WorldWideScience

Sample records for arctic kara sea

  1. Furfural-based polymers for the sealing of reactor vessels dumped in the Arctic Kara Sea

    International Nuclear Information System (INIS)

    Between 1965 and 1988, 16 naval reactor vessels were dumped in the Arctic Kara Sea. Six of the vessels contained spent nuclear fuel that had been damaged during accidents. In addition, a container holding ∼ 60% of the damaged fuel from the No. 2 reactor of the atomic icebreaker Lenin was dumped in 1967. Before dumping, the vessels were filled with a solidification agent, Conservant F, in order to prevent direct contact between the seawater and the fuel and other activated components, thereby reducing the potential for release of radionuclides into the environment. The key ingredient in Conservant F is furfural (furfuraldehyde). Other constituents vary, depending on specific property requirements, but include epoxy resin, mineral fillers, and hardening agents. In the liquid state (prior to polymerization) Conservant F is a low viscosity, homogeneous resin blend that provides long work times (6--9 hours). In the cured state, Conservant F provides resistance to water and radiation, has high adhesion properties, and results in minimal gas evolution. This paper discusses the properties of Conservant F in both its cured and uncured states and the potential performance of the waste packages containing spent nuclear fuel in the Arctic Kara Sea

  2. Transport mechanisms of radioactive substances in the Arctic Ocean. Modelling and experimental studies in the Kara and Barents Seas

    International Nuclear Information System (INIS)

    In 1992, it became known to the public that the former Soviet Union had dumped large amounts of radioactive waste in the Arctic Ocean since about 1959. The waste was dumped into the Kara and Barents Seas in liquid and solid form, sealed in barrels or containers, as reactor parts but also as complete ship reactors including spent fuel. Wrecks of nuclear submarines were dumped near the coast of Novaya Semlya, in depths less than 50 m. The dumping took place in strong contradiction to international rules and conventions. After some confusion and overestimation of the total radioactive inventory, the amount of the waste and the dump site locations are well known, meanwhile. International pressure and the more open information policy of Russia helped to improve the situation. Various international fora primarily within the IAEA and the Arctic Monitoring and Assessment Programme (AMAP) investigated the potential consequences from these dumping practices. This report is the German contribution to these international assessments. The dumped objects in the Kara Sea encompass 17 nuclear ship reactors, seven of them still carrying spent fuel. Four dump sites are located in small and shallow fjords at the east coast of Novaya Semlya, and in the Novaya Semlya Trough, in max. depth of 420 m. The total radioactive inventory was, at the time of dumping, 37 PBq. During the project numerous samples from seawater and sediment were analysed on artificial radionuclides in Arctic waters. This included samples from the Kara Sea but also samples around the Russian nuclear submarine Komsomolets sunk in the Norwegian Sea at a depth of about 1700 m in 1989. Numerical hydrodynamic models in local, regional and global scale were used to predict the potential dispersion of released radionuclides from the dumped wastes and reactors in the Kara Sea. (orig.)

  3. Atlantic water flow into the Arctic Ocean through the St. Anna Trough in the northern Kara Sea

    Science.gov (United States)

    Dmitrenko, Igor A.; Rudels, Bert; Kirillov, Sergey A.; Aksenov, Yevgeny O.; Lien, Vidar S.; Ivanov, Vladimir V.; Schauer, Ursula; Polyakov, Igor V.; Coward, Andrew; Barber, David G.

    2015-07-01

    The Atlantic Water flow from the Barents and Kara seas to the Arctic Ocean through the St. Anna Trough (SAT) is conditioned by interaction between Fram Strait branch water circulating in the SAT and Barents Sea branch water—both of Atlantic origin. Here we present data from an oceanographic mooring deployed on the eastern flank of the SAT from September 2009 to September 2010 as well as CTD (conductivity-temperature-depth) sections across the SAT. A distinct vertical density front over the SAT eastern slope deeper than ˜50 m is attributed to the outflow of Barents Sea branch water to the Arctic Ocean. In turn, the Barents Sea branch water flow to the Arctic Ocean is conditioned by two water masses defined by relative low and high fractions of the Atlantic Water. They are also traceable in the Nansen Basin downstream of the SAT entrance. A persistent northward current was recorded in the subsurface layer along the SAT eastern slope with a mean velocity of 18 cm s-1 at 134-218 m and 23 cm s-1 at 376-468 m. Observations and modeling suggest that the SAT flow has a significant density-driven component. It is therefore expected to respond to changes in the cross-trough density gradient conditioned by interaction between the Fram Strait and Barents Sea branches. Further modeling efforts are necessary to investigate hydrodynamic instability and eddy generation caused by the interaction between the SAT flow and the Arctic Ocean Fram Strait branch water boundary current.

  4. NODC Standard Product: International ocean atlas Volume 2 - Biological atlas of the Arctic Seas 2000 - Plankton of the Barents and Kara Seas (1 disc set) (NODC Accession 0098568)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Presented in this CD-ROM are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period...

  5. NODC Standard Product: Climatic atlas of the Arctic Seas 2004 - Database of the Barents, Kara, Laptev, and White Seas - Oceanography and marine biology (NODC Accession 0098061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Atlas presents primary data on meteorology, oceanography, and hydrobiology from the Barents, Kara, Laptev, and White Seas, which were collected during the...

  6. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the POLARSTERN in the Arctic Ocean, Kara Sea and Laptev (or Nordenskjold) Sea from 1993-08-06 to 1993-10-05 (NODC Accession 0113593)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113593 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the Arctic Ocean, Kara Sea and Laptev (or...

  7. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the POLARSTERN in the Arctic Ocean, Kara Sea and Laptev (or Nordenskjold) Sea from 1995-07-07 to 1995-09-20 (NODC Accession 0116408)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116408 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the Arctic Ocean, Kara Sea and Laptev (or...

  8. Transport of radionuclides in the Kara Sea and Eastern Barents Sea

    International Nuclear Information System (INIS)

    The Arctic seas are influenced by radioactive contamination from military and civilian sources such as global fallout, discharges from reprocessing plants, river transport and the Chernobyl fallout. Potential sources are dumped radioactive waste in the Kara Sea. A joint Norwegian American field expedition to the Kara Sea was carried out in August-September 1995. An expedition to the Eastern Barents Sea was conducted in September 1996

  9. Leaching of radionuclides from furfural-based polymers used to solidify reactor compartments and components disposed of in the Arctic Kara Sea

    International Nuclear Information System (INIS)

    Within the course of operating its nuclear navy, the former Soviet Union (FSU) disposed of reactor vessels and spent nuclear fuel (SNF) in three fjords on the east coast of Novaya Zemlya and in the open Kara Sea within the Novaya Zemlya Trough during the period 1965 to 1988. The dumping consisted of 16 reactors, six of which contained SNF and one special container that held ca. 60% of the damaged SNF and the screening assembly from the No. 2 reactor of the atomic icebreaker Lenin. At the time, the FSU considered dumping of decommissioned nuclear submarines with damaged cores in the bays of and near by the Novaya Zemlya archipelago in the Arctic Kara Sea to be acceptable. To provide an additional level of safety, a group of Russian scientists embarked upon a course of research to develop a solidification agent that would provide an ecologically safe barrier. The barrier material would prevent direct contact of seawater with the SNF and the resultant leaching and release of radionuclides. The solidification agent was to be introduced by flooding the reactors vessels and inner cavities. Once introduced the agent would harden and form an impermeable barrier. This report describes the sample preparation of several ''Furfurol'' compositions and their leach testing using cesium 137 as tracer

  10. Possible criticality of marine reactors dumped in the Kara Sea

    International Nuclear Information System (INIS)

    The largest inventory of radioactive materials dumped in the Kara Sea by the former Soviet Union comes from the spent nuclear fuel (SNF) of seven marine reactors. Using corrosion models derived for the International Arctic Seas Assessment Project (IASAP), the possibility of some of the SNF achieving criticality through structural and material changes has been investigated. Although remote, the possibility cannot at this stage be ruled out

  11. Radioactivity in the Arctic Seas. Report for the International Arctic Seas Assessment Project (IASAP)

    International Nuclear Information System (INIS)

    This report provides comprehensive information on environmental conditions in the Arctic Seas as required for the study of possible radiological consequences from dumped high level radioactive wastes in the Kara Sea. The report describes the oceanography of the regions, with emphasis on the Kara and Barents Seas, including the East Novaya Zemlya Fjords. The ecological description concentrates on biological production, marine food-weds and fisheries in the Arctic Seas. The report presents data on radionuclide concentrations in the Kara and Barents Seas and uses these data to estimate the inventories of radionuclides currently in the marine environment of the Kara and Barents Seas

  12. Belugas (Delphinapterus leucas of the Barents, Kara and Laptev seas

    Directory of Open Access Journals (Sweden)

    Andrei N Boltunov

    2014-01-01

    Full Text Available This paper reviews published information on the white whale or beluga (Delphinapterus leucas inhabiting the Barents, Kara and Laptev seas. Some data obtained during multi-year aerial reconnaissance of sea ice in the Russian Arctic are also included. Ice conditions, considered one of the major factors affecting distribution of belugas, are described. The number of belugas inhabiting the Russian Arctic is unknown. Based on analysis of published and unpublished information we believe that the primary summer habitats of belugas in the Western Russian Arctic lie in the area of Frants-Josef Land, in the Kara Sea and in the western Laptev Sea. Apparently most belugas winter in the Barents Sea. Although it has been suggested that a considerable number of animals winter in the Kara Sea, there is no direct evidence for this. Apparent migrations of animals are regularly observed at several sites: the straits of the Novaya Zemlya Archipelago, the waters north of the archipelago, and Vilkitskiy Strait between the Kara and Laptev seas. Calving and mating take place in summer, and the beluga mother feeds a calf for at least a year. Females mature earlier than males, and about 30% of mature females in a population are barren. Sex ratio is apparently close to 1:1. The diet of the beluga in the region includes fish and crustaceans and shows considerable spatial and temporal variations. However, polar cod (Boreogadus saida is the main prey most of the year, and whitefish (Coregonidae contribute in coastal waters in summer. Usually belugas form groups of up to 10 related individuals of different ages, while large aggregations are common during seasonal migrations or in areas with abundant and easily available food. Beluga whaling in Russia has a history of several centuries. The highest catches were taken in the 1950s and 1960s, when about 1,500 animals were caught annually in the Western Russian Arctic. In the 1990s, few belugas were

  13. A lithosphere-scale structural model of the Barents Sea and Kara Sea region

    Directory of Open Access Journals (Sweden)

    P. Klitzke

    2014-07-01

    Full Text Available The Barents Sea and Kara Sea region as part of the European Arctic shelf, is geologically situated between the Proterozoic East-European Craton in the south and early Cenozoic passive margins in the north and the west. Proven and inferred hydrocarbon resources encouraged numerous industrial and academic studies in the last decades which brought along a wide spectrum of geological and geophysical data. By evaluating all available interpreted seismic refraction and reflection data, geological maps and previously published 3-D-models, we were able to develop a new lithosphere-scale 3-D-structural model for the greater Barents Sea and Kara Sea region. The sedimentary part of the model resolves four major megasequence boundaries (earliest Eocene, mid-Cretaceous, mid-Jurassic and mid-Permian. Downwards, the 3-D-structural model is complemented by the top crystalline crust, the Moho and a newly calculated lithosphere-asthenosphere boundary (LAB. The thickness distribution of the main megasequences delineates five major subdomains differentiating the region (the northern Kara Sea, the southern Kara Sea, the eastern Barents Sea, the western Barents Sea and the oceanic domain comprising the Norwegian-Greenland Sea and the Eurasia Basin. The vertical resolution of five sedimentary megasequences allows comparing for the first time the subsidence history of these domains directly. Relating the sedimentary structures with the deeper crustal/lithospheric configuration sheds some light on possible causative basin forming mechanisms that we discuss. The newly calculated LAB deepens from the typically shallow oceanic domain in three major steps beneath the Barents and Kara shelves towards the West-Siberian Basin in the east. Thereby, we relate the shallow continental LAB and slow/hot mantle beneath the southwestern Barents Sea with the formation of deep Paleozoic/Mesozoic rift basins. Thinnest continental lithosphere is observed beneath Svalbard and the NW

  14. Environmental pollutants in the Kara Sea and estuaries of Ob and Yenisey

    International Nuclear Information System (INIS)

    The Arctic has been identified as an area that is particularly vulnerable to adverse effects from environmental perturbations. Renewed attention has been focused on examining levels and assessing the effects of anthropogenic pollutants found in critical habitats within the Arctic. In 1993, the Russian-Norwegian oceanographic programme (RusNoP) launched the scientific program KAREX, an investigation in the Kara Sea and the estuaries of the Ob and Yenisey. RusNoP is a co-operation between the Arctic and Antarctic Research Institute and the Norwegian Polar Institute. The primary objective of the KAREX-94 program was to identify current levels of sediment-bound contaminants in the Kara Sea region and to elucidate possible contaminant transport routes. Pollutants measured in seabed sediment samples and an assessment of benthic macrofauna communities are presented in this paper. Pollutants examined are hydrocarbons, organics, pesticides, and heavy metals

  15. Radioactivity levels in Barents, Petshora, Kara, Laptev and White Seas

    International Nuclear Information System (INIS)

    The samples collected and analysed during joint work between the Finnish Centre for Radiation and Nuclear Safety and the Murmansk Marine Biological Institute cover a rather large area of the arctic in north west Russia. All the analysed sediments, algae, benthic and fish samples, have shown surprisingly low radionuclide concentrations and indicate that the open sea areas are almost uncontaminated. But the most interesting locations with potential risk sources are closed areas. 134Cs isotope originating from the fallout of the Chernobyl accident was measured only in terrestrial samples collected on the Kola peninsula and around the White Sea. Small amounts of this isotope with only 2 years half-life was also noticed in some sediment samples from White Sea. 134Cs isotopes was not noticed in any terrestrial sample collected from the coastal area between the Kanin peninsula and the Jenisey river. The very low concentrations of 134Cs isotope measured in Kara Sea sediment samples were usually in association with an outlet of a river and were obviously transported by river water from the central parts of Russia. The measured low concentrations of the antropogenic radionuclides in the Barents and Petshora Sea originate obviously from the global fallout. The higher White Sea concentrations contain also additional fallout from the Chernobyl accident and probably also some terrestrial runoff. Low concentration of 60Co isotopes in some sediment, algae and benthic fauna samples, reveals, however, slight fresh contamination, as were concentrations also at the outlet of Jenisey river. The results on well documented sampling locations represent also background data for possible leakage or other accidents. 5 refs., 3 figs, 3 tabs

  16. Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov

    Directory of Open Access Journals (Sweden)

    Gennady G. Matishov

    2014-06-01

    Full Text Available This paper analyses the anomalous hydrometeorological situation that occurred at the beginning of 2012 in the seas of the Russian Arctic and Russian South. Atmospheric blocking in the temperate zone and the extension of the Siberian High to the Iberian Peninsula (known as the Voeikov et al. axis led to a positive anomaly of air and water temperatures and a decrease in the ice extent in the Barents and Kara Seas. At the same time a prolonged negative air temperature anomaly was recorded in central and southern Europe and led to anomalously severe ice conditions in the Sea of Azov. Winter hydrographic conditions in the Barents and Kara Seas are illustrated by a unique set of observations made using expendable bathythermosalinographs (XCTD.

  17. The lithosphere-scale density and temperature configuration beneath the Barents Sea and Kara Sea region

    Science.gov (United States)

    Klitzke, Peter; Faleide, Jan Inge; Sippel, Judith; Scheck-Wenderoth, Magdalena

    2014-05-01

    The Barents and Kara Sea region on the European Arctic shelf is bounded by the Proterozoic East-European Craton in the south and the young Cenozoic passive margins in the north and the west. Poly-orogenic episodes in late Precambrian to late Paleozoic times have led to amalgamation of the crystalline basement, which subsequently experienced multiple phases of subsidence resulting in the formation of ultra-deep sedimentary basins. These deep basins vary strongly in their configuration across the shelf. In the southwestern Barents Sea numerous narrow and fault-bounded rift basins are defined while the eastern Barents Sea and southern Kara Sea are marked by a wide and bowl-shaped sag basin. A key to understand the evolution and the causative mechanisms behind uplift and subsidence in the Barents Sea and Kara Sea is the present-day lithospheric density configuration. In a first step, a 3D structural model was developed resolving five sedimentary units, the crystalline crust and the lithospheric mantle. To provide best constrained geometries for the resulting 3D-structural model, interpreted seismic refraction and reflection data, geological maps and previously published 3D-models were analysed and integrated. The sedimentary units were assigned lithology-dependent matrix densities and porosities to calculate bulk densities which also consider the effects of erosion, compaction but also in response to published maximum ice sheet thickness. The density configuration of the lithospheric mantle and the asthenosphere down to 250 km depth is derived using an existing velocity-density model. To calculate an initial density configuration of the crystalline crust, the concept of Pratt's isostasy is applied. Finally, the gravitational response of the corresponding 3D-model is calculated and compared with the observed gravity field to further investigate the composition of the crust and the configuration of potential high-density bodies in the deeper lithosphere. To assess the

  18. Impact of continental runoff and melted sea ice on spatial distribution of carbonate parameters and nutrients in the Kara and Laptev Seas

    Science.gov (United States)

    Polukhin, Alexander; Kostyleva, Anna; Protsenko, Elizaveta; Stepanova, Svetlana; Yakubov, Shamil; Makkaveev, Petr

    2016-04-01

    It is well-known that the Kara and Laptev seas are strongly affected by large amount of fresh water coming from the great Siberian rivers (the Ob' River, the Yenisei River and the Lena River). Expeditions of the Shirshov Institute of Oceanology were directed on investigation of freshening of these two Arctic seas. We have large collection of data (CTD, nutrients, carbonate system parameters) from the Kara Sea expeditions (1993, 2007, 2011, 2013, 2014 years) and the newest data from the last expedition to the Kara and Laptev Seas in 2015. Employment of these materials along with archival data on mentioned seas gives us an opportunity to trace variability of hydrochemical parameters in conditions of changing climate. From year to year in our expeditions we see reduction of sea-ice cover on the water area of the Kara Sea, changes in freshwater discharge and different seasonal variability of hydrochemical structure under influence of continental runoff. Moreover we notice some falling of carbonate system parameters such as pH and alkalinity. Hereby we can estimate processes of acidification in the Russian Arctic and reveal main stressors. This work is supported by Russian Science Foundation (project №14-50-00095).

  19. The fate of gas hydrates in the Barents Sea and Kara Sea region

    Science.gov (United States)

    Klitzke, Peter; Scheck-Wenderoth, Magdalena; Schicks, Judith; Luzi-Helbing, Manja; Cacace, Mauro; Jacquey, Antoine; Sippel, Judith; Faleide, Jan Inge

    2016-04-01

    The Barents Sea and Kara Sea are located in the European Arctic. Recent seismic lines indicate the presence of gas hydrates in the Barents Sea and Kara Sea region. Natural gas hydrates contain huge amounts of methane. Their stability is mainly sensitive to pressure and temperature conditions which make them susceptible for climate change. When not stable, large volumes of methane will be released in the water column and - depending on the water depth - may also be released into the atmosphere. Therefore, studying the evolution in time and space of the gas hydrates stability zone in the Barents Sea region is of interest for both environmental impact and energy production. In this study, we assess the gas hydrate inventory of the Barents Sea and Kara Sea under the light of increasing ocean bottom temperatures in the next 200 years. Thereby, we make use of an existing 3D structural and thermal model which resolves five sedimentary units, the crystalline crust and the lithospheric mantle. The sedimentary units are characterised by the prevailing lithology and porosity including effects of post-depositional erosion which strongly affect the local geothermal gradient. Governing equations for the conductive 3D thermal field and momentum balance have been integrated in a massively parallel finite-element-method based framework (MOOSE). The MOOSE framework provides a powerful and flexible platform to solve multiphysics problems implicitly on unstructured meshes. First we calculate the present-day steady-state 3D thermal field. Subsequently, we use the latter as initial condition to calculate the transient 3D thermal field for the next 200 years considering an ocean temperature model as upper boundary. Temperature and load distributions are then used to calculate the thickness of the gas hydrate stability zone for each time step. The results show that the gas hydrate stability zone strongly varies in the region due to the local geothermal gradient changes. The latter

  20. Peculiarities of radionuclides' accumulation in benthic organisms and fish in the Barents and Kara Seas

    International Nuclear Information System (INIS)

    This work contributes to the joint research programme between the Finnish Centre for Radiation and Nuclear Safety and the Murmansk Marine Biological Institute in the Arctic. Attention has been focussed to measuring amounts and locating possible sources of artificial radionuclides in the Russian Arctic Sea area. Sediments, algae, bottom fauna and fish samples were collected during several scientific expeditions in 1993 and 1994. The results on radionuclide accumulation in benthic organisms and fish are presented in this paper. It is concluded that the concentration of 137Cs in benthic fauna and commercial fish and algae of the Barents and Kara Seas is generally low and originates from the global fallout. The highest levels of 137Cs are determined in the animals inhabiting the silty bottom 6 refs., 3 figs

  1. Potential ocean–atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly

    Directory of Open Access Journals (Sweden)

    Martin P. King

    2016-02-01

    Full Text Available Many recent studies have revealed the importance of the climatic state in November on the seasonal climate of the subsequent winter. In particular, it has been shown that interannual variability of sea ice concentration (SIC over the Barents-Kara (BK seas in November is linked to winter atmospheric circulation anomaly that projects on the North Atlantic Oscillation. Understanding the lead–lag processes involving the different components of the climate system from autumn to winter is therefore important. This note presents dynamical interpretation for the ice-ocean–atmosphere relationships that can affect the BK SIC anomaly in late autumn. It is found that cyclonic (anticyclonic wind anomaly over the Arctic in October, by Ekman drift, can be responsible for positive (negative SIC in the BK seas in November. The results also suggest that ocean heat transport via the Barents Sea Opening in September and October can contribute to BK SIC anomaly in November.

  2. Productivity, chlorophyll a, Photosynthetically Active Radiation (PAR) and other phytoplankton data from the Arctic Ocean, Bering Sea, Chukchi Sea, Beaufort Sea, East Siberian Sea, Kara Sea, Barents Sea, and Arctic Archipelago measured between 17 April, 1954 and 30 May, 2006 compiled as part of the Arctic System Science Primary Production (ARCSS-PP) observational synthesis project (NODC Accession 0063065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Arctic Ocean primary production data were assembled from original input data archived in various international databases, provided by individual investigators or in...

