate their fidelity and sensitivity to specific climate variables over long (Holocene length) timescales. In this study, we evaluate sub-century to millennial-scale fluctuations in paleoproductivity over the Holocene using geochemical (biogenic opal and sedimentary chlorin) analyses of sediments from Burial Lake in the western Brooks Range, Alaska. Large fluctuations in opal and related proxies occur at millennial timescales over the last 10,000 years. We interpret the changes in opal to result from variability in diatom productivity, which is indirectly mediated by climate primarily through changes in the duration of the ice-free growing season and the availability of limiting nutrients at this oligotrophic, tundra lake. Comparison of the opal and sedimentary chlorin record, which is correlated with TOC, shows contrasting patterns on both short (century to multi-century) and relatively long (millennial) time scales. The concentration of opal far exceeds that of TOC and variations in sediment dry bulk density, driven by changes in the accumulation of opal, are likely responsible in part for the variations in sedimentary chlorin. Further, C/N ratio values indicate a mixed algal-terrestrial source of sedimentary organic matter. This result highlights the complexity in the climatic interpretation of sedimentary chlorin as an index of whole lake production, because the signal is prone to dilution/concentration from opal and also reflects a combination of aquatic and terrestrial production. Time series analysis of the productivity records indicates the presence of a significant ∼1500-yr oscillation in opal concentration, which has been found in North Atlantic

  7. Paleolimnologic and modeling perspectives on the physical and ecological sensitivity of Arctic tundra lakes to temperature changes

    Science.gov (United States)

    Daniels, W.; Russel, J.; Giblin, A. E.; Longo, W. M.; Morrill, C.; Holland-Stergar, P.; Rose, R.; Huang, Y.

    2016-12-01

    Temperatures are warming rapidly across the Arctic, with the potential to substantially alter freshwater ecosystem structure and functioning. Some important processes, such as allochthonous loading or carbon burial, may respond too slowly to observe in modern monitoring efforts, and therefore require alternative approaches to accurately assess. Here we analyze the physical and ecological sensitivity of Alaska tundra lakes to climate change through the lenses of paleolimnology and lake thermal modeling. We compare a 10,000 year long record of biomarker-inferred temperature change (leaf wax hydrogen isotopes) to independent indicators of lake primary production (chlorophyll a), algal community structure (diatom assemblages), and allochthonous inputs (XRF chemistry) from Lake E5 and Upper Capsule Lake near the Toolik Field Station in Alaska (69 °N, 150 °W). Temperatures varied on the order of 2-5 °C over the last 10,000 years, and warmed 1-2 °C during the post-industrial period. Shifts in diatom communities in both lakes reflect increased lake stratification and lake pH during warmer intervals of the Holocene. While lake stratification is a direct response to temperature, we propose that the pH response is due to a combination of two factors. First, an increase in the length of the ice-free season promotes ventilation of respired CO2 out of the lakes. Thermal modeling suggests that lake ice coverage changes by approximately 6-8 days/°C, and so we expect that ice-cover changed by as much as 3-4 weeks throughout the Holocene. Secondarily, sediment core calcium concentrations suggest increased base cation and alkalinity inputs during warmer periods, most likely due to the thermal-induced deepening of the soil active layer and enhanced carbonate rock weathering. Carbon and chlorophyll concentrations appear negatively correlated with temperature over most the Holocene, attributable to the temperature effect on organic matter respiration, although periods of enhanced

  8. Radiocaesium turnover in Arctic charr (Salvelinus alpinus) and brown trout (Salmo trutta) in a Norwegian lake

    International Nuclear Information System (INIS)

    Forseth, T.; Ugedal, O.; Jonsson, B.; Langeland, A.; Njaastad, O.

    1991-01-01

    The radioactivity of brown trout (Salmo trutta L.) and Arctic charr (Salvelinus alpinus (L.)) was monitored in a Norwegian lake from 1986 to 1989. A distinct difference was observed between brown trout and Arctic charr in the accumulation of radiocaesium ( 134 Cs and 137 Cs) from the Chernobyl fallout, and the study focused on the understanding of this difference. Brown trout had a large food consumption and a corresponding high intake of radiocaesium. Excretion was 20% faster in brown trout than Arctic charr as brown trout lived at high temperatures in epilimnic water. Arctic charr had a lower food consumption (less than one-third of trout) and lived in colder meta-and hypolimnic water. Arctic charr therefore had a lower intake and slower excretion of radiocaesium. Brown trout an Arctic charr had different diets. For brown trout zoobenthos was the dominant food item, whereas Artic charr mainly fed on zooplankton. The radioactivity in the stomach contents of the two species was different in 1986, but similar for the rest of the period. Higher levels of radiocaesium in brown trout than Arctic charr in 1986 were due to a higher food consumption and more radioactive food items in its diet. The parallel development in accumulated radiocaesium through summer 1987 was probably formed by brown trout balancing a higher intake with a faster excretion. The ecological half-lives of radiocaesium in brown trout (357 days) and Arctic charr (550 days) from Lake Hoeysjoeen indicated a slow removal of the isotopes from the food webs. (author)

  9. Remotely Sensing Lake Water Volumes on the Inner Arctic Coastal Plain of Northern Alaska

    Science.gov (United States)

    Simpson, C. E.; Arp, C. D.; Jones, B. M.; Hinkel, K. M.; Carroll, M.; Smith, L. C.

    2017-12-01

    Thermokarst lake depth is controlled by the amount of excess ice in near-surface permafrost, with lake depths of about 1 - 3 m in areas of epigenetic permafrost and over 10 m in areas of syngenetic permafrost. An important exception to these general patterns is found on the inner Arctic Coastal Plain (ACP) of northern Alaska, where deep lakes occur in Pleistocene-aged, ground-ice poor sandy terrain. These lakes cover 20% of the currently inactive sand sheet and dune deposit (referred to as the Pleistocene Sand Sea) that comprises approximately 7000 km2 of the ACP. Surrounded by high and eroding bluffs, sand sea lakes lie in natural depressions and are characterized by wide, shallow littoral shelves and central troughs that are typically oriented NNW to SSE and can reach depths greater than 20 m. Despite their unique form and extensive coverage, these lakes have received little prior study and a literature gap remains regarding regional water storage. This research classifies sand sea lakes, estimates individual lake volume, and provides a first quantification of water storage in a region of the lake-dominated ACP. We measured bathymetric profiles in 19 sand sea lakes using a sonar recorder to capture various lake depth gradients. Bathymetric surveys collected by oil industry consultants, lake monitoring programs, and habitat studies serve as additional datasets. These field measured lake depth data points were used to classify Color Infrared Photography, WorldView-2 satellite imagery, and Landsat-OLI satellite imagery to develop a spectral depth-classification algorithm and facilitate the interpolation of the bathymetry for study lakes in the inner ACP. Finally, we integrate the remotely sensed bathymetry and imagery-derived lake surface area to estimate individual and regional-scale lake volume. In addition to the natural function of these lakes in water storage, energy balance, and habitat provision, the need for winter water supply to build ice roads for oil

  10. Distribution of Po-210 and Pb-210 in Arctic Char (Salvelinus alpinus) from an Arctic freshwater lake

    Energy Technology Data Exchange (ETDEWEB)

    Gwynn, J.P.; Rudolfsen, G. [Norwegian Radiation Protection Authority, The Fram Centre, Tromsoe (Norway)

    2014-07-01

    There is little information available with regard to the accumulation of Po-210 and Pb-210 by freshwater fish in natural freshwater systems despite the potential for relevant ingestion doses to man. This is maybe of particular pertinence for certain population groups where freshwater fish are an important dietary food item. Equally, it is important to understand the body distributions of these naturally occurring radionuclides to quantify the resulting doses to different tissues and organs of freshwater fish. With regard to the latter, it is important to consider not only the doses arising from bio-accumulated Po-210 and Pb-210 in various body compartments but additionally the internal dose from unabsorbed Po-210 and Pb-210 in the digestive tract. In this study, activity concentrations of Po-210 and Pb-210 were determined in muscle and various internal organs of Arctic Charr (Salvelinus alpinus) sampled from a lake in the Norwegian Arctic (69 deg. 4' N, 19 deg. 20' E). Observed activity concentrations of Po-210 and Pb-210 in different tissues will be discussed in relation to physiological parameters and ambient lake water activity concentrations. Results from this study will be compared to two similar studies conducted in freshwater systems where elevated activity concentrations of these radionuclides have been observed. Ingestion dose rates to man and effective absorbed dose rates to different tissues and organs of Arctic Charr from Po-210 and Pb-210 will be derived and compared to those from observed activity concentrations of the anthropogenic radionuclide Cs-137. (authors)

  11. Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic coastal plain, Alaska

    Science.gov (United States)

    Arp, C.D.; Jones, Benjamin M.; Urban, F.E.; Grosse, G.

    2011-01-01

    Thermokarst lakes cover > 20% of the landscape throughout much of the Alaskan Arctic Coastal Plain (ACP) with shallow lakes freezing solid (grounded ice) and deeper lakes maintaining perennial liquid water (floating ice). Thus, lake depth relative to maximum ice thickness (1·5–2·0 m) represents an important threshold that impacts permafrost, aquatic habitat, and potentially geomorphic and hydrologic behaviour. We studied coupled hydrogeomorphic processes of 13 lakes representing a depth gradient across this threshold of maximum ice thickness by analysing remotely sensed, water quality, and climatic data over a 35-year period. Shoreline erosion rates due to permafrost degradation ranged from L) with periods of full and nearly dry basins. Shorter-term (2004–2008) specific conductance data indicated a drying pattern across lakes of all depths consistent with the long-term record for only shallow lakes. Our analysis suggests that grounded-ice lakes are ice-free on average 37 days longer than floating-ice lakes resulting in a longer period of evaporative loss and more frequent negative P − EL. These results suggest divergent hydrogeomorphic responses to a changing Arctic climate depending on the threshold created by water depth relative to maximum ice thickness in ACP lakes.

  12. Exploratory Hydrocarbon Drilling Impacts to Arctic Lake Ecosystems

    Science.gov (United States)

    Thienpont, Joshua R.; Kokelj, Steven V.; Korosi, Jennifer B.; Cheng, Elisa S.; Desjardins, Cyndy; Kimpe, Linda E.; Blais, Jules M.; Pisaric, Michael FJ.; Smol, John P.

    2013-01-01

    Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the

  13. Changing seasonality of Arctic hydrology disrupts key biotic linkages in Arctic aquatic ecosystems.

    Science.gov (United States)

    Deegan, L.; MacKenzie, C.; Peterson, B. J.; Fishscape Project

    2011-12-01

    Arctic grayling (Thymallus arcticus) is an important circumpolar species that provide a model system for understanding the impacts of changing seasonality on arctic ecosystem function. Grayling serve as food for other biota, including lake trout, birds and humans, and act as top-down controls in stream ecosystems. In Arctic tundra streams, grayling spend their summers in streams but are obligated to move back into deep overwintering lakes in the fall. Climatic change that affects the seasonality of river hydrology could have a significant impact on grayling populations: grayling may leave overwintering lakes sooner in the spring and return later in the fall due to a longer open water season, but the migration could be disrupted by drought due to increased variability in discharge. In turn, a shorter overwintering season may impact lake trout dynamics in the lakes, which may rely on the seasonal inputs of stream nutrients in the form of migrating grayling into these oligotrophic lakes. To assess how shifting seasonality of Arctic river hydrology may disrupt key trophic linkages within and between lake and stream components of watersheds on the North Slope of the Brooks Mountain Range, Alaska, we have undertaken new work on grayling and lake trout population and food web dynamics. We use Passive Integrated Transponder (PIT) tags coupled with stream-width antenna units to monitor grayling movement across Arctic tundra watersheds during the summer, and into overwintering habitat in the fall. Results indicate that day length may prime grayling migration readiness, but that flooding events are likely the cue grayling use to initiate migration in to overwintering lakes. Many fish used high discharge events in the stream as an opportunity to move into lakes. Stream and lake derived stable isotopes also indicate that lake trout rely on these seasonally transported inputs of stream nutrients for growth. Thus, changes in the seasonality of river hydrology may have broader

  14. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido; Bondurant, Allen C.; Romanovksy, Vladimir E.; Hinkel, Kenneth M.; Parsekian, Andrew D.

    2016-01-01

    Interactions and feedbacks between abundant surface waters and permafrost fundamentally shape lowland Arctic landscapes. Sublake permafrost is maintained when the maximum ice thickness (MIT) exceeds lake depth and mean annual bed temperatures (MABTs) remain below freezing. However, declining MIT since the 1970s is likely causing talik development below shallow lakes. Here we show high-temperature sensitivity to winter ice growth at the water-sediment interface of shallow lakes based on year-round lake sensor data. Empirical model experiments suggest that shallow (1 m depth) lakes have warmed substantially over the last 30 years (2.4°C), with MABT above freezing 5 of the last 7 years. This is in comparison to slower rates of warming in deeper (3 m) lakes (0.9°C), with already well-developed taliks. Our findings indicate that permafrost below shallow lakes has already begun crossing a critical thawing threshold approximately 70 years prior to predicted terrestrial permafrost thaw in northern Alaska.

  15. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    Directory of Open Access Journals (Sweden)

    S. Muster

    2017-06-01

    Full Text Available Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013 high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( <  300 m a.s.l. land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands

  16. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids

    DEFF Research Database (Denmark)

    Jeppesen, E.; Christoffersen, K.; Landkildehus, F.

    2001-01-01

    We studied the trophic structure in the pelagial and crustacean remains in the surface 1 cm of the sediment of 13 shallow, high arctic lakes in northeast Greenland (74 N). Seven lakes were fishless, while the remaining six hosted a dwarf form of Arctic charr (Salvelinus alpinus). In fishless lakes...... sp. in lakes with Lepidurus, while they were abundant in lakes with fish. The low abundance in fishless lakes could not be explained by damage of crustacean remains caused by Lepidurus feeding in the sediment, because remains of the more soft-shelled, pelagic-living Daphnia were abundant...... in the sediment of these lakes. No significant differences between lakes with and without fish were found in chlorophyll a, total phosphorus, total nitrogen, conductivity or temperature, suggesting that the observed link between Lepidurus arcticus and the benthic crustacean community is causal. Consequently...

  17. Circulation and Respiration in Ice-covered Alaskan Arctic Lakes

    Science.gov (United States)

    MacIntyre, S.; Cortés, A.

    2016-12-01

    Arctic lakes are ice-covered 9 months of the year. For some of this time, the sediments heat the overlying water, and respiration in the sediments increases specific conductivity, depletes oxygen, and produces greenhouse gases (GHG). Whether anoxia forms and whether the greenhouse gases are sequestered at depth depends on processes inducing circulation and upward fluxes. Similarly, whether the GHG are released at ice off depends on the extent of vertical mixing at that time. Using time series meteorological data and biogeochemical arrays with temperature, specific conductivity, and optical oxygen sensors in 5 lakes ranging from 1 to 150 ha, we illustrate the connections between meteorological forcing and within lake processes including gravity currents resulting from increased density just above the sediment water interface and internal waves including those induced by winds acting on the surface of the ice and at ice off. CO2 production was well predicted by the initial rate of oxygen drawdown near the bottom at ice on and that the upward density flux depended on lake size, with values initially high in all lakes but near molecular in lakes of a few hectares in size by mid-winter. Both CO2 production and within lake vertical fluxes were independent of the rate of cooling in fall and subsequent within lake temperatures under the ice. Anoxia formed near the sediments in all 5 lakes with the concentration of CH4 dependent, in part, on lake size and depth. Twenty to fifty percent of the greenhouse gases produced under the ice remained in the lakes by the time thermal stratification was established in summer despite considerable internal wave induced mixing at the time of ice off. These observations and analysis lay a framework for understanding the links between within lake hydrodynamics, within year variability, and the fraction of greenhouse gases produced over the winter which evade at ice off.

  18. Using Snow Fences to Augument Fresh Water Supplies in Shallow Arctic Lakes

    Energy Technology Data Exchange (ETDEWEB)

    Stuefer, Svetlana

    2013-03-31

    This project was funded by the U.S. Department of Energy, National Energy Technology Laboratory (NETL) to address environmental research questions specifically related to Alaska's oil and gas natural resources development. The focus of this project was on the environmental issues associated with allocation of water resources for construction of ice roads and ice pads. Earlier NETL projects showed that oil and gas exploration activities in the U.S. Arctic require large amounts of water for ice road and ice pad construction. Traditionally, lakes have been the source of freshwater for this purpose. The distinctive hydrological regime of northern lakes, caused by the presence of ice cover and permafrost, exerts influence on lake water availability in winter. Lakes are covered with ice from October to June, and there is often no water recharge of lakes until snowmelt in early June. After snowmelt, water volumes in the lakes decrease throughout the summer, when water loss due to evaporation is considerably greater than water gained from rainfall. This balance switches in August, when air temperature drops, evaporation decreases, and rain (or snow) is more likely to occur. Some of the summer surface storage deficit in the active layer and surface water bodies (lakes, ponds, wetlands) is recharged during this time. However, if the surface storage deficit is not replenished (for example, precipitation in the fall is low and near‐surface soils are dry), lake recharge is directly affected, and water availability for the following winter is reduced. In this study, we used snow fences to augment fresh water supplies in shallow arctic lakes despite unfavorable natural conditions. We implemented snow‐control practices to enhance snowdrift accumulation (greater snow water equivalent), which led to increased meltwater production and an extended melting season that resulted in lake recharge despite low precipitation during the years of the experiment. For three years (2009

  19. Diversity of active aerobic methanotrophs along depth profiles of arctic and subarctic lake water column and sediments

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) emitted from high-latitude lakes accounts for 2–6% of the global atmospheric CH4 budget. Methanotrophs in lake sediments and water columns mitigate the amount of CH4 that enters the atmosphere, yet their identity and activity in arctic and subarctic lakes are poorly understood. We used stable isotope probing (SIP), quantitative PCR (Q-PCR), pyrosequencing and enrichment cultures to determine the identity and diversity of active aerobic methanotrophs in the water columns and sediments (0–25 cm) from an arctic tundra lake (Lake Qalluuraq) on the north slope of Alaska and a subarctic taiga lake (Lake Killarney) in Alaska's interior. The water column CH4 oxidation potential for these shallow (~2m deep) lakes was greatest in hypoxic bottom water from the subarctic lake. The type II methanotroph, Methylocystis, was prevalent in enrichment cultures of planktonic methanotrophs from the water columns. In the sediments, type I methanotrophs (Methylobacter, Methylosoma and Methylomonas) at the sediment-water interface (0–1 cm) were most active in assimilating CH4, whereas the type I methanotroph Methylobacter and/or type II methanotroph Methylocystis contributed substantially to carbon acquisition in the deeper (15–20 cm) sediments. In addition to methanotrophs, an unexpectedly high abundance of methylotrophs also actively utilized CH4-derived carbon. This study provides new insight into the identity and activity of methanotrophs in the sediments and water from high-latitude lakes.

  20. [Dynamics of parasite communities in an age series of Arctic Cisco Coregonus migratorius (Georgi, 1775)].

    Science.gov (United States)

    Dugarov, Zh N; Pronin, N M

    2013-01-01

    Parasite communities of Arctic cisco from Chivyrkui Bay of Lake Baikal have been analyzed at levels of a host individual (infracommunity), a individual age group of a host-(assemblages of infracommunities), and a host population (component community). Significant positive correlations of parameters of species richness (number of parasite species, Margalef and Menhinick indices) with the age of Arctic cisco were recorded only at the level of parasite inffacommunities. The absence of linear positive correlations between the parameters of species richness and the age of Arctic cisco at the level of assemblages of parasite infracommunities were revealed for the first time for fish of Lake Baikal. The peculiarity of the dynamics of parasite communities of. Arctic cisco is determined by specific features of the host physiology and ecology, primarily by the age dynamics of the feeding spectrum.

  1. Source Characterization and Temporal Variation of Methane Seepage from Thermokarst Lakes on the Alaska North Slope in Response to Arctic Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-09-30

    The goals of this research were to characterize the source, magnitude and temporal variability of methane seepage from thermokarst lakes (TKL) within the Alaska North Slope gas hydrate province, assess the vulnerability of these areas to ongoing and future arctic climate change and determine if gas hydrate dissociation resulting from permafrost melting is contributing to the current lake emissions. Analyses were focused on four main lake locations referred to in this report: Lake Qalluuraq (referred to as Lake Q) and Lake Teshekpuk (both on Alaska's North Slope) and Lake Killarney and Goldstream Bill Lake (both in Alaska's interior). From analyses of gases coming from lakes in Alaska, we showed that ecological seeps are common in Alaska and they account for a larger source of atmospheric methane today than geologic subcap seeps. Emissions from the geologic source could increase with potential implications for climate warming feedbacks. Our analyses of TKL sites showing gas ebullition were complemented with geophysical surveys, providing important insight about the distribution of shallow gas in the sediments and the lake bottom manifestation of seepage (e.g., pockmarks). In Lake Q, Chirp data were limited in their capacity to image deeper sediments and did not capture the thaw bulb. The failure to capture the thaw bulb at Lake Q may in part be related to the fact that the present day lake is a remnant of an older, larger, and now-partially drained lake. These suggestions are consistent with our analyses of a dated core of sediment from the lake that shows that a wetland has been present at the site of Lake Q since approximately 12,000 thousand years ago. Chemical analyses of the core indicate that the availability of methane at the site has changed during the past and is correlated with past environmental changes (i.e. temperature and hydrology) in the Arctic. Discovery of methane seeps in Lake Teshekpuk in the northernmost part of the lake during 2009

  2. Methane turnover and environmental change from Holocene biomarker records in a thermokarst lake in Arctic Alaska

    Science.gov (United States)

    Elvert, Marcus; Pohlman, John; Becker, Kevin W.; Gaglioti, Benjamin V.; Hinrichs, Kai-Uwe; Wooller, Matthew J.

    2016-01-01

    Arctic lakes and wetlands contribute a substantial amount of methane to the contemporary atmosphere, yet profound knowledge gaps remain regarding the intensity and climatic control of past methane emissions from this source. In this study, we reconstruct methane turnover and environmental conditions, including estimates of mean annual and summer temperature, from a thermokarst lake (Lake Qalluuraq) on the Arctic Coastal Plain of northern Alaska for the Holocene by using source-specific lipid biomarkers preserved in a radiocarbon-dated sediment core. Our results document a more prominent role for methane in the carbon cycle when the lake basin was an emergent fen habitat between ~12,300 and ~10,000 cal yr BP, a time period closely coinciding with the Holocene Thermal Maximum (HTM) in North Alaska. Enhanced methane turnover was stimulated by relatively warm temperatures, increased moisture, nutrient supply, and primary productivity. After ~10,000 cal yr BP, a thermokarst lake with abundant submerged mosses evolved, and through the mid-Holocene temperatures were approximately 3°C cooler. Under these conditions, organic matter decomposition was attenuated, which facilitated the accumulation of submerged mosses within a shallower Lake Qalluuraq. Reduced methane assimilation into biomass during the mid-Holocene suggests that thermokarst lakes are carbon sinks during cold periods. In the late-Holocene from ~2700 cal yr BP to the most recent time, however, temperatures and carbon deposition rose and methane oxidation intensified, indicating that more rapid organic matter decomposition and enhanced methane production could amplify climate feedback via potential methane emissions in the future.

  3. Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland

    Directory of Open Access Journals (Sweden)

    Jessica V. Trout-Haney

    2016-08-01

    Full Text Available Cyanobacteria and their toxins have received significant attention in eutrophic temperate and tropical systems where conspicuous blooms of certain planktonic taxa release toxins into fresh water, threatening its potability and safe use for recreation. Although toxigenic cyanobacteria are not confined to high nutrient environments, bloom-forming species, or planktonic taxa, these other situations are studied les often studied. For example, toxin production in picoplankton and benthic cyanobacteria—the predominant photoautotrophs found in polar lakes—is poorly understood. We quantified the occurrence of microcystin (MC, a hepatotoxic cyanotoxin across 18 Arctic lakes in southwestern Greenland. All of the focal lakes contained detectable levels of MC, with concentrations ranging from 5 ng·L−1 to >400 ng·L−1 during summer, 2013–2015. These concentrations are orders of magnitude lower than many eutrophic systems, yet the median lake MC concentration in Greenland (57 ng·L−1 was still 6.5 times higher than the median summer MC toxicity observed across 50 New Hampshire lakes between 1998 and 2008 (8.7 ng·L−1. The presence of cyanotoxins in these Greenlandic lakes demonstrates that high latitude lakes can support toxigenic cyanobacteria, and suggests that we may be underestimating the potential for these systems to develop high levels of cyanotoxins in the future.

  4. Effect of recent climate change on Arctic Pb pollution: A comparative study of historical records in lake and peat sediments

    International Nuclear Information System (INIS)

    Liu Xiaodong; Jiang Shan; Zhang Pengfei; Xu Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s–1970s, and thereafter a significant recovery was observed by a rapid increase of 206 Pb/ 207 Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of 206 Pb/ 207 Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. - Highlights: ► Historical changes of anthropogenic Pb pollution in Ny-Ålesund were reconstructed. ► Anthropogenic Pb in Ny-Ålesund was largely originated from W. European and Russia. ► Anthropogenic Pb recorded in peat sediments peaked at 1960–1970s and then declined. ► High anthropogenic fluxes were found in recent change of Pb record from lake sediments. ► Climate-sensitive processes might have influenced recent Pb accumulation rate in lakes. - This manuscript reports the effects of climate-sensitive processes on historical records of Pb pollution in sediments of Arctic lakes.

  5. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    Science.gov (United States)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  6. Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake

    Czech Academy of Sciences Publication Activity Database

    Soldánová, Miroslava; Georgieva, Simona; Roháčová, Jana; Knudsen, R.; Kuhn, J. A.; Henriksen, E. H.; Siwertsson, A.; Shaw, J. C.; Kuris, A. M.; Amundsen, P.-A.; Scholz, Tomáš; Lafferty, K. D.; Kostadinova, Aneta

    2017-01-01

    Roč. 47, č. 6 (2017), s. 327-345 ISSN 0020-7519 R&D Projects: GA ČR GA15-14198S; GA ČR GAP505/10/1562 Institutional support: RVO:60077344 Keywords : Trematode diversity * intermediate hosts * phylogeny * mitochondrial DNA * nuclear DNA * Lake Takvatn * Norway * Sub-Arctic Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 3.730, year: 2016

  7. Evidence of recent changes in the ice regime of lakes in the Canadian High Arctic from spaceborne satellite observations

    Science.gov (United States)

    Surdu, Cristina M.; Duguay, Claude R.; Fernández Prieto, Diego

    2016-05-01

    Arctic lakes, through their ice cover phenology, are a key indicator of climatic changes that the high-latitude environment is experiencing. In the case of lakes in the Canadian Arctic Archipelago (CAA), many of which are ice covered more than 10 months per year, warmer temperatures could result in ice regime shifts. Within the dominant polar-desert environment, small local warmer areas have been identified. These relatively small regions - polar oases - with longer growing seasons and greater biological productivity and diversity are secluded from the surrounding barren polar desert. The ice regimes of 11 lakes located in both polar-desert and polar-oasis environments, with surface areas between 4 and 542 km2, many of unknown bathymetry, were documented. In order to investigate the response of ice cover of lakes in the CAA to climate conditions during recent years, a 15-year time series (1997-2011) of RADARSAT-1/2 ScanSAR Wide Swath, ASAR Wide Swath, and Landsat acquisitions were analyzed. Results show that melt onset occurred earlier for all observed lakes. With the exception of Lower Murray Lake, all lakes experienced earlier summer ice minimum and water-clear-of-ice (WCI) dates, with greater changes being observed for polar-oasis lakes (9-24 days earlier WCI dates for lakes located in polar oases and 2-20 days earlier WCI dates for polar-desert lakes). Additionally, results suggest that some lakes may be transitioning from a perennial/multiyear to a seasonal ice regime, with only a few lakes maintaining a multiyear ice cover on occasional years. Aside Lake Hazen and Murray Lakes, which preserved their ice cover during the summer of 2009, no residual ice was observed on any of the other lakes from 2007 to 2011.

  8. A GCM comparison of Pleistocene super-interglacial periods in relation to Lake El'gygytgyn, NE Arctic Russia

    Science.gov (United States)

    Coletti, A. J.; DeConto, R. M.; Brigham-Grette, J.; Melles, M.

    2015-07-01

    Until now, the lack of time-continuous, terrestrial paleoenvironmental data from the Pleistocene Arctic has made model simulations of past interglacials difficult to assess. Here, we compare climate simulations of four warm interglacials at Marine Isotope Stages (MISs) 1 (9 ka), 5e (127 ka), 11c (409 ka) and 31 (1072 ka) with new proxy climate data recovered from Lake El'gygytgyn, NE Russia. Climate reconstructions of the mean temperature of the warmest month (MTWM) indicate conditions up to 0.4, 2.1, 0.5 and 3.1 °C warmer than today during MIS 1, 5e, 11c and 31, respectively. While the climate model captures much of the observed warming during each interglacial, largely in response to boreal summer (JJA) orbital forcing, the extraordinary warmth of MIS 11c compared to the other interglacials in the Lake El'gygytgyn temperature proxy reconstructions remains difficult to explain. To deconvolve the contribution of multiple influences on interglacial warming at Lake El'gygytgyn, we isolated the influence of vegetation, sea ice and circum-Arctic land ice feedbacks on the modeled climate of the Beringian interior. Simulations accounting for climate-vegetation-land-surface feedbacks during all four interglacials show expanding boreal forest cover with increasing summer insolation intensity. A deglaciated Greenland is shown to have a minimal effect on northeast Asian temperature during the warmth of stages 11c and 31 (Melles et al., 2012). A prescribed enhancement of oceanic heat transport into the Arctic Ocean does have some effect on Lake El'gygytgyn's regional climate, but the exceptional warmth of MIS l1c remains enigmatic compared to the modest orbital and greenhouse gas forcing during that interglacial.

  9. Patterns and controls of mercury accumulation in sediments from three thermokarst lakes on the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Burke, Samantha M.; Zimmerman, Christian E.; Branfireun, Brian A.; Koch, Joshua C.; Swanson, Heidi K.

    2018-01-01

    The biogeochemical cycle of mercury will be influenced by climate change, particularly at higher latitudes. Investigations of historical mercury accumulation in lake sediments inform future predictions as to how climate change might affect mercury biogeochemistry; however, in regions with a paucity of data, such as the thermokarst-rich Arctic Coastal Plain of Alaska (ACP), the trajectory of mercury accumulation in lake sediments is particularly uncertain. Sediment cores from three thermokarst lakes on the ACP were analyzed to understand changes in, and drivers of, Hg accumulation over the past ~ 100 years. Mercury accumulation in two of the three lakes was variable and high over the past century (91.96 and 78.6 µg/m2/year), and largely controlled by sedimentation rate. Mercury accumulation in the third lake was lower (14.2 µg/m2/year), more temporally uniform, and was more strongly related to sediment Hg concentration than sedimentation rate. Sediment mercury concentrations were quantitatively related to measures of sediment composition and VRS-inferred chlorophyll a, and sedimentation rates were related to various catchment characteristics. These results were compared to data from 37 previously studied Arctic and Alaskan lakes. Results from the meta-analysis indicate that thermokarst lakes have significantly higher and more variable Hg accumulation rates than non-thermokarst lakes, suggesting that certain properties (e.g., thermal erosion, thaw slumping, low hydraulic conductivity) likely make lakes prone to high and variable Hg accumulation rates. Differences and high variability in Hg accumulation among high latitude lakes highlight the complexity of predicting future climate-related change impacts on mercury cycling in these environments.

  10. Modeling Lake Storage Dynamics to support Arctic Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Vimal, S.; Lettenmaier, D. P.; Smith, L. C.; Smith, S.; Bowling, L. C.; Pavelsky, T.

    2017-12-01

    The Arctic and Boreal Zone (ABZ) of Canada and Alaska includes vast areas of permafrost, lakes, and wetlands. Permafrost thawing in this area is expected to increase due to the projected rise of temperature caused by climate change. Over the long term, this may reduce overall surface water area, but in the near-term, the opposite is being observed, with rising paludification (lake/wetland expansion). One element of NASA's ABoVE field experiment is observations of lake and wetland extent and surface elevations using NASA's AirSWOT airborne interferometric radar, accompanied by a high-resolution camera. One use of the WSE retrievals will be to constrain model estimates of lake storage dynamics. Here, we compare predictions using the lake dynamics algorithm within the Variable Infiltration Capacity (VIC) land surface scheme. The VIC lake algorithm includes representation of sub-grid topography, where the depth and area of seasonally-flooded areas are modeled as a function of topographic wetness index, basin area, and slope. The topography data used is from a new global digital elevation model, MERIT-DEM. We initially set up VIC at sites with varying permafrost conditions (i.e., no permafrost, discontinuous, continuous) in Saskatoon and Yellowknife, Canada, and Toolik Lake, Alaska. We constrained the uncalibrated model with the WSE at the time of the first ABoVE flight, and quantified the model's ability to predict WSE and ΔWSE during the time of the second flight. Finally, we evaluated the sensitivity of the VIC-lakes model and compared the three permafrost conditions. Our results quantify the sensitivity of surface water to permafrost state across the target sites. Furthermore, our evaluation of the lake modeling framework contributes to the modeling and mapping framework for lake and reservoir storage change evaluation globally as part of the SWOT mission, planned for launch in 2021.

  11. Correlated declines in Pacific arctic snow and sea ice cover

    Science.gov (United States)

    Stone, Robert P.; Douglas, David C.; Belchansky, Gennady I.; Drobot, Sheldon

    2005-01-01

    Simulations of future climate suggest that global warming will reduce Arctic snow and ice cover, resulting in decreased surface albedo (reflectivity). Lowering of the surface albedo leads to further warming by increasing solar absorption at the surface. This phenomenon is referred to as “temperature–albedo feedback.” Anticipation of such a feedback is one reason why scientists look to the Arctic for early indications of global warming. Much of the Arctic has warmed significantly. Northern Hemisphere snow cover has decreased, and sea ice has diminished in area and thickness. As reported in the Arctic Climate Impact Assessment in 2004, the trends are considered to be outside the range of natural variability, implicating global warming as an underlying cause. Changing climatic conditions in the high northern latitudes have influenced biogeochemical cycles on a broad scale. Warming has already affected the sea ice, the tundra, the plants, the animals, and the indigenous populations that depend on them. Changing annual cycles of snow and sea ice also affect sources and sinks of important greenhouse gases (such as carbon dioxide and methane), further complicating feedbacks involving the global budgets of these important constituents. For instance, thawing permafrost increases the extent of tundra wetlands and lakes, releasing greater amounts of methane into the atmosphere. Variable sea ice cover may affect the hemispheric carbon budget by altering the ocean–atmosphere exchange of carbon dioxide. There is growing concern that amplification of global warming in the Arctic will have far-reaching effects on lower latitude climate through these feedback mechanisms. Despite the diverse and convincing observational evidence that the Arctic environment is changing, it remains unclear whether these changes are anthropogenically forced or result from natural variations of the climate system. A better understanding of what controls the seasonal distributions of snow and ice

  12. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  13. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments.

    Science.gov (United States)

    Liu, Xiaodong; Jiang, Shan; Zhang, Pengfei; Xu, Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. High Resolution CH4 Emissions and Dissolved CH4 Measurements Elucidate Surface Gas Exchange Processes in Toolik Lake, Arctic Alaska

    Science.gov (United States)

    Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.

    2013-12-01

    Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.

  15. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  16. Carbonaceous particle record in lake sediments from the Arctic and other remote areas of the northern hemisphere

    International Nuclear Information System (INIS)

    Rose, N.L.

    1995-01-01

    Lake sediments, including spheroidal carbonaceous particles produced by high temperature combustion of fossil fuels, contain a record of lake, catchment and atmospheric deposition history. The spatial and temporal distributions of these particles can indicate the extent to which a single lake or a region has been contaminated by airborne pollutants (e.g. sulfur, polycyclic aromatic hydrocarbons (PAHs)) derived from fossil fuels. The carbonaceous particle records of two Arctic lakes, Shuonijavr and Stepanovichjarvi, close to local pollution sources on the Kola Peninsula, Russia, are compared with the record of a remote lake on Svalbard and with mid-latitude remote mountain lakes in Europe and Asia. Although, Shuonijavr and Stepanovichjarvi show relatively high levels of contamination, as expected, the presence of carbonaceous particles at all of the remote sites studied suggests there is a hemispherical background of these particles. Other less remote mountain lakes in Europe have been found to contain significant concentrations of particles and these may represent regional deposition patterns. Carbonaceous particle analysis may provide an effective assessment of whether a lake site is receiving local, regional or background levels of deposition

  17. Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes

    Science.gov (United States)

    He, Ruo; Wooller, Matthew J.; Pohlman, John W.; Quensen, John; Tiedje, James M.; Leigh, Mary Beth

    2012-01-01

    Methane (CH4) flux to the atmosphere is mitigated via microbial CH4 oxidation in sediments and water. As arctic temperaturesincrease, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is importantto predicting future CH4 emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), andpyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C,and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH4 oxidation activitywas measured in microcosm incubations containing sediments at all temperatures, with the highest CH4 oxidation potential of37.5 mol g1 day1 in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and ofthe 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in 13C-labeled DNA obtained bySIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisitionfrom CH4 in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature.Methylotrophs were also abundant in the microbial community that derived carbon from CH4, especially in the deeper sediments(depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R0.82) with the relativeabundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophiccommunities in arctic lake sediments respond to temperature variations.

  18. Repeated megafloods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60,000 years

    Science.gov (United States)

    Margold, Martin; Jansen, John D.; Codilean, Alexandru T.; Preusser, Frank; Gurinov, Artem L.; Fujioka, Toshiyuki; Fink, David

    2018-05-01

    Cataclysmic outburst floods transformed landscapes and caused abrupt climate change during the last deglaciation. Whether such events have also characterized previous deglaciations is not known. Arctic marine cores hint at megafloods prior to Oxygen Isotope Stage (OIS) 2, but the overprint of successive glaciations means that geomorphological traces of ancient floods remain scarce in Eurasia and North America. Here we present the first well-constrained terrestrial megaflood record to be linked with Arctic archives. Based on cosmogenic-nuclide exposure dating and optically stimulated luminescence dating applied to glacial-lake sediments, a 300-m deep bedrock spillway, and giant eddy-bars > 200-m high, we reconstruct a history of cataclysmic outburst floods from glacial Lake Vitim, Siberia, to the Arctic Ocean over the past 60,000-years. Three megafloods have reflected the rhythm of Eurasian glaciations, leaving traces that stretch more than 3500 km to the Lena Delta. The first flood was coincident with deglaciation from OIS-4 and the largest meltwater spike in Arctic marine-cores within the past 100,000 years (isotope-event 3.31 at 55.5 ka). The second flood marked the lead up to the local Last Glacial Maximum, and the third flood occurred during the last deglaciation. This final 3000 km3 megaflood stands as one of the largest freshwater floods ever documented, with peak discharge of 4.0-6.5 million m3s-1, mean flow depths of 120-150 m, and average flow velocities up to 21 m s-1.

  19. Parameterizing correlations between hydrometeor species in mixed-phase Arctic clouds

    Science.gov (United States)

    Larson, Vincent E.; Nielsen, Brandon J.; Fan, Jiwen; Ovchinnikov, Mikhail

    2011-01-01

    Mixed-phase Arctic clouds, like other clouds, contain small-scale variability in hydrometeor fields, such as cloud water or snow mixing ratio. This variability may be worth parameterizing in coarse-resolution numerical models. In particular, for modeling multispecies processes such as accretion and aggregation, it would be useful to parameterize subgrid correlations among hydrometeor species. However, one difficulty is that there exist many hydrometeor species and many microphysical processes, leading to complexity and computational expense. Existing lower and upper bounds on linear correlation coefficients are too loose to serve directly as a method to predict subgrid correlations. Therefore, this paper proposes an alternative method that begins with the spherical parameterization framework of Pinheiro and Bates (1996), which expresses the correlation matrix in terms of its Cholesky factorization. The values of the elements of the Cholesky matrix are populated here using a "cSigma" parameterization that we introduce based on the aforementioned bounds on correlations. The method has three advantages: (1) the computational expense is tolerable; (2) the correlations are, by construction, guaranteed to be consistent with each other; and (3) the methodology is fairly general and hence may be applicable to other problems. The method is tested noninteractively using simulations of three Arctic mixed-phase cloud cases from two field experiments: the Indirect and Semi-Direct Aerosol Campaign and the Mixed-Phase Arctic Cloud Experiment. Benchmark simulations are performed using a large-eddy simulation (LES) model that includes a bin microphysical scheme. The correlations estimated by the new method satisfactorily approximate the correlations produced by the LES.

  20. Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake.

    Science.gov (United States)

    Moiseenko, T I; Voinov, A A; Megorsky, V V; Gashkina, N A; Kudriavtseva, L P; Vandish, O I; Sharov, A N; Sharova, Yu; Koroleva, I N

    2006-10-01

    There are rich deposits of mineral and fossil natural resources in the Arctic, which make this region very attractive for extracting industries. Their operations have immediate and vast consequences for ecological systems, which are particularly vulnerable in this region. We are developing a management strategy for Arctic watersheds impacted by industrial production. The case study is Lake Imandra watershed (Murmansk oblast, Russia) that has exceptionally high levels of economic development and large numbers of people living there. We track the impacts of toxic pollution on ecosystem health and then--human health. Three periods are identified: (a) natural, pre-industrial state; (b) disturbed, under rapid economic development; and (c) partial recovery, during recent economic meltdown. The ecosystem is shown to transform into a qualitatively new state, which is still different from the original natural state, even after toxic loadings have substantially decreased. Fish disease where analyzed to produce and integral evaluation of ecosystem health. Accumulation of heavy metals in fish is correlated with etiology of many diseases. Dose-effect relationships are between integral water quality indices and ecosystem health indicators clearly demonstrates that existing water quality standards adopted in Russia are inadequate for Arctic regions. Health was also poor for people drinking water from the Lake. Transport of heavy metals from drinking water, into human organs, and their effect on liver and kidney diseases shows the close connection between ecosystem and human health. A management system is outlined that is based on feedback from indices of ecosystem and human health and control over economic production and/or the amount of toxic loading produced. We argue that prospects for implementation of such a system are quite bleak at this time, and that more likely we will see a continued depopulation of these Northern regions.

  1. Biological and life-history factors affecting total mercury concentrations in Arctic charr from Heintzelman Lake, Ellesmere Island, Nunavut

    International Nuclear Information System (INIS)

    Velden, Shannon van der; Reist, James D.; Babaluk, John A.; Power, Michael

    2012-01-01

    A snapshot sample of Arctic charr (Salvelinus alpinus) from Heintzelman Lake (81°42′N, 66°56′W), Ellesmere Island, Canada was used to elucidate the biological and life-history factors potentially influencing individual total mercury (THg) concentrations. Migratory history was significant, with anadromous fish having a lower mean THg concentration (64 μg/kg ww) than the non-anadromous Arctic charr (117 μg/kg ww). The increase in individual THg concentration with age was shown to be independent of length-at-age when large and small individuals within the same age groups were compared. Similarly, the diets of individual Arctic charr were comparable regardless of size, and there was no apparent ontogenetic shift in diet that could explain differences in length-at-age or THg concentration among fast- and slow-growing groups of fish (i.e., fish of the same age but differing sizes). Maturity state was also not related to THg concentration, but appears to be related to differences in length-at-age, with slow-growing fish allocating more energy to reproduction than fast-growing conspecifics. The differences in THg concentration among individual Arctic charr were best explained by fish age. We suggest that the increase in mercury concentration with age can be altered by a shift in diet (e.g., to piscivory) or habitat (e.g., anadromy), but is otherwise unaffected by changes in size or length-at-age. -- Highlights: ► Total mercury concentrations ([THg]) were measured in Arctic charr from a single lake in the Canadian high Arctic. ► Anadromous Arctic charr had a significantly lower mean [THg] (64 μg/kg ww) than the non-anadromous fish (117 μg/kg ww). ► Length-at-age (i.e., average somatic growth rate) was not related to mean [THg] when same-age groups were compared. ► Prey resource use, determined by δ 13 C and δ 15 N isotopes and gut contents, was similar among fast- and slow-growing fish. ► Maturity state was not related to [THg], but the slow

  2. High and Increasing Shoreline Erosion Rates of Thermokarst Lakes Set in Ice-Rich Permafrost Terrain of the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Bondurant, A. C.; Arp, C. D.; Jones, B. M.; Shur, Y.; Daanen, R. P.

    2017-12-01

    Thermokarst lakes are a dominant landform shaping landscapes and impacting permafrost on the Arctic Coastal Plain (ACP) of northern Alaska, a region of continuous permafrost. Here lakes cover greater than 20% of the landscape and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, and drainage of thaw lakes has been described by some researchers as part of a natural cycle that has reworked the ACP landscape during the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This study focuses on the factors controlling expansion rates of thermokarst lakes in three ACP regions that vary in landscape history, ground-ice content, and lake morphology (i.e. size and depth), as well as evaluating changes through time. Through the use of historical aerial imagery, satellite imagery, and field observations, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Studies of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr where ice content is highest ( 86%) to 0.16 m/yr where ice content is lowest (45%-71%). A subset of these lakes analyzed over multiple time periods show increasing rates of erosion, with average rates being 37% higher over the period 1979-2002 (0.73 m/yr) compared to 1948-1979 (0.53 m/yr). These increased rates of erosion have important implications for the regional hydrologic cycle and localized permafrost degradation. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.

  3. Correlates between feeding ecology and mercury levels in historical and modern arctic foxes (Vulpes lagopus.

    Directory of Open Access Journals (Sweden)

    Natalia Bocharova

    Full Text Available Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources. This may have important implications for the animals that reside within them. We examined 1 canid pathogen presence in an endangered arctic fox (Vulpes lagopus population and 2 relative total mercury (THg level as a function of ecotype ('coastal' or 'inland' for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs. Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet.

  4. Correlates between feeding ecology and mercury levels in historical and modern arctic foxes (Vulpes lagopus).

    Science.gov (United States)

    Bocharova, Natalia; Treu, Gabriele; Czirják, Gábor Árpád; Krone, Oliver; Stefanski, Volker; Wibbelt, Gudrun; Unnsteinsdóttir, Ester Rut; Hersteinsson, Páll; Schares, Gereon; Doronina, Lilia; Goltsman, Mikhail; Greenwood, Alex D

    2013-01-01

    Changes in concentration of pollutants and pathogen distribution can vary among ecotypes (e.g. marine versus terrestrial food resources). This may have important implications for the animals that reside within them. We examined 1) canid pathogen presence in an endangered arctic fox (Vulpes lagopus) population and 2) relative total mercury (THg) level as a function of ecotype ('coastal' or 'inland') for arctic foxes to test whether the presence of pathogens or heavy metal concentration correlate with population health. The Bering Sea populations on Bering and Mednyi Islands were compared to Icelandic arctic fox populations with respect to inland and coastal ecotypes. Serological and DNA based pathogen screening techniques were used to examine arctic foxes for pathogens. THg was measured by atomic absorption spectrometry from hair samples of historical and modern collected arctic foxes and samples from their prey species (hair and internal organs). Presence of pathogens did not correlate with population decline from Mednyi Island. However, THg concentration correlated strongly with ecotype and was reflected in the THg concentrations detected in available food sources in each ecotype. The highest concentration of THg was found in ecotypes where foxes depended on marine vertebrates for food. Exclusively inland ecotypes had low THg concentrations. The results suggest that absolute exposure to heavy metals may be less important than the feeding ecology and feeding opportunities of top predators such as arctic foxes which may in turn influence population health and stability. A higher risk to wildlife of heavy metal exposure correlates with feeding strategies that rely primarily on a marine based diet.

  5. Diet of yellow-billed loons (Gavia adamsii) in Arctic lakes during the nesting season inferred from fatty acid analysis

    Science.gov (United States)

    Haynes, T B; Schmutz, Joel A.; Bromaghin, Jeffrey F.; Iverson, S J; Padula, V. M.; Rosenberger, A E

    2015-01-01

    Understanding the dietary habits of yellow-billed loons (Gavia adamsii) can give important insights into their ecology, however, studying the diet of loons is difficult when direct observation or specimen collection is impractical. We investigate the diet of yellow-billed loons nesting on the Arctic Coastal Plain of Alaska using quantitative fatty acid signature analysis. Tissue analysis from 26 yellow-billed loons and eleven prey groups (nine fish species and two invertebrate groups) from Arctic lakes suggests that yellow-billed loons are eating high proportions of Alaska blackfish (Dallia pectoralis), broad whitefish (Coregonus nasus) and three-spined stickleback (Gasterosteus aculeatus) during late spring and early summer. The prominence of blackfish in diets highlights the widespread availability of blackfish during the early stages of loon nesting, soon after spring thaw. The high proportions of broad whitefish and three-spined stickleback may reflect a residual signal from the coastal staging period prior to establishing nesting territories on lakes, when loons are more likely to encounter these species. Our analyses were sensitive to the choice of calibration coefficient based on data from three different species, indicating the need for development of loon-specific coefficients for future study and confirmation of our results. Regardless, fish that are coastally distributed and that successfully overwinter in lakes are likely key food items for yellow-billed loons early in the nesting season.

  6. Glacial-interglacial variations of microbial communities in permafrost and lake deposits in the Siberian Arctic

    Science.gov (United States)

    Mangelsdorf, Kai; Bischoff, Juliane; Gattinger, Andreas; Wagner, Dirk

    2013-04-01

    The Artic regions are expected to be very sensitive to the currently observed climate change. When permafrost is thawing, the stored carbon becomes available again for microbial degradation, forming a potential source for the generation of carbon dioxide and methane with their positive feedback effect on the climate warming. For the prediction of future climate evolution it is, therefore, important to improve our knowledge about the microbial-driven greenhouse gas dynamics in the Siberian Arctic and their response to glacial-interglacial changes in the past. Sample material was drilled on Kurungnahk Island (Russian-German LENA expedition) located in the southern part of the Lena delta and in lake El'gygytgyn (ICDP-project) in the eastern part of Siberia. The Kurungnahk samples comprise Late Pleistocene to Holocene deposits, whereas the lake El'gygytgyn samples cover Middle to Late Pleistocene sediments. Samples were investigated applying a combined biogeochemical and microbiological approach. The methane profile of the Kurungnahk core reveals highest methane contents in the warm and wet Holocene and Late Pleistocene (LP) deposits and correlates largly to the organic carbon (TOC) contents. Archaeol concentrations, being a biomarker for past methanogenic archaea, are also high during the warm and wet Holocene and LP intervals and low during the cold and dry LP periods. This indicates that part of the methane might be produced and trapped in the past. However, biomarkers for living microorganisms (bacteria and archaea) and microbial activity measurements of methanogens point, especially, for the Holocene to a viable archaeal community, indicating a possible in-situ methane production. Furthermore, warm/wet-cold/dry climate cycles are recorded in the archaeal diversity as revealed by genetic fingerprint analysis. Although the overlying lake water buffers the temperature effect on the lake sediments, which never became permafrost, the bacterial and archaeal biomarker

  7. The PLOT (Paleolimnological Transect) Project in the Russian Arctic

    Science.gov (United States)

    Gromig, R.; Andreev, A.; Baumer, M.; Bolshiyanov, D.; Fedorov, G.; Frolova, L.; Krastel, S.; Lebas, E.; Ludikova, A.; Melles, M.; Meyer, H.; Nazarova, L.; Pestryakova, L.; Savelieva, L.; Shumilovskikh, L.; Subetto, D.; Wagner, B.; Wennrich, V.

    2017-12-01

    The joint Russian- German project 'PLOT - Paleolimnological Transec' aims to recover lake sediment sequences along a >6000 km long longitudinal transect across the Eurasian Arctic in order to investigate the Late Quaternary climatic and environmental history. The climate history of the Arctic is of particular interest since it is the region, which is experiencing major impact of the current climate change. The project is funded for three years (2015-2018) by the Russian and German Ministries of Research. Since 2013 extensive fieldwork, including seismic surveys, coring, and hydrological investigations, was carried out at lakes Ladoga (NW Russia, pilot study), Bolshoye Shuchye (Polar Urals), Emanda (Verkhoyansk Range, field campaign planned for August 2017), Levinson-Lessing and Taymyr (Taymyr Peninsula). Fieldwork at lakes Bolshoye Shuchye, Levinson-Lessing and Taymyr was conducted in collaboration with the Russian-Norwegian CHASE (Climate History along the Arctic Seaboard of Eurasia) project. A major objective of the PLOT project was to recover preglacial sediments. A multiproxy approach was applied to the analytical work of all cores, including (bio-)geochemical, sedimentological, geophysical, and biological analyses. First data implies the presence of preglacial sediments in the cores from all lakes so far visited. Age-depth models, based on radiocarbon dating, OSL dating, paleomagnetic measurements, identification of cryptotephra, and varve counting (where applicable), are in progress. Climate variability in the records shall be compared to that recorded at Lake Eĺgygytgyn (NE Russia), which represents the master record for the Siberian Arctic. The outcome of the PLOT project will be a better understanding of the temporal and spatial variability and development of the Arctic climate. Here, we present the major results and first key interpretations of the PLOT project, along with an outlook on the future strategy and foci. First results from lakes Ladoga

  8. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    Science.gov (United States)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  9. Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    Science.gov (United States)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Jones, Benjamin M.; Pohlman, John W.; Kunz, Michael L.; Wooller, Matthew J.

    2014-01-01

    Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.

  10. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    Science.gov (United States)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  11. Seasonal thaw settlement at drained thermokarst lake basins, Arctic Alaska

    Science.gov (United States)

    Liu, Lin; Schaefer, Kevin; Gusmeroli, Alessio; Grosse, Guido; Jones, Benjamin M.; Zhang, Tinjun; Parsekian, Andrew; Zebker, Howard

    2014-01-01

    Drained thermokarst lake basins (DTLBs) are ubiquitous landforms on Arctic tundra lowland. Their dynamic states are seldom investigated, despite their importance for landscape stability, hydrology, nutrient fluxes, and carbon cycling. Here we report results based on high-resolution Interferometric Synthetic Aperture Radar (InSAR) measurements using space-borne data for a study area located on the North Slope of Alaska near Prudhoe Bay, where we focus on the seasonal thaw settlement within DTLBs, averaged between 2006 and 2010. The majority (14) of the 18 DTLBs in the study area exhibited seasonal thaw settlement of 3–4 cm. However, four of the DTLBs examined exceeded 4 cm of thaw settlement, with one basin experiencing up to 12 cm. Combining the InSAR observations with the in situ active layer thickness measured using ground penetrating radar and mechanical probing, we calculated thaw strain, an index of thaw settlement strength along a transect across the basin that underwent large thaw settlement. We found thaw strains of 10–35% at the basin center, suggesting the seasonal melting of ground ice as a possible mechanism for the large settlement. These findings emphasize the dynamic nature of permafrost landforms, demonstrate the capability of the InSAR technique to remotely monitor surface deformation of individual DTLBs, and illustrate the combination of ground-based and remote sensing observations to estimate thaw strain. Our study highlights the need for better description of the spatial heterogeneity of landscape-scale processes for regional assessment of surface dynamics on Arctic coastal lowlands.

  12. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary

    Directory of Open Access Journals (Sweden)

    Aviaja Lyberth Hauptmann

    2016-09-01

    Full Text Available Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N. Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns.

  13. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    Science.gov (United States)

    Hauptmann, Aviaja L.; Markussen, Thor N.; Stibal, Marek; Olsen, Nikoline S.; Elberling, Bo; Bælum, Jacob; Sicheritz-Pontén, Thomas; Jacobsen, Carsten S.

    2016-01-01

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns. PMID:27708629

  14. Food and water security in a changing arctic climate

    International Nuclear Information System (INIS)

    White, Daniel M; Gerlach, S Craig; Loring, Philip; Tidwell, Amy C; Chambers, Molly C

    2007-01-01

    In the Arctic, permafrost extends up to 500 m below the ground surface, and it is generally just the top metre that thaws in summer. Lakes, rivers, and wetlands on the arctic landscape are normally not connected with groundwater in the same way that they are in temperate regions. When the surface is frozen in winter, only lakes deeper than 2 m and rivers with significant flow retain liquid water. Surface water is largely abundant in summer, when it serves as a breeding ground for fish, birds, and mammals. In winter, many mammals and birds are forced to migrate out of the Arctic. Fish must seek out lakes or rivers deep enough to provide good overwintering habitat. Humans in the Arctic rely on surface water in many ways. Surface water meets domestic needs such as drinking, cooking, and cleaning as well as subsistence and industrial demands. Indigenous communities depend on sea ice and waterways for transportation across the landscape and access to traditional country foods. The minerals, mining, and oil and gas industries also use large quantities of surface water during winter to build ice roads and maintain infrastructure. As demand for this limited, but heavily-relied-upon resource continues to increase, it is now more critical than ever to understand the impacts of climate change on food and water security in the Arctic

  15. Fatty acid composition of fish species with different feeding habits from an Arctic Lake.

    Science.gov (United States)

    Gladyshev, M I; Sushchik, N N; Glushchenko, L A; Zadelenov, V A; Rudchenko, A E; Dgebuadze, Y Y

    2017-05-01

    We compared the composition and content of fatty acids (FAs) in fish with different feeding habits (sardine (least) cisco Coregonus sardinella, goggle-eyed charr (pucheglazka) form of Salvelinus alpinus complex, humpback whitefish Coregonus pidschian, broad whitefish Coregonus nasus, boganid charr Salvelinus boganidae, and northern pike Esox lucius from an Arctic Lake. Feeding habits of the studied fish (planktivore, benthivore, or piscivore) significantly affected the composition of biomarker fatty acids and the ratio of stable isotopes of carbon and nitrogen in their biomass. The hypothesis on a higher content of eicosapentaenoic and docosahexaenoic acids in the fish of higher trophic level (piscivores) when compared within the same taxonomic group (order Salmoniformes) was confirmed.

  16. Large Lakes Dominate CO2 Evasion From Lakes in an Arctic Catchment

    Science.gov (United States)

    Rocher-Ros, Gerard; Giesler, Reiner; Lundin, Erik; Salimi, Shokoufeh; Jonsson, Anders; Karlsson, Jan

    2017-12-01

    CO2 evasion from freshwater lakes is an important component of the carbon cycle. However, the relative contribution from different lake sizes may vary, since several parameters underlying CO2 flux are size dependent. Here we estimated the annual lake CO2 evasion from a catchment in northern Sweden encompassing about 30,000 differently sized lakes. We show that areal CO2 fluxes decreased rapidly with lake size, but this was counteracted by the greater overall coverage of larger lakes. As a result, total efflux increased with lake size and the single largest lake in the catchment dominated the CO2 evasion (53% of all CO2 evaded). By contrast, the contribution from the smallest ponds (about 27,000) was minor (evasion at the landscape scale.

  17. Complex Drilling Logistics for Lake El’gygytgyn, NE Russia

    Directory of Open Access Journals (Sweden)

    Martin Melles,

    2009-03-01

    Full Text Available Lake El’gygytgyn was formed by astrophysical chance when a meteorite struck the Earth 100 km north of the Arctic Circle in Chukotka 3.6 Myrs ago (Layer, 2000 on the drainage divide between the Arctic Ocean and the Bering Sea. The crater measures ~18 km in diameter and lies nearly in the center of what was to become Beringia, the largestcontiguous landscape in the Arctic to have escaped continental scale glaciation. Within the crater rim today, Lake El’gygytgyn is 12 km in diameter and 170 m deep, enclosing 350–400 m of sediment deposited since the time of impact (Gebhardt et al., 2006. This setting makes the lake ideal for paleoclimate and impact research.

  18. Landlocked Arctic charr ( Salvelinus alpinus ) population structure and lake morphometry in Greenland - is there a connection?

    DEFF Research Database (Denmark)

    Riget, F.; Jeppesen, E.; Landkildehus, F.

    2000-01-01

    correlated with lake volume. Our study indicates that the charr population structure became more complex with increasing lake size. Moreover, the population structure seemed to be influenced by lake-water transparency and the presence or absence of three-spined stickleback (Gasterosteus aculeatus)...

  19. How much should we believe correlations between Arctic cyclones and sea ice extent?

    Science.gov (United States)

    Rae, Jamie G. L.; Todd, Alexander D.; Blockley, Edward W.; Ridley, Jeff K.

    2017-12-01

    This paper presents an investigation of the robustness of correlations between characteristics of Arctic summer cyclones and September Arctic sea ice extent. A cyclone identification and tracking algorithm is run for output from 100-year coupled climate model simulations at two resolutions and for 30 years of reanalysis data, using two different tracking variables (mean sea-level pressure, MSLP; and 850 hPa vorticity) for identification of the cyclones. The influence of the tracking variable, the spatial resolution of the model, and spatial and temporal sampling on the correlations is then explored. We conclude that the correlations obtained depend on all of these factors and that care should be taken when interpreting the results of such analyses. Previous studies of this type have used around 30 years of reanalysis and observational data, analysed with a single tracking variable. Our results therefore cast some doubt on the conclusions drawn in those studies.

  20. Environmental and spatial factors influencing the distribution of cladocerans in lakes across the central Canadian Arctic treeline region

    Directory of Open Access Journals (Sweden)

    John P. SMOL

    2010-02-01

    Full Text Available We examine the role of local environmental and spatial factors in explaining variation in the composition of cladoceran assemblages from surface sediments within a set of 50 lakes spanning a broad southwest to northeast transect across the central Canadian Arctic treeline region from Yellowknife (Northwest Territories to the northern boundary of the Thelon Game Sanctuary (Nunavut Territory. Within each lake, the cladoceran fauna was identified based on the subfossil exoskeletal remains preserved in recently deposited lake sediments. Physical and chemical limnological data were measured in August of 1996 and 1998. Spatial data were generated based on latitude and longitude using Principal Coordinates of Neighbors Matrices analysis (PCNM. The relationships between cladocerans and the measured environmental and spatial variables were examined using both unconstrained (Principal Components Analysis, PCA and constrained (Redundancy Analysis, RDA ordination techniques. Variance partitioning, based on partial RDAs, was used to identify the relative importance of significant environmental and spatial explanatory variables. Three environmental variables were identified as significantly influencing cladoceran community structure: surface water temperature, dissolved organic carbon (DOC, and total phosphorus (TP. Five PCNM-generated spatial variables were also significant in explaining cladoceran distributions. Variance partitioning attributed 14% of the variance in the distribution of Cladocera to spatial factors, an additional 10% to spatially-structured environmental variables, and 8% to environmental factors that were not spatially-structured. Within the central Canadian Arctic treeline region, spatial and other environmental processes had an important influence on the distribution of cladoceran communities. The strong influence of spatial factors was related to the large ecoclimatic gradient across treeline. The distribution patterns of cladocerans

  1. Stocking activities for the Arctic charr in Lake Geneva: Genetic effects in space and time.

    Science.gov (United States)

    Savary, Romain; Dufresnes, Christophe; Champigneulle, Alexis; Caudron, Arnaud; Dubey, Sylvain; Perrin, Nicolas; Fumagalli, Luca

    2017-07-01

    Artificial stocking practices are widely used by resource managers worldwide, in order to sustain fish populations exploited by both recreational and commercial activities, but their benefits are controversial. Former practices involved exotic strains, although current programs rather consider artificial breeding of local fishes (supportive breeding). Understanding the complex genetic effects of these management strategies is an important challenge with economic and conservation implications, especially in the context of population declines. In this study, we focus on the declining Arctic charr ( Salvelinus alpinus ) population from Lake Geneva (Switzerland and France), which has initially been restocked with allochtonous fishes in the early eighties, followed by supportive breeding. In this context, we conducted a genetic survey to document the evolution of the genetic diversity and structure throughout the last 50 years, before and after the initiation of hatchery supplementation, using contemporary and historical samples. We show that the introduction of exotic fishes was associated with a genetic bottleneck in the 1980-1990s, a break of Hardy-Weinberg Equilibrium (HWE), a reduction in genetic diversity, an increase in genetic structure among spawning sites, and a change in their genetic composition. Together with better environmental conditions, three decades of subsequent supportive breeding using local fishes allowed to re-establish HWE and the initial levels of genetic variation. However, current spawning sites have not fully recovered their original genetic composition and were extensively homogenized across the lake. Our study demonstrates the drastic genetic consequences of different restocking tactics in a comprehensive spatiotemporal framework and suggests that genetic alteration by nonlocal stocking may be partly reversible through supportive breeding. We recommend that conservation-based programs consider local diversity and implement adequate

  2. How much should we believe correlations between Arctic cyclones and sea ice extent?

    Directory of Open Access Journals (Sweden)

    J. G. L. Rae

    2017-12-01

    Full Text Available This paper presents an investigation of the robustness of correlations between characteristics of Arctic summer cyclones and September Arctic sea ice extent. A cyclone identification and tracking algorithm is run for output from 100-year coupled climate model simulations at two resolutions and for 30 years of reanalysis data, using two different tracking variables (mean sea-level pressure, MSLP; and 850 hPa vorticity for identification of the cyclones. The influence of the tracking variable, the spatial resolution of the model, and spatial and temporal sampling on the correlations is then explored. We conclude that the correlations obtained depend on all of these factors and that care should be taken when interpreting the results of such analyses. Previous studies of this type have used around 30 years of reanalysis and observational data, analysed with a single tracking variable. Our results therefore cast some doubt on the conclusions drawn in those studies.

  3. Impact processes, permafrost dynamics, and climate and environmental variability in the terrestrial Arctic as inferred from the unique 3.6 Myr record of Lake El'gygytgyn, Far East Russia - A review

    Science.gov (United States)

    Wennrich, Volker; Andreev, Andrei A.; Tarasov, Pavel E.; Fedorov, Grigory; Zhao, Wenwei; Gebhardt, Catalina A.; Meyer-Jacob, Carsten; Snyder, Jeffrey A.; Nowaczyk, Norbert R.; Schwamborn, Georg; Chapligin, Bernhard; Anderson, Patricia M.; Lozhkin, Anatoly V.; Minyuk, Pavel S.; Koeberl, Christian; Melles, Martin

    2016-09-01

    Lake El'gygytgyn in Far East Russia is a 3.6 Myr old impact crater lake. Located in an area that has never been affected by Cenozoic glaciations nor desiccation, the unique sediment record of the lake represents the longest continuous sediment archive of the terrestrial Arctic. The surrounding crater is the only impact structure on Earth developed in mostly acid volcanic rocks. Recent studies on the impactite, permafrost, and sediment sequences recovered within the framework of the ICDP "El'gygytgyn Drilling Project" and multiple pre-site surveys yielded new insight into the bedrock origin and cratering processes as well as permafrost dynamics and the climate and environmental history of the terrestrial Arctic back to the mid-Pliocene. Results from the impact rock section recovered during the deep drilling clearly confirm the impact genesis of the El'gygytgyn crater, but indicate an only very reduced fallback impactite sequence without larger coherent melt bodies. Isotope and element data of impact melt samples indicate a F-type asteroid of mixed composition or an ordinary chondrite as the likely impactor. The impact event caused a long-lasting hydrothermal activity in the crater that is assumed to have persisted for c. 300 kyr. Geochemical and microbial analyses of the permafrost core indicate a subaquatic formation of the lower part during lake-level highstand, but a subaerial genesis of the upper part after a lake-level drop after the Allerød. The isotope signal and ion compositions of ground ice is overprinted by several thaw-freeze cycles due to variations in the talik underneath the lake. Modeling results suggest a modern permafrost thickness in the crater of c. 340 m, and further confirm a pervasive character of the talik below Lake El'gygytgyn. The lake sediment sequences shed new leight into the Pliocene and Pleistocene climate and environmental evolution of the Arctic. During the mid-Pliocene, significantly warmer and wetter climatic conditions in

  4. Methane Ebullition During Simulated Lake Expansion and Permafrost Degradation

    Science.gov (United States)

    Mazéas, O.; von Fischer, J. C.; Whelan, M.; Rhew, R.

    2007-12-01

    Methane, a potent greenhouse gas, is emitted by Arctic tundra and lakes. Ebullition, or bubbling, of methane from Arctic lakes has been shown to be a major transport mechanism from the sediment to the atmosphere, and ebullition rates are greatest near the edges of the lakes where active erosion is occurring. In regions of continuous permafrost, Arctic lakes have been expanding in recent decades, attributed to permafrost melting and development of thermokarst. Lake expansion occurs when the margins erode into water, supplying large amounts of organic rich material to the sediment-water interface. This allows carbon that was previously stored in the soil (active layer and permafrost) to become bioavailable and subject to decomposition. An increase in Arctic methane emissions as a result of permafrost thawing and lake expansion would constitute a positive feedback to Arctic warming. In order to better understand these processes, an experiment was initiated in July 2007 at the Barrow Environmental Observatory, Barrow, AK. Different layers of locally collected tundra soil were placed into incubation chambers at the bottom of a shallow (about 1 m deep) lake. Each experimental chamber consists of a bucket fixed underneath an inverted funnel, with a sampling port on top to capture and collect the emitted gases. Gas samples are analyzed for methane and carbon dioxide concentrations, as well as relevant isotopic compositions. Gas sampling has occurred at frequent intervals during the late summer and will continue through the early winter. Three replicates of each layer (active layer, seasonally frozen active layer and permafrost) were incubated, as well as an empty control chamber. An additional chamber containing thawed permafrost and cellulose-rich sawdust was placed for comparison, as cellulose is a major component of plant tissue and the fermentation of the cellulose should yield substrates for methanogenesis. Total production of methane versus organic carbon content of

  5. Recent lake ice-out phenology within and among lake districts of Alaska, U.S.A.

    Science.gov (United States)

    Arp, Christopher D.; Jones, Benjamin M.; Grosse, Guido

    2013-01-01

    The timing of ice-out in high latitudes is a fundamental threshold for lake ecosystems and an indicator of climate change. In lake-rich regions, the loss of ice cover also plays a key role in landscape and climatic processes. Thus, there is a need to understand lake ice phenology at multiple scales. In this study, we observed ice-out timing on 55 large lakes in 11 lake districts across Alaska from 2007 to 2012 using satellite imagery. Sensor networks in two lake districts validated satellite observations and provided comparison with smaller lakes. Over this 6 yr period, the mean lake ice-out for all lakes was 27 May and ranged from 07 May in Kenai to 06 July in Arctic Coastal Plain lake districts with relatively low inter-annual variability. Approximately 80% of the variation in ice-out timing was explained by the date of 0°C air temperature isotherm and lake area. Shoreline irregularity, watershed area, and river connectivity explained additional variation in some districts. Coherence in ice-out timing within the lakes of each district was consistently strong over this 6 yr period, ranging from r-values of 0.5 to 0.9. Inter-district analysis of coherence also showed synchronous ice-out patterns with the exception of the two arctic coastal districts where ice-out occurs later (June–July) and climatology is sea-ice influenced. These patterns of lake ice phenology provide a spatially extensive baseline describing short-term temporal variability, which will help decipher longer term trends in ice phenology and aid in representing the role of lake ice in land and climate models in northern landscapes.

  6. If Arctic charr Salvelinus alpinus is “the most diverse vertebrate,” what is the lake charr Salvelinus namaycush?

    Science.gov (United States)

    Muir, Andrew M.; Hansen, Michael J.; Bronte, Charles R.; Krueger, Charles C.

    2016-01-01

    Teleost fishes are prominent vertebrate models of evolution, illustrated among old-world radiations by the Cichlidae of East African Great Lakes and new-world radiations by the circumpolar Arctic charr Salvelinus alpinus. Herein, we describe variation in lake charr S. namaycush morphology, life history, physiology, and ecology, as another example of radiation. The lake charr is restricted to northern North America, where it originated from glacial refugia and diversified in large lakes. Shallow and deepwater morphs arose in multiple lakes, with a large-bodied shallow-water ‘lean’ morph in shallow inshore depths, a small-bodied mid-water ‘humper’ morph on offshore shoals or banks, and a large-bodied deep-water ‘siscowet’ morph at depths > 100 m. Eye position, gape size, and gillraker length and spacing adapted for feeding on different-sized prey, with piscivorous morphs (leans and siscowets) reaching larger asymptotic size than invertivorous morphs (humpers). Lean morphs are light in color, whereas deepwater morphs are drab and dark, although the pattern is reversed in dark tannic lakes. Morphs shift from benthic to pelagic feeding at a length of 400–490-mm. Phenotypic differences in locomotion, buoyancy, and lipid metabolism evolved into different mechanisms for buoyancy regulation, with lean morphs relying on hydrodynamic lift and siscowet morphs relying on hydrostatic lift. We suggest that the Salvelinus genus, rather than the species S. alpinus, is a diverse genus that should be the subject of comparative studies of processes causing divergence and adaptation among member species that may lead to a more complete evolutionary conceptual model.

  7. Metal ion complex formation in small lakes of the Western Siberian Arctic zone

    Science.gov (United States)

    Kremleva, Tatiana; Dinu, Marina

    2017-04-01

    be predominantly in free, ionic or bound form with inorganic ligands. This state means paradox consequence that the increase of dissolved Fe content will lead to toxicity rise of other elements having less affinity to organic material. For surface waters of Western Siberian Arctic zone this situation is quite common. The total concentration of iron and aluminum ions in most lakes of tundra and northern taiga zones is approximately equal to water complexing ability. From the other side humic substances participation in inactivation of other more toxic metals (Cu, Pb, Cd, Cr, Ni et al.) will be poor. Arctic part of Western Siberia undergoes significant anthropogenic load due to extensive oil and gas recovery in this zone. Surface waters of Western Siberia are characterized by high natural content of iron, aluminum and copper ions and anthropogenic load of heavy metals makes the situation more serious.

  8. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    Science.gov (United States)

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  9. Second-Year Results from the Circumarctic Lakes Observation Network (CALON) Project

    Science.gov (United States)

    Hinkel, K. M.; Arp, C. D.; Beck, R. A.; Eisner, W. R.; Frey, K. E.; Gaglioti, B.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2013-12-01

    Beginning in April 2012, over 55 lakes in northern Alaska were instrumented as the initial phase of CALON, a project designed to document landscape-scale variability in physical and biogeochemical processes of Arctic lakes developed atop permafrost. The current network has nine observation nodes along two latitudinal transects that extend from the Arctic Ocean south 200 km to the foothills of the Brooks Range. At each node, six representative lakes of differing area and depth were instrumented at different intensity levels, and a suite of instruments were deployed to collect field measurements on lake physiochemistry, lake-surface and terrestrial climatology, and lake bed and permafrost temperature. Each April, sensors measuring water temperature and water depth are deployed through the ice and water samples are collected. Sensors are downloaded from lakes and meteorological stations in August, recording a timeline of lake regimes and events from ice decay to the summertime energy and water balance. In general, lake ice thickness increased with latitude. In 2012, ice on deeper (>2 m) lakes was about 1.4 m thick in the Arctic Foothills and 1.7 m thick near the Arctic Ocean coast. Lake ice thickness was about 20 cm thicker in winter 2013 although winter temperatures were several degrees warmer than the previous year; this is likely due to a thinner snow cover in 2013. Lake ice elevations agree with this general trend, showing higher absolute elevation in April 2013 compared to 2012 for most of the surveyed lakes. Regionally, ice-off occurs 2-4 weeks later on lakes near the coast, although there is significant inter-lake variability related to lake depth. Following ice-off, rapid lake warming occurs and water temperature varies synchronously in response to synoptic weather variations and associated changes in net radiation and turbulent heat fluxes. Average mid-summer (July) lake temperatures spanned a relatively wide range in 2012 from 7°C to 18°C, with higher

  10. Lakes on Mars

    CERN Document Server

    Cabrol, Nathalie A

    2014-01-01

    On Earth, lakes provide favorable environments for the development of life and its preservation as fossils. They are extremely sensitive to climate fluctuations and to conditions within their watersheds. As such, lakes are unique markers of the impact of environmental changes. Past and current missions have now demonstrated that water once flowed at the surface of Mars early in its history. Evidence of ancient ponding has been uncovered at scales ranging from a few kilometers to possibly that of the Arctic ocean. Whether life existed on Mars is still unknown; upcoming missions may find critic

  11. Biological Environmental Arctic Project (BEAP) Preliminary Data (Arctic West Summer 1986 Cruise).

    Science.gov (United States)

    1986-11-01

    predictive model of bioluminescence in near-surface arctic waters . Data were collected during Arctic West Summer 1986 from USCG POLAR STAR (WAGB 10). . %. J...2 20ODISTRIBUTION AVAILABILIT "Y OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION C]UNCLASSIFIED UNLIMITED SAME AS RPT C] DTIC USERS UNCLASSIFIED David...correlates for a predictive model of bioluminescence in near-surface arctic waters . - In previous years, these measurements were conducted from the USCG

  12. Temporal Behavior of Lake Size-Distribution in a Thawing Permafrost Landscape in Northwestern Siberia

    Directory of Open Access Journals (Sweden)

    Johanna Mård Karlsson

    2014-01-01

    Full Text Available Arctic warming alters regional hydrological systems, as permafrost thaw increases active layer thickness and in turn alters the pathways of water flow through the landscape. Further, permafrost thaw may change the connectivity between deeper and shallower groundwater and surface water altering the terrestrial water balance and distribution. Thermokarst lakes and wetlands in the Arctic offer a window into such changes as these landscape elements depend on permafrost and are some of the most dynamic and widespread features in Arctic lowland regions. In this study we used Landsat remotely sensed imagery to investigate potential shifts in thermokarst lake size-distributions, which may be brought about by permafrost thaw, over three distinct time periods (1973, 1987–1988, and 2007–2009 in three hydrological basins in northwestern Siberia. Results revealed fluctuations in total area and number of lakes over time, with both appearing and disappearing lakes alongside stable lakes. On the whole basin scales, there is no indication of any sustained long-term change in thermokarst lake area or lake size abundance over time. This statistical temporal consistency indicates that spatially variable change effects on local permafrost conditions have driven the individual lake changes that have indeed occurred over time. The results highlight the importance of using multi-temporal remote sensing data that can reveal complex spatiotemporal variations distinguishing fluctuations from sustained change trends, for accurate interpretation of thermokarst lake changes and their possible drivers in periods of climate and permafrost change.

  13. Environmental controls on the 2H/1H values of terrestrial leaf waxes in the eastern Canadian Arctic

    Science.gov (United States)

    Shanahan, Timothy M.; Hughen, Konrad A.; Ampel, Linda; Sauer, Peter E.; Fornace, Kyrstin

    2013-10-01

    The hydrogen isotope composition of plant waxes preserved in lacustrine sediments is a potentially valuable tool for reconstructing paleoenvironmental changes in the Arctic. However, in contrast to the mid- and low-latitudes, significantly less effort has been directed towards understanding the factors controlling D/H fractionation in high latitude plant waxes and the impact of these processes on the interpretation of sedimentary leaf wax δD records. To better understand these processes, we examined the D/H ratios of long chain fatty acids in lake surface sediments spanning a temperature and precipitation gradient on Baffin Island in the eastern Canadian Arctic. D/H ratios of plant waxes increase with increasing temperature and aridity, with values ranging from -240‰ to -160‰ over the study area. Apparent fractionation factors between n-alkanoic acids in Arctic lake sediments and precipitation(εFA-ppt) are less negative than those of mid-latitude lakes and modern plants by 25‰ to 65‰, consistent with n-alkane data from modern Arctic plants (Yang et al., 2011). Furthermore, εFA-ppt values from Arctic lakes become systematically more positive with increasing evaporation, in contrast to mid-latitude sites, which show little to no change in fractionation with aridity. These data are consistent with enhanced water loss and isotope fractionation at higher latitude in the Arctic summer, when continuous sunlight supports increased daily photosynthesis. The dominant control on δDFA variations on Baffin Island is temperature. However, changing εFA-ppt result in steeper δDFA-temperature relationships than observed for modern precipitation. The application of this δDFA-based paleotemperature calibration to existing δDFA records from Baffin Island produces much more realistic changes in late Holocene temperature and highlights the importance of these effects in influencing the interpretation of Arctic δDFA records. A better understanding of the controls on

  14. Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain

    Science.gov (United States)

    Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido

    2016-01-01

    Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

  15. Limnological controls on stable isotope records of late-holocene palaeoenvironment change in sw greenland: A paired lake study

    DEFF Research Database (Denmark)

    Olsen, Jesper; John Anderson, N.; Leng, M.J.

    2013-01-01

    Stable isotope records are increasingly being used in palaeoenvironmental studies of Arctic lakes. Here we compare stable isotope and elemental records (δ13C, δ15N, C/N) with high resolution XRF-derived geochemical and colour data from low Arctic lakes (SS1220 and SS85) in southwest Greenland. Lake...... SS1220 sediments are laminated gyttja whereas SS85 consist of homogeneous gyttja, both records cover the last c. 5000 years. d13C and carbon content suggest that organic matter in both lakes is predominantly autochthonous. The C/N variability, ranging between 11 and 15, is interpreted...... composition of lake sediments when there is a reasonable understanding of limnological processes, and records may be lake specific....

  16. Observing a catastrophic thermokarst lake drainage in northern Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  17. Chromophoric Dissolved Organic Matter in Southwestern Greenland Lakes

    Science.gov (United States)

    Osburn, C. L.; Giles, M. E.; Underwood, G. J. C.

    2014-12-01

    Dissolved organic matter (DOM) is an important property of Arctic lake ecosystems, originating from allochthonous inputs from catchments and autochthonous production by plankton in the water column. Little is known about the quality of DOM in Arctic lakes that lack substantial inputs from catchments and such lakes are abundant in southwestern Greenland. Colored dissolved organic matter (CDOM), the fraction that absorbs ultraviolet (UV) and visible light, is the controlling factor for the optical properties of many surface waters and as well informs on the quality of DOM. We examined the quality of CDOM in 21 lakes in southwestern Greenland, from the ice sheet to the coast, as part of a larger study examining the role of DOM in regulating microbial communities in these lakes. DOM was size fractioned and absorbance and fluorescence was measured on each size fraction, as well as on bulk DOM. The specific ultraviolet absorbance (SUVA) at 254 nm (SUVA254), computed by normalizing absorption (a254) to dissolved organic carbon (DOC) concentration, provided an estimate of the aromatic carbon content of DOM. SUVA values were generally CDOM fluorescence was used to determine the relative abundance of allochthonous and autochthonous DOM in all size fractions. Younger lakes near the ice sheet and lakes near the coast had lower amounts of CDOM and appeared more microbial in quality. However, lakes centrally located between the ice sheet and the coast had the highest CDOM concentrations and exhibited strong humic fluorescence. Overall distinct differences in CDOM quality were observed between lake locations and among DOM size fractions.

  18. A lacustrine GDGT-temperature calibration from the Scandinavian Arctic to Antarctic: Renewed potential for the application of GDGT-paleothermometry in lakes

    Science.gov (United States)

    Pearson, Emma J.; Juggins, Steve; Talbot, Helen M.; Weckström, Jan; Rosén, Peter; Ryves, David B.; Roberts, Stephen J.; Schmidt, Roland

    2011-10-01

    Quantitative climate reconstructions are fundamental to understand long-term trends in natural climate variability and to test climate models used to predict future climate change. Recent advances in molecular geochemistry have led to calibrations using glycerol dialkyl glycerol tetraethers (GDGTs), a group of temperature-sensitive membrane lipids found in Archaea and bacteria. GDGTs have been used to construct temperature indices for oceans (TEX 86 index) and soils (MBT/CBT index). The aim of this study is to examine GDGT-temperature relationships and assess the potential of constructing a GDGT-based palaeo-thermometer for lakes. We examine GDGT-temperature relationships using core top sediments from 90 lakes across a north-south transect from the Scandinavian Arctic to Antarctica including sites from Finland, Sweden, Siberia, the UK, Austria, Turkey, Ethiopia, Uganda, Chile, South Georgia and the Antarctic Peninsula. We examine a suite of 15 GDGTs, including compounds used in the TEX 86 and MBT/CBT indices and reflecting the broad range of GDGT inputs to small lake systems. GDGTs are present in varying proportions in all lakes examined. The TEX 86 index is not applicable to our sites because of the large relative proportions of soil derived and methanogenic components. Similarly, the MBT/CBT index is also not applicable and predicts temperatures considerably lower than those measured. We examine relationships between individual GDGT compounds and temperature, pH, conductivity and water depth. Temperature accounts for a large and statistically independent fraction of variation in branched GDGT composition. We propose a GDGT-temperature regression model with high accuracy and precision ( R2 = 0.88; RMSE = 2.0 °C; RMSEP = 2.1 °C) for use in lakes based on a subset of branched GDGT compounds and highlight the potential of this new method for reconstructing past temperatures using lake sediments.

  19. Ozone variability and halogen oxidation within the Arctic and sub-Arctic springtime boundary layer

    Directory of Open Access Journals (Sweden)

    J. B. Gilman

    2010-11-01

    Full Text Available The influence of halogen oxidation on the variabilities of ozone (O3 and volatile organic compounds (VOCs within the Arctic and sub-Arctic atmospheric boundary layer was investigated using field measurements from multiple campaigns conducted in March and April 2008 as part of the POLARCAT project. For the ship-based measurements, a high degree of correlation (r = 0.98 for 544 data points collected north of 68° N was observed between the acetylene to benzene ratio, used as a marker for chlorine and bromine oxidation, and O3 signifying the vast influence of halogen oxidation throughout the ice-free regions of the North Atlantic. Concurrent airborne and ground-based measurements in the Alaskan Arctic substantiated this correlation and were used to demonstrate that halogen oxidation influenced O3 variability throughout the Arctic boundary layer during these springtime studies. Measurements aboard the R/V Knorr in the North Atlantic and Arctic Oceans provided a unique view of the transport of O3-poor air masses from the Arctic Basin to latitudes as far south as 52° N. FLEXPART, a Lagrangian transport model, was used to quantitatively determine the exposure of air masses encountered by the ship to first-year ice (FYI, multi-year ice (MYI, and total ICE (FYI+MYI. O3 anti-correlated with the modeled total ICE tracer (r = −0.86 indicating that up to 73% of the O3 variability measured in the Arctic marine boundary layer could be related to sea ice exposure.

  20. Correlations among atmospheric CO[sub 2], CH[sub 4] and CO in the Arctic, March 1989

    Energy Technology Data Exchange (ETDEWEB)

    Conway, T.J.; Steele, L.P.; Novelli, P.C. (NOAA Climate Monitoring and Diagnostics Lab., Boulder, CO (United States))

    1993-12-01

    During six aircraft flights conducted as part of the third Arctic Gas and Aerosol Sampling Program (AGASP III, March 1989), 189 air samples were collected throughout the Arctic troposphere and lower stratosphere for analysis of CO[sub 2], CH[sub 4] and CO. The mixing ratios of the three gases varied significantly both horizontally and vertically. Elevated concentrations were found in layers with high anthropogenic aerosol concentrations (Arctic Haze). The mixing ratios of CO[sub 2], CH[sub 4] and CO were highly correlated on all flights. A linear regression of CH[sub 4] vs CO[sub 2] for pooled data from all flights yielded a correlation coefficient (r[sup 2]) of 0.88 and a slope of 13.5 ppb CH[sub 4]/ppm CO[sub 2] (n 186). For CO vs CO[sub 2] a pooled linear regression gave r[sup 2] 0.91 and a slope of 15.8 ppb CO/ppm CO[sub 2] (n 182). Carbon dioxide CH[sub 4] and CO also exhibited mean vertical gradients with slopes of 0.37, -4.4 and -4.2 ppb km[sup -1], respectively. Since the carbon dioxide variations observed in the Arctic atmosphere during winter are due primarily to variations in the emissions and transport of anthropogenic CO[sub 2] from Europe and Asia, the strong correlations that we have found suggest that a similar interpretation applies to CH[sub 4] and CO. Using reliable estimates of CO[sub 2] emissions for the source regions and the measured CH[sub 4]/CO[sub 2] and CO/CO[sub 2] ratios, we estimate a regional European CH[sub 4] source of 47[+-] 6 Tg CH[sub 4] yr[sup -1] that may be associated with fossil fuel combustion. A similar calculation for CO results in an estimated regional CO source of 82[+-]2 Tg CO yr[sup -1]. 31 refs., 7 figs., 4 tabs.

  1. Disappearing Arctic tundra ponds: Fine-scale analysis of surface hydrology in drained thaw lake basins over a 65 year period (1948-2013)

    Science.gov (United States)

    Andresen, Christian G.; Lougheed, Vanessa L.

    2015-03-01

    Long-term fine-scale dynamics of surface hydrology in Arctic tundra ponds (less than 1 ha) are largely unknown; however, these small water bodies may contribute substantially to carbon fluxes, energy balance, and biodiversity in the Arctic system. Change in pond area and abundance across the upper Barrow Peninsula, Alaska, was assessed by comparing historic aerial imagery (1948) and modern submeter resolution satellite imagery (2002, 2008, and 2010). This was complemented by photogrammetric analysis of low-altitude kite-borne imagery in combination with field observations (2010-2013) of pond water and thaw depth transects in seven ponds of the International Biological Program historic research site. Over 2800 ponds in 22 drained thaw lake basins (DTLB) with different geological ages were analyzed. We observed a net decrease of 30.3% in area and 17.1% in number of ponds over the 62 year period. The inclusion of field observations of pond areas in 1972 from a historic research site confirms the linear downward trend in area. Pond area and number were dependent on the age of DTLB; however, changes through time were independent of DTLB age, with potential long-term implications for the hypothesized geomorphologic landscape succession of the thaw lake cycle. These losses were coincident with increases in air temperature, active layer, and density and cover of aquatic emergent plants in ponds. Increased evaporation due to warmer and longer summers, permafrost degradation, and transpiration from encroaching aquatic emergent macrophytes are likely the factors contributing to the decline in surface area and number of ponds.

  2. Drivers of seasonality in Arctic carbon dioxide fluxes

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe

    , while there were no discernable drivers of CO2 fluxes in Stordalen, growing season length showed significant controls on net ecosystem exchange (NEE) in Zackenberg and with gross primary production (GPP) and ecosystem respiration (Re) in Daring Lake. This is important considering the recent observations...... compensates for the shorter growing season due to increase snow cover and duration. Other drivers of growing season CO2 fluxes were mainly air temperature, growing degree days and photosynthetic active radiation in a high and a low Arctic tundra ecosystem. Upscaling Arctic tundra NEE based on an acquired...... understanding of the drivers of NEE during this research venture, shows an estimation of reasonable fluxes at three independent sites in low Arctic Alaska. However, this later project is still ongoing and its findings are only preliminary....

  3. Variety, State and Origin of Drained Thaw Lake Basins in West-Siberian North

    Science.gov (United States)

    Kirpotin, S.; Polishchuk, Y.; Bryksina, N.; Sugaipova, A.; Pokrovsky, O.; Shirokova, L.; Kouraev, A.; Zakharova, E.; Kolmakova, M.; Dupre, B.

    2009-04-01

    Drained thaw lake basins in Western Siberia have a local name "khasyreis" [1]. Khasyreis as well as lakes, ponds and frozen mounds are invariable element of sub-arctic frozen peat bogs - palsas and tundra landscapes. In some areas of West-Siberian sub-arctic khasyreis occupy up to 40-50% of total lake area. Sometimes their concentration is so high that we call such places ‘khasyrei's fields". Khasyreis are part of the natural cycle of palsa complex development [1], but their origin is not continuous and uniform in time and, according to our opinion, there were periods of more intensive lake drainage and khasyrei development accordingly. These times were corresponding with epochs of climatic warming and today we have faced with one of them. So, last years this process was sufficiently activated in the south part of West-Siberian sub-arctic [2]. It was discovered that in the zone of continuous permafrost thermokarst lakes have expanded their areas by about 10-12%, but in the zone of discontinuous permafrost the process of their drainage prevails. These features are connected with the thickness of peat layers which gradually decreases to the North, and thus have reduced the opportunity for lake drainage in northern areas. The most typical way of khasyrei origin is their drainage to the bigger lakes which are always situated on the lower levels and works as a collecting funnels providing drainage of smaller lakes. The lower level of the big lake appeared when the lake takes a critical mass of water enough for subsidence of the lake bottom due to the melting of underlaying rocks [2]. Another one way of lake drainage is the lake intercept by any river. Lake drainage to the subsurface (underlaying rocks) as some authors think [3, 4] is not possible in Western Siberia, because the thickness of permafrost is at list 500 m here being safe confining bed. We mark out few stages of khasyrei development: freshly drained, young, mature and old. This row reflects stages of

  4. Landsat time series analysis documents beaver migration into permafrost landscapes of arctic Alaska

    Science.gov (United States)

    Jones, B. M.; Tape, K. D.; Nitze, I.; Arp, C. D.; Grosse, G.; Zimmerman, C. E.

    2017-12-01

    Landscape-scale impacts of climate change in the Arctic include increases in growing season length, shrubby vegetation, winter river discharge, snowfall, summer and winter water temperatures, and decreases in river and lake ice thickness. Combined, these changes may have created conditions that are suitable for beaver colonization of low Arctic tundra regions. We developed a semi-automated workflow that analyzes Landsat imagery time series to determine the extent to which beavers may have colonized permafrost landscapes in arctic Alaska since 1999. We tested this approach on the Lower Noatak, Wulik, and Kivalina river watersheds in northwest Alaska and identified 83 locations representing potential beaver activity. Seventy locations indicated wetting trends and 13 indicated drying trends. Verification of each site using high-resolution satellite imagery showed that 80 % of the wetting locations represented beaver activity (damming and pond formation), 11 % were unrelated to beavers, and 9 % could not readily be distinguished as being beaver related or not. For the drying locations, 31 % represented beaver activity (pond drying due to dam abandonment), 62 % were unrelated to beavers, and 7 % were undetermined. Comparison of the beaver activity database with historic aerial photography from ca. 1950 and ca. 1980 indicates that beavers have recently colonized or recolonized riparian corridors in northwest Alaska. Remote sensing time series observations associated with the migration of beavers in permafrost landscapes in arctic Alaska include thermokarst lake expansion and drainage, thaw slump initiation, ice wedge degradation, thermokarst shore fen development, and possibly development of lake and river taliks. Additionally, beaver colonization in the Arctic may alter channel courses, thermal regimes, hyporheic flow, riparian vegetation, and winter ice regimes that could impact ecosystem structure and function in this region. In particular, the combination of beaver

  5. Mercury exports from a High-Arctic river basin in Northeast Greenland (74°N) largely controlled by glacial lake outburst floods

    DEFF Research Database (Denmark)

    Søndergaard, Jens; Tamstorf, Mikkel P.; Elberling, Bo

    2015-01-01

    .025 mg kg(-1). Temporal variations in river Hg were mainly associated with snowmelt, sudden erosion events, and outburst floods from a glacier-dammed lake in the upper part of the ZRB. Annual Hg exports from the 514 km(2) ZRB varied from 0.71 to >1.57 kg and the majority (86-96 was associated...... with sediment-bound Hg. Hg yields from the ZRB varied from 1.4-3.1 g Hg km(-2) yr(-1) and were among the highest yields reported from Arctic river basins. River exports of Hg from ZRB were found to be largely controlled by the frequency, magnitude and timing of the glacial lake outburst floods, which occurred...... in four of the five years in July-August. Floods accounted for 5 to >10% of the annual water discharge, and up to >31% of the annual Hg export. Also, the winter snowfall and the summer temperatures were found to be important indirect controls on the annual Hg export. The occurrence and timing of glacial...

  6. Persistent organic pollutants in biota samples collected during the Ymer-80 expedition to the Arctic

    Directory of Open Access Journals (Sweden)

    Henrik Kylin

    2015-10-01

    Full Text Available During the 1980 expedition to the Arctic with the icebreaker Ymer, a number of vertebrate species were sampled for determination of persistent organic pollutants. Samples of Arctic char (Salvelinus alpinus, n=34, glaucous gull (Larus hyperboreus, n=8, common eider (Somateria mollissima, n=10, Brünnich's guillemot (Uria lomvia, n=9, ringed seal (Pusa hispida, n=2 and polar bear (Ursus maritimus, n=2 were collected. With the exception of Brünnich's guillemot, there was a marked contamination difference of birds from western as compared to eastern/northern Svalbard. Samples in the west contained a larger number of polychlorinated biphenyl (PCB congeners and also polychlorinated terphenyls, indicating local sources. Brünnich's guillemots had similar pollutant concentrations in the west and east/north; possibly younger birds were sampled in the west. In Arctic char, pollutant profiles from lake Linnévatn (n=5, the lake closest to the main economic activities in Svalbard, were similar to profiles in Arctic char from the Shetland Islands (n=5, but differed from lakes to the north and east in Svalbard (n=30. Arctic char samples had higher concentrations of hexachlorocyclohexanes (HCHs than the marine species of birds and mammals, possibly due to accumulation via snowmelt. Compared to the Baltic Sea, comparable species collected in Svalbard had lower concentrations of PCB and dichlorodiphenyltrichloroethane (DDT, but similar concentrations indicating long-range transport of hexachlorobenzene, HCHs and cyclodiene pesticides. In samples collected in Svalbard in 1971, the concentrations of PCB and DDT in Brünnich's guillemot (n=7, glaucous gull (n=2 and polar bear (n=2 were similar to the concentrations found in 1980.

  7. CO2 dynamics of tundra ponds in the low-Arctic, Northwest Territories, Canada

    Science.gov (United States)

    Buell, Mary-Claire

    Extensive research has gone into measuring changes to the carbon storage capacity of Arctic terrestrial environments as well as large water bodies in order to determine a carbon budget for many regions across the Arctic. Inland Arctic waters such as small lakes and ponds are often excluded from these carbon budgets, however a handful of studies have demonstrated that they can often be significant sources of carbon to the atmosphere. This study investigated the CO2 cycling of tundra ponds in the Daring Lake area, Northwest Territories, Canada (64°52'N, 111°35'W), to determine the role ponds have in the local carbon cycle. Floating chambers, nondispersive infrared (NDIR) sensors and headspace samples were used to estimate carbon fluxes from four selected local ponds. Multiple environmental, chemical and meteorological parameters were also monitored for the duration of the study, which took place during the snow free season of 2013. Average CO2 emissions for the two-month growing season ranged from approximately -0.0035 g CO2-C m-2 d -1 to 0.12 g CO2-C m-2 d-1. The losses of CO2 from the water bodies in the Daring Lake area were approximately 2-7% of the CO2 uptake over vegetated terrestrial tundra during the same two-month period. Results from this study indicated that the production of CO2 in tundra ponds was positively influenced by both increases in air temperature, and the delivery of carbon from their catchments. The relationship found between temperature and carbon emissions suggests that warming Arctic temperatures have the potential to increase carbon emissions from ponds in the future. The findings in this study did not include ebullition gas emissions nor plant mediated transport, therefore these findings are likely underestimates of the total carbon emissions from water bodies in the Daring Lake area. This study emphasizes the need for more research on inland waters in order to improve our understanding of the total impact these waters may have on the

  8. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N; Stibal, Marek

    2016-01-01

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact...... and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity...

  9. Effects of Accelerated Deglaciation on Chemical Characteristics of Sub-arctic Lakes and Rivers in South and West Iceland

    Science.gov (United States)

    Ritter, M.; Strock, K.; Edwards, B. R.

    2017-12-01

    Glaciers and their associated paraglacial landscapes have changed rapidly over the past century, and may see increased rates of melt as temperatures increase in high latitude environments. As glaciers recede, glacial meltwater subsidies increase to inland freshwater systems, influencing their structure and function. Evidence suggests melting ice influences the chemical characteristics of systems by providing nutrient subsidies, while inputs of glacial flour influence their physical structure by affecting temperature, reducing water clarity and increasing turbidity. Together, changes in physical and chemical structure of these systems have subsequent effects on biota, with the potential to lower taxonomic richness. This study characterized the chemistry of rivers and lakes fed by glacial meltwater in sub-arctic environments of Iceland, where there is limited limnological data. The survey characterized nutrient chemistry, dissolved organic carbon, and ion chemistry. We surveyed glacial meltwater from six glaciers in south and west Iceland, using the drainage basin of Gigjökull glacier along the southern coast as a detailed study area to examine the interactions between groundwater and surface runoff. The southern systems, within the Eastern Volcanic Zone, have minimal soil development and active volcanoes produce ash input to lakes. Lakes in the Western Volcanic Zone were more diverse, located in older bedrock with more extensively weathered soil. Key differences were observed between aquatic environments subsidized with glacial meltwater and those without. This included physical effects, such as lower temperatures and chemical effects such as lower conductivity and higher pH in glacially fed systems. In the drainage basin of Gigjökull glacier, lakes formed after the former lagoon was emptied and then partly refilled with debris from jokulhlaups during the 2010 Eyjafjallajökull eruption. These newly formed lakes resembled non-glacial melt systems despite receiving

  10. Geophysical Investigation of a Thermokarst Lake Talik in Continuous Permafrost

    Science.gov (United States)

    Creighton, A.; Parsekian, A.; Arp, C. D.; Jones, B. M.; Babcock, E.; Bondurant, A. C.

    2016-12-01

    On the Arctic Coastal Plain (ACP) of northern Alaska, shallow thermokarst lakes cover up to 25% of the landscape. These lakes occupy depressions created by the subsidence of thawed, ice-rich permafrost. Areas of unfrozen sediment, or taliks, can form under lakes that have a mean annual bottom temperature greater than 0°C. The geometry of these taliks, as well as the processes that create them, are important for understanding interactions between surface water, groundwater, and carbon cycling. Non-invasive geophysical methods are a useful means to study talik sediments as borehole studies yield few data points, and the contrast between unfrozen and frozen sediments is an ideal geophysical target. To study talik configuration associated with an actively expanding thermokarst lake, we conducted a geophysical transect across Peatball Lake. This lake has an estimated initiation age of 1400 calendar years BP. Over the past 60 years, lake surface area has increased through thermal and mechanical shoreline erosion. A talik of previously unknown thickness likely exists below Peatball Lake. We conducted a transect of transient electromagnetic soundings across the lake extending into the surrounding terrestrial environment. Since permafrost has relatively high resistivity compared to talik sediments, the interpreted electrical structure of the subsurface likely reflects talik geometry. We also conducted nuclear magnetic resonance soundings at representative locations along the transect. These measurements can provide data on sub-lake sediment properties including water content. Together, these measurements resolve the talik structure across the lake transect and showed evidence of varying talik thicknesses from the lake edge to center. These is no evidence of a talik at the terrestrial control sites. These results can help constrain talik development models and thus provide insight into Arctic and permafrost processes in the face of a changing climate.

  11. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr.

    Science.gov (United States)

    Ahi, Ehsan Pashay; Kapralova, Kalina Hristova; Pálsson, Arnar; Maier, Valerie Helene; Gudbrandsson, Jóhannes; Snorrason, Sigurdur S; Jónsson, Zophonías O; Franzdóttir, Sigrídur Rut

    2014-01-01

    Understanding the molecular basis of craniofacial variation can provide insights into key developmental mechanisms of adaptive changes and their role in trophic divergence and speciation. Arctic charr (Salvelinus alpinus) is a polymorphic fish species, and, in Lake Thingvallavatn in Iceland, four sympatric morphs have evolved distinct craniofacial structures. We conducted a gene expression study on candidates from a conserved gene coexpression network, focusing on the development of craniofacial elements in embryos of two contrasting Arctic charr morphotypes (benthic and limnetic). Four Arctic charr morphs were studied: one limnetic and two benthic morphs from Lake Thingvallavatn and a limnetic reference aquaculture morph. The presence of morphological differences at developmental stages before the onset of feeding was verified by morphometric analysis. Following up on our previous findings that Mmp2 and Sparc were differentially expressed between morphotypes, we identified a network of genes with conserved coexpression across diverse vertebrate species. A comparative expression study of candidates from this network in developing heads of the four Arctic charr morphs verified the coexpression relationship of these genes and revealed distinct transcriptional dynamics strongly correlated with contrasting craniofacial morphologies (benthic versus limnetic). A literature review and Gene Ontology analysis indicated that a significant proportion of the network genes play a role in extracellular matrix organization and skeletogenesis, and motif enrichment analysis of conserved noncoding regions of network candidates predicted a handful of transcription factors, including Ap1 and Ets2, as potential regulators of the gene network. The expression of Ets2 itself was also found to associate with network gene expression. Genes linked to glucocorticoid signalling were also studied, as both Mmp2 and Sparc are responsive to this pathway. Among those, several transcriptional

  12. An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife

    International Nuclear Information System (INIS)

    Fisk, Aaron T.; Wit, Cynthia A. de; Wayland, Mark; Kuzyk, Zou Zou; Burgess, Neil; Letcher, Robert; Braune, Birgit; Norstrom, Ross; Blum, Susan Polischuk; Sandau, Courtney; Lie, Elisabeth; Larsen, Hans Jorgen S.; Skaare, Janneche Utne; Muir, Derek C.G.

    2005-01-01

    Anthropogenic contaminants have been a concern in the Canadian arctic for over 30 years due to relatively high concentrations of bioaccumulating and biomagnifying organochlorine contaminants (OCs) and toxic metals found in some arctic biota and humans. However, few studies have addressed the potential effects of these contaminants in Canadian arctic wildlife. Prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects related to contaminant exposure, and compares new tissue concentration data to threshold effects levels. Weak relationships between cadmium, mercury and selenium burdens and health biomarkers in common eider ducks (Somateria mollissima borealis) in Nunavut were found but it was concluded that metals were not influencing the health of these birds. Black guillemots (Cepphus grylle) examined near PCB-contaminated Saglek Bay, Labrador, had enlarged livers, elevated EROD and liver lipid levels and reduced retinol (vitamin A) and retinyl palmitate levels, which correlated to PCB levels in the birds. Circulating levels of thyroid hormones in polar bears (Ursus maritimus) were correlated to PCB and HO-PCB plasma concentrations, but the impact at the population level is unknown. High PCB and organochlorine pesticide concentrations were found to be strongly associated with impaired humoral and cell-mediated immune responses in polar bears, implying an increased infection risk that could impact the population. In beluga whale (Delphinapterus leucas), cytochromes P450 (phase I) and conjugating (phase II) enzymes have been extensively profiled (immunochemically and catalytically) in liver, demonstrating the importance of contaminants in relation to enzyme induction, metabolism and potential contaminant bioactivation and fate. Concentrations of OCs and metals in arctic terrestrial wildlife, fish and seabirds are generally below effects thresholds

  13. An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, Aaron T. [Warnell School of Forest Resources, University of Georgia, Athens, GA 30602-2152 (United States)]. E-mail: afisk@forestry.uga.edu; Wit, Cynthia A. de [Department of Applied Environmental Science, Stockholm University, Stockholm (Sweden); Wayland, Mark [Prairie and Northern Wildlife Research Centre, Environment Canada, 115 Perimeter Rd., Saskatoon, SK, S7N 0X4 (Canada); Kuzyk, Zou Zou [Environmental Sciences Group, Royal Military College of Canada, Kingston, ON, K7K 7B4 (Canada); Burgess, Neil [Canadian Wildlife Service, Environment Canada, 6 Bruce St. Mt. Pearl, NL, A1N4T3 (Canada); Letcher, Robert [National Wildlife Research Centre, Environment Canada, Ottawa, ON, K1A 0H3 (Canada); Braune, Birgit [National Wildlife Research Centre, Environment Canada, Ottawa, ON, Canada K1A 0H3 (Canada); Norstrom, Ross [National Wildlife Research Centre, Environment Canada, Ottawa, ON, K1A 0H3 (Canada); Blum, Susan Polischuk [Office of Research Services, University of Saskatchewan, Saskatoon, SK, S7N 4J8 (Canada); Sandau, Courtney [Jacques Whitford Limited, Calgary, AB, T2R 0E4 (Canada); Lie, Elisabeth [National Veterinary Institute, P.O. Box 8156, Dep 0033, Oslo (Norway); Larsen, Hans Jorgen S. [Norwegian School of Veterinary Science, P.O. Box 8146, Dep 0033, Oslo (Norway); Skaare, Janneche Utne [National Veterinary Institute, P.O. Box 8156, Dep 0033, Oslo (Norway); Norwegian School of Veterinary Science, P.O. Box 8146, Dep 0033, Oslo (Norway); Muir, Derek C.G. [National Water Research Institute, Environment Canada, Burlington, ON, L7R 4A6 (Canada)

    2005-12-01

    Anthropogenic contaminants have been a concern in the Canadian arctic for over 30 years due to relatively high concentrations of bioaccumulating and biomagnifying organochlorine contaminants (OCs) and toxic metals found in some arctic biota and humans. However, few studies have addressed the potential effects of these contaminants in Canadian arctic wildlife. Prior to 1997, biological effects data were minimal and insufficient at any level of biological organization. The present review summarizes recent studies on biological effects related to contaminant exposure, and compares new tissue concentration data to threshold effects levels. Weak relationships between cadmium, mercury and selenium burdens and health biomarkers in common eider ducks (Somateria mollissima borealis) in Nunavut were found but it was concluded that metals were not influencing the health of these birds. Black guillemots (Cepphus grylle) examined near PCB-contaminated Saglek Bay, Labrador, had enlarged livers, elevated EROD and liver lipid levels and reduced retinol (vitamin A) and retinyl palmitate levels, which correlated to PCB levels in the birds. Circulating levels of thyroid hormones in polar bears (Ursus maritimus) were correlated to PCB and HO-PCB plasma concentrations, but the impact at the population level is unknown. High PCB and organochlorine pesticide concentrations were found to be strongly associated with impaired humoral and cell-mediated immune responses in polar bears, implying an increased infection risk that could impact the population. In beluga whale (Delphinapterus leucas), cytochromes P450 (phase I) and conjugating (phase II) enzymes have been extensively profiled (immunochemically and catalytically) in liver, demonstrating the importance of contaminants in relation to enzyme induction, metabolism and potential contaminant bioactivation and fate. Concentrations of OCs and metals in arctic terrestrial wildlife, fish and seabirds are generally below effects thresholds

  14. Correlated evolution of short wavelength sensitive photoreceptor sensitivity and color pattern in Lake Malawi cichlids

    Directory of Open Access Journals (Sweden)

    Michael J. Pauers

    2016-02-01

    Full Text Available For evolutionary ecologists, the holy grail of visual ecology is to establish an unambiguous link between photoreceptor sensitivity, the spectral environment, and the perception of specific visual stimuli (e.g., mates, food, predators, etc.. Due to the bright nuptial colors of the males, and the role female mate choice plays in their evolution, the haplochromine cichlid fishes of the African great lakes are favorite research subjects for such investigations. Despite this attention, current evidence is equivocal; while distinct correlations among photoreceptor sensitivity, photic environment, and male coloration exist in Lake Victorian haplochromines, attempts to find such correlations in Lake Malawian cichlids have failed. Lake Malawi haplochromines have a wide variability in their short-wavelength-sensitive photoreceptors, especially compared to their mid- and long-wavelength-sensitive photoreceptors; these cichlids also vary in the degree to which they express one of three basic color patterns (vertical bars, horizontal stripes, and solid patches of colors, each of which is likely used in a different form of communication. Thus, we hypothesize that, in these fishes, spectral sensitivity and color pattern have evolved in a correlated fashion to maximize visual communication; specifically, ultraviolet sensitivity should be found in vertically-barred species to promote ‘private’ communication, while striped species should be less likely to have ultraviolet sensitivity, since their color pattern carries ‘public’ information. Using phylogenetic independent contrasts, we found that barred species had strong sensitivity to ultraviolet wavelengths, but that striped species typically lacked sensitivity to ultraviolet light. Further, the only variable, even when environmental variables were simultaneously considered, that could predict ultraviolet sensitivity was color pattern. We also found that, using models of correlated evolution, color

  15. Observing Arctic Ecology using Networked Infomechanical Systems

    Science.gov (United States)

    Healey, N. C.; Oberbauer, S. F.; Hollister, R. D.; Tweedie, C. E.; Welker, J. M.; Gould, W. A.