  3. Scenarios for potential radionuclide release from marine reactors dumped in the Kara Sea

    International Nuclear Information System (INIS)

    The largest inventory of radioactive materials dumped in the Kara Sea by the former Soviet Union comes from the spent nuclear fuel (SNF) of seven marine reactors, the current (1994) inventory of which makes a total of approximately 4.7x1015 Bq. In progressing its work for the International Arctic Seas Assessment Project, under the auspices of the International Atomic Energy Agency, the Source Term Working Group has analysed the Source Term and subsequently developed a number of model scenarios for the potential release patterns of radionuclides into the Kara Sea from the SNF and activated components dumped within the marine reactors.These models are based on the present and future conditions of the barrier materials and their configuration within the dumped objects. They account for progressive corrosion of the outer and inner steel barriers, breakdown of the organic fillers, and degradation and leaching from the SNFs. Annual release rates are predicted to four thousand years into the future. 5 refs., 1 fig., 1 tab

  4. A seasonal comparison of zooplankton communities in the Kara Sea - With special emphasis on overwintering traits

    Science.gov (United States)

    Kosobokova, Ksenia Nikolaevna; Hirche, Hans-Juergen

    2016-06-01

    Siberian marginal seas cover large parts of the marine Arctic and host unique zooplankton communities. Detailed knowledge of their community structure and life history traits is a prerequisite to predict their response to ongoing and future climate and anthropogenic changes although winter data is extremely rare. Here data are presented from winter samples (February and April) in four biogeographic regions of the Kara Sea. Comparison of community composition and zooplankton abundance/biomass with data collected during summer showed lower diversity in winter, mainly due to the absence of freshwater species. In contrast to many other northern regions, seasonal biomass differences were relatively small. Year-round high biomass is maintained through a large share of small copepod species and constantly high share of the chaetognath Parasagitta elegans. An advanced state of gonad maturation and reproduction was observed in winter in herbivorous, omnivorous, and carnivorous species, e.g. the copepods Calanus glacialis, Drepanopus bungei, Limnocalanus macrurus, Oithona similis, Pseudocalanus major, Pseudocalanus minutus/acuspes, Paraeuchaeta glacialis, Microcalanus pygmaeus, and euphausiids, hydromedusae, and pteropods. Meroplanktonic larvae of nudibranchia, polychaeta and bivalvia were also registered. Close to the Yenisei mouth, abundance of eggs and larvae of various taxa exceeded older stages. Our data show that the brackish-water zone of the Kara Sea hosts specific communities with omnivorous species efficiently exploiting local resources during the winter and utilizing them for winter reproduction.

  5. On the link between Barents-Kara sea ice variability and European blocking

    Science.gov (United States)

    Ruggieri, P.; Buizza, R.; Visconti, G.

    2016-05-01

    This study examines the connection between the variability of sea ice concentration in the Barents and Kara (B-K) seas and winter European weather on an intraseasonal time scale. Low sea ice regimes in autumn and early winter over the B-K seas are shown to affect the strength and position of the polar vortex, and increase the frequency of blocking regimes over the Euro-Atlantic sector in late winter. A hypothesis is presented on the mechanism that links sea ice over the B-K seas and circulation regimes in the North Atlantic, and is investigated considering 34 years of European Centre for Medium-Range Weather Forecasts reanalysis data. Four key steps have been identified, starting from a local response of the near-surface fluxes and modification of the upper tropospheric wave pattern, to the stratospheric adjustment and the tropospheric response in the North Atlantic. The proposed mechanism explains the delayed, late winter response of the North Atlantic Oscillation to the late autumn sea ice reduction, which has been found both in observations and model experiments. It also provides valuable insights on how the reduction of Arctic sea ice can influence the position of the tropospheric jet in the Euro-Atlantic sector.

  6. Human impact on dynamics of Barents and Kara Seas Coasts

    Science.gov (United States)

    Ogorodov, Stanislav

    2013-04-01

    The coasts of Barents and Kara Seas which are composed of unconsolidated deposits have poor erosion resistance qualities. In natural conditions such coasts may retreat with a rate of 1 to 2 m a year. Under the influence of human activities this rate can double and even triple. Over the last twenty years the human impact on the natural coastal geosystems has noticeably increased due to the latest oil and gas developments on the sea shelf and coasts of the Russian North. A range of facilities - oil custody terminals for drilling and production platforms, submerged pipelines, ports and other industrial features and residential infrastructure - are currently being operated in the coastal and shelf zones. In most of the cases no morphodynamic or lithodynamic features of the coastal zone had been taken into account during the construction or operation of these facilities. This results in a disturbance of the sediment transport in the coastal zone, which triggers active erosion of both the shore itself and the coastal slope beneath. The operated facilities themselves are then threatened as their destruction is possible and often no new facilities can be constructed in the disturbed area. The operating companies have to bear forced nonmanufacturing expenses to protect or move their facilities of oil and gas industry to new areas. We may cite here three instances for Barents and Kara Seas where human impact has already brought in negative effects. One of the examples is Varandey Coast of the Barents Sea. From 1979 to 2012 a deliberate destruction of the dune chain of the barrier beach by vehicle traffic and a removal of the beach material for construction needs led to a quick intensification of the coastal retreat here. And now, storm surges without hindrance penetrate inland for several kilometers. Let's move further east to the Kara Sea: on to Kharasavey Coast to the Yamal Peninsula. A large-scale extraction of sediments from the coastal slope has resulted in a depletion

  7. Dumping of radioactive waste and investigation of contamination in the Kara Sea. Results from 3 years of investigations (1992-1994) in the Kara Sea

    Energy Technology Data Exchange (ETDEWEB)

    Strand, P. [Statens Straalevern, Oesteraas (Norway); Foeyn, L. [Norsk Inst. for Vannforskning, Oslo (Norway); Nikitin, A.I. [SPA ``Typhoon``, Roshydromet (Russian Federation)] [and others

    1996-03-01

    The report summarises the results obtained from the joint Russian-Norwegian investigation concerning the consequences of dumping of radioactive waste in the Kara Sea. Three expeditions were undertaken to the Kara Sea and the present dumping sites for radioactive waste. Samples of water, sediments and biota were collected and analysed. An impact and risk assessment was performed, based on the information provided through the joint cooperation. Enhanced levels and artificially produced radionuclides in the sediments collected in the very close vicinity of almost all localised dumped objects, demonstrate that leakage occur. No contribution from dumped radioactive waste was observed in the open Kara Sea. Due to the potential for leakage from the dumped waste in the future and the presence of other potential sources in the area, a regular monitoring programme is highly recommended. 65 refs., 42 figs., 16 tabs.

  8. Dumping of radioactive waste and investigation of contamination in the Kara Sea. Results from 3 years of investigations (1992-1994) in the Kara Sea

    International Nuclear Information System (INIS)

    The report summarises the results obtained from the joint Russian-Norwegian investigation concerning the consequences of dumping of radioactive waste in the Kara Sea. Three expeditions were undertaken to the Kara Sea and the present dumping sites for radioactive waste. Samples of water, sediments and biota were collected and analysed. An impact and risk assessment was performed, based on the information provided through the joint cooperation. Enhanced levels and artificially produced radionuclides in the sediments collected in the very close vicinity of almost all localised dumped objects, demonstrate that leakage occur. No contribution from dumped radioactive waste was observed in the open Kara Sea. Due to the potential for leakage from the dumped waste in the future and the presence of other potential sources in the area, a regular monitoring programme is highly recommended. 65 refs., 42 figs., 16 tabs

  9. Tectonic structure, seismic stratigraphy and hydrocarbon potential of the North Kara Basin (Russian Arctic)

    Science.gov (United States)

    Verzhbitsky, V.; Kosenkova, N.; Murzin, R.; Vasilyev, V.; Malysheva, S.; Komissarov, D.; Ananyev, V.; Roslov, Yu.; Khudoley, A.

    2012-04-01

    North Kara shelf represents one of the remote and still poorly studied sedimentary megabasins of Russian West Arctic. North Kara area lacks any offshore wells so the understanding of its structure is based on the geology of adjacent East Barents Basin, as well as surrounding land areas (Taimyr, Severnaya and Novaya Zemlya fold belts) and stratigraphic columns of the scattered Arctic Islands. It is widely believed that North Kara shelf is mostly composed of Riphean-Paleozoic sedimentary units, underlain by Precambrian basement (North Kara massif), and represents one of the most promising areas of the Russian Arctic for hydrocarbon (mostly oil) discoveries. Our study is based on the reinterpretation of several regional seismic lines acquired by Sevmorgeo. We used the main Paleozoic and Mesozoic tectonic events known for Severnaya Zemlya Archipelago and Taimyr Peninsula for interpretation of the age of main seismic complexes/boundaries within the North Kara sedimentary cover (first of all within the Priseverozemelsky Trough). We correlated the sharp angular unconformity in the lower part of sedimentary succession with Cambrian/Ordovician unconformity described earlier on the nearby Severnaya Zemlya onshore domain. It is likely that the pre-Ordovician tectonic event corresponds to the Late Baikalian (Timanian) orogeny, which took place on Timan-Pechora and Novaya Zemlya areas. Above the unconformity we proposed the occurrence of Ordovician-Silurian shelfal sedimentary sequence of ~ 2 km thickness. This strata are overlain by thick (~3-4 km) progradational unit. It is likely that this sequence should correspond to molassic deposits of old red sandstones, related to the regional Caledonian orogeny. We believe that general structural pattern of the North Kara region was formed in Late Carboniferous-Early Permian time as a result of Kara massif/Siberian Craton collision-related Hercynian orogeny of Taimyr-Severnaya Zemlya domain. This event led to gentle folding of the

  10. Radionuclide sources in the Barents and Kara Seas

    International Nuclear Information System (INIS)

    A study of radionuclide distributions in the Barents Sea sediments was carried out in 1992. The conclusions of the study are as follows: 1) Elevated levels of artificial radionuclides as great as 15,000 Bq/kg for 239,240Pu, 250 Bq/kg for 137Cs and 100 Bq/kg for 60Co were measured in sediments in Chermaya Bay which have been contaminated by several nuclear tests conducted in the 1950s. 2) Sediment-depth distributions of 239,240Pu and other artificial radionuclides are consistent with results from biodiffusion models that are constrained by 210Pb sediment-depth distributions. These results indicate that sedimentation rates in Chernaya Bay are low (249Pu/239Pu and 241Pu/239Pu atom ratios of 0.030 and 0.0012, respectively and a 241Am/239,240Pu activity ratio of 0.05 (compared to 0.3 in fallout) which provides a method for tracking its dispersion over distances of 100 km into the Barents Sea. 4) Artificial radionuclide levels in sediments and seawater near a sunken barge loaded with radioactive wastes in the Novaya Zemlya trough are similar to background fallout levels in the Kara Sea and provide little evidence for the release of radioactive contaminants from the dumpsite. 7 refs., 4 figs

  11. Skill improvement of dynamical seasonal Arctic sea ice forecasts

    Science.gov (United States)

    Krikken, Folmer; Schmeits, Maurice; Vlot, Willem; Guemas, Virginie; Hazeleger, Wilco

    2016-05-01

    We explore the error and improve the skill of the outcome from dynamical seasonal Arctic sea ice reforecasts using different bias correction and ensemble calibration methods. These reforecasts consist of a five-member ensemble from 1979 to 2012 using the general circulation model EC-Earth. The raw model reforecasts show large biases in Arctic sea ice area, mainly due to a differently simulated seasonal cycle and long term trend compared to observations. This translates very quickly (1-3 months) into large biases. We find that (heteroscedastic) extended logistic regressions are viable ensemble calibration methods, as the forecast skill is improved compared to standard bias correction methods. Analysis of regional skill of Arctic sea ice shows that the Northeast Passage and the Kara and Barents Sea are most predictable. These results show the importance of reducing model error and the potential for ensemble calibration in improving skill of seasonal forecasts of Arctic sea ice.

  12. Fram Strait sea-ice sediment provinces based on silt and clay compositions identify Siberian Kara and Laptev seas as main source regions

    OpenAIRE

    Dethleff, Dirk; Kuhlmann, Gesa

    2010-01-01

    Fram Strait sea-ice sediments (SIS) contain on average more than 94% silt and clay. Both fractions were compared with bottom deposits of the Kara and Laptev seas to identify shelf sources of fine-grained Arctic SIS. Based on silt granulometry and clay mineral assemblages we determined Fram Strait SIS provinces. Western Fram Strait SIS has medium to fine silt compositions, whereas eastern Fram Strait SIS is enriched in fine silt.Western Fram Strait SIS clays (low smectite/high illite) were sta...

  13. Characteristics of radionuclide accumulation in benthic organisms and fish of the Barents and Kara Seas

    International Nuclear Information System (INIS)

    Artificial radionuclides play a specific role in the hydrochemical, geochemical, and hydrobiological processes that are currently occurring in the western Arctic. The existing data on radioactive contamination of different plant and animal species inhabiting the sea shelf are fragmentary. Hence, it was difficult to follow the transformation of radionuclides during their transmission along food chains, from phyto- and zoo-plankton to benthos, fish, birds, and marine mammals. In 1990-1994, the Murmansk Institute of Marine Biology organized expeditions to collect samples of residues on the sea floor and also of benthos, benthic fish, macrophytes, and other organisms inhabiting the shelf of the Barents and Kara Seas. These samples were tested for cesium-137, cesium-134, strontium-90, plutonium-239, plutonium-240, americium-241, and cobalt-60 in Rovaniemi (Finland) by the regional radiation administration of the Finnish Centre for Radiation and Nuclear Safety. Over 1000 tests were made. Their results provided new data on the content and distribution of these radionuclides among different components of marine ecosystems. 7 refs

  14. Macrobenthos of the southern part of St. Anna trough and the adjacent Kara Sea shelf

    Science.gov (United States)

    Galkin, S. V.; Vedenin, A. A.; Minin, K. V.; Rogacheva, A. V.; Molodtsova, T. N.; Rajskiy, A. K.; Kucheruk, N. V.

    2015-07-01

    Taxonomic composition and ecological structure of benthic communities of the southern part of St. Anna Trough were investigated during the 54th and 59th cruises of RV Akademik Mstislav Keldysh. Material was collected using Sigsbee trawl at 10 stations arranged in two transects (depth range 57-554 m). It was shown that benthic communities of the western arm of the St. Anna Trough differ considerably from the communities of the eastern arm. The western arm communities develop under the influence of active near-bottom hydrodynamics in conditions of rugged topography and a coarse-grained sediment or hard substrate. The wastern arm of the trough is characterized by the predomination of the soft sediment, smooth topography, and weak currents. In the western arm of the trough the influence of the Barents Sea fauna is traced down to the edge of the internal shelf (about 150 m depth). The community of the eastern arm of the trough situated out from the direct influence of the Barents Sea waters represents a continuation of the Ophiocten sericeum community, typical for external Kara Sea shelf. With increasing depth, Ophiopleura borealis becomes the dominant species of the community. In the greatest explored depths some deep-water High-Arctic species, such as echinoids Pourtalesia jeffreysi, were observed. The major factors determining the distribution of benthic communities in the investigated area are the microrelief pattern, the sediment structure, and near-bottom hydrodynamics.

  15. Distribution of trace gases and aerosols in the troposphere over West Siberia and Kara Sea

    Science.gov (United States)

    Belan, Boris D.; Arshinov, Mikhail Yu.; Paris, Jean-Daniel; Nédélec, Philippe; Ancellet, Gérard; Pelon, Jacques; Berchet, Antoine; Arzoumanian, Emmanuel; Belan, Sergey B.; Penner, Johannes E.; Balin, Yurii S.; Kokhanenko, Grigorii; Davydov, Denis K.; Ivlev, Georgii A.; Kozlov, Artem V.; Kozlov, Alexander S.; Chernov, Dmitrii G.; Fofonov, Alexader V.; Simonenkov, Denis V.; Tolmachev, Gennadii

    2015-04-01

    The Arctic is affected by climate change much stronger than other regions of the globe. Permafrost thawing can lead to additional methane release, which enhances the greenhouse effect and warming, as well as changes of Arctic tundra ecosystems. A great part of Siberian Arctic is still unexplored. Ground-based investigations are difficult to be carried out in this area due to it is an out-of-the-way place. So, in spite of the high cost, aircraft-based in-situ measurements can provide a good opportunity to fill up the gap in data on the atmospheric composition over this region. The ninth YAK-AEROSIB campaign was focused on the airborne survey of Arctic regions of West Siberia. It was performed in October 2014. During the campaign, the high-precision in-situ measurements of CO2, CH4, CO, O3, black carbon and aerososls, including aerosol lidar profiles, have been carried out in the Siberian troposphere from Novosibirsk to Kara Sea. Vertical distributions of the above atmospheric constituents will be presented. This work was supported by LIA YAK-AEROSIB, CNRS (France), the French Ministry of Foreign Affairs, CEA (France), the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  16. Benchmarking of numerical models describing the dispersion of radionuclides in the Arctic Seas

    DEFF Research Database (Denmark)

    Scott, E.M.; Gurbutt, P.; Harms, I.;

    1997-01-01

    As part of the International Arctic Seas Assessment Project (IASAP) of the International Atomic Energy Agency (IAEA), a working group was created to model the dispersal and transfer of radionuclides released from radioactive waste disposed of in the Kara Sea. The objectives of this group are: (1...

  17. Summer Arctic sea fog

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Synchronous or quasi-synchronous sea-land-air observations were conducted using advanced sea ice, atmospheric and marine instruments during China' s First Arctic Expedition. Based on the Precious data from the expedition, it was found that in the Arctic Ocean, most part of which is covered with ice or is mixed with ice, various kinds of sea fog formed such as advection fog, radiation fog and vapor fog. Each kind has its own characteristic and mechanics of creation. In the southern part of the Arctic Ocean, due to the sufficient warm and wet flow there, it is favorable for advection fog to form,which is dense and lasts a long time. On ice cap or vast floating ice, due to the strong radiation cooling effect, stable radiating fog is likely to form. In floating ice area there forms vapor fog with the appearance of masses of vapor from a boiling pot, which is different from short-lasting land fog. The study indicates that the reason why there are many kinds of sea fog form in the Arctic Ocean is because of the complicated cushion and the consequent sea-air interaction caused by the sea ice distribution and its unique physical characteristics. Sea fog is the atmospheric phenomenon of sea-air heat exchange. Especially, due to the high albedo of ice and snow surface, it is diffcult to absorb great amount of solar radiation during the polar days. Besides, ice is a poor conductor of heat; it blocks the sea-air heat exchange.The sea-air exchange is active in floating ice area where the ice is broken. The sea sends heat to the atmosphere in form of latent heat; vapor fog is a way of sea-air heat exchange influencing the climate and an indicator of the extent of the exchange. The study also indicates that the sea also transports heat to the atmosphere in form of sensible heat when vapor fog occurs.

  18. Transport of radionuclides from the Kara Sea. Potential ''shortcuts'' in space and time

    International Nuclear Information System (INIS)

    Satellite images from the Kara Sea show that, until July, fast ice extends along the coast and fills the estuaries of the Ob and Yenisey rivers. It is separated from offshore drift ice by a region of open water, comprising a flaw lead/polynya. By August, much of the fast and drift ice has melted and retreated from the southwestern Kara Sea, leaving behind a persistent patch of ice east of Novaya Zemlya. The authors of the paper discuss the potential for exchange of water, ice and contaminants with the Barents Sea through Kara Gate (Karsikye Vorota), south of Novaya Zemlya, in the context of the temperature and turbidity distribution observed in the satellite images. 19 refs

  19. Below the Arctic Seas. International Arctic Seas assessment project: summing up

    International Nuclear Information System (INIS)

    In 1993, the IAEA responded to the concern of its Member States and the request of the Contracting Parties to the Convention on Prevention of Marine Pollution by Dumping of Wastes and Other Matter by launching the International Arctic Seas Assessment Project (IASAP). It had two objectives: to assess the risks to human health and to the environment associated with the radioactive wastes dumped in the Kara and Barents Seas, and to examine possible remedial actions related to the dumped wastes and to advise on their necessity and justification. The Project involved more than fifty experts from fourteen countries and was steered by an International Advisory Group. Its working areas consisted of: examination of the radiological situation in Arctic waters; prediction of potential future releases from the dumped wastes; modelling of environmental transport of released nuclides and assessing the associated radiological impact on humans and biota; and examination of the feasibility, costs and benefits of possible remedial measures

  20. Transport of low 240:239 atom ratio plutonium in the Ob and Yenisey rivers to the Kara sea

    International Nuclear Information System (INIS)

    Nuclear installations (Tomsk-7, Mayak PA; Krasnoyarsk) are situated in the drainage areas of the Ob and Yenisey. The low-level Pu contamination in the two estuaries has been mainly attributed to transport of global fallout from atmospheric nuclear tests deposited in the drainage areas. The future concern for the Arctic is, however, that a sudden large release may occur due to accidents at the nuclear sites etc. Such incidents could lead to the eventual transport of released radionuclides to the Kara Sea. Therefore, information on Pu speciation and processes controlling the behaviour of plutonium in estuarine systems is a prerequisite for predicting the transfer and subsequent environmental impact to Arctic Seas. To obtain information on estuarine processes in the Ob and Yenisey River influencing the size distribution pattern Pu was studied by at site size fractionation in the river estuary systems. Large samples collected from varying depths at stations along a transect from fresh riverine water through the estuary zone and into high salinity sea water were filtered (0.45 μm), and ultra-filtered (8 kDa). Filters and filtrates were analyzed by means of AMS obtaining Pu concentrations and 240Pu /239Pu atom ratios. Most of the Pu in the surface water samples collected in the freshwater end member of the two rivers appears to be associated with particulate material while a majority of the Pu in both estuaries is in a dissolved form. The colloidal fraction ranged from 29 48% (Yenisey), 29 73% (Ob) and 50% (Kara Sea). 240Pu /239Pu atom ratios vary within the fractions, being rather low for the dissolved phases and significantly higher for the particulate fraction. 240Pu/239Pu atom ratios show that particulate Pu is fallout related and that Pu in dissolved form originates from other, low atom ratio sources. (author)

  1. Radioactive contamination at dumping sites for nuclear waste in the Kara Sea. Results from the Russian-Norwegian 1993 expedition to the Kara Sea

    International Nuclear Information System (INIS)

    During the 1993 Joint Russian-Norwegian Expedition to the Kara Sea, three dumping sites for nuclear waste were investigated: The Tsivolky Bay, the Stepovogo bay and an area in the open Kara Sea (The Novaya Zemlya Trough). Dumped waste was localized and inspected in the Tsivolky Bay and in the Stepovogo Bay using side scanning sonar and underwater camera. In the Stepovogo Bay, the dumped nuclear submarine no. 601, containing spent nuclear fuel was localized. Samples of waters, sediments and biota were collected at nine stations and later analyzed for several radionuclides (gammaemitters, 90Sr, 238Pu, 239,240Pu and 241Am). The analyses of the samples al the following conclusions to be drawn: 1) Elevated levels of 137Cs and 90Sr and presence of 60Co were observed in the inner part of the Stepovogo Bay, and in one sample collected close to the hull of the dumped nuclear submarine in the Stepovogo Bay. 60Co was also observed in the Tsivolky Bay. This radioactive contamination most likely originates from the dumped radioactive material. It may be due to leaching from the waste. 2) The enhanced levels of contamination caused by dumped nuclear waste are still low and restricted to small areas. Thus, radiation doses from the existing contamination would be negligible. Radioactive contamination outside these areas is similar to the activity levels in the open Kara Sea. 46 refs

  2. Joint Norwegian-Russian mission to investigate dumped atomic waste in the Kara Sea

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-01

    In autumn 2012, a joint Norwegian-Russian mission will visit areas in the Kara Sea where spent nuclear fuel and radioactive waste have been dumped. The purpose of the mission is to obtain new, up-to-date information about radioactive pollution in these areas and about the condition of the dumped items (Author)

  3. Bacteriohopanepolyol distribution in Yenisei River and Kara Sea suspended particulate matter and sediments traces terrigenous organic matter input

    Science.gov (United States)

    De Jonge, Cindy; Talbot, Helen M.; Bischoff, Juliane; Stadnitskaia, Alina; Cherkashov, Georgy; Sinninghe Damsté, Jaap S.

    2016-02-01

    Bacteriohopanepolyols (BHPs) are ubiquitous bacterial membrane lipids, encountered in soils, river and marine suspended particulate matter (SPM) and sediments. Their abundance and distribution provides a direct means to identify bacterial inputs and can be used to trace soil-derived bacterial organic matter (OM) and in some cases the presence of bacterial groups and their activities in aquatic systems. We have studied the BHP distribution in the SPM of a major Siberian River (Yenisei River) that crosses a large latitudinal gradient, draining a large part of Mongolia and Siberian Russia. The Yenisei River is the main river to flow into the Kara Sea, a shelf sea of the Arctic Ocean. We show that the BHP distribution and concentration of SPM and surface sediments of the Yenisei Outflow in the Kara Sea allow to trace soil-marker BHPs and evaluate the performance of the R‧soil index, a proxy developed to trace bacterial soil-derived OM. Soil-marker BHPs are present in the Yenisei River, and their concentration decreases from the Yenisei River Outflow into the offshore marine sediments. The R‧soil correlates well with an independent proxy for bacterial OM, the BIT-index (r2 = 0.82) and has a moderate correlation with the δ13Corg values, a bulk OM proxy for terrigenous input (r2 = 0.44). Consequently, the R‧soil index performs well in the Kara Sea, strengthening its application for tracing bacterial OM in the Arctic Ocean, both in modern and downcore sediments. Furthermore, a suite of BHPs that are characteristic for methanotrophic bacteria, i.e. 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) and 35-aminobacteriohopane-31,32,33,34-tetrol (aminotetrol), is encountered in the Yenisei Outflow sediments. These components are partly sourced from terrigenous sources, but are likely also produced in-situ in the marine sediments. The distribution of the pentafunctionalized cyclitol ether BHP in the marine systems is noteworthy, and indicates that it can

  4. Relating Regional Arctic Sea Ice and climate extremes over Europe

    Science.gov (United States)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  5. Potential ocean–atmosphere preconditioning of late autumn Barents-Kara sea ice concentration anomaly

    OpenAIRE

    King, Martin P.; García-Serrano, Javier

    2016-01-01

    Many recent studies have revealed the importance of the climatic state in November on the seasonal climate of the subsequent winter. In particular, it has been shown that interannual variability of sea ice concentration (SIC) over the Barents-Kara (BK) seas in November is linked to winter atmospheric circulation anomaly that projects on the North Atlantic Oscillation. Understanding the lead lag processes involving the different components of the climate system from autumn to winter is therefo...

  6. Radioactive cesium, cobalt and plutonium in biota, algae and sediments in the nonrestricted areas of the Russian Arctic Seas

    International Nuclear Information System (INIS)

    Biota, macroalgae and sediment samples were collected during scientific expeditions organized by the Murmansk Marine Biological Institute (MMBI) during 1993 - 1996 in the Barents, Petshora, Kara, Laptev and White seas and in the Kola Bay. The purpose of the expeditions was to study the levels of radioactive pollution in the Russian arctic seas

  7. The influence of climate change on the intensity of ice gouging at the Kara Sea bottom by hummocky formations

    Science.gov (United States)

    Ogorodov, Stanislav; Arkhipov, Vasily; Kokin, Osip; Natalia, Shabanova

    2016-04-01

    Sea ice as a zonal factor is an important passive and active relief-forming agent in the coastal-shelf zone of the Arctic and other freezing seas. The most dangerous process in relation to the hydrotechnical facilities is ice gouging - destructive mechanical impact of the ice of the ground, connected with the dynamics of the ice cover, formation of hummocks and stamukhas under the influence of hydrometeorologic factors and of the relief of the coastal-shelf zone. Underestimation of the ice gouging intensity can lead to damage of the engineering facilities, while excessive deepening increases the expenses of the construction. Finding the optimal variant and, by this, decreasing the risks of extreme situations is a relevant task of the science and practice. This task is complicated by the fact that the oil and gas infrastructure within the coastal and shelf areas of the freezing seas is currently being developed in the conditions of global climate change. In the present work, several results of the repeated sounding of bottom ice gouging microrelief within the area of the underwater pipeline crossing of the Baydaratskaya Bay, Kara Sea, are presented. Based on the results of the monitoring, as well as the analysis of literature sources and modeling it has been established that under the conditions of climate warming and sea ice reduction, the zone of the most intensive ice gouging is shifted landwards, on shallower water areas.

  8. The genesis of hydrocarbons in the area of the Ob' River Mouth (Kara Sea)

    International Nuclear Information System (INIS)

    This paper reported on a study in which the spatial distribution of hydrocarbons in the surface waters of the Obskaya Guba and the Kara Sea was investigated, with particular reference to the area of the Ob'River mouth. Aliphatic hydrocarbons and polyaromatic hydrocarbons in dissolved and particulate forms and sediments were compared to the particulate matter and organic carbon in the area. The structure of hydrocarbons in the study area was found to be influenced by the mixture of fresh and salty waters that promotes the transformation of anthropogenic and natural compounds. The study showed that the highest accumulation of hydrocarbons was in the physicochemical area of the marginal filter in the field of avalanche sedimentation. The area of the Ob'River mouth significantly reduces the amount of hydrocarbon pollution released into the Kara Sea. 15 refs., 1 tab.

  9. Collective doses to man from dumping of radioactive waste in the Arctic Seas

    DEFF Research Database (Denmark)

    Nielsen, S.P.; Iosjpe, M.; Strand, P.

    1997-01-01

    produce further away from the Arctic Ocean. Collective doses were calculated for two release scenarios, both of which are based on information of the dumping of radioactive waste in the Barents and Kara Seas by the former Soviet Union and on preliminary information from the International Arctic Sea...... Assessment Programme. A worst-case scenario was assumed according to which all radionuclides in liquid and solid radioactive waste were available for dispersion in the marine environment at the time of dumping. Release of radionuclides from spent nuclear fuel was assumed to take place by direct corrosion...

  10. The use of 59Ni, 99Tc, and 236U to monitor the release of radionuclides from objects containing spent nuclear fuel dumped in the Kara Sea

    International Nuclear Information System (INIS)

    Between 1965 and 1981, five objects and six naval reactor pressure vessels (RPVs) from four former Soviet Union submarines and a special container from the icebreaker Lenin, all containing damaged spent nuclear fuel (SNF) were dumped in a variety of containments, at four sites in the Kara Sea. The International Atomic Energy Agency initiated the International Arctic Seas Assessment Project (IASAP) to study the possible health and environmental effects from disposal of these objects. One outcome of the IASAP was an estimation of the radionuclide inventory and their release rates from these objects. A follow-on concern is the ability to detect the radionuclides released into the water column. The work reported here is the feasibility of using the long-lived radionuclides 59Ni, 99Tc, and 236U encased within these objects, to monitor the breakdown of the containments due to corrosion

  11. Virioplankton in the Kara Sea: The impact of viruses on mortality of heterotrophic bacteria

    Science.gov (United States)

    Kopylov, A. I.; Sazhin, A. F.; Zabotkina, E. A.; Romanova, N. D.

    2015-07-01

    Studies were conducted in shallow and deepwater areas of the Kara Sea. The abundance of bacteria ( N B ) and the abundance of viruses ( N V ) ranged within (19.4-2215.1) × 103 cells/ml and (97.6-5796.8) × 103 particles/ml, respectively. The virus to bacteria ratio varied from 1.4 to 29.1. A positive correlation was found between N B and N V ( R = 0.87, n = 45, p = 0.05. Using electron transmission microscopy it was detected that the frequency of visibly infected cells of bacteria (FVIC) varied from 0.2 to 1.9% of N B . The maximum values of FVIC were recorded in the estuary of the Yenisei River. The infected cells of bacteria contained from 4 to 127 (an average of 12) phages/cell of mature viruses. Virus-mediated mortality of bacteria was 0.5% and varied from 1.4 to 16.1% of the total mortality of bacterioplankton. This indicates a minor role of viruses in the control of overabundance and production of bacterioplankton in the Kara Sea during the surveyed period.

  12. Methane release from pingo-like features across the South Kara Sea shelf, an area of thawing offshore permafrost

    Science.gov (United States)

    Serov, Pavel; Portnov, Alexey; Mienert, Jurgen; Semenov, Peter; Ilatovskaya, Polina

    2015-08-01

    The Holocene marine transgression starting at ~19 ka flooded the Arctic shelves driving extensive thawing of terrestrial permafrost. It thereby promoted methanogenesis within sediments, the dissociation of gas hydrates, and the release of formerly trapped gas, with the accumulation in pressure of released methane eventually triggering blowouts through weakened zones in the overlying and thinned permafrost. Here we present a range of geophysical and chemical scenarios for the formation of pingo-like formations (PLFs) leading to potential blowouts. Specifically, we report on methane anomalies from the South Kara Sea shelf focusing on two PLFs imaged from high-resolution seismic records. A variety of geochemical methods are applied to study concentrations and types of gas, its character, and genesis. PLF 1 demonstrates ubiquitously low-methane concentrations (14.2-55.3 ppm) that are likely due to partly unfrozen sediments with an ice-saturated internal core reaching close to the seafloor. In contrast, PLF 2 reveals anomalously high-methane concentrations of >120,000 ppm where frozen sediments are completely absent. The methane in all recovered samples is of microbial and not of thermogenic origin from deep hydrocarbon sources. However, the relatively low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. As a consequence, we hypothesize that the high-methane concentrations at PLF 2 are due to microbial methane production and migration from a deeper source.

  13. The influence of winter cloud on summer sea ice in the Arctic, 1983-2013

    Science.gov (United States)

    Letterly, Aaron; Key, Jeffrey; Liu, Yinghui

    2016-03-01

    Arctic sea ice extent has declined dramatically over the last two decades, with the fastest decrease and greatest variability in the Beaufort, Chukchi, and East Siberian Seas. Thinner ice in these areas is more susceptible to changes in cloud cover, heat and moisture advection, and surface winds. Using two climate reanalyses and satellite data, it is shown that increased wintertime surface cloud forcing contributed to the 2007 summer sea ice minimum. An analysis over the period 1983-2013 reveals that reanalysis cloud forcing anomalies in the East Siberian and Kara Seas precondition the ice pack and, as a result, explain 25% of the variance in late summer sea ice concentration. This finding was supported by Moderate Resolution Imaging Spectroradiometer cloud cover anomalies, which explain up to 45% of the variance in sea ice concentration. Results suggest that winter cloud forcing anomalies in this area have predictive capabilities for summer sea ice anomalies across much of the central and Eurasian Arctic.

  14. Numerical model of the ice cover evolution in Arctic Seas for the operational forecasting

    Directory of Open Access Journals (Sweden)

    S. V. Klyachkin

    2015-01-01

    Full Text Available The dynamic-thermodynamic model of the ice cover evolution is used for operational 5‑day ice forecasts in the Russian Arctic seas and to obtain some statistical estimates of the ice cover state. The model is a numerical realization of the heat budget and the motion balance equations for sea and ice cover with appropriate boundary conditions. The statistical processing of the data resulted in revealing characteristics of seasonal and spatial variability of the ice compressionin the Barents and Kara Seas.

  15. Distribution and migration pathway of radionuclides in the Ob and Yenisei rivers estuaries and adjacent part of the Kara Sea based on 2003-2005 years investigation data

    International Nuclear Information System (INIS)

    Full text: The modern radioecological situation of the Arctic region is substantially connected with migration of polluting substances (including radionuclides) in system Kara sea-estuaries of the rivers of Ob and Yenisei. Drains of the Siberian rivers, due to possible presence at them of products of activity of the radiochemical enterprises of Urals and Siberia (Mayak Production Association, Krasnoyarsk-26 Mining and Chemical Combine), are, last years, one of the main sources of anthropogenous pollution of the Kara sea. Radioactive elements by river waters are transferred in the Kara sea, passing through a zone of interaction the river-sea, a natural geochemical barrier in which distribution and behavior of chemical elements and their radioactive isotopes can significant changes. The estimation of prevalence and carry of a radio-activity on water area is impossible without taking into account available sources of pollution and data on migration separate radionuclides in the sea environment that is defined by their chemical nature and set of geochemical and hydrophysical parameters in the investigation areas. The received results on horizontal distribution of radionuclides in the top layer of surface sediments testifies to significant influence lithological structure of sediments on a level of concentration separate radionuclides, first of all caesium-137 and plutonium-239,240. Carried out of granulometric analysis the structure of sediments has allowed to receive direct dependence of specific activity radionuclides from percentage of clay fraction in samples. The received dependences in a combination with geological and geochemical characteristics of the top layer of surface sediments have allowed to reveal features of distribution on the cores radiation dangerous radionuclides - caesium-137, strontium-90 and plutonium-239,240 in various water areas on a route the river-sea, including and shallow bays of archipelago Novaya Zemlya. Processing of structures of

  16. Temperature profile and other data collected using bottle casts in Barents, Kara and other Seas from 01 January 1963 to 26 December 1964 (NODC Accession 0002123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using bottle casts from the AISBERG and other platforms in the Kara, Barents, White, Laptev, and Norwegian Sea....

  17. Temperature profile and other data collected using bottle casts in Barents, Kara and other Seas from 03 January 1961 to 30 June 1963 (NODC Accession 0002122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile and other data were collected using bottle casts from the AISBERG and POLYARNIK in the Kara, Barents, White, Laptev, and Norwegian Sea. Data...

  18. [Metagenomic Analysis of Microbial Communities of the Sediments of the Kara Sea Shelf and the Yenisei Bay].

    Science.gov (United States)

    Mamaeva, E V; Galach'yants, Yu P; Khabudaev, K V; Petrova, D P; Pogodaeva, T V; Khodzher, T B; Zemskaya, T I

    2016-01-01

    Microbial diversity in the sediments of the Kara Sea shelf and the southern Yenisei Bay, differing in pore water mineralization, was studied using massive parallel pyrosequencing according to the 454 (Roche) technology. Members of the same phyla (Cyanobacteria, Verrucomicrobia, Actinobacteria, Proteobacteria, and Bacteroidetes) predominated in bacterial communities of the sediments, while their ratio and taxonomic composition varied within the phyla and depended on pore water mineralization. Increasing salinity gradient was found to coincide with increased share of the γ-Proteobacteria and decreased abundance of α- and β-Proteo- bacteria, as well as of the phyla Verrucomicrobia, Chloroflexi, Chlorobi, and Acidobacteria. Archaeal diversity was lower, with Thaumarchaeota predominant in the sediments with high and low mineralization, while Crenarchaeota predominated in moderately mineralized sediments. Microbial communities of the Kara Sea shelf and Yenisei Gulf sediments were found to contain the organisms capable of utilization of a broad spectrum of carbon sources, including gaseous and petroleum hydrocarbons. PMID:27476207

  19. Arctic tides from GPS on sea ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea ice dampens the ocean tide amplitude with the result that global tidal models which use only astronomical data perform less accurately in the polar regions. This study presents a kinematic processing of...... Global Positioning System (GPS) buoys placed on sea-ice at five different sites north of Greenland for the study of sea level height and tidal analysis to improve tidal models in the Central Arctic. The GPS measurements are compared with the Arctic tidal model AOTIM-5, which assimilates tide-gauges and...

  20. Arctic whaling : proceedings of the International Symposium Arctic Whaling February 1983

    NARCIS (Netherlands)

    Jacob, H.K. s'; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the biol

  1. Cesium-137 global fallout into the Ob river basin and its influence on the Kara sea contamination - Weapons fallout cesium-137 in the Ob' catchment landscapes and its influence on radioactive contamination of the Kara sea: Western Siberia, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Semenkov, Ivan N.; Miroshnikov, Alexey Yu. [The Organization of Russian Academy of Sciences Institute of geology of ore deposits, petrography, mineralogy and geochemistry Russian Academy of Sciences (Russian Federation)

    2014-07-01

    There are several high level {sup 137}Cs anomaly zones detected in the deposits of the SW part of the Kara Sea. These anomaly zones were formed in the Ob' and the Enisey river estuaries due to the geochemical 'river-sea' boarder barrier. Level of radiocaesium specific activity reaches 120 Bq*kg{sup -1} in the deposits from these zones. Radiochemical enterprises occur in the both river basins. Their activity results in caesium-137 transfer into the river net. Vast area is contaminated by {sup 137}Cs after nuclear weapons in Semipalatinsk test-site and Kyshtym disaster in the Ob' river basin. Moreover, caesium comes to the Ob' and the Enisey river basins with global atmospheric fallout. The inflow of global fallout caesium-137 to the catchments is 660 kCi (320 kCi including radioactive decay) that is 4 times higher than {sup 137}Cs emission due to Fukushima disaster. Therefore, these river basins as any other huge catchment are an important sources of radioactive contamination of the Arctic Ocean. The aim of our research is to study behavior of global fallout caesium-137 in the landscapes of the Ob and the Enisey river basins. We studied caesium-137 behavior on the example of first order catchments in taiga, wetland, forest-steppe, steppe, and semi-arid landscapes. Geographic information system (GIS) was made. The tenth-order catchments (n=154, Horton coding system) shape 20-groups due to topsoil properties controlling cesium mobility. Eleven first-order basins, characterized 7 groups of tenth order catchments, were studied. And 700 bulk-core soil samples were collected in 2011-2013. Cesium runoff is calculated for 3 first-order river basins in taiga and forest-steppe landscapes. Storage of global fallout caesium-137 declines from undisturbing taiga first-order river basin (90% of cumulative fallout including radioactive decay)> arable steppe and fores-steppe (70 - 75%)> undisturbing wetland (60%). Caesium-137 transfer is high in arable lands

  2. Seasonality of Air-sea-ice-land Variables for Arctic Tundra in Northern Eurasia and North America

    Science.gov (United States)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Steele, M.; Epstein, H.; Jia, G.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2009-12-01

    The strength of tundra productivity trends as measured by the annual maximum Normalized Difference Vegetation Index (MaxNDVI) and time integrated NDVI (TI-NDVI) vary around the Arctic over the 1982-2008 period. Our analysis suggests that the timing of terrestrial vegetation growth is connected to seasonal patterns of sea-ice concentrations, ocean temperatures and land surface temperatures. This study used SSMI estimates of sea ice concentration, based on a bootstrap algorithm and AVHRR radiometric surface temperature. Summer Warmth Index (SWI) was calculated as the sum from May to August of the degree months above freezing of surface temperature at each pixel and is an accepted measure of plant growth potential. The Normalized Difference Vegetation Index (NDVI) represents vegetation greenness and has been used extensively to monitor changes in the Arctic. The albedo of green plants varies with solar radiation wavelength, which is the basis for the NDVI index. The analysis was conducted within 50 km of the Arctic coastline to focus on the region of maximum maritime influence. Time series of regional sea-ice concentration, SWI and NDVI were constructed for the 50-km width domains for the Pan-Arctic, North America, Eurasia and Arctic subregions. Standard climate analysis techniques were applied to the regional time series to investigate the seasonality of sea ice, NDVI and SWI. MaxNDVI has increased in the 50-km land domain contiguous to the Beaufort Sea by 17% since 1982, whereas it has only increased by 3% in the coastal Kara Sea region. Analysis of semimonthly MaxNDVI indicates that the vegetation greens up more rapidly in the spring in the Beaufort than the W. Kara and the Kara has slightly higher NDVI in the fall. The climatological weekly sea ice concentrations in 50-km coastal domain displays an earlier breakup in the Beaufort and a later freeze-up in the Kara Sea area. Regional differences in the seasonal cycle can in part explain the spatially varied trends

  3. Influence of sea ice on Arctic precipitation.

    Science.gov (United States)

    Kopec, Ben G; Feng, Xiahong; Michel, Fred A; Posmentier, Eric S

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km(2) sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  4. Skill improvement of seasonal Arctic sea ice forecasts using bias-correction and ensemble calibration

    Science.gov (United States)

    Krikken, Folmer; Hazeleger, Wilco; Vlot, Willem; Schmeits, Maurice; Guemas, Virginie

    2016-04-01

    We explore the standard error and skill of dynamical seasonal sea ice forecasts of the Arctic using different bias-correction and ensemble calibration methods. The latter is often used in weather forecasting, but so far has not been applied to Arctic sea ice forecasts. We use seasonal predictions of Arctic sea ice of a 5-member ensemble forecast using the fully coupled GCM EC-Earth, with model initial states obtained by nudging towards ORAS4 and ERA-Interim. The raw model forecasts contain large biases in total sea ice area, especially during the summer months. This is mainly caused by a difference in average seasonal cycle between EC-Earth and observations, which translates directly into the forecasts yielding large biases. Further errors are introduced by the differences in long term trend between the observed sea ice, and the uninitialised EC-earth simulation. We find that extended logistic regression (ELR) and heteroscedastic extended logistic regression (HELR) both prove viable ensemble calibration methods, and improve the forecasts substantially compared to standard bias correction techniques. No clear distinction between ELR and HELR is found. Forecasts starting in May have higher skill (CRPSS > 0 up to 5 months lead time) than forecasts starting in August (2-3 months) and November (2-3 months), with trend-corrected climatology as reference. Analysis of regional skill in the Arctic shows distinct differences, where mainly the Arctic ocean and the Kara and Barents sea prove to be one of the more predictable regions with skilful forecasts starting in May up to 5-6 months lead time. Again, forecasts starting in August and November show much lower regional skill. Overall, it is still difficult to beat relative simple statistical forecasts, but by using ELR and HELR we are getting reasonably close to skilful seasonal forecasts up to 12 months lead time. These results show there is large potential, and need, for using ensemble calibration in seasonal forecasts of

  5. Arctic and Southern Ocean Sea Ice Concentrations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly sea ice concentration for Arctic (1901 to 1995) and Southern oceans (1973 to 1990) were digitized on a standard 1-degree grid (cylindrical projection) to...

  6. Arctic Landfast Sea Ice 1953-1998

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The files in this data set contain landfast sea ice data (monthly means) gathered from both Russian Arctic and Antarctic Research Institute (AARI) and Canadian Ice...

  7. Numerical simulation of circulation in Kara and Pechora Seas using the system of operational diagnosis and forecast of the marine dynamics

    Science.gov (United States)

    Diansky, Nikolay; Fomin, Vladimir; Kabatchenko, Ilya; Gusev, Anatoly

    2015-04-01

    The system of operational diagnosis and forecast (SODaF) is presented for hydrometeorological characteristics of Kara and Pechora Seas, which is implemented in the N.N.Zubov State Oceanography Institute (SOI). It includes the computation of atmospheric forcing using the WRF model, computation of currents, sea level, temperature, salinity and sea ice using the model INMOM, and computation of wind wave parameters using Russian Wind Wave Model (RWWM).The results of the verification are presented including simulated hydrometeocharacteristics obtained by SODaF for Kara and Pechora Seas. As well, the retrospective simulation was performed for thermohydrodynamical characteristics of these seas for the ice-free period of 2003-2012. The important features of circulation in Kara and Pechora Seas and the structure of water exchange between them in the ice-free period are shown. The use of non-hydrostatic atmospheric model WRF allows one to reproduce katabatic winds formed over the glaciers. In general, the direction and speed of katabatic winds are fairly permanent. In accordance with the nature of katabatic winds, they are intensified from warm to cold period that is well manifested in the wind map for August. The basis of the Kara Sea circulation is NewLand, Yamal and Ob-Yenisey currents, which are well reproduced with the INMOM. It is shown that the main contribution to the monthly mean circulation of Kara and Pechora seas is made by wind currents. In the western part of the Kara Sea between the mainland and the New Land in the fall the pronounced cyclonic circulation is formed that is typical for closed seas. The main components of the circulation are the NewLand and Yamal currents flowing respectively along the eastern coast of NewLand and the western coast of the Yamal Peninsula.It is caused by regional winds directed from the "cold" land to the "warm" sea. In summer,such a circulation is broken along the coast of the mainland, so that the Yamal flow is reduced. This

  8. SONARC: A Sea Ice Monitoring and Forecasting System to Support Safe Operations and Navigation in Arctic Seas

    Science.gov (United States)

    Stephenson, S. R.; Babiker, M.; Sandven, S.; Muckenhuber, S.; Korosov, A.; Bobylev, L.; Vesman, A.; Mushta, A.; Demchev, D.; Volkov, V.; Smirnov, K.; Hamre, T.