    2012-12-01

    Understanding ecological dynamics is important for investigation into the potential impacts of climate change in the Arctic. Established in the early 1990's, the International Tundra Experiment (ITEX) began observational inquiry of plant phenology, plant growth, community composition, and ecosystem properties as part of a greater effort to study changes across the Arctic. Unfortunately, these observations are labor intensive and time consuming, greatly limiting their frequency and spatial coverage. We have expanded the capability of ITEX to analyze ecological phenomenon with improved spatial and temporal resolution through the use of Networked Infomechanical Systems (NIMS) as part of the Arctic Observing Network (AON) program. The systems exhibit customizable infrastructure that supports a high level of versatility in sensor arrays in combination with information technology that allows for adaptable configurations to numerous environmental observation applications. We observe stereo and static time-lapse photography, air and surface temperature, incoming and outgoing long and short wave radiation, net radiation, and hyperspectral reflectance that provides critical information to understanding how vegetation in the Arctic is responding to ambient climate conditions. These measurements are conducted concurrent with ongoing manual measurements using ITEX protocols. Our NIMS travels at a rate of three centimeters per second while suspended on steel cables that are ~1 m from the surface spanning transects ~50 m in length. The transects are located to span soil moisture gradients across a variety of land cover types including dry heath, moist acidic tussock tundra, shrub tundra, wet meadows, dry meadows, and water tracks. We have deployed NIMS at four locations on the North Slope of Alaska, USA associated with 1 km2 ARCSS vegetation study grids including Barrow, Atqasuk, Toolik Lake, and Imnavait Creek. A fifth system has been deployed in Thule, Greenland beginning in

  16. Time-series measurements of methane (CH4) distribution during open water and ice-cover in lakes throughout the Mackenzie River Delta (Canada)

    Science.gov (United States)

    McIntosh, H.; Lapham, L.; Orcutt, B.; Wheat, C. G.; Lesack, L.; Bergstresser, M.; Dallimore, S. R.; MacLeod, R.; Cote, M.

    2016-12-01

    Arctic lakes are known to emit large amounts of methane to the atmosphere and their importance to the global methane (CH4) cycle has been recognized. It is well known CH4 builds up in Arctic lakes during ice-cover, but the amount of and when the CH4 is released to the atmosphere is not well known. Our preliminary results suggest the largest flux of CH4 from lakes to the atmosphere occurs slightly before complete ice-out; while others have shown the largest flux occurs when lakes overturn in the spring. During ice-out, CH4 can also be oxidized by methane oxidizing bacteria before it can efflux to the atmosphere from the surface water. In order to elucidate the processes contributing to Arctic lake CH4 emissions, continuous, long-term and large scale spatial sampling is required; however it is difficult to achieve in these remote locations. We address this problem using two sampling techniques. 1) We deployed osmotically powered pumps (OsmoSamplers), which were able to autonomously and continuously collect lake bottom water over the course of a year from multiple lakes in the Mackenzie River Delta. OsmoSamplers were placed in four lakes in the mid Delta near Inuvik, Northwest Territories, Canada, two lakes in the outer Delta, and two coastal lakes on Richard's Island in 2015. The dissolved CH4 concentration, stable isotope content of CH4 (δ13C-CH4), and dissolved sulfate concentrations in bottom water from these lakes will be presented to better understand methane dynamics under the ice and over time. 2) Along with the time-series data, we will also present data from discrete samples collected from 40 lakes in the mid Delta during key time periods, before and immediately after the spring ice-out. By determining the CH4 dynamics throughout the year we hope to improve predictions of how CH4 emissions may change in a warming Arctic environment.

  17. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia.

    Science.gov (United States)

    Brigham-Grette, Julie; Melles, Martin; Minyuk, Pavel; Andreev, Andrei; Tarasov, Pavel; DeConto, Robert; Koenig, Sebastian; Nowaczyk, Norbert; Wennrich, Volker; Rosén, Peter; Haltia, Eeva; Cook, Tim; Gebhardt, Catalina; Meyer-Jacob, Carsten; Snyder, Jeff; Herzschuh, Ulrike

    2013-06-21

    Understanding the evolution of Arctic polar climate from the protracted warmth of the middle Pliocene into the earliest glacial cycles in the Northern Hemisphere has been hindered by the lack of continuous, highly resolved Arctic time series. Evidence from Lake El'gygytgyn, in northeast (NE) Arctic Russia, shows that 3.6 to 3.4 million years ago, summer temperatures were ~8°C warmer than today, when the partial pressure of CO2 was ~400 parts per million. Multiproxy evidence suggests extreme warmth and polar amplification during the middle Pliocene, sudden stepped cooling events during the Pliocene-Pleistocene transition, and warmer than present Arctic summers until ~2.2 million years ago, after the onset of Northern Hemispheric glaciation. Our data are consistent with sea-level records and other proxies indicating that Arctic cooling was insufficient to support large-scale ice sheets until the early Pleistocene.

  18. Recent Changes in the Arctic Melt Season

    Science.gov (United States)

    Stroeve, Julienne; Markus, Thorsten; Meier, Walter N.; Miller, Jeff

    2007-01-01

    Melt-season duration, melt-onset and freeze-up dates are derived from satellite passive microwave data and analyzed from 1979 to 2005 over Arctic sea ice. Results indicate a shift towards a longer melt season, particularly north of Alaska and Siberia, corresponding to large retreats of sea ice observed in these regions. Although there is large interannual and regional variability in the length of the melt season, the Arctic is experiencing an overall lengthening of the melt season at a rate of about 2 weeks decade(sup -1). In fact, all regions in the Arctic (except for the central Arctic) have statistically significant (at the 99% level or higher) longer melt seasons by greater than 1 week decade(sup -1). The central Arctic shows a statistically significant trend (at the 98% level) of 5.4 days decade(sup -1). In 2005 the Arctic experienced its longest melt season, corresponding with the least amount of sea ice since 1979 and the warmest temperatures since the 1880s. Overall, the length of the melt season is inversely correlated with the lack of sea ice seen in September north of Alaska and Siberia, with a mean correlation of -0.8.

  19. The inter-decadal correlation between summer arctic oscillation and summer drought and moist characteristic of northwest China

    Science.gov (United States)

    Wang, Pengxiang; Zheng, Youfei; Sun, Landong; Ren, Zhenhe; He, Jinhai; Zhang, Qiang

    2007-09-01

    In the context of 1960~2003 summertime rainfall and small-sized pan evaporations from 131 stations distributed over NW China covering Xinjiang, Qinghai, Gansu, Ningxia, Shaanxi as well as western Nei Mongolia, and Arctic Oscillation Indices (AOI) we define a homogenized index for aridity or wetness feature, with which to examine the relations between AOI and NW China aridity-wetness regime, indicating their noticeable relations on an interdecadal basis. It is found that during the decade of summer Arctic oscillation stronger than mean, the sea level pressure field shows positive (negative) anomalies over Asian landmass, a stronger anticyclonic anomaly circulation appears at 700 hPa over Lake Baikal and to the south, westerly (northerly) departure emerges in the westerly (monsoon) portion of NW China, as well as over NW China there appears a structure with a low in the west and a high in the east at the 500 hPa height field, suggestive of east-Asian summer monsoon weaker than normal such that westerly flows prevail in the westerly zone of NW China, leading to rainfall more than mean for a wetter climate while in its monsoon area the northerly winds are dominant, with precipitation less than normal, resulting in a climate drier in comparison to mean and v.v. for the decade with summer AO weaker than normal.

  20. Reviews and syntheses : Effects of permafrost thaw on Arctic aquatic ecosystems

    NARCIS (Netherlands)

    Vonk, J. E.; Tank, S. E.; Bowden, W.B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; Macmillan, G.; Rautio, M.; Walter Anthony, K. M.; Wickland, K.P.

    2015-01-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current

  1. 78 FR 70525 - Endangered and Threatened Wildlife and Plants; Initiation of Status Review of Arctic Grayling in...

    Science.gov (United States)

    2013-11-26

    ... Portal: http://www.regulations.gov . In the Search box, enter FWS-R6-ES-2013-0120, which is the docket... streams and rivers of the Great Lakes region of northern Michigan, but was extirpated in the 1930s (Hubbs... determined that fluvial (stream dwelling) and adfluvial (residing in lakes and spawning in streams) Arctic...

  2. Brominated flame retardants in the Arctic. An overview of spatial and temporal trends

    Energy Technology Data Exchange (ETDEWEB)

    Wit, C de [Institute of Applied Environmental Research, Stockholm (Sweden); Alaee, M; Muir, D [National Water Research Institute, Burlington, MA (United States)

    2004-09-15

    The Stockholm Convention on Persistent Organic Pollutants (POPs), which entered into force on May 17, 2004, includes wording that chemicals with the characteristics of POPs are those found in locations ''distant from sources'' and those for which ''monitoring data showing that long-range environmental transport of the chemical may have occurred''. Thus, the Arctic has become an important indicator region for assessment of persistence and bioaccumulation. The Arctic environment is well suited as a region in which to evaluate POPs. Some regions of thee Arctic, particularly the Barents Sea area north of Norway and western Russia are relatively close to source regions of POPs. Cold conditions favor persistence of POPs relative to temperate or tropical environments. The presence of fourth level carnivores (e.g. polar bears and seabirds), and storage of lipid as an energy source, make Arctic food webs vulnerable to bioaccumulative chemicals. Indigenous people in the Arctic utilizing a traditional diet, which is high in nutritionally beneficial fat, results in their elevated exposure to some POPs. The first indication that brominated flame retardants (BFRs) were reaching the Arctic was the detection by Jansson et al. of lower molecular weight polybrominated diphenyl ethers (PBDEs) in Svalbard Brunnichfs guillemots (130 ng/g lipid weight) and ringed seals (40 ng/g lw) collected in 1981. Whitefish collected from Lake Storvindeln in 1986, a pristine mountain lake in the Swedish mountains near Ammarnas, had {sigma}PBDE levels of 26 ng/g lw. Despite these early findings, only recently have the spatial and temporal trends of BFRs been studied in detail in the Arctic. The purpose of this paper is to review the new data on BFRs in the Arctic and assess whether this information supports the view that PBDEs and other BFRs of similar molecular weight are POPs and potential global pollutants. This review is based on a recent assessment of POPs in the Arctic combined with newer data

  3. Brominated flame retardants in the Arctic. An overview of spatial and temporal trends

    Energy Technology Data Exchange (ETDEWEB)

    Wit, C. de [Institute of Applied Environmental Research, Stockholm (Sweden); Alaee, M.; Muir, D. [National Water Research Institute, Burlington, MA (United States)

    2004-09-15

    The Stockholm Convention on Persistent Organic Pollutants (POPs), which entered into force on May 17, 2004, includes wording that chemicals with the characteristics of POPs are those found in locations ''distant from sources'' and those for which ''monitoring data showing that long-range environmental transport of the chemical may have occurred''. Thus, the Arctic has become an important indicator region for assessment of persistence and bioaccumulation. The Arctic environment is well suited as a region in which to evaluate POPs. Some regions of thee Arctic, particularly the Barents Sea area north of Norway and western Russia are relatively close to source regions of POPs. Cold conditions favor persistence of POPs relative to temperate or tropical environments. The presence of fourth level carnivores (e.g. polar bears and seabirds), and storage of lipid as an energy source, make Arctic food webs vulnerable to bioaccumulative chemicals. Indigenous people in the Arctic utilizing a traditional diet, which is high in nutritionally beneficial fat, results in their elevated exposure to some POPs. The first indication that brominated flame retardants (BFRs) were reaching the Arctic was the detection by Jansson et al. of lower molecular weight polybrominated diphenyl ethers (PBDEs) in Svalbard Brunnichfs guillemots (130 ng/g lipid weight) and ringed seals (40 ng/g lw) collected in 1981. Whitefish collected from Lake Storvindeln in 1986, a pristine mountain lake in the Swedish mountains near Ammarnas, had {sigma}PBDE levels of 26 ng/g lw. Despite these early findings, only recently have the spatial and temporal trends of BFRs been studied in detail in the Arctic. The purpose of this paper is to review the new data on BFRs in the Arctic and assess whether this information supports the view that PBDEs and other BFRs of similar molecular weight are POPs and potential global pollutants. This review is based on a recent assessment of POPs

  4. Cryogenic formation of brine and sedimentary mirabilite in submergent coastal lake basins, Canadian Arctic

    Science.gov (United States)

    Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.

    2013-06-01

    Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.

  5. The Island of Amsterdamøya: A key site for studying past climate in the Arctic Archipelago of Svalbard

    Science.gov (United States)

    Bakke, Jostein; Balascio, Nicholas; van der Bilt, Willem G. M.; Bradley, Raymond; D'Andrea, William J.; Gjerde, Marthe; Ólafsdóttir, Sædís; Røthe, Torgeir; De Wet, Greg

    2018-03-01

    This paper introduces a series of articles assembled in a special issue that explore Holocene climate evolution, as recorded in lakes on the Island of Amsterdamøya on the westernmost fringe of the Arctic Svalbard archipelago. Due to its location near the interface of oceanic and atmospheric systems sourced from Arctic and Atlantic regions, Amsterdamøya is a key site for recording the terrestrial response to marine and atmospheric changes. We employed multi-proxy approaches on lake sediments, integrating physical, biogeochemical, and isotopic analyses to infer past changes in temperature, precipitation, and glacier activity. The results comprise a series of quantitative Holocene-length paleoclimate reconstructions that reveal different aspects of past climate change. Each of the four papers addresses various facets of the Holocene climate history of north-western Svalbard, including a reconstruction of the Annabreen glacier based on the sedimentology of the distal glacier-fed lake Gjøavatnet, a reconstruction of changing hydrologic conditions based on sedimentology and stratigraphy in Lake Hakluytvatnet, reconstruction of summer temperature based on alkenone paleothermometry from lakes Hakluytvatnet and Hajeren, and a hydrogen isotope-based hydrological reconstruction from lake Hakluytvatnet. We also present high-resolution paleomagnetic secular variation data from the same lake, which document important regional magnetic field variations and demonstrate the potential for use in synchronizing Holocene sedimentary records in the Arctic. The paleoclimate picture that emerges is one of early Holocene warmth from ca. 10.5 ka BP interrupted by transient cooling ca. 10-8ka BP, and followed by cooling that mostly manifested as two stepwise events ca. 7 and 4 ka BP. The past 4ka were characterized by dynamic glaciers and summer temperature fluctuations decoupled from the declining summer insolation.

  6. Modeling the influence of snow cover on low Arctic net ecosystem exchange

    International Nuclear Information System (INIS)

    Luus, K A; Kelly, R E J; Lin, J C; Humphreys, E R; Lafleur, P M; Oechel, W C

    2013-01-01

    The Arctic net ecosystem exchange (NEE) of CO 2 between the land surface and the atmosphere is influenced by the timing of snow onset and melt. The objective of this study was to examine whether uncertainty in model estimates of NEE could be reduced by representing the influence of snow on NEE using remote sensing observations of snow cover area (SCA). Observations of NEE and time-lapse images of SCA were collected over four locations at a low Arctic site (Daring Lake, NWT) in May–June 2010. Analysis of these observations indicated that SCA influences NEE, and that good agreement exists between SCA derived from time-lapse images, Landsat and MODIS. MODIS SCA was therefore incorporated into the vegetation photosynthesis respiration model (VPRM). VPRM was calibrated using observations collected in 2005 at Daring Lake. Estimates of NEE were then generated over Daring Lake and Ivotuk, Alaska (2004–2007) using VPRM formulations with and without explicit representations of the influence of SCA on respiration and/or photosynthesis. Model performance was assessed by comparing VPRM output against unfilled eddy covariance observations from Daring Lake and Ivotuk (2004–2007). The uncertainty in VPRM estimates of NEE was reduced when respiration was estimated as a function of air temperature when SCA ≤ 50% and as a function of soil temperature when SCA > 50%. (letter)

  7. Lake sturgeon population characteristics in Rainy Lake, Minnesota and Ontario

    Science.gov (United States)

    Adams, W.E.; Kallemeyn, L.W.; Willis, D.W.

    2006-01-01

    Rainy Lake contains a native population of lake sturgeon Acipenser fulvescens that has been largely unstudied. The aims of this study were to document the population characteristics of lake sturgeon in Rainy Lake and to relate environmental factors to year-class strength for this population. Gill-netting efforts throughout the study resulted in the capture of 322 lake sturgeon, including 50 recaptures. Lake sturgeon in Rainy Lake was relatively plump and fast growing compared with a 32-population summary. Population samples were dominated by lake sturgeon between 110 and 150 cm total length. Age–structure analysis of the samples indicated few younger (<10 years) lake sturgeon, but the smallest gill net mesh size used for sampling was 102 mm (bar measure) and would not retain small sturgeon. Few lake sturgeon older than age 50 years were captured, and maximum age of sampled fish was 59 years. Few correlations existed between lake sturgeon year-class indices and both annual and monthly climate variables, except that mean June air temperature was positively correlated with year-class strength. Analysis of Rainy Lake water elevation and resulting lake sturgeon year-class strength indices across years yielded consistent but weak negative correlations between late April and early June, when spawning of lake sturgeon occurs. The baseline data collected in this study should allow Rainy Lake biologists to establish more specific research questions in the future.

  8. Paleolimnological records of nitrogen deposition in shallow, high-elevation lakes of Grand Teton National Park, Wyoming, USA

    Science.gov (United States)

    Spaulding, Sarah A.; Otu, Megan K.; Wolfe, Alexander P.; Baron, Jill S.

    2015-01-01

    Reactive nitrogen (Nr) from anthropogenic sources has been altering ecosystem function in lakes of the Rocky Mountains, other regions of western North America, and the Arctic over recent decades. The response of biota in shallow lakes to atmospheric deposition of Nr, however, has not been considered. Benthic algae are dominant in shallow, high-elevation lakes and are less sensitive to nutrient inputs than planktonic algae. Because the benthos is typically more nutrient rich than the water column, shallow lakes are not expected to show evidence of anthropogenic Nr. In this study, we assessed sedimentary evidence for regional Nr deposition, sediment chronology, and the nature of algal community response in five shallow, high-elevation lakes in Grand Teton National Park (GRTE). Over 140 diatom taxa were identified from the sediments, with a relatively high species richness of taxa characteristic of oligotrophic conditions. The diatom assemblages were dominated by benthic taxa, especially motile taxa. The GRTE lakes demonstrate assemblage-wide shifts in diatoms, including 1) synchronous and significant assemblage changes centered on ~1960 AD; 2) pre-1960 assemblages differed significantly from post-1960 assemblages; 3) pre-1960 diatom assemblages fluctuated randomly, whereas post- 1960 assemblages showed directional change; 4) changes in δ15N signatures were correlated with diatom community composition. These results demonstrate recent changes in shallow high18 elevation lakes that are most correlated with anthropogenic Nr. It is also possible, however, that the combined effect of Nr deposition and warming is accelerating species shifts in benthic diatoms. While uncertainties remain about the potential synergy of Nr deposition and warming, this study adds shallow lakes to the growing list of impacted high-elevation localities in western North America.

  9. Late-Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: Implications for Arctic climate variability on orbital time scales

    Science.gov (United States)

    Wang, Rujian; Polyak, Leonid; Xiao, Wenshen; Wu, Li; Zhang, Taoliang; Sun, Yechen; Xu, Xiaomei

    2018-02-01

    We use sediment cores collected by the Chinese National Arctic Research Expeditions from the Alpha Ridge to advance Quaternary stratigraphy and paleoceanographic reconstructions for the Arctic Ocean. Our cores show a good litho/biostratigraphic correlation to sedimentary records developed earlier for the central Arctic Ocean, suggesting a recovered stratigraphic range of ca. 0.6 Ma, suitable for paleoclimatic studies on orbital time scales. This stratigraphy was tested by correlating the stacked Alpha Ridge record of bulk XRF manganese, calcium and zirconium (Mn, Ca, Zr), to global stable-isotope (LR04-δ18O) and sea-level stacks and tuning to orbital parameters. Correlation results corroborate the applicability of presumed climate/sea-level controlled Mn variations in the Arctic Ocean for orbital tuning. This approach enables better understanding of the global and orbital controls on the Arctic climate. Orbital tuning experiments for our records indicate strong eccentricity (100-kyr) and precession (∼20-kyr) controls on the Arctic Ocean, probably implemented via glaciations and sea ice. Provenance proxies like Ca and Zr are shown to be unsuitable as orbital tuning tools, but useful as indicators of glacial/deglacial processes and circulation patterns in the Arctic Ocean. Their variations suggest an overall long-term persistence of the Beaufort Gyre circulation in the Alpha Ridge region. Some glacial intervals, e.g., MIS 6 and 4/3, are predominated by material presumably transported by the Transpolar Drift. These circulation shifts likely indicate major changes in the Arctic climatic regime, which yet need to be investigated. Overall, our results demonstrate applicability of XRF data to paleoclimatic studies of the Arctic Ocean.

  10. Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard

    Science.gov (United States)

    van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.

    2018-03-01

    Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study

  11. Broad-scale lake expansion and flooding inundates essential wood bison habitat in northwestern Canada.

    Science.gov (United States)

    Blais, J. M.; Korosi, J.; Thienpont, J. R.; Pisaric, M. F.; Kokelj, S.; Smol, J. P.; Simpson, M. J.

    2017-12-01

    Climate change-induced landscape alterations have consequences for vulnerable wildlife. In high-latitude regions, dramatic changes in water levels have been linked to climate warming. While most attention has focused on shrinking Arctic lakes, here, we document the opposite scenario: extensive lake expansion in Canada's Northwest Territories that has implications for the conservation of ecologically-important wood bison. We quantified lake area changes since 1986 using remote sensing techniques, and recorded a net gain of > 500 km2, from 5.7% to 11% total water coverage. Inter-annual variability in water level was significantly correlated to the Pacific/North American pattern teleconnection and the summer sea surface temperature anomaly. Historical reconstructions using proxy data archived in dated sediment cores showed that recent lake expansion is outside the range of natural variability of these ecosystems over at least the last 300 years. Lake expansion resulted in increased allochthonous carbon transport, as shown unequivocally by increases in lignin-derived phenols, but with a greater proportional increase in the contribution of organic matter from phytoplankton, as a result of increased open-water habitat. We conclude that complex hydrological changes occurring as a result of recent climatic change have resulted in rapid and widespread lake expansion that may significantly affect at-risk wildlife populations. This study is based on results we reported in Nature Communications in 2017 (DOI: 10.1038/ncomms14510).

  12. [Spatial distribution of COD and the correlations with other parameters in the northern region of Lake Taihu].

    Science.gov (United States)

    Zhang, Yun-lin; Yang, Long-yuan; Qin, Bo-qiang; Gao, Guang; Luo, Lian-cong; Zhu, Guang-wei; Liu, Ming-liang

    2008-06-01

    Spatial variation of chemical oxygen demand (COD) concentration was documented and significant correlations between COD concentration and chromophoric dissolved organic matter (CDOM) absorption, fluorescence, DOC concentration were found based on a cruise sampling in the northern region of Lake Taihu in summer including 42 samplings. The possible source of COD was also discussed using every two cruise samplings in summer and winter, respectively. The COD concentration ranged from 3.77 to 7.96 mg x L(-1) with a mean value of (5.90 +/- 1.54) mg x L(-1). The mean COD concentrations in Meiliang Bay and the central lake basin were (6.93 +/- 0.89) mg x L(-1) and (4.21 +/- 0.49) mg x L(-1) respectively. A significant spatial difference was found between Meiliang Bay and the central lake basin in COD concentration, CDOM absorption coefficient, fluorescence, DOC and phytoplankton pigment concentrations, decreasing from the river mouth to inner bay, outer bay and the central lake basin. Significant correlations between COD concentration and CDOM absorption, fluorescence, DOC concentration, suggested that COD concentration could be estimated and organic pollution could be assessed using CDOM absorption retrieved from remote sensing images. Significant and positive correlation was found between COD concentration and chlorophyll a concentration in summer. However, the correlation was weak or no correlation was found in winter. Furthermore, a significant higher COD concentration was found in summer than in winter (p summer, except for river terrestrial input.

  13. Arctic temperature and moisture trends during the past 2000 years - Progress from multiproxy-paleoclimate data compilations

    Science.gov (United States)

    Kaufman, Darrell; Routson, Cody; McKay, Nicholas; Beltrami, Hugo; Jaume-Santero, Fernando; Konecky, Bronwen; Saenger, Casey

    2017-04-01

    Instrumental climate data and climate-model projections show that Arctic-wide surface temperature and precipitation are positively correlated. Higher temperatures coincide with greater moisture by: (1) expanding the duration and source area for evaporation as sea ice retracts, (2) enhancing the poleward moisture transport, and (3) increasing the water-vapor content of the atmosphere. Higher temperature also influences evaporation rate, and therefore precipitation minus evaporation (P-E), the climate variable often sensed by paleo-hydroclimate proxies. Here, we test whether Arctic temperature and moisture also correlate on centennial timescales over the Common Era (CE). We use the new PAGES2k multiproxy-temperature dataset along with a first-pass compilation of moisture-sensitive proxy records to calculate century-scale composite timeseries, with a focus on longer records that extend back through the first millennium CE. We present a new Arctic borehole temperature reconstruction as a check on the magnitude of Little Ice Age cooling inferred from the proxy records, and we investigate the spatial pattern of centennial-scale variability. Similar to previous reconstructions, v2 of the PAGES2k proxy temperature dataset shows that, prior to the 20th century, mean annual Arctic-wide temperature decreased over the CE. The millennial-scale cooling trend is most prominent in proxy records from glacier ice, but is also registered in lake and marine sediment, and trees. In contrast, the composite of moisture-sensitive (primarily P-E) records does not exhibit a millennial-scale trend. Determining whether fluctuations in the mean state of Arctic temperature and moisture were in fact decoupled is hampered by the difficulty in detecting a significant trend within the relatively small number of spatially heterogeneous multi-proxy moisture-sensitive records. A decoupling of temperature and moisture would indicate that evaporation had a strong counterbalancing effect on precipitation

  14. Research Experience for Undergraduates: Understanding the Arctic as a System

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Arp, C. D.; Hock, R.; Euskirchen, E. S.; Kaden, U.; Polyakov, I.; Romanovsky, V. E.; Trainor, S.

    2017-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to understand and explain changes in the Arctic and the implications of those changes. Responding to needs in innovative research and education for understanding high-latitude rapid climate change, scientists at the International Arctic research Center of the University of Alaska Fairbanks (UAF) established a new REU (=Research Experience for Undergraduates) NSF-funded site, aiming to attract more undergraduates to arctic sciences. The science focus of this program, building upon the research strengths of UAF, is on understanding the Arctic as a system with emphasis on its physical component. The goals, which were to disseminate new knowledge at the frontiers of polar science and to ignite the enthusiasm of the undergraduates about the Arctic, are pursued by involving undergraduate students in research and educational projects with their mentors using the available diverse on-campus capabilities. IARC hosted the first group of eight students this past summer, focusing on a variety of different disciplines of the Arctic System Science. Students visited research sites around Fairbanks and in remote parts of Alaska (Toolik Lake Field Station, Gulkana glacier, Bonanza Creek, Poker Flats, the CRREL Permafrost Tunnel and others) to see and experience first-hand how the arctic science is done. Each student worked on a research project guided by an experienced instructor. The summer program culminated with a workshop that consisted of reports from the students about their experiences and the results of their projects.

  15. An Arctic perspective on dating Mid-Late Pleistocene environmental history

    DEFF Research Database (Denmark)

    Alexanderson, Helena; Backman, Jan; Cronin, Thomas M.

    2014-01-01

    we discuss, from an Arctic perspective, methods and correlation tools that are commonly used to date Arctic Pleistocene marine and terrestrial events. We review the state of the art of Arctic geochronology, with focus on factors that affect the possibility and quality of dating, and support...... this overview by examples of application of modern dating methods to Arctic terrestrial and marine sequences. Event stratigraphy and numerical ages are important tools used in the Arctic to correlate fragmented terrestrial records and to establish regional stratigraphic schemes. Age control is commonly provided...... of these proxies reveal cyclical patterns that provide a basis for astronomical tuning. Recent advances in dating technology, calibration and age modelling allow for measuring smaller quantities of material and to more precisely date previously undatable material (i.e. foraminifera for 14C, and single...

  16. Spatiotemporal distribution of algal and nutrient, and their correlations based on long-term monitoring data in Lake Taihu, China

    Science.gov (United States)

    Acharya, K.; Li, Y.; Stone, M.; Yu, Z.; Young, M.; Shafer, D. S.; Zhu, J.; Warwick, J. J.

    2009-12-01

    Eutrophication in Lake Taihu - China’s third largest freshwater lake - has led to deterioration of water quality and caused more frequent cyanobacteria blooms at many lake locations in recent years. Eutrophication is thought to be fueled by increased nutrient loading, a consequence of rapid population and economic growth in the region. To understand the spatiotemporal distribution of algal blooms, a database was developed that includes long-term meteorological, hydrological, water quality, and socioeconomic data from the Lake Taihu watershed. The data were collected through various field observations, and augmented with information from local and provincial agencies, and universities. Based on the data, spatiotemporal distributions of, and correlations between, chlorophyll-a (Chl-a), total phosphorus (TP), total nitrogen (TN) and water temperature (WT) were analyzed. Results revealed a high degree of correlation between TP and Chl-a concentrations during warm seasons, with high concentrations of both substances present in the northern and northwest portions of the lake. During winter months, Chl-a concentrations were more strongly correlated with WT. Spatial trends in TP and TN concentrations corresponded to observed nutrient fluxes from adjoining rivers in densely populated areas, demonstrating the influence of watershed pollutant loads on lake water quality. Among important questions to be answered is whether wind-driven resuspension of existing nutrients in sediments in this shallow (cyanobacteria blooms to begin. This study identifies other questions, data gaps, and research needs, and provides a foundation for improving lake management strategies.

  17. Modern and historical fluxes of halogenated organic contaminants to a lake in the Canadian arctic, as determined from annually laminated sediment cores

    International Nuclear Information System (INIS)

    Stern, G.A.; Braekevelt, E.; Helm, P.A.; Bidleman, T.F.; Outridge, P.M.; Lockhart, W.L.; McNeeley, R.; Rosenberg, B.; Ikonomou, M.G.; Hamilton, P.; Tomy, G.T.; Wilkinson, P.

    2005-01-01

    Two annually laminated cores collected from Lake DV09 on Devon Island in May 1999 were dated using 210 Pb and 137 Cs, and analyzed for a variety of halogenated organic contaminants (HOCs), including polychlorinated biphenyls (PCBs), organochlorine pesticides, short-chain polychlorinated n-alkanes (sPCAs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), and polybrominated diphenyl ethers (PBDEs). Dry weight HOC concentrations in Lake DV09 sediments were generally similar to other remote Arctic lakes. Maximum HOC fluxes often agreed well with production maxima, although many compound groups exhibited maxima at or near the sediment surface, much later than peak production. The lower than expected HOC concentrations in older sediment slices may be due to anaerobic degradation and possibly to dilution resulting from a temporary increase in sedimentation rate observed between the mid-1960s and 1970s. Indeed, temporal trends were more readily apparent for those compound classes when anaerobic metabolites were also analyzed, such as for DDT and toxaphene. However, it is postulated here for the first time that the maximum or increasing HOC surface fluxes observed for many of the major compound classes in DV09 sediments may be influenced by climate variation and the resulting increase in algal primary productivity which could drive an increasing rate of HOC scavenging from the water column. Both the fraction (F TC ) and enantiomer fraction (EF) of trans-chlordane (TC) decreased significantly between 1957 and 1997, suggesting that recent inputs to the lake are from weathered chlordane sources. PCDD/Fs showed a change in sources from pentachlorophenol (PeCP) in the 1950s and 1960s to combustion sources into the 1990s. Improvements in combustion technology may be responsible for the reducing the proportion of TCDF relative to OCDD in the most recent slice

  18. Carbon dioxide in Arctic and subarctic regions

    Energy Technology Data Exchange (ETDEWEB)

    Gosink, T. A.; Kelley, J. J.

    1981-03-01

    A three year research project was presented that would define the role of the Arctic ocean, sea ice, tundra, taiga, high latitude ponds and lakes and polar anthropogenic activity on the carbon dioxide content of the atmosphere. Due to the large physical and geographical differences between the two polar regions, a comparison of CO/sub 2/ source and sink strengths of the two areas was proposed. Research opportunities during the first year, particularly those aboard the Swedish icebreaker, YMER, provided additional confirmatory data about the natural source and sink strengths for carbon dioxide in the Arctic regions. As a result, the hypothesis that these natural sources and sinks are strong enough to significantly affect global atmospheric carbon dioxide levels is considerably strengthened. Based on the available data we calculate that the whole Arctic region is a net annual sink for about 1.1 x 10/sup 15/ g of CO/sub 2/, or the equivalent of about 5% of the annual anthropogenic input into the atmosphere. For the second year of this research effort, research on the seasonal sources and sinks of CO/sub 2/ in the Arctic will be continued. Particular attention will be paid to the seasonal sea ice zones during the freeze and thaw periods, and the tundra-taiga regions, also during the freeze and thaw periods.

  19. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    Science.gov (United States)

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low-relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades leading to thawing of on-shore permafrost and the disappearance of sea ice at unprecedented rates. The U.S. Geological Survey’s (USGS) Changing Arctic Ecosystems (CAE) research initiative was developed to investigate and forecast these rapid changes in the physical environment of the Arctic, and the associated changes to wildlife populations, in order to inform key management decisions by the U.S. Department of the Interior and other agencies. Forecasting future wildlife responses to changes in the Arctic can benefit greatly from historical records that inform what changes have already occurred. Several Arctic wildlife and plant species have already responded to climatic and physical changes to the Arctic Coastal Plain of northern Alaska. Thus, we located historical aerial imagery to improve our understanding of recent habitat changes and the associated response to such changes by wildlife populations.

  20. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake

    DEFF Research Database (Denmark)

    Yang, Bin; Jiang, Yu-Jiao; He, Wei

    2016-01-01

    status of the lake. The present study indicated that the Margalef index of all samples was as low as 0.799 ± 0.543 in summer (August 2011) and as high as 1.467 ± 0.653 in winter (February 2012). The Margalef index of the river samples had a high mean value and substantial variation compared with the lake...... occurred in the eastern lake, especially in the middle of the lake, in autumn and winter. The total trophic state index (TSI) in all samples exhibited a significant negative correlation with the Margalef (r = −0.726) and Peilou (r = −0.530) indices but a significant positive correlation with the Shannon...

  1. Final Results From the Circumarctic Lakes Observation Network (CALON) Project

    Science.gov (United States)

    Hinkel, K. M.; Arp, C. D.; Eisner, W. R.; Frey, K. E.; Grosse, G.; Jones, B. M.; Kim, C.; Lenters, J. D.; Liu, H.; Townsend-Small, A.

    2015-12-01

    Since 2012, the physical and biogeochemical properties of ~60 lakes in northern Alaska have been investigated under CALON, a project to document landscape-scale variability of Arctic lakes in permafrost terrain. The network has ten nodes along two latitudinal transects extending inland 200 km from the Arctic Ocean. A meteorological station is deployed at each node and six representative lakes instrumented and continuously monitored, with winter and summer visits for synoptic assessment of lake conditions. Over the 4-year period, winter and summer climatology varied to create a rich range of lake responses over a short period. For example, winter 2012-13 was very cold with a thin snowpack producing thick ice across the region. Subsequent years had relatively warm winters, yet regionally variable snow resulted in differing gradients of ice thickness. Ice-out timing was unusually late in 2014 and unusually early in 2015. Lakes are typically well-mixed and largely isothermal, with minor thermal stratification occurring in deeper lakes during calm, sunny periods in summer. Lake water temperature records and morphometric data were used to estimate the ground thermal condition beneath 28 lakes. Application of a thermal equilibrium steady-state model suggests a talik penetrating the permafrost under many larger lakes, but lake geochemical data do not indicate a significant contribution of subpermafrost groundwater. Biogeochemical data reveal distinct spatial and seasonal variability in chlorophyll biomass, chromophoric dissolved organic carbon (CDOM), and major cations/anions. Generally, waters sampled beneath ice in April had distinctly higher concentrations of inorganic solutes and methane compared with August. Chlorophyll concentrations and CDOM absorption were higher in April, suggesting significant biological/biogeochemical activity under lake ice. Lakes are a positive source of methane in summer, and some also emit nitrous oxide and carbon dioxide. As part of the

  2. Simulating low-flow conditions in an arctic watershed using WaSiM

    Science.gov (United States)

    Daanen, R. P.; Gaedeke, A.; Liljedahl, A. K.; Arp, C. D.; Whitman, M. S.; Jones, B. M.; Cai, L.; Alexeev, V. A.

    2017-12-01

    The goal of this study is to identify the magnitude, timing, and duration of low-flow conditions under scenarios of summer drought throughout the 4500-km2 Fish Creek watershed, which is set entirely on the Arctic Coastal Plain of northern Alaska. The hydrologic response of streams in this region to drought conditions is not well understood, but likely varies by stream size, upstream lake extent, and geologic setting. We used a physically based model, Water Balance Simulation Model (WaSiM) to simulate river discharge, surface runoff, active layer depth, soil temperatures, water levels, groundwater levels, groundwater flow, and snow distribution. We found that 7-day low flows were strongly affected by scenarios of drought or wet conditions. The 10-year-period scenarios were generated by selecting dry or wet years from a reanalysis dataset. Starting conditions for the simulations were based on a control run with average atmospheric conditions. Connectivity of lakes with better feeding conditions for fish significantly decreased in the scenarios of both summer and winter drought. The overall memory of the hydrologic network seems to be on the order of two to three years, based on the time to reach equilibrium hydrological conditions. This suggests that lake level fluctuation and water harvest could have a long-term effect on the connectivity of lakes. Climate change could strongly affect this system, and increased future water use could add more pressure on fish populations. Snowmelt is a major component of the water balance in a typical Arctic watershed and fish tend to migrate to their summer feeding lakes during the spring. Mid-summer periods without significant rainfall prove most limiting on fish movement, and during this time headwater lakes supply the majority of streamflow and are often the habitat destination for foraging fish. Models that predict connectivity of these lakes to downstream networks during low-flow conditions will help identify where lake water

  3. Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature

    Energy Technology Data Exchange (ETDEWEB)

    Joynt, E. H. III; Wolfe, A. P. [Colorado Univ., Inst. of Arctic and Alpine Research, Boulder, CO (United States)

    2001-06-01

    Lake sediments are attractive repositories for paleoclimate proxy data because they are temporally continuous, undisturbed and datable. It is particularly true of lakes which are ubiquitous throughout the Arctic regions, enabling dense spatial coverage of sampling sites. In more recent times diatoms have been applied to a a variety of paleoenvironmental questions. However, these studies have been of limited usefulness because they lack a regional training set that would facilitate making quantitative paleoenvironmental inferences. This article provides this inferential tool, together with an example of its application. Conductivity, pH, summer lake water temperature, and mean annual air temperature have been identified as the significant controls over diatom assemblages from the surface sediments of 61 lakes on Baffin Island. Using weighted-averaging regression and calibration, predictive models for these parameters have been developed. Results show that the summer lake water temperature model provides realistic reconstructions when compared with other paleoenvironmental records. Over the past 5000 years the amplitude of reconstructed summer lake water temperature was found to be on the order of 4 degrees C, expressed primarily as progressive neoglacial cooling culminating in the Little Ice Age. Diatom-inferred summer water temperatures have increased by about 2 degrees C in the past 150 years, which is also in agreement with independent paleoclimatic reconstructions. The data obtained in this study complements similar efforts from the western Canadian Arctic and the northern reaches of Scandinavia, however, this is the first training set developed for lakes situated entirely north of the tree line. As such, it extends the applicability of diatoms for paleotemperature reconstructions well into the Arctic tundra biome. 45 refs., 1 tab., 10 figs., 1 appendix.

  4. Arctic lake physical processes and regimes with implications for winter water availability and management in the national petroleum reserve alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, C.D.; Hinkel, Kenneth M.; Beck, R.A.; Schmutz, J.A.; Winston, B.

    2009-01-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p modeled lake area extent from 1985 to 2007 showed no long-term trends. In addition, high-resolution aerial photography, bathymetric surveys, water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA. ?? 2008 Springer Science+Business Media, LLC.

  5. Arctic lake physical processes and regimes with implications for winter water availability and management in the National Petroleum Reserve Alaska.

    Science.gov (United States)

    Jones, Benjamin M; Arp, Christopher D; Hinkel, Kenneth M; Beck, Richard A; Schmutz, Joel A; Winston, Barry

    2009-06-01

    Lakes are dominant landforms in the National Petroleum Reserve Alaska (NPRA) as well as important social and ecological resources. Of recent importance is the management of these freshwater ecosystems because lakes deeper than maximum ice thickness provide an important and often sole source of liquid water for aquatic biota, villages, and industry during winter. To better understand seasonal and annual hydrodynamics in the context of lake morphometry, we analyzed lakes in two adjacent areas where winter water use is expected to increase in the near future because of industrial expansion. Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery acquired between 1985 and 2007 were analyzed and compared with climate data to understand interannual variability. Measured changes in lake area extent varied by 0.6% and were significantly correlated to total precipitation in the preceding 12 months (p water-level monitoring, and lake-ice thickness measurements and growth models were used to better understand seasonal hydrodynamics, surface area-to-volume relations, winter water availability, and more permanent changes related to geomorphic change. Together, these results describe how lakes vary seasonally and annually in two critical areas of the NPRA and provide simple models to help better predict variation in lake-water supply. Our findings suggest that both overestimation and underestimation of actual available winter water volume may occur regularly, and this understanding may help better inform management strategies as future resource use expands in the NPRA.

  6. Correlations of mesospheric winds with subtle motion of the Arctic polar vortex

    Directory of Open Access Journals (Sweden)

    Y. Bhattacharya

    2010-01-01

    Full Text Available This paper investigates the relationship between high latitude upper mesospheric winds and the state of the stratospheric polar vortex in the absence of major sudden stratospheric warmings. A ground based Michelson Interferometer stationed at Resolute Bay (74°43' N, 94°58' W in the Canadian High Arctic is used to measure mesopause region neutral winds using the hydroxyl (OH Meinel-band airglow emission (central altitude of ~85 km. These observed winds are compared to analysis winds in the upper stratosphere during November and December of 1995 and 1996; years characterized as cold, stable polar vortex periods. Correlation of mesopause wind speeds with those from the upper stratosphere is found to be significant for the 1996 season when the polar vortex is subtly displaced off its initial location by a strong Aleutian High. These mesopause winds are observed to lead stratospheric winds by approximately two days with increasing (decreasing mesospheric winds predictive of decreasing (increasing stratospheric winds. No statistically significant correlations are found for the 1995 season when there is no such displacement of the polar vortex.

  7. A Tale of Two Lakes: Catchment-Specific Responses to Late Holocene Cooling in Northwest Iceland

    Science.gov (United States)

    Crump, S. E.; Florian, C. R.; Miller, G. H.; Geirsdottir, A.; Zalzal, K.

    2015-12-01

    Lake sediments are frequently utilized for reconstructing paleoclimate in the Arctic, particularly in Iceland, where high sedimentation rates and abundant tephra layers allow for the development high-resolution, well-dated records. However, when developing climate records using biological proxies, catchment-specific processes must be understood and separated from the primary climate signal in order to develop accurate reconstructions. In this study, we compare proxy records (biogenic silica [BSi], C:N, ∂13C, and algal pigments) of the last 2 ka from two nearby lakes in northwest Iceland in order to elucidate how different catchments respond to similar climate history. Torfdalsvatn and Bæjarvötn are two coastal lakes located 60 km apart; mean summer temperatures are highly correlated between the two sites over the instrumental record, and likely for the past 2 ka as well. Consistent with other Icelandic records, both lakes record cooling as decreasing aquatic productivity (BSi) over the last 2 ka. Both sediment cores also record the onset of landscape destabilization, reflected by increased terrestrial input (C:N and ∂13C), which suggests an intensification of cooling. However, the timing and magnitude of this shift differ markedly between lakes. Biological proxies indicate gradual landscape destabilization beginning ~900 AD at Torfdalsvatn in contrast to a sharper, more intense landscape destabilization at ~1400 AD at Bæjarvötn. Because temperatures at the two lakes are well correlated, contrasting proxy responses are likely the result of catchment-specific thresholds and processes. Specifically, a steeper catchment at Bæjarvötn may allow for a more pronounced influx of terrestrial material as the critical shear stress for soil erosion is surpassed more readily. The impact of human colonization on erosion rates is also critical to assess, and recent developments in lipid biomarkers will allow for more precise reconstructions of human activity in each

  8. Sediment-water gas exchange in two Swedish lakes measured by Eddy Correlation

    Science.gov (United States)

    Kokic, J.; Sahlee, E.; Brand, A.; Sobek, S.

    2014-12-01

    Lake sediments are hotspots for carbon (C) cycling, acting both as sinks and sources through C burial and production of carbon dioxide (CO2) and methane. The fate of this CO2 in the water column is controlled by bottom water turbulence, a factor not accounted for in current estimates of sediment CO2 fluxes. This study is aimed to quantify the turbulent CO2 flux across the sediment-water interface (SWI) by measuring the oxygen (O2) flux with the non-invasive Eddy Correlation (EC) method that combines measurements of 3D velocity (ADV) and O2 fluctuations with a microsensor. Using the metabolic relation (respiratory quotient, RQ) of O2 and CO2 derived from a sediment incubation experiment we present the first estimates of turbulent lake sediment CO2 flux from two boreal lakes in Sweden (Erssjön and Erken, 0.07 km2 and 23.7 km2 respectively). Only ~10 % of the total dataset was extracted for flux calculations due to poor signal-to-noise ratio in the velocity and O2 signals. The sediment in Lake Erssjön was both consuming and producing O2, related to bacterial respiration and photosynthesis. Mean O2 flux was -0.19 and 0.17 μmol O2 m-2 sec-1, comparing to 0.04 μmol O2 m-2 sec-1 derived from the sediment incubation experiment. Fluxes for Lake Erken are still to be determined. Experimentally derived RQ of the both lake sediments were close to unity implying that in-situ CO2 fluxes are of similar magnitude as O2 fluxes, varying between -0.15 and 0.18 μmol C m-2 sec-1. The first measurement of turbulent sediment O2 flux and estimate of turbulent CO2 flux from a small boreal lake show higher and more variable fluxes than previously found in experimental studies. The low amount of data extracted for flux calculations (~10%) point towards the difficulties in EC measurement in low-turbulence environments. On-going work focuses on the turbulence structure in lakes and its influence on the gas fluxes at the SWI.

  9. Northern reservoirs as sinks for Chernobyl cesium: sustained accumulation via introduced Mysis relicta in arctic char and brown trout

    International Nuclear Information System (INIS)

    Hammar, J.

    1991-01-01

    Fallout radiocesium from the Chernobyl accident caused extensive contamination in a region of previously well studied alpine lake ecosystems in northern Sweden. Levels of Cs-137 in the barren catchment basins reached 20-50 kBq/m 2 during 1986. The distribution and major transport mechanisms of radiocesium through the lake ecosystems have been studied during 1986-1990. Levels of Cs-137 in water, sediment, and different trophic levels of the food chains of Arctic char (Salvelinus alphinus) and brown trout (Salmo trutta) were monitored in a series of natural lakes and lake reservoirs, with or without the introduced new fish food organisms, Mysis relicta. The reservoirs were found to act as sinks for radiocesium with extensive accumulation recorded in water, sediment, invertebrates and salmonids. The introduced Mysis relicta were enhancing the transport of Cs-137 from zooplankton and settling particles to Arctic char and brown trout. The results suggest a successive change in transport of radiocesium from water via zooplankton to planktivorous fish during the early summer of 1986 to post-depositional mobilization via benthic organisms to benthic fish in successive years. (au) (32 refs.)

  10. AL:PE Acidification of mountain lakes: Palaeolimnology and Ecology. Part 2. - Extention. Final report to the Norwegian Research Council; AL:PE Acidification of mountain lakes: palaeolimnology and ecology. Part 2 - Utvidelse. Sluttrapport til Norges forskningsraad

    Energy Technology Data Exchange (ETDEWEB)

    Wathne, B M; Rosseland, B O; Lien, L

    1996-09-01

    Alpine and arctic regions, the least affected areas of Europe, are threatened by acid precipitation and long-range pollution. The international project discussed in this report was started to assess the conditions for alpine or arctic lakes, chemically and biologically combined with analyses of sediment cores. The work was done on lakes of various degrees of acidification and the results may be used to evaluate how fast the environment is changing, in what direction, and biological effects. The AL:PE project is the first comprehensive study of alpine lakes on a European level. The project was financed through EU`s research programme combined with funds from the participating countries. The project, which is now finally ending after 5 years of activity, is briefly surveyed in the report. One of the conclusions is that contamination from long-range pollutants can be found in even the most outlying places. 58 refs., 106 figs., 58 tabs.

  11. Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands

    Science.gov (United States)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Manasypov, R.; Lim, A.; Krickov, I.; Kolesnichenko, L. G.; Laudon, H.; Tetzlaff, D.

    2018-03-01

    The Western Siberian Lowlands (WSL) store large quantities of organic carbon that will be exposed and mobilized by the thawing of permafrost. The fate of mobilized carbon, however, is not well understood, partly because of inadequate knowledge of hydrological controls in the region which has a vast low-relief surface area, extensive lake and wetland coverage and gradually increasing permafrost influence. We used stable water isotopes to improve our understanding of dominant landscape controls on the hydrology of the WSL. We sampled rivers along a 1700 km South-North transect from permafrost-free to continuous permafrost repeatedly over three years, and derived isotope proxies for catchment hydrological responsiveness and connectivity. We found correlations between the isotope proxies and catchment characteristics, suggesting that lakes and wetlands are intimately connected to rivers, and that permafrost increases the responsiveness of the catchment to rainfall and snowmelt events, reducing catchment mean transit times. Our work provides rare isotope-based field evidence that permafrost and lakes/wetlands influence hydrological pathways across a wide range of spatial scales (10-105 km2) and permafrost coverage (0%-70%). This has important implications, because both permafrost extent and lake/wetland coverage are affected by permafrost thaw in the changing climate. Changes in these hydrological landscape controls are likely to alter carbon export and emission via inland waters, which may be of global significance.

  12. Accumulation of PCBs and other POPs in Canada's Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2001-02-01

    High concentrations of polychlorinated biphenyls (PCBs) and other persistent organic pollutants (POPs) have been found in sea-food traditionally eaten by First Nations' people of the Arctic. Since PCBs have never been manufactured in the Arctic these high concentrations cannot be attributed to local sources; they must have been transported from other regions. Due to its cold climate, the Arctic acts a sink for contaminants such as PCBs, originating from around the world and carried by Arctic air masses. Semi-volatile compounds are carried to the Arctic by cycles of evaporation, transport and condensation. Rain, snow, ice and dry deposition capture the airborne contaminants and pollute the surface on which they settle. The contaminants are processed in rivers by sedimentation and resuspension of particles, and lakes, estuaries and deltas act as sinks. The effects of these contaminants is not fully understood, although it is clear that they accumulate in fatty tissues, thus posing special danger to First Nations people who are known to consume fatty sea mammals. Inuit adults from Arctic Quebec and Greenland have PCB concentrations in their blood seven times higher than found in North American adults; 35 times higher than Health Canada's 'level of concern' for women of reproductive age. The cleanup of all PCB and other POP sources is believed to be the only preventative solution, but agreement among countries about how to deal with the existing POPs in the environment to date has proven to be difficult.

  13. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  14. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  15. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China.

    Science.gov (United States)

    Wang, Fei; Wang, Xuan; Zhao, Ying; Yang, Zhifeng

    2014-09-01

    In this paper, correlations between vegetation dynamics (represented by the normalized difference vegetation index (NDVI)) and hydro-climatological factors were systematically studied in Lake Baiyangdian during the period from April 1998 to July 2008. Six hydro-climatological variables including lake volume, water level, air temperature, precipitation, evaporation, and sunshine duration were used, as well as extracted NDVI series data representing vegetation dynamics. Mann-Kendall tests were used to detect trends in NDVI and hydro-climatological variation, and a Bayesian information criterion method was used to detect their abrupt changes. A redundancy analysis (RDA) was used to determine the major hydro-climatological factors contributing to NDVI variation at monthly, seasonal, and yearly scales. The results were as follows: (1) the trend analysis revealed that only sunshine duration significantly increased over the study period, with an inter-annual increase of 3.6 h/year (p NDVI trends were negligible; (2) the abrupt change detection showed that a major hydro-climatological change occurred in 2004, when abrupt changes occurred in lake volume, water level, and sunlight duration; and (3) the RDA showed that evaporation and temperature were highly correlated with monthly changes in NDVI. At larger time scales, however, water level and lake volume gradually became more important than evaporation and precipitation in terms of their influence on NDVI. These results suggest that water availability is the most important factor in vegetation restoration. In this paper, we recommend a practical strategy for lake ecosystem restoration that takes into account changes in NDVI.

  16. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    Science.gov (United States)

    Tape, Ken D.; Flint, Paul L.; Meixell, Brandt W.; Gaglioti, Benjamin V.

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a 'tipping point' whereby inland areas would be transformed into salt marshes.

  17. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.F.; Braune, B.M.; O' Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G

    2003-04-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by {delta}{sup 15}N) is positively correlated with increasing {delta}{sup 13}C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls ({sigma}PCB) > chlordane-related compounds ({sigma}CHLOR) > hexachlorocyclohexane ({sigma}HCH) > total toxaphene (TOX) {>=}chlorobenzenes ({sigma}ClBz) > DDT-related isomers ({sigma}DDT). In liver, {sigma}CHLOR was the most abundant OC group, followed by {sigma}PCB > TOX > {sigma}HCH > {sigma}ClBz > {sigma}DDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of {delta}{sup 15}N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While {sigma}PCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs.

  18. Organochlorine contaminant and stable isotope profiles in Arctic fox (Alopex lagopus) from the Alaskan and Canadian Arctic

    International Nuclear Information System (INIS)

    Hoekstra, P.F.; Braune, B.M.; O'Hara, T.M.; Elkin, B.; Solomon, K.R.; Muir, D.C.G.

    2003-01-01

    PCBs in Arctic fox are lower than reported in other Arctic populations and unlikely to cause significant impairment of reproductive success. - Arctic fox (Alopex lagopus) is a circumpolar species distributed across northern Canada and Alaska. Arctic fox muscle and liver were collected at Barrow, AK, USA (n=18), Holman, NT, Canada (n=20), and Arviat, NU, Canada (n=20) to elucidate the feeding ecology of this species and relate these findings to body residue patterns of organochlorine contaminants (OCs). Stable carbon (δ 13 C) and nitrogen (δ 15 N) isotope analyses of Arctic fox muscle indicated that trophic position (estimated by δ 15 N) is positively correlated with increasing δ 13 C values, suggesting that Arctic fox with a predominately marine-based foraging strategy occupy a higher trophic level than individuals mostly feeding from a terrestrial-based carbon source. At all sites, the rank order for OC groups in muscle was polychlorinated biphenyls (ΣPCB) > chlordane-related compounds (ΣCHLOR) > hexachlorocyclohexane (ΣHCH) > total toxaphene (TOX) ≥chlorobenzenes (ΣClBz) > DDT-related isomers (ΣDDT). In liver, ΣCHLOR was the most abundant OC group, followed by ΣPCB > TOX > ΣHCH > ΣClBz > ΣDDT. The most abundant OC analytes detected from Arctic fox muscle and liver were oxychlordane, PCB-153, and PCB-180. The comparison of δ 15 N with OC concentrations indicated that relative trophic position might not accurately predict OC bioaccumulation in Arctic fox. The bioaccumulation pattern of OCs in the Arctic fox is similar to the polar bear. While ΣPCB concentrations were highly variable, concentrations in the Arctic fox were generally below those associated with the toxicological endpoints for adverse effects on mammalian reproduction. Further research is required to properly elucidate the potential health impacts to this species from exposure to OCs

  19. AirSWOT flights and field campaigns for the 2017 Arctic-Boreal Vulnerability Experiment (ABoVE)

    Science.gov (United States)

    Smith, L. C.; Pavelsky, T.; Lettenmaier, D. P.; Gleason, C. J.; Pietroniro, A.; Applejohn, A.; Arvesen, J. C.; Bjella, K.; Carter, T.; Chao, R.; Cooley, S. W.; Cooper, M. G.; Cretaux, J. F.; Douglass, T.; Faria, D.; Fayne, J.; Fiset, J. M.; Goodman, S.; Hanna, B.; Harlan, M.; Langhorst, T.; Marsh, P.; Moreira, D. M.; Minear, J. T.; Onclin, C.; Overstreet, B. T.; Peters, D.; Pettit, J.; Pitcher, L. H.; Russell, M.; Spence, C.; Topp, S.; Turner, K. W.; Vimal, S.; Wilcox, E.; Woodward, J.; Yang, D.; Zaino, A.