    2015-12-01

    Sea ice monitoring and forecasting systems are important tools for minimizing accident risk and environmental impacts of Arctic maritime operations. Satellite data such as synthetic aperture radar (SAR), combined with atmosphere-ice-ocean forecasting models, navigation models and automatic identification system (AIS) transponder data from ships are essential components of such systems. Here we present first results from the SONARC project (project term: 2015-2017), an international multidisciplinary effort to develop novel and complementary ice monitoring and forecasting systems for vessels and offshore platforms in the Arctic. Automated classification methods (Zakhvatkina et al., 2012) are applied to Sentinel-1 dual-polarization SAR images from the Barents and Kara Sea region to identify ice types (e.g. multi-year ice, level first-year ice, deformed first-year ice, new/young ice, open water) and ridges. Short-term (1-3 days) ice drift forecasts are computed from SAR images using feature tracking and pattern tracking methods (Berg & Eriksson, 2014). Ice classification and drift forecast products are combined with ship positions based on AIS data from a selected period of 3-4 weeks to determine optimal vessel speed and routing in ice. Results illustrate the potential of high-resolution SAR data for near-real-time monitoring and forecasting of Arctic ice conditions. Over the next 3 years, SONARC findings will contribute new knowledge about sea ice in the Arctic while promoting safe and cost-effective shipping, domain awareness, resource management, and environmental protection.

  9. Predictability of the Arctic sea ice edge

    Science.gov (United States)

    Goessling, H. F.; Tietsche, S.; Day, J. J.; Hawkins, E.; Jung, T.

    2016-02-01

    Skillful sea ice forecasts from days to years ahead are becoming increasingly important for the operation and planning of human activities in the Arctic. Here we analyze the potential predictability of the Arctic sea ice edge in six climate models. We introduce the integrated ice-edge error (IIEE), a user-relevant verification metric defined as the area where the forecast and the "truth" disagree on the ice concentration being above or below 15%. The IIEE lends itself to decomposition into an absolute extent error, corresponding to the common sea ice extent error, and a misplacement error. We find that the often-neglected misplacement error makes up more than half of the climatological IIEE. In idealized forecast ensembles initialized on 1 July, the IIEE grows faster than the absolute extent error. This means that the Arctic sea ice edge is less predictable than sea ice extent, particularly in September, with implications for the potential skill of end-user relevant forecasts.

  10. Arctic sea ice melt, the Polar vortex, and mid-latitude weather: Are they connected?

    Science.gov (United States)

    Vihma, Timo; Overland, James; Francis, Jennifer; Hall, Richard; Hanna, Edward; Kim, Seong-Joong

    2015-04-01

    The potential of recent Arctic changes to influence broader hemispheric weather is a difficult and controversial topic with considerable skepticism, as time series of potential linkages are short (relative to chaotic weather events is small. A way forward is through further understanding of potential atmospheric dynamic mechanisms. Although not definitive of change in a statistical or in a causality sense, the exceptionally warm Arctic winters since 2007 do contain increased variability according to some climate indices, with six negative (and two positive) Arctic Oscillation atmospheric circulation index events that created meridional flow reaching unusually far north and south. High pressure anomalies developed east of the Ural Mountains in Russia in response to sea-ice loss in the Barents/Kara Seas, which initiated eastward-propagating wave trains of high and low pressure that advected cold air over central and eastern Asia. Increased Greenland blocking and greater geopotential thickness related to low-level temperatures increases led to northerly meridional flow into eastern North America, inducing persistent cold periods. Arctic connections in Europe and western North America are less clear. The quantitative impact of potential Arctic change on mid-latitude weather will not be resolved within the foreseeable future, yet new approaches to high-latitude atmospheric dynamics can contribute to improved extended range forecasts as outlined by the WMO/Polar Prediction Program and other international activities.

  11. The 'interior' shelves of the Arctic Ocean: Physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange

    Science.gov (United States)

    Williams, William J.; Carmack, Eddy C.

    2015-12-01

    The interior shelves of the Arctic Mediterranean are the shelves of the Kara Sea, Laptev Sea, East Siberian Sea and Beaufort Sea. They comprise approximately 40% of the total arctic shelf area (∼2.5 × 106 km2) and are distinguished from inflow and outflow shelves by their principal forcing dynamics. Along their southern (continental) boundary the interior shelves are dominated by the major arctic rivers, receiving over 80% of the total freshwater input to the Arctic Ocean. In the mid-shelf region wind and ice motion surface stresses dominate mixing and circulation, resulting in high variability. Along, their northern (seaward) boundary they are forced by upwelling- and downwelling-favourable surface stresses which drive shelf-basin exchanges with Atlantic- and Pacific-origin cyclonic boundary currents over the upper slope. Shelf-basin exchange is further modified by shelf-break morphometry (e.g. canyons, valleys, headlands and bottom slope). Here we review the physical oceanographic settings and forcing of the interior shelves and then focus on shelfbreak exchange and supply of nutrients for new primary production due to upwelling across the shelfbreak. As a proxy for this nutrient supply, we show seasonal and annual time series of along-shelfbreak surface-stress due to wind and ice motion from 1979 to 2011. We apply this analysis to the shallow shelves from the Kara Sea to the Beaufort Sea and comment on recent increases due to atmospheric changes and sea-ice retreat.

  12. Arctic sea ice and Eurasian climate: A review

    OpenAIRE

    Gao, Yongqi; Sun, Jianqi; Li, Fei; HE Shengping; Sandven, Stein; Yan, Qing; Zhang, Zhongshi; Lohmann, Katja; Keenlyside, Noel; Furevik, Tore; Suo, Lingling

    2014-01-01

    The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades, including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate. Paleo, obser...

  13. Plutonium in algae, sediments and biota in the Barents, Pechora and Kara seas

    International Nuclear Information System (INIS)

    The 239,240Pu concentrations measured in the sediment, macro algae and benthic fauna were very low in the Russian Arctic seas, and in fish, seabirds and seals usually below the detection limit. The 238Pu/ 239,240Pu ratios suggest that global fallout is the main source of the plutonium. Fallout level Pu isotope ratios, 0.02 - 0.04, were also found in surface vegetation and soil samples from fifteen locations covering Svalbard, Franz Joseph Land Archipelago, coastal areas and islands of the Barents, Pechora and White seas, including the southern coast of Novaya Zemlya, Kola Bay and the River Yenisey estuary. The areal 239,240Pu concentrations of the terrestrial sampling plots varied from 9 to 32Bq/m2. Significantly enhanced 238Pu/239,240Pu ratios of 0.10 - 0.18 were detected only in the Kola Bay in sediment layers outside and to the south of the Atomflot civilian nuclear ice-breaker base. The enhanced isotope ratios in this section of the Kola Bay were verified by triplicate determinations. The highest ratios were found at a depth 6-7.5 cm, and not in the surface sediment layers, indicating a larger previous release. Plutonium is not concentrated in the marine foodchains. Accumulation of 239,240Pu was detected in some species of benthic fauna; in molluscs mainly in the shells compared to the soft edible parts of the specimen. Plutonium was not detected higher in the marine food-chain. The 239,240Pu concentrations measured in the bones and soft tissues of commercial fish species, sea birds and seals were below the detection limit. (author)

  14. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Yu.; Legin, E.; Legin, V. [Khlopin Radium Institute, St. Petersburg (Russian Federation); Shishlov, A.; Savitskii, Yu. [Krasnoyarsk Mining and Chemical Combine, Krasnoyarsk (Russian Federation); Novikov, A.; Goryachenkova, T. [Russian Academy of Sciences, Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    2001-03-01

    migrates as soluble species weakly sorbed by the solid phase, causing the observed low content of Sr-90 in flood-land deposits and bottom sediments of the Yenisey River. The indicated migration behavior of radionuclides is characteristic of the Yenisey Gulf and the adjacent part of the Kara Sea also. We made similar conclusions when studying the migration behavior of Cs-137, Pu-239,240, and Sr-90 in the Kiev reservoir (1987). The formation of radioactive flood-land deposits is provided by rapid deposition of suspended material in stagnant zones during periodical flood. Humus compounds contribute significantly to accumulation of radionuclides in the flood-land deposits and bottom sediments, which is supported by the observed correlation between the radionuclide (Pu, Am, Eu) and total organic carbon distributions in them. Radiochemical analysis of separate fractions showed that about 20% of Pu and Am are associated with the organic fraction: Pu is nearly equally distributed between humic and fulvic acid fractions, whereas Am is preferentially associated with the fulvic acid fraction (the most mobile fraction of humus matter). It was demonstrated in model experiments that the calcium-hydrocarbonate type of water of the Yenisey River causes suppression of formation of mobile fulvate complexes of hydrolyzable radionuclides and, therefore, their transfer into the aqueous phase. In combination with the observed very high distribution coefficients of the radionuclides and low content of their mobile geochemical forms in flood-land deposits of the Yenisey River this suggest that they cannot contribute somewhat significantly to the secondary radioactive contamination of the river water by all mechanisms except migration by mechanical transfer. (author)

  15. Study of migration behavior of technogenic radionuclides in the Yenisey River-Kara Sea aquatic system

    International Nuclear Information System (INIS)

    migrates as soluble species weakly sorbed by the solid phase, causing the observed low content of Sr-90 in flood-land deposits and bottom sediments of the Yenisey River. The indicated migration behavior of radionuclides is characteristic of the Yenisey Gulf and the adjacent part of the Kara Sea also. We made similar conclusions when studying the migration behavior of Cs-137, Pu-239,240, and Sr-90 in the Kiev reservoir (1987). The formation of radioactive flood-land deposits is provided by rapid deposition of suspended material in stagnant zones during periodical flood. Humus compounds contribute significantly to accumulation of radionuclides in the flood-land deposits and bottom sediments, which is supported by the observed correlation between the radionuclide (Pu, Am, Eu) and total organic carbon distributions in them. Radiochemical analysis of separate fractions showed that about 20% of Pu and Am are associated with the organic fraction: Pu is nearly equally distributed between humic and fulvic acid fractions, whereas Am is preferentially associated with the fulvic acid fraction (the most mobile fraction of humus matter). It was demonstrated in model experiments that the calcium-hydrocarbonate type of water of the Yenisey River causes suppression of formation of mobile fulvate complexes of hydrolyzable radionuclides and, therefore, their transfer into the aqueous phase. In combination with the observed very high distribution coefficients of the radionuclides and low content of their mobile geochemical forms in flood-land deposits of the Yenisey River this suggest that they cannot contribute somewhat significantly to the secondary radioactive contamination of the river water by all mechanisms except migration by mechanical transfer. (author)

  16. Contrasting Arctic and Antarctic sea ice temperatures

    Science.gov (United States)

    Vancoppenolle, Martin; Raphael, Marilyn; Rousset, Clément; Vivier, Frédéric; Moreau, Sébastien; Delille, Bruno; Tison, Jean-Louis

    2016-04-01

    Sea ice temperature affects the sea ice growth rate, heat content, permeability and habitability for ice algae. Large-scale simulations with NEMO-LIM suggest large ice temperature contrasts between the Arctic and the Antarctic sea ice. First, Antarctic sea ice proves generally warmer than in the Arctic, in particular during winter, where differences reach up to ~10°C. Second, the seasonality of temperature is different among the two hemispheres: Antarctic ice temperatures are 2-3°C higher in spring than they are in fall, whereas the opposite is true in the Arctic. These two key differences are supported by the available ice core and mass balance buoys temperature observations, and can be attributed to differences in air temperature and snow depth. As a result, the ice is found to be habitable and permeable over much larger areas and much earlier in late spring in the Antarctic as compared with the Arctic, which consequences on biogeochemical exchanges in the sea ice zone remain to be evaluated.

  17. Recent Arctic Sea Level Variations from Satellites

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Piccioni, Gaia

    2016-01-01

    Sea level monitoring in the Arctic region has always been an extreme challenge for remote sensing, and in particular for satellite altimetry. Despite more than two decades of observations, altimetry is still limited in the inner Arctic Ocean. We have developed an updated version of the Danish...... Technical University's (DTU) Arctic Ocean altimetric sea level timeseries starting in 1993 and now extended up to 2015 with CryoSat-2 data. The time-series covers a total of 23 years, which allows higher accuracy in sea level trend determination. The record shows a sea level trend of 2.2 ± 1.1 mm/y for the...... region between 66°N and 82°N. In particular, a local increase of 15 mm/y is found in correspondence to the Beaufort Gyre. An early estimate of the mean sea level trend budget closure in the Arctic for the period 2005–2015 was derived by using the Equivalent Water Heights obtained from GRACE Tellus...

  18. Arctic sea ice balance and climate

    International Nuclear Information System (INIS)

    Proxy data and local historical records show that sea ice extent has undergone large secular variations over past millennia and centuries, for reasons that are only qualitatively understood. Since the onset of systematic observations in situ and satellites, the record shows a remarkable constancy of the annual cycle of the arctic sea ice cover. This cycle is described by a continuity equation that is used to discuss the mechanisms relating ice extent and thickness to climate, and to illustrate how ice formation, transport, and melting combine to produce the seasonal cycle of sea ice cover. The heat balances and stresses at the surface and bottom of the sea ice are external forcing functions with small-scale and large-scale feedbacks. Examples are the stable stratification of the ocean boundary layer caused by bottom melting and surface drainage which suppress the vertical ocean heat flux, and the arctic summer stratus which forms over ice-covered ocean regions and limits surface melting. Recent efforts to model the seasonal cycle of sea ice in the Arctic are discussed in light of the observational record. A promising new development is the incorporation of satellite data as explicit variables carried in dynamic-thermodynamic ice models. Of special interest in the context of climate is the fresh water budget of the Arctic Basin. Its largest components, the runoff generated by mid-latitude precipitation over the Eurasian continent, and the ice export driven by the wind field over the Arctic Basin, have no immediately apparent connection. Taking into account all other components of the fresh water balance, Aagaard and Carmack estimate that the contemporary influx and outflux of fresh water at the perimeter of the Arctic Basin are equal. The unraveling of the mechanisms responsible for this equality, and the consequence of a possible imbalance remain challenging questions

  19. Arctic sea ice bordering on the North Atlantic and intera- nnual climate variations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Variations of winter Arctic sea ice bordering on the North Atlantic are closely related to climate variations in the same region. When winter North Atlantic Oscillation (NAO) index is positive (negative) anomaly phase, Icelandic Low is obviously deepened and shifts northwards (southwards). Simultaneously, the Subtropical High over the North Atlantic is also intensified, and moves northwards (south-wards). Those anomalies strengthen (weaken) westerly be-tween Icelandic Low and the Subtropical High, and further result in positive (negative) sea surface temperature (SST) anomalies in the mid-latitude of the North Atlantic, and increase (decrease) the warm water transportation from the mid-latitude to the Barents Sea, which causes positive (nega-tive) mixed-layer water temperature anomalies in the south part of the Barents Sea. Moreover, the distribution of anom-aly air temperature clearly demonstrates warming (cooling) in northern Europe and the subarctic regions (including the Barents Sea) and cooling (warming) in Baffin Bay/ Davis Strait. Both of distributions of SST and air temperature anomalies directly result in sea ice decrease (increase) in the Barents/Kara Seas, and sea ice increase (decrease) in Baffin Bay/Davis Strait.

  20. The effect of tides on dense water formation in Arctic shelf seas

    Directory of Open Access Journals (Sweden)

    C. F. Postlethwaite

    2010-09-01

    Full Text Available Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.

  1. The effect of tides on dense water formation in Arctic shelf seas

    Directory of Open Access Journals (Sweden)

    C. F. Postlethwaite

    2011-03-01

    Full Text Available Ocean tides are not explicitly included in many ocean general circulation models, which will therefore omit any interactions between tides and the cryosphere. We present model simulations of the wind and buoyancy driven circulation and tides of the Barents and Kara Seas, using a 25 km × 25 km 3-D ocean circulation model coupled to a dynamic and thermodynamic sea ice model. The modeled tidal amplitudes are compared with tide gauge data and sea ice extent is compared with satellite data. Including tides in the model is found to have little impact on overall sea ice extent but is found to delay freeze up and hasten the onset of melting in tidally active coastal regions. The impact that including tides in the model has on the salt budget is investigated and found to be regionally dependent. The vertically integrated salt budget is dominated by lateral advection. This increases significantly when tides are included in the model in the Pechora Sea and around Svalbard where tides are strong. Tides increase the salt flux from sea ice by 50% in the Pechora and White Seas but have little impact elsewhere. This study suggests that the interaction between ocean tides and sea ice should not be neglected when modeling the Arctic.

  2. History of sea ice in the Arctic

    DEFF Research Database (Denmark)

    Polyak, Leonid; Alley, Richard B.; Andrews, John T.;

    2010-01-01

    Optimum, and consistently covered at least part of the Arctic Ocean for no less than the last 13–14 million years. Ice was apparently most widespread during the last 2–3 million years, in accordance with Earth’s overall cooler climate. Nevertheless, episodes of considerably reduced sea ice or even......-scale) and lower-magnitude variability. The current reduction in Arctic ice cover started in the late 19th century, consistent with the rapidly warming climate, and became very pronounced over the last three decades. This ice loss appears to be unmatched over at least the last few thousand years and...

  3. Sea Ice, Hydrocarbon Extraction, Rain-on-Snow and Tundra Reindeer Nomadism in Arctic Russia

    Science.gov (United States)

    Forbes, B. C.; Kumpula, T.; Meschtyb, N.; Laptander, R.; Macias-Fauria, M.; Zetterberg, P.; Verdonen, M.

    2015-12-01

    It is assumed that retreating sea ice in the Eurasian Arctic will accelerate hydrocarbon development and associated tanker traffic along Russia's Northern Sea Route. However, oil and gas extraction along the Kara and Barents Sea coasts will likely keep developing rapidly regardless of whether the Northwest Eurasian climate continues to warm. Less certain are the real and potential linkages to regional biota and social-ecological systems. Reindeer nomadism continues to be a vitally important livelihood for indigenous tundra Nenets and their large herds of semi-domestic reindeer. Warming summer air temperatures over the NW Russian Arctic have been linked to increases in tundra productivity, longer growing seasons, and accelerated growth of tall deciduous shrubs. These temperature increases have, in turn, been linked to more frequent and sustained summer high-pressure systems over West Siberia, but not to sea ice retreat. At the same time, winters have been warming and rain-on-snow (ROS) events have become more frequent and intense, leading to record-breaking winter and spring mortality of reindeer. What is driving this increase in ROS frequency and intensity is not clear. Recent modelling and simulation have found statistically significant near-surface atmospheric warming and precipitation increases during autumn and winter over Arctic coastal lands in proximity to regions of sea-ice loss. During the winter of 2013-14 an extensive and lasting ROS event led to the starvation of 61,000 reindeer out of a population of ca. 300,000 animals on Yamal Peninsula, West Siberia. Historically, this is the region's largest recorded mortality episode. More than a year later, participatory fieldwork with nomadic herders during spring-summer 2015 revealed that the ecological and socio-economic impacts from this extreme event will unfold for years to come. There is an urgent need to understand whether and how ongoing Barents and Kara Sea ice retreat may affect the region's ancient

  4. Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D W; Edson, R; Varela, M; Napier, B

    1999-11-15

    The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an icebreaker in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a {sup 90}Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacific Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and icebreaker in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as

  5. Radionuclides in the Arctic seas from the former Soviet Union: Potential health and ecological risks

    International Nuclear Information System (INIS)

    The primary goal of the assessment reported here is to evaluate the health and environmental threat to coastal Alaska posed by radioactive-waste dumping in the Arctic and Northwest Pacific Oceans by the FSU. In particular, the FSU discarded 16 nuclear reactors from submarines and an icebreaker in the Kara Sea near the island of Novaya Zemlya, of which 6 contained spent nuclear fuel (SNF); disposed of liquid and solid wastes in the Sea of Japan; lost a 90Sr-powered radioisotope thermoelectric generator at sea in the Sea of Okhotsk; and disposed of liquid wastes at several sites in the Pacific Ocean, east of the Kamchatka Peninsula. In addition to these known sources in the oceans, the RAIG evaluated FSU waste-disposal practices at inland weapons-development sites that have contaminated major rivers flowing into the Arctic Ocean. The RAIG evaluated these sources for the potential for release to the environment, transport, and impact to Alaskan ecosystems and peoples through a variety of scenarios, including a worst-case total instantaneous and simultaneous release of the sources under investigation. The risk-assessment process described in this report is applicable to and can be used by other circumpolar countries, with the addition of information about specific ecosystems and human life-styles. They can use the ANWAP risk-assessment framework and approach used by ONR to establish potential doses for Alaska, but add their own specific data sets about human and ecological factors. The ANWAP risk assessment addresses the following Russian wastes, media, and receptors: dumped nuclear submarines and icebreaker in Kara Sea--marine pathways; solid reactor parts in Sea of Japan and Pacific Ocean--marine pathways; thermoelectric generator in Sea of Okhotsk--marine pathways; current known aqueous wastes in Mayak reservoirs and Asanov Marshes--riverine to marine pathways; and Alaska as receptor. For these waste and source terms addressed, other pathways, such as atmospheric

  6. Linkages between Arctic sea ice cover, large-scale atmospheric circulation, and weather and ice conditions in the Gulf of Bothnia, Baltic Sea

    Institute of Scientific and Technical Information of China (English)

    Timo Vihma; Bin Cheng; Petteri Uotila; WEI Lixin; QIN Ting

    2014-01-01

    During years 1980/1981–2012/2013, inter-annual variations in sea ice and snow thickness in Kemi, in the northern coast of the Gulf of Bothnia, Baltic Sea, depended on the air temperature, snow fall, and rain. Inter-annual variations in the November—April mean air temperature, accumulated total precipitation, snow fall, and rain, as well as ice and snow thickness in Kemi and ice concentration in the Gulf of Bothnia correlated with inter-annual variations of the Paciifc Decadal Oscillation (PDO), Arctic Oscillation (AO), North Atlantic Oscillation (NAO), Scandinavian Pattern (SCA), and Polar / Eurasian Pattern (PEU). The strong role of PDO is a new ifnding. In general, the relationships with PDO were approximately equally strong as those with AO, but rain and sea ice concentration were better correlated with PDO. The correlations with PDO were, however, not persistent; for a study period since 1950 the correlations were much lower. During 1980/1981—2012/2013, also the Paciifc / North American Pattern (PNA) and El Nino–Southern Oscillation (ENSO) had statistical connections with the conditions in the Gulf of Bothnia, revealed by analyzing their effects combined with those of PDO and AO. A reduced autumn sea ice area in the Arctic was related to increased rain and total precipitation in the following winter in Kemi. This correlation was signiifcant for the Pan-Arctic sea ice area in September, October, and November, and for the November sea ice area in the Barents / Kara seas.

  7. The Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  8. Improvement in Simulation of Eurasian Winter Climate Variability with a Realistic Arctic Sea Ice Condition in an Atmospheric GCM

    Science.gov (United States)

    Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong

    2012-01-01

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.

  9. Improvement in simulation of Eurasian winter climate variability with a realistic Arctic sea ice condition in an atmospheric GCM

    International Nuclear Information System (INIS)

    The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988–2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to ∼0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated. (letter)

  10. The early twentieth century warming and winter Arctic sea ice

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2012-06-01

    Full Text Available The Arctic featured the strongest surface warming over the globe during the recent decades, and the temperature increase was accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the Early Twentieth Century Warming (ETCW during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM forced by estimates of the observed sea surface temperature (SST and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of Arctic sea ice extent may have also accompanied the Early Twentieth Century Warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.

  11. The early twentieth century warming and winter Arctic sea ice

    Directory of Open Access Journals (Sweden)

    V. A. Semenov

    2012-11-01

    Full Text Available The Arctic has featured the strongest surface warming over the globe during the recent decades, and the temperature increase has been accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the early twentieth century warming (ETCW during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM forced by estimates of the observed sea surface temperature (SST and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of winter Arctic sea ice extent may have also accompanied the early twentieth century warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.

  12. Determination of 240Pu/239Pu isotope ratios in Kara Sea and Novaya Zemlya sediments using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) has been used to determine Pu activity concentrations and 240Pu/239Pu isotope ratios in sediments from the Kara Sea and radioactive waste dumping sites at Novaya Zemlya. Measured 239,240Pu activities ranged from 0.06 - 9.8 Bq/kg dry weight, 240Pu/239Pu atom ratios ranged from 0.13 to 0.28, and 238Pu/239,240Pu activity ratios from 0.02 to 0.6. Perturbations from global fallout isotope ratios were evident at three sites: the Yenisey Estuary and Abrosimov Fjords where 240Pu/239Pu ratios were lower (0.13-0.14); and Stepovogo Fjord sediments where ratios were higher (up to 0.28) than fallout ratios. Based on procedural blanks, detection limits for AMS were below 1 fg Pu and the method showed good precision for isotope ratio measurements, minimal matrix, interference and memory effects. For high level samples, comparison between alpha spectrometry and AMS gave good agreement for measurement of 239,240Pu activity concentrations. (author)

  13. Estimated inventory of radionuclides in Former Soviet Union Naval Reactors dumped in the Kara Sea and their associated health risk

    International Nuclear Information System (INIS)

    Radionuclide inventories have bin estimated for the reactor cores, reactor components, and primary system corrosion products in the former Soviet Union naval reactors dumped at the Abrosimov Inlet, Tsivolka Inlet, Stepovoy Inlet, Techeniye Inlet, and Novaya Zemlya Depression sites in the Kara Sea between 1965 and 1988. For the time of disposal, the inventories are estimated at 17 to 66 kCi of actinides plus daughters and 1695 to 4782 kCi of fission products in the reactor cores, 917 to 1127 kCi of activation products in the reactor components, and 1.4 to 1.6 kCi of activation products in the primary system corrosion products. At the present time, the inventories are estimated to have decreased to 6 to 24 kCi of actinides plus daughters and 492 to 540 kCi of fission products in the reactor cores, 124 to 126 kCi of activation products in the reactor components, and 0.16 to 0.17 kCi of activation products in the primary system corrosion products. All actinide activities are estimated to be within a factor of two

  14. Marine Transportation Implications of the Last Arctic Sea Ice Refuge

    Science.gov (United States)

    Brigham, L. W.

    2010-12-01

    Marine access is increasing throughout the Arctic Ocean and the 'Last Arctic Sea Ice Refuge' may have implications for governance and marine use in the region. Arctic marine transportation is increasing due to natural resource developemnt, increasing Arctic marine tourism, expanded Arctic marine research, and a general linkage of the Arctic to the gloabl economy. The Arctic Council recognized these changes with the release of the Arctic Marine Shipping Assessment of 2009. This key study (AMSA)can be viewed as a baseline assessment (using the 2004 AMSA database), a strategic guide for a host of stakeholders and actors, and as a policy document of the Arctic Council. The outcomes of AMSA of direct relevance to the Ice Refuge are within AMSA's 17 recommendations provided under three themes: Enhancing Arctic Marine Safety, Protecting Arctic People and the Environment, and Building the Arctic Marine Infrastructure. Selected recommendations of importance to the Ice Refuge include: a mandatory polar navigation code; identifying areas of heightened ecological and cultural significance; potential designation of special Arctic marine areas; enhancing the tracking and monitoring of Arctic marine traffic; improving circumpolar environmental response capacity; developing an Arctic search and rescue agreement; and, assessing the effects of marine transportation on marine mammals. A review will be made of the AMSA outcomes and how they can influence the governance, marine use, and future protection of this unique Arctic marine environment.

  15. Comparative Views of Arctic Sea Ice Growth

    Science.gov (United States)

    2000-01-01

    NASA researchers have new insights into the mysteries of Arctic sea ice, thanks to the unique abilities of Canada's Radarsat satellite. The Arctic is the smallest of the world's four oceans, but it may play a large role in helping scientists monitor Earth's climate shifts.Using Radarsat's special sensors to take images at night and to peer through clouds, NASA researchers can now see the complete ice cover of the Arctic. This allows tracking of any shifts and changes, in unprecedented detail, over the course of an entire winter. The radar-generated, high-resolution images are up to 100 times better than those taken by previous satellites.The two images above are separated by nine days (earlier image on the left). Both images represent an area (approximately 96 by 128 kilometers; 60 by 80 miles)located in the Baufort Sea, north of the Alaskan coast. The brighter features are older thicker ice and the darker areas show young, recently formed ice. Within the nine-day span, large and extensive cracks in the ice cover have formed due to ice movement. These cracks expose the open ocean to the cold, frigid atmosphere where sea ice grows rapidly and thickens.Using this new information, scientists at NASA's Jet Propulsion Laboratory (JPL), Pasadena, Calif., can generate comprehensive maps of Arctic sea ice thickness for the first time. 'Before we knew only the extent of the ice cover,' said Dr. Ronald Kwok, JPL principal investigator of a project called Sea Ice Thickness Derived From High Resolution Radar Imagery. 'We also knew that the sea ice extent had decreased over the last 20 years, but we knew very little about ice thickness.''Since sea ice is very thin, about 3 meters (10 feet) or less,'Kwok explained, 'it is very sensitive to climate change.'Until now, observations of polar sea ice thickness have been available for specific areas, but not for the entire polar region.The new radar mapping technique has also given scientists a close look at how the sea ice cover

  16. SEDNA: Sea ice Experiment - Dynamic Nature of the Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Ice Experiment - Dynamic Nature of the Arctic (SEDNA) is an international collaborative effort to improve the understanding of the interaction between sea...

  17. Arctic whaling: proceedings of the International Symposium Arctic Whaling February 1983

    OpenAIRE

    H.K. 's Jacob; Snoeijing, K

    1984-01-01

    Contents: D.M. Hopkins and Louie Marincovich Jr. Whale Biogeography and the history of the Arctic Basin P.M. Kellt, J.H.W. Karas and L.D. Williams Arctic Climate: Past, Present and Future Torgny E. Vinje On the present state and the future fate of the Arctic sea ice cover P.J.H. van Bree On the biology of whales Edward Mitchell Ecology of North Atlantic Boreal and Arctic Monodontid and Mysticete Whales Allen P. McCartney History of native whaling in the Arctic and Subarctic Albert A. Dekin Jr...

  18. Collective doses to man from dumping of radioactive waste in the Arctic Seas

    International Nuclear Information System (INIS)

    A box model for the dispersion of radionuclides in the marine environment covering the Arctic Ocean and the North Atlantic Ocean has been constructed. Collective doses from ingestion pathways have been calculated from unit releases of the radionuclides 3H, 60Co, 63Ni, 90Sr, 129I, 137Cs, 239Pu and 241Am into a fjord on the east coast of Novaya Zemlya. The results show that doses for the shorter-lived radionuclides (e.g. 137Cs) are derived mainly from seafood production in the Barents Sea. Doses from the longer-lived radionuclides (e.g. 239Pu) are delivered through marine produce further away from the Arctic Ocean. Collective doses were calculated for two release scenarios, both of which are based on information of the dumping of radioactive waste in the Barents and Kara Seas by the former Soviet Union and on preliminary information from the International Arctic Sea Assessment Programme. A worst-case scenario was assumed according to which all radionuclides in liquid and solid radioactive waste were available for dispersion in the marine environment at the time of dumping. Release of radionuclides from spent nuclear fuel was assumed to take place by direct corrosion of the fuel ignoring the barriers that prevent direct contact between the fuel and the seawater. The second scenario selected assumed that releases of radionuclides from spent nuclear fuel do not occur until after failure of the protective barriers. All other liquid and solid radioactive waste was assumed to be available for dispersion at the time of discharge in both scenarios. The estimated collective dose for the worst-case scenario was about 9 manSv and that for the second scenario was about 3 manSv. In both cases, 137Cs is the radionuclide predicted to dominate the collective doses as well as the peak collective dose rates

  19. The Kara Bogaz Gol Bay, Lake Issyk Kul and Aral Sea sediments as archives of climate change in the Aral-Caspian catchment basin

    International Nuclear Information System (INIS)

    A 5-m long core of bottom sediments from the Kara Bogaz Gol Bay of the Caspian Sea, 4- m and 2-m cores from the Issyk Kul Lake of the Thian Shan Mountains, and a 4-m core from the Aral Sea were examined for evidence of climatic and environmental changes in the catchment basin of the Central Asia Region. The distribution of 18O and 13C in the bulk carbonates, 2H in the pore water, radiocarbon age, oxygen and hydrogen isotopes in the lake water, abundance of CaCO3, MgCO3, and the basic salt ions of Na+, K+, Cl-, SO42- in the cores were measured. The isotope and hydrogeochemical data of the Kara Bogaz Gol Bay sediments prove a historical scenario for the basin which suggests that fresh water has been discharged to the Caspian Sea during the Bay's humid episode across the Central Asia Region (∼ 9 Ka BP). Isotope and geochemical evidence indicate that the sedimentation of the upper core segment has taken place during the last ∼2.2 Ka BP in the environment of sea water recharged from the Central Caspian Basin. The period of between 4.3 and 6 Ka BP, which relates to the core depth interval of between 170 cm and 260 cm, demonstrates the most dramatic change in the sedimentation rate in the Issyk Kul Lake. It means that active melting of the mountain glaciers and warming of climate has happened just in this period. The swamp plant peat layers at depths of 230 cm and 130 cm indicate that during 3.5-3.7 Ka BP and 1.6-1.8 Ka BP the Aral Sea dried and broke up into a number of lakes and swamps. Sediment cores taken from the bottom of the Kara Bogaz Gol Bay, Lake Issyk Kul and Aral Sea show periodic rise and fall in water levels during the last ∼10 000 years. Two peat layers within the sediment core of the Aral Sea and dated at 1.6-1.8 Ka BP and 3.5-3.7 Ka BP demonstrate that this reservoir also periodically dried. (author)

  20. Arctic Tides from GPS on sea-ice

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine; Skourup, Henriette; Forsberg, René

    2013-01-01

    The presence of sea-ice in the Arctic Ocean plays a significant role in the Arctic climate. Sea-ice dampens the ocean tide amplitude with the result that global tidal models perform less accurately in the polar regions. This paper presents, a kinematic processing of global positioning system (GPS......) placed on sea-ice, at six different sites north of Greenland for the preliminary study of sea surface height (SSH), and tidal analysis to improve tide models in the Central Arctic. The GPS measurements are compared with the Arctic tide model AOTIM-5, which assimilates tide-gauges and altimetry data. The...... results show coherence between the GPS buoy measurements, and the tide model. Furthermore, we have proved that the reference ellipsoid of WGS84, can be interpolated to the tidal defined zero level by applying geophysical corrections to the GPS data....

  1. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea

    OpenAIRE

    James E. Overland; Kevin R. Wood; Wang, Muyin

    2011-01-01

    Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episo...

  2. The onset of spring melt in first-year ice regions of the Arctic as determined from scanning multichannel microwave radiometer data for 1979 and 1980

    Science.gov (United States)

    Anderson, Mark R.

    1987-11-01

    Sea ice ablation is an important physical process affecting the global climate system. During the Arctic melt season, rapid changes occur in both sea ice surface conditions and the extent of ice. These changes alter the albedo and vary the surface energy budget. Understanding variations in Arctic sea ice is critical for global climate studies. This paper investigates the spring onset of melt in the Arctic seasonal sea ice zone through analysis of melt signatures derived from Nimbus 7 scanning multichannel microwave radiometer data. Satellite-derived melt signatures, determined by 18- and 37-GHz vertical brightness temperatures, are associated with the initial melt of the snow pack on the sea ice surface. Sea ice melt events vary spatially and temporally. Within the arctic basin the melt signature is observed first in the Chukchi Sea and the Kara and Barents seas. As melting progresses, the melt signature moves westward from the Chukchi Sea and eastward from the Kara and Barents seas to the Laptev Sea region. The initial location of the melt signal also varies with year. In 1979 the melt signature occurs first in the Chukchi Sea; and in 1980 in the Kara Sea. The date for the initial melt varies between 1979 and 1980 by an average of 7-10 days with a maximum of 25 days in the Chukchi Sea region. Monitoring the occurrence of melt signatures can be used as an indicator of climate variability in the Arctic's seasonal sea ice zones.

  3. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    Science.gov (United States)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    region (one perturbation experiment combines all regions). These regions correspond to sea-ice loss hotspots such as the Barents-Kara Seas and the Bering Sea. The differences between the control and perturbation runs yields the effects of the imposed sea-ice loss on the polar vortex. To detect and count SSWs for each run, we use the World Meteorological Organisation's definition of an SSW (a reversal in zonal mean zonal wind at 10 hPa and 60° N, and a reversal in zonal mean meridional temperature gradient at 10 hPa between 60° N and 90° N). The poster will present and discuss the initial results of this study. Implications of the results for future change in the lower latitude mid-troposphere will be discussed. References Sun, L., C. Deser, and R. A. Tomas, 2015: Mechanisms of Stratospheric and Tropospheric Circulation Response to Projected Arctic Sea Ice Loss. J. Climate, 28, 7824-7845, doi: http://dx.doi.org/10.1175/JCLI-D-15-0169.1.

  4. Dipole anomaly in the Arctic atmosphere and winter Arctic sea ice motion

    Institute of Scientific and Technical Information of China (English)

    WU; Bingyi; ZHANG; Renhe

    2005-01-01

    This paper investigates a previously-ignored atmospheric circulation anomaly-di- pole structure anomaly in the arctic atmosphere, and its relationship with the winter sea ice motion, based on analyses of the International Arctic Buoy Programme Data (1979-1998) and datasets from the National Center for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) for the period of 1960-2002. The dipole structure anomaly is the second-leading mode of EOF of monthly mean SLP north of 70(N during the winter season (Oct.-Mar.), which accounts for 13% of the variance. One of its two anomaly centers is over the Canadian Archipelago; the other is situated over northern Eurasia and the Siberian marginal seas. Due to the dipole structure anomaly's strong meridionality, it becomes an important mechanism to drive both anomalous sea ice export out of the Arctic Basin and cold air outbreaks into the Barents Sea, the Nordic Seas and northern Europe.

  5. Arctic Sea Ice and Its Changes during the Satellite Period

    Science.gov (United States)

    Wang, X.; Liu, Y.; Key, J. R.

    2009-12-01

    Sea ice is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect the complex exchanges of momentum, heat, and mass between sea and the atmosphere, along with profound socio-economic influences due to its role in transportation, fisheries, hunting, polar animal habitat. Over the last two decades of the 20th century, the Arctic underwent significant changes in sea ice as part of the accelerated global warming of that period. More accurate, consistent, and detailed ice thickness, extent, and volume data are critical for a wide range of applications including climate change detection, climate modeling, and operational applications such as shipping and hazard mitigation. Satellite data provide an unprecedented opportunity to estimate and monitor Arctic sea ice routinely with relatively high spatial and temporal resolutions. In this study, a One-dimensional Thermodynamic Ice Model (OTIM) has been developed to estimate sea ice thickness based on the surface energy balance at a thermo-equilibrium state, containing all components of the surface energy balance. The OTIM has been extensively validated against submarine Upward-Looking Sonar (ULS) measurements, meteorological station measurements, and comprehensive numerical model simulations. Overall, OTIM-estimated sea ice thickness is accurate to within about 20% error when compared to submarine ULS ice thickness measurements and Canadian meteorological station measurements for ice less than 3 m. Along with sea ice extent information from the SSM/I, the Arctic sea ice volume can be estimated for the satellite period from 1984 to 2004. The OTIM has been used with satellite data from the extended Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder (APP-x) products for the Arctic sea ice thickness, and sequentially sea ice volume estimations, and following statistical analysis of spatial and temporal distribution and trends in sea

  6. High resolution modelling of the decreasing Arctic sea ice

    DEFF Research Database (Denmark)

    Madsen, K. S.; Rasmussen, T. A. S.; Blüthgen, Jonas;

    2012-01-01

    The Arctic sea ice cover has been rapidly decreasing and thinning over the last decade, with minimum ice extent in 2007 and almost as low extent in 2011. This study investigates two aspects of the decreasing ice cover; first the large scale thinning and changing dynamics of the polar sea ice, and...

  7. Sea Ice Edge Location and Extent in the Russian Arctic, 1933-2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Sea Ice Edge Location and Extent in the Russian Arctic, 1933-2006 data are derived from sea ice charts from the Arctic and Antarctic Research Institute (AARI),...

  8. The changing Arctic Sea ice cover : regional and seasonal aspects

    OpenAIRE

    Steene, Rebekka Jastamin

    2015-01-01

    As global climate changes are becoming increasingly evident, increasing air temperatures, melting glaciers, rising sea levels, and decreasing biodiversity is observed at increasing rates worldwide. The Arctic sea ice cover has has become a key indicator of the ongoing global climate change through its substantial decline in both extent and thickness. In this study we show how the observed regression of the Northern Hemisphere sea ice is distributed over different regions of the...

  9. Sea ice in the Canadian Arctic in the 21. century

    International Nuclear Information System (INIS)

    Climate warming will occur first and most intensely in Arctic regions, according to the numerical simulations of future climate performed with different Global Climate Models (GCMs). It includes the simulations performed by the Meteorological Service of Canada. The observations gathered in the Arctic indicate that the present warming has no precedent over the past four hundred years. Since the 1970s, data acquired mainly by satellite indicates that the extent of Arctic sea ice decreased at a rate of approximately three per cent per decade. Over the period 1969-2000, a similar rate of decrease has been observed within Canadian Arctic waters. Over the past forty years, estimates of the thickness of ice in the Arctic, based on submarine measurements, show a 40 per cent decrease. By 2050, if all the conditions remain as they are, the Arctic Ocean could be ice free. The most widely held scientific opinion seems to be that in the future there will be less ice in the Arctic than what was observed in the past, an opinion that is still being debated by scientists. The development of local natural resources and trans-shipment between Europe and Asia could increase dramatically in a future with less ice. Marine transportation in the Canadian Arctic would be expanded. Climatological analysis results of Canadian ice information is presented by the authors, and they have chosen to discuss various probable scenarios related to ice conditions during this century. 13 refs., 8 figs

  10. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    Science.gov (United States)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  11. Development of monitoring system for studying of radionuclide and chemical contamination level in trans boundary river basins of Caspian and Kara Seas at Russian Federation territory

    International Nuclear Information System (INIS)

    Full text: Intensive and insufficiently controlled human industrial activities, ignoring regional geological and geochemical processes, resulted in considerable chemical pollution and radioactive contamination of these river's basins, where some large nuclear power plants, uranium and chemical enterprises, oil and gas productions are also located. This epidemiological and environmental situation aggravated further after USSR collapse and the establishment of new independent states due to lack of the appropriate environmental monitoring in those countries and on their near-border areas in particular, that contributed to further aggravation of the political tension and economic destabilization between transboundary countries. The environmental situation here is one of most unfavorable among world water ecosystems. In recent years different pollutants (radionuclides, toxins, organic substances and heavy metals) activate reduction processes in bottom sediments, that lead to changes in sulfur and carbon cycles, the oxygen deficit in water, to eutrophication of water reservoirs and their biological degradation. Today the development of total environmental monitoring systems is clearly necessary for operative current control, ensuring preparedness and prediction of any potential emergencies of global and local scales and their long-term effects. The objectives for presented monitoring systems are to: (1)study sources and mechanisms of chemical pollution and radioactive contamination of water basins of Volga (the largest river in Europe and Russia), Terek and Ural rivers flowed into Caspian Sea, and Ob, Irtysh and Tom ones, flowed into Kara Sea in Arctic Ocean within RF territory; (2) develop the well-ground database (DB) on contamination; (3) the using of the obtained results for the operative current trans boundary control, monitoring and protection of freshwater resources; (4) modeling of pollutant's migration. There is no way to provide solution of environmental

  12. The Northern Bering Sea: An Arctic Ecosystem in Change

    Science.gov (United States)

    Grebmeier, J. M.; Cooper, L. W.