    2017-12-01

    Some 50% of Canada and 80% of Alaska is thought to be underlain by permafrost, influencing the hydrology, ecology and carbon cycles of Arctic-Boreal landscapes. This influence includes enhanced presence of millions of lakes and wetlands, which release trace gases while supporting critical ecosystems and traditional subsistence economies. Permafrost is challenging to infer from remote sensing and difficult to sample in the field. A series of 2017 AirSWOT flights flown for the NASA Arctic-Boreal Vulnerability Experiment (ABoVE) will study whether small variations in water surface elevations (WSEs) of Arctic-Boreal lakes are sensitive to presence and/or disturbance of permafrost. AirSWOT is an experimental NASA airborne radar designed to map WSE and a precursor to SWOT, a forthcoming NASA/CNES/CSA satellite mission to map WSE globally with launch in 2021. The ABoVE AirSWOT flight experiments adopted long flight lines of the broader ABoVE effort to traverse broad spatial gradients of permafrost, climate, ecology, and geology. AirSWOT acquisitions consisted of long (1000s of kilometers) strips of Ka-band interferometric radar imagery, and high resolution visible/NIR imagery and DEMs from a digital Cirrus CIR camera. Intensive AirSWOT mapping and ground-based GPS field surveys were conducted at 11 field sites for eight study areas of Canada and Alaska: 1) Saint-Denis, Redberry Lake, North Saskatchewan River (Saskatchewan); 2) Peace-Athabasca Delta (Alberta); 3) Slave River Delta (N.W.T.); 4) Canadian Shield (Yellowknife area, Daring Lake, N.W.T.); 5) Mackenzie River (Inuvik-Tuktoyaktuk corridor, N.W.T.); 6) Old Crow Flats (Yukon Territory); 7) Sagavanirktok River (Alaska); 8) Yukon Flats (Alaska). Extensive ground campaigns were conducted by U.S. and Canadian collaborators to collect high quality surveys of lake WSE, river WSE and discharge, and shoreline locations. Field experiments included traditional and novel GPS surveying methods, including custom-built GPS buoys

  20. McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes

    Science.gov (United States)

    Klein, E. S.; Nolan, M.; McConnell, J.; Sigl, M.; Cherry, J.; Young, J.; Welker, J. M.

    2016-01-01

    We explored modern precipitation and ice core isotope ratios to better understand both modern and paleo climate in the Arctic. Paleoclimate reconstructions require an understanding of how modern synoptic climate influences proxies used in those reconstructions, such as water isotopes. Therefore we measured periodic precipitation samples at Toolik Lake Field Station (Toolik) in the northern foothills of the Brooks Range in the Alaskan Arctic to determine δ18O and δ2H. We applied this multi-decadal local precipitation δ18O/temperature regression to ∼65 years of McCall Glacier (also in the Brooks Range) ice core isotope measurements and found an increase in reconstructed temperatures over the late-20th and early-21st centuries. We also show that the McCall Glacier δ18O isotope record is negatively correlated with the winter bidecadal North Pacific Index (NPI) climate oscillation. McCall Glacier deuterium excess (d-excess, δ2H - 8*δ18O) values display a bidecadal periodicity coherent with the NPI and suggest shifts from more southwestern Bering Sea moisture sources with less sea ice (lower d-excess values) to more northern Arctic Ocean moisture sources with more sea ice (higher d-excess values). Northern ice covered Arctic Ocean McCall Glacier moisture sources are associated with weak Aleutian Low (AL) circulation patterns and the southern moisture sources with strong AL patterns. Ice core d-excess values significantly decrease over the record, coincident with warmer temperatures and a significant reduction in Alaska sea ice concentration, which suggests that ice free northern ocean waters are increasingly serving as terrestrial precipitation moisture sources; a concept recently proposed by modeling studies and also present in Greenland ice core d-excess values during previous transitions to warm periods. This study also shows the efficacy and importance of using ice cores from Arctic valley glaciers in paleoclimate reconstructions.

  1. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    Science.gov (United States)

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  2. Role of polar anticyclones and mid-latitude cyclones for Arctic summertime sea-ice melting

    Science.gov (United States)

    Wernli, Heini; Papritz, Lukas

    2018-02-01

    Annual minima in Arctic sea-ice extent and volume have been decreasing rapidly since the late 1970s, with substantial interannual variability. Summers with a particularly strong reduction of Arctic sea-ice extent are characterized by anticyclonic circulation anomalies from the surface to the upper troposphere. Here, we investigate the origin of these seasonal circulation anomalies by identifying individual Arctic anticyclones (with a lifetime of typically ten days) and analysing the air mass transport into these systems. We reveal that these episodic upper-level induced Arctic anticyclones are relevant for generating seasonal circulation anomalies. Sea-ice reduction is systematically enhanced during the transient episodes with Arctic anticyclones and the seasonal reduction of sea-ice volume correlates with the area-averaged frequency of Arctic anticyclones poleward of 70° N (correlation coefficient of 0.57). A trajectory analysis shows that these anticyclones result from extratropical cyclones injecting extratropical air masses with low potential vorticity into the Arctic upper troposphere. Our results emphasize the fundamental role of extratropical cyclones and associated diabatic processes in establishing Arctic anticyclones and, in turn, seasonal circulation anomalies, which are of key importance for understanding the variability of summertime Arctic sea-ice melting.

  3. A SCAT manual for Arctic regions and cold climates

    International Nuclear Information System (INIS)

    Owens, E.H.; Sergy, G.A.

    2004-01-01

    The Shoreline Cleanup Assessment Technique (SCAT) has been used on many oil spills in a variety of ways to meet a broad range of specific spill conditions. SCAT was created in response to the Exxon Valdez oil spill in Prince William Sound Alaska. Environment Canada developed generic second-generation SCAT protocols to standardize the documentation and description of oiled shorelines. As the SCAT process becomes more widely accepted and used during spill response operations, the need for flexibility and modifications has grown. For that reason, the Arctic SCAT Manual was created to address the need for guidelines, standardized definitions, standardized terminology and forms that can be applied for oiled shorelines or riverbanks in Arctic environments and cold climates. Unique Arctic shoreline types such as tundra cliffs, inundated low-lying tundra and peat shorelines are included in the manual along with a new set of shoreline oiling forms for marine coasts, tidal flats, wetlands, lake shores, riverbanks, and stream banks. A First Responders guide has been included with the manual to help local inhabitants during the initial phases of an oiled shoreline assessment. 5 refs., 2 tabs., 20 figs

  4. Correlation of wind and solar power in high-latitude arctic areas in Northern Norway and Svalbard

    Directory of Open Access Journals (Sweden)

    Solbakken Kine

    2016-01-01

    Full Text Available This paper assesses the possibilities for combining wind and solar power in a household-scale hybrid renewable energy system in arctic high-latitude areas in the North of Norway. By combining two complementary renewable energy sources, the efficiency and reliability of the power output can be improved compared to a system utilizing wind or solar power independently. This paper assesses the correlation between wind and solar power on different timescales in four different locations in Northern Norway and Svalbard. For all locations complementary characteristics of wind and solar power are found, however, the strength of the correlation is highly variable for each location and for the different timescales. The best correlation for all places is found on a monthly timescale. HOMER is used to run simulations on hybrid renewable energy systems (HRES for each location. For three of the four locations the HRES produces more power than what is consumed in the household.

  5. Microbial community structure and soil pH correspond to methane production in Arctic Alaska soils.

    Science.gov (United States)

    Wagner, Robert; Zona, Donatella; Oechel, Walter; Lipson, David

    2017-08-01

    While there is no doubt that biogenic methane production in the Arctic is an important aspect of global methane emissions, the relative roles of microbial community characteristics and soil environmental conditions in controlling Arctic methane emissions remains uncertain. Here, relevant methane-cycling microbial groups were investigated at two remote Arctic sites with respect to soil potential methane production (PMP). Percent abundances of methanogens and iron-reducing bacteria correlated with increased PMP, while methanotrophs correlated with decreased PMP. Interestingly, α-diversity of the methanogens was positively correlated with PMP, while β-diversity was unrelated to PMP. The β-diversity of the entire microbial community, however, was related to PMP. Shannon diversity was a better correlate of PMP than Simpson diversity across analyses, while rarefied species richness was a weak correlate of PMP. These results demonstrate the following: first, soil pH and microbial community structure both probably control methane production in Arctic soils. Second, there may be high functional redundancy in the methanogens with regard to methane production. Third, iron-reducing bacteria co-occur with methanogens in Arctic soils, and iron-reduction-mediated effects on methanogenesis may be controlled by α- and β-diversity. And finally, species evenness and rare species abundances may be driving relationships between microbial groups, influencing Arctic methane production. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    Science.gov (United States)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  7. Climate versus in-lake processes as controls on the development of community structure in a low-arctic lake (South-West Greenland)

    DEFF Research Database (Denmark)

    Anderson, N. John; Brodersen, Klaus Peter; Ryves, David B.

    2008-01-01

    The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N...

  8. Reduced arctic tundra productivity linked with landform and climate change interactions

    Science.gov (United States)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David

    2018-01-01

    Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

  9. Arctic Cisco, Coregonus autumnalis, distribution, migration and spawning in the Mackenzie River

    International Nuclear Information System (INIS)

    Dillinger, R.E. Jr.; Birt, T.P.; Green, J.M.

    1992-01-01

    Oil exploration along the Beaufort Sea coast of North America has raised interest in populations of Arctic Cisco. A synopsis is presented of research on Arctic Cisco distributions and spawning activities in the Mackenzie River system. The distribution, migration, and spawning activities of Arctic Cisco in the tributaries of the Mackenzie River system were found to be more extensive than previously reported. The Peel River population had the earliest migration time, mid-July; however, a small movement of mature males upriver also occurred there in mid-September. Major movements of mature males and females took place in both late July and early to mid-Spetember in the Arctic Red River. Migrations in the other river systems occurred in late August and early September. Arctic Ciscoes in the only river south of Great Bear Lake that has been found to contain this species, the Liard River, may show a mixed life history strategy. The apparently long distance the fish must swim, the lack of any known populations in any of the rivers between the Liard and the Great Bear rivers, and the lack of evidence of migrations past Fort Simpson suggest that this population may contain non-anadromous forms. No actual spawning was seen in any of the populations, but possible areas were noted, one in the Peel River and one in the Liard River. 18 refs., 3 figs., 2 tabs

  10. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems

    Science.gov (United States)

    Vonk, J.E.; Tank, S.E.; Bowden, W.B.; Laurion, I.; Vincent, W.F.; Alekseychik, P.; Amyot, Y.; Billet, M.F.; Canario, J.; Cory, R.M.; Deshpande, B.N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, Milla; Walter Anthony, K.M.; Wickland, Kimberly P.

    2015-01-01

    The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery

  11. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.

    Directory of Open Access Journals (Sweden)

    Leanne Faulks

    Full Text Available Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta and one introduced (brook charr, Salvelinus fontinalis, from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H'T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144 and brook charr (GIS = 0.129 although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species.

  12. Preservation of labile organic matter in soils of drained thaw lakes in Northern Alaska

    Science.gov (United States)

    Mueller, Carsten W.; Rethemeyer, Janet; Kao-Kniffin, Jenny; Löppmann, Sebastian; Hinkel, Kenneth; Bockheim, James

    2014-05-01

    A large number of studies predict changing organic matter (OM) dynamics in arctic soils due to global warming. In contrast to rather slowly altering bulk soil properties, single soil organic matter (SOM) fractions can provide a more detailed picture of the dynamics of differently preserved SOM pools in climate sensitive arctic regions. By the study of the chemical composition of such distinctive SOM fractions using nuclear magnetic resonance spectroscopy (NMR) together with radiocarbon analyses it is possible to evaluate the stability of the major OM pools. Approximately 50-75% of Alaska's Arctic Coastal Plain is covered with thaw lakes and drained thaw lakes that follow a 5,000 yr cycle of development (between creation and final drainage), thus forming a natural soil chronosequence. The drained thaw lakes offer the possibility to study SOM dynamics affected by permafrost processes over millennial timescales. In April 2010 we sampled 16 soil cores (including the active and permanent layer) reaching from young drained lakes (0-50 years since drainage) to ancient drained lakes (3000-5500 years since drainage). Air dried soil samples from soil horizons of the active and permanent layer were subjected to density fractionation in order to differentiate particulate OM and mineral associated OM. The chemical composition of the SOM fractions was analyzed by 13C CPMAS NMR spectroscopy. For a soil core of a young and an ancient drained thaw lake basin we also analyzed the 14C content. For the studied soils we can show that up to over 25 kg OC per square meter are stored mostly as labile, easily degradable organic matter rich in carbohydrates. In contrast only 10 kg OC per square meter were sequestered as presumably more stable mineral associated OC dominated by aliphatic compounds. Comparable to soils of temperate regions, we found small POM (dating we could show the stabilization of younger more labile OM at greater depth in buried O horizons. Additionally the study of the

  13. Brown snow: A long-range transport event in the Canadian Arctic

    International Nuclear Information System (INIS)

    Welch, H.E.; Muir, D.C.G.; Billeck, B.N.; Lockhart, W.L.; Brunskill, G.J.; Kling, H.J.; Olson, M.P.; Lemoine, R.M.

    1991-01-01

    The authors document the occurrence of a long-range transport event that deposited thousands of tons of fine particulates on the District of Keewatin, central Canadian Arctic, ∼63 N. Air mass trajectories, clay mineral composition, soot particles, and visible organic remains point to Asian sources for the brown snow material, probably western China. Semivolatile organic pollutants detected in the brown snow included polycyclic aromatic hydrocarbons (ΣPAH), PCB congeners, and DDT-related compounds (ΣDDT), polychlorinated camphenes (PCCs), as well as the herbicide trifuluralin and insecticides methoxychlor, endosulfan, and hexachlorocyclohexane (HCH). ΣPAH, PCB, and PCC concentrations were within the range reported in other studies of Arctic snow but ΣDDT levels were 2-10 times higher than previous reports. High molecular weight PAH may have been associated with soot particles in the brown snow but evidence for Asian sources of the pesticides was not strong because of unknown source signal strengths and possible atmospheric transformations of the compounds. Fluxes of these pollutants were also determined by analyzing sediment cores from two small headwater lakes near the sampling site. The quantities of pollutants deposited in this single event may have comprised a significant fraction (>10%) of total annual input ΣPAH and ΣDDT, as determined from lake sedimentation records

  14. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    Science.gov (United States)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  15. Diverse origins of Arctic and Subarctic methane point source emissions identified with multiply-substituted isotopologues

    Science.gov (United States)

    Douglas, P. M. J.; Stolper, D. A.; Smith, D. A.; Walter Anthony, K. M.; Paull, C. K.; Dallimore, S.; Wik, M.; Crill, P. M.; Winterdahl, M.; Eiler, J. M.; Sessions, A. L.

    2016-09-01

    Methane is a potent greenhouse gas, and there are concerns that its natural emissions from the Arctic could act as a substantial positive feedback to anthropogenic global warming. Determining the sources of methane emissions and the biogeochemical processes controlling them is important for understanding present and future Arctic contributions to atmospheric methane budgets. Here we apply measurements of multiply-substituted isotopologues, or clumped isotopes, of methane as a new tool to identify the origins of ebullitive fluxes in Alaska, Sweden and the Arctic Ocean. When methane forms in isotopic equilibrium, clumped isotope measurements indicate the formation temperature. In some microbial methane, however, non-equilibrium isotope effects, probably related to the kinetics of methanogenesis, lead to low clumped isotope values. We identify four categories of emissions in the studied samples: thermogenic methane, deep subsurface or marine microbial methane formed in isotopic equilibrium, freshwater microbial methane with non-equilibrium clumped isotope values, and mixtures of deep and shallow methane (i.e., combinations of the first three end members). Mixing between deep and shallow methane sources produces a non-linear variation in clumped isotope values with mixing proportion that provides new constraints for the formation environment of the mixing end-members. Analyses of microbial methane emitted from lakes, as well as a methanol-consuming methanogen pure culture, support the hypothesis that non-equilibrium clumped isotope values are controlled, in part, by kinetic isotope effects induced during enzymatic reactions involved in methanogenesis. Our results indicate that these kinetic isotope effects vary widely in microbial methane produced in Arctic lake sediments, with non-equilibrium Δ18 values spanning a range of more than 5‰.

  16. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    International Nuclear Information System (INIS)

    Tape, Ken D; Flint, Paul L; Meixell, Brandt W; Gaglioti, Benjamin V

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are <1 m above sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a ‘tipping point’ whereby inland areas would be transformed into salt marshes. (letter)

  17. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    Science.gov (United States)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature

  18. Great Lakes

    Science.gov (United States)

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  19. The Impact of Nutrient State and Lake Depth on Top-down Control in the Pelagic Zone of Lakes: A Study of 466 Lakes from the Temperate Zone to the Arctic

    DEFF Research Database (Denmark)

    Jeppesen, E.; Jensen, J. P.; Jensen, C.

    2003-01-01

    is unimodally related to TP and is highest in the most nutrient-rich and nutrient-poor lakes and generally higher in shallow than deep lakes, (b) the cascading effect of changes in predator control on phytoplankton decreases with increasing TP, and (c) these general patterns occur with significant variations......%, respectively, at all TP levels. Moreover, deep lakes (more than 6 m) had a higher percentage of Daphnia than shallow (less than 6 m) lakes. The median percentage of Daphnia peaked at 0.15 mg L-1 in shallow lakes and 0.09 mg L-1 in deep lakes. The assumption that fish are responsible for the unimodality...

  20. NSF-supported education/outreach program takes young researchers to the Arctic

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Kaden, U.; Euskirchen, E. S.; Kholodov, A. L.; Bret-Harte, M. S.; Sparrow, E. B.

    2015-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The newly supported project in 2013 is planning four summer schools (one per year) focused on four themes in four different Arctic locations. It provides the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-20 people consists of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluates student's progress during the summer schools. Lessons learned during the 12 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the most recent school, conducted in Fairbanks and LTER Toolik Lake Field Station in 2015 are the focus of this presentation.

  1. How Rapid Change Affects Deltas in the Arctic Region

    Science.gov (United States)

    Overeem, I.; Bendixen, M.

    2017-12-01

    Deltas form where the river drains into the ocean. Consequently, delta depositional processes are impacted by either changes in the respective river drainage basin or by changes in the regional marine environment. In a warming Arctic region rapid change has occurred over the last few decades in both the terrestrial domain as well as in the marine domain. Important terrestrial controls include 1) change in permafrost possibly destabilizing river banks, 2) strong seasonality of river discharge due to a short melting season, 3) high sediment supply if basins are extensively glaciated, 4) lake outbursts and ice jams favoring river flooding. Whereas in the Arctic marine domain sea ice loss promotes wave and storm surge impact, and increased longshore transport. We here ask which of these factors dominate any morphological change in Arctic deltas. First, we analyze hydrological data to assess change in Arctic-wide river discharge characteristics and timing, and sea ice concentration data to map changes in sea ice regime. Based on this observational analysis we set up a number of scenarios of change. We then model hypothetical small-scale delta formation considering change in these primary controls by setting up a numerical delta model, and combining it dynamically with a permafrost model. We find that for typical Greenlandic deltas changes in river forcing due to ice sheet melt dominate the morphological change, which is corroborated by mapping of delta progradation from aerial photos and satellite imagery. Whereas in other areas, along the North Slope and the Canadian Arctic small deltas are more stable or experienced retreat. Our preliminary coupled model allows us to further disentangle the impact of major forcing factors on delta evolution in high-latitude systems.

  2. Size-dependent resource limitation and foraging-predation risk trade-offs: growth and habitat use in young arctic char

    NARCIS (Netherlands)

    Byström, P.; Andersson, J.; Persson, L.; de Roos, A.M.

    2004-01-01

    Variation in growth and habitat use is closely connected to individual responses to habitat specific resource levels and predation risk. In three mountain lakes which differed in the density of young-of-the-year (YOY) arctic char (Salvelinus alpinus), we studied the growth, diets and habitat use of

  3. AL:PE - Acidification of Mountain Lakes: Palaeolimnology and Ecology. Part 2 - Remote Mountain Lakes as Indicators of Air Pollution and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Wathne, Bente M; Patrick, Simon; Cameron, Nigel [eds.

    1997-07-01

    AL:PE is a multi-disciplinary and multi-national project coordinated by research groups in London and Oslo. It is funded by the European Commission, The project is described in this report. The project is the first comprehensive study of remote mountain lakes on a European scale. It is concerned with ecosystems in the arctic and alpine regions of Europe that are threatened by acid deposition, toxic air pollutants and climatic change despite their remoteness. The studies are important not only for ecosystems of the lakes, for which they were designed, but for the arctic and alpine regions in general, since the lakes with their sediment records act as environmental sensors. The AL:PE results illustrate two overarching issues: (1) the importance of these remote and sensitive ecosystems as sensors of long-range transported pollutants and as providers of early warning signals for more widespread environmental change; and (2) the importance and urgency of understanding the present and future impact of pollutants, both singly and in combination, on aquatic ecosystems. Currently, acid deposition is considered the most potent threat. In the context of global warming, however, it is a formidable scientific challenge to disentangle the interactions between the effects of changing deposition patterns of acids, nutrients, trace metals and trace organics. The AL:PE programme has begun to address this challenge and its successor EU project, MOLAR, is designed to tackle the issues more more specifically by focusing on in-depth studies of key sites. 97 refs., 192 figs., 100 tabs.

  4. The correlation and quantification of airborne spectroradiometer data to turbidity measurements at Lake Powell, Utah

    Science.gov (United States)

    Merry, C. J.

    1979-01-01

    A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.

  5. Correlations between substrate availability, dissolved CH4, and CH4 emissions in an arctic wetland subject to warming and plant removal

    DEFF Research Database (Denmark)

    Nielsen, Cecilie Skov; Michelsen, Anders; Strobel, Bjarne W.

    2017-01-01

    The Arctic is warming which may potentially affect substrate availability, organic matter decomposition, plant growth, and plant species composition. This may lead to changes in the exchange of methane (CH4) and carbon dioxide (CO2) between the soil system and the atmosphere. Yet the correlations...

  6. Holocene record of glacier variability from lake sediments reveals tripartite climate history for Svalbard

    Science.gov (United States)

    van der Bilt, Willem; Bakke, Jostein; Vasskog, Kristian; D`Andrea, William; Bradley, Raymond; Olafsdottir, Sædis

    2016-04-01

    The Arctic is responding sensitively to ongoing global climate change, warming and moistening faster than any other region on the planet. Holocene proxy paleoclimate time series are increasingly used to put this amplified response in perspective by understanding Arctic climate processes beyond the instrumental period. Glaciers rapidly respond to climate shifts as demonstrated by their current demise around the world. This response has a composite climate signature, marked by shifts in hydroclimate (winter precipitation) as well as (summer) temperature. Attendant changes in glacier size are recorded by variations in glacigenic rock flour that may be deposited in downstream lakes. Here, we present a Holocene reconstruction of glacier activity, based on sediments from Hajeren, a glacier-fed lake on northwest Spitsbergen in the High Arctic Svalbard archipelago. Owing to undisturbed sediments and robust age control, we could resolve variability on a sub-centennial scale. To ensure the accurate detection of glacier activity, we applied a toolbox of physical, magnetic and geochemical proxies in conjunction with multivariate statistics. Our findings indicate a three-stage Holocene climate history for Svalbard, driving by melt water pulses, episodic Atlantic cooling and a decline in orbitally driven summer insolation. Correspondence between inferred advances, including a Holocene glacier maximum around 9.5 ka BP, suggests forcing by the melting LIS during the Early Holocene. Following a late Holocene Thermal Maximum around 7.4 ka BP, glaciers disappeared from the catchment. Glaciers reformed around 4.2 ka BP during the regional onset of the Neoglacial, supporting previous findings. This transition did, however, not mark the onset of persistent glacier activity in the catchment, but a series of centennial-scale cycles of growth and decay, including events around 3.3 and 1.1 ka BP. As orbitally driven insolation declined towards the present, the glaciation threshold

  7. Recent ice cap snowmelt in Russian High Arctic and anti-correlation with late summer sea ice extent

    International Nuclear Information System (INIS)

    Zhao, Meng; Ramage, Joan; Semmens, Kathryn; Obleitner, Friedrich

    2014-01-01

    Glacier surface melt dynamics throughout Novaya Zemlya (NovZ) and Severnaya Zemlya (SevZ) serve as a good indicator of ice mass ablation and regional climate change in the Russian High Arctic. Here we report trends of surface melt onset date (MOD) and total melt days (TMD) by combining multiple resolution-enhanced active and passive microwave satellite datasets and analyze the TMD correlations with local temperature and regional sea ice extent. The glacier surface snowpack on SevZ melted significantly earlier (−7.3 days/decade) from 1992 to 2012 and significantly longer (7.7 days/decade) from 1995 to 2011. NovZ experienced large interannual variability in MOD, but its annual mean TMD increased. The snowpack melt on NovZ is more sensitive to temperature fluctuations than SevZ in recent decades. After ruling out the regional temperature influence using partial correlation analysis, the TMD on both archipelagoes is statistically anti-correlated with regional late summer sea ice extent, linking land ice snowmelt dynamics to regional sea ice extent variations. (letter)

  8. Engaging new generation of Arctic researchers: 14 years and counting

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Hock, R.; Loucks, D. J.; Kaden, U.

    2016-12-01

    Today, more than ever, an integrated cross-disciplinary approach is necessary to explain changes in the Arctic and understand their implications for the human environment. Advanced training and active involvement of early-career scientists is an important component of this cross-disciplinary approach. This effort led by the International Arctic Research Center at the University of Alaska Fairbanks (UAF) started in 2003. The NSF supported project that started in 2013 conducted four summer schools (one per year) focused on four themes in four different Arctic locations. It provided the participants with an interdisciplinary perspective on Arctic change and its impacts on diverse sectors of the North. It is linked to other ongoing long-term observational and educational programs (e.g. NABOS, Nansen and Amundsen Basins Observational System; LTER, Long Term Environmental Research) and targets young scientists by using the interdisciplinary and place-based setting to broaden their perspective on Arctic change and to enhance their communication skills. Each course for 15-25 people consisted of classroom and hands-on components and work with a multidisciplinary group of mentors on projects devoted to themes exemplified by the location. A specialist from the School of Education at UAF evaluated student's progress during the summer schools. Additionally, an anthropologist attended the 2016 summer school to study how students learn to build and assess models, as well as examine students' and instructors' attitudes toward science communication, which provided additional feedback about learning and teaching in these settings. Lessons learned during the 14 years of conducting summer schools, methods of attracting in-kind support and approaches to teaching students are prominently featured in this study. Activities during the two most recent schools, one conducted at the Toolik Lake Field Station on the Alaskan North Slope and another at the International Arctic Research Center

  9. Climate change forces new ecological states in tropical Andean lakes.

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    Full Text Available Air temperatures in the tropical Andes have risen at an accelerated rate relative to the global average over recent decades. However, the effects of climate change on Andean lakes, which are vital to sustaining regional biodiversity and serve as an important water resource to local populations, remain largely unknown. Here, we show that recent climate changes have forced alpine lakes of the equatorial Andes towards new ecological and physical states, in close synchrony to the rapid shrinkage of glaciers regionally. Using dated sediment cores from three lakes in the southern Sierra of Ecuador, we record abrupt increases in the planktonic thalassiosiroid diatom Discostella stelligera from trace abundances to dominance within the phytoplankton. This unprecedented shift occurs against the backdrop of rising temperatures, changing atmospheric pressure fields, and declining wind speeds. Ecological restructuring in these lakes is linked to warming and/or enhanced water column stratification. In contrast to seasonally ice-covered Arctic and temperate alpine counterparts, aquatic production has not increased universally with warming, and has even declined in some lakes, possibly because enhanced thermal stability impedes the re-circulation of hypolimnetic nutrients to surface waters. Our results demonstrate that these lakes have already passed important ecological thresholds, with potentially far-reaching consequences for Andean water resources.

  10. Remote sensing of the Canadian Arctic: Modelling biophysical variables

    Science.gov (United States)

    Liu, Nanfeng

    It is anticipated that Arctic vegetation will respond in a variety of ways to altered temperature and precipitation patterns expected with climate change, including changes in phenology, productivity, biomass, cover and net ecosystem exchange. Remote sensing provides data and data processing methodologies for monitoring and assessing Arctic vegetation over large areas. The goal of this research was to explore the potential of hyperspectral and high spatial resolution multispectral remote sensing data for modelling two important Arctic biophysical variables: Percent Vegetation Cover (PVC) and the fraction of Absorbed Photosynthetically Active Radiation (fAPAR). A series of field experiments were conducted to collect PVC and fAPAR at three Canadian Arctic sites: (1) Sabine Peninsula, Melville Island, NU; (2) Cape Bounty Arctic Watershed Observatory (CBAWO), Melville Island, NU; and (3) Apex River Watershed (ARW), Baffin Island, NU. Linear relationships between biophysical variables and Vegetation Indices (VIs) were examined at different spatial scales using field spectra (for the Sabine Peninsula site) and high spatial resolution satellite data (for the CBAWO and ARW sites). At the Sabine Peninsula site, hyperspectral VIs exhibited a better performance for modelling PVC than multispectral VIs due to their capacity for sampling fine spectral features. The optimal hyperspectral bands were located at important spectral features observed in Arctic vegetation spectra, including leaf pigment absorption in the red wavelengths and at the red-edge, leaf water absorption in the near infrared, and leaf cellulose and lignin absorption in the shortwave infrared. At the CBAWO and ARW sites, field PVC and fAPAR exhibited strong correlations (R2 > 0.70) with the NDVI (Normalized Difference Vegetation Index) derived from high-resolution WorldView-2 data. Similarly, high spatial resolution satellite-derived fAPAR was correlated to MODIS fAPAR (R2 = 0.68), with a systematic

  11. Cesium-137 inventories in Alaskan Tundra, lake and marine sediments: An indicator of recent organic material transport?

    International Nuclear Information System (INIS)

    Grebmeier, J.M.; Cooper, L.W.; Larsen, I.L.; Solis, C.; Olsen, C.R.

    1993-01-01

    Tundra sampling was accomplished in 1989--1990 at Imnavait Creek, Alaska (68 degree 37' N, 149 degree 17' W). Inventories of 137 Cs (102--162 mBq/cm 2 ) are close to expectations, based upon measured atmospheric deposition for this latitude. Accumulated inventories of 137 Cs in tundra decrease by up to 50% along a transect to Prudhoe Bay (70 degree 13' N, 148 degree 30' W). Atmospheric deposition of 137 Cs decreased with latitude in the Arctic, but declines in deposition would have been relatively small over this distance (200 km). This suggests a recent loss of 137 Cs and possibly associated organic matter from tundra over the northern portions of the transect between Imnavait Creek and Prudhoe Bay. Sediments from Toolik Lake (68 degree 38' N, 149 degree 38' W) showed widely varying 137 Cs inventories, from a low of 22 mBq/cm 2 away from the lake inlet, to a high between 140 to >200 mBq/cm 2 near the main stream inflow. This was indicative of recent accumulation of cesium and possibly organic material associated with it in arctic lakes, although additional sampling is needed

  12. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data

    Science.gov (United States)

    Jones, Benjamin M.; Gusmeroli, Alessio; Arp, Christopher D.; Strozzi, Tazio; Grosse, Guido; Gaglioti, Benjamin V.; Whitman, Matthew S.

    2013-01-01

    Arctic freshwater ecosystems have responded rapidly to climatic changes over the last half century. Lakes and rivers are experiencing a thinning of the seasonal ice cover, which may increase potential over-wintering freshwater habitat, winter water supply for industrial withdrawal, and permafrost degradation. Here, we combined the use of ground penetrating radar (GPR) and high-resolution (HR) spotlight TerraSAR-X (TSX) satellite data (1.25 m resolution) to identify and characterize floating ice and grounded ice conditions in lakes, ponds, beaded stream pools, and an alluvial river channel. Classified ice conditions from the GPR and the TSX data showed excellent agreement: 90.6% for a predominantly floating ice lake, 99.7% for a grounded ice lake, 79.0% for a beaded stream course, and 92.1% for the alluvial river channel. A GIS-based analysis of 890 surface water features larger than 0.01 ha showed that 42% of the total surface water area potentially provided over-wintering habitat during the 2012/2013 winter. Lakes accounted for 89% of this area, whereas the alluvial river channel accounted for 10% and ponds and beaded stream pools each accounted for landscape features such as beaded stream pools may be important because of their distribution and role in connecting other water bodies on the landscape. These findings advance techniques for detecting and knowledge associated with potential winter habitat distribution for fish and invertebrates at the local scale in a region of the Arctic with increasing stressors related to climate and land use change.

  13. Population-level body condition correlates with productivity in an arctic wader, the dunlin Calidris alpina, during post-breeding migration.

    Directory of Open Access Journals (Sweden)

    Grzegorz Neubauer

    Full Text Available Weather and predation constitute the two main factors affecting the breeding success of those Arctic waders whose productivity is highly variable over the years. We tested whether reproductive success is associated with the post-breeding condition of adults, in which in 'good' years (with warm weather, plentiful food and low predation pressure the condition of breeders and their productivity is high. To verify this hypothesis, we used a 10-year dataset comprising 20,792 dunlins Calidris alpina, trapped during migration at a stopover site on the southern Baltic Sea shore. Males were consistently in a slightly worse condition than females, likely due to male-biased parental investment in brood rearing. Annual productivity indices were positively correlated with the respective condition indices of breeders from the Eurasian Arctic, indicating that in 'good' years, despite great effort spent on reproduction, breeders leave the breeding grounds in better condition. The pattern did not hold for 1992: productivity was low, but the average condition of adults during migration was the highest noted over the decade. We suggest that the delayed effect of the Mount Pinatubo eruption in the Philippines in 1991, could be responsible for the unexpected high condition of Arctic breeders in 1992. High population-level average condition, coupled with the low productivity could stem from severe weather caused by the volcano eruption a year before and strong predation pressure, which in turn lead to a reduced investment in reproduction. The importance of large-scale episodic phenomena, like this volcano eruption, may blur the statistical associations of wildlife with local environmental drivers.

  14. Population-level body condition correlates with productivity in an arctic wader, the dunlin Calidris alpina, during post-breeding migration.

    Science.gov (United States)

    Neubauer, Grzegorz; Pilacka, Lucyna; Zieliński, Piotr; Gromadzka, Jadwiga

    2017-01-01

    Weather and predation constitute the two main factors affecting the breeding success of those Arctic waders whose productivity is highly variable over the years. We tested whether reproductive success is associated with the post-breeding condition of adults, in which in 'good' years (with warm weather, plentiful food and low predation pressure) the condition of breeders and their productivity is high. To verify this hypothesis, we used a 10-year dataset comprising 20,792 dunlins Calidris alpina, trapped during migration at a stopover site on the southern Baltic Sea shore. Males were consistently in a slightly worse condition than females, likely due to male-biased parental investment in brood rearing. Annual productivity indices were positively correlated with the respective condition indices of breeders from the Eurasian Arctic, indicating that in 'good' years, despite great effort spent on reproduction, breeders leave the breeding grounds in better condition. The pattern did not hold for 1992: productivity was low, but the average condition of adults during migration was the highest noted over the decade. We suggest that the delayed effect of the Mount Pinatubo eruption in the Philippines in 1991, could be responsible for the unexpected high condition of Arctic breeders in 1992. High population-level average condition, coupled with the low productivity could stem from severe weather caused by the volcano eruption a year before and strong predation pressure, which in turn lead to a reduced investment in reproduction. The importance of large-scale episodic phenomena, like this volcano eruption, may blur the statistical associations of wildlife with local environmental drivers.

  15. Nudging the Arctic Ocean to quantify Arctic sea ice feedbacks

    Science.gov (United States)

    Dekker, Evelien; Severijns, Camiel; Bintanja, Richard

    2017-04-01

    It is well-established that the Arctic is warming 2 to 3 time faster than rest of the planet. One of the great uncertainties in climate research is related to what extent sea ice feedbacks amplify this (seasonally varying) Arctic warming. Earlier studies have analyzed existing climate model output using correlations and energy budget considerations in order to quantify sea ice feedbacks through indirect methods. From these analyses it is regularly inferred that sea ice likely plays an important role, but details remain obscure. Here we will take a different and a more direct approach: we will keep the sea ice constant in a sensitivity simulation, using a state-of -the-art climate model (EC-Earth), applying a technique that has never been attempted before. This experimental technique involves nudging the temperature and salinity of the ocean surface (and possibly some layers below to maintain the vertical structure and mixing) to a predefined prescribed state. When strongly nudged to existing (seasonally-varying) sea surface temperatures, ocean salinity and temperature, we force the sea ice to remain in regions/seasons where it is located in the prescribed state, despite the changing climate. Once we obtain fixed' sea ice, we will run a future scenario, for instance 2 x CO2 with and without prescribed sea ice, with the difference between these runs providing a measure as to what extent sea ice contributes to Arctic warming, including the seasonal and geographical imprint of the effects.

  16. Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, Courtney [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Walter, Katey [Univ. of Alaska, Fairbanks, AK (United States)

    2015-09-15

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  17. [Characterizing chromophoric dissolved organic matter (CDOM) in Lake Honghu, Lake Donghu and Lake Liangzihu using excitation-emission matrices (EEMs) fluorescence and parallel factor analysis (PARAFAC)].

    Science.gov (United States)

    Zhou, Yong-Qiang; Zhang, Yun-Lin; Niu, Cheng; Wang, Ming-Zhu

    2013-12-01

    Little is known about DOM characteristics in medium to large sized lakes located in the middle and lower reaches of Yangtze River, like Lake Honghu, Lake Donghu and Lake Liangzihu. Absorption, fluorescence and composition characteristics of chromophoric dissolved organic matter (CDOM) are presented using the absorption spectroscopy, the excitation-emission ma trices (EEMs) fluorescence and parallel factor analysis (PARAFAC) model based on the data collected in Sep-Oct. 2007 including 15, 9 and 10 samplings in Lake Honghu, Lake Donghu and Lake Liangzihu, respectively. CDOM absorption coefficient at 350 nm a(350) coefficient in Lake Honghu was significantly higher than those in Lake Donghu and Lake Liangzihu (t-test, pCDOM spectral slope in the wavelength range of 280-500 nm (S280-500) and a(350) (R2 =0. 781, p<0. 001). The mean value of S280-500 in Lake Honghu was significantly lower than those in Lake Donghu (t-test, pLake Liangzihu (t-test, p<0. 001). The mean value of spectral slope ratio SR in Lake Honghu was also significantly lower than those in Lake Donghu and Lake Liangzihu (t-test, p<0. 05). Two humic-like (C1, C2) and two protein-like fluorescent components (C3, C4) were identified by PARAFAC model, among which significant positive correlations were found between C1 and C2 (R2 =0. 884, p<0. 001), C3 and C4 (R2 =0. 677, p<0.001), respectively, suggesting that the sources of the two humic-like components as well as the two protein-like components were similar. However, no significant correlation has been found between those 4 fluorescent components and DOC concentration. Th e fluorescenceindices of FI255 (HIX), Fl265, FI310 (BIX) and Fl370 in Lake Donghu were all significantly higher than those in Lake Liangzihu (t-test, p <0.05) and Lake Honghu (t-test, p<0. 01), indicating that the eutrophication status in Lake Donghu was higher than Lake Honghu and Lake Liangzihu.

  18. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.

    Science.gov (United States)

    Budy, Phaedra; Luecke, Chris

    2014-09-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.

  19. White Arctic vs. Blue Arctic: Making Choices

    Science.gov (United States)

    Pfirman, S. L.; Newton, R.; Schlosser, P.; Pomerance, R.; Tremblay, B.; Murray, M. S.; Gerrard, M.

    2015-12-01

    As the Arctic warms and shifts from icy white to watery blue and resource-rich, tension is arising between the desire to restore and sustain an ice-covered Arctic and stakeholder communities that hope to benefit from an open Arctic Ocean. If emissions of greenhouse gases to the atmosphere continue on their present trend, most of the summer sea ice cover is projected to be gone by mid-century, i.e., by the time that few if any interventions could be in place to restore it. There are many local as well as global reasons for ice restoration, including for example, preserving the Arctic's reflectivity, sustaining critical habitat, and maintaining cultural traditions. However, due to challenges in implementing interventions, it may take decades before summer sea ice would begin to return. This means that future generations would be faced with bringing sea ice back into regions where they have not experienced it before. While there is likely to be interest in taking action to restore ice for the local, regional, and global services it provides, there is also interest in the economic advancement that open access brings. Dealing with these emerging issues and new combinations of stakeholders needs new approaches - yet environmental change in the Arctic is proceeding quickly and will force the issues sooner rather than later. In this contribution we examine challenges, opportunities, and responsibilities related to exploring options for restoring Arctic sea ice and potential pathways for their implementation. Negotiating responses involves international strategic considerations including security and governance, meaning that along with local communities, state decision-makers, and commercial interests, national governments will have to play central roles. While these issues are currently playing out in the Arctic, similar tensions are also emerging in other regions.

  20. Synoptic Drivers of Precipitation in the Atlantic Sector of the Arctic

    Science.gov (United States)

    Cohen, L.; Hudson, S.; Graham, R.; Renwick, J. A.

    2017-12-01

    Precipitation in the Arctic has been shown to be increasing in recent decades, from both observational and modelling studies, with largest trends seen in autumn and winter. This trend is attributed to a combination of the warming atmosphere and reduced sea ice extent. The seasonality of precipitation in the Arctic is important as it largely determines whether the precipitation falls as snow or rain. This study assesses the spatial and temporal variability of the synoptic drivers of precipitation in the Atlantic (European) sector of the Arctic. This region of the Arctic is of particular interest as it has the largest inter-annual variability in sea ice extent and is the primary pathway for moisture transport into the Arctic from lower latitudes. This study uses the ECMWF ERA-I reanalysis total precipitation to compare to long-term precipitation observations from Ny Ålesund, Svalbard to show that the reanalysis captures the synoptic variability of precipitation well and that most precipitation in this region is synoptically driven. The annual variability of precipitation in the Atlantic Arctic shows strong regionality. In the Svalbard and Barents Sea region, most of the annual total precipitation occurs during autumn and winter (Oct-Mar) (>60% of annual total), while the high-Arctic (> 80N) and Kara Sea receives most of the annual precipitation ( 60% of annual total) during summer (July-Sept). Using a synoptic classification developed for this region, this study shows that winter precipitation is driven by winter cyclone occurrence, with strong correlations to the AO and NAO indices. High precipitation over Svalbard is also strongly correlated with the Scandinavian blocking pattern, which produces a southerly flow in the Greenland Sea/Svalbard area. An increasing occurrence of these synoptic patterns are seen for winter months (Nov and Jan), which may explain much of the observed winter increase in precipitation.

  1. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  2. AROME-Arctic: New operational NWP model for the Arctic region

    Science.gov (United States)

    Süld, Jakob; Dale, Knut S.; Myrland, Espen; Batrak, Yurii; Homleid, Mariken; Valkonen, Teresa; Seierstad, Ivar A.; Randriamampianina, Roger

    2016-04-01

    In the frame of the EU-funded project ACCESS (Arctic Climate Change, Economy and Society), MET Norway aimed 1) to describe the present monitoring and forecasting capabilities in the Arctic; and 2) to identify the key factors limiting the forecasting capabilities and to give recommendations on key areas to improve the forecasting capabilities in the Arctic. We have observed that the NWP forecast quality is lower in the Arctic than in the regions further south. Earlier research indicated that one of the factors behind this is the composition of the observing system in the Arctic, in particular the scarceness of conventional observations. To further assess possible strategies for alleviating the situation and propose scenarios for a future Arctic observing system, we have performed a set of experiments to gain a more detailed insight in the contribution of the components of the present observing system in a regional state-of-the-art non-hydrostatic NWP model using the AROME physics (Seity et al, 2011) at 2.5 km horizontal resolution - AROME-Arctic. Our observing system experiment studies showed that conventional observations (Synop, Buoys) can play an important role in correcting the surface state of the model, but prove that the present upper-air conventional (Radiosondes, Aircraft) observations in the area are too scarce to have a significant effect on forecasts. We demonstrate that satellite sounding data play an important role in improving forecast quality. This is the case with satellite temperature sounding data (AMSU-A, IASI), as well as with the satellite moisture sounding data (AMSU-B/MHS, IASI). With these sets of observations, the AROME-Arctic clearly performs better in forecasting extreme events, like for example polar lows. For more details see presentation by Randriamampianina et al. in this session. The encouraging performance of AROME-Arctic lead us to implement it with more observations and improved settings into daily runs with the objective to

  3. Mid-Wisconsin to Holocene permafrost and landscape dynamics based on a drained lake basin core from the northern Seward Peninsula, northwest Alaska

    Science.gov (United States)

    Lenz, Josefine; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey M. Walter; Bobrov, Anatoly; Wulf, Sabine; Wetterich, Sebastian

    2016-01-01

    Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyse a ~ 4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemical, geochronological, micropalaeontological (ostracoda, testate amoebae) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by the deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP and drained catastrophically in spring 2005. The present study emphasises that Arctic lake systems and periglacial landscapes are highly dynamic and that permafrost formation as well as degradation in central Beringia was controlled by regional to global climate patterns as well as by local disturbances.

  4. Arctic Newcomers

    DEFF Research Database (Denmark)

    Tonami, Aki

    2013-01-01

    Interest in the Arctic region and its economic potential in Japan, South Korea and Singapore was slow to develop but is now rapidly growing. All three countries have in recent years accelerated their engagement with Arctic states, laying the institutional frameworks needed to better understand...... and influence policies relating to the Arctic. But each country’s approach is quite different, writes Aki Tonami....

  5. Influence of Atlantic on the warming and reduction of sea ice in the Arctic

    Directory of Open Access Journals (Sweden)

    G. V. Alekseev

    2017-01-01

    Full Text Available Influence of anomalies of the sea surface temperature (SST in low latitudes of the North Atlantic on the sea ice cover and the near-surface air temperature in the marine Arctic is discussed in the article. Data on the SST in the Atlantic Ocean from the HadISST dataset, climatic series of the water temperature at the section along the Kola meridian together with mean monthly data on the sea ice extent and the air surface temperature in the Maritime Arctic and the Northern hemisphere were analyzed. Multivariate cross-correlation analysis was applied to determine the maximum correlation coefficients between the SST anomalies, climate characteristics and their corresponding delays within time limits of 33 to 38 months. Existence of intimate link had been found between changes of the Atlantic SST in low latitudes and the sea ice extent in the Arctic with correlation coefficients up to 0.90 and delays up to 3 years. A mechanism of formation of the remote influence of low-latitude SST anomalies on the sea ice anomalies in the Arctic Ocean is proposed. The interpretation of this mechanism includes into consideration the interaction between atmospheric and oceanic circulation modes.

  6. Energy density of lake whitefish Coregonus clupeaformis in Lakes Huron and Michigan

    Science.gov (United States)

    Pothoven, S.A.; Nalepa, T.F.; Madenjian, C.P.; Rediske, R.R.; Schneeberger, P.J.; He, J.X.

    2006-01-01

    We collected lake whitefish Coregonus clupeaformis off Alpena and Tawas City, Michigan, USA in Lake Huron and off Muskegon, Michigan USA in Lake Michigan during 2002–2004. We determined energy density and percent dry weight for lake whitefish from both lakes and lipid content for Lake Michigan fish. Energy density increased with increasing fish weight up to 800 g, and then remained relatively constant with further increases in fish weight. Energy density, adjusted for weight, was lower in Lake Huron than in Lake Michigan for both small (≤800 g) and large fish (>800 g). Energy density did not differ seasonally for small or large lake whitefish or between adult male and female fish. Energy density was strongly correlated with percent dry weight and percent lipid content. Based on data from commercially caught lake whitefish, body condition was lower in Lake Huron than Lake Michigan during 1981–2003, indicating that the dissimilarity in body condition between the lakes could be long standing. Energy density and lipid content in 2002–2004 in Lake Michigan were lower than data for comparable sized fish collected in 1969–1971. Differences in energy density between lakes were attributed to variation in diet and prey energy content as well as factors that affect feeding rates such as lake whitefish density and prey abundance.

  7. Remote Sensing of Black Lakes and Using 810 nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Tiit Kutser

    2016-06-01

    Full Text Available Many lakes in boreal and arctic regions have high concentrations of CDOM (coloured dissolved organic matter. Remote sensing of such lakes is complicated due to very low water leaving signals. There are extreme (black lakes where the water reflectance values are negligible in almost entire visible part of spectrum (400–700 nm due to the absorption by CDOM. In these lakes, the only water-leaving signal detectable by remote sensing sensors occurs as two peaks—near 710 nm and 810 nm. The first peak has been widely used in remote sensing of eutrophic waters for more than two decades. We show on the example of field radiometry data collected in Estonian and Swedish lakes that the height of the 810 nm peak can also be used in retrieving water constituents from remote sensing data. This is important especially in black lakes where the height of the 710 nm peak is still affected by CDOM. We have shown that the 810 nm peak can be used also in remote sensing of a wide variety of lakes. The 810 nm peak is caused by combined effect of slight decrease in absorption by water molecules and backscattering from particulate material in the water. Phytoplankton was the dominant particulate material in most of the studied lakes. Therefore, the height of the 810 peak was in good correlation with all proxies of phytoplankton biomass—chlorophyll-a (R2 = 0.77, total suspended matter (R2 = 0.70, and suspended particulate organic matter (R2 = 0.68. There was no correlation between the peak height and the suspended particulate inorganic matter. Satellite sensors with sufficient spatial and radiometric resolution for mapping lake water quality (Landsat 8 OLI and Sentinel-2 MSI were launched recently. In order to test whether these satellites can capture the 810 nm peak we simulated the spectral performance of these two satellites from field radiometry data. Actual satellite imagery from a black lake was also used to study whether these sensors can detect the peak

  8. Arctic Haze Analysis

    Science.gov (United States)

    Mei, Linlu; Xue, Yong

    2013-04-01

    The Arctic atmosphere is perturbed by nature/anthropogenic aerosol sources known as the Arctic haze, was firstly observed in 1956 by J. Murray Mitchell in Alaska (Mitchell, 1956). Pacyna and Shaw (1992) summarized that Arctic haze is a mixture of anthropogenic and natural pollutants from a variety of sources in different geographical areas at altitudes from 2 to 4 or 5 km while the source for layers of polluted air at altitudes below 2.5 km mainly comes from episodic transportation of anthropogenic sources situated closer to the Arctic. Arctic haze of low troposphere was found to be of a very strong seasonal variation characterized by a summer minimum and a winter maximum in Alaskan (Barrie, 1986; Shaw, 1995) and other Arctic region (Xie and Hopke, 1999). An anthropogenic factor dominated by together with metallic species like Pb, Zn, V, As, Sb, In, etc. and nature source such as sea salt factor consisting mainly of Cl, Na, and K (Xie and Hopke, 1999), dust containing Fe, Al and so on (Rahn et al.,1977). Black carbon and soot can also be included during summer time because of the mix of smoke from wildfires. The Arctic air mass is a unique meteorological feature of the troposphere characterized by sub-zero temperatures, little precipitation, stable stratification that prevents strong vertical mixing and low levels of solar radiations (Barrie, 1986), causing less pollutants was scavenged, the major revival pathway for particulates from the atmosphere in Arctic (Shaw, 1981, 1995; Heintzenberg and Larssen, 1983). Due to the special meteorological condition mentioned above, we can conclude that Eurasian is the main contributor of the Arctic pollutants and the strong transport into the Arctic from Eurasia during winter caused by the high pressure of the climatologically persistent Siberian high pressure region (Barrie, 1986). The paper intends to address the atmospheric characteristics of Arctic haze by comparing the clear day and haze day using different dataset

  9. Human-induced Arctic moistening.

    Science.gov (United States)

    Min, Seung-Ki; Zhang, Xuebin; Zwiers, Francis

    2008-04-25

    The Arctic and northern subpolar regions are critical for climate change. Ice-albedo feedback amplifies warming in the Arctic, and fluctuations of regional fresh water inflow to the Arctic Ocean modulate the deep ocean circulation and thus exert a strong global influence. By comparing observations to simulations from 22 coupled climate models, we find influence from anthropogenic greenhouse gases and sulfate aerosols in the space-time pattern of precipitation change over high-latitude land areas north of 55 degrees N during the second half of the 20th century. The human-induced Arctic moistening is consistent with observed increases in Arctic river discharge and freshening of Arctic water masses. This result provides new evidence that human activity has contributed to Arctic hydrological change.

  10. The Arctic Turn

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2018-01-01

    In October 2006, representatives of the Arctic governments met in Salekhard in northern Siberia for the biennial Arctic Council ministerial meeting to discuss how the council could combat regional climate change, among other issues. While most capitals were represented by their foreign minister......, a few states – Canada, Denmark, and the United States – sent other representatives. There was nothing unusual about the absence of Per Stig Møller, the Danish foreign minister – a Danish foreign minister had only once attended an Arctic Council ministerial meeting (Arctic Council 2016). Møller......’s nonappearance did, however, betray the low status that Arctic affairs had in the halls of government in Copenhagen. Since the end of the Cold War, where Greenland had helped tie Denmark and the US closer together due to its geostrategically important position between North America and the Soviet Union, Arctic...

  11. Arctic summertime measurements of ammonia in the near-surface atmosphere

    Science.gov (United States)

    Moravek, A.; Murphy, J. G.; Wentworth, G.; Croft, B.; Martin, R.

    2016-12-01

    Measurements of gas-phase ammonia (NH3) in the summertime Arctic are rare, despite the impact NH3 can have on new particle formation rates and nitrogen deposition. The presence of NH3 can also increase the ratio of particulate-phase ammonium (NH4+) to non-sea salt sulphate (nss-SO42-) which decreases particle acidity. Known regional sources of NH3in the Arctic summertime include migratory seabird colonies and northern wildfires, whereas the Arctic Ocean is a net sink. In the summer of 2016, high time resolution measurements were collected in the Arctic to improve our understanding of the sources, sinks and impacts of ammonia in this remote region. A four week study was conducted at Alert, Canada (82.5º N, 62.3 º W) from June 23 to July 19, 2016 to examine the magnitude and sources of NH3 and SO42-. The Ambient Ion Monitor-Ion Chromatography system (AIM-IC) provided on-line, hourly averaged measurements of NH3, NH4+, SO42- and Na+. Measurements of NH3 ranged between 50 and 700 pptv (campaign mean of 240 pptv), consistent with previous studies in the summertime Arctic boundary layer. Levels of NH4+ and nss-SO42- were near or below detection limits ( 20 ng m-3) for the majority of the study. Tundra and lake samples were collected to investigate whether these could be important local sources of NH3 at Alert. These surface samples were analyzed for NH4+, pH and temperature and a compensation point (χ) for each sample was calculated to determine if these surface reservoirs can act as net NH3 sources. Precipitation samples were also collected throughout the study to better constrain our understanding of wet NH4+deposition in the summertime Arctic. From mid-July through August, 2016, NH3 was measured continuously using a laser spectroscopy technique onboard the Canadian Coast Guard Ship Amundsen in the eastern Arctic Ocean. Ocean-atmosphere exchange of NH3 was quantified using measurements of sea surface marine NH4+ concentrations. In addition, wet deposition of

  12. Arctic potential - Could more structured view improve the understanding of Arctic business opportunities?

    Science.gov (United States)

    Hintsala, Henna; Niemelä, Sami; Tervonen, Pekka

    2016-09-01

    The increasing interest towards the Arctic has been witnessed during the past decades. However, the commonly shared definitions of the Arctic key concepts have not yet penetrated national and international arenas for political and economic decision making. The lack of jointly defined framework has made different analyses related to the Arctic quite limited considering the magnitude of economic potential embedded in Arctic. This paper is built on the key findings of two separate, yet connected projects carried out in the Oulu region, Finland. In this paper's approach, the Arctic context has been defined as a composition of three overlapping layers. The first layer is the phenomenological approach to define the Arctic region. The second layer is the strategy-level analysis to define different Arctic paths as well as a national level description of a roadmap to Arctic specialization. The third layer is the operationalization of the first two layers to define the Arctic business context and business opportunities. The studied case from Oulu region indicates that alternative futures for the Arctic competences and business activities are in resemblance with only two of the four identified strategic pathways. Introduction of other pathways to regional level actors as credible and attractive options would require additional, systematic efforts.

  13. Squaring the Arctic Circle: connecting Arctic knowledge with societal needs

    Science.gov (United States)

    Wilkinson, J.

    2017-12-01

    Over the coming years the landscape of the Arctic will change substantially- environmentally, politically, and economically. Furthermore, Arctic change has the potential to significantly impact Arctic and non-Arctic countries alike. Thus, our science is in-demand by local communities, politicians, industry leaders and the public. During these times of transition it is essential that the links between science and society be strengthened further. Strong links between science and society is exactly what is needed for the development of better decision-making tools to support sustainable development, enable adaptation to climate change, provide the information necessary for improved management of assets and operations in the Arctic region, and and to inform scientific, economic, environmental and societal policies. By doing so tangible benefits will flow to Arctic societies, as well as for non-Arctic countries that will be significantly affected by climate change. Past experience has shown that the engagement with a broad range of stakeholders is not always an easy process. Consequently, we need to improve collaborative opportunities between scientists, indigenous/local communities, private sector, policy makers, NGOs, and other relevant stakeholders. The development of best practices in this area must build on the collective experiences of successful cross-sectorial programmes. Within this session we present some of the outreach work we have performed within the EU programme ICE-ARC, from community meetings in NW Greenland through to sessions at the United Nations Framework Convention on Climate Change COP Conferences, industry round tables, and an Arctic side event at the World Economic Forum in Davos.

  14. A 350 ka record of climate change from Lake El'gygytgyn, Far East Russian Arctic: refining the pattern of climate modes by means of cluster analysis

    Directory of Open Access Journals (Sweden)

    U. Frank

    2013-07-01

    Full Text Available Rock magnetic, biochemical and inorganic records of the sediment cores PG1351 and Lz1024 from Lake El'gygytgyn, Chukotka peninsula, Far East Russian Arctic, were subject to a hierarchical agglomerative cluster analysis in order to refine and extend the pattern of climate modes as defined by Melles et al. (2007. Cluster analysis of the data obtained from both cores yielded similar results, differentiating clearly between the four climate modes warm, peak warm, cold and dry, and cold and moist. In addition, two transitional phases were identified, representing the early stages of a cold phase and slightly colder conditions during a warm phase. The statistical approach can thus be used to resolve gradual changes in the sedimentary units as an indicator of available oxygen in the hypolimnion in greater detail. Based upon cluster analyses on core Lz1024, the published succession of climate modes in core PG1351, covering the last 250 ka, was modified and extended back to 350 ka. Comparison to the marine oxygen isotope (δ18O stack LR04 (Lisiecki and Raymo, 2005 and the summer insolation at 67.5° N, with the extended Lake El'gygytgyn parameter records of magnetic susceptibility (κLF, total organic carbon content (TOC and the chemical index of alteration (CIA; Minyuk et al., 2007, revealed that all stages back to marine isotope stage (MIS 10 and most of the substages are clearly reflected in the pattern derived from the cluster analysis.

  15. Review of fish diversity in the Lake Huron basin

    Science.gov (United States)

    Roseman, E.F.; Schaeffer, J.S.; Steen, P.J.

    2009-01-01

    Lake Huron has a rich aquatic habitat diversity that includes shallow embayments, numerous tributaries, shallow mid-lake reef complexes, archipelagos, and profundal regions. These habitats provide support for warm, cool, and cold water fish communities. Diversity of fishes in Lake Huron reflects post-glaciation colonization events, current climate conditions, accidental and intentional introductions of non-indigenous species, and extinctions. Most extinction events have been largely associated with habitat alterations, exploitation of fisheries, and interactions with non-indigenous species. The most recent historical survey of extirpated and imperiled species conducted in the late 1970s identified 79 fish species in Lake Huron proper and about 50 additional species in tributaries. Of those 129 species, 20 are now considered extirpated or imperiled. Extirpated species include Arctic grayling, paddlefish, weed shiner, deepwater cisco, blackfin cisco, shortnose cisco, and kiyi. Six species have declined appreciably due to loss of clear-water stream habitat: the river redhorse, river darter, black redhorse, pugnose shiner, lake chubsucker, redside dace, eastern sand darter, and channel darter. While numerous agencies, universities, and other organizations routinely monitor nearshore and offshore fish distribution and abundance, there is a need for more rigorous examination of the distribution and abundance of less-common species to better understand their ecology. This information is critical to the development of management plans aimed at ecosystem remediation and restoration.

  16. Shifts in the source and composition of dissolved organic matter in Southwest Greenland lakes along a regional hydro-climatic gradient

    DEFF Research Database (Denmark)

    Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.

    2018-01-01

    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differe...

  17. Arctic Climate Variability and Trends from Satellite Observations

    Directory of Open Access Journals (Sweden)

    Xuanji Wang

    2012-01-01

    Full Text Available Arctic climate has been changing rapidly since the 1980s. This work shows distinctly different patterns of change in winter, spring, and summer for cloud fraction and surface temperature. Satellite observations over 1982–2004 have shown that the Arctic has warmed up and become cloudier in spring and summer, but cooled down and become less cloudy in winter. The annual mean surface temperature has increased at a rate of 0.34°C per decade. The decadal rates of cloud fraction trends are −3.4%, 2.3%, and 0.5% in winter, spring, and summer, respectively. Correspondingly, annually averaged surface albedo has decreased at a decadal rate of −3.2%. On the annual average, the trend of cloud forcing at the surface is −2.11 W/m2 per decade, indicating a damping effect on the surface warming by clouds. The decreasing sea ice albedo and surface warming tend to modulate cloud radiative cooling effect in spring and summer. Arctic sea ice has also declined substantially with decadal rates of −8%, −5%, and −15% in sea ice extent, thickness, and volume, respectively. Significant correlations between surface temperature anomalies and climate indices, especially the Arctic Oscillation (AO index, exist over some areas, implying linkages between global climate change and Arctic climate change.

  18. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: A multi-faceted approach.

    Science.gov (United States)

    Budy, Phaedra; Luecke, Chris

    2014-01-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.

  19. The influence of elevation, latitude and Arctic Oscillation on trends in temperature extremes over northeastern China, 1961-2011

    Science.gov (United States)

    Zeng, Wei; Yu, Zhen; Li, Xilin

    2018-04-01

    Trend magnitudes of 14 indices of temperature extremes at 70 stations with elevations, latitude and Arctic Oscillation over northeast China during 1960-2011 are examined. There are no significant correlations between elevation and trend magnitudes with the exception of TXn (Min T max), TNn (Min T min), TR20 (tropical nights) and GSL (growing season length). Analysis of trend magnitudes by topographic type has a strong influence, which overrides that of degree of urbanization. By contrast, most of the temperature indices have stronger correlations with the latitude and Arctic Oscillation index. The correlations between the Arctic Oscillation index and percentile indices, including TX10p (cool days), TX90p (warm days), TN10p (cool nights), TN90p (warm nights), are not the same in different areas. To summarize, analysis of trend magnitudes by topographic type, the latitude and the Arctic Oscillation shows three factors to have a strong influence in this dataset, which overrides that of elevation and degree of urbanization.

  20. Dissolved Organic Matter Land-Ocean Linkages in the Arctic

    Science.gov (United States)

    Mann, P. J.; Spencer, R. M.; Hernes, P. J.; Tank, S. E.; Striegl, R.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2012-04-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC), and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is important for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the NSF funded Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric and fluorescent dissolved organic matter (CDOM & FDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Lignin composition was also successfully modeled using FDOM measurements decomposed using PARAFAC analysis. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in

  1. Coordinating for Arctic Conservation: Implementing Integrated Arctic Biodiversity Monitoring, Data Management and Reporting

    Science.gov (United States)

    Gill, M.; Svoboda, M.

    2012-12-01

    Arctic ecosystems and the biodiversity they support are experiencing growing pressure from various stressors (e.g. development, climate change, contaminants, etc.) while established research and monitoring programs remain largely uncoordinated, lacking the ability to effectively monitor, understand and report on biodiversity trends at the circumpolar scale. The maintenance of healthy arctic ecosystems is a global imperative as the Arctic plays a critical role in the Earth's physical, chemical and biological balance. A coordinated and comprehensive effort for monitoring arctic ecosystems is needed to facilitate effective and timely conservation and adaptation actions. The Arctic's size and complexity represents a significant challenge towards detecting and attributing important biodiversity trends. This demands a scaled, pan-arctic, ecosystem-based approach that not only identifies trends in biodiversity, but also identifies underlying causes. It is critical that this information be made available to generate effective strategies for adapting to changes now taking place in the Arctic—a process that ultimately depends on rigorous, integrated, and efficient monitoring programs that have the power to detect change within a "management" time frame. To meet these challenges and in response to the Arctic Climate Impact Assessment's recommendation to expand and enhance arctic biodiversity monitoring, the Conservation of Arctic Flora and Fauna (CAFF) Working Group of the Arctic Council launched the Circumpolar Biodiversity Monitoring Program (CBMP). The CBMP is led by Environment Canada on behalf of Canada and the Arctic Council. The CBMP is working with over 60 global partners to expand, integrate and enhance existing arctic biodiversity research and monitoring efforts to facilitate more rapid detection, communication and response to significant trends and pressures. Towards this end, the CBMP has established three Expert Monitoring Groups representing major Arctic

  2. Current status, between-year comparisons and maternal transfer of organohalogenated compounds (OHCs) in Arctic char (Salvelinus alpinus) from Bjørnøya, Svalbard (Norway)

    International Nuclear Information System (INIS)

    Bytingsvik, J.; Frantzen, M.; Götsch, A.; Heimstad, E.S.; Christensen, G.; Evenset, A.

    2015-01-01

    High levels of organohalogenated compounds (OHCs) have been found in Arctic char from Lake Ellasjøen at Bjørnøya (Svalbard, Norway) compared to char from other arctic lakes. The first aim of the study was to investigate the OHC status, contaminant profile, and partitioning of OHCs between muscle and ovary tissue in spawning female char from the high-polluted Lake Ellasjøen and the low-polluted Lake Laksvatn. The second aim was to investigate if OHC levels in muscle tissue have changed over time. Between-lake comparisons show that the muscle levels (lipid weight) of hexachlorobenzene (HCB), chlordanes (∑ CHLs), mirex, dichlorodiphenyltrichloroethanes (∑ DDTs) and polychlorinated biphenyls (∑ PCBs) were up to 36 times higher in char from Ellasjøen than in Laksvatn, and confirm that the char from Ellasjøen are still heavily exposed compared to char from neighboring lake. A higher proportion of persistent OHCs were found in Ellasjøen compared to Laksvatn, while the proportion of the less persistent OHCs was highest in Laksvatn. A between-year comparison of OHC levels (i.e., HCB, DDTs, PCBs) in female and male char shows higher levels of HCB in female char from Ellasjøen in 2009/2012 compared to in 1999/2001. No other between-year differences in OHC levels were found. Due to small study groups, findings associated with between-year differences in OHC levels should be interpreted with caution. OHCs accumulate in the lipid rich ovaries of spawning females, resulting in up to six times higher levels of OHCs in ovaries compared to in muscle (wet weight). The toxic equivalent (TEQ)-value for the dioxin-like PCBs (PCB-105 and -118) in ovaries of the Ellasjøen char exceeded levels associated with increased egg mortality in rainbow trout (Oncorhynchus mykiss). Hence, we suggest that future studies should focus on the reproductive health and performance abilities of the high-exposed population of char inhabiting Lake Ellasjøen. - Highlights: • Examine levels

  3. Current status, between-year comparisons and maternal transfer of organohalogenated compounds (OHCs) in Arctic char (Salvelinus alpinus) from Bjørnøya, Svalbard (Norway)

    Energy Technology Data Exchange (ETDEWEB)

    Bytingsvik, J., E-mail: jenny.bytingsvik@akvaplan.niva.no [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); Frantzen, M. [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); Götsch, A.; Heimstad, E.S. [NILU (Norwegian Institute for Air Research), The Fram Centre, N-9296 Tromsø Norway (Norway); Christensen, G. [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); Evenset, A. [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); University of Tromsø, The Arctic University of Norway, Pb 6050 Langnes, N-9037 Tromsø (Norway)

    2015-07-15

    High levels of organohalogenated compounds (OHCs) have been found in Arctic char from Lake Ellasjøen at Bjørnøya (Svalbard, Norway) compared to char from other arctic lakes. The first aim of the study was to investigate the OHC status, contaminant profile, and partitioning of OHCs between muscle and ovary tissue in spawning female char from the high-polluted Lake Ellasjøen and the low-polluted Lake Laksvatn. The second aim was to investigate if OHC levels in muscle tissue have changed over time. Between-lake comparisons show that the muscle levels (lipid weight) of hexachlorobenzene (HCB), chlordanes (∑ CHLs), mirex, dichlorodiphenyltrichloroethanes (∑ DDTs) and polychlorinated biphenyls (∑ PCBs) were up to 36 times higher in char from Ellasjøen than in Laksvatn, and confirm that the char from Ellasjøen are still heavily exposed compared to char from neighboring lake. A higher proportion of persistent OHCs were found in Ellasjøen compared to Laksvatn, while the proportion of the less persistent OHCs was highest in Laksvatn. A between-year comparison of OHC levels (i.e., HCB, DDTs, PCBs) in female and male char shows higher levels of HCB in female char from Ellasjøen in 2009/2012 compared to in 1999/2001. No other between-year differences in OHC levels were found. Due to small study groups, findings associated with between-year differences in OHC levels should be interpreted with caution. OHCs accumulate in the lipid rich ovaries of spawning females, resulting in up to six times higher levels of OHCs in ovaries compared to in muscle (wet weight). The toxic equivalent (TEQ)-value for the dioxin-like PCBs (PCB-105 and -118) in ovaries of the Ellasjøen char exceeded levels associated with increased egg mortality in rainbow trout (Oncorhynchus mykiss). Hence, we suggest that future studies should focus on the reproductive health and performance abilities of the high-exposed population of char inhabiting Lake Ellasjøen. - Highlights: • Examine levels

  4. Monitoring Bedfast Ice and Ice Phenology in Lakes of the Lena River Delta Using TerraSAR-X Backscatter and Coherence Time Series

    Directory of Open Access Journals (Sweden)

    Sofia Antonova

    2016-11-01

    Full Text Available Thermokarst lakes and ponds are major elements of permafrost landscapes, occupying up to 40% of the land area in some Arctic regions. Shallow lakes freeze to the bed, thus preventing permafrost thaw underneath them and limiting the length of the period with greenhouse gas production in the unfrozen lake sediments. Radar remote sensing permits to distinguish lakes with bedfast ice due to the difference in backscatter intensities from bedfast and floating ice. This study investigates the potential of a unique time series of three-year repeat-pass TerraSAR-X (TSX imagery with high temporal (11 days and spatial (10 m resolution for monitoring bedfast ice as well as ice phenology of lakes in the zone of continuous permafrost in the Lena River Delta, Siberia. TSX backscatter intensity is shown to be an excellent tool for monitoring floating versus bedfast lake ice as well as ice phenology. TSX-derived timing of ice grounding and the ice growth model CLIMo are used to retrieve the ice thicknesses of the bedfast ice at points where in situ ice thickness measurements were available. Comparison shows good agreement in the year of field measurements. Additionally, for the first time, an 11-day sequential interferometric coherence time series is analyzed as a supplementary approach for the bedfast ice monitoring. The coherence time series detects most of the ice grounding as well as spring snow/ice melt onset. Overall, the results show the great value of TSX time series for monitoring Arctic lake ice and provide a basis for various applications: for instance, derivation of shallow lakes bathymetry, evaluation of winter water resources and locating fish winter habitat as well as estimation of taliks extent in permafrost.

  5. Approaching a Postcolonial Arctic

    DEFF Research Database (Denmark)

    Jensen, Lars

    2016-01-01

    This article explores different postcolonially configured approaches to the Arctic. It begins by considering the Arctic as a region, an entity, and how the customary political science informed approaches are delimited by their focus on understanding the Arctic as a region at the service...... of the contemporary neoliberal order. It moves on to explore how different parts of the Arctic are inscribed in a number of sub-Arctic nation-state binds, focusing mainly on Canada and Denmark. The article argues that the postcolonial can be understood as a prism or a methodology that asks pivotal questions to all...... approaches to the Arctic. Yet the postcolonial itself is characterised by limitations, not least in this context its lack of interest in the Arctic, and its bias towards conventional forms of representation in art. The article points to the need to develop a more integrated critique of colonial and neo...

  6. An AeroCom Assessment of Black Carbon in Arctic Snow and Sea Ice

    Science.gov (United States)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Bernsten, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; DeLuca, N.; hide

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. Here, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng/g for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng/g for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng/g. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model-measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60-90degN) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with the fact that most Arctic BC deposition originates

  7. Arctic sea ice albedo from AVHRR

    Science.gov (United States)

    Lindsay, R. W.; Rothrock, D. A.

    1994-01-01

    The seasonal cycle of surface albedo of sea ice in the Arctic is estimated from measurements made with the Advanced Very High Resolution Radiometer (AVHRR) on the polar-orbiting satellites NOAA-10 and NOAA-11. The albedos of 145 200-km-square cells are analyzed. The cells are from March through September 1989 and include only those for which the sun is more than 10 deg above the horizon. Cloud masking is performed manually. Corrections are applied for instrument calibration, nonisotropic reflection, atmospheric interference, narrowband to broadband conversion, and normalization to a common solar zenith angle. The estimated albedos are relative, with the instrument gain set to give an albedo of 0.80 for ice floes in March and April. The mean values for the cloud-free portions of individual cells range from 0.18 to 0.91. Monthly averages of cells in the central Arctic range from 0.76 in April to 0.47 in August. The monthly averages of the within-cell standard deviations in the central Arctic are 0.04 in April and 0.06 in September. The surface albedo and surface temperature are correlated most strongly in March (R = -0.77) with little correlation in the summer. The monthly average lead fraction is determined from the mean potential open water, a scaled representation of the temperature or albedo between 0.0 (for ice) and 1.0 (for water); in the central Arctic it rises from an average 0.025 in the spring to 0.06 in September. Sparse data on aerosols, ozone, and water vapor in the atmospheric column contribute uncertainties to instantaneous, area-average albedos of 0.13, 0.04, and 0.08. Uncertainties in monthly average albedos are not this large. Contemporaneous estimation of these variables could reduce the uncertainty in the estimated albedo considerably. The poor calibration of AVHRR channels 1 and 2 is another large impediment to making accurate albedo estimates.

  8. Repeat synoptic sampling reveals drivers of change in carbon and nutrient chemistry of Arctic catchments

    Science.gov (United States)

    Zarnetske, J. P.; Abbott, B. W.; Bowden, W. B.; Iannucci, F.; Griffin, N.; Parker, S.; Pinay, G.; Aanderud, Z.

    2017-12-01

    Dissolved organic carbon (DOC), nutrients, and other solute concentrations are increasing in rivers across the Arctic. Two hypotheses have been proposed to explain these trends: 1. distributed, top-down permafrost degradation, and 2. discrete, point-source delivery of DOC and nutrients from permafrost collapse features (thermokarst). While long-term monitoring at a single station cannot discriminate between these mechanisms, synoptic sampling of multiple points in the stream network could reveal the spatial structure of solute sources. In this context, we sampled carbon and nutrient chemistry three times over two years in 119 subcatchments of three distinct Arctic catchments (North Slope, Alaska). Subcatchments ranged from 0.1 to 80 km2, and included three distinct types of Arctic landscapes - mountainous, tundra, and glacial-lake catchments. We quantified the stability of spatial patterns in synoptic water chemistry and analyzed high-frequency time series from the catchment outlets across the thaw season to identify source areas for DOC, nutrients, and major ions. We found that variance in solute concentrations between subcatchments collapsed at spatial scales between 1 to 20 km2, indicating a continuum of diffuse- and point-source dynamics, depending on solute and catchment characteristics (e.g. reactivity, topography, vegetation, surficial geology). Spatially-distributed mass balance revealed conservative transport of DOC and nitrogen, and indicates there may be strong in-stream retention of phosphorus, providing a network-scale confirmation of previous reach-scale studies in these Arctic catchments. Overall, we present new approaches to analyzing synoptic data for change detection and quantification of ecohydrological mechanisms in ecosystems in the Arctic and beyond.

  9. The Arctic

    International Nuclear Information System (INIS)

    Petersen, H.; Meltofte, H.; Rysgaard, S.; Rasch, M.; Jonasson, S.; Christensen, T.R.; Friborg, T.; Soegaard, H.; Pedersen, S.A.

    2001-01-01

    Global climate change in the Arctic is a growing concern. Research has already documented pronounced changes, and models predict that increases in temperature from anthropogenic influences could be considerably higher than the global average. The impacts of climate change on Arctic ecosystems are complex and difficult to predict because of the many interactions within ecosystem, and between many concurrently changing environmental variables. Despite the global consequences of change in the Arctic climate the monitoring of basic abiotic as well as biotic parameters are not adequate to assess the impact of global climate change. The uneven geographical location of present monitoring stations in the Arctic limits the ability to understand the climate system. The impact of previous variations and potential future changes to ecosystems is not well understood and need to be addressed. At this point, there is no consensus of scientific opinion on how much of the current changes that are due to anthropogenic influences or to natural variation. Regardless of the cause, there is a need to investigate and assess current observations and their effects to the Arctic. In this chapter examples from both terrestrial and marine ecosystems from ongoing monitoring and research projects are given. (LN)

  10. Shallow freshwater ecosystems of the circumpolar Arctic

    DEFF Research Database (Denmark)

    Rautio, Milla; Dufresne, France; Laurion, Isabelle

    2011-01-01

    to large annual temperature fluctuations, a short growing season, and freeze-up and desiccation stress in winter, these ecosystems are strongly regulated by the supply of organic matter and its optical and biogeochemical properties. Dissolved organic carbon affects bacterial diversity and production......This review provides a synthesis of limnological data and conclusions from studies on ponds and small lakes at our research sites in Subarctic and Arctic Canada, Alaska, northern Scandinavia, and Greenland. Many of these water bodies contain large standing stocks of benthic microbial mats that grow...... in relatively nutrient-rich conditions, while the overlying water column is nutrient-poor and supports only low concentrations of phytoplankton. Zooplankton biomass can, however, be substantial and is supported by grazing on the microbial mats as well as detrital inputs, algae, and other plankton. In addition...

  11. Diazotroph Diversity in the Sea Ice, Melt Ponds, and Surface Waters of the Eurasian Basin of the Central Arctic Ocean.

    Science.gov (United States)

    Fernández-Méndez, Mar; Turk-Kubo, Kendra A; Buttigieg, Pier L; Rapp, Josephine Z; Krumpen, Thomas; Zehr, Jonathan P; Boetius, Antje

    2016-01-01

    The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing toward a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77°N. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  12. Diazotroph diversity in the sea ice, melt ponds and surface waters of the Eurasian Basin of the Central Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Mar Fernández-Méndez

    2016-11-01

    Full Text Available The Eurasian basin of the Central Arctic Ocean is nitrogen limited, but little is known about the presence and role of nitrogen-fixing bacteria. Recent studies have indicated the occurrence of diazotrophs in Arctic coastal waters potentially of riverine origin. Here, we investigated the presence of diazotrophs in ice and surface waters of the Central Arctic Ocean in the summer of 2012. We identified diverse communities of putative diazotrophs through targeted analysis of the nifH gene, which encodes the iron protein of the nitrogenase enzyme. We amplified 529 nifH sequences from 26 samples of Arctic melt ponds, sea ice and surface waters. These sequences resolved into 43 clusters at 92% amino acid sequence identity, most of which were non-cyanobacterial phylotypes from sea ice and water samples. One cyanobacterial phylotype related to Nodularia sp. was retrieved from sea ice, suggesting that this important functional group is rare in the Central Arctic Ocean. The diazotrophic community in sea-ice environments appear distinct from other cold-adapted diazotrophic communities, such as those present in the coastal Canadian Arctic, the Arctic tundra and glacial Antarctic lakes. Molecular fingerprinting of nifH and the intergenic spacer region of the rRNA operon revealed differences between the communities from river-influenced Laptev Sea waters and those from ice-related environments pointing towards a marine origin for sea-ice diazotrophs. Our results provide the first record of diazotrophs in the Central Arctic and suggest that microbial nitrogen fixation may occur north of 77ºN. To assess the significance of nitrogen fixation for the nitrogen budget of the Arctic Ocean and to identify the active nitrogen fixers, further biogeochemical and molecular biological studies are needed.

  13. Arctic whaling : proceedings of the International Symposium Arctic Whaling February 1983

    NARCIS (Netherlands)

    Jacob, H.K. s'; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the

  14. Live from the Arctic

    Science.gov (United States)

    Warnick, W. K.; Haines-Stiles, G.; Warburton, J.; Sunwood, K.

    2003-12-01

    For reasons of geography and geophysics, the poles of our planet, the Arctic and Antarctica, are places where climate change appears first: they are global canaries in the mine shaft. But while Antarctica (its penguins and ozone hole, for example) has been relatively well-documented in recent books, TV programs and journalism, the far North has received somewhat less attention. This project builds on and advances what has been done to date to share the people, places, and stories of the North with all Americans through multiple media, over several years. In a collaborative project between the Arctic Research Consortium of the United States (ARCUS) and PASSPORT TO KNOWLEDGE, Live from the Arctic will bring the Arctic environment to the public through a series of primetime broadcasts, live and taped programming, interactive virtual field trips, and webcasts. The five-year project will culminate during the 2007-2008 International Polar Year (IPY). Live from the Arctic will: A. Promote global understanding about the value and world -wide significance of the Arctic, B. Bring cutting-edge research to both non-formal and formal education communities, C. Provide opportunities for collaboration between arctic scientists, arctic communities, and the general public. Content will focus on the following four themes. 1. Pan-Arctic Changes and Impacts on Land (i.e. snow cover; permafrost; glaciers; hydrology; species composition, distribution, and abundance; subsistence harvesting) 2. Pan-Arctic Changes and Impacts in the Sea (i.e. salinity, temperature, currents, nutrients, sea ice, marine ecosystems (including people, marine mammals and fisheries) 3. Pan-Arctic Changes and Impacts in the Atmosphere (i.e. precipitation and evaporation; effects on humans and their communities) 4. Global Perspectives (i.e. effects on humans and communities, impacts to rest of the world) In The Earth is Faster Now, a recent collection of comments by members of indigenous arctic peoples, arctic

  15. Biomarkers of Canadian High Arctic Litoral Sediments for Assessment of Organic Matter Sources and Degradation

    Science.gov (United States)

    Pautler, B. G.; Austin, J.; Otto, A.; Stewart, K.; Lamoureux, S. F.; Simpson, M. J.

    2009-05-01

    Carbon stocks in the High Arctic are particularly sensitive to global climate change, and investigation of variations in organic matter (OM) composition is beneficial for the understanding of the alteration of organic carbon under anticipated future elevated temperatures. Molecular-level characterization of solvent extractable compounds and CuO oxidation products of litoral sedimentary OM at the Cape Bounty Arctic Watershed Observatory in the Canadian Arctic Archipelago was conducted to determine the OM sources and decomposition patterns. The solvent extracts contained a series of aliphatic lipids, steroids and one triterpenoid primarily of higher plant origin and new biomarkers, iso- and anteiso-alkanes originating from cerastium arcticum (Arctic mouse-ear chickweed, a native angiosperm) were discovered. Carbon preference index (CPI) values for the n-alkanes, n-alkanols and n-alkanoic acids suggests that the OM biomarkers result from fresh material input in early stage of degradation. The CuO oxidation products were comprised of benzyls, lignin phenols and short-chain diacids and hydroxyacids. High abundance of terrestrial OM biomarkers observed at sites close to the river inlet suggests fluvial inputs as an important pathway to deliver OM into the lake. The lignin phenol vegetation index (LPVI) also suggests that the OM origin is mostly from non-woody angiosperms. A relatively high degree of lignin alteration in the litoral sediments is evident from the abundant ratio of acids and aldehydes of the vanillyl and syringyl monomers. This suggests that the lignin contents have been diagenetically altered as the result of a long residence time in this ecosystem. The molecular-level characterization of litoral sedimentary OM in Canadian High Arctic region provides insight into current OM composition,potential responses to future disturbances and the biogeochemical cycling of carbon in the Arctic.

  16. Mercury in freshwater ecosystems of the Canadian Arctic: recent advances on its cycling and fate.

    Science.gov (United States)

    Chételat, John; Amyot, Marc; Arp, Paul; Blais, Jules M; Depew, David; Emmerton, Craig A; Evans, Marlene; Gamberg, Mary; Gantner, Nikolaus; Girard, Catherine; Graydon, Jennifer; Kirk, Jane; Lean, David; Lehnherr, Igor; Muir, Derek; Nasr, Mina; Poulain, Alexandre J; Power, Michael; Roach, Pat; Stern, Gary; Swanson, Heidi; van der Velden, Shannon

    2015-03-15

    The Canadian Arctic has vast freshwater resources, and fish are important in the diet of many Northerners. Mercury is a contaminant of concern because of its potential toxicity and elevated bioaccumulation in some fish populations. Over the last decade, significant advances have been made in characterizing the cycling and fate of mercury in these freshwater environments. Large amounts of new data on concentrations, speciation and fluxes of Hg are provided and summarized for water and sediment, which were virtually absent for the Canadian Arctic a decade ago. The biogeochemical processes that control the speciation of mercury remain poorly resolved, including the sites and controls of methylmercury production. Food web studies have examined the roles of Hg uptake, trophic transfer, and diet for Hg bioaccumulation in fish, and, in particular, advances have been made in identifying determinants of mercury levels in lake-dwelling and sea-run forms of Arctic char. In a comparison of common freshwater fish species that were sampled across the Canadian Arctic between 2002 and 2009, no geographic patterns or regional hotspots were evident. Over the last two to four decades, Hg concentrations have increased in some monitored populations of fish in the Mackenzie River Basin while other populations from the Yukon and Nunavut showed no change or a slight decline. The different Hg trends indicate that the drivers of temporal change may be regional or habitat-specific. The Canadian Arctic is undergoing profound environmental change, and preliminary evidence suggests that it may be impacting the cycling and bioaccumulation of mercury. Further research is needed to investigate climate change impacts on the Hg cycle as well as biogeochemical controls of methylmercury production and the processes leading to increasing Hg levels in some fish populations in the Canadian Arctic. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  17. Altitudinal and thermal gradients of hepatic Cyp1A gene expression in natural populations of Salmo trutta from high mountain lakes and their correlation with organohalogen loads

    Energy Technology Data Exchange (ETDEWEB)

    Jarque, Sergio; Gallego, Eva [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain); Bartrons, Mireia; Catalan, Jordi [Center for Advanced Studies of Blanes (CEAB-CSIC), Acces Cala St. Francesc 14, 17300-Blanes, Catalonia (Spain); Grimalt, Joan O. [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain); Pina, Benjamin, E-mail: bpcbmc@cid.csic.e [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034-Barcelona, Catalonia (Spain)

    2010-05-15

    The biomarker of xenobiotic exposure cytochrome p450A1 (Cyp1A) was used to analyze the biological response to chemical pollution in Salmo trutta (brown trout) from nine high mountain European lakes in Norway, Tatras, Tyrol, and central Pyrenees. Hepatic Cyp1A mRNA levels correlated both with the reciprocal of absolute annual average air temperatures of the sampled lakes and with muscle concentrations of several hydrophobic organohalogen compounds (OC), including chlorinated polychlorobiphenyls (PCB), DDE, and DDT. The correlation between Cyp1A expression and OC content was observed across the whole temperature range (between -0.7 deg. C and +6.2 deg. C), but also in the absence of any thermal gradient. We concluded that airborne pollutants accumulate in high mountain lake fish at concentrations high enough to increase Cyp1A expression, among other possible effects. As geographical distribution of semi-volatile OC is strongly influenced by air temperatures, future climate modifications will potentially enhance their physiological effects in lake ecosystems. - Altitudinal gradients of hepatic Cyp1A gene expression in mountain trout correlate with geographic and individual organohalogen distribution.

  18. Searching for a multifractal signature of the lake algal proliferation, a multifractal correlation

    Science.gov (United States)

    Mezemate, Yacine; Tchiguirinskaia, Ioulia; Bonhomme, Celine; Schertzer, Daniel; Lemaire, Bruno Jacques; Vinçon leite, Brigitte; Lovejoy, Shaun

    2013-04-01

    Green algae proliferations affect water bodies such as the Lake Bourget (France). They are an environmental issue as well as a mater of public health. In the framework of the PROLIPHYC project a system based on temperature and chlorophyll measurements coupled to a lake model was implemented to predict sudden algal blooms. This classical approach relies on the analysis of large scale trends of the measured fields and does not take into account small scale fluctuations. A more innovative approach has been developed by the R2DS PLUMMME project to investigate the correlation between environmental fields across the full range of space-time scales, down to the smallest scale of observations. The first results of the project demonstrate that multi-scaling behaviour of environmental fields, such as temperature and chlorophyll, becomes evident only after the removal of the large-scale data trends that otherwise induce biases to the multifractal parameter estimates. First, a spectral analysis of temperature and chlorophyll data is performed on sub-samples of the time series to investigate the scaling behaviour. The multifractal analysis (Trace Moment, Double Trace Moment) directly applied on each sub-sample shows unsatisfying results on some sub-samples, in particular on those having a strong gradient compared with the amplitude of the fluctuations. Hence, non-stationary and seasonal effects should be first removed from the time series. To put on evidence a good scaling of the analysed data, we choose the Hilbert-Huang transform to de-trend the data. This method has been widely used for different fields (see F.G.Schmitt et al, 2009 for review). After having applied this method, the K(q) function shows that the investigated fields are indeed multifractal and the determination of their multifractal parameters becomes robust. Then, we proceed to a multifractal correlation analysis between the fields. In conclusion, we discuss the prediction of algal blooms based on multifractal

  19. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds

    Science.gov (United States)

    Popović, Predrag; Cael, B. B.; Silber, Mary; Abbot, Dorian S.

    2018-04-01

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  20. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.

    Science.gov (United States)

    Popović, Predrag; Cael, B B; Silber, Mary; Abbot, Dorian S

    2018-04-06

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  1. Zooplankton communities in a large prealpine lake, Lake Constance: comparison between the Upper and the Lower Lake

    Directory of Open Access Journals (Sweden)

    Gerhard MAIER

    2005-08-01

    Full Text Available The zooplankton communities of two basins of a large lake, Lake Constance, were compared during the years 2002 and 2003. The two basins differ in morphology, physical and chemical conditions. The Upper Lake basin has a surface area of 470 km2, a mean depth of 100 and a maximum depth of 250 m; the Lower Lake basin has a surface area of 62 km2, a mean depth of only 13 and a maximum depth of 40 m. Nutrient, chlorophyll-a concentrations and mean temperatures are somewhat higher in the Lower than in the Upper Lake. Total abundance of rotifers (number per m2 lake surface was higher and rotifer development started earlier in the year in the Lower than in the Upper Lake. Total abundance of crustaceans was higher in the Upper Lake in the year 2002; in the year 2003 no difference in abundance could be detected between the lake basins, although in summer crustacean abundance was higher in the Lower than in the Upper Lake. Crustacean communities differed significantly between lake basins while there was no apparent difference in rotifer communities. In the Lower Lake small crustaceans, like Bosmina spp., Ceriodaphnia pulchella and Thermocyclops oithonoides prevailed. Abundance (number per m2 lake surface of predatory cladocerans, large daphnids and large copepods was much lower in the Lower than in the Upper Lake, in particular during the summer months. Ordination with nonmetric multidimensional scaling (NMS separated communities of both lakes along gradients that correlated with temperature and chlorophyll a concentration. Clutches of copepods were larger in the Lower than in the Upper Lake. No difference could be detected in clutch size of large daphnids between lake basins. Our results show that zooplankton communities in different basins of Lake Constance can be very different. They further suggest that the lack of large crustaceans in particular the lack of large predatory cladocerans in the Lower Lake can have negative effects on growth and

  2. Arctic wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Peltola, E. [Kemijoki Oy (Finland); Holttinen, H.; Marjaniemi, M. [VTT Energy, Espoo (Finland); Tammelin, B. [Finnish Meteorological Institute, Helsinki (Finland)

    1998-12-31

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  3. Arctic wind energy

    International Nuclear Information System (INIS)

    Peltola, E.; Holttinen, H.; Marjaniemi, M.; Tammelin, B.

    1998-01-01

    Arctic wind energy research was aimed at adapting existing wind technologies to suit the arctic climatic conditions in Lapland. Project research work included meteorological measurements, instrument development, development of a blade heating system for wind turbines, load measurements and modelling of ice induced loads on wind turbines, together with the development of operation and maintenance practices in arctic conditions. As a result the basis now exists for technically feasible and economically viable wind energy production in Lapland. New and marketable products, such as blade heating systems for wind turbines and meteorological sensors for arctic conditions, with substantial export potential, have also been developed. (orig.)

  4. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  5. Collaboration across the Arctic

    DEFF Research Database (Denmark)

    Huppert, Verena Gisela; Chuffart, Romain François R.

    2017-01-01

    The Arctic is witnessing the rise of a new paradigm caused by an increase in pan-Arctic collaborations which co-exist with the region’s traditional linkages with the South. Using an analysis of concrete examples of regional collaborations in the Arctic today in the fields of education, health...... and infrastructure, this paper questions whether pan-Arctic collaborations in the Arctic are more viable than North-South collaborations, and explores the reasons behind and the foreseeable consequences of such collaborations. It shows that the newly emerging East-West paradigm operates at the same time...... as the traditional North-South paradigm, with no signs of the East-West paradigm being more viable in the foreseeable future. However, pan-Arctic collaboration, both due to pragmatic reasons and an increased awareness of similarities, is likely to increase in the future. The increased regionalization process...

  6. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements and methodological data in the surrounding areas of Lake Urmia

    Directory of Open Access Journals (Sweden)

    K. Moghtased-Azar

    2012-11-01

    Full Text Available Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180–218 days band (~6–7 months from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  7. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia

    Science.gov (United States)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-11-01

    Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180-218 days band (~6-7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  8. Arctic Rabies – A Review

    Directory of Open Access Journals (Sweden)

    Prestrud Pål

    2004-03-01

    Full Text Available Rabies seems to persist throughout most arctic regions, and the northern parts of Norway, Sweden and Finland, is the only part of the Arctic where rabies has not been diagnosed in recent time. The arctic fox is the main host, and the same arctic virus variant seems to infect the arctic fox throughout the range of this species. The epidemiology of rabies seems to have certain common characteristics in arctic regions, but main questions such as the maintenance and spread of the disease remains largely unknown. The virus has spread and initiated new epidemics also in other species such as the red fox and the racoon dog. Large land areas and cold climate complicate the control of the disease, but experimental oral vaccination of arctic foxes has been successful. This article summarises the current knowledge and the typical characteristics of arctic rabies including its distribution and epidemiology.

  9. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  10. Arctic Security

    DEFF Research Database (Denmark)

    Wang, Nils

    2013-01-01

    The inclusion of China, India, Japan, Singapore and Italy as permanent observers in the Arctic Council has increased the international status of this forum significantly. This chapter aims to explain the background for the increased international interest in the Arctic region through an analysis...

  11. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    -eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (. Scrophulariaceae......We use 2nd generation sequencing technology on sedimentary ancient DNA (. sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty...... and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650calyrBP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less...

  12. An AeroCom assessment of black carbon in Arctic snow and sea ice

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, C.; Flanner, M. G.; Balkanski, Y.; Bauer, S. E.; Bellouin, N.; Berntsen, T. K.; Bian, H.; Carslaw, K. S.; Chin, M.; De Luca, N.; Diehl, T.; Ghan, S. J.; Iversen, T.; Kirkevåg, A.; Koch, D.; Liu, X.; Mann, G. W.; Penner, J. E.; Pitari, G.; Schulz, M.; Seland, Ø.; Skeie, R. B.; Steenrod, S. D.; Stier, P.; Takemura, T.; Tsigaridis, K.; van Noije, T.; Yun, Y.; Zhang, K.

    2014-01-01

    Though many global aerosols models prognose surface deposition, only a few models have been used to directly simulate the radiative effect from black carbon (BC) deposition to snow and sea ice. In this paper, we apply aerosol deposition fields from 25 models contributing to two phases of the Aerosol Comparisons between Observations and Models (AeroCom) project to simulate and evaluate within-snow BC concentrations and radiative effect in the Arctic. We accomplish this by driving the offline land and sea ice components of the Community Earth System Model with different deposition fields and meteorological conditions from 2004 to 2009, during which an extensive field campaign of BC measurements in Arctic snow occurred. We find that models generally underestimate BC concentrations in snow in northern Russia and Norway, while overestimating BC amounts elsewhere in the Arctic. Although simulated BC distributions in snow are poorly correlated with measurements, mean values are reasonable. The multi-model mean (range) bias in BC concentrations, sampled over the same grid cells, snow depths, and months of measurements, are -4.4 (-13.2 to +10.7) ng g-1 for an earlier phase of AeroCom models (phase I), and +4.1 (-13.0 to +21.4) ng g-1 for a more recent phase of AeroCom models (phase II), compared to the observational mean of 19.2 ng g-1. Factors determining model BC concentrations in Arctic snow include Arctic BC emissions, transport of extra-Arctic aerosols, precipitation, deposition efficiency of aerosols within the Arctic, and meltwater removal of particles in snow. Sensitivity studies show that the model–measurement evaluation is only weakly affected by meltwater scavenging efficiency because most measurements were conducted in non-melting snow. The Arctic (60–90° N) atmospheric residence time for BC in phase II models ranges from 3.7 to 23.2 days, implying large inter-model variation in local BC deposition efficiency. Combined with

  13. Observational constraints on Arctic boundary-layer clouds, surface moisture and sensible heat fluxes

    Science.gov (United States)

    Wu, D. L.; Boisvert, L.; Klaus, D.; Dethloff, K.; Ganeshan, M.

    2016-12-01

    The dry, cold environment and dynamic surface variations make the Arctic a unique but difficult region for observations, especially in the atmospheric boundary layer (ABL). Spaceborne platforms have been the key vantage point to capture basin-scale changes during the recent Arctic warming. Using the AIRS temperature, moisture and surface data, we found that the Arctic surface moisture flux (SMF) had increased by 7% during 2003-2013 (18 W/m2 equivalent in latent heat), mostly in spring and fall near the Arctic coastal seas where large sea ice reduction and sea surface temperature (SST) increase were observed. The increase in Arctic SMF correlated well with the increases in total atmospheric column water vapor and low-level clouds, when compared to CALIPSO cloud observations. It has been challenging for climate models to reliably determine Arctic cloud radiative forcing (CRF). Using the regional climate model HIRHAM5 and assuming a more efficient Bergeron-Findeisen process with generalized subgrid-scale variability for total water content, we were able to produce a cloud distribution that is more consistent with the CloudSat/CALIPSO observations. More importantly, the modified schemes decrease (increase) the cloud water (ice) content in mixed-phase clouds, which help to improve the modeled CRF and energy budget at the surface, because of the dominant role of the liquid water in CRF. Yet, the coupling between Arctic low clouds and the surface is complex and has strong impacts on ABL. Studying GPS/COSMIC radio occultation (RO) refractivity profiles in the Arctic coldest and driest months, we successfully derived ABL inversion height and surface-based inversion (SBI) frequency, and they were anti-correlated over the Arctic Ocean. For the late summer and early fall season, we further analyzed Japanese R/V Mirai ship measurements and found that the open-ocean surface sensible heat flux (SSHF) can explain 10 % of the ABL height variability, whereas mechanisms such as cloud

  14. Dynamical response of the Arctic winter stratosphere to global warming

    Science.gov (United States)

    Karpechko, A.; Manzini, E.

    2017-12-01

    Climate models often simulate dynamical warming of the Arctic stratosphere as a response to global warming in association with a strengthening of the deep branch of the Brewer-Dobson circulation; however until now, no satisfactory mechanism for such a response has been suggested. Here we investigate the role of stationary planetary waves in the dynamical response of the Arctic winter stratosphere circulation to global warming by analysing simulations performed with atmosphere-only Coupled Model Intercomparison Project Phase 5 (CMIP5) models driven by prescribed sea surface temperatures (SSTs). We focus on December-February (DJF) because this is the period when the troposphere and stratosphere are strongly coupled. When forced by increased SSTs, all the models analysed here simulate Arctic stratosphere dynamical warming, mostly due to increased upward propagation of quasi-stationary wave number 1, as diagnosed by the meridional eddy heat flux. By analysing intermodel spread in the response we show that the stratospheric warming and increased wave flux to the stratosphere correlate with the strengthening of the zonal winds in subtropics and mid-latitudes near the tropopause- a robust response to global warming. These results support previous studies of future Arctic stratosphere changes and suggest a dynamical warming of the Arctic wintertime polar vortex as the most likely response to global warming.

  15. Preliminary estimation of Lake El'gygytgyn water balance and sediment income

    Directory of Open Access Journals (Sweden)

    G. Fedorov

    2013-07-01

    Full Text Available Modern process studies of the hydrologic balance of Lake El'gygytgyn, central Chukotka, and the sediment income from the catchment were carried out during a field campaign in spring and summer 2003. Despite high uncertainties due to the limited data, the results provide important first estimates for better understanding the modern and past sedimentation processes in this basin. Formed ca. 3.6 million years ago as a result of a meteorite impact, the basin contains one of the longest paleoclimate records in the terrestrial Arctic. Fluvial activity is concentrated over the short snowmelt period (about 20 days in second part of June. Underground outflow plays a very important role in the water balance and predominates over surface outflow. The residence time of the lake water is estimated to be about 100 yr.

  16. Microbial communities in a High Arctic polar desert landscape

    Directory of Open Access Journals (Sweden)

    Clare M McCann

    2016-03-01

    Full Text Available The High Arctic is dominated by polar desert habitats whose microbial communities are poorly understood. In this study, we used next generation sequencing to describe the α- and β-diversity of polar desert soils from the Kongsfjorden region of Svalbard. Ten phyla consistently dominated the soils and accounted for 95 % of all sequences, with Proteobacteria, Actinobacteria and Chloroflexi being the dominant lineages. In contrast to previous investigations of Arctic soils, Acidobacterial relative abundances were low as were the Archaea throughout the Kongsfjorden polar desert landscape. Lower Acidobacterial abundances were attributed to the circumneutral soil pH in this region which has resulted from the weathering of the underlying carbonate geology. In addition, we correlated previously measured geochemical variables to determine potential controls on the communities. Soil phosphorus, pH, nitrogen and calcium significantly correlated with β-diversity indicating a landscape scale lithological control of soil nutrients which in turn influenced community composition. In addition, soil phosphorus and pH significantly correlated with α- diversity, specifically the Shannon diversity and Chao 1 richness indices.

  17. Lake Eĺ gygytgyn Drilling under way: State of the operation and first results

    Science.gov (United States)

    Melles, M.; Brigham-Grette, J.; Minyuk, P.; Koeberl, C.; Scientific Party, EĺGygytgyn

    2009-04-01

    Lake Eĺgygytgyn, located in central Chukotka, NE Siberia, was formed 3.6 million years ago by a meteorite impact and has never been glaciated or desiccated. This makes Lake Eĺgygytgyn a unique target of an interdisciplinary, multi-national drilling campaign, which currently is carried out as part of the International Continental Drilling Program (ICDP). Drilling operations started in Nov./Dec. 2008, when a 142 m long sediment core was retrieved from the permafrost deposits in the western lake catchment by the local drilling company Chaun Mine Geological Company (CGE). The core penetrated coarse-grained, ice-rich alluvial sediments with variable contents of fine-grained material. It will be investigated for the environmental history, including potential lake-level changes, and the permafrost characteristics, in order to learn more about the influences of catchment changes on the lake sedimentation. Besides, the hole was permanently instrumented for future ground temperature monitoring as part of the Global Terrestrial Network for Permafrost (www.gtnp.org/index_e.html). The major drilling effort will commence in Febr. 2009, when two sites in the central part of Lake Eĺgygytgyn shall be drilled down to 630 m below the lake floor. Drilling will be carried out by DOSECC, using a new GLAD 800 system that will be operated from an enclosed platform on the lake ice. Drilling objectives include replicate overlapping cores from the up to 420 m thick lake sediment fill. The cores promise to yield the longest, most continuous record of climate change in the terrestrial Arctic, extending back one million years prior to the intensification of the Northern Hemisphere Glaciation at the Pliocene/Pleistocene boundary, thus offering unique insight into the climatic and environmental history of the Arctic and its comparison with records from lower latitude marine and terrestrial sites to better understand hemispheric and global climate change. Coring shall be continued up to 300 m

  18. DOE Final Report on Collaborative Research. Quantifying Climate Feedbacks of the Terrestrial Biosphere under Thawing Permafrost Conditions in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Qianlai [Purdue Univ., West Lafayette, IN (United States); Schlosser, C. Adam [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Melillo, Jerry M. [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Anthony, Katey Walter [Univ. of Alaska, Fairbanks, AK (United States); Kicklighter, David [Marine Biological Lab. (MBL), Woods Hole, MA (United States); Gao, Xiang [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-11-03

    Our overall goal is to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically-forced climate warming, and the conditions under which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes to the landscape of wetlands and lakes, especially thermokarst (thaw) lakes, across the Arctic. Through a suite of numerical experiments that encapsulate the fundamental processes governing methane emissions and carbon exchanges – as well as their coupling to the global climate system - we intend to test the following hypothesis in the proposed research: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and stimulates large increases in methane emissions (via thermokarst lakes and poorly-drained wetland areas upon thawing permafrost along with microbial metabolic responses to higher temperatures) and increases in carbon dioxide emissions from well-drained areas. Besides changes in biogeochemistry, this threshold will also influence global energy dynamics through effects on surface albedo, evapotranspiration and water vapor. These changes would outweigh any increased uptake of carbon (e.g. from peatlands and higher plant photosynthesis) and would result in a strong, positive feedback to global climate warming.

  19. SEARCH: Study of Environmental Arctic Change—A System-scale, Cross-disciplinary Arctic Research Program

    Science.gov (United States)

    Wiggins, H. V.; Eicken, H.; Fox, S. E.

    2012-12-01

    SEARCH is an interdisciplinary and interagency program that works with academic and government agency scientists to plan, conduct, and synthesize studies of arctic change. The vision of SEARCH is to provide scientific understanding of arctic environmental change to help society understand and respond to a rapidly changing Arctic. Towards this end, SEARCH: 1. Generates and synthesizes research findings and promotes arctic science and scientific discovery across disciplines and among agencies. 2. Identifies emerging issues in arctic environmental change. 3. Provides information resources to arctic stakeholders, policy-makers, and the public to help them respond to arctic environmental change. 4. Coordinates with national arctic science programs integral to SEARCH goals. 5. Facilitates research activities across local-to-global scales with stakeholder concerns incorporated from the start of the planning process. 6. Represents the U.S. arctic environmental change science community in international and global change research initiatives. Specific current activities include: Arctic Observing Network (AON) - coordinating a system of atmospheric, land- and ocean-based environmental monitoring capabilities that will significantly advance our observations of arctic environmental conditions. Arctic Sea Ice Outlook ¬- an international effort that provides monthly summer reports synthesizing community estimates of the expected sea ice minimum. Sea Ice for Walrus Outlook - a resource for Alaska Native subsistence hunters, coastal communities, and others that provides weekly reports with information on sea ice conditions relevant to walrus in Alaska waters. In April, the SEARCH Science Steering Committee (SSC) released a set of draft 5-year goals and objectives for review by the broader arctic science community. The goals and objectives will direct the SEARCH program in the next five years. The draft SEARCH goals focus on four areas: ice-diminished Arctic Ocean, warming

  20. Increase of urban lake salinity by road deicing salt

    International Nuclear Information System (INIS)

    Novotny, Eric V.; Murphy, Dan; Stefan, Heinz G.

    2008-01-01

    Over 317,000 tonnes of road salt (NaCl) are applied annually for road deicing in the Twin Cities Metropolitan Area (TCMA) of Minnesota. Although road salt is applied to increase driving safety, this practice influences environmental water quality. Thirteen lakes in the TCMA were studied over 46 months to determine if and how they respond to the seasonal applications of road salt. Sodium and chloride concentrations in these lakes were 10 and 25 times higher, respectively, than in other non-urban lakes in the region. Seasonal salinity/chloride cycles in the lakes were correlated with road salt applications: High concentrations in the winter and spring, especially near the bottom of the lakes, were followed by lower concentrations in the summer and fall due to flushing of the lakes by rainfall runoff. The seasonal salt storage/flushing rates for individual lakes were derived from volume-weighted average chloride concentration time series. The rate ranged from 9 to 55% of a lake's minimum salt content. In some of the lakes studied salt concentrations were high enough to stop spring turnover preventing oxygen from reaching the benthic sediments. Concentrations above the sediments were also high enough to induce convective mixing of the saline water into the sediment pore water. A regional analysis of historical water quality records of 38 lakes in the TCMA showed increases in lake salinity from 1984 to 2005 that were highly correlated with the amount of rock salt purchased by the State of Minnesota. Chloride concentrations in individual lakes were positively correlated with the percent of impervious surfaces in the watershed and inversely with lake volume. Taken together, the results show a continuing degradation of the water quality of urban lakes due to application of NaCl in their watersheds

  1. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Grosse, G.; Arp, C.D.; Jones, M.C.; Walter, Anthony K.M.; Romanovsky, V.E.

    2011-01-01

    Quantifying changes in thermokarst lake extent is of importance for understanding the permafrost-related carbon budget, including the potential release of carbon via lake expansion or sequestration as peat in drained lake basins. We used high spatial resolution remotely sensed imagery from 1950/51, 1978, and 2006/07 to quantify changes in thermokarst lakes for a 700 km2 area on the northern Seward Peninsula, Alaska. The number of water bodies larger than 0.1 ha increased over the entire observation period (666 to 737 or +10.7%); however, total surface area decreased (5,066 ha to 4,312 ha or -14.9%). This pattern can largely be explained by the formation of remnant ponds following partial drainage of larger water bodies. Thus, analysis of large lakes (>40 ha) shows a decrease of 24% and 26% in number and area, respectively, differing from lake changes reported from other continuous permafrost regions. Thermokarst lake expansion rates did not change substantially between 1950/51 and 1978 (0.35 m/yr) and 1978 and 2006/07 (0.39 m/yr). However, most lakes that drained did expand as a result of surface permafrost degradation before lateral drainage. Drainage rates over the observation period were stable (2.2 to 2.3 per year). Thus, analysis of decadal-scale, high spatial resolution imagery has shown that lake drainage in this region is triggered by lateral breaching and not subterranean infiltration. Future research should be directed toward better understanding thermokarst lake dynamics at high spatial and temporal resolution as these systems have implications for landscape-scale hydrology and carbon budgets in thermokarst lake-rich regions in the circum-Arctic.

  2. Evolving hydrologic connectivity in discontinuous permafrost lowlands: what it means for lake systems

    Science.gov (United States)

    Walvoord, M. A.; Jepsen, S. M.; Rover, J.; Voss, C. I.; Briggs, M. A.