    2004-12-01

    Arctic systems can be rich and diverse habitats for marine life in spite of the extreme cold environment. Benthic faunal populations and associated biogeochemical cycling processes are influenced by sea-ice extent, seawater hydrography (nutrients, salinity, temperature, currents), and water column production. Benthic organisms on the Arctic shelves and margins are long-term integrators of overlying water column processes. Because these organisms have adapted to living at cold extremes, it is reasonable to expect that these communities will be among the most susceptible to climate warming. Recent observations show that Arctic sea ice in the North American Arctic is melting and retreating northward earlier in the season and the timing of these events can have dramatic impacts on the biological system. Changes in overlying primary production, pelagic-benthic coupling, and benthic production and community structure can have cascading effects to higher trophic levels, particularly benthic feeders such as walruses, gray whales, and diving seaducks. Recent indicators of contemporary Arctic change in the northern Bering Sea include seawater warming and reduction in ice extent that coincide with our time-series studies of benthic clam population declines in the shallow northern Bering shelf in the 1990's. In addition, declines in benthic amphipod populations have also likely influenced the movement of feeding gray whales to areas north of Bering Strait during this same time period. Finally a potential consequence of seawater warming and reduced ice extent in the northern Bering Sea could be the northward movement of bottom feeding fish currently in the southern Bering Sea that prey on benthic fauna. This would increase the feeding pressure on the benthic prey base and enhance competition for this food source for benthic-feeding marine mammals and seabirds. This presentation will outline recent biological changes observed in the northern Bering Sea ecosystem as documented in

  13. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    Science.gov (United States)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    Of all the components of the Earth climate system, the cryosphere is arguably the least understood even though it is a very important indicator and an effective modulator of regional and global climate change. Changes in sea ice will significantly affect exchanges of momentum, heat, and mass between the ocean and the atmosphere, and have profound socio-economic impacts on transportation, fisheries, hunting, polar animal habitat and more. In the last three decades, the Arctic underwent significant changes in sea ice as part of the accelerated global climate change. With the recently developed One-dimensional Thermodynamic Ice Model (OTIM), sea and lake ice thickness and trends can be reasonably estimated. The OTIM has been extensively validated against submarine and moored upward-looking sonar measurements, meteorological station measurements, and comprehensive numerical model simulations. The Extended AVHRR Polar Pathfinder (APP-x) dataset has 25 climate parameters covering surface, cloud, and sea ice properties as well as surface and top-of-atmosphere radiative fluxes for the period 1982 - 2004 over the Arctic and Antarctic at 25 km resolution. The OTIM has been used with APP-x dataset for Arctic sea ice thickness and volume estimation. Statistical analysis of spatial and temporal distributions and trends in sea ice extent, thickness, and volume over the satellite period has been performed, along with the temporal analysis of first year and multiple year sea ice extent changes. Preliminary results show clear evidence that Arctic sea ice has been experiencing significant changes over the last two decades of the 20th century. The Arctic sea ice has been shrinking unexpectedly fast with the declines in sea ice extent, thickness, and volume, most apparent in the fall season. Moreover, satellites provide an unprecedented opportunity to observe Arctic sea ice and its changes with high spatial and temporal coverage that is making it an ideal data source for mitigating

  14. Optical properties of melting first-year Arctic sea ice

    Science.gov (United States)

    Light, Bonnie; Perovich, Donald K.; Webster, Melinda A.; Polashenski, Christopher; Dadic, Ruzica

    2015-11-01

    The albedo and transmittance of melting, first-year Arctic sea ice were measured during two cruises of the Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) project during the summers of 2010 and 2011. Spectral measurements were made for both bare and ponded ice types at a total of 19 ice stations in the Chukchi and Beaufort Seas. These data, along with irradiance profiles taken within boreholes, laboratory measurements of the optical properties of core samples, ice physical property observations, and radiative transfer model simulations are employed to describe representative optical properties for melting first-year Arctic sea ice. Ponded ice was found to transmit roughly 4.4 times more total energy into the ocean, relative to nearby bare ice. The ubiquitous surface-scattering layer and drained layer present on bare, melting sea ice are responsible for its relatively high albedo and relatively low transmittance. Light transmittance through ponded ice depends on the physical thickness of the ice and the magnitude of the scattering coefficient in the ice interior. Bare ice reflects nearly three-quarters of the incident sunlight, enhancing its resiliency to absorption by solar insolation. In contrast, ponded ice absorbs or transmits to the ocean more than three-quarters of the incident sunlight. Characterization of the heat balance of a summertime ice cover is largely dictated by its pond coverage, and light transmittance through ponded ice shows strong contrast between first-year and multiyear Arctic ice covers.

  15. Arctic sea-level reconstruction analysis using recent satellite altimetry

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    We present a sea-level reconstruction for the Arctic Ocean using recent satellite altimetry data. The model, forced by historical tide gauge data, is based on empirical orthogonal functions (EOFs) from a calibration period; for this purpose, newly retracked satellite altimetry from ERS-1 and -2 and...

  16. Interannual variability of summer sea ice thickness in the Siberian and central Arctic under different atmospheric circulation regimes

    Science.gov (United States)

    Haas, Christian; Eicken, Hajo

    2001-03-01

    Extensive drill hole and electromagnetic induction measurements of sea ice thickness in the Siberian and central Arctic Seas in the summers of 1993, 1995, and 1996 reveal significant interannual variability. In the Laptev Sea, minimum and maximum modal first-year ice thicknesses amounted to 1.25 and 1.85 m in 1995 and 1996, respectively. Ice thickness correlates with ice extent, which reached a record minimum in August 1995 and was well above average in 1996. These differences are explained by the strength and location of a summer cyclonic atmospheric circulation pattern affecting both ice advection and surface melt. From drifting buoys deployed in 1995 and satellite radar backscatter data, first- and second-year ice regimes are delineated. Differences in first-year ice backscatter coefficients between 1993, 1995, and 1996 are explained by differences in level ice surface roughness. The Lagrangian evolution of ice thickness between 1995 and 1996 is studied. While the shape of the thickness distribution does not change significantly, the mean (modal) ice thickness of the ice field increases from 1.80 m (1.25 m) in 1995 to 2.86 m (2.25 m) in 1996. The thickness distribution of second-year ice in 1996 closely agrees with that of level multiyear ice downstream in the Transpolar Drift obtained in 1991. In 1996, mean level ice thickness increases at 0.23 and 0.16 m deg-1 with latitude in the Kara and Laptev Sea sectors of the Arctic Ocean, respectively.

  17. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    International Nuclear Information System (INIS)

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of 134Cs, 137Cs and 90Sr from these sources has been decreasing during the 1990's, while 129I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest 137Cs, 129I and 90Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived 137Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990's the fraction to total 137Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of 239, 240Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  18. Impacts of Declining Arctic Sea Ice: An International Challenge

    Science.gov (United States)

    Serreze, M.

    2008-12-01

    As reported by the National Snow and Ice Data Center in late August of 2008, Arctic sea ice extent had already fallen to its second lowest level since regular monitoring began by satellite. As of this writing, we were closing in on the record minimum set in September of 2007. Summers may be free of sea ice by the year 2030. Recognition is growing that ice loss will have environmental impacts that may extend well beyond the Arctic. The Arctic Ocean will in turn become more accessible, not just to tourism and commercial shipping, but to exploitation of oil wealth at the bottom of the ocean. In recognition of growing accessibility and oil operations, the United States Coast Guard set up temporary bases this summer at Barrow and Prudhoe Bay, AK, from which they conducted operations to test their readiness and capabilities, such as for search and rescue. The Canadians have been busy showing a strong Arctic presence. In August, a German crew traversed the Northwest Passage from east to west in one of their icebreakers, the Polarstern. What are the major national and international research efforts focusing on the multifaceted problem of declining sea ice? What are the areas of intersection, and what is the state of collaboration? How could national and international collaboration be improved? This talk will review some of these issues.

  19. Improvements of sea level anomaly maps in the Arctic Ocean

    Science.gov (United States)

    Cheng, Yongcun; Baltazar Andersen, Ole; Knudsen, Per

    2013-04-01

    Obtaining satellite data at high latitude regions is generally very problematic. In the Arctic Ocean (For this investigation defined as 65°N-82°N), the ERS and ENVISAT sun-synchronous satellite altimetry measurements are nearly always affected by the presence of sea ice. Consequently, it is difficult to get accurate altimetric data for oceanography and climatology and this affect i.e., determination of the linear sea level trend over the regions. The objective of our study is to develop a new 3 days sea level anomaly maps in the Arctic Ocean. Multi-satellite (i.e., ERS-1, ERS-2 and ENVISAT) along track sea level anomaly data is extracted by applying adjusted editing criteria. Initially, the removal of orbit errors in sun-synchronous satellite altimetry is performed. A joint crossover with simultaneous TOPEX/Jason satellite altimetry, are used to adjust the long wavelength bias and tilt of the ERS-1, ERS-2 and ENVISAT. Subsequently, the adjusted sea level anomalies are gridded to a normal 0.5°×0.5°grid using collocation with a second-order Markov covariance function using spatial temporal interpolation which takes into account data from nearby periods in case of missing data. The data is then combined with tide gauge data and model outputs, the new data is used to study the sea level variability in Arctic Ocean. The contributors (for example, thermosteric, ice sheets and water mass) to the sea level change in the region are investigated. Moreover, significant decadal signal in sea level variation is found from tide gauge data and its comparison with AO index. The presentation is a contribution to the EU 7th FW supported projects MONARCH-A.

  20. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    Science.gov (United States)

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-07-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change.

  1. Coincident multiscale estimates of Arctic sea ice thickness

    Science.gov (United States)

    Gardner, Joan; Richter-Menge, Jackie; Farrell, Sinead; Brozena, John

    2012-02-01

    Recent dramatic changes in the characteristics of the Arctic sea ice cover have sparked interest and concern from a wide range of disciplines including socioeconomics, maritime safety and security, and resource management, as well as basic research science. Though driven by different priorities, common to all is the demand for an improved ability to monitor and forecast changes in the sea ice cover. Key to meeting this demand is further improvement in the quality of observations collected from remote platforms. Satellites provide an important platform for instruments designed to monitor basin-wide changes in the volume of the ice cover, a function of ice extent and thickness. Remote techniques to monitor sea ice extent in all seasons are well developed—these observations reveal a dramatic decline in summer sea ice extent since 1979, when satellite records became available. Further, they indicate that the decline has been facilitated by a dramatic decrease in the extent of perennial (i.e., multiyear) ice. Combined estimates of ice thickness derived from submarine records between 1958 and 2000, and Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry from 2003 to 2008, provide the longest-term record of sea ice thickness observations. These data suggest a decrease in the mean overall thickness of the sea ice over a region covering about 38% of the Arctic Ocean.

  2. Arctic sea-level reconstruction analysis using recent satellite altimetry

    OpenAIRE

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    We present a sea-level reconstruction for the Arctic Ocean using recent satellite altimetry data. The model, forced by historical tide gauge data, is based on empirical orthogonal functions (EOFs) from a calibration period; for this purpose, newly retracked satellite altimetry from ERS-1 and -2 and Envisat has been used. Despite the limited coverage of these datasets, we have made a reconstruction up to 82 degrees north for the period 1950–2010. We place particular emphasis on determining app...

  3. Decadal to seasonal variability of Arctic sea ice albedo

    OpenAIRE

    Agarwal, S; Moon, W.; Wettlaufer, J. S.

    2011-01-01

    A controlling factor in the seasonal and climatological evolution of the sea ice cover is its albedo $\\alpha$. Here we analyze Arctic data from the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder and assess the seasonality and variability of broadband albedo from a 23 year daily record. We produce a histogram of daily albedo over ice covered regions in which the principal albedo transitions are seen; high albedo in late winter and spring, the onset of snow melt and melt pond...

  4. Seasonal cycle of solar energy fluxes through Arctic sea ice

    Directory of Open Access Journals (Sweden)

    S. Arndt

    2014-06-01

    Full Text Available Arctic sea ice has not only decreased considerably during the last decades, but also changed its physical properties towards a thinner and more seasonal cover. These changes strongly impact the energy budget and might affect the ice-associated ecosystem of the Arctic. But until now, it is not possible to quantify shortwave energy fluxes through sea ice sufficiently well over large regions and during different seasons. Here, we present a new parameterization of light transmittance through sea ice for all seasons as a function of variable sea ice properties. The annual maximum solar heat flux of 30 × 105 J m−2 occurs in June, then also matching the under ice ocean heat flux. Furthermore, our results suggest that 96% of the total annual solar heat input occurs from May to August, during four months only. Applying the new parameterization on remote sensing and reanalysis data from 1979 to 2011, we find an increase in light transmission of 1.5% a−1 for all regions. Sensitivity studies reveal that the results strongly depend on the timing of melt onset and the correct classification of ice types. Hence, these parameters are of great importance for quantifying under-ice radiation fluxes and the uncertainty of this parameterization. Assuming a two weeks earlier melt onset, the annual budget increases by 20%. Continuing the observed transition from Arctic multi- to first year sea ice could increase light transmittance by another 18%. Furthermore, the increase in light transmission directly contributes to an increase in internal and bottom melt of sea ice, resulting in a positive transmittance-melt feedback process.

  5. Controls on Arctic sea ice from first-year and multi-year survival rates

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Jes [Los Alamos National Laboratory

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  6. Near Real Time Arctic sea ice thickness and volume from CryoSat-2

    OpenAIRE

    Tilling, R. L.; Ridout, A; Shepherd, A.

    2016-01-01

    Timely observations of sea ice thickness help us to understand Arctic climate, and can support maritime activities in the Polar Regions. Although it is possible to calculate Arctic sea ice thickness using measurements acquired by CryoSat-2, the latency of the final release dataset is typically one month, due to the time required to determine precise satellite orbits. We use a new fast delivery CryoSat-2 dataset based on preliminary orbits to compute Arctic sea ice thickness ...

  7. Arctic Sea Ice Simulation in the PlioMIP Ensemble

    Science.gov (United States)

    Howell, Fergus W.; Haywood, Alan M.; Otto-Bliesner, Bette L.; Bragg, Fran; Chan, Wing-Le; Chandler, Mark A.; Contoux, Camille; Kamae, Youichi; Abe-Ouchi, Ayako; Rosenbloom, Nan A.; Stepanek, Christian; Zhang, Zhongshi

    2016-01-01

    Eight general circulation models have simulated the mid-Pliocene warm period (mid-Pliocene, 3.264 to 3.025 Ma) as part of the Pliocene Modelling Intercomparison Project (PlioMIP). Here, we analyse and compare their simulation of Arctic sea ice for both the pre-industrial period and the mid-Pliocene. Mid-Pliocene sea ice thickness and extent is reduced, and the model spread of extent is more than twice the pre-industrial spread in some summer months. Half of the PlioMIP models simulate ice-free conditions in the mid-Pliocene. This spread amongst the ensemble is in line with the uncertainties amongst proxy reconstructions for mid-Pliocene sea ice extent. Correlations between mid-Pliocene Arctic temperatures and sea ice extents are almost twice as strong as the equivalent correlations for the pre-industrial simulations. The need for more comprehensive sea ice proxy data is highlighted, in order to better compare model performances.

  8. Links between Arctic sea ice and extreme summer precipi- tation in China:an alternative view

    Institute of Scientific and Technical Information of China (English)

    Petteri Uotila; Alexey Karpechko; Timo Vihma

    2014-01-01

    Potential links between the Arctic sea-ice concentration anomalies and extreme precipitation in China are explored. Associations behind these links can be explained by physical interpretations aided by visualisations of temporarily lagged composites of variables such as atmospheric mean sea level pressure and sea surface temperature. This relatively simple approach is veriifed by collectively examining already known links between the Arctic sea ice and rainfall in China. For example, similarities in the extreme summer rainfall response to Arctic sea-ice concentration anomalies either in winter (DJF) or in spring (MAM) are highlighted. Furthermore, new links between the Arctic sea ice and the extreme weather in India and Eurasia are proposed. The methodology developed in this study can be further applied to identify other remote impacts of the Arctic sea ice variability.

  9. Arctic Sea Ice Thickness - Past, Present And Future

    Science.gov (United States)

    Wadhams, P.

    2007-12-01

    In November 2005 the International Workshop on Arctic Sea Ice Thickness: Past, Present and Future was held at Rungstedgaard Conference Center, near Copenhagen, Denmark. The proceedings of the Workshop were subsequently published as a book by the European Commission. In this review we summarise the conclusions of the Workshop on the techniques which show the greatest promise for thickness monitoring on different spatial and temporal scales, and for different purposes. Sonic methods, EM techniques, buoys and satellite methods will be considered. Some copies of the book will be available at the lecture, and others can be ordered from the European Commission. The paper goes on to consider early results from some of the latest measurements on Arctic sea ice thickness done in 2007. These comprise a trans-Arctic voyage by a UK submarine, HMS "Tireless", equipped with a Kongsberg 3002 multibeam sonar which generates a 3-D digital terrain map of the ice underside; and experiments at the APLIS ice station in the Beaufort Sea carried out by the Gavia AUV equipped with a GeoSwath interferometric sonar. In both cases 3-D mapping of sea ice constitutes a new step forward in sea ice data collection, but in the case of the submarine the purpose is to map change in ice thickness (comparing results with a 2004 "Tireless" cruise and with US and UK data prior to 2000), while for the small AUV the purpose is intensive local mapping of a few ridges to improve our knowledge of their structure, as part of a multisensor programme

  10. Geographical distribution of organochlorine pesticides (OCPs) in polar bears (Ursus maritimus) in the Norwegian and Russian Arctic

    Science.gov (United States)

    Lie, E.; Bernhoft, A.; Riget, F.; Belikov, Stanislav; Boltunov, Andrei N.; Derocher, A.E.; Garner, G.W.; Wiig, O.; Skaare, J.U.

    2003-01-01

    Geographical variation of organochlorine pesticides (OCPs) was studied in blood samples from 90 adult female polar bear (Ursus maritimus) from Svalbard, Franz Josef Land, Kara Sea, East-Siberian Sea and Chukchi Sea. In all regions, oxychlordane was the dominant OCP. Regional differences in mean levels of HCB, oxychlordane, trans-nonachlor, ??-HCH, ??-HCH and p,p???-DDE were found. The highest levels of oxychlordane, trans-nonachlor and DDE were found in polar bears from Franz Josef Land and Kara Sea. HCB level was lowest in polar bears from Svalbard. Polar bears from Chukchi Sea had the highest level of ??- and ??-HCH. The lowest ??-HCH concentration was found in bears from Kara Sea. In all the bears, ???HCHs was dominated by ??-HCH. The geographical variation in OCP levels and pattern may suggest regional differences in pollution sources and different feeding habits in the different regions. Polar bears from the Western Russian Arctic were exposed to higher levels of chlordanes and p,p???-DDE than polar bears from locations westwards and eastwards from this region. This may imply the presence of a significant pollution source in the Russian Arctic area. The study suggests that the western Russian Arctic is the most contaminated region of the Arctic and warrants further research. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. A recent bifurcation in Arctic sea-ice cover

    CERN Document Server

    Livina, Valerie N

    2012-01-01

    There is ongoing debate over whether Arctic sea-ice has already passed a 'tipping point', or whether it will do so in future, with several recent studies arguing that the loss of summer sea ice does not involve a bifurcation because it is highly reversible in models. Recently developed methods can detect and sometimes forewarn of bifurcations in time-series data, hence we applied them to satellite data for Arctic sea-ice cover. Here we show that a new low ice cover state has appeared from 2007 onwards, which is distinct from the normal state of seasonal sea ice variation, suggesting a bifurcation has occurred from one attractor to two. There was no robust early warning signal of critical slowing down prior to this bifurcation, consistent with it representing the appearance of a new ice cover state rather than the loss of stability of the existing state. The new low ice cover state has been sampled predominantly in summer-autumn and seasonal forcing combined with internal climate variability are likely respons...

  12. The uniaxial compressive strength of the Arctic summer sea ice

    Institute of Scientific and Technical Information of China (English)

    HAN Hongwei; LI Zhijun; HUANG Wenfeng; LU Peng; LEI Ruibo

    2015-01-01

    The results on the uniaxial compressive strength of Arctic summer sea ice are presented based on the sam-ples collected during the fifth Chinese National Arctic Research Expedition in 2012 (CHINARE-2012). Exper-imental studies were carried out at different testing temperatures (−3, −6 and −9°C), and vertical samples were loaded at stress rates ranging from 0.001 to 1 MPa/s. The temperature, density, and salinity of the ice were measured to calculate the total porosity of the ice. In order to study the effects of the total porosity and the density on the uniaxial compressive strength, the measured strengths for a narrow range of stress rates from 0.01 to 0.03 MPa/s were analyzed. The results show that the uniaxial compressive strength decreases linearly with increasing total porosity, and when the density was lower than 0.86 g/cm3, the uniaxial com-pressive strength increases in a power-law manner with density. The uniaxial compressive behavior of the Arctic summer sea ice is sensitive to the loading rate, and the peak uniaxial compressive strength is reached in the brittle-ductile transition range. The dependence of the strength on the temperature shows that the calculated average strength in the brittle-ductile transition range, which was considered as the peak uniaxial compressive strength, increases steadily in the temperature range from −3 to −9°C.

  13. Geodynamic evolution of the Barents-Kara shelf

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V.P. [State Academy of Oil and Gas, Moscow (Russian Federation)

    1996-12-01

    The Barents-Kara shelf and the whole of Russia`s Arctic shelf have focused attention during the last decade for two reasons: firstly, a desire to know the evolution of a poorly studied region, and secondly, the hope - giving way to certainty - that this region is destined to supply oil and gas to this and many other countries during the third millennium. Seen in this context, the present attempt to propose a geodynamic model for the evolution of the Barents-Kara shelf will be both topical and useful. (author). 4 refs., 4 figs.

  14. Causes for different spatial distributions of minimum Arctic sea-ice extent in 2007 and 2012

    Institute of Scientific and Technical Information of China (English)

    CUI Hongyan; QIAO Fangli; SHU Qi; SONG Yajuan; JIANG Chunfei

    2015-01-01

    Satellite records show the minimum Arctic sea ice extents (SIEs) were observed in the Septembers of 2007 and 2012, but the spatial distributions of sea ice concentration reduction in these two years were quite different. Atmospheric circulation pattern and the upper-ocean state in summer were investigated to explain the difference. By employing the ice-temperature and ice-specific humidity (SH) positive feedbacks in the Arctic Ocean, this paper shows that in 2007 and 2012 the higher surface air temperature (SAT) and sea level pressure (SLP) accompanied by more surface SH and higher sea surface temperature (SST), as a consequence, the strengthened poleward wind was favorable for melting summer Arctic sea ice in different regions in these two years. SAT was the dominant factor influencing the distribution of Arctic sea ice melting. The correlation coefficient is–0.84 between SAT anomalies in summer and the Arctic SIE anomalies in autumn. The increase SAT in different regions in the summers of 2007 and 2012 corresponded to a quicker melting of sea ice in the Arctic. The SLP and related wind were promoting factors connected with SAT. Strengthening poleward winds brought warm moist air to the Arctic and accelerated the melting of sea ice in different regions in the summers of 2007 and 2012. Associated with the rising air temperature, the higher surface SH and SST also played a positive role in reducing summer Arctic sea ice in different regions in these two years, which form two positive feedbacks mechanism.

  15. A rapidly declining perennial sea ice cover in the Arctic

    Science.gov (United States)

    Comiso, Josefino C.

    2002-10-01

    The perennial sea ice cover in the Arctic is shown to be declining at -9% per decade using satellite data from 1978 to 2000. A sustained decline at this rate would mean the disappearance of the multiyear ice cover during this century and drastic changes in the Arctic climate system. An apparent increase in the fraction of second year ice in the 1990s is also inferred suggesting an overall thinning of the ice cover. Surface ice temperatures derived from satellite data are negatively correlated with perennial ice area and are shown to be increasing at the rate of 1.2 K per decade. The latter implies longer melt periods and therefore decreasing ice volume in the more recent years.