    2015-12-01

    Permafrost influence on the hydrologic connectivity of surface water bodies in high-latitude lowlands is complicated by subsurface heterogeneity and the propensity of the system to change over time. In general, permafrost limits the subsurface exchange of water, solute, and nutrients between lakes and rivers. It follows that permafrost thaw could enhance subsurface hydrologic connectivity among surface water bodies, but the impact of this process on lake distribution is not well known. Changes in the extent of lakes in interior Alaska have important ecological and societal impacts since lakes provide (1) critical habitat for migratory arctic shorebirds and waterfowl, fish, and wildlife, and (2) provisional, recreational, and cultural resources for local communities. We utilize electromagnetic imaging of the shallow subsurface and remote sensing of lake level dynamics in the Yukon Flats of interior Alaska, USA, together with water balance modeling, to gain insight into the influence of discontinuous permafrost on lowland lake systems. In the study region with relatively low precipitation, observations suggest that lakes that are hydrologically isolated during normal conditions are sustained by periodic river flooding events, including ice-jam floods that occur during river ice break-up. Climatically-influenced alterations in flooding frequency and intensity, as well as depth to permafrost, are quantitatively assessed in the context of lake maintenance. Scenario modeling is used to evaluate lake level evolution under plausible changing conditions. Model results demonstrate how permafrost degradation can reduce the dependence of typical lowland lakes on flooding events. Study results also suggest that river flooding may recharge a more spatially widespread zone of lakes and wetlands under future scenarios of permafrost table deepening and enhanced subsurface hydrologic connectivity.

  3. Dynamics of a recovering Arctic bird population: the importance of climate, density dependence, and site quality

    Science.gov (United States)

    Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.

    2015-01-01

    Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably

  4. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  5. Connecting Arctic Research Across Boundaries through the Arctic Research Consortium of the United States (ARCUS)

    Science.gov (United States)

    Rich, R. H.; Myers, B.; Wiggins, H. V.; Zolkos, J.

    2017-12-01

    The complexities inherent in Arctic research demand a unique focus on making connections across the boundaries of discipline, institution, sector, geography, knowledge system, and culture. Since 1988, ARCUS has been working to bridge these gaps through communication, coordination, and collaboration. Recently, we have worked with partners to create a synthesis of the Arctic system, to explore the connectivity across the Arctic research community and how to strengthen it, to enable the community to have an effective voice in research funding policy, to implement a system for Arctic research community knowledge management, to bridge between global Sea Ice Prediction Network researchers and the science needs of coastal Alaska communities through the Sea Ice for Walrus Outlook, to strengthen ties between Polar researchers and educators, and to provide essential intangible infrastructure that enables cost-effective and productive research across boundaries. Employing expertise in managing for collaboration and interdisciplinarity, ARCUS complements and enables the work of its members, who constitute the Arctic research community and its key stakeholders. As a member-driven organization, everything that ARCUS does is achieved through partnership, with strong volunteer leadership of each activity. Key organizational partners in the United States include the U.S. Arctic Research Commission, Interagency Arctic Research Policy Committee, National Academy of Sciences Polar Research Board, and the North Slope Science Initiative. Internationally, ARCUS maintains strong bilateral connections with similarly focused groups in each Arctic country (and those interested in the Arctic), as well as with multinational organizations including the International Arctic Science Committee, the Association of Polar Early Career Educators, the University of the Arctic, and the Arctic Institute of North America. Currently, ARCUS is applying the best practices of the science of team science

  6. AMAP Assessment 2013: Arctic Ocean acidification

    Science.gov (United States)

    2013-01-01

    This assessment report presents the results of the 2013 AMAP Assessment of Arctic Ocean Acidification (AOA). This is the first such assessment dealing with AOA from an Arctic-wide perspective, and complements several assessments that AMAP has delivered over the past ten years concerning the effects of climate change on Arctic ecosystems and people. The Arctic Monitoring and Assessment Programme (AMAP) is a group working under the Arctic Council. The Arctic Council Ministers have requested AMAP to: - produce integrated assessment reports on the status and trends of the conditions of the Arctic ecosystems;

  7. Seasonal dynamics of bacterial biomass and production in a coastal arctic ecosystem: Franklin Bay, western Canadian Arctic

    Science.gov (United States)

    Garneau, Marie-Ã. Ve; Roy, SéBastien; Lovejoy, Connie; Gratton, Yves; Vincent, Warwick F.

    2008-07-01

    The Canadian Arctic Shelf Exchange Study (CASES) included the overwintering deployment of a research platform in Franklin Bay (70°N, 126°W) and provided a unique seasonal record of bacterial dynamics in a coastal region of the Arctic Ocean. Our objectives were (1) to relate seasonal bacterial abundance (BA) and production (BP) to physico-chemical characteristics and (2) to quantify the annual bacterial carbon flux. BA was estimated by epifluorescence microscopy and BP was estimated from 3H-leucine and 3H-thymidine assays. Mean BA values for the water column ranged from 1.0 (December) to 6.8 × 105 cells mL-1 (July). Integral BP varied from 1 (February) to 80 mg C m-2 d-1 (July). During winter-spring, BP was uncorrelated with chlorophyll a (Chl a), but these variables were significantly correlated during summer-autumn (rs = 0.68, p winter, late winter-late spring, and summer. A baseline level of BB and BP was maintained throughout late winter-late spring despite the persistent cold and darkness, with irregular fluctuations that may be related to hydrodynamic events. During this period, BP rates were correlated with colored dissolved organic matter (CDOM) but not Chl a (rs BP.CDOM∣Chl a = 0.20, p < 0.05, N = 176). Annual BP was estimated as 6 g C m-2 a-1, implying a total BP of 4.8 × 1010 g C a-1 for the Franklin Bay region. These results show that bacterial processes continue throughout all seasons and make a large contribution to the total biological carbon flux in this coastal arctic ecosystem.

  8. Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes

    Science.gov (United States)

    Balascio, Nicholas L.; D'Andrea, William J.; Gjerde, Marthe; Bakke, Jostein

    2018-03-01

    The response of the Arctic hydrologic cycle to global warming includes changes in precipitation patterns and moisture availability associated with variable sea ice extent and modes of atmospheric circulation. Reconstructions of past hydroclimate changes help constrain the natural range of these systems, identify the manners in which they respond to different forcing mechanisms, and reveal their connections to other components of the climate system, all of which lead to a better understanding of present and future changes. Here we examine hydroclimate changes during the Holocene in the High Arctic archipelago of Svalbard by reconstructing the isotopic composition of precipitation. We measured the hydrogen isotopic composition (δD values) of leaf wax compounds (n-alkanes; C25-C31) in a sediment core from Lake Hakluytvatnet on the island of Amsterdamøya, northwest Spitsbergen. We interpret δD values of mid-chain (C25) and long-chain (C29, C31) length n-alkanes to represent changes in the isotopic composition of lake water and precipitation over the last 12.9 ka. After deglaciation of the catchment, water supply became restricted and the lake experienced significant evaporative isotopic enrichment indicating warmer conditions from 12.8 to 7.5 ka. The isotope values suggest an increase in the delivery of moisture from warmer sub-polar air masses between 12.8 and 9.5 ka, followed by generally warm, but unstable conditions between 9.5 and 7.5 ka, possibly indicating a response to meltwater forcing. Sedimentary evidence indicates a hiatus in deposition c. 7.5-5.0 ka, likely as a result of desiccation of the lake. At c. 5.0 ka lacustrine sedimentation resumed and over the last 5 ka there was a progressive increase in the influence of polar air masses and colder conditions, which culminated in an abrupt shift to colder conditions at c. 1.8 ka. This late Holocene cooling ended c. 0.18 ka, when isotopic data indicate warmer conditions and greater influence of moisture

  9. Correlates of mercury in fish from lakes near Clyde Forks, Ontario, Canada

    International Nuclear Information System (INIS)

    Ethier, A.L.M.; Scheuhammer, A.M.; Bond, D.E.

    2008-01-01

    Subsurface soils near Clyde Forks, Ontario, Canada, can have naturally high concentrations of mercury (Hg) from local geological sources. To investigate Hg in local aquatic food webs, Hg was measured in fish dorsal muscle (mainly yellow perch [YP] and pumpkinseed sunfish [PS]) and surface sediments from 10 regional lakes. Water chemistry, along with fork length, weight, and stable isotopes (δ 15 N, δ 13 C, δ 34 S) in fish were also measured. No lake sediments had elevated (>0.3 μg/g dw) Hg, and average Hg concentrations in fish were not sufficiently high ( 13 C), and certain lake variables (e.g., pH for YP). PS with more pelagic feeding habits had higher δ 34 S and Hg than those with more littoral feeding habits. Potential biological linkages between fish Hg and δ 34 S, a parameter that may be related to the lake sulphate-reducing bacteria activity, requires further investigation. - Fish from lakes near a localized geological Hg source do not have elevated Hg concentrations

  10. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N; Stibal, Marek

    2016-01-01

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation...... and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity...

  11. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    Science.gov (United States)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  12. Contemporary Arctic Sea Level

    Science.gov (United States)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  13. Redefining U.S. Arctic Strategy

    Science.gov (United States)

    2015-05-15

    responsibility shifts 21 Barno, David and Nora Bensahel. The Anti-Access Challenge you’re not thinking...International Affairs 85, no. 6 (2009). 38 Barno, David and Nora Bensahel. THE ANTI-ACCESS CHALLENGE YOU’RE NOT THINKING ABOUT, 05 May 2015...and Rescue in the Arctic, 22 June 2011. Arctic Council Secretariat. About the Arctic Council, Arctic Council, 2011. Barno, David and Nora

  14. Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5°N)

    Science.gov (United States)

    Gjerde, Marthe; Bakke, Jostein; D'Andrea, William J.; Balascio, Nicholas L.; Bradley, Raymond S.; Vasskog, Kristian; Ólafsdóttir, Sædis; Røthe, Torgeir O.; Perren, Bianca B.; Hormes, Anne

    2018-03-01

    High resolution proxy records of past climate are sparse in the Arctic due to low organic production that restricts the use of radiocarbon dating and challenging logistics that make data collection difficult. Here, we present a new lake record from lake Hakluytvatnet at Amsterdamøya island (79.5°N), the northwesternmost island on Svalbard. Multi-proxy analyses of lake sediments in combination with geomorphological mapping reveal large environmental shifts that have taken place at Amsterdamøya during the Holocene. A robust chronology has been established for the lake sediment core through 28 AMS radiocarbon ages, and this gives an exceptionally well-constrained age control for a lake at this latitude. The Holocene was a period with large changes in the Hakluytvatnet catchment, and the onset of the Neoglacial (ca. 5 ka) marks the start of modern-day conditions in the catchment. The Neoglacial is characterized by fluctuations in the minerogenic input to the lake as well as internal productivity, and we suggest that these fluctuations are driven by atmospherically forced precipitation changes as well as sea ice extent modulating the amount of moisture that can reach Hakluytvatnet.

  15. Lake-level frequency analysis for Devils Lake, North Dakota

    Science.gov (United States)

    Wiche, Gregg J.; Vecchia, Aldo V.

    1996-01-01

    Two approaches were used to estimate future lake-level probabilities for Devils Lake. The first approach is based on an annual lake-volume model, and the second approach is based on a statistical water mass-balance model that generates seasonal lake volumes on the basis of seasonal precipitation, evaporation, and inflow. Autoregressive moving average models were used to model the annual mean lake volume and the difference between the annual maximum lake volume and the annual mean lake volume. Residuals from both models were determined to be uncorrelated with zero mean and constant variance. However, a nonlinear relation between the residuals of the two models was included in the final annual lakevolume model.Because of high autocorrelation in the annual lake levels of Devils Lake, the annual lake-volume model was verified using annual lake-level changes. The annual lake-volume model closely reproduced the statistics of the recorded lake-level changes for 1901-93 except for the skewness coefficient. However, the model output is less skewed than the data indicate because of some unrealistically large lake-level declines. The statistical water mass-balance model requires as inputs seasonal precipitation, evaporation, and inflow data for Devils Lake. Analysis of annual precipitation, evaporation, and inflow data for 1950-93 revealed no significant trends or long-range dependence so the input time series were assumed to be stationary and short-range dependent.Normality transformations were used to approximately maintain the marginal probability distributions; and a multivariate, periodic autoregressive model was used to reproduce the correlation structure. Each of the coefficients in the model is significantly different from zero at the 5-percent significance level. Coefficients relating spring inflow from one year to spring and fall inflows from the previous year had the largest effect on the lake-level frequency analysis.Inclusion of parameter uncertainty in the model

  16. First record of eocene bony fishes and crocodyliforms from Canada's Western Arctic.

    Science.gov (United States)

    Eberle, Jaelyn J; Gottfried, Michael D; Hutchison, J Howard; Brochu, Christopher A

    2014-01-01

    Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada's High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early - middle Eocene (∼53-50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada's easternmost Arctic - Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada's westernmost Arctic Island - Banks Island, Northwest Territories - they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower - middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early - middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence time between the two extant alligatorid lineages Alligator

  17. Landscape dynamics in the Arctic foothills: Landscape evolution and vegetation succession on disturbances

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.A.; Walker, M.D.

    1990-10-20

    This document contains a summary of research accomplished by the University of Colorado's Institute of Arctic and Alpine Research (INSTAAR) Joint Facility for Regional Ecosystem Analysis (JFREA) for the Department of Energy's R D research program for 1989--1990. Aerial photographs, orthophoto topographic maps, and digital elevation models (DEMs) of the Toolik Lake region site were prepared by Aeromap US at 1:500 and 1:5000 scales. During August 1990, the region surrounding Toolik Lake was mapped at 1:5000 scale, and the intensive research grid was mapped at 1:500 scale. Mapped variables include vegetation, landforms, surface forms, and percentage surface water. Soil data from the Imnavait Creek and Toolik Lake sites are central to the analysis of landscape evolution. Soils were collected from the base of the O horizon at 72 gridpoints on the 1:500-scale map area at Imnavait Creek, and 85 grid points at Toolik Lake. Soils are being analyzed for percentage moisture, pH (saturated paste), electrical conductivity, percentage organic matter, nitrate, nitrogen, phosphorus, potassium, iron, manganese, copper. Soils were also collected from 81 permanent plots (199 horizons) which will be used for vegetation-environmental analyses. Permanent 1 {times} 1-meter point-quadrat plots were established at 85 points of the Toolik Lake grid. Data from the plots will be stratified according to slope position and terrain unit and used to compare vegetation structure and cover on different aged surfaces. Work continued on the study of the effects of road dust on tundra vegetation. 28 figs.

  18. Water balance along a chain of tundra lakes: A 20-year isotopic perspective

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2014-11-01

    Stable isotope measurements and isotope mass balance (IMB) calculations are presented in support of an unprecedented 20-year water balance assessment for a tailings pond and a chain of downstream lakes at the Salmita-Tundra mine site, situated near Courageous Lake, Northwest Territories, Canada (65°03‧N; 111°11‧W). The method is shown to provide a comprehensive annual and interannual perspective of water balance fluxes along a chain of lakes during the period 1991-2010, without the need for continuous streamflow gauging, and reveals important lake-order-dependent patterns of land-surface runoff, discharge accumulation, and several key diagnostic ratios, i.e., evaporation/inflow, evaporation/evapotranspiration, land-surface-runoff/precipitation and discharge/ precipitation. Lake evaporation is found to be a significant component of the water balance, accounting for between 26% and 32% of inflow to natural lakes and between 72% and 100% of inflow to mine-tailings ponds. Evaporation/evapotranspiration averages between 7% and 22% and is found to be higher in low-precipitation years, and in watersheds with a higher proportion of lakes. Runoff ratios for land-surface drainages and runoff ratios for watersheds (including lakes) ranged between 14-47% and 20-47%, respectively, and were higher in low precipitation years, in watersheds with a higher proportion of lakes, and in watersheds less affected by mining development. We propose that in general these two runoff ratios will likely converge as lake order increases and as land cover conditions become regionally representative. Notably, the study demonstrates application of IMB, validated with streamflow measurements, to constrain local water balance in a remote low-arctic region. For IMB chain-of-lakes applications, it underlines the importance of accounting for evaporatively-enriched upstream sources to avoid overestimation of evaporation losses.

  19. Spatial dynamics of thermokarst and thermo-erosion at lakes and ponds in North Siberia and Northwest Alaska using high-resolution remote sensing

    Science.gov (United States)

    Grosse, G.; Tillapaugh, M.; Romanovsky, V. E.; Walter, K. M.; Plug, L. J.

    2008-12-01

    Formation, growth, and drainage of thermokarst lakes in ice-rich permafrost deposits are important factors of landscape dynamics in extent Arctic lowlands. Monitoring of spatial and temporal dynamics of such lakes will allow an assessment of permafrost stability and enhance the capabilities for modelling and quantifying biogeochemical processes related to permafrost degradation in a warming Arctic. In this study we use high-resolution remote sensing and GIS to analyze the development of thermokarst lakes and ponds in two study regions in North Siberia and Northwest Alaska. The sites are 1) the Cherskii region in the Kolyma lowland (Siberia) and 2) the Kitluk River area on the northern Seward Peninsula (Alaska). Both regions are characterized by continuous permafrost, a highly dissected and dynamic thermokarst landscape, uplands of Late Pleistocene permafrost deposits with high excess ice contents, and a large total volume of permafrost-stored carbon. These ice-rich Yedoma or Yedoma-like deposits are highly vulnerable to permafrost degradation forced by climate warming or other surface disturbance. Time series of high- resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Time series of high-resolution imagery (aerial, Corona, Ikonos, Alos Prism) covering more than 50 years of lake dynamics allow detailed assessments of processes and spatial patterns of thermokarst lake expansion and drainage in continuous permafrost. Processes identified include thaw slumping, wave undercutting of frozen sediments or peat blocks and subsequent mass wasting, thaw collapse of near-shore zones, sinkhole formation and ice-wedge tunnelling, and gully formation by thermo-erosion. We use GIS-based tools to relate the remote sensing results to field data (ground ice content, topography, lithology, and relative age

  20. Research with Arctic peoples

    DEFF Research Database (Denmark)

    Smith, H Sally; Bjerregaard, Peter; Chan, Hing Man

    2006-01-01

    Arctic peoples are spread over eight countries and comprise 3.74 million residents, of whom 9% are indigenous. The Arctic countries include Canada, Finland, Greenland (Denmark), Iceland, Norway, Russia, Sweden and the United States. Although Arctic peoples are very diverse, there are a variety...... of environmental and health issues that are unique to the Arctic regions, and research exploring these issues offers significant opportunities, as well as challenges. On July 28-29, 2004, the National Heart, Lung, and Blood Institute and the Canadian Institutes of Health Research co-sponsored a working group...... entitled "Research with Arctic Peoples: Unique Research Opportunities in Heart, Lung, Blood and Sleep Disorders". The meeting was international in scope with investigators from Greenland, Iceland and Russia, as well as Canada and the United States. Multiple health agencies from Canada and the United States...

  1. Lake Erie and Lake Michigan zebra mussel settlement monitoring and implications for chlorination treatment

    International Nuclear Information System (INIS)

    Demoss, D.; Mendelsberg, J.I.

    1992-01-01

    This paper reports on the 1991 zebra mussel veliger settlement monitoring program undertaken to record and evaluate zebra mussel veliger settlement in Lake Erie and Lake Michigan. Studies by Dr. Gerald Mackie of Canada in 1990 indicated veliger settlement may be occurring primarily during short time periods every season corresponding with warmer water temperatures. Veliger settlement monitoring was performed using a plexiglass sampler apparatus. The samplers were simple in design and consisted of a 20-inch-square plexiglass base panel with thirty-six 1 inch x 3 inch clear plexiglass microscope slides attached. The results of the monitoring program indicate the existence of preferential settlement periods for veligers correlating with sustained lake water temperatures above 70 degrees F. Veliger settlement concentrations in the south basin of Lake Michigan appear to be similar to those in western Lake Erie

  2. Land-locked Arctic charr (Salvelinus alpinus) population structure and lake morphometry in Greenland - is there a connection?

    DEFF Research Database (Denmark)

    Riget, F.; Jeppesen, E.; Landkildehus, F.

    2000-01-01

    with lake volume. Our study indicates that the charr population structure became more complex with increasing lake size. More- over, the population structure seemed to be in¯uenced by lake-water transparency and the presence or absence of three-spined stickleback (Gasterosteus aculeatus)....

  3. Determination of arsenic in some Lake Michigan fish using neutron activation analysis

    International Nuclear Information System (INIS)

    Nicholson, L.W.; Rengan, K.

    1979-01-01

    The level of arsenic in six different species of fish collected from Lake Michigan near Saugatuck, Michigan has been measured using radiochemical neutron activation analysis. The arsenic concentration was found to vary from 0.05 μg/g (wet weight) for yellow perch fillet to 1.4 μg/g (wet weight) for eviscerated bloater chubs. A significant correlation was observed between arsenic concentrations and number of years in the lake for lake trout; correlations were also observed between arsenic concentrations and length of lake trout and smelt. No such correlations were found for alewife or yellow perch. (author)

  4. Sensitivity of simulated regional Arctic climate to the choice of coupled model domain

    Directory of Open Access Journals (Sweden)

    Dmitry V. Sein

    2014-07-01

    Full Text Available The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis. Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the

  5. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    Science.gov (United States)

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  6. Arctic Sea Level Reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde

    Reconstruction of historical Arctic sea level is very difficult due to the limited coverage and quality of tide gauge and altimetry data in the area. This thesis addresses many of these issues, and discusses strategies to help achieve a stable and plausible reconstruction of Arctic sea level from...... 1950 to today.The primary record of historical sea level, on the order of several decades to a few centuries, is tide gauges. Tide gauge records from around the world are collected in the Permanent Service for Mean Sea Level (PSMSL) database, and includes data along the Arctic coasts. A reasonable...... amount of data is available along the Norwegian and Russian coasts since 1950, and most published research on Arctic sea level extends cautiously from these areas. Very little tide gauge data is available elsewhere in the Arctic, and records of a length of several decades,as generally recommended for sea...

  7. Shrub water use dynamics in arctic Alaska

    Science.gov (United States)

    Clark, J.; Young-Robertson, J. M.; Tape, K. D.

    2016-12-01

    In the Arctic tundra, hydrologic processes influence the majority of ecosystem processes, from soil thermal dynamics to energy balance and trace gas exchange to vegetation community distributions. The tundra biome is experiencing a broad spectrum of ecosystem changes spurred by 20th century warming, including deciduous shrub expansion. Deciduous woody vegetation typically has high water use rates compared to evergreen and herbaceous species, and is projected to have a greater impact on energy balance than altered albedo from changes in snowpack. However, the impact of greater shrub cover on water balance has been overlooked. Shrubs have the potential to significantly dry the soil, accessing stored soil moisture in the organic layers, while increasing atmospheric moisture. The goal of this study is to quantify the water use dynamics (sap flux and stem water content) of three common arctic shrub species (Salix alexensis, S. pulchra, Betula nana) over two growing seasons. Stem water content was measured through a novel application of time domain reflectometry (TDR). Maximum sap flow rates varied by species: S. alexensis-600g/hr, S. pulchra-60g/hr, and B. nana-40g/hr. We found daily sap flow rates are highly correlated with atmospheric moisture demand (VPD) and not limited by soil moisture or antecedent precipitation. Stem water content varied between 20% and 60%, was correlated with soil moisture, and showed weak diurnal variation. This is one of the first studies to provide a detailed look at arctic tundra shrub water balance and explore the environmental controls on water flux. Planned future work will expand on these results for estimates of evapotranspiration over larger landscape areas.

  8. Lake Chini Water Quality Assessment Using Multivariate Approach

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Shuhaimi, Othman M.; Lim, E.C.; Aziz, Z.A.

    2013-01-01

    An analysis was undertaken using the multivariate approach to determine the important water quality for shallow lake water quality assessment. Fourteen water quality parameters which includes biological, physical and chemical components were collected monthly over twelve month period. The data were analysed using factor analysis which involves identification of factor correlation, factor extraction and factor permutations. The first process involved the clustering of high correlation parameters into its respective factor and the removal of parameters that have more than one factor. Agglomerative hierarchy (HACA) and discriminant analysis (DA) were also used to exhibit the important factors that has significant influence on lake water quality. The analysis showed that Lake Chini water quality was determined by more than one factor. The results indicated that the biological and chemical (nutrients) components have significant influence in determining the lake water quality. The biological parameters namely BOD5, COD, chlorophyll a and chemical (nitrate and orthophosphate) are important parameters in Lake Chini. All analysis demonstrated the importance of biological and chemical water quality components in the determination of Lake Chini water quality. (author)

  9. Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime

    Science.gov (United States)

    Wrona, Frederick J.; Johansson, Margareta; Culp, Joseph M.; Jenkins, Alan; Mârd, Johanna; Myers-Smith, Isla H.; Prowse, Terry D.; Vincent, Warwick F.; Wookey, Philip A.

    2016-03-01

    Numerous international scientific assessments and related articles have, during the last decade, described the observed and potential impacts of climate change as well as other related environmental stressors on Arctic ecosystems. There is increasing recognition that observed and projected changes in freshwater sources, fluxes, and storage will have profound implications for the physical, biogeochemical, biological, and ecological processes and properties of Arctic terrestrial and freshwater ecosystems. However, a significant level of uncertainty remains in relation to forecasting the impacts of an intensified hydrological regime and related cryospheric change on ecosystem structure and function. As the terrestrial and freshwater ecology component of the Arctic Freshwater Synthesis, we review these uncertainties and recommend enhanced coordinated circumpolar research and monitoring efforts to improve quantification and prediction of how an altered hydrological regime influences local, regional, and circumpolar-level responses in terrestrial and freshwater systems. Specifically, we evaluate (i) changes in ecosystem productivity; (ii) alterations in ecosystem-level biogeochemical cycling and chemical transport; (iii) altered landscapes, successional trajectories, and creation of new habitats; (iv) altered seasonality and phenological mismatches; and (v) gains or losses of species and associated trophic interactions. We emphasize the need for developing a process-based understanding of interecosystem interactions, along with improved predictive models. We recommend enhanced use of the catchment scale as an integrated unit of study, thereby more explicitly considering the physical, chemical, and ecological processes and fluxes across a full freshwater continuum in a geographic region and spatial range of hydroecological units (e.g., stream-pond-lake-river-near shore marine environments).

  10. Arctic Research Plan: FY2017-2021

    Science.gov (United States)

    Starkweather, Sandy; Jeffries, Martin O; Stephenson, Simon; Anderson, Rebecca D.; Jones, Benjamin M.; Loehman, Rachel A.; von Biela, Vanessa R.

    2016-01-01

    The United States is an Arctic nation—Americans depend on the Arctic for biodiversity and climate regulation and for natural resources. America’s Arctic—Alaska—is at the forefront of rapid climate, environmental, and socio-economic changes that are testing the resilience and sustainability of communities and ecosystems. Research to increase fundamental understanding of these changes is needed to inform sound, science-based decision- and policy-making and to develop appropriate solutions for Alaska and the Arctic region as a whole. Created by an Act of Congress in 1984, and since 2010 a subcommittee of the National Science and Technology Council (NSTC) in the Executive Office of the President, the Interagency Arctic Research Policy Committee (IARPC) plays a critical role in advancing scientific knowledge and understanding of the changing Arctic and its impacts far beyond the boundaries of the Arctic. Comprising 14 Federal agencies, offices, and departments, IARPC is responsible for the implementation of a 5-year Arctic Research Plan in consultation with the U.S. Arctic Research Commission, the Governor of the State of Alaska, residents of the Arctic, the private sector, and public interest groups.

  11. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    Science.gov (United States)

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  12. Generalist feeding strategies in Arctic freshwater fish: A mechanism for dealing with extreme environments

    Science.gov (United States)

    Laske, Sarah M.; Rosenberger, Amanda E.; Wipfli, Mark S.; Zimmerman, Christian E.

    2018-01-01

    Generalist feeding strategies are favoured in stressful or variable environments where flexibility in ecological traits is beneficial. Species that feed across multiple habitat types and trophic levels may impart stability on food webs through the use of readily available, alternative energy pools. In lakes, generalist fish species may take advantage of spatially and temporally variable prey by consuming both benthic and pelagic prey to meet their energy demands. Using stomach content and stable isotope analyses, we examined the feeding habits of fish species in Alaska's Arctic Coastal Plain (ACP) lakes to determine the prevalence of generalist feeding strategies as a mechanism for persistence in extreme environments (e.g. low productivity, extreme cold and short growing season). Generalist and flexible feeding strategies were evident in five common fish species. Fish fed on benthic and pelagic (or nektonic) prey and across trophic levels. Three species were clearly omnivorous, feeding on fish and their shared invertebrate prey. Dietary differences based on stomach content analysis often exceeded 70%, and overlap in dietary niches based on shared isotopic space varied from zero to 40%. Metrics of community‐wide trophic structure varied with the number and identity of species involved and on the dietary overlap and niche size of individual fishes. Accumulation of energy from shared carbon sources by Arctic fishes creates redundancy in food webs, increasing likely resistance to perturbations or stochastic events. Therefore, the generalist and omnivorous feeding strategies employed by ACP fish may maintain energy flow and food web stability in extreme environments.

  13. Dynamic diatom response to changing climate 0–1.2 Ma at Lake El'gygytgyn, Far East Russian Arctic

    Directory of Open Access Journals (Sweden)

    J. A. Snyder

    2013-06-01

    Full Text Available The Lake El'gygytgyn sediment record contains an abundant diatom flora through most intervals of the lake's history, providing a means to create and test hypotheses concerning the lake's response to changing climates. The 0–1.2 Ma core interval is characterized by shifts in the dominant planktonic genera and events of exceptional concentration and diversity. Warm interglacial intervals have enhanced concentration and diversity of the plankton. This response is most extreme during exceptional events corresponding to marine isotope stages (MIS 11 and 31. Diatom concentration and diversity also increase during some cold intervals (e.g., MIS 2, suggesting conditions of lake circulation and nutrient cycling promoting diatom production during these events. Short intervals of low plankton concentration accompanied by shifts in the dominant genus of the lake suggest conditions during certain cold events generate a severe impact on plankton production. The absence of these events during extended intervals of low summer insolation variability suggests a muted cold-event response of the lake system linked to regional climate.

  14. “An Arctic Great Power”? Recent Developments in Danish Arctic Policy

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Jon

    2016-01-01

    Denmark has been a firm advocate for Arctic cooperation in the recent decade, most importantly as the initiator of the 2008 Ilulissat meeting. Two new strategic publications – a foreign policy report (Danish Diplomacy and Defence in a Time of Change) and a defense report (The Ministry of Defence......’s Future Activities in the Arctic), which were published in May and June 2016 –highlight the Kingdom of Denmark’s status as “an Arctic great power” and the importance of pursuing Danish interests, which could indicate a shift away from a cooperation-oriented policy. This article investigates whether...... the documents represent a break in Danish Arctic policy. It argues that the two documents represent continuation, rather than change. They show that the High North continues to become steadily more important on the Danish foreign policy agenda, although the region remains just one of several regional priorities...

  15. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  16. Carbon dioxide exchange in three tundra sites show a dissimilar response to environmental variables

    DEFF Research Database (Denmark)

    Mbufong, Herbert Njuabe; Lund, Magnus; Christensen, Torben Røjle

    2015-01-01

    variability. An improved understanding of the control of ancillary variables on net ecosystem exchange (NEE), gross primary production (GPP) and ecosystem respiration (Re) will improve the accuracy with which CO2 exchange seasonality in Arctic tundra ecosystems is modelled. Fluxes were measured with the eddy...... Lake. Growing season NEE correlated mainly to cumulative radiation and temperature-related variables at Zackenberg, while at Daring Lake the same variables showed significant correlations with the partitioned fluxes (GPP and Re). Stordalen was temperature dependent during the growing season. This study...

  17. Arctic carbon cycling

    NARCIS (Netherlands)

    Christensen, Torben R; Rysgaard, SØREN; Bendtsen, JØRGEN; Else, Brent; Glud, Ronnie N; van Huissteden, J.; Parmentier, F.J.W.; Sachs, Torsten; Vonk, J.E.

    2017-01-01

    The marine Arctic is considered a net carbon sink, with large regional differences in uptake rates. More regional modelling and observational studies are required to reduce the uncertainty among current estimates. Robust projections for how the Arctic Ocean carbon sink may evolve in the future are

  18. Geochemistry and Flux of Terrigenous Dissolved Organic Matter to the Arctic Ocean

    Science.gov (United States)

    Spencer, R. G.; Mann, P. J.; Hernes, P. J.; Tank, S. E.; Striegl, R. G.; Dyda, R. Y.; Peterson, B. J.; McClelland, J. W.; Holmes, R. M.

    2011-12-01

    Rivers draining into the Arctic Ocean exhibit high concentrations of terrigenous dissolved organic carbon (DOC) and recent studies indicate that DOC export is changing due to climatic warming and alteration in permafrost condition. The fate of exported DOC in the Arctic Ocean is of key importance for understanding the regional carbon cycle and remains a point of discussion in the literature. As part of the Arctic Great Rivers Observatory (Arctic-GRO) project, samples were collected for DOC, chromophoric dissolved organic matter (CDOM) and lignin phenols from the Ob', Yenisey, Lena, Kolyma, Mackenzie and Yukon rivers in 2009 - 2010. DOC and lignin concentrations were elevated during the spring freshet and measurements related to DOC composition indicated an increasing contribution from terrestrial vascular plant sources at this time of year (e.g. lignin carbon-normalized yield, CDOM spectral slope, SUVA254, humic-like fluorescence). CDOM absorption was found to correlate strongly with both DOC (r2=0.83) and lignin concentration (r2=0.92) across the major arctic rivers. Utilizing these relationships we modeled loads for DOC and lignin export from high-resolution CDOM measurements (daily across the freshet) to derive improved flux estimates, particularly from the dynamic spring discharge maxima period when the majority of DOC and lignin export occurs. The new load estimates for DOC and lignin are higher than previous evaluations, emphasizing that if these are more representative of current arctic riverine export, terrigenous DOC is transiting through the Arctic Ocean at a faster rate than previously thought. It is apparent that higher resolution sampling of arctic rivers is exceptionally valuable with respect to deriving accurate fluxes and we highlight the potential of CDOM in this role for future studies and the applicability of in-situ CDOM sensors.

  19. Petrophysical characterization of the lacustrine sediment succession drilled in Lake El'gygytgyn, Far East Russian Arctic

    Directory of Open Access Journals (Sweden)

    A. C. Gebhardt

    2013-08-01

    Full Text Available Seismic profiles of Far East Russian Lake El'gygytgyn, formed by a meteorite impact some 3.6 million years ago, show a stratified sediment succession that can be separated into subunits Ia and Ib at approximately 167 m below lake floor (=~3.17 Ma. The upper (Ia is well-stratified, while the lower is acoustically more massive and discontinuous. The sediments are intercalated with frequent mass movement deposits mainly in the proximal areas, while the distal region is almost free of such deposits at least in the upper part. In spring 2009, a long core drilled in the lake center within the framework of the International Continental Scientific Drilling Program (ICDP penetrated the entire lacustrine sediment succession down to ~320 m below lake floor and about 200 m farther into the meteorite-impact-related bedrock. Downhole logging data down to 390 m below lake floor show that the bedrock and the lacustrine part differ significantly in their petrophysical characteristics. The contact between the bedrock and the lacustrine sediments is not abrupt, but rather transitional with a variable mixture of impact-altered bedrock clasts in a lacustrine matrix. Physical and chemical proxies measured on the cores can be used to divide the lacustrine part into five different statistical clusters. These can be plotted in a redox-condition vs. input-type diagram, with total organic carbon content and magnetic susceptibility values indicating anoxic or oxic conditions and with the Si / Ti ratio representing more clastic or more biogenic input. Plotting the clusters in this diagram allows identifying clusters that represent glacial phases (cluster I, super interglacials (cluster II, and interglacial phases (clusters III and IV.

  20. The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history.

    Science.gov (United States)

    Kroll, Oliver; Hershler, Robert; Albrecht, Christian; Terrazas, Edmundo M; Apaza, Roberto; Fuentealba, Carmen; Wolff, Christian; Wilke, Thomas

    2012-07-01

    Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had a complex history that included at least five major hydrological phases during the Pleistocene. It is generally assumed that these physical events helped shape the evolutionary history of the lake's biota. Herein, we study an endemic species assemblage in Lake Titicaca, composed of members of the microgastropod genus Heleobia, to determine whether the lake has functioned as a reservoir of relic species or the site of local diversification, to evaluate congruence of the regional paleohydrology and the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses indicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital taxa) forms a species flock. A molecular clock analysis suggests that the most recent common ancestor (MRCAs) of the Altiplano taxa evolved 0.53 (0.28-0.80) My ago and the MRCAs of the Altiplano taxa and their extralimital sister group 0.92 (0.46-1.52) My ago. The endemic species of Lake Titicaca are younger than the lake itself, implying primarily intralacustrine speciation. Moreover, the timing of evolutionary branching events and the ages of two precursors of Lake Titicaca, lakes Cabana and Ballivián, is congruent. Although Lake Titicaca appears to have been the principal site of speciation for the regional Heleobia fauna, the contemporary spatial patterns of endemism have been masked by immigration and/or emigration events of local riverine taxa, which we attribute to the unstable hydrographic history of the Altiplano. Thus, a hierarchical distribution of endemism is not evident, but instead there is a single genetic break between two regional clades. We also discuss our findings in relation to studies of other regional biota and suggest that salinity tolerance was

  1. Synoptic climatology and recent climate trends at Lake El'gygytgyn

    Directory of Open Access Journals (Sweden)

    M. Nolan

    2013-06-01

    Full Text Available We developed a synoptic climatology for Lake El'gygytgyn, Chukotka Russia, and explored modern climate trends affecting air temperatures there to aid in paleoclimate reconstructions of a 3.6 million-year-old sediment core taken from the lake. Our self-organized mapping (SOM approach identified 35 synoptic weather patterns, based on sea level pressure, that span the range of synoptic patterns influencing the study domain over the 1961–2009 NCEP/NCAR analysis period. We found strong seasonality in modern weather patterns, with summer weather primarily characterized by weak low pressure systems over the Arctic Ocean or Siberia and winter weather primarily characterized by strong high pressure over the Arctic Ocean and strong low pressure in the Pacific Ocean. In general, the primary source of variation in air temperatures came from the dominant patterns in each season, which we identify in the text, and nearly all of the dominant weather patterns here have shown increasing temperatures. We found that nearly all of the warming in mean annual temperature over the past 50 yr (about 3 °C occurred during sub-freezing conditions on either side of summer (that is, spring and fall. Here we found that the most summer-like weather patterns (low pressures to the north in the shoulder seasons were responsible for much of the change. Finally, we compared the warmest 15 yr of the record (1995–2009 to the coolest (1961–1975 and found that changes in thermodynamics of weather were about 3 to 300 times more important than changes in frequency of weather patterns in controlling temperature variations during spring and fall, respectively. That is, in the modern record, general warming (local or advected is more important by orders of magnitude than changes in storm tracks in controlling air temperature at Lake El'gygytgyn. We conclude with a discussion of how these results may be relevant to the paleoclimate reconstruction efforts and how this relevancy could

  2. Rough-legged buzzards, Arctic foxes and red foxes in a tundra ecosystem without rodents.

    Directory of Open Access Journals (Sweden)

    Ivan Pokrovsky

    Full Text Available Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species-rough-legged buzzard, arctic fox and red fox - perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013 we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey - altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period - a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.

  3. Triassic Sequence Geological Development of the Arctic with focus on Svalbard and the Barents Shelf

    Energy Technology Data Exchange (ETDEWEB)

    Moerk, Atle

    1998-12-31

    Triassic rocks are of great interest for exploration in Arctic areas as they have proved to include both good hydrocarbon source rocks and potential hydrogen reservoir rocks. In this thesis, the stratigraphy and sedimentology of the Arctic Triassic successions are studied within a sequence stratigraphical framework. Inter-regional comparisons throughout the Arctic are based on comparisons of transgressive-regressive sequences. Improved dating of the studied sequences, and the recognition and correlation of sequence boundaries of second and third order, facilitate interpretation of facies distribution and the geological development both within and between the studied areas. Main emphasis is given to the Triassic succession of Svalbard and the Barents Shelf, which through this study is integrated within a circum-Arctic sequence stratigraphical framework. Good correspondence of the Triassic sequence boundaries between the different Arctic areas indicate that they are mainly controlled by eustacy, while decreasing correspondence of the sequence boundaries in the Jurassic and Cretaceous periods indicate that local and large scale tectonism becomes progressively more dominant in the circum-Arctic Realm through the Mesozoic Era. These hypotheses are further discussed. 701 refs., 110 figs., 12 tabs.

  4. Genomics of Arctic cod

    Science.gov (United States)

    Wilson, Robert E.; Sage, George K.; Sonsthagen, Sarah A.; Gravley, Megan C.; Menning, Damian; Talbot, Sandra L.

    2017-01-01

    The Arctic cod (Boreogadus saida) is an abundant marine fish that plays a vital role in the marine food web. To better understand the population genetic structure and the role of natural selection acting on the maternally-inherited mitochondrial genome (mitogenome), a molecule often associated with adaptations to temperature, we analyzed genetic data collected from 11 biparentally-inherited nuclear microsatellite DNA loci and nucleotide sequence data from from the mitochondrial DNA (mtDNA) cytochrome b (cytb) gene and, for a subset of individuals, the entire mitogenome. In addition, due to potential of species misidentification with morphologically similar Polar cod (Arctogadus glacialis), we used ddRAD-Seq data to determine the level of divergence between species and identify species-specific markers. Based on the findings presented here, Arctic cod across the Pacific Arctic (Bering, Chukchi, and Beaufort Seas) comprise a single panmictic population with high genetic diversity compared to other gadids. High genetic diversity was indicated across all 13 protein-coding genes in the mitogenome. In addition, we found moderate levels of genetic diversity in the nuclear microsatellite loci, with highest diversity found in the Chukchi Sea. Our analyses of markers from both marker classes (nuclear microsatellite fragment data and mtDNA cytb sequence data) failed to uncover a signal of microgeographic genetic structure within Arctic cod across the three regions, within the Alaskan Beaufort Sea, or between near-shore or offshore habitats. Further, data from a subset of mitogenomes revealed no genetic differentiation between Bering, Chukchi, and Beaufort seas populations for Arctic cod, Saffron cod (Eleginus gracilis), or Walleye pollock (Gadus chalcogrammus). However, we uncovered significant differences in the distribution of microsatellite alleles between the southern Chukchi and central and eastern Beaufort Sea samples of Arctic cod. Finally, using ddRAD-Seq data, we

  5. Potential for an Arctic-breeding migratory bird to adjust spring migration phenology to Arctic amplification

    NARCIS (Netherlands)

    Lameris, T.K.; Scholten, Ilse; Bauer, S.; Cobben, M.M.P.; Ens, B.J.; Nolet, B.A.

    2017-01-01

    Arctic amplification, the accelerated climate warming in the polar regions, is causing a more rapid advancement of the onset of spring in the Arctic than in temperate regions. Consequently, the arrival of many migratory birds in the Arctic is thought to become increasingly mismatched with the onset

  6. Studies on the levels of Cs-137 originating from the Chernobyl accident in salmonid fish, its prey organisms and environment, in some alpine lakes of northern Sweden

    International Nuclear Information System (INIS)

    Hammar, J.; Neumann, G.; Notter, M.

    1988-01-01

    Fallout from the Chernobyl accident resulted in heavy surface contamination in areas of middle and northern Sweden. One of the most heavily affected regions was an approx. 5000 km 2 alpine district at the border to Norway. Shortly after the accident, the levels of Cs-137 and other radionuclides began to rise in two dominating fish species of the region, the brown trout (Salmo trutta L.) and the Arctic char (Salvelinus alpinus L. In July 1986 a research program started with the ultimate goal of understanding the mechanisms of transport for radionuclides through the food chain to fish, and, if possible, to give a forecast of the future development of the Cs-137 contamination. It comprises measurements of mainly Cs-137, Cs-134 and K-40 in 8 lakes within the area. The measurements have been performed at five occasions during the period July 1986 until October 1987. The preliminary results concerning Cs-137 show: - A large increase in levels of bottom sediments. A decrease in levels of water. A strong decrease in levels of phytoplankton, zooplankton, Gammarus and Mysis during autumn 1986, and a stabilization during 1987. In same lakes, however, another increase was recorded during 1987. That Mysis originally has the highest levels of all food items. That the levels of brown trout and Arctic char increased steadily during 1986 and showed a tendency of stabilization or slight decrease during 1987. That brown trout generally show higher levels than Arctic char and reaches its highest levels in lakes with introduced Mysis

  7. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  8. Mercury levels, reproduction, and hematology in western grebes from three California Lakes, USA

    Energy Technology Data Exchange (ETDEWEB)

    Elbert, R.A.; Anderson, D.W. [Univ. of California, Davis, CA (United States). Wildlife, Fish, and Conservation Biology

    1998-02-01

    Twenty-three healthy adult western and Clark`s grebes (Aechmorphorus occidentalis and Aechmorphorus clarkii) were collected at three study sites in California, USA, in 1992: Clear Lake, Lake County; Eagle Lake, Lassen County; and Tule Lake, Siskiyou County. Liver, kidney, breast muscle, and brain were analyzed for total mercury (Hg) concentration (ppm wet weight), and blood was analyzed for various blood parameters. Clear Lake birds had greater Hg concentrations in kidney, breast muscle, and brain than birds from the other two lakes whereas liver concentrations were not statistically different. Average concentrations for Clear Lake birds were 2.74 ppm for liver, 2.06 ppm for kidney, 1.06 ppm for breast muscle, and 0.28 ppm for brain. The tissue levels of kidney, breast muscle, and brain at the other two study sites were one half the levels found at Clear Lake. These mean tissue levels were near, but below, those known to cause adverse effects. When data from all sites were merged, kidney, breast muscle, and brain concentrations are positively correlated to each other. Liver concentrations were not correlated to any other value. Brain Hg concentrations were also negatively correlated to blood potassium and blood phosphorus levels. Kidney Hg levels were positively correlated to percent blood heterophils and negatively correlated to percent eosinophils, suggesting that mercury levels might be affecting immune function. These biomarkers could not be related to any obvious ecological effects.

  9. Using fluorescent dissolved organic matter to trace and distinguish the origin of Arctic surface waters

    Science.gov (United States)

    Gonçalves-Araujo, Rafael; Granskog, Mats A.; Bracher, Astrid; Azetsu-Scott, Kumiko; Dodd, Paul A.; Stedmon, Colin A.

    2016-01-01

    Climate change affects the Arctic with regards to permafrost thaw, sea-ice melt, alterations to the freshwater budget and increased export of terrestrial material to the Arctic Ocean. The Fram and Davis Straits represent the major gateways connecting the Arctic and Atlantic. Oceanographic surveys were performed in the Fram and Davis Straits, and on the east Greenland Shelf (EGS), in late summer 2012/2013. Meteoric (fmw), sea-ice melt, Atlantic and Pacific water fractions were determined and the fluorescence properties of dissolved organic matter (FDOM) were characterized. In Fram Strait and EGS, a robust correlation between visible wavelength fluorescence and fmw was apparent, suggesting it as a reliable tracer of polar waters. However, a pattern was observed which linked the organic matter characteristics to the origin of polar waters. At depth in Davis Strait, visible wavelength FDOM was correlated to apparent oxygen utilization (AOU) and traced deep-water DOM turnover. In surface waters FDOM characteristics could distinguish between surface waters from eastern (Atlantic + modified polar waters) and western (Canada-basin polar waters) Arctic sectors. The findings highlight the potential of designing in situ multi-channel DOM fluorometers to trace the freshwater origins and decipher water mass mixing dynamics in the region without laborious samples analyses. PMID:27667721

  10. Late quaternary palaeo-oceanography and palaeo-climatology from sediment cores of the eastern Arctic Ocean

    International Nuclear Information System (INIS)

    Pagels, U.; Koehler, S.

    1991-01-01

    Box cores recovered along a N-S transect in the Eurasian Basin allow the establishment of a time scale for the Late Quaternary history of the Arctic Ocean, based on stable oxygen isotope stratigraphy and AMS 14 C dating of planktonic foraminifers (N. pachyderma I.c.). This high resolution stratigraphy, in combination with sedimentological investigations (e.g. coarse fraction analysis, carbonate content, productivity of foraminifers), was carried out to reconstruct the glacial and inter-glacial Arctic Ocean palaeo-environment The sediment cores, which can be correlated throughout the sampling area in the Eastern Arctic Ocean, were dated as representing oxygen isotope stages 1 to 4/5. The sedimentation rates varied between a few mm/ka in glacials and approximately one cm/ka during the Holocene. The sediments allow a detailed sedimentological description of the depositional regime and the palaeo-oceanography of the Eastern Arctic Ocean. Changing ratios of biogenic and lithogenic components in the sediments reflect variations in the oceanographic circulation pattern in the Eurasian Basin during the Late Quaternary. Carbonate content (1-9wt.%), productivity of foraminifers (high in interglacial, low in glacial stages) and the terrigenous components are in good correlation with glacial and inter-glacial climatic fluctuations

  11. Development of a multichemical food web model: application to PBDEs in Lake Ellasjoen, Bear Island, Norway.

    Science.gov (United States)

    Gandhi, Nilima; Bhavsar, Satyendra P; Gewurtz, Sarah B; Diamond, Miriam L; Evenset, Anita; Christensen, Guttorm N; Gregor, Dennis

    2006-08-01

    A multichemical food web model has been developed to estimate the biomagnification of interconverting chemicals in aquatic food webs. We extended a fugacity-based food web model for single chemicals to account for reversible and irreversible biotransformation among a parent chemical and transformation products, by simultaneously solving mass balance equations of the chemicals using a matrix solution. The model can be applied to any number of chemicals and organisms or taxonomic groups in a food web. The model was illustratively applied to four PBDE congeners, BDE-47, -99, -100, and -153, in the food web of Lake Ellasjøen, Bear Island, Norway. In Ellasjøen arctic char (Salvelinus alpinus), the multichemical model estimated PBDE biotransformation from higher to lower brominated congeners and improved the correspondence between estimated and measured concentrations in comparison to estimates from the single-chemical food web model. The underestimation of BDE-47, even after considering bioformation due to biotransformation of the otherthree congeners, suggests its formation from additional biotransformation pathways not considered in this application. The model estimates approximate values for congener-specific biotransformation half-lives of 5.7,0.8,1.14, and 0.45 years for BDE-47, -99, -100, and -153, respectively, in large arctic char (S. alpinus) of Lake Ellasjøen.

  12. Lignocellulose mineralization by Arctic lake sediments in response to nutrient manipulation

    International Nuclear Information System (INIS)

    Federle, T.W.; Vestal, J.R.

    1980-01-01

    Mineralization of specifically labeled 14 C-cellulose- and 14 C-lignin-labeled lignocelluloses by Toolik Lake, Alaska, sediments was examined in response to manipulation of various environmental factors. Mineralization was measured by quantifying the amount of labeled CO 2 released from the specifically labeled substrates. Nitrogen (NH 4 NO 3 ) and, to a greater degree, phosphorus (PO 4 -3 ) additions enhanced the mineralization of white pine (Pinus strobus) cellulose during the summer of 1978. Nitrogen and phosphorus together had no cumulative effect. During the summer of 1979, nitrogen or phosphorus alone had only a slight stimulatory effect on the mineralization of a sedge (Carex aquatilis) cellulose; however, together, they had a dramatic effect. This variable response of mineralization to nutrient addition between 1978 and 1979 was probably attributable to year-to-year variation in nutrient availability within the lake. Cellobiose addition and oxygen depletion inhibited the amount of pine cellulose mineralized. Whereas addition of nitrogen to oxygen-depleted treatments had limited effect, addition of phosphorus resulted in mineralizations equal to or greater than that of the controls. Nitrogen had no effect on mineralization of pine or Carex lignins. Phosphorus, however, inhibited mineralization of both lignins. With Carex lignin, the phosphorus inhibition occurred at a concentration as low as 0.1 μM. The antagonistic role of phosphorus in cellulose and lignin mineralizations may be of significance in understanding the increased proportion of lignin relative to cellulose in decomposing litter

  13. Recognition and characterization of networks of water bodies in the Arctic ice-wedge polygonal tundra using high-resolution satellite imagery

    Science.gov (United States)

    Skurikhin, A. N.; Gangodagamage, C.; Rowland, J. C.; Wilson, C. J.

    2013-12-01

    Arctic lowland landscapes underlain by permafrost are often characterized by polygon-like patterns such as ice-wedge polygons outlined by networks of ice wedges and complemented with polygon rims, troughs, shallow ponds and thermokarst lakes. Polygonal patterns and corresponding features are relatively easy to recognize in high spatial resolution satellite imagery by a human, but their automated recognition is challenging due to the variability in their spectral appearance, the irregularity of individual trough spacing and orientation within the patterns, and a lack of unique spectral response attributable to troughs with widths commonly between 1 m and 2 m. Accurate identification of fine scale elements of ice-wedge polygonal tundra is important as their imprecise recognition may bias estimates of water, heat and carbon fluxes in large-scale climate models. Our focus is on the problem of identification of Arctic polygonal tundra fine-scale landscape elements (as small as 1 m - 2 m width). The challenge of the considered problem is that while large water bodies (e.g. lakes and rivers) can be recognized based on spectral response, reliable recognition of troughs is more difficult. Troughs do not have unique spectral signature, their appearance is noisy (edges are not strong), their width is small, and they often form connected networks with ponds and lakes, and thus they have overlapping spectral response with other water bodies and surrounding non-water bodies. We present a semi-automated approach to identify and classify Arctic polygonal tundra landscape components across the range of spatial scales, such as troughs, ponds, river- and lake-like objects, using high spatial resolution satellite imagery. The novelty of the approach lies in: (1) the combined use of segmentation and shape-based classification to identify a broad range of water bodies, including troughs, and (2) the use of high-resolution WorldView-2 satellite imagery (with resolution of 0.6 m) for this

  14. Climatic changes inferred fron analyses of lake-sediment cores, Walker Lake, Nevada

    International Nuclear Information System (INIS)

    Yang, In Che.

    1989-01-01

    Organic and inorganic fractions of sediment collected from the bottom of Walker Lake, Nevada, have been dated by carbon-14 techniques. Sedimentation rates and the organic-carbon content of the sediment were correlated with climatic change. The cold climate between 25,000 and 21,000 years ago caused little runoff, snow accumulation on the mountains, and rapid substantial glacial advances; this period of cold climate resulted in a slow sedimentation rate (0.20 millimeter per year) and in a small organic-carbon content in the sediment. Also, organic-carbon accumulation rates in the lake during this period were slow. The most recent period of slow sedimentation rate and small organic-carbon content occurred between 10,000 and 5500 years ago, indicative of low lake stage and dry climatic conditions. This period of dry climate also was evidenced by dry conditions for Lake Lahontan in Nevada and Searles Lake in California, as cited in the literature. Walker Lake filled rapidly with water between 5500 and 4500 years ago. The data published in this report was not produced under an approved Site Investigation Plan (SIP) or Study Plan (SP) and will not be used in the licensing process. 10 refs., 3 figs., 2 tabs

  15. Arctic cloud-climate feedbacks: On relationships between Arctic clouds, sea ice, and lower tropospheric stability

    Science.gov (United States)

    Taylor, P. C.; Boeke, R.; Hegyi, B.

    2017-12-01

    Arctic low clouds strongly affect the Arctic surface energy budget. Through this impact Arctic low clouds influence other important aspects of the Arctic climate system, namely surface and atmospheric temperature, sea ice extent and thickness, and atmospheric circulation. Arctic clouds are in turn influenced by these Arctic climate system elements creating the potential for Arctic cloud-climate feedbacks. To further our understanding of the potential for Arctic cloud-climate feedbacks, we quantify the influence of atmospheric state on the surface cloud radiative effect (CRE). In addition, we quantify the covariability between surface CRE and sea ice concentration (SIC). This paper builds on previous research using instantaneous, active remote sensing satellite footprint data from the NASA A-Train. First, the results indicate significant differences in the surface CRE when stratified by atmospheric state. Second, a statistically insignificant covariability is found between CRE and SIC for most atmospheric conditions. Third, we find a statistically significant increase in the average surface longwave CRE at lower SIC values in fall. Specifically, a +3-5 W m-2 larger longwave CRE is found over footprints with 0% versus 100% SIC. Because systematic changes on the order of 1 W m-2 are sufficient to explain the observed long-term reductions in sea ice extent, our results indicate a potentially significant amplifying sea ice-cloud feedback that could delay the fall freeze-up and influence the variability in sea ice extent and volume, under certain meteorological conditions. Our results also suggest that a small change in the frequency of occurrence of atmosphere states may yield a larger Arctic cloud feedback than any cloud response to sea ice.

  16. Seasonality of global and Arctic black carbon processes in the Arctic Monitoring and Assessment Programme models: Global and Arctic Black Carbon Processes

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Rashed [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Department of Meteorology, COMSATS Institute of Information Technology, Islamabad Pakistan; von Salzen, Knut [School of Earth and Ocean Sciences, University of Victoria, Victoria British Columbia Canada; Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, University of Victoria, Victoria British Columbia Canada; Flanner, Mark [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor Michigan USA; Sand, Maria [Center for International Climate and Environmental Research-Oslo, Oslo Norway; Langner, Joakim [Swedish Meteorological and Hydrological Institute, Norrköping Sweden; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Huang, Lin [Climate Chemistry Measurements and Research, Environment and Climate Change Canada, Toronto Ontario Canada

    2016-06-22

    This study quantifies black carbon (BC) processes in three global climate models and one chemistry transport model, with focus on the seasonality of BC transport, emissions, wet and dry deposition in the Arctic. In the models, transport of BC to the Arctic from lower latitudes is the major BC source for this region while Arctic emissions are very small. All models simulated a similar annual cycle of BC transport from lower latitudes to the Arctic, with maximum transport occurring in July. Substantial differences were found in simulated BC burdens and vertical distributions, with CanAM (NorESM) producing the strongest (weakest) seasonal cycle. CanAM also has the shortest annual mean residence time for BC in the Arctic followed by SMHI-MATCH, CESM and NorESM. The relative contribution of wet and dry deposition rates in removing BC varies seasonally and is one of the major factors causing seasonal variations in BC burdens in the Arctic. Overall, considerable differences in wet deposition efficiencies in the models exist and are a leading cause of differences in simulated BC burdens. Results from model sensitivity experiments indicate that scavenging of BC in convective clouds acts to substantially increase the overall efficiency of BC wet deposition in the Arctic, which leads to low BC burdens and a more pronounced seasonal cycle compared to simulations without convective BC scavenging. In contrast, the simulated seasonality of BC concentrations in the upper troposphere is only weakly influenced by wet deposition in stratiform (layer) clouds whereas lower tropospheric concentrations are highly sensitive.

  17. Arctic-COLORS (Coastal Land Ocean Interactions in the Arctic) - a NASA field campaign scoping study to examine land-ocean interactions in the Arctic

    Science.gov (United States)

    Hernes, P.; Tzortziou, M.; Salisbury, J.; Mannino, A.; Matrai, P.; Friedrichs, M. A.; Del Castillo, C. E.

    2014-12-01

    The Arctic region is warming faster than anywhere else on the planet, triggering rapid social and economic changes and impacting both terrestrial and marine ecosystems. Yet our understanding of critical processes and interactions along the Arctic land-ocean interface is limited. Arctic-COLORS is a Field Campaign Scoping Study funded by NASA's Ocean Biology and Biogeochemistry Program that aims to improve understanding and prediction of land-ocean interactions in a rapidly changing Arctic coastal zone, and assess vulnerability, response, feedbacks and resilience of coastal ecosystems, communities and natural resources to current and future pressures. Specific science objectives include: - Quantify lateral fluxes to the arctic inner shelf from (i) rivers and (ii) the outer shelf/basin that affect biology, biodiversity, biogeochemistry (i.e. organic matter, nutrients, suspended sediment), and the processing rates of these constituents in coastal waters. - Evaluate the impact of the thawing of Arctic permafrost within the river basins on coastal biology, biodiversity and biogeochemistry, including various rates of community production and the role these may play in the health of regional economies. - Assess the impact of changing Arctic landfast ice and coastal sea ice dynamics. - Establish a baseline for comparison to future change, and use state-of-the-art models to assess impacts of environmental change on coastal biology, biodiversity and biogeochemistry. A key component of Arctic-COLORS will be the integration of satellite and field observations with coupled physical-biogeochemical models for predicting impacts of future pressures on Arctic, coastal ocean, biological processes and biogeochemical cycles. Through interagency and international collaborations, and through the organization of dedicated workshops, town hall meetings and presentations at international conferences, the scoping study engages the broader scientific community and invites participation of

  18. Molecular epidemiological study of Arctic rabies virus isolates from Greenland and comparison with isolates from throughout the Arctic and Baltic regions

    DEFF Research Database (Denmark)

    Mansfield, K.L.; Racloz, V.; McElhinney, L.M.

    2006-01-01

    We report a Molecular epidemiological study of rabies in Arctic Countries by comparing a panel of novel Greenland isolates to a larger cohort of viral sequences from both Arctic and Baltic regions. Rabies Virus isolates originating from wildlife (Arctic/red foxes, raccoon-dogs and reindeer), from...... sequences from the Arctic and Arctic-like viruses, which were distinct from rabies isolates originating ill the Baltic region of Europe, the Steppes in Russia and from North America. The Arctic-like group consist of isolates from India, Pakistan, southeast Siberia and Japan. The Arctic group...... in northeast Siberia and Alaska. Arctic 2b isolates represent a biotype, which is dispersed throughout the Arctic region. The broad distribution of rabies in the Arctic regions including Greenland, Canada and Alaska provides evidence for the movement of rabies across borders....

  19. Spatial and temporal distribution of singlet oxygen in Lake Superior.

    Science.gov (United States)

    Peterson, Britt M; McNally, Ann M; Cory, Rose M; Thoemke, John D; Cotner, James B; McNeill, Kristopher

    2012-07-03

    A multiyear field study was undertaken on Lake Superior to investigate singlet oxygen ((1)O(2)) photoproduction. Specifically, trends within the lake were examined, along with an assessment of whether correlations existed between chromophoric dissolved organic matter (CDOM) characteristics and (1)O(2) production rates and quantum yields. Quantum yield values were determined and used to estimate noontime surface (1)O(2) steady-state concentrations ([(1)O(2)](ss)). Samples were subdivided into three categories based on their absorbance properties (a300): riverine, river-impacted, or open lake sites. Using calculated surface [(1)O(2)](ss), photochemical half-lives under continuous summer sunlight were calculated for cimetidine, a pharmaceutical whose reaction with (1)O(2) has been established, to be on the order of hours, days, and a week for the riverine, river-impacted, and open lake waters, respectively. Of the CDOM properties investigated, it was found that dissolved organic carbon (DOC) and a300 were the best parameters for predicting production rates of [(1)O(2)](ss). For example, given the correlations found, one could predict [(1)O(2)](ss) within a factor of 4 using a300 alone. Changes in the quantum efficiency of (1)O(2) production upon dilution of river water samples with lake water samples demonstrated that the CDOM found in the open lake is not simply diluted riverine organic matter. The open lake pool was characterized by low absorption coefficient, low fluorescence, and low DOC, but more highly efficient (1)O(2) production and predominates the Lake Superior system spatially. This study establishes that parameters that reflect the quantity of CDOM (e.g., a300 and DOC) correlate with (1)O(2) production rates, while parameters that characterize the absorbance spectrum (e.g., spectral slope coefficient and E2:E3) correlate with (1)O(2) production quantum yields.

  20. Ecomorphological correlates of twenty dominant fish species of Amazonian floodplain lakes

    Directory of Open Access Journals (Sweden)

    F. K. Siqueira-Souza

    Full Text Available Abstract Fishes inhabiting Amazonian floodplain lakes exhibits a great variety of body shape, which was a key advantage to colonize the several habitats that compose these areas adjacent to the large Amazon rivers. In this paper, we did an ecomorphological analysis of twenty abundant species, sampled in May and August 2011, into two floodplain lakes of the lower stretch of the Solimões River. The analysis detected differences among species, which could be probably associated with swimming ability and habitat use preferences.

  1. Emergent Behavior of Arctic Precipitation in Response to Enhanced Arctic Warming

    Science.gov (United States)

    Anderson, Bruce T.; Feldl, Nicole; Lintner, Benjamin R.

    2018-03-01

    Amplified warming of the high latitudes in response to human-induced emissions of greenhouse gases has already been observed in the historical record and is a robust feature evident across a hierarchy of model systems, including the models of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The main aims of this analysis are to quantify intermodel differences in the Arctic amplification (AA) of the global warming signal in CMIP5 RCP8.5 (Representative Concentration Pathway 8.5) simulations and to diagnose these differences in the context of the energy and water cycles of the region. This diagnosis reveals an emergent behavior between the energetic and hydrometeorological responses of the Arctic to warming: in particular, enhanced AA and its associated reduction in dry static energy convergence is balanced to first order by latent heating via enhanced precipitation. This balance necessitates increasing Arctic precipitation with increasing AA while at the same time constraining the magnitude of that precipitation increase. The sensitivity of the increase, 1.25 (W/m2)/K ( 240 (km3/yr)/K), is evident across a broad range of historical and projected AA values. Accounting for the energetic constraint on Arctic precipitation, as a function of AA, in turn informs understanding of both the sign and magnitude of hydrologic cycle changes that the Arctic may experience.

  2. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  3. Arctic bioremediation

    International Nuclear Information System (INIS)

    Lidell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. Enhancing the biological degradation of hydrocarbon (bioremediation) by adding nutrients to the spill area has been demonstrated to be an effective cleanup tool in more temperate locations. However, this technique has never been considered for restoration in the Arctic because the process of microbial degradation of hydrocarbon in this area is very slow. The short growing season and apparent lack of nutrients in the gravel pads were thought to be detrimental to using bioremediation to cleanup Arctic oil spills. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes

  4. U.S. Arctic research in a technological age

    International Nuclear Information System (INIS)

    Johnson, P.L.

    1993-01-01

    The United States Arctic Research Commission was established in 1984 primarily as an advisory agency. An Interagency Arctic Research Policy Committee is one of the main recipients of the Commission's recommendations. The Committee formulated an Arctic research policy calling for research focused on national security concerns, regional development with minimal environmental or adverse social impact, and scientific research on Arctic phenomena and processes. In basic science, emphasis is placed on the need to understand Arctic processes as part of the global earth system. These processes include those that affect and are affected by climatic change. A new research program in Arctic systems science has three components: paleoenvironmental studies on ice core from Greenland; ocean-atmosphere interactions; and land-atmosphere interactions. The Commission also recognizes a need to focus on issues relevant to the Arctic as an integral component of the world economic system, since the Arctic is a significant source of petroleum and minerals. The Commission recommended that the Committee develop an Arctic engineering research plan with emphasis on such topics as oil spill prevention, waste disposal, small-scale power generation, and Arctic construction techniques. The USA is also cooperating in international Arctic research through the International Arctic Science Committee, the Arctic Environmental Protection Strategy, and the North Pacific Marine Science Organization

  5. Methane isotopic signature of gas bubbles in permafrost winter lake ice: a tool for quantifying variable oxidation levels

    Science.gov (United States)

    Sapart, C. J.; Boereboom, T.; Roeckmann, T.; Tison, J.-L.

    2012-04-01

    Methane (CH4) is a strong greenhouse gas and its atmospheric mixing ratio has strongly increased since pre-industrial times. This increase was primarily due to emissions from anthropogenic sources, but there is growing concern about possible feedbacks of natural sources in a changing climate. Thawing of permafrost areas in the Arctic is considered as an important feedback, since the Arctic region undergoes the fastest climate change and hosts large carbon stocks. Subarctic lakes are considered as "hotspots" for CH4 emissions, but the role of the ice cover during the winter period is not well understood to date. Here, we present measurements of CH4 mixing ratio and δ13C-CH4 in 4 types of bubbles identified in subarctic lake ice covers located in a sporadic or discontinuous permafrost area. Our analysis reveals that different bubble types contain CH4 with different, specific isotopic signatures. The evolution of mixing ratio and δ13C-CH4 suggest that oxidation of dissolved CH4 is the most important process determining the isotopic composition of CH4 in bubbles. This results from gas exsolution occurring during the ice growth process. A first estimate of the CH4 oxidation budget (mean = 0.12 mg CH4 m-2 d-1) enables to quantify the impact of the ice cover on CH4 emissions from subartic lakes. The increased exchange time between gases coming from the sediments and the water column, due to the capping effect of the lake ice cover, reduces the amount of CH4 released "as is" and favours its oxidation into carbon dioxide; the latter being further added to the HCO3- pool through the carbonate equilibration reactions.

  6. Arctic Nuclear Waste Assessment Program

    International Nuclear Information System (INIS)

    Edson, R.

    1995-01-01

    The Arctic Nuclear Waste Assessment Program (ANWAP) was initiated in 1993 as a result of US congressional concern over the disposal of nuclear materials by the former Soviet Union into the Arctic marine environment. The program is comprised of appr. 70 different projects. To date appr. ten percent of the funds has gone to Russian institutions for research and logistical support. The collaboration also include the IAEA International Arctic Seas Assessment Program. The major conclusion from the research to date is that the largest signals for region-wide radionuclide contamination in the Arctic marine environment appear to arise from the following: 1) atmospheric testing of nuclear weapons, a practice that has been discontinued; 2) nuclear fuel reprocessing wastes carried in the Arctic from reprocessing facilities in Western Europe, and 3) accidents such as Chernobyl and the 1957 explosion at Chelyabinsk-65

  7. Nitrate and Moisture Content of Broad Permafrost Landscape Features in the Barrow Peninsula: Predicting Evolving NO3 Concentrations in a Changing Arctic

    Science.gov (United States)

    Arendt, C. A.; Heikoop, J. M.; Newman, B. D.; Wales, N. A.; McCaully, R. E.; Wilson, C. J.; Wullschleger, S.

    2017-12-01

    The geochemical evolution of Arctic regions as permafrost degrades, significantly impacts nutrient availability. The release of nitrogen compounds from permafrost degradation fertilizes both microbial decomposition and plant productivity. Arctic warming promotes permafrost degradation, causing geomorphic and hydrologic transitions that have the potential to convert saturated zones to unsaturated zones and subsequently alter the nitrate production capacity of permafrost regions. Changes in Nitrate (NO3-) content associated with shifting moisture regimes are a primary factor determining Arctic fertilization and subsequent primary productivity, and have direct feedbacks to carbon cycling. We have documented a broad survey of co-located soil moisture and nitrate concentration measurements in shallow active layer regions across a variety of topographic features in the expansive continuous permafrost region encompassing the Barrow Peninsula of Alaska. Topographic features of interest are slightly higher relative to surrounding landscapes with drier soils and elevated nitrate, including the rims of low centered polygons, the centers of flat and high centered polygons, the rims of young, old and ancient drain thaw lake basins and drainage slopes that exist across the landscape. With this information, we model the nitrate inventory of the Barrow Peninsula using multiple geospatial approaches to estimate total area cover by unsaturated features of interest and further predict how various drying scenarios increase the magnitude of nitrate produced in degrading permafrost regions across the Arctic. This work is supported by the US Department of Energy Next Generation Ecosystem Experiment, NGEE-Arctic.

  8. Forming chemical composition of surface waters in the Arctic as "water - rock" interaction. Case study of lake Inari and river Paz

    Science.gov (United States)

    Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia

    2017-04-01

    Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral

  9. Climate change and water security with a focus on the Arctic

    Directory of Open Access Journals (Sweden)

    Birgitta Evengard

    2011-10-01

    Full Text Available Water is of fundamental importance for human life; access to water of good quality is of vital concern for mankind. Currently however, the situation is under severe pressure due to several stressors that have a clear impact on access to water. In the Arctic, climate change is having an impact on water availability by melting glaciers, decreasing seasonal rates of precipitation, increasing evapotranspiration, and drying lakes and rivers existing in permafrost grounds. Water quality is also being impacted as manmade pollutants stored in the environment are released, lowland areas are flooded with salty ocean water during storms, turbidity from permafrost-driven thaw and erosion is increased, and the growth or emergence of natural pollutants are increased. By 2030 it is estimated that the world will need to produce 50% more food and energy which means a continuous increase in demand for water. Decisionmakers will have to very clearly include life quality aspects of future generations in the work as impact of ongoing changes will be noticeable, in many cases, in the future. This article will focus on effects of climate-change on water security with an Arctic perspective giving some examples from different countries how arising problems are being addressed.

  10. Atmospheric contribution to hydrologic variations in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, J.E.; Zhou, X.; Portis, D. [Illinois Univ., Urbana, IL (United States). Dept. of Atmospheric Sciences; Serreze, M.C. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Science

    1994-12-31

    A study, using high-latitude rawinsonde data, was carried out to compute the atmospheric moisture flux convergence over the Arctic Ocean and the Mackenzie River drainage basin. Operational analyses spanned an 18-year period (1973-1990). The objectives were to assess interannual variability and to compare the macroscale hydrologic regimes of the two regions. The moisture flux convergence was positive in all months with a late summer maximum over the Arctic Ocean, but was occasionally negative during summer with a late summer minimum over the Mackenzie Basin. The annual totals of the flux convergence were correlated with station-derived precipitation over the Mackenzie Basin and with yearly variations of the Mackenzie discharge. The moisture flux convergence over the Mackenzie Basin suggested that station reports underestimated precipitation during the winter months by several centimeters per year. 29 refs., 1 tab., 14 figs.

  11. Modern sedimentation patterns in Lake El'gygytgyn, NE Russia, derived from surface sediment and inlet streams samples

    Directory of Open Access Journals (Sweden)

    V. Wennrich

    2013-01-01

    Full Text Available Lake El'gygytgyn/NE Russia holds a continuous 3.58 Ma sediment record, which is regarded as the most long-lasting climate archive of the terrestrial Arctic. Based on multi-proxy geochemical, mineralogical, and granulometric analyses of surface sediment, inlet stream and bedrock samples, supplemented by statistical methods, major processes influencing the modern sedimentation in the lake were investigated. Grain-size parameters and chemical elements linked to the input of feldspars from acidic bedrock indicate a wind-induced two-cell current system as major driver of sediment transport and accumulation processes in Lake El'gygytgyn. The distribution of mafic rock related elements in the sediment on the lake floor can be traced back to the input of weathering products of basaltic rocks in the catchment. Obvious similarities in the spatial variability of manganese and heavy metals indicate sorption or co-precipitation of these elements with Fe and Mn hydroxides and oxides. But the similar distribution of organic matter and clay contents might also point to a fixation to organic components and clay minerals. An enrichment of mercury in the inlet streams might be indicative of neotectonic activity around the lake. The results of this study add to the fundamental knowledge of the modern lake processes of Lake El'gygytgyn and its lake-catchment interactions, and thus, yield crucial insights for the interpretation of paleo-data from this unique archive.

  12. Globalising the Arctic Climate:

    DEFF Research Database (Denmark)

    Corry, Olaf

    2017-01-01

    This chapter uses an object-oriented approach to explore how the Arctic is being constituted as an object of global governance within an emerging ‘global polity’, partly through geoengineering plans and political visions ('imaginaries'). It suggests that governance objects—the socially constructed...... on world politics. The emergence of the Arctic climate as a potential target of governance provides a case in point. The Arctic climate is becoming globalised, pushing it up the political agenda but drawing it away from its local and regional context....

  13. The Evolving Arctic: Current State of U.S. Arctic Policy

    Science.gov (United States)

    2013-09-01

    to advance national interests. The U.S. has not yet acceded to UNCLOS, and trails its Arctic neighbors in regards to national policy and direction...maritime transportation, and maritime tourism are expanding exponentially. As commercial opportunities increase in the region, the U.S. needs an...UNCLOS without having ratified it, it trails behind the remainder of the Arctic states on its policy and in asserting its

  14. The Arctic-Subarctic Sea Ice System is Entering a Seasonal Regime: Implications for Future Arctic Amplication

    Science.gov (United States)

    Haine, T. W. N.; Martin, T.

    2017-12-01

    The loss of Arctic sea ice is a conspicuous example of climate change. Climate models project ice-free conditions during summer this century under realistic emission scenarios, reflecting the increase in seasonality in ice cover. To quantify the increased seasonality in the Arctic-Subarctic sea ice system, we define a non-dimensional seasonality number for sea ice extent, area, and volume from satellite data and realistic coupled climate models. We show that the Arctic-Subarctic, i.e. the northern hemisphere, sea ice now exhibits similar levels of seasonality to the Antarctic, which is in a seasonal regime without significant change since satellite observations began in 1979. Realistic climate models suggest that this transition to the seasonal regime is being accompanied by a maximum in Arctic amplification, which is the faster warming of Arctic latitudes compared to the global mean, in the 2010s. The strong link points to a peak in sea-ice-related feedbacks that occurs long before the Arctic becomes ice-free in summer.

  15. The Elevation to Area Relationship of Lake Behnke

    Directory of Open Access Journals (Sweden)

    Kaitlin Deutsch

    2012-01-01

    Full Text Available The objective of this project was to determine the area-to-depth relationship in Lake Behnke, which acts as the principal stormwater drainage basin for the University of South Florida campus in Tampa, Florida. Data previously collected in a stormwater management study by Jeffery Earhart illustrated a linear correlation between the lake's area and depth; however, that study was conducted in 1998, and this present work serves to double check that correlation. We analyzed a bathymetric map of Lake Behnke that displayed several contour lines indicating depth and approximated the area inside each closed curve with a contour integral. The resulting relationship between area and elevation was determined to be more parabolic than linear.

  16. The Arctic zone: possibilities and risks of development

    Science.gov (United States)

    Sentsov, A.; Bolsunovskaya, Y.; Melnikovich, E.

    2016-09-01

    The authors analyze the Arctic region innovative possibilities from the perspective of political ideology and strategy. The Arctic region with its natural resources and high economic potential attracts many companies and it has become an important area of transnational development. At present, the Arctic region development is of great importance in terms of natural resource management and political system development. However, the most important development issue in the Arctic is a great risk of different countries’ competing interests in economic, political, and legal context. These are challenges for international partnership creating in the Arctic zone, Russian future model developing for the Arctic, and recognition of the Arctic as an important resource for the Russians. The Russian economic, military, and political expansion in the Arctic region has the potential to strengthen the national positions. The authors present interesting options for minimizing and eliminating political risks during the Arctic territories development and define an effective future planning model for the Russian Arctic.

  17. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  18. Regional cooperation and sustainable development: The Arctic

    International Nuclear Information System (INIS)

    Vartanov, R.V.

    1993-01-01

    The Arctic is one of the regions most alienated from sustainable development, due to consequences of nuclear testing, long-range pollution transport, large-scale industrial accidents, irrational use of natural resources, and environmentally ignorant socio-economic policies. Revelations of the state of the USSR Arctic shows that air quality in northern cities is below standard, fish harvests are declining, pollution is not being controlled, and native populations are being affected seriously. The presence of immense resources in the Arctic including exploitable offshore oil reserves of 100-200 billion bbl and the prospect of wider utilization of northern sea routes should stimulate establishment of a new international regime of use, research, and protection of Arctic resources in favor of sustainable development in the region. The Arctic marine areas are the key component of the Arctic ecosystem and so should receive special attention. A broad legal framework has already been provided for such cooperation. Included in such cooperation would be native peoples and non-Arctic countries. Specifics of the cooperation would involve exchanging of scientific and technical information, promotion of ecologically sound technologies, equipping Arctic regions with means to control environmental quality, harmonizing environmental protection legislation, and monitoring Arctic environmental quality

  19. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa

    Science.gov (United States)

    Pedersen, Mikkel Winther; Ginolhac, Aurélien; Orlando, Ludovic; Olsen, Jesper; Andersen, Kenneth; Holm, Jakob; Funder, Svend; Willerslev, Eske; Kjær, Kurt H.

    2013-09-01

    We use 2nd generation sequencing technology on sedimentary ancient DNA (sedaDNA) from a lake in South Greenland to reconstruct the local floristic history around a low-arctic lake and compare the results with those previously obtained from pollen and macrofossils in the same lake. Thirty-eight of thirty-nine samples from the core yielded putative DNA sequences. Using a multiple assignment strategy on the trnL g-h DNA barcode, consisting of two different phylogenetic and one sequence similarity assignment approaches, thirteen families of plants were identified, of which two (Scrophulariaceae and Asparagaceae) are absent from the pollen and macrofossil records. An age model for the sediment based on twelve radiocarbon dates establishes a chronology and shows that the lake record dates back to 10,650 cal yr BP. Our results suggest that sedaDNA analysis from lake sediments, although taxonomically less detailed than pollen and macrofossil analyses can be a complementary tool for establishing the composition of both terrestrial and aquatic local plant communities and a method for identifying additional taxa.

  20. The Arctic Marine Pulses Model: Linking Contiguous Domains in the Pacific Arctic Region

    Science.gov (United States)

    Moore, S. E.; Stabeno, P. J.

    2016-02-01

    The Pacific Arctic marine ecosystem extends from the northern Bering Sea, across the Chukchi and into the East Siberian and Beaufort seas. Food webs in this domain are short, a simplicity that belies the biophysical complexity underlying trophic linkages from primary production to humans. Existing biophysical models, such as pelagic-benthic coupling and advective processes, provide frameworks for connecting certain aspects of the marine food web, but do not offer a full accounting of events that occur seasonally across the Pacific Arctic. In the course of the Synthesis of Arctic Research (SOAR) project, a holistic Arctic Marine Pulses (AMP) model was developed that depicts seasonal biophysical `pulses' across a latitudinal gradient, and linking four previously-described contiguous domains, including the: (i) Pacific-Arctic domain = the focal region; (ii) seasonal ice zone domain; (iii) Pacific marginal domain; and (iv) riverine coastal domain. The AMP model provides a spatial-temporal framework to guide research on dynamic ecosystem processes during this period of rapid biophysical changes in the Pacific Arctic. Some of the processes included in the model, such as pelagic-benthic coupling in the Northern Bering and Chukchi seas, and advection and upwelling along the Beaufort shelf, are already the focus of sampling via the Distributed Biological Observatory (DBO) and other research programs. Other aspects such as biological processes associated with the seasonal ice zone and trophic responses to riverine outflow have received less attention. The AMP model could be enhanced by the application of visualization tools to provide a means to watch a season unfold in space and time. The capability to track sea ice dynamics and water masses and to move nutrients, prey and upper-trophic predators in space and time would provide a strong foundation for the development of predictive human-inclusive ecosystem models for the Pacific Arctic.

  1. The Temperature of the Arctic and Antarctic Lower Stratosphere

    Science.gov (United States)

    Newman, Paul A.; Nash, Eric R.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The temperature of the polar lower stratosphere during spring is the key factor in changing the magnitude of ozone loss in the polar vortices. In this talk, we will review the results of Newman et al. [2000] that quantitatively demonstrate that the polar lower stratospheric temperature is primarily controlled by planetary-scale waves. In particular, the tropospheric eddy heat flux in middle to late winter (January--February) is highly correlated with the mean polar stratospheric temperature during March. Strong midwinter planetary wave forcing leads to a warmer spring Arctic lower stratosphere in early spring, while weak midwinter forcing leads to cooler spring Arctic temperatures. In addition, this planetary wave driving also has a strong impact on the strength of the polar vortex. These results from the Northern Hemisphere will be contrasted with the Southern Hemisphere.

  2. First Record of Eocene Bony Fishes and Crocodyliforms from Canada’s Western Arctic

    Science.gov (United States)

    Eberle, Jaelyn J.; Gottfried, Michael D.; Hutchison, J. Howard; Brochu, Christopher A.

    2014-01-01

    Background Discovery of Eocene non-marine vertebrates, including crocodylians, turtles, bony fishes, and mammals in Canada’s High Arctic was a critical paleontological contribution of the last century because it indicated that this region of the Arctic had been mild, temperate, and ice-free during the early – middle Eocene (∼53–50 Ma), despite being well above the Arctic Circle. To date, these discoveries have been restricted to Canada’s easternmost Arctic – Ellesmere and Axel Heiberg Islands (Nunavut). Although temporally correlative strata crop out over 1,000 km west, on Canada’s westernmost Arctic Island – Banks Island, Northwest Territories – they have been interpreted as predominantly marine. We document the first Eocene bony fish and crocodyliform fossils from Banks Island. Principal Findings We describe fossils of bony fishes, including lepisosteid (Atractosteus), esocid (pike), and amiid, and a crocodyliform, from lower – middle Eocene strata of the Cyclic Member, Eureka Sound Formation within Aulavik National Park (∼76°N. paleolat.). Palynology suggests the sediments are late early to middle Eocene in age, and likely spanned the Early Eocene Climatic Optimum (EECO). Conclusions/Significance These fossils extend the geographic range of Eocene Arctic lepisosteids, esocids, amiids, and crocodyliforms west by approximately 40° of longitude or ∼1100 km. The low diversity bony fish fauna, at least at the family level, is essentially identical on Ellesmere and Banks Islands, suggesting a pan-High Arctic bony fish fauna of relatively basal groups around the margin of the Eocene Arctic Ocean. From a paleoclimatic perspective, presence of a crocodyliform, gar and amiid fishes on northern Banks provides further evidence that mild, year-round temperatures extended across the Canadian Arctic during early – middle Eocene time. Additionally, the Banks Island crocodyliform is consistent with the phylogenetic hypothesis of a Paleogene divergence

  3. Tsunami in the Arctic

    Science.gov (United States)

    Kulikov, Evgueni; Medvedev, Igor; Ivaschenko, Alexey

    2017-04-01

    The severity of the climate and sparsely populated coastal regions are the reason why the Russian part of the Arctic Ocean belongs to the least studied areas of the World Ocean. In the same time intensive economic development of the Arctic region, specifically oil and gas industry, require studies of potential thread natural disasters that can cause environmental and technical damage of the coastal and maritime infrastructure of energy industry complex (FEC). Despite the fact that the seismic activity in the Arctic can be attributed to a moderate level, we cannot exclude the occurrence of destructive tsunami waves, directly threatening the FEC. According to the IAEA requirements, in the construction of nuclear power plants it is necessary to take into account the impact of all natural disasters with frequency more than 10-5 per year. Planned accommodation in the polar regions of the Russian floating nuclear power plants certainly requires an adequate risk assessment of the tsunami hazard in the areas of their location. Develop the concept of tsunami hazard assessment would be based on the numerical simulation of different scenarios in which reproduced the hypothetical seismic sources and generated tsunamis. The analysis of available geological, geophysical and seismological data for the period of instrumental observations (1918-2015) shows that the highest earthquake potential within the Arctic region is associated with the underwater Mid-Arctic zone of ocean bottom spreading (interplate boundary between Eurasia and North American plates) as well as with some areas of continental slope within the marginal seas. For the Arctic coast of Russia and the adjacent shelf area, the greatest tsunami danger of seismotectonic origin comes from the earthquakes occurring in the underwater Gakkel Ridge zone, the north-eastern part of the Mid-Arctic zone. In this area, one may expect earthquakes of magnitude Mw ˜ 6.5-7.0 at a rate of 10-2 per year and of magnitude Mw ˜ 7.5 at a

  4. Forest blowdown and lake acidification

    International Nuclear Information System (INIS)

    Dobson, J.E.; Rush, R.M.; Peplies, R.W.

    1990-01-01

    The authors examine the role of forest blowdown in lake acidification. The approach combines geographic information systems (GIS) and digital remote sensing with traditional field methods. The methods of analysis consist of direct observation, interpretation of satellite imagery and aerial photographs, and statistical comparison of two geographical distributions-one representing forest blow-down and another representing lake chemistry. Spatial and temporal associations between surface water pH and landscape disturbance are strong and consistent in the Adirondack Mountains of New York. In 43 Adirondack Mountain watersheds, lake pH is associated with the percentage of the watershed area blown down and with hydrogen ion deposition (Spearman rank correlation coefficients of -0.67 and -0.73, respectively). Evidence of a temporal association is found at Big Moose Lake and Jerseyfield Lake in New York and the Lygners Vider Plateau of Sweden. They conclude that forest blowdown facilities the acidification of some lakes by altering hydrologic pathways so that waters (previously acidified by acid deposition and/or other sources) do not experience the neutralization normally available through contact with subsurface soils and bedrock. Increased pipeflow is suggested as a mechanism that may link the biogeochemical impacts of forest blowdown to lake chemistry

  5. State of the Arctic Environment

    International Nuclear Information System (INIS)

    1990-01-01

    The Arctic environment, covering about 21 million km 2 , is in this connection regarded as the area north of the Arctic Circle. General biological and physical features of the terrestrial and freshwater environments of the Arctic are briefly described, but most effort is put into a description of the marine part which constitutes about two-thirds of the total Arctic environment. General oceanography and morphological characteristics are included; e.g. that the continental shelf surrounding the Arctic deep water basins covers approximately 36% of the surface areas of Arctic waters, but contains only 2% of the total water masses. Blowout accident may release thousands of tons of oil per day and last for months. They occur statistically very seldom, but the magnitude underlines the necessity of an efficient oil spill contingency as well as sound safety and quality assurance procedures. Contingency plans should be coordinated and regularly evaluated through simulated and practical tests of performance. Arctic conditions demand alternative measures compared to those otherwise used for oil spill prevention and clean-up. New concepts or optimization of existing mechanical equipment is necessary. Chemical and thermal methods should be evaluated for efficiency and possible environmental effects. Both due to regular discharges of oil contaminated drilled cuttings and the possibility of a blowout or other spills, drilling operations in biological sensitive areas may be regulated to take place only during the less sensitive parts of the year. 122 refs., 8 figs., 8 tabs

  6. Arctic bioremediation

    International Nuclear Information System (INIS)

    Liddell, B.V.; Smallbeck, D.R.; Ramert, P.C.

    1991-01-01

    Cleanup of oil and diesel spills on gravel pads in the Arctic has typically been accomplished by utilizing a water flushing technique to remove the gross contamination or excavating the spill area and placing the material into a lined pit, or a combination of both. This paper discusses the potential to utilize bioremediation as an effective method to clean up hydrocarbon spills in the northern latitudes. Discussed are the results of a laboratory bioremediation study which simulated microbial degradation of hydrocarbon under arctic conditions

  7. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Dmitry Laptev Strait

    International Nuclear Information System (INIS)

    Nicolsky, D; Shakhova, N

    2010-01-01

    The present state of sub-sea permafrost modeling does not agree with certain observational data on the permafrost state within the East Siberian Arctic Shelf. This suggests a need to consider other mechanisms of permafrost destabilization after the recent ocean transgression. We propose development of open taliks wherever thaw lakes and river paleo-valleys were submerged shelf-wide as a possible mechanism for the degradation of sub-sea permafrost. To test the hypothesis we performed numerical modeling of permafrost dynamics in the Dmitry Laptev Strait area. We achieved sufficient agreement with the observed distribution of thawed and frozen layers to suggest that the proposed mechanism of permafrost destabilization is plausible.

  8. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer

    Science.gov (United States)

    Mungall, Emma L.; Abbatt, Jonathan P. D.; Wentzell, Jeremy J. B.; Lee, Alex K. Y.; Thomas, Jennie L.; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A.; Papakyriakou, Tim; Willis, Megan D.; Liggio, John

    2017-06-01

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  9. Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer.

    Science.gov (United States)

    Mungall, Emma L; Abbatt, Jonathan P D; Wentzell, Jeremy J B; Lee, Alex K Y; Thomas, Jennie L; Blais, Marjolaine; Gosselin, Michel; Miller, Lisa A; Papakyriakou, Tim; Willis, Megan D; Liggio, John

    2017-06-13

    Summertime Arctic shipboard observations of oxygenated volatile organic compounds (OVOCs) such as organic acids, key precursors of climatically active secondary organic aerosol (SOA), are consistent with a novel source of OVOCs to the marine boundary layer via chemistry at the sea surface microlayer. Although this source has been studied in a laboratory setting, organic acid emissions from the sea surface microlayer have not previously been observed in ambient marine environments. Correlations between measurements of OVOCs, including high levels of formic acid, in the atmosphere (measured by an online high-resolution time-of-flight mass spectrometer) and dissolved organic matter in the ocean point to a marine source for the measured OVOCs. That this source is photomediated is indicated by correlations between the diurnal cycles of the OVOC measurements and solar radiation. In contrast, the OVOCs do not correlate with levels of isoprene, monoterpenes, or dimethyl sulfide. Results from box model calculations are consistent with heterogeneous chemistry as the source of the measured OVOCs. As sea ice retreats and dissolved organic carbon inputs to the Arctic increase, the impact of this source on the summer Arctic atmosphere is likely to increase. Globally, this source should be assessed in other marine environments to quantify its impact on OVOC and SOA burdens in the atmosphere, and ultimately on climate.

  10. Arctic tipping points in an Earth system perspective.

    Science.gov (United States)

    Wassmann, Paul; Lenton, Timothy M

    2012-02-01

    We provide an introduction to the volume The Arctic in the Earth System perspective: the role of tipping points. The terms tipping point and tipping element are described and their role in current science, general debates, and the Arctic are elucidated. From a wider perspective, the volume focuses upon the role of humans in the Arctic component of the Earth system and in particular the envelope for human existence, the Arctic ecosystems. The Arctic climate tipping elements, the tipping elements in Arctic ecosystems and societies, and the challenges of governance and anticipation are illuminated through short summaries of eight publications that derive from the Arctic Frontiers conference in 2011 and the EU FP7 project Arctic Tipping Points. Then some ideas based upon resilience thinking are developed to show how wise system management could ease pressures on Arctic systems in order to keep them away from tipping points.

  11. The Arctic Report Card: Communicating the State of the Rapidly Changing Arctic to a Diverse Audience via the Worldwide Web

    Science.gov (United States)

    Jeffries, M. O.; Richter-Menge, J.; Overland, J. E.; Soreide, N. N.

    2013-12-01

    Rapid change is occurring throughout the Arctic environmental system. The goal of the Arctic Report Card is to communicate the nature of the many changes to a diverse audience via the Worldwide Web. First published in 2006, the Arctic Report Card is a peer-reviewed publication containing clear, reliable and concise scientific information on the current state of the Arctic environment relative to observational records. Available only online, it is intended to be an authoritative source for scientists, teachers, students, decision-makers, policy-makers and the general public interested in the Arctic environment and science. The Arctic Report Card is organized into five sections: Atmosphere; Sea Ice & Ocean; Marine Ecosystem; Terrestrial Ecosystem; Terrestrial Cryosphere. Arctic Report Card 2012, the sixth annual update, comprised 20 essays on physical and biological topics prepared by an international team of 141 scientists from 15 different countries. For those who want a quick summary, the Arctic Report Card home page provides highlights of key events and findings, and a short video that is also available on YouTube. The release of the Report Card each autumn is preceded by a NOAA press release followed by a press conference, when the Web site is made public. The release of Arctic Report Card 2012 at an AGU Fall Meeting press conference on 5 December 2012 was subsequently reported by leading media organizations. The NOAA Arctic Web site, of which the Report Card is a part, is consistently at the top of Google search results for the keyword 'arctic', and the Arctic Report Card Web site tops search results for keyword "arctic report" - pragmatic indications of a Web site's importance and popularity. As another indication of the Web site's impact, in December 2012, the month when the 2012 update was released, the Arctic Report Card Web site was accessed by 19,851 unique sites in 105 countries, and 4765 Web site URLs referred to the Arctic Report Card. The 2012 Arctic

  12. THE ARCTIC: A DIALOGUE FOR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Yury Mazurov

    2010-01-01

    Full Text Available In September 2010, Moscow hosted the International Arctic Forum “The Arctic—Territory of Dialogue.” The Arctic Forum focused its attention on elements of sustainable development in the Arctic region, i.e., ecology, economics, infrastructure, social services, security, and geopolitics. Many Russian experts and many well-known politicians and experts from leading research centers of the Arctic countries (Canada, Denmark, Finland, Iceland, Norway, Sweden, and USA, as well as by participants from France, Germany, Netherlands, and other countries attended the forum. Scholars and public figures from the European countries, representatives of the NATO, the Organization for Security and Cooperation in Europe and other institutions were also present at the conference. In his key-note speech the Chairman of the Board of Trustees of the Russian Geographical Society (RGS, Prime Minister of the Russian Federation, Vladimir V. Putin formulated the principles of Russian national policy in the Arctic. Russian and foreign participants supported the idea of continuing dialogue on the Arctic under the RGS’s aegis and the transformation of the Arctic Forum into a permanent platform for discussions on the most urgent issues of the region.

  13. Interdependencies of Arctic land surface processes: A uniquely sensitive environment

    Science.gov (United States)

    Bowling, L. C.

    2007-12-01

    The circumpolar arctic drainage basin is composed of several distinct ecoregions including steppe grassland and cropland, boreal forest and tundra. Land surface hydrology throughout this diverse region shares several unique features such as dramatic seasonal runoff differences controlled by snowmelt and ice break-up; the storage of significant portions of annual precipitation as snow and in lakes and wetlands; and the effects of ephemeral and permanently frozen soils. These arctic land processes are delicately balanced with the climate and are therefore important indicators of change. The litany of recently-detected changes in the Arctic includes changes in snow precipitation, trends and seasonal shifts in river discharge, increases and decreases in the extent of surface water, and warming soil temperatures. Although not unique to the arctic, increasing anthropogenic pressures represent an additional element of change in the form of resource extraction, fire threat and reservoir construction. The interdependence of the physical, biological and social systems mean that changes in primary indicators have large implications for land cover, animal populations and the regional carbon balance, all of which have the potential to feed back and induce further change. In fact, the complex relationships between the hydrological processes that make the Artic unique also render observed historical change difficult to interpret and predict, leading to conflicting explanations. For example, a decrease in snow accumulation may provide less insulation to the underlying soil resulting in greater frost development and increased spring runoff. Similarly, melting permafrost and ground ice may lead to ground subsidence and increased surface saturation and methane production, while more complete thaw may enhance drainage and result in drier soil conditions. The threshold nature of phase change around the freezing point makes the system especially sensitive to change. In addition, spatial

  14. Development and evaluation of the Lake Multi-biotic Integrity Index for Dongting Lake, China

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2015-06-01

    Full Text Available A Lake Multi-biotic Integrity Index (LMII for the China’s second largest interior lake (Dongting Lake was developed to assess the water quality status using algal and macroinvertebrate metrics. Algae and benthic macroinvertebrate assemblages were sampled at 10 sections across 3 subregions of Dongting Lake. We used a stepwise process to evaluate properties of candidate metrics and selected ten for the LMII: Pampean diatom index, diatom quotient, trophic diatom index, relative abundance diatoms, Margalef index of algae, percent sensitive diatoms, % facultative individuals, % Chironomidae individuals, % predators individuals, and total number of macroinvertebrate taxa. We then tested the accuracy and feasibility of the LMII by comparing the correlation with physical-chemical parameters. Evaluation of the LMII showed that it discriminated well between reference and impaired sections and was strongly related to the major chemical and physical stressors (r = 0.766, P<0.001. The re-scored results from the 10 sections showed that the water quality of western Dongting Lake was good, while that of southern Dongting Lake was relatively good and whereas that of eastern Dongting Lake was poor. The discriminatory biocriteria of the LMII are suitable for the assessment of the water quality of Dongting Lake. Additionally, more metrics belonging to habitat, hydrology, physics and chemistry should be considered into the LMII, so as to establish comprehensive assessment system which can reflect the community structure of aquatic organisms, physical and chemical characteristics of water environment, human activities, and so on.

  15. Detecting and Understanding Changing Arctic Carbon Emissions

    Science.gov (United States)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in

  16. Arctic Islands LNG

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, W.

    1977-01-01

    Trans-Canada Pipe Lines Ltd. made a feasibility study of transporting LNG from the High Arctic Islands to a St. Lawrence River Terminal by means of a specially designed and built 125,000 cu m or 165,000 cu m icebreaking LNG tanker. Studies were made of the climatology and of ice conditions, using available statistical data as well as direct surveys in 1974, 1975, and 1976. For on-schedule and unimpeded (unescorted) passage of the LNG carriers at all times of the year, special navigation and communications systems can be made available. Available icebreaking experience, charting for the proposed tanker routes, and tide tables for the Canadian Arctic were surveyed. Preliminary design of a proposed Arctic LNG icebreaker tanker, including containment system, reliquefaction of boiloff, speed, power, number of trips for 345 day/yr operation, and liquefaction and regasification facilities are discussed. The use of a minimum of three Arctic Class 10 ships would enable delivery of volumes of natural gas averaging 11.3 million cu m/day over a period of a year to Canadian markets. The concept appears to be technically feasible with existing basic technology.

  17. Pre-industrial and recent (1970-2010) atmospheric deposition of sulfate and mercury in snow on southern Baffin Island, Arctic Canada.

    Science.gov (United States)

    Zdanowicz, Christian; Kruemmel, Eva; Lean, David; Poulain, Alexandre; Kinnard, Christophe; Yumvihoze, Emmanuel; Chen, JiuBin; Hintelmann, Holger

    2015-03-15

    Sulfate (SO4(2-)) and mercury (Hg) are airborne pollutants transported to the Arctic where they can affect properties of the atmosphere and the health of marine or terrestrial ecosystems. Detecting trends in Arctic Hg pollution is challenging because of the short period of direct observations, particularly of actual deposition. Here, we present an updated proxy record of atmospheric SO4(2-) and a new 40-year record of total Hg (THg) and monomethyl Hg (MeHg) deposition developed from a firn core (P2010) drilled from Penny Ice Cap, Baffin Island, Canada. The updated P2010 record shows stable mean SO4(2-) levels over the past 40 years, which is inconsistent with observations of declining atmospheric SO4(2-) or snow acidity in the Arctic during the same period. A sharp THg enhancement in the P2010 core ca 1991 is tentatively attributed to the fallout from the eruption of the Icelandic volcano Hekla. Although MeHg accumulation on Penny Ice Cap had remained constant since 1970, THg accumulation increased after the 1980s. This increase is not easily explained by changes in snow accumulation, marine aerosol inputs or air mass trajectories; however, a causal link may exist with the declining sea-ice cover conditions in the Baffin Bay sector. The ratio of THg accumulation between pre-industrial times (reconstructed from archived ice cores) and the modern industrial era is estimated at between 4- and 16-fold, which is consistent with estimates from Arctic lake sediment cores. The new P2010 THg record is the first of its kind developed from the Baffin Island region of the eastern Canadian Arctic and one of very few such records presently available in the Arctic. As such, it may help to bridge the knowledge gap linking direct observation of gaseous Hg in the Arctic atmosphere and actual net deposition and accumulation in various terrestrial media. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Comparing Effects of Lake- and Watershed-Scale Influences on Communities of Aquatic Invertebrates in Shallow Lakes

    Science.gov (United States)

    Hanson, Mark A.; Herwig, Brian R.; Zimmer, Kyle D.; Fieberg, John; Vaughn, Sean R.; Wright, Robert G.; Younk, Jerry A.

    2012-01-01

    Constraints on lake communities are complex and are usually studied by using limited combinations of variables derived from measurements within or adjacent to study waters. While informative, results often provide limited insight about magnitude of simultaneous influences operating at multiple scales, such as lake- vs. watershed-scale. To formulate comparisons of such contrasting influences, we explored factors controlling the abundance of predominant aquatic invertebrates in 75 shallow lakes in western Minnesota, USA. Using robust regression techniques, we modeled relative abundance of Amphipoda, small and large cladocera, Corixidae, aquatic Diptera, and an aggregate taxon that combined Ephemeroptera-Trichoptera-Odonata (ETO) in response to lake- and watershed-scale characteristics. Predictor variables included fish and submerged plant abundance, linear distance to the nearest wetland or lake, watershed size, and proportion of the watershed in agricultural production. Among-lake variability in invertebrate abundance was more often explained by lake-scale predictors than by variables based on watershed characteristics. For example, we identified significant associations between fish presence and community type and abundance of small and large cladocera, Amphipoda, Diptera, and ETO. Abundance of Amphipoda, Diptera, and Corixidae were also positively correlated with submerged plant abundance. We observed no associations between lake-watershed variables and abundance of our invertebrate taxa. Broadly, our results seem to indicate preeminence of lake-level influences on aquatic invertebrates in shallow lakes, but historical land-use legacies may mask important relationships. PMID:22970275

  19. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.

    2010-01-01

    Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past. This inf......Arctic sea-ice extent and volume are declining rapidly. Several studies project that the Arctic Ocean may become seasonally ice-free by the year 2040 or even earlier. Putting this into perspective requires information on the history of Arctic sea-ice conditions through the geologic past...... Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even...

  20. Behavioral interactions of penned red and arctic foxes

    Science.gov (United States)

    Rudzinski, D.R.; Graves, H.B.; Sargeant, A.B.; Storm, G.L.

    1982-01-01

    Expansion of the geographical distribution of red foxes (Vulpes vulpes) into the far north tundra region may lead to competition between arctic (Alopex lagopus) and red foxes for space and resources. Behavioral interactions between red and arctic foxes were evaluated during 9 trials conducted in a 4.05-ha enclosure near Woodworth, North Dakota. Each trial consisted of introducing a male-female pair of arctic foxes into the enclosure and allowing them to acclimate for approximately a week before releasing a female red fox into the enclosure, followed by her mate a few days later. In 8 of 9 trials, red foxes were dominant over arctic foxes during encounters. Activity of the arctic foxes decreased upon addition of red foxes. Arctic foxes tried unsuccessfully to defend preferred den, resting, and feeding areas. Even though the outcome of competition between red and arctic foxes in the Arctic is uncertain, the more aggressive red fox can dominate arctic foxes in direct competition for den sites and other limited resources.

  1. Arctic Synthesis Collaboratory: A Virtual Organization for Transformative Research and Education on a Changing Arctic

    Science.gov (United States)

    Warnick, W. K.; Wiggins, H. V.; Hinzman, L.; Holland, M.; Murray, M. S.; Vörösmarty, C.; Loring, A. J.

    2008-12-01

    About the Arctic Synthesis Collaboratory The Arctic Synthesis Collaboratory concept, developed through a series of NSF-funded workshops and town hall meetings, is envisioned as a cyber-enabled, technical, organizational, and social-synthesis framework to foster: • Interactions among interdisciplinary experts and stakeholders • Integrated data analysis and modeling activities • Training and development of the arctic science community • Delivery of outreach, education, and policy-relevant resources Scientific Rationale The rapid rate of arctic change and our incomplete understanding of the arctic system present the arctic community with a grand scientific challenge and three related issues. First, a wealth of observations now exists as disconnected data holdings, which must be coordinated and synthesized to fully detect and assess arctic change. Second, despite great strides in the development of arctic system simulations, we still have incomplete capabilities for modeling and predicting the behavior of the system as a whole. Third, policy-makers, stakeholders, and the public are increasingly making demands of the science community for forecasts and guidance in mitigation and adaptation strategies. Collaboratory Components The Arctic Synthesis Collaboratory is organized around four integrated functions that will be established virtually as a distributed set of activities, but also with the advantage of existing facilities that could sponsor some of the identified activities. Community Network "Meeting Grounds:" The Collaboratory will link distributed individuals, organizations, and activities to enable collaboration and foster new research initiatives. Specific activities could include: an expert directory, social networking services, and virtual and face-to-face meetings. Data Integration, Synthesis, and Modeling Activities: The Collaboratory will utilize appropriate tools to enable the combination of data and models. Specific activities could include: a web

  2. Large Scale Variability of Phytoplankton Blooms in the Arctic and Peripheral Seas: Relationships with Sea Ice, Temperature, Clouds, and Wind

    Science.gov (United States)

    Comiso, Josefino C.; Cota, Glenn F.

    2004-01-01

    Spatially detailed satellite data of mean color, sea ice concentration, surface temperature, clouds, and wind have been analyzed to quantify and study the large scale regional and temporal variability of phytoplankton blooms in the Arctic and peripheral seas from 1998 to 2002. In the Arctic basin, phytoplankton chlorophyll displays a large symmetry with the Eastern Arctic having about fivefold higher concentrations than those of the Western Arctic. Large monthly and yearly variability is also observed in the peripheral seas with the largest blooms occurring in the Bering Sea, Sea of Okhotsk, and the Barents Sea during spring. There is large interannual and seasonal variability in biomass with average chlorophyll concentrations in 2002 and 2001 being higher than earlier years in spring and summer. The seasonality in the latitudinal distribution of blooms is also very different such that the North Atlantic is usually most expansive in spring while the North Pacific is more extensive in autumn. Environmental factors that influence phytoplankton growth were examined, and results show relatively high negative correlation with sea ice retreat and strong positive correlation with temperature in early spring. Plankton growth, as indicated by biomass accumulation, in the Arctic and subarctic increases up to a threshold surface temperature of about 276-277 degree K (3-4 degree C) beyond which the concentrations start to decrease suggesting an optimal temperature or nutrient depletion. The correlation with clouds is significant in some areas but negligible in other areas, while the correlations with wind speed and its components are generally weak. The effects of clouds and winds are less predictable with weekly climatologies because of unknown effects of averaging variable and intermittent physical forcing (e.g. over storm event scales with mixing and upwelling of nutrients) and the time scales of acclimation by the phytoplankton.

  3. 137Cs distribution and geochemistry of Lena River (Siberia) drainage basin lake sediments

    International Nuclear Information System (INIS)

    Johnson-Pyrtle, A.; Scott, M.R.; Laing, T.E.; Smol, J.P.

    2000-01-01

    The Lena River is the second largest river that discharges into the Arctic Ocean. It is therefore important to determine not only the direct impact its discharge has on the 137Cs concentration of the Arctic, but also the potential its drainage basin has as a 137Cs source. 137Cs surface sediment concentrations and inventory values, which range from 4.97 to 338 Bq kg -1 and 357 to 1732 Bq m -2 , respectively, were determined for the Lena River drainage basin lake samples, via gamma analysis. The average geochemical and mineralogical composition of a subset of samples was also determined using neutron activation analysis, X-ray diffraction and X-ray fluorescence spectrometry techniques. Results of these geochemical analyses allowed for the identification of key geochemical factors that influence the distribution of 137Cs in the Lena River drainage basin. 137Cs profiles indicate that Lena River drainage basin lacustrine sediments serve as a record of 137Cs fallout. Based on the downcore 137Cs, %illite, %smectite, %Al and %Mn distribution patterns, it was concluded that a small fraction of non-selectively bound 137Cs was remobilized at depth in some cores. Inconsistencies between the actual 137Cs fallout record and the 137Cs profiles determined for the lake sediments were attributed to 137Cs remobilization in subsurface sediments. In addition to establishing the agreement between the global atmospheric fallout record and the downcore 137Cs distribution patterns determined for these sediments, results indicate that 137Cs deposited during periods of maximum atmospheric release was buried and is not susceptible to surface erosion processes. However, mean 137Cs concentrations of the lacustrine surface sediments (125 Bq kg -1 ) are still significantly higher than those of the nearby Lena River estuary (11.22 Bq kg -1 ) and Laptev Sea (6.00 Bq kg -1 ). Our study suggests that the Lena River drainage basin has the potential to serve as a source of 137Cs to the adjacent Arctic

  4. Mercury and water level fluctuations in lakes of northern Minnesota

    Science.gov (United States)

    Larson, James H.; Maki, Ryan P; Christensen, Victoria G.; Sandheinrich, Mark B.; LeDuc, Jaime F.; Kissane, Claire; Knights, Brent C.