  16. Arctic Sea jõudis lõpuks Soome tagasi, kuid saladused jäävad / Jaanus Piirsalu

    Index Scriptorium Estoniae

    Piirsalu, Jaanus, 1973-

    2010-01-01

    Kaubalaeva Arctic Sea kaaperdamises süüdistatavad on endiselt Moskvas eeluurimisvanglas. Kaubalaeva kaaperdajate käest vabastama saadetud Vene sõjalaeva Ladnõi ohvitser esitatas uue versiooni Arctic Sea hõivamise kohta. Kaart

  17. The distribution of atmospheric black carbon in the marine boundary layer over the North Atlantic and the Russian Arctic Seas in July - October 2015

    Science.gov (United States)

    Shevchenko, Vladimir P.; Kopeikin, Vladimir M.; Evangeliou, Nikolaos; Novigatsky, Alexander N.; Pankratova, Natalia V.; Starodymova, Dina P.; Stohl, Andreas; Thompson, Rona

    2016-04-01

    Black carbon (BC) particles are highly efficient at absorbing visible light, which has a large potential impact on Arctic climate. However, measurement data on the distribution of BC in the atmosphere over the North Atlantic and the Russian Arctic Seas are scarce. We present measurement data on the distribution of atmospheric BC in the marine boundary layer of the North Atlantic and Baltic, North, Norwegian, Barents, White, Kara and Laptev Seas from research cruises during July 23 to October 6, 2015. During the 62nd and 63rd cruises of the RV "Akademik Mstislav Keldysh" air was filtered through Hahnemuhle fineart quarz-microfibre filters. The mass of BC on the filter was determined by measurement of the attenuation of a beam of light transmitted through the filter. Source areas were estimated by backwards trajectories of air masses calculated using NOAA's HYSPLIT model (http://www.arl.noaa.gov/ready.html) and FLEXPART model (http://www.flexpart.eu). During some parts of the cruises, air masses arrived from background areas of high latitudes, and the measured BC concentrations were low. During other parts of the cruise, air masses arrived from industrially developed areas with strong BC sources, and this led to substantially enhanced measured BC concentrations. Model-supported analyses are currently performed to use the measurement data for constraining the emission strength in these areas.

  18. Canadian Ice Service Arctic Regional Sea Ice Charts in SIGRID-3 Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Canadian Ice Service (CIS) produces digital Arctic regional sea ice charts for marine navigation, climate research, and input to the Global Digital Sea Ice Data...

  19. The retreat of Arctic sea ice: flash-back on the latest decades

    International Nuclear Information System (INIS)

    The melting of the world's ice and snow, including Arctic sea ice is probably one of the most striking pictures of ongoing climate change. Arctic sea ice cover is now observed in real-time by satellite, and its changes in time are probably more visible to the general public than long term temperature or precipitation changes. However, the interpretation of the current retreat of Arctic sea ice is not straightforward. This article reviews progress in the scientific understanding of recent trends in sea ice due to recent observations and breakthroughs in sea ice modelling. (author)

  20. Seasonal evolution of melt ponds on Arctic sea ice

    Science.gov (United States)

    Webster, Melinda A.; Rigor, Ignatius G.; Perovich, Donald K.; Richter-Menge, Jacqueline A.; Polashenski, Christopher M.; Light, Bonnie

    2015-09-01

    The seasonal evolution of melt ponds has been well documented on multiyear and landfast first-year sea ice, but is critically lacking on drifting, first-year sea ice, which is becoming increasingly prevalent in the Arctic. Using 1 m resolution panchromatic satellite imagery paired with airborne and in situ data, we evaluated melt pond evolution for an entire melt season on drifting first-year and multiyear sea ice near the 2011 Applied Physics Laboratory Ice Station (APLIS) site in the Beaufort and Chukchi seas. A new algorithm was developed to classify the imagery into sea ice, thin ice, melt pond, and open water classes on two contrasting ice types: first-year and multiyear sea ice. Surprisingly, melt ponds formed ˜3 weeks earlier on multiyear ice. Both ice types had comparable mean snow depths, but multiyear ice had 0-5 cm deep snow covering ˜37% of its surveyed area, which may have facilitated earlier melt due to its low surface albedo compared to thicker snow. Maximum pond fractions were 53 ± 3% and 38 ± 3% on first-year and multiyear ice, respectively. APLIS pond fractions were compared with those from the Surface Heat Budget of the Arctic Ocean (SHEBA) field campaign. APLIS exhibited earlier melt and double the maximum pond fraction, which was in part due to the greater presence of thin snow and first-year ice at APLIS. These results reveal considerable differences in pond formation between ice types, and underscore the importance of snow depth distributions in the timing and progression of melt pond formation.

  1. Regional dependence in the rapid loss of Arctic sea ice

    Science.gov (United States)

    Close, Sally; Houssais, Marie-Noëlle; Herbaut, Christophe

    2016-04-01

    The accelerating rate of sea ice decline in the Arctic, particularly in the summer months, has been well documented by previous studies. However, the methods of analysis used to date have tended to employ pre-defined regions over which to determine sea ice loss, potentially masking regional variability within these regions. Similarly, evidence of acceleration has frequently been based on decade-to-decade comparisons that do not precisely quantify the timing of the increase in rate of decline. In this study, we address this issue by quantifying the onset time of rapid loss in sea ice concentration on a point-by-point basis, using an objective method applied to satellite passive microwave data. Seasonal maps of onset time are produced, and reveal strong regional dependency, with differences of up to 20 years in onset time between the various subregions of the Arctic. In certain cases, such as the Laptev Sea, strong spatial variability is found even at the regional scale, suggesting that caution should be employed in the use of geographically-based region definitions that may be misaligned with the physical response. The earliest onset times are found in the Pacific sector, where certain areas undergo a transition ca. 1992. In contrast, onset times in the Atlantic sector are much more recent. Rates of decline prior to and following the onset of rapid decline are calculated, and suggest that the post-onset rate of loss is weakest in the Pacific sector and greatest in the Barents Sea region. Coherency is noted in the season-to-season response, both at interannual and longer time scales. Our results describe a series of spatially self-consistent regional responses, and may be useful in understanding the primary drivers of recent sea ice loss.

  2. Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea

    Directory of Open Access Journals (Sweden)

    James E. Overland

    2011-12-01

    Full Text Available Recent Arctic changes are likely due to coupled Arctic amplification mechanisms with increased linkage between Arctic climate and sub-Arctic weather. Historically, sea ice grew rapidly in autumn, a strong negative radiative feedback. But increased sea-ice mobility, loss of multi-year sea ice, enhanced heat storage in newly sea ice-free ocean areas, and modified wind fields form connected positive feedback processes. One-way shifts in the Arctic system are sensitive to the combination of episodic intrinsic atmospheric and ocean variability and persistent increasing greenhouse gases. Winter 2009/10 and December 2010 showed a unique connectivity between the Arctic and more southern weather patterns when the typical polar vortex was replaced by high geopotential heights over the central Arctic and low heights over mid-latitudes that resulted in record snow and low temperatures, a warm Arctic—cold continents pattern. The negative value of the winter (DJF 2009/10 North Atlantic Oscillation (NAO index associated with enhanced meridional winds was the lowest observed value since the beginning of the record in 1865. Wind patterns in December 2007 and 2008 also show an impact of warmer Arctic temperatures. A tendency for higher geopotential heights over the Arctic and enhanced meridional winds are physically consistent with continued loss of sea ice over the next 40 years. A major challenge is to understand the interaction of Arctic changes with climate patterns such as the NAO, Pacific North American and El Niño–Southern Oscillation.

  3. Nordic Seas and Arctic Ocean CFC data in CARINA

    Directory of Open Access Journals (Sweden)

    E. Jeansson

    2010-02-01

    Full Text Available Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters have been retrieved from a large number of cruises and collected into a new database called CARINA (CARbon IN the Atlantic. These data have been merged into three sets of files, one for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS, the Atlantic (ATL and the Southern Ocean (SO. The first part of the CARINA database consists of three files, one for each CARINA region, containing the original, non-adjusted cruise data sets, including data quality flags for each measurement. These data have then been subject to rigorous quality control (QC in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the second part of the CARINA data product. This consists of three files, one for each CARINA region, which contain adjustments to the original data values based on recommendations from the CARINA QC procedures, along with calculated and interpolated values for some missing parameters.

    Here we present an overview of the QC of the CFC data for the AMS region, including the chlorofluorocarbons CFC-11, CFC-12 and CFC-113, as well as carbon tetrachloride (CCl4. The Arctic Mediterranean Seas is comprised of the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. For the secondary QC of the CFCs we used a combination of tools, including the evaluation of depth profiles and CFC ratios, surface saturations and a crossover analysis. This resulted in a multiplicative adjustment of data from some cruises, while other data were flagged to be of questionable quality, which excluded them from the final data product.

  4. On the existence of stable seasonally varying Arctic sea ice

    CERN Document Server

    Moon, W

    2012-01-01

    Within the framework lower order thermodynamic theories for the climatic evolution of Arctic sea ice we isolate the conditions required for the existence of stable seasonally-varying ice states. This is done by constructing a two-season model from the continuously evolving theory of Eisenman and Wettlaufer (2009) and showing that the necessary and sufficient condition for stable seasonally-varying states resides in the relaxation of the constant annual average short-wave radiative forcing. This forcing is examined within the scenario of greenhouse gas warming, as a function of which stability conditions are discerned.

  5. Fine-resolution simulation of surface current and sea ice in the Arctic Mediterranean Seas

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying; ZHANG Xuehong; YU Rucong; LIU Hailong; LI Wei

    2007-01-01

    A fine-resolution model is developed for ocean circulation simulation in the National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),Chinese Academy of Sciences, and is applied to simulate surface current and sea ice variations in the Arctic Mediterranean Seas. A dynamic sea ice model in elastic-viscous-plastic rheology and a thermodynamic sea ice model are employed. A 200-year simulation is performed and a dimatological average of a 10-year period (141 st-150 th) is presented with focus on sea ice concentration and surface current variations in the Arctic Mediterranean Seas. The model is able to simulate well the East Greenland Current, Beaufort Gyre and the Transpolar Drift, but the simulated West Spitsbergen Current is small and weak. In the March climatology, the sea ice coverage can be simulated well except for a bit more ice in east of Spitsbergen Island. The result is also good for the September scenario except for less ice concentration east of Greenland and greater ice concentration near the ice margin. The extra ice east of Spitsbergen Island is caused by sea ice current convergence forced by atmospheric wind stress.

  6. A Possible Feedback Mechanism Involving the Arctic Freshwater,the Arctic Sea Ice, and the North Atlantic Drift

    Institute of Scientific and Technical Information of China (English)

    Odd Helge OTTER(A); Helge DRANGE

    2004-01-01

    Model studies point to enhanced warming and to increased freshwater fluxes to high northern latitudes in response to global warming. In order to address possible feedbacks in the ice-ocean system in response to such changes, the combined effect of increased freshwater input to the Arctic Ocean and Arctic warming--the latter manifested as a gradual melting of the Arctic sea ice--is examined using a 3-D isopycnic coordinate ocean general circulation model. A suite of three idealized experiments is carried out: one control integration, one integration with a doubling of the modern Arctic river runoff, and a third more extreme case, where the river runoff is five times the modern value. In the two freshwater cases, the sea ice thickness is reduced by 1.5-2 m in the central Arctic Ocean over a 50-year period. The modelled ocean response is qualitatively the same for both perturbation experiments: freshwater propagates into the Atlantic Ocean and the Nordic Seas, leading to an initial weakening of the North Atlantic Drift.Furthermore, changes in the geostrophic currents in the central Arctic and melting of the Arctic sea ice lead to an intensified Beaufort Gyre, which in turn increases the southward volume transport through the Canadian Archipelago. To compensate for this southward transport of mass, more warm and saline Atlantic water is carried northward with the North Atlantic Drift. It is found that the increased transport of salt into the northern North Atlantic and the Nordic Seas tends to counteract the impact of the increased freshwater originating from the Arctic, leading to a stabilization of the North Atlantic Drift.

  7. Evaluation of Arctic Sea Ice Thickness Simulated by AOMIP Models

    Science.gov (United States)

    Johnson, Mark; Proshutinsky, Andrey; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nimolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; de Cuevas, Beverly

    2011-01-01

    We compare results from six AOMIP model simulations with estimates of sea ice thickness obtained from ICESat, moored and submarine-based upward looking sensors, airborne electromagnetic measurements and drill holes. Our goal is to find patterns of model performance to guide model improvement. The satellite data is pan-arctic from 2004-2008, ice-draft data is from moored instruments in Fram Strait, the Greenland Sea and the Beaufort Sea from 1992-2008 and from submarines from 1975-2000. The drill hole data are from the Laptev and East Siberian marginal seas from 1982-1986 and from coastal stations from 1998-2009. While there are important caveats when comparing modeled results with measurements from different platforms and time periods such as these, the models agree well with moored ULS data. In general, the AOMIP models underestimate the thickness of measured ice thicker than about 2 m and overestimate thickness of ice thinner than 2 m. The simulated results are poor over the fast ice and marginal seas of the Siberian shelves. Averaging over all observational data sets, the better correlations and smaller differences from observed thickness are from the ECCO2 and UW models.

  8. Sea ice inertial oscillation magnitudes in the Arctic basin

    Directory of Open Access Journals (Sweden)

    F. Gimbert

    2012-06-01

    Full Text Available An original method to quantify the amplitude of inertial motion of oceanic and ice drifters, through the introduction of a non-dimensional parameter M defined from a spectral analysis, is presented. A strong seasonal dependence of the magnitude of sea ice inertial oscillations is revealed, in agreement with the corresponding annual cycles of sea ice extent, concentration, thickness, advection velocity, and deformation rates. The spatial pattern of the magnitude of the sea ice inertial oscillations over the Arctic basin is also in agreement with the sea ice thickness and concentration patterns. This argues for a strong link between the magnitude of inertial motion on one hand, the dissipation of energy through mechanical processes, and the cohesiveness of the cover on the other hand. Finally, a significant pluri-annual evolution towards greater magnitudes of inertial oscillations in recent years, in both summer and winter, is reported, thus concomitant with reduced sea ice thickness, concentration and spatial extent.

  9. Stochastic dynamics of Arctic sea ice Part I: Additive noise

    CERN Document Server

    Moon, Woosok

    2015-01-01

    We analyze the numerical solutions of a stochastic Arctic sea ice model with constant additive noise over a wide range of external heat-fluxes, $\\Delta F_0$, which correspond to greenhouse gas forcing. The variability that the stochasticity provides to the deterministic steady state solutions (perennial and seasonal ice states) is illustrated by examining both the stochastic paths and probability density functions (PDFs). The principal stochastic moments (standard deviation, mean and skewness) are calculated and compared with those determined from a stochastic perturbation theory described previously by Moon and Wettlaufer (2013). We examine in detail the competing roles of the destabilizing sea ice-albedo-feedback and the stabilizing long-wave radiative loss contributions to the variability of the ice cover under increased greenhouse-gas forcing. In particular, the variability of the stochastic paths at the end of summer shows a clear maximum, which is due to the combination of the increasing importance of t...

  10. Arctic warming, atmospheric blocking and cold European winters in CMIP5 models

    International Nuclear Information System (INIS)

    Amplified Arctic warming is expected to have a significant long-term influence on the midlatitude atmospheric circulation by the latter half of the 21st century. Potential influences of recent and near future Arctic changes on shorter timescales are much less clear, despite having received much recent attention in the literature. In this letter, climate models from the recent CMIP5 experiment are analysed for evidence of an influence of Arctic temperatures on midlatitude blocking and cold European winters in particular. The focus is on the variability of these features in detrended data and, in contrast to other studies, limited evidence of an influence is found. The occurrence of cold European winters is found to be largely independent of the temperature variability in the key Barents–Kara Sea region. Positive correlations of the Barents–Kara temperatures with Eurasian blocking are found in some models, but significant correlations are limited. (paper)

  11. Transport and dispersion of artificial radioactivity in the Arctic Ocean - Model studies and observations -

    International Nuclear Information System (INIS)

    The Arctic Ocean and the adjacent shelf regions are subject to growing concern because of increasing environmental problems. The most crucial problem arises probably from the dumping of nuclear waste in the Barents and the Kara Sea. But also the great Siberian rivers Ob and Yenisei which drain huge land areas and industrial zones may contribute to the input of pollutants into the Arctic environment. First results of a joint project are described which combines numerical model studies and experimental field work in order to investigate the potential pathways and dispersion of radioactive contaminants in the Arctic Ocean. (author)

  12. Propaganda, News, or Education: Reporting Changing Arctic Sea Ice Conditions

    Science.gov (United States)

    Leitzell, K.; Meier, W.

    2010-12-01

    The National Snow and Ice Data Center provides information on Arctic sea ice conditions via the Arctic Sea Ice News & Analysis (ASINA) website. As a result of this effort to explain climatic data to the general public, we have attracted a huge amount of attention from our readers. Sometimes, people write to thank us for the information and the explanation. But people also write to accuse us of bias, slant, or outright lies in our posts. The topic of climate change is a minefield full of political animosity, and even the most carefully written verbiage can appear incomplete or biased to some audiences. Our strategy has been to report the data and stick to the areas in which our scientists are experts. The ASINA team carefully edits our posts to make sure that all statements are based on the science and not on opinion. Often this means using some technical language that may be difficult for a layperson to understand. However, we provide concise definitions for technical terms where appropriate. The hope is that by communicating the data clearly, without an agenda, we can let the science speak for itself. Is this an effective strategy to communicate clearly about the changing climate? Or does it downplay the seriousness of climate change? By writing at a more advanced level and avoiding oversimplification, we require our readers to work harder. But we may also maintain the attention of skeptics, convincing them to read further and become more knowledgeable about the topic.

  13. Age characteristics in a multidecadal Arctic sea ice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hunke, Elizabeth C [Los Alamos National Laboratory; Bitz, Cecllia M [UNIV. OF WASHINGTON

    2008-01-01

    Results from adding a tracer for age of sea ice to a sophisticated sea ice model that is widely used for climate studies are presented. The consistent simulation of ice age, dynamics, and thermodynamics in the model shows explicitly that the loss of Arctic perennial ice has accelerated in the past three decades, as has been seen in satellite-derived observations. Our model shows that the September ice age average across the Northern Hemisphere varies from about 5 to 8 years, and the ice is much younger (about 2--3 years) in late winter because of the expansion of first-year ice. We find seasonal ice on average comprises about 5% of the total ice area in September, but as much as 1.34 x 10{sup 6} km{sup 2} survives in some years. Our simulated ice age in the late 1980s and early 1990s declined markedly in agreement with other studies. After this period of decline, the ice age began to recover, but in the final years of the simulation very little young ice remains after the melt season, a strong indication that the age of the pack will again decline in the future as older ice classes fail to be replenished. The Arctic ice pack has fluctuated between older and younger ice types over the past 30 years, while ice area, thickness, and volume all declined over the same period, with an apparent acceleration in the last decade.

  14. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean

    DEFF Research Database (Denmark)

    Cassotta Pertoldi-Bianchi, Sandra; Hossain, Kamrul; Ren, Jingzheng;

    2015-01-01

    on the Law of the Sea (UNCLOS) and the Arctic Council (AC) are taken into consideration under climate change effects, to assess how global legal frameworks and institutions can deal with China’s strategy in the Arctic Ocean. China’s is moving away from its role as “humble power” to one of “informal......The impact of climate change in the Arctic Ocean such as ice melting and ice retreat facilitates natural resources extraction. Arctic fossil fuel becomes the drivers of geopolitical changes in the Arctic Ocean. Climate change facilitates natural resource extractions and increases competition...... imperialistic” resulting in substantial impact on the Arctic and Antartic dynamism. Due to ice-melting, an easy access to natural resources, China’s Arctic strategy in the Arctic Ocean has reinforced its military martitime strategy and has profoundly changed its maritime military doctrine shifting from regional...

  15. An Improved 20-Year Arctic Ocean Altimetric Sea Level Data Record

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2015-01-01

    For ocean and climate research, it is essential to get long-term altimetric sea level data that is as accurate as possible. However, the accuracy of the altimetric data is frequently degraded in the interior of the Arctic Ocean due to the presence of seasonal or permanent sea ice. We have...... reprocessed ERS-1/2/Envisat satellite altimetry to develop an improved 20-year sea level dataset for the Arctic Ocean. We have developed both an along-track dataset and three-day gridded sea level anomaly (SLA) maps from September 1992 to April 2012. A major improvement in data coverage was gained by...... estimation of sea level changes from satellite altimetry in the Arctic Ocean. The reprocessed dataset exhibit a mean sea level trend of 2.1 +/- 1.3mm/year (without Glacial Isostatic Adjustment correction) covering the Arctic Ocean between 66 degrees N and 82 degrees N with significant higher spatial...

  16. Investigating changes in the climate- and ecosystemof Arctic sea ice using remotely operated vehicles

    OpenAIRE

    Katlein, Christian; Arndt, Stefanie; Fernandez Mendez, Mar; Lange, Benjamin; Nicolaus, Marcel; Wenzhöfer, Frank; Jakuba, Mike; German, Chris

    2014-01-01

    The Arctic Ocean is currently undergoing a dramatic change. Decreasing sea-ice extent, thickness and age are changing important processes in the climate system. An increasing coverage of the sea ice by melt ponds and an increased amount of light transmitted to the upper ocean are also affecting the ice associated ecosystem. To document these changes, we operated different remotely operated vehicles (ROV) underneath the drifting sea ice of the Central Arctic Ocean. The newest under...

  17. Isolation of novel psychrophilic bacteria from Arctic sea ice

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The phylogenetic diversity of culturable psychrophilic bacteria associated with sea ice from the high latitude regions of Canadian Basin and Chukchi Sea, Arctic, was investigated. A total of 34 psychropilic strains were isolated using three methods of (Ⅰ) dilution plating (at 4 ℃), (Ⅱ) bath culturing (at -1 ℃) and dilution plating, and (Ⅲ) cold shock (-20 ℃ for 24 h), bath culturing and dilution plating under aerobic conditions. Sea-ice samples were exposed to -20 ℃ for 24 h that might reduce the number of common microorganisms and encourage outgrowth of psychrophilic strains. This process might be able to be introduced to isolation psychrophilic bacteria from other environmental samples in future study. 16S rDNA nearly full-length sequence analysis revealed that psychrophilic strains felled in two phylogenetic divisions, γ-proteobacteria (in the genera Colwellia、Marinobacter、Shewanella、Glaciecola、Marinomonas and Pseudoalteromonas) and Cytophaga-Flexibacter-Bacteroides (Flavobacterium and Psychroflexus). Fifteen of bacterial isolates quite likely represented novel species (16S rDNA sequence similarity below 98%). One of strains (BSi20002) from Canadian Basin showed 100% sequence similarity to that of Marinobacter sp. ANT8277 isolated from the Antarctic Weddell sea ice, suggesting bacteria may have a bipolar distribution at the species level.

  18. Severnaya Zemlya, arctic Russia: a nucleation area for Kara Sea ice sheets during the Middle to Late Quaternary

    DEFF Research Database (Denmark)

    Möller, Per; Lubinski, David J.; Ingólfsson, Ólafur;

    2006-01-01

    raised-beach sequences that occur at altitudes up to 140 m a.s.l. Chronologic control is provided by AMS 14C, electron-spin resonance, green-stimulated luminescence, and aspartic-acid geochronology. Major glaciations followed by deglaciation and marine inundation occurred during MIS 10-9, MIS 8-7, MIS 6...