    2017-01-01

    Large lake ecosystems support a variety of ecosystem services in surrounding communities, including recreational and commercial fishing. However, many northern temperate fisheries are contaminated by mercury. Annual variation in mercury accumulation in fish has previously been linked to water level (WL) fluctuations, opening the possibility of regulating water levels in a manner that minimizes or reduces mercury contamination in fisheries. Here, we compiled a long-term dataset (1997-2015) of mercury content in young-of-year Yellow Perch (Perca flavescens) from six lakes on the border between the U.S. and Canada and examined whether mercury content appeared to be related to several metrics of WL fluctuation (e.g., spring WL rise, annual maximum WL, and year-to-year change in maximum WL). Using simple correlation analysis, several WL metrics appear to be strongly correlated to Yellow Perch mercury content, although the strength of these correlations varies by lake. We also used many WL metrics, water quality measurements, temperature and annual deposition data to build predictive models using partial least squared regression (PLSR) analysis for each lake. These PLSR models showed some variation among lakes, but also supported strong associations between WL fluctuations and annual variation in Yellow Perch mercury content. The study lakes underwent a modest change in WL management in 2000, when winter WL minimums were increased by about 1 m in five of the six study lakes. Using the PLSR models, we estimated how this change in WL management would have affected Yellow Perch mercury content. For four of the study lakes, the change in WL management that occurred in 2000 likely reduced Yellow Perch mercury content, relative to the previous WL management regime.

  5. Challenges of climate change: an Arctic perspective.

    Science.gov (United States)

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  6. Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation

    Directory of Open Access Journals (Sweden)

    Annette K. Møller

    2013-04-01

    Full Text Available The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA genes and 16S rRNA gene sequencing of cultivated isolates. Both the pyrosequence and cultivation data indicated that the phylogenetic composition of the microbial assemblages was different within the snow layers and between snow and freshwater. The highest diversity was seen in snow. In the middle and top snow layers, Proteobacteria, Bacteroidetes and Cyanobacteria dominated, although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacteroidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria. Thus, differences in the physicochemical conditions may play an important role in the processes leading to distinctive bacterial community structures in High-Arctic snow and freshwater.

  7. Decadal Climate Change in Ny-Ålesund, Svalbard, A Representative Area of the Arctic

    Directory of Open Access Journals (Sweden)

    Minghu Ding

    2018-04-01

    Full Text Available In recent decades, global warming hiatus/slowdown has attracted considerable attention and has been strongly debated. Many studies suggested that the Arctic is undergoing rapid warming and significantly contributes to a continual global warming trend rather than a hiatus. In this study, we evaluated the climate changes of Ny-Ålesund, Svalbard, a representative location of the northern North Atlantic sector of the Arctic, based on observational records from 1975–2014. The results showed that the annual warming rate was four times higher than the global mean (+0.76 °C·decade−1 and was also much greater than Arctic average. Additionally, the warming trend of Ny-Ålesund started to slow down since 2005–2006, and our estimates showed that there is a 8–9 years-lagged, but significant, correlation between records of Ny-Ålesund and global HadCRUT4 datasets. This finding indicates that the Arctic was likely experiencing a hiatus pattern, which just appeared later than the low-mid latitudes due to transport processes of atmospheric circulations and ocean currents, heat storage effect of cryospheric components, multidecadal variability of Arctic cyclone activities, etc. This case study provides a new perspective on the global warming hiatus/slowdown debate.

  8. The Impact of Stratospheric Circulation Extremes on Minimum Arctic Sea Ice Extent

    Science.gov (United States)

    Smith, K. L.; Polvani, L. M.; Tremblay, B.

    2017-12-01

    The interannual variability of summertime Arctic sea ice extent (SIE) is anti-correlated with the leading mode of extratropical atmospheric variability in preceding winter, the Arctic Oscillation (AO). Given this relationship and the need for better seasonal predictions of Arctic SIE, we here examine the role of stratospheric circulation extremes and stratosphere-troposphere coupling in linking the AO and Arctic SIE variability. We show that extremes in the stratospheric circulation during the winter season, namely stratospheric sudden warming (SSW) and strong polar vortex (SPV) events, are associated with significant anomalies in sea ice concentration in the Bering Straight and the Sea of Okhotsk in winter, the Barents Sea in spring and along the Eurasian coastline in summer in both observations and a fully-coupled, stratosphere-resolving general circulation model. The accompanying figure shows the composite mean sea ice concentration anomalies from the Whole Atmosphere Community Climate Model (WACCM) for SSWs (N = 126, top row) and SPVs (N = 99, bottom row) for winter (a,d), spring (b,e) and summer (c,f). Consistent with previous work on the AO, we find that SSWs, which are followed by the negative phase of the AO at the surface, result in sea ice growth, whereas SPVs, which are followed by the positive phase of the AO at the surface, result in sea ice loss, although the dynamic and thermodynamic processes driving these sea ice anomalies in the three Arctic regions, noted above, are different. Our analysis suggests that the presence or absence of stratospheric circulation extremes in winter may play a non-trivial role in determining total September Arctic SIE when combined with other factors.

  9. Arctic Messages: Arctic Research in the Vocabulary of Poets and Artists

    Science.gov (United States)

    Samsel, F.

    2017-12-01

    Arctic Messages is a series of prints created by a multidisciplinary team designed to build understanding and encourage dialogue about the changing Arctic ecosystems and the impacts on global weather patterns. Our team comprised of Arctic researchers, a poet, a visual artist, photographers and visualization experts set out to blend the vocabularies of our disciplines in order to provide entry into the content for diverse audiences. Arctic Messages is one facet of our broader efforts experimenting with mediums of communication able to provide entry to those of us outside scientific of fields. We believe that the scientific understanding of change presented through the languages art will speak to our humanity as well as our intellect. The prints combine poetry, painting, visualization, and photographs, drawn from the Arctic field studies of the Next Generation Ecosystem Experiments research team at Los Alamos National Laboratory. The artistic team interviewed the scientists, read their papers and poured over their field blogs. The content and concepts are designed to portray the wonder of nature, the complexity of the science and the dedication of the researchers. Smith brings to life the intertwined connection between the research efforts, the ecosystems and the scientist's experience. Breathtaking photography of the research site is accompanied by Samsel's drawings and paintings of the ecosystem relationships and geological formations. Together they provide entry to the variety and wonder of life on the Arctic tundra and that resting quietly in the permafrost below. Our team has experimented with many means of presentation from complex interactive systems to quiet individual works. Here we are presenting a series of prints, each one based on a single thread of the research or the scientist's experience but containing intertwined relationships similar to the ecosystems they represent. Earlier interactive systems, while engaging, were not tuned to those seeking

  10. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J. [Iowa State Univ., Ames, IA (United States)

    2017-12-28

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASM can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes

  11. Arctic summer school onboard an icebreaker

    Science.gov (United States)

    Alexeev, Vladimir A.; Repina, Irina A.

    2014-05-01

    The International Arctic Research Center (IARC) of the University of Alaska Fairbanks conducted a summer school for PhD students, post-docs and early career scientists in August-September 2013, jointly with an arctic expedition as a part of NABOS project (Nansen and Amundsen Basin Observational System) onboard the Russian research vessel "Akademik Fedorov". Both the summer school and NABOS expedition were funded by the National Science Foundation. The one-month long summer school brought together graduate students and young scientists with specialists in arctic oceanography and climate to convey to a new generation of scientists the opportunities and challenges of arctic climate observations and modeling. Young scientists gained hands-on experience during the field campaign and learned about key issues in arctic climate from observational, diagnostic, and modeling perspectives. The summer school consisted of background lectures, participation in fieldwork and mini-projects. The mini-projects were performed in collaboration with summer school instructors and members of the expedition. Key topics covered in the lectures included: - arctic climate: key characteristics and processes; - physical processes in the Arctic Ocean; - sea ice and the Arctic Ocean; - trace gases, aerosols, and chemistry: importance for climate changes; - feedbacks in the arctic system (e.g., surface albedo, clouds, water vapor, circulation); - arctic climate variations: past, ongoing, and projected; - global climate models: an overview. An outreach specialist from the Miami Science Museum was writing a blog from the icebreaker with some very impressive statistics (results as of January 1, 2014): Total number of blog posts: 176 Blog posts written/contributed by scientists: 42 Blog views: 22,684 Comments: 1,215 Number of countries who viewed the blog: 89 (on 6 continents) The 33-day long NABOS expedition started on August 22, 2013 from Kirkenes, Norway. The vessel ("Akademik Fedorov") returned to

  12. Advancing NOAA NWS Arctic Program Development

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.

    2016-12-01

    Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will

  13. Microplastics in Taihu Lake, China.

    Science.gov (United States)

    Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong

    2016-09-01

    In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes

    Science.gov (United States)

    Eagles-Smith, Collin A.; Herring, Garth; Johnson, Branden L.; Graw, Rick

    2016-01-01

    Remote high-elevation lakes represent unique environments for evaluating the bioaccumulation of atmospherically deposited mercury through freshwater food webs, as well as for evaluating the relative importance of mercury loading versus landscape influences on mercury bioaccumulation. The increase in mercury deposition to these systems over the past century, coupled with their limited exposure to direct anthropogenic disturbance make them useful indicators for estimating how changes in mercury emissions may propagate to changes in Hg bioaccumulation and ecological risk. We evaluated mercury concentrations in resident fish from 28 high-elevation, sub-alpine lakes in the Pacific Northwest region of the United States. Fish total mercury (THg) concentrations ranged from 4 to 438 ng/g wet weight, with a geometric mean concentration (±standard error) of 43 ± 2 ng/g ww. Fish THg concentrations were negatively correlated with relative condition factor, indicating that faster growing fish that are in better condition have lower THg concentrations. Across the 28 study lakes, mean THg concentrations of resident salmonid fishes varied as much as 18-fold among lakes. We used a hierarchal statistical approach to evaluate the relative importance of physiological, limnological, and catchment drivers of fish Hg concentrations. Our top statistical model explained 87% of the variability in fish THg concentrations among lakes with four key landscape and limnological variables: catchment conifer density (basal area of conifers within a lake's catchment), lake surface area, aqueous dissolved sulfate, and dissolved organic carbon. Conifer density within a lake's catchment was the most important variable explaining fish THg concentrations across lakes, with THg concentrations differing by more than 400 percent across the forest density spectrum. These results illustrate the importance of landscape characteristics in controlling mercury bioaccumulation in fish.

  15. The expedition ARCTIC `96 of RV `Polarstern` (ARK XII) with the Arctic Climate System Study (ACSYS). Cruise report; Die Expedition ARCTIC `96 des FS `Polarstern` (ARK XII) mit der Arctic Climate System Study (ACSYS). Fahrtbericht

    Energy Technology Data Exchange (ETDEWEB)

    Augstein, E.

    1997-11-01

    The multinational expedition ARCTIC `96 was carried out jointly by two ships, the German RV POLARSTERN and the Swedish RV ODEN. The research programme was developed by scientists from British, Canadian, Finish, German, Irish, Norwegian, Russian, Swedish and US American research institutions and universities. The physical programme on POLARSTERN was primarily designed to foster the Arctic Climte System Study (ACSYS) in the framework of the World Climate Research Programme (WCRP). Investigations during the recent years have provided substantial evidence that the Arctic Ocean and the adjacent shelf seas play a significant role in the thermohaline oceanic circulation and may therefore have a distinct influence on global climate. Consequently the main ACSYS goals are concerned with studies of the governing oceanic, atmospheric and hydrological processes in the entire Arctic region. (orig.) [Deutsch] Die Expedition ARCTIC `96 wurde von zwei Forschungsschiffen, der deutschen POLARSTERN und der schwedischen ODEN unter Beteiligung von Wissenschaftlern und Technikern aus Deutschland, Finnland, Grossbritannien, Irland, Kanada, Norwegen, Russland, Schweden und den Vereinigten Staaten von Amerika durchgefuehrt. Die physikalischen Projekte auf der POLARSTERN dienten ueberwiegend der Unterstuetzung der Arctic Climate System Study (ACSYS) des Weltklimaforschungsprogramms, die auf die Erforschung der vorherrschenden ozeanischen, atmosphaerischen, kryosphaerischen und hydrologischen Prozesse der Arktisregion ausgerichtet ist. (orig.)

  16. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  17. The Arctic policy of China and Japan

    DEFF Research Database (Denmark)

    Tonami, Aki

    2014-01-01

    At the May 2013 Arctic Council Ministerial Meeting, five Asian states, namely China, Japan, India, Singapore and South Korea, were accepted to become new Permanent Observers at the Arctic Council. Nonetheless, little attention has been paid to the Asian states and their interest in the Arctic. Most...... discussions have focused on China and the assessment of China’s interest in the Arctic is divided. This paper attempts to fill this gap by presenting and comparing the various components of the Arctic policies of China and Japan. Referring to Putnam’s model of the “two-level game” and Young’s categorization...

  18. Remote sensing estimation of terrestrially derived colored dissolved organic matterinput to the Arctic Ocean

    Science.gov (United States)

    Li, J.; Yu, Q.; Tian, Y. Q.

    2017-12-01

    The DOC flux from land to the Arctic Ocean has remarkable implication on the carbon cycle, biogeochemical & ecological processes in the Arctic. This lateral carbon flux is required to be monitored with high spatial & temporal resolution. However, the current studies in the Arctic regions were obstructed by the factors of the low spatial coverages. The remote sensing could provide an alternative bio-optical approach to field sampling for DOC dynamics monitoring through the observation of the colored dissolved organic matter (CDOM). The DOC and CDOM were found highly correlated based on the analysis of the field sampling data from the Arctic-GRO. These provide the solid foundation of the remote sensing observation. In this study, six major Arctic Rivers (Yukon, Kolyma, Lena, Mackenzie, Ob', Yenisey) were selected to derive the CDOM dynamics along four years. Our newly developed SBOP algorithm was applied to the large Landsat-8 OLI image data (nearly 100 images) for getting the high spatial resolution results. The SBOP algorithm is the first approach developing for the Shallow Water Bio-optical properties estimation. The CDOM absorption derived from the satellite images were verified with the field sampling results with high accuracy (R2 = 0.87). The distinct CDOM dynamics were found in different Rivers. The CDOM absorptions were found highly related to the hydrological activities and the terrestrially environmental dynamics. Our study helps to build the reliable system for studying the carbon cycle at Arctic regions.

  19. Treating floodplain lakes of large rivers as study units for variables that vary within lakes; an evaluation using chlorophyll a and inorganic suspended solids data from floodplain lakes of the Upper Mississippi River

    Science.gov (United States)

    Gray, B.R.; Rogala, J.R.; Houser, J.N.

    2013-01-01

    Contiguous floodplain lakes ('lakes') have historically been used as study units for comparative studies of limnological variables that vary within lakes. The hierarchical nature of these studies implies that study variables may be correlated within lakes and that covariate associations may differ not only among lakes but also by spatial scale. We evaluated the utility of treating lakes as study units for limnological variables that vary within lakes based on the criteria of important levels of among-lake variation in study variables and the observation of covariate associations that vary among lakes. These concerns were selected, respectively, to ensure that lake signatures were distinguishable from within-lake variation and that lake-scale effects on covariate associations might provide inferences not available by ignoring those effects. Study data represented chlorophyll a (CHL) and inorganic suspended solids (ISS) data from lakes within three reaches of the Upper Mississippi River. Sampling occurred in summer from 1993 through 2005 (except 2003); numbers of lakes per reach varied from 7 to 19, and median lake area varied from 53 to 101 ha. CHL and ISS levels were modelled linearly, with lake, year and lake x year effects treated as random. For all reaches, the proportions of variation in CHL and ISS attributable to differences among lakes (including lake and lake x year effects) were substantial (range: 18%-73%). Finally, among-lake variation in CHL and ISS was strongly associated with covariates and covariate effects that varied by lakes or lake-years (including with vegetation levels and, for CHL, log(ISS)). These findings demonstrate the utility of treating floodplain lakes as study units for the study of limnological variables and the importance of addressing hierarchy within study designs when making inferences from data collected within floodplain lakes.

  20. CARVE Measurements of Atmospheric Methane Concentrations and Emissions in Arctic and Boreal Alaska

    Science.gov (United States)

    Miller, C. E.; Miller, J. B.; Chang, R. Y.; Sweeney, C.; Karion, A.; Wofsy, S. C.; Henderson, J.; Eluszkiewicz, J.; Mountain, M.; Oechel, W. C.

    2013-12-01

    The Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) is a NASA Earth Ventures (EV-1) investigation designed to quantify correlations between atmospheric and surface state variables for the Alaskan terrestrial ecosystems through intensive seasonal aircraft campaigns, ground-based observations, and analysis sustained over a 5-year mission. CARVE bridges critical gaps in our knowledge and understanding of Arctic ecosystems, linkages between the Arctic hydrologic and terrestrial carbon cycles, and the feedbacks from fires and thawing permafrost. We present CARVE airborne measurements of spatial and temporal patterns in atmospheric CH4 concentrations and estimated surface-atmosphere emissions for Arctic and Boreal Alaska. Continuous in situ CH4, CO2 and CO data are supplemented by periodic whole air flask samples from which 13CH4 and non-methane hydrocarbons are used to assess the relative contributions of wetlands, fossil fuel combustion, and oil and gas production to the observed CH4 signals. The CARVE project has also initiated monthly 14CH4 sampling at Barrow, AK (BRW) and the CARVE Tower in Fox, AK (CRV) to evaluate seasonal changes in the fraction of old carbon being mobilized via methanogenesis.

  1. Arctic security and Norway

    Energy Technology Data Exchange (ETDEWEB)

    Tamnes, Rolf

    2013-03-01

    Global warming is one of the most serious threats facing mankind. Many regions and countries will be affected, and there will be many losers. The earliest and most intense climatic changes are being experienced in the Arctic region. Arctic average temperature has risen at twice the rate of the global average in the past half century. These changes provide an early indication for the world of the environmental and societal significance of global warming. For that reason, the Arctic presents itself as an important scientific laboratory for improving our understanding of the causes and patterns of climate changes. The rapidly rising temperature threatens the Arctic ecosystem, but the human consequences seem to be far less dramatic there than in many other places in the world. According to the U.S. National Intelligence Council, Russia has the potential to gain the most from increasingly temperate weather, because its petroleum reserves become more accessible and because the opening of an Arctic waterway could provide economic and commercial advantages. Norway might also be fortunate. Some years ago, the Financial Times asked: #Left Double Quotation Mark#What should Norway do about the fact that global warming will make their climate more hospitable and enhance their financial situation, even as it inflicts damage on other parts of the world?#Right Double Quotation Mark#(Author)

  2. Public Perceptions of Arctic Change

    Science.gov (United States)

    Hamilton, L.

    2014-12-01

    What does the general US public know, or think they know, about Arctic change? Two broad nationwide surveys in 2006 and 2010 addressed this topic in general terms, before and after the International Polar Year (IPY). Since then a series of representative national or statewide surveys have carried this research farther. The new surveys employ specific questions that assess public knowledge of basic Arctic facts, along with perceptions about the possible consequences of future Arctic change. Majorities know that late-summer Arctic sea ice area has declined compared with 30 years ago, although substantial minorities -- lately increasing -- believe instead that it has now recovered to historical levels. Majorities also believe that, if the Arctic warms in the future, this will have major effects on the weather where they live. Their expectation of local impacts from far-away changes suggests a degree of global thinking. On the other hand, most respondents do poorly when asked whether melting Arctic sea ice, melting Greenland/Antarctic land ice, or melting Himalayan glaciers could have more effect on sea level. Only 30% knew or guessed the right answer to this question. Similarly, only 33% answered correctly on a simple geography quiz: whether the North Pole could best be described as ice a few feet or yards thick floating over a deep ocean, ice more than a mile thick over land, or a rocky, mountainous landscape. Close analysis of response patterns suggests that people often construct Arctic "knowledge" on items such as sea ice increase/decrease from their more general ideology or worldview, such as their belief (or doubt) that anthropogenic climate change is real. When ideology or worldviews provide no guidance, as on the North Pole or sealevel questions, the proportion of accurate answers is no better than chance. These results show at least casual public awareness and interest in Arctic change, unfortunately not well grounded in knowledge. Knowledge problems seen on

  3. Beyond Thin Ice: Co-Communicating the Many Arctics

    Science.gov (United States)

    Druckenmiller, M. L.; Francis, J. A.; Huntington, H.

    2015-12-01

    Science communication, typically defined as informing non-expert communities of societally relevant science, is persuaded by the magnitude and pace of scientific discoveries, as well as the urgency of societal issues wherein science may inform decisions. Perhaps nowhere is the connection between these facets stronger than in the marine and coastal Arctic where environmental change is driving advancements in our understanding of natural and socio-ecological systems while paving the way for a new assortment of arctic stakeholders, who generally lack adequate operational knowledge. As such, the Arctic provides opportunity to advance the role of science communication into a collaborative process of engagement and co-communication. To date, the communication of arctic change falls within four primary genres, each with particular audiences in mind. The New Arctic communicates an arctic of new stakeholders scampering to take advantage of unprecedented access. The Global Arctic conveys the Arctic's importance to the rest of the world, primarily as a regulator of lower-latitude climate and weather. The Intra-connected Arctic emphasizes the increasing awareness of the interplay between system components, such as between sea ice loss and marine food webs. The Transforming Arctic communicates the region's trajectory relative to the historical Arctic, acknowledging the impacts on indigenous peoples. The broad societal consensus on climate change in the Arctic as compared to other regions in the world underscores the opportunity for co-communication. Seizing this opportunity requires the science community's engagement with stakeholders and indigenous peoples to construct environmental change narratives that are meaningful to climate responses relative to non-ecological priorities (e.g., infrastructure, food availability, employment, or language). Co-communication fosters opportunities for new methods of and audiences for communication, the co-production of new interdisciplinary

  4. Trace element composition in sediments of the Amazonian Lake Cristalino

    International Nuclear Information System (INIS)

    Ferraz, E.S.B.; Fernandes, E.A.N.

    1995-01-01

    Lake Cristalino is a small lake adjacent to the Negro River near Manaus and not far from the Amazonas River, in the central Amazon basin. The lake is fed seasonally by waters of the Negro River, a blackwater river with low levels of nutrients and suspended solids (7 g m -3 ). However, some investigations have established that Lake Cristalino has a high sedimentation rate (0.4-0.5 cm year -l ) similar to those in the alluvial floodplain lakes of the Amazonas River (suspended solids 200-300 g m -3 ). Sediment cores were taken during the low-water period and the trace-element composition and the natural radioactivity in the lake were examined. The results show a core (31 cm length) relatively uniform in concentrations of trace elements (Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Sc, Sm, Ta, Tb, Th, Yb and Zn), and the presence of 137 Cs in the first half. Concentrations of trace elements in Lake Cristalino sediments were not correlated with concentrations in the sediments of its parent river, the Negro River, or with concentrations in soils of the local area. However, significant correlation was found between the sediments of the lake and those of the Amazonas River. On the basis of these results, and water-level data at Manaus port, it is concluded that the lake occasionally receives variable amounts of sediment from the Amazonas River. 10 refs., 2 tabs., 2 figs

  5. Rapid response for invasive waterweeds at the arctic invasion front: Assessment of collateral impacts from herbicide treatments

    Science.gov (United States)

    Sethi, Suresh; Carey, Michael P.; Morton, John M.; Guerron-Orejuela, Edgar; Decino, Robert; Willette, Mark; Boersma, James; Jablonski, Jillian; Anderson, Cheryl

    2017-01-01

    The remoteness of subarctic and arctic ecosystems no longer protects against invasive species introductions. Rather, the mix of urban hubs surrounded by undeveloped expanses creates a ratchet process whereby anthropogenic activity is sufficient to introduce and spread invaders, but for which the costs of monitoring and managing remote ecosystems is prohibitive. Elodea spp. is the first aquatic invasive plant to become established in Alaska and has potential for widespread deleterious ecological and economic impacts. A rapid eradication response with herbicides has been identified as a priority invasion control strategy. We conducted a multi-lake monitoring effort to assess collateral impacts from herbicide treatment for Elodea in high latitude systems. Variability in data was driven by seasonal dynamics and natural lake-to-lake differences typical of high latitude waterbodies, indicating lack of evidence for systematic impacts to water quality or plankton communities associated with herbicide treatment of Elodea. Impacts on native macrophytes were benign with the exception of some evidence for earlier onset of leaf senescence for lily pads(Nuphar spp.) in treated lakes. We observed a substantial increase in detected native flora richness after Elodea was eradicated from the most heavily infested lake, indicating potential for retention of native macrophyte communities if infestations are addressed quickly. While avoiding introductions through prevention may be the most desirable outcome, these applications indicated low risks of non-target impacts associated with herbicide treatment as a rapid response option for Elodea in high latitude systems.

  6. Arctic oil and gas 2007

    Energy Technology Data Exchange (ETDEWEB)

    Huntington, Henry P.

    2007-07-01

    The Arctic Council's assessment of oil and gas activities in the Antic is prepared in response to a request from Ministers of the eight Arctic countries. The Ministers called for engagement of all Arctic Council Working Groups in this process, and requested that the Arctic Monitoring and Assessment programme (AMAP) take responsibility for coordinating the work. This Executive Summary is in three parts. Part A presents the main findings of the assessment and related recommendations. Part B is structured in the same manner as Part A and provides additional information for those interested in examining the basis for the conclusions and recommendations that are presented in Part A. Part C presents information on 'gaps in knowledge' and recommendations aimed at filling these gaps. (AG)

  7. Pan-Arctic distributions of continental runoff in the Arctic Ocean.

    Science.gov (United States)

    Fichot, Cédric G; Kaiser, Karl; Hooker, Stanford B; Amon, Rainer M W; Babin, Marcel; Bélanger, Simon; Walker, Sally A; Benner, Ronald

    2013-01-01

    Continental runoff is a major source of freshwater, nutrients and terrigenous material to the Arctic Ocean. As such, it influences water column stratification, light attenuation, surface heating, gas exchange, biological productivity and carbon sequestration. Increasing river discharge and thawing permafrost suggest that the impacts of continental runoff on these processes are changing. Here, a new optical proxy was developed and implemented with remote sensing to determine the first pan-Arctic distribution of terrigenous dissolved organic matter (tDOM) and continental runoff in the surface Arctic Ocean. Retrospective analyses revealed connections between the routing of North American runoff and the recent freshening of the Canada Basin, and indicated a correspondence between climate-driven changes in river discharge and tDOM inventories in the Kara Sea. By facilitating the real-time, synoptic monitoring of tDOM and freshwater runoff in surface polar waters, this novel approach will help understand the manifestations of climate change in this remote region.

  8. Arctic sea ice melt leads to atmospheric new particle formation.

    Science.gov (United States)

    Dall Osto, M; Beddows, D C S; Tunved, P; Krejci, R; Ström, J; Hansson, H-C; Yoon, Y J; Park, Ki-Tae; Becagli, S; Udisti, R; Onasch, T; O Dowd, C D; Simó, R; Harrison, Roy M

    2017-06-12

    Atmospheric new particle formation (NPF) and growth significantly influences climate by supplying new seeds for cloud condensation and brightness. Currently, there is a lack of understanding of whether and how marine biota emissions affect aerosol-cloud-climate interactions in the Arctic. Here, the aerosol population was categorised via cluster analysis of aerosol size distributions taken at Mt Zeppelin (Svalbard) during a 11 year record. The daily temporal occurrence of NPF events likely caused by nucleation in the polar marine boundary layer was quantified annually as 18%, with a peak of 51% during summer months. Air mass trajectory analysis and atmospheric nitrogen and sulphur tracers link these frequent nucleation events to biogenic precursors released by open water and melting sea ice regions. The occurrence of such events across a full decade was anti-correlated with sea ice extent. New particles originating from open water and open pack ice increased the cloud condensation nuclei concentration background by at least ca. 20%, supporting a marine biosphere-climate link through sea ice melt and low altitude clouds that may have contributed to accelerate Arctic warming. Our results prompt a better representation of biogenic aerosol sources in Arctic climate models.

  9. LIMNOLOGY, LAKE BASINS, LAKE WATERS

    Directory of Open Access Journals (Sweden)

    Petre GÂŞTESCU

    2009-06-01

    Full Text Available Limnology is a border discipline between geography, hydrology and biology, and is also closely connected with other sciences, from it borrows research methods. Physical limnology (the geography of lakes, studies lake biotopes, and biological limnology (the biology of lakes, studies lake biocoenoses. The father of limnology is the Swiss scientist F.A. Forel, the author of a three-volume entitled Le Leman: monographie limnologique (1892-1904, which focuses on the geology physics, chemistry and biology of lakes. He was also author of the first textbook of limnology, Handbuch der Seenkunde: allgemeine Limnologie,(1901. Since both the lake biotope and its biohydrocoenosis make up a single whole, the lake and lakes, respectively, represent the most typical systems in nature. They could be called limnosystems (lacustrine ecosystems, a microcosm in itself, as the American biologist St.A. Forbes put it (1887.

  10. Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic

    Directory of Open Access Journals (Sweden)

    J. R. Spackman

    2010-10-01

    Full Text Available Understanding the processes controlling black carbon (BC in the Arctic is crucial for evaluating the impact of anthropogenic and natural sources of BC on Arctic climate. Vertical profiles of BC mass loadings were observed from the surface to near 7-km altitude in April 2008 using a Single-Particle Soot Photometer (SP2 during flights on the NOAA WP-3D research aircraft from Fairbanks, Alaska. These measurements were conducted during the NOAA-sponsored Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project. In the free troposphere, the Arctic air mass was influenced by long-range transport from biomass-burning and anthropogenic source regions at lower latitudes especially during the latter part of the campaign. Average BC mass mixing ratios peaked at about 150 ng BC (kg dry air −1 near 5.5 km altitude in the aged Arctic air mass and 250 ng kg−1 at 4.5 km in biomass-burning influenced air. BC mass loadings were enhanced by up to a factor of 5 in biomass-burning influenced air compared to the aged Arctic air mass. At the bottom of some of the profiles, positive vertical gradients in BC were observed over the sea-ice. The vertical profiles generally occurred in the vicinity of open leads in the sea-ice. In the aged Arctic air mass, BC mass loadings more than doubled with increasing altitude within the ABL and across the boundary layer transition while carbon monoxide (CO remained constant. This is evidence for depletion of BC mass in the ABL. BC mass loadings were positively correlated with O3 in ozone depletion events (ODEs for all the observations in the ABL. Since bromine catalytically destroys ozone in the ABL after being released as molecular bromine in regions of new sea-ice formation at the surface, the BC–O3 correlation suggests that BC particles were removed by a surface process such as dry deposition. We develop a box model to estimate the dry deposition flux of BC

  11. ArcticDEM Validation and Accuracy Assessment

    Science.gov (United States)

    Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.

    2017-12-01

    ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration

  12. Arctic security in an age of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kraska, James (ed.)

    2013-03-01

    Publisher review: This book examines Arctic defense policy and military security from the perspective of all eight Arctic states. In light of climate change and melting ice in the Arctic Ocean, Canada, Russia, Denmark (Greenland), Norway and the United States, as well as Iceland, Sweden and Finland, are grappling with an emerging Arctic security paradigm. This volume brings together the world's most seasoned Arctic political-military experts from Europe and North America to analyze how Arctic nations are adapting their security postures to accommodate increased shipping, expanding naval presence, and energy and mineral development in the polar region. The book analyzes the ascent of Russia as the first 'Arctic superpower', the growing importance of polar security for NATO and the Nordic states, and the increasing role of Canada and the United States in the region.(Author)

  13. Ecosystem-atmosphere interactions in the Arctic

    DEFF Research Database (Denmark)

    López-Blanco, Efrén

    The terrestrial CO2 exchange in the Arctic plays an important role in the global carbon (C) cycle. The Arctic ecosystems, containing a large amount of organic carbon (C), are experiencing on-going warming in recent decades, which is affecting the C cycling and the feedback interactions between its...... of measurement sites, particularly covering full annual cycles, but also the frequent gaps in data affected by extreme conditions and remoteness. Combining ecosystem models and field observations we are able to study the underlying processes of Arctic CO2 exchange in changing environments. The overall aim...... of the research is to use data-model approaches to analyse the patterns of C exchange and their links to biological processes in Arctic ecosystems, studied in detail both from a measurement and a modelling perspective, but also from a local to a pan-arctic scale. In Paper I we found a compensatory response...

  14. Ecological factors affecting Rainbow Smelt recruitment in the main basin of Lake Huron, 1976-2010

    Science.gov (United States)

    O'Brien, Timothy P.; Taylor, William W.; Roseman, Edward F.; Madenjian, Charles P.; Riley, Stephen C.

    2014-01-01

    Rainbow Smelt Osmerus mordax are native to northeastern Atlantic and Pacific–Arctic drainages and have been widely introduced throughout North America. In the Great Lakes region, Rainbow Smelt are known predators and competitors of native fish and a primary prey species in pelagic food webs. Despite their widespread distribution, importance as a prey species, and potential to negatively interact with native fish species, there is limited information concerning stock–recruitment relationships for Rainbow Smelt. To better understand recruitment mechanisms, we evaluated potential ecological factors determining recruitment dynamics for Rainbow Smelt in Lake Huron using data from bottom trawl catches. We specifically evaluated influence of stock size, environmental factors (water temperature, lake levels, and precipitation), and salmonine predation on the production of age-0 recruits from 1976 to 2010. Rainbow Smelt recruitment was negatively related to stock size exceeding 10 kg/ha, indicating that compensatory, density-dependent mortality from cannibalism or intraspecific competition was an important factor related to the production of age-0 recruits. Recruitment was positively related to spring precipitation suggesting that the amount of stream-spawning habitat as determined by precipitation was important for the production of strong Rainbow Smelt recruitment. Additionally, density of age-0 Rainbow Smelt was positively related to Lake Trout Salvelinus namaycush abundance. However, spawning stock biomass of Rainbow Smelt, which declined substantially from 1989 to 2010, was negatively associated with Lake Trout catch per effort suggesting predation was an important factor related to the decline of age-2 and older Rainbow Smelt in Lake Huron. As such, we found that recruitment of Rainbow Smelt in Lake Huron was regulated by competition with or cannibalism by older conspecifics, spring precipitation influencing stream spawning habitats, and predation by Lake Trout on

  15. Wind power in Arctic regions

    International Nuclear Information System (INIS)

    Lundsager, P.; Ahm, P.; Madsen, B.; Krogsgaard, P.

    1993-07-01

    Arctic or semi-arctic regions are often endowed with wind resources adequate for a viable production of electricity from the wind. Only limited efforts have so far been spent to introduce and to demonstrate the obvious synergy of combining wind power technology with the problems and needs of electricity generation in Arctic regions. Several factors have created a gap preventing the wind power technology carrying its full role in this context, including a certain lack of familiarity with the technology on the part of the end-users, the local utilities and communities, and a lack of commonly agreed techniques to adapt the same technology for Arctic applications on the part of the manufacturers. This report is part of a project that intends to contribute to bridging this gap. The preliminary results of a survey conducted by the project are included in this report, which is a working document for an international seminar held on June 3-4, 1993, at Risoe National Laboratory, Denmark. Following the seminar a final report will be published. It is intended that the final report will serve as a basis for a sustained, international effort to develop the wind power potential of the Arctic and semi-arctic regions. The project is carried out by a project group formed by Risoe, PA Energy and BTM Consult. The project is sponsored by the Danish Energy Agency of the Danish Ministry of Energy through grant no. ENS-51171/93-0008. (au)

  16. Environmental marine geology of the Arctic Ocean

    International Nuclear Information System (INIS)

    Mudie, P.J.

    1991-01-01

    The Arctic Ocean and its ice cover are major regulators of Northern Hemisphere climate, ocean circulation and marine productivity. The Arctic is also very sensitive to changes in the global environment because sea ice magnifies small changes in temperature, and because polar regions are sinks for air pollutants. Marine geology studies are being carried out to determine the nature and rate of these environmental changes by study of modem ice and sea-bed environments, and by interpretation of geological records imprinted in the sea-floor sediments. Sea ice camps, an ice island, and polar icebreakers have been used to study both western and eastern Arctic Ocean basins. Possible early warning signals of environmental changes in the Canadian Arctic are die-back in Arctic sponge reefs, outbreaks of toxic dinoflagellates, and pesticides in the marine food chain. Eastern Arctic ice and surface waters are contaminated by freon and radioactive fallout from Chernobyl. At present, different sedimentary processes operate in the pack ice-covered Canadian polar margin than in summer open waters off Alaska and Eurasia. The geological records, however, suggest that a temperature increase of 1-4 degree C would result in summer open water throughout the Arctic, with major changes in ocean circulation and productivity of waters off Eastern North America, and more widespread transport of pollutants from eastern to western Arctic basins. More studies of longer sediment cores are needed to confirm these interpretations, but is is now clear that the Arctic Ocean has been the pacemaker of climate change during the past 1 million years

  17. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  18. Development of pan-Arctic database for river chemistry

    Science.gov (United States)

    McClelland, J.W.; Holmes, R.M.; Peterson, B.J.; Amon, R.; Brabets, T.; Cooper, L.; Gibson, J.; Gordeev, V.V.; Guay, C.; Milburn, D.; Staples, R.; Raymond, P.A.; Shiklomanov, I.; Striegl, Robert G.; Zhulidov, A.; Gurtovaya, T.; Zimov, S.

    2008-01-01

    More than 10% of all continental runoff flows into the Arctic Ocean. This runoff is a dominant feature of the Arctic Ocean with respect to water column structure and circulation. Yet understanding of the chemical characteristics of runoff from the pan-Arctic watershed is surprisingly limited. The Pan- Arctic River Transport of Nutrients, Organic Matter, and Suspended Sediments ( PARTNERS) project was initiated in 2002 to help remedy this deficit, and an extraordinary data set has emerged over the past few years as a result of the effort. This data set is publicly available through the Cooperative Arctic Data and Information Service (CADIS) of the Arctic Observing Network (AON). Details about data access are provided below.

  19. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors.

    Science.gov (United States)

    Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua

    2012-03-01

    Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.

  20. Greenland and the international politics of a changing arctic

    DEFF Research Database (Denmark)

    Greenland and the International Politics of a Changing Arctic examines the international politics of semi-independent Greenland in a changing and increasingly globalised Arctic. Without sovereign statehood, but with increased geopolitical importance, independent foreign policy ambitions......, and a solidified self-image as a trailblazer for Arctic indigenous peoples’ rights, Greenland is making its mark on the Arctic and is in turn affected – and empowered – by Arctic developments. The chapters in this collection analyse how a distinct Greenlandic foreign policy identity shapes political ends and means...... for regional change in the Arctic. This is the first comprehensive and interdisciplinary examination of Greenland’s international relations and how they are connected to wider Arctic politics. It will be essential reading for students and scholars interested in Arctic governance and security, international...

  1. Does Reality Matter? Social and Science Bases of Public Beliefs about Arctic Change

    Science.gov (United States)

    Walker, D. A.; Schaefer, K. M.; Schaeffer, K. P.; Schaefer, K. M.; Hamilton, L.

    2015-12-01

    Surveys of public perceptions about trends in Arctic sea ice find that over two-thirds are aware of the multi-decade decrease. This awareness differs sharply across ideological and educational subgroups, however. It does not appear to shift in response to scientific and media discussion following a September with unusually low (2012) or somewhat higher (2013) sea ice extent. Other perceptions about Arctic change, such as impacts on mid-latitude weather, follow similar patterns with sharp ideological difference and limited response to external events, including science reports. On the other hand, public accuracy on basic factual questions that do not by themselves imply directional change (such as location of the North Pole) may be very low, and among some subgroups accurate knowledge shows an oddly negative correlation with self-confidence about understanding of climate change. These results from 13 surveys over 2011-2015 suggest that biased assimilation filters the acceptance of information about Arctic change, with implications for science communication.

  2. The changing seasonal climate in the Arctic.

    Science.gov (United States)

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  3. ARCTOX: a pan-Arctic sampling network to track mercury contamination across Arctic marine food webs

    DEFF Research Database (Denmark)

    Fort, Jerome; Helgason, Halfdan; Amelineau, Francoise

    and is still a source of major environmental concerns. In that context, providing a large-scale and comprehensive understanding of the Arctic marine food-web contamination is essential to better apprehend impacts of anthropogenic activities and climate change on the exposure of Arctic species and humans to Hg....... In 2015, an international sampling network (ARCTOX) has been established, allowing the collection seabird samples all around the Arctic. Seabirds are indeed good indicators of Hg contamination of marine food webs at large spatial scale. Gathering researchers from 10 countries, ARCTOX allowed......Arctic marine ecosystems are threatened by new risks of Hg contamination under the combined effects of climate change and human activities. Rapid change of the cryosphere might for instance release large amounts of Hg trapped in sea-ice, permafrost and terrestrial glaciers over the last decades...

  4. Cytological and ultrastructural preservation in Eocene Metasequoia leaves from the Canadian high Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhut, K.; Vann, D.R.; LePage, B.A. [University of Pennsylvania, Philadelphia, PA (United States). Dept. of Earth & Environmental Science

    2004-06-01

    The ultrastructural examination by transmission electron microscopy of 45-million-year-old mummified leaves of Metasequoia extracted from the Upper Coal member of the Buchanan Lake Formation in Napartulik on Axel Heiberg Island revealed the preservation of intact chloroplasts and chloroplast components. Abundant tanniferous cell inclusions may indicate that the 3-mo period of constant daylight during the Arctic summer induced high concentrations of tannins in the leaf tissues, which may have arrested microbial degradation of the litter. Quantified differences in the extent of chloroplast preservation through a vertical section of the lignite suggest that short-term shifts in the depositional environment took place, perhaps influencing the exposure of the leaf tissues to conditions that would either promote or inhibit decomposition.

  5. Marine Corps Equities in the Arctic

    Science.gov (United States)

    2013-04-18

    reduces the shipping time from Yokohama, Japan, to Hamburg , Germany, by 11 days as compared to the Suez Canal. Ships average approximately a 20...areas within the Arctic Circle. 10 Warming ocean water is causing fisheries to shift north as well. Fish populations usually found in the...people live in the Arctic region. Commercial fishing fleets are following these populations. 29 Russia holds the majority of the Arctic population

  6. Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-12-01

    Full Text Available The temporal variability of the moments of probability distribution functions (pdfs of total sea ice deformation rates in the Arctic is analyzed in the context of the basin-scale wind forcing acting on the ice. The pdfs are estimated for 594 satellite-derived sea ice deformation maps from 11 winter seasons between 1996/1997 and 2007/2008, provided by the RADARSAT Geophysical Processor System. The temporal scale analyzed equals 3 days. The moments of the pdfs, calculated for a range of spatial scales (12.5–900 km, have two dominating components of variability: a seasonal cycle, with deformation rates decreasing throughout winter towards a minimum in March; and a short-term, synoptic variability, strongly correlated with the area-averaged magnitude of the wind stress over the Arctic, estimated based on the NCEP-DOE Reanalysis-2 data (correlation coefficient of 0.71 for the mean deformation rate. Due to scaling properties of the moments, logarithms of higher moments are strongly correlated with the wind stress as well. Exceptions are observed only at small spatial scales, as a result of extreme deformation events, not directly associated with large-scale wind forcing. By repeating the analysis within regions of different sizes and locations, we show that the wind–ice deformation correlation is largest at the basin scale and decreases with decreasing size of the area of study. Finally, we suggest that a positive trend in seasonally averaged correlation between sea ice deformation rates and the wind forcing, present in the analyzed data, may be related to an observed decrease in the multi-year ice area in the Arctic, indicating possibly even stronger correlations in the future.

  7. Radioactive contamination in Arctic - present situation and future challenges

    International Nuclear Information System (INIS)

    Strand, Per

    2002-01-01

    There is currently a focus on radioactivity and the Arctic region. The reason for this is probably the high number of nuclear sources in parts of the Arctic and the vulnerability of Arctic systems to radioactive contamination. The Arctic environment is also perceived as a wilderness and the need for the protection of this wilderness against contamination is great. In the last decade information has also been released concerning the nuclear situation which has caused concern in many countries. Due to such concerns, the International Arctic Environmental Protection Strategy (IAEPS) was launched in 1991 and the Arctic Monitoring and Assessment Programme (AMAP) was established. AMAP is undertaking an assessment of the radioactive contamination of the Arctic and its radiological consequences. In 1996 IAEPS became part of the Arctic Council. AMAP presented one main report in 1997 and another in 1998. There are also several other national, bilateral and international programmes in existence which deal with this issue. This paper summarises some of current knowledge about sources of radioactive contamination, vulnerability, exposure of man, and potential sources for radioactive contamination within Arctic and some views on the future needs for work concerning radioactivity in Arctic. (au)

  8. The Arctic - A New Region for China's Foreign Policy

    Directory of Open Access Journals (Sweden)

    V S Yagiya

    2015-12-01

    Full Text Available Article is devoted to foreign policy of China in the Arctic. Main attention is paid to strategic view of the China concerning the Arctic, to bilateral and multilateral cooperation on the Arctic issues, also to opinion of Russian experts about discussing of Russian-China economic partnership. It was shown interests of the People's Republic of China in the Arctic: use Arctic transport system from the Pacific Rim to Europe; possibility of access to the Arctic resources; seeks of partners for the realized of Arctic projects and programs. It was pointed six directions of China cooperation in the Arctic: a scientific researches, b natural minerals, oil and gas issues, c tourism, d routes of the Arctic navigation, e use of high technologies in development of regional economy, e cooperation in the cultural and educational spheres. Authors are summarized that at the initial stage of the international cooperation in the Arctic polar scientific researches become as the tool of “he soft power”, and in the long term - the Northern Sea Route of the Russian Federation is included in the Strategy of China Economic belt and the Maritime Silk Route in the XXI century.

  9. High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland

    Science.gov (United States)

    Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.

    2013-12-01

    Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.

  10. Epiphytic Diatoms along Environmental Gradients in Western European Shallow Lakes

    NARCIS (Netherlands)

    Blanco, Saul; Cejudo-Figueiras, Cristina; Alvarez-Blanco, Irene; van Donk, Ellen|info:eu-repo/dai/nl/069838593; Gross, Elisabeth M.; Hansson, Lars-Anders; Irvine, Kenneth; Jeppesen, Erik; Kairesalo, Timo; Moss, Brian; Noges, Tiina; Becares, Eloy

    Diatom-based assays have been successfully associated worldwide with the tropic status of lakes. Several studies have demonstrated a correlation between epiphytic diatoms and nutrient load in shallow lakes and wetlands. We examine the relative importance of environmental factors in explaining the

  11. Tools for the development of a benthic quality index for Italian lakes

    Directory of Open Access Journals (Sweden)

    Angelo SOLIMINI

    2006-02-01

    Full Text Available In this paper, we propose a methodology to develop a benthic quality index useful for Italian lakes. The existing data about benthic macroinvertebrates of the Italian lakes were collected over a period of 50 years, but only a few lakes such as the Maggiore and the Mergozzo have been intensely studied. Some large lakes such as Lake Como are still almost uninvestigated. In total, 570 benthic macroinvertebrate taxa were identified; of which 373 belong to Chironomidae and 85 to Oligochaeta. With the aim of relating environmental variables with macrobenthos assemblages, we carried out a canonical correlation analysis (CANON using a database that included 1060 sampling points. Both environmental (13 variables describing morphometry and hydrochemistry and biological data (57 taxa were available, but only taxa present in at least 10 samples were selected for data analysis. Three canonical variates were ecologically significant. The first one was correlated with conductivity, pH and alkalinity and accounted for 20% of the total variation. The second one was positively correlated with total phosphorus and N-NH4, and inversely with dissolved oxygen, and accounted for 18% of the total variation. The third one showed a direct correlation with maximum lake depth and volume and an inverse correlation with water temperature, and accounted for 17% of the total variation. A Trophic Status Index (TSI, based on the table 11 of the Italian Law 152/99 (without including chlorophyll, was calculated by ranking percent oxygen saturation, transparency and total phosphorus. TSI was used to test a Benthic Quality Index for Italian Lakes (BQIL which is proposed in the present paper. The algorithm considered three steps. First, the means of three variables were calculated: percent oxygen saturation, transparency and total phosphorus weighted by the taxa abundances. These values are interpreted as optimum for each taxon and used to assign an indicator weight (BQIW. Second

  12. Russia's strategy in the Arctic

    DEFF Research Database (Denmark)

    Staun, Jørgen Meedom

    2017-01-01

    Russia's strategy in the Arctic is dominated by two overriding international relations (IR) discourses – or foreign policy directions. On the one hand, there is an IR-realism/geopolitical discourse that puts security first and often has a clear patriotic character, dealing with ‘exploring......’, ‘winning’ or ‘conquering’ the Arctic and putting power, including military power, behind Russia's national interests in the area. Opposed to this is an IR-liberalism, international law-inspired and modernisation-focused discourse, which puts cooperation first and emphasises ‘respect for international law......’, ‘negotiation’ and ‘cooperation’, and labels the Arctic as a ‘territory of dialogue’, arguing that the Arctic states all benefit the most if they cooperate peacefully. After a short but very visible media stunt in 2007 and subsequent public debate by proponents of the IR realism/geopolitical side, the IR...

  13. Biotic interactions in temporal trends (1992–2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory

    International Nuclear Information System (INIS)

    Ryan, M.J.; Stern, G.A.; Kidd, K.A.; Croft, M.V.; Gewurtz, S.; Diamond, M.; Kinnear, L.; Roach, P.

    2013-01-01

    Declines in 6 organochlorine (OC) contaminant groups; chlordane (CHL), DDT, HCH, toxaphene (CHB), PCB and chlorinated benzenes (CBz) were measured in biota of a sub-Arctic lake (Lake Laberge, YT) following the closure of a commercial fishery in 1991. This study examined morphological (length, weight, age), biochemical (lipid content, δ 13 C, δ 15 N), population and OC data for 9 fishes and zooplankton between 1993 and 2003 (2010 for lake trout) to investigate causes for the OC declines. Growth dilution was a major factor influencing the decrease of OCs in lake trout, round whitefish and possibly zooplankton most notably in the early 2000s. A decline in lipids of most fish species also contributed to OC declines, although no such change was evident for zooplankton. It is suspected that increases in fish populations or climate variations over the 1990s, may have contributed towards a shift in plankton community composition. From 1991 to 1999, CPUE increased for 7 of the fish species and declined for 2 others. Concurrently, the zooplankton community shifted from an abundance of C. scutifer in 1993 to dominance by D. pribilofensis in 2001. Nitrogen and carbon stable isotope data suggested that food web interactions for most fish species have not changed over time. Although concentrations of OCs have declined in many fishes, the “rate” of OC transfer (using slopes of log OC vs. nitrogen isotope ratios) through the food web was greater in 2001 than in 1993. Overall, the declines in OC concentrations in the fish from Lake Laberge occurred concurrently with changes in their growth, lipid, and abundance, suggesting that ecosystem responses to the closure of the fishery were in part responsible for the lower contaminants in these fishes. As a result of this study, the Yukon government rescinded the health advisory for limiting the consumption of fish from Lake Laberge. - Highlights: ► Organochlorine contaminants in a sub-Arctic lake were monitored post

  14. Biotic interactions in temporal trends (1992–2010) of organochlorine contaminants in the aquatic food web of Lake Laberge, Yukon Territory

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.J. [Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6 (Canada); University of Manitoba, Dept. of Soil Science, Winnipeg, Manitoba, Canada R3T 2N2 (Canada); Stern, G.A., E-mail: gary.stern@dfo-mpo.gc.ca [Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6 (Canada); Kidd, K.A. [University of New Brunswick, Canadian Rivers Institute and Department of Biology, Saint John, New Brunswick, Canada E2L 4E5 (Canada); Croft, M.V. [Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6 (Canada); Gewurtz, S.; Diamond, M. [University of Toronto, Department of Geography, Toronto, Ontario, Canada M5S 3G3 (Canada); Kinnear, L. [Northern Climate Exchange, Yukon Research Center, Yukon College, Whitehorse, Yukon Territory, Canada Y1A 5K4 (Canada); Roach, P. [Aboriginal Affairs and Northern Development Canada, Rm 415C - 300 Main St., Whitehorse, Yukon Territory, Canada Y1A 2B5 (Canada)

    2013-01-15

    Declines in 6 organochlorine (OC) contaminant groups; chlordane (CHL), DDT, HCH, toxaphene (CHB), PCB and chlorinated benzenes (CBz) were measured in biota of a sub-Arctic lake (Lake Laberge, YT) following the closure of a commercial fishery in 1991. This study examined morphological (length, weight, age), biochemical (lipid content, δ{sup 13}C, δ{sup 15}N), population and OC data for 9 fishes and zooplankton between 1993 and 2003 (2010 for lake trout) to investigate causes for the OC declines. Growth dilution was a major factor influencing the decrease of OCs in lake trout, round whitefish and possibly zooplankton most notably in the early 2000s. A decline in lipids of most fish species also contributed to OC declines, although no such change was evident for zooplankton. It is suspected that increases in fish populations or climate variations over the 1990s, may have contributed towards a shift in plankton community composition. From 1991 to 1999, CPUE increased for 7 of the fish species and declined for 2 others. Concurrently, the zooplankton community shifted from an abundance of C. scutifer in 1993 to dominance by D. pribilofensis in 2001. Nitrogen and carbon stable isotope data suggested that food web interactions for most fish species have not changed over time. Although concentrations of OCs have declined in many fishes, the “rate” of OC transfer (using slopes of log OC vs. nitrogen isotope ratios) through the food web was greater in 2001 than in 1993. Overall, the declines in OC concentrations in the fish from Lake Laberge occurred concurrently with changes in their growth, lipid, and abundance, suggesting that ecosystem responses to the closure of the fishery were in part responsible for the lower contaminants in these fishes. As a result of this study, the Yukon government rescinded the health advisory for limiting the consumption of fish from Lake Laberge. - Highlights: ► Organochlorine contaminants in a sub-Arctic lake were monitored post

  15. The relation between Arctic Ocean circulation and the Arctic Oscillation as revealed by satellite altimetry and gravimetry

    Science.gov (United States)

    Morison, J.; Kwok, R.; Peralta Ferriz, C.; Dickinson, S.; Morison, D.; Andersen, R.; Dewey, S.

    2017-12-01

    Arctic Ocean circulation is commonly characterized by the persistent anticyclonic Beaufort Gyre in the Canada Basin and the Transpolar Drift. While these are clearly important features, their role in changing Arctic Ocean circulation is at times distorted by sampling biases inherent in drifting buoy and standard shipboard measurements of western nations. Hydrographic measurements from SCICEX submarine cruises for science in the early 1990s revealed an increasingly cyclonic circulation along the Russian side of the Arctic Ocean related to the low sea level pressure pattern in the same region associated with a high Arctic Oscillation (AO) index. More recently satellite altimetry (ICESat and CryoSat2) and gravimetry (GRACE) have provided the basin-wide observational coverage needed to see shifts to increased cyclonic circulation in 2004 to 2008 and decreased cyclonic circulation in 2008 to 2015. These shifts are related to changes in the AO and are important for their effect on the trajectories of sea ice and freshwater through the Arctic Ocean.

  16. A Recommended Set of Key Arctic Indicators

    Science.gov (United States)

    Stanitski, D.; Druckenmiller, M.; Fetterer, F. M.; Gerst, M.; Intrieri, J. M.; Kenney, M. A.; Meier, W.; Overland, J. E.; Stroeve, J.; Trainor, S.

    2017-12-01

    The Arctic is an interconnected and environmentally sensitive system of ice, ocean, land, atmosphere, ecosystems, and people. From local to pan-Arctic scales, the area has already undergone major changes in physical and societal systems and will continue at a pace that is greater than twice the global average. Key Arctic indicators can quantify these changes. Indicators serve as the bridge between complex information and policy makers, stakeholders, and the general public, revealing trends and information people need to make important socioeconomic decisions. This presentation evaluates and compiles more than 70 physical, biological, societal and economic indicators into an approachable summary that defines the changing Arctic. We divided indicators into "existing," "in development," "possible," and "aspirational". In preparing a paper on Arctic Indicators for a special issue of the journal Climatic Change, our group established a set of selection criteria to identify indicators to specifically guide decision-makers in their responses to climate change. A goal of the analysis is to select a manageable composite list of recommended indicators based on sustained, reliable data sources with known user communities. The selected list is also based on the development of a conceptual model that identifies components and processes critical to our understanding of the Arctic region. This list of key indicators is designed to inform the plans and priorities of multiple groups such as the U.S. Global Change Research Program (USGCRP), Interagency Arctic Research Policy Committee (IARPC), and the Arctic Council.

  17. <