  19. Shifting El Niño inhibits summer Arctic warming and Arctic sea-ice melting over the Canada Basin

    Science.gov (United States)

    Hu, Chundi; Yang, Song; Wu, Qigang; Li, Zhenning; Chen, Junwen; Deng, Kaiqiang; Zhang, Tuantuan; Zhang, Chengyang

    2016-06-01

    Arctic climate changes include not only changes in trends and mean states but also strong interannual variations in various fields. Although it is known that tropical-extratropical teleconnection is sensitive to changes in flavours of El Niño, whether Arctic climate variability is linked to El Niño, in particular on interannual timescale, remains unclear. Here we demonstrate for the first time a long-range linkage between central Pacific (CP) El Niño and summer Arctic climate. Observations show that the CP warming related to CP El Niño events deepens the tropospheric Arctic polar vortex and strengthens the circumpolar westerly wind, thereby contributing to inhibiting summer Arctic warming and sea-ice melting. Atmospheric model experiments can generally capture the observed responses of Arctic circulation and robust surface cooling to CP El Niño forcing. We suggest that identification of the equator-Arctic teleconnection, via the `atmospheric bridge', can potentially contribute to improving the skill of predicting Arctic climate.

  20. Peopling of the high Arctic - induced by sea ice?

    Science.gov (United States)

    Funder, Svend

    2010-05-01

    'We travelled in the winter after the return of daylight and did not go into fixed camp until spring, when the ice broke up. There was good hunting on the way, seals, beluga, walrus, bear.' (From Old Merkrusârk's account of his childhood's trek from Baffin Island to Northwest Greenland, told to Knud Rasmussen on Saunders Island in 1904) Five thousand years ago people moving eastwards from Beringia spread over the barrens of the Canadian high Arctic. This was the first of three waves of prehistoric Arctic 'cultures', which eventually reached Greenland. The passage into Greenland has to go through the northernmost and most hostile part of the country with a 5 month Polar night, and to understand this extraordinary example of human behaviour and endurance, it has been customary to invoke a more favourable (warmer) climate. This presentation suggests that land-fast sea ice, i.e. stationary sea ice anchored to the coast, is among the most important environmental factors behind the spread of prehistoric polar cultures. The ice provides the road for travelling and social communion - and access to the most important source of food, the ocean. In the LongTerm Project (2006 and 2007) we attempted to establish a Holocene record for sea ice variations along oceanic coasts in northernmost Greenland. Presently the coasts north of 80° N are beleaguered by year-round sea ice - for ten months this is land-fast ice, and only for a period in the stormy autumn months are the coasts exposed to pack-ice. This presentation Land-fast ice - as opposed to pack-ice - is a product of local temperatures, but its duration over the year, and especially into the daylight season, is also conditioned by other factors, notably wind strength. In the geological record we recognize long lasting land-fast ice by two absences: absence of traces of wave action (no beach formation), which, however, can also be a result of pack-ice along the coast; - and absence of driftwood on the shore (land-fast ice

  1. SMOS sea surface salinity maps of the Arctic Ocean

    Science.gov (United States)

    Gabarro, Carolina; Olmedo, Estrella; Turiel, Antonio; Ballabrera-Poy, Joaquim; Martinez, Justino; Portabella, Marcos

    2016-04-01

    years of SMOS data acquisitions. The second is the modification of the filtering criterion to account for the statistical distributions of SSS at each ocean grid point. This allows retrieving a value of SSS which is less affected by outliers originated from RFI and other effects. We will provide an assessment of the quality of these new SSS products in the Arctic, as well as illustrate the potential of these maps to monitor the main river discharges to the Arctic Ocean. [1] Font, J.; Camps, A.; Borges, A.; Martín-Neira, M.; Boutin, J.; Reul, N.; Kerr, Y.; Hahne, A. & Mecklenburg, S. SMOS: The Challenging Sea Surface Salinity Measurement From Space Proceedings of the IEEE, 2010, 98, 649 -665

  2. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  3. Polar bear and walrus response to the rapid decline in Arctic sea ice

    Science.gov (United States)

    Oakley, K.; Whalen, M.; Douglas, D.; Udevitz, M.; Atwood, T.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  4. Response of Arctic sea level and hydrography to hydrological regime change over boreal catchments

    Science.gov (United States)

    Tourian, Mohammad J.; Sneeuw, Nico; Losch, Martin; Rabe, Benjamin

    2016-04-01

    Changes in freshwater influx into the Arctic Ocean are a key driver of regional dynamics and sea level change in the Arctic waters. Low-salinity surface waters maintain a strong stratification in the Arctic. This halocline largely shields the cool polar surface water and sea ice from the warmer waters of Atlantic origin below and, hence, inhibits vertical heat fluxes of heat, salt and nutrients. Recently observed changes in the freshwater content of the upper Arctic Ocean raise the question of the effect of these changes on the region. Changes in the freshwater budget affect regional steric sea level, but also the modified ocean dynamics may change sea level through mass transports within the Arctic. One component of the freshwater budget is continental runoff. The hydrological regime of river runoff appears to be non-stationary. There is both interannual variability and a significantly positive trend since the 1970s. The decreasing Arctic sea-ice cover may be a possible reason for the non-stationary behavior of runoff, especially in coastal and marginal seas. The decrease of sea ice due to global warming would lead to cloud formation and, indeed, increased precipitation. During the warmer season, increased precipitation would lead to more discharge of freshwater to the Arctic shelves and basins. The observational record of discharge into the Arctic Ocean, however, is still too sparse to address important science questions about the long-term behavior and development of Arctic sea level and climate. Given the insufficient monitoring from in situ gauge networks, and without any outlook of improvement, spaceborne approaches are currently being investigated. In this contribution we assess the long-term behavior of monthly runoff time series obtained from hydro-geodetic approaches and explore the effects of interannual runoff variability and long term trends on ocean model simulations.

  5. Sensitivity of Arctic warming to sea ice concentration

    Science.gov (United States)

    Yim, Bo Young; Min, Hong Sik; Kim, Baek-Min; Jeong, Jee-Hoon; Kug, Jong-Seong

    2016-06-01

    We examine the sensitivity of Arctic amplification (AA) to background sea ice concentration (SIC) under greenhouse warming by analyzing the data sets of the historical and Representative Concentration Pathway 8.5 runs of the Coupled Model Intercomparison Project Phase 5. To determine whether the sensitivity of AA for a given radiative forcing depends on background SIC state, we examine the relationship between the AA trend and mean SIC on moving 30 year windows from 1960 to 2100. It is found that the annual mean AA trend varies depending on the mean SIC condition. In particular, some models show a highly variable AA trend in relation to the mean SIC clearly. In these models, the AA trend tends to increase until the mean SIC reaches a critical level (i.e., 20-30%), and the maximum AA trend is almost 3 to 5 times larger than the trend in the early stage of global warming (i.e., 50-60%, 60-70%). However, the AA trend tends to decrease after that. Further analysis shows that the sensitivity of AA trend to mean SIC condition is closely related to the feedback processes associated with summer surface albedo and winter turbulent heat flux in the Arctic Ocean.

  6. Apparent Arctic sea ice modeling improvement caused by volcanoes

    CERN Document Server

    Rosenblum, Erica

    2016-01-01

    The downward trend in Arctic sea ice extent is one of the most dramatic signals of climate change during recent decades. Comprehensive climate models have struggled to reproduce this, typically simulating a slower rate of sea ice retreat than has been observed. However, this bias has been substantially reduced in models participating in the most recent phase of the Coupled Model Intercomparison Project (CMIP5) compared with the previous generation of models (CMIP3). This improvement has been attributed to improved physics in the models. Here we examine simulations from CMIP3 and CMIP5 and find that simulated sea ice trends are strongly influenced by historical volcanic forcing, which was included in all of the CMIP5 models but in only about half of the CMIP3 models. The volcanic forcing causes temporary simulated cooling in the 1980s and 1990s, which contributes to raising the simulated 1979-2013 global-mean surface temperature trends to values substantially larger than observed. This warming bias is accompan...

  7. Growth limitation of three Arctic sea ice algal species

    DEFF Research Database (Denmark)

    Sogaard, D.H.; Hansen, P.J.; Rysgaard, Søren;

    2011-01-01

    The effect of salinity, pH, and dissolved inorganic carbon (TCO(2)) on growth and survival of three Arctic sea ice algal species, two diatoms (Fragilariopsis nana and Fragilariopsis sp.), and one species of chlorophyte (Chlamydomonas sp.) was assessed in controlled laboratory experiments. Our...... maximal growth rate at pH 8.0 and/or 8.5. The two diatom species stopped growing at pH > 9.5, while the chlorophyte species still was able to grow at a rate which was 1/3 of its maximum growth rate at pH 10. Thus, Chlamydomonas sp. was able to grow at high pH levels in the succession experiment and...

  8. Influence of Sea Ice on Arctic Marine Sulfur Biogeochemistry in the Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Deal, Clara [Univ. of Alaska, Fairbanks, AL (United States); Jin, Meibing [Univ. of Alaska, Fairbanks, AL (United States)

    2013-06-30

    Global climate models (GCMs) have not effectively considered how responses of arctic marine ecosystems to a warming climate will influence the global climate system. A key response of arctic marine ecosystems that may substantially influence energy exchange in the Arctic is a change in dimethylsulfide (DMS) emissions, because DMS emissions influence cloud albedo. This response is closely tied to sea ice through its impacts on marine ecosystem carbon and sulfur cycling, and the ice-albedo feedback implicated in accelerated arctic warming. To reduce the uncertainty in predictions from coupled climate simulations, important model components of the climate system, such as feedbacks between arctic marine biogeochemistry and climate, need to be reasonably and realistically modeled. This research first involved model development to improve the representation of marine sulfur biogeochemistry simulations to understand/diagnose the control of sea-ice-related processes on the variability of DMS dynamics. This study will help build GCM predictions that quantify the relative current and possible future influences of arctic marine ecosystems on the global climate system. Our overall research objective was to improve arctic marine biogeochemistry in the Community Climate System Model (CCSM, now CESM). Working closely with the Climate Ocean Sea Ice Model (COSIM) team at Los Alamos National Laboratory (LANL), we added 1 sea-ice algae and arctic DMS production and related biogeochemistry to the global Parallel Ocean Program model (POP) coupled to the LANL sea ice model (CICE). Both CICE and POP are core components of CESM. Our specific research objectives were: 1) Develop a state-of-the-art ice-ocean DMS model for application in climate models, using observations to constrain the most crucial parameters; 2) Improve the global marine sulfur model used in CESM by including DMS biogeochemistry in the Arctic; and 3) Assess how sea ice influences DMS dynamics in the arctic marine

  9. Climate Change and China as a Global Emerging Regulatory Sea Power in the Arctic Ocean: Is China a Threat for Arctic Ocean Security?

    OpenAIRE

    Cassotta, Sandra; Hossain, Kamrul; Ren, Jingzheng; Goodsite, Michael Evan

    2015-01-01

    The impact of climate change in the Arctic Ocean such as ice melting and ice retreat facilitatesnatural resources extraction. Arctic fossil fuel becomes the drivers of geopolitical changes in theArctic Ocean. Climate change facilitates natural resource extractions and increases competitionbetween states and can result in tensions, even military ones. This article investigates through apolitical and legal analysis the role of China as an emerging regulatory sea power in the ArcticOcean given i...

  10. NODC Standard Product: International ocean atlas Volume 6 - Zooplankton of the Arctic Seas 2002 (NODC Accession 0098570)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and biological data for the Arctic and sub-Arctic regions extending from the Barents Sea to the Northwest Pacific, sampled during 25 scientific cruises for...

  11. Satellite and ground-based observations of patterns and seasonality of sea-ice, summer warmth, snow, and NDVI along the North America and Eurasia Arctic transects

    Science.gov (United States)

    Walker, D. A.; Epstein, H. E.; Raynolds, M. K.; Bhatt, U. S.; Bieniek, P. A.

    2011-12-01

    We analyzed vegetation, climate, and spectral data from zonal sites along two >1500 km long transects that span all five Arctic bioclimate subzones in North America and Eurasia to help interpret the long-term changes in satellite-derived trends of pattern and seasonality of vegetation greenness. Despite large differences in environment and vegetation along the two transects, there is nearly an identical logarithmic relationship between biomass and the summer maximum normalized difference vegetation index derived from AVHRR sensors (MaxNDVI) along the two transects. Summer open water in the Northern Alaska/Beaufort Sea region has increased by 39%, the summer warmth index (SWI) of the tundra increased by 14%, MaxNDVI by 28% and time-integrated NDVI (TI-NDVI) by 21%. The increased open water in the Beaufort is associated with a warming of the land and a large positive increase in the NDVI. In the eastern Kara Sea/Yamal Peninsula region, summer-fall open water has increased by 115%, the SWI decreased by -3%, MaxNDVI increased by only 6%, and TI-NDVI by 2%. The greatly reduced sea ice has affected the summer total warmth and NDVI of the Eurasia transect minimally possibly due to increased winter snow and delayed snowmelt in much of northwest Russian Arctic. In northern Alaska, there is distinctive trend of earlier snow melt at most stations; whereas the northern Yamal has seen an increase in the snow water equivalent and delayed melt on much of the Yagorsky, Yamal, Gydan, and Taimyr peninsulas. This appears to be associated with the reduction in the total summer warmth and relatively small increase in NDVI.

  12. Sea Ice Charts of the Russian Arctic in Gridded Format, 1933-2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Arctic and Antarctic Research Institute (AARI) in St. Petersburg, Russia, produces sea ice charts for safety of navigation in the polar regions and for other...

  13. The Role of Sea Ice for Vascular Plant Dispersal in the Arctic

    Science.gov (United States)

    Geirsdottir, A.; Alsos, I. G.; Seidenkrantz, M. S.; Bennike, O.; Kirchhefer, A.; Ehrich, D.

    2015-12-01

    Plant species adapted to arctic environments are expected to go extinct at their southern margins due to climate warming whereas they may find suitable habitats on arctic islands if they are able to disperse there. Analyses of species distribution and phylogenetic data indicate both that the frequency of dispersal events is higher in the arctic than in other regions, and that the dispersal routes often follow the routes of sea surface currents. Thus, it has been hypothesised that sea ice has played a central role in Holocene colonisation of arctic islands. Here we compile data on the first Holocene occurrence of species in East Greenland, Iceland, the Faroe Islands, and Svalbard. We then combine these records with interpretations of dispersal routes inferred from genetic data and data on geographical distributions, reconstructions of Holocene sea ice extent, and records of driftwood to evaluate the potential role sea ice has played in past colonisation events.

  14. Moderate-resolution sea surface temperature data for the Arctic Ocean Ecoregions

    Science.gov (United States)

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. Of particular interest is the fate of the Arctic Ocean, which provides critical habitat to commercially important fish (M...

  15. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    Science.gov (United States)

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  16. Are Recent Arctic Sea Ice Changes a Fingerprint of Greenhouse Warming?

    Science.gov (United States)

    Vavrus, S. J.

    2002-12-01

    Arctic sea ice has undergone significant reductions in thickness and extent in recent decades, leading to speculation that the ice pack is already showing signs of greenhouse warming. The decline in ice cover is not uniform across the Arctic Ocean, but instead shows a distinct spatial pattern of maximum reductions in the eastern (European) sector and minimum decreases in the western (North American) sector. This dipole spatial pattern has been dubbed the "East-West Arctic Anomaly Pattern" (EWAAP) and is consistent with recent trends in high-latitude atmospheric circulation, which in turn are driven by the well-known decrease in Arctic sea level pressure. Climate simulations using an AGCM coupled to a mixed-layer ocean (GENESIS) are presented to show that enhanced greenhouse forcing causes the model to produce the EWAAP and its associated anomalous cyclonic circulation pattern. Paleoclimate simulations of orbitally forced warm periods in the Arctic (mid-Holocene and last interglacial) show similar changes of sea ice cover and surface winds, suggesting that the recent anomalies may be a signature of warmer Arctic climates. The consistent EWAAP response to warm external forcings is caused by two dynamical mechanisms. First, the flow of Arctic sea ice in the modern climate produces ice divergence (convergence) and more (less) open water in the eastern (western) Arctic Ocean, thus favoring (hindering) melting in the eastern (western) sector under warmer conditions. Second, because warmer climates promote a decrease in Arctic sea level pressure, anomalous surface winds blow across the Arctic Ocean from Eurasia toward North America and thus enhance the spatial dipole pattern of ice coverage.

  17. The impact of varying atmospheric forcing on the thickness of arctic multi-year sea ice

    Science.gov (United States)

    Dumas, J. A.; Flato, G. M.; Weaver, A. J.

    2003-09-01

    A 1-D thermodynamic sea ice model, forced with North Pole Drift Station observations from 1954-91, is used to study the effect of changing atmospheric forcing on multi-year Arctic sea ice. From 1954-70, most seasons show positive trends in calculated sea ice thickness over much of the Arctic. A dip in calculated ice thickness takes place between 1971-77 over most of the Arctic. Following the North Pacific regime shift in 1976-1977, the period 1978-91 reveals large negative trends in calculated sea ice thickness in all seasons. The results indicate that an important part of the variability and trends in Arctic sea ice thickness is thermodynamically-driven. Of the total variance in multi-year sea ice thickness, 10 to 20% is explained by variations in the Arctic Oscillation and Pacific North American patterns. The multi-year ice thickness response to a positive wintertime Arctic Oscillation anomaly occurs the following summer and persists for more than a year.

  18. Recent Trends in the Arctic Navigable Ice Season and Links to Atmospheric Circulation

    Science.gov (United States)

    Maslanik, J.; Drobot, S.

    2002-12-01

    One of the potential effects of Arctic climate warming is an increase in the navigable ice season, perhaps resulting in development of the Arctic as a major shipping route. The distance from western North American ports to Europe through the Northwest Passage (NWP) or the Northern Sea Route (NSR) is typically 20 to 60 percent shorter than travel through the Panama Canal, while travel between Europe and the Far East may be reduced by as much as three weeks compared to transport through the Suez Canal. An increase in the navigable ice season would also improve commercial opportunities within the Arctic region, such as mineral and oil exploration and tourism, which could potentially expand the economic base of Arctic residents and companies, but which would also have negative environmental impacts. Utilizing daily passive-microwave derived sea ice concentrations, trends and variability in the Arctic navigable ice season are examined from 1979 through 2001. Trend analyses suggest large increases in the length of the navigable ice season in the Kara and Barents seas, the Sea of Okhotsk, and the Beaufort Sea, with decreases in the length of the navigable ice season in the Bering Sea. Interannual variations in the navigable ice season largely are governed by fluctuations in low-frequency atmospheric circulation, although the specific annular modes affecting the length of the navigable ice season vary by region. In the Beaufort and East Siberian seas, variations in the North Atlantic Oscillation/Arctic Oscillation control the navigable ice season, while variations in the East Pacific anomaly play an important role in controlling the navigable ice season in the Kara and Barents seas. In Hudson Bay, the Canadian Arctic Archipelago, and Baffin Bay, interannual variations in the navigable ice season are strongly related to the Pacific Decadal Oscillation.

  19. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    Science.gov (United States)

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-01

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming. PMID:24550469

  20. The effect of changing sea ice on the physical vulnerability of Arctic coasts

    Directory of Open Access Journals (Sweden)

    K. R. Barnhart

    2014-09-01

    Full Text Available Sea ice limits the interaction of the land and ocean water in the Arctic winter and influences this interaction in the summer by governing the fetch. In many parts of the Arctic, the open-water season is increasing in duration and summertime sea-ice extents are decreasing. Sea ice provides a first-order control on the physical vulnerability of Arctic coasts to erosion, inundation, and damage to settlements and infrastructures by ocean water. We ask how the changing sea-ice cover has influenced coastal erosion over the satellite record. First, we present a pan-Arctic analysis of satellite-based sea-ice concentration specifically along the Arctic coasts. The median length of the 2012 open-water season, in comparison to 1979, expanded by between 1.5 and 3-fold by Arctic Sea sector, which allows for open water during the stormy Arctic fall. Second, we present a case study of Drew Point, Alaska, a site on the Beaufort Sea, characterized by ice-rich permafrost and rapid coastal-erosion rates, where both the duration of the open-water season and distance to the sea-ice edge, particularly towards the northwest, have increased. At Drew Point, winds from the northwest result in increased water levels at the coast and control the process of submarine notch incision, the rate-limiting step of coastal retreat. When open-water conditions exist, the distance to the sea ice edge exerts control on the water level and wave field through its control on fetch. We find that the extreme values of water-level setup have increased consistently with increasing fetch.

  1. HAUSGARTEN: Multidisciplinary investigations at a deep-sea, long-term observatory in the Arctic Ocean

    OpenAIRE

    Soltwedel, T.; Bauerfeind, E.; Bergmann, M.; Budaeva, N.; Hoste, E; Jaeckisch, N.; von Juterzenka, K.; Matthiessen, J.; Mokievsky, V.; Nöthig, E.-M.; Quéric, N.-V.; Sablotny, B.; Sauter, E.; Schewe, I.; Urban-Malinga, B.

    2005-01-01

    The marine Arctic has played an essential role in the history of our planet over the past 130 million years and contributes considerably to the present functioning of Earth and its life. The global cycles of a variety of materials fundamental to atmospheric conditions and thus to life depend to a signifi cant extent on Arctic marine processes (Aargaard et al., 1999). The past decades have seen remarkable changes in key Arctic variables. The decrease of sea-ice extent and sea-ice thickness in ...

  2. Exploring Arctic Transpolar Drift During Dramatic Sea Ice Retreat

    DEFF Research Database (Denmark)

    Gascard, J.C.; Festy, J.; le Goff, H.;

    2008-01-01

    The Arctic is undergoing significant environmental changes due to climate warming. The most evident signal of this warming is the shrinking and thinning of the ice cover of the Arctic Ocean. If the warming continues, as global climate models predict, the Arctic Ocean will change from a perennially...

  3. Application of two-barrier model of radioactive agent transport in sea water for analyzing artificial radionuclide release from containers with radioactive waste dumped in Kara Sea

    International Nuclear Information System (INIS)

    Modeling of artificial radionuclide transport in sea water is crucial for prognosis of radioecological situation in regions where dumping of radioactive waste had been made and/or accidents with nuclear submarines had taken place. Distribution of artificial radionuclides in bottom sediments can be a detector of radionuclide release from dumped or sunk objects to marine environment. Proper model can determine the dependence between radionuclide distribution in sediments and radionuclide release. Following report describes two-barrier model of radioactive agent transport in sea water. It was tested on data from 1994 - 2013 expeditions to Novaya Zemlya bays, where regular dumping of solid radioactive waste was practiced by the former USSR from the early 1960's until 1990. Two-barrier model agrees with experimental data and allows more accurate determination of time and intensity of artificial radionuclide release from dumped containers. (authors)

  4. Application of two-barrier model of radioactive agent transport in sea water for analyzing artificial radionuclide release from containers with radioactive waste dumped in Kara Sea

    Energy Technology Data Exchange (ETDEWEB)

    Grishin, Denis S.; Laykin, Andrey I.; Kuchin, Nickolay L.; Platovskikh, Yuri A. [Krylov State Research Center, Saint Petersburg, 44 Moskovskoe shosse, 196158 (Russian Federation)

    2014-07-01

    Modeling of artificial radionuclide transport in sea water is crucial for prognosis of radioecological situation in regions where dumping of radioactive waste had been made and/or accidents with nuclear submarines had taken place. Distribution of artificial radionuclides in bottom sediments can be a detector of radionuclide release from dumped or sunk objects to marine environment. Proper model can determine the dependence between radionuclide distribution in sediments and radionuclide release. Following report describes two-barrier model of radioactive agent transport in sea water. It was tested on data from 1994 - 2013 expeditions to Novaya Zemlya bays, where regular dumping of solid radioactive waste was practiced by the former USSR from the early 1960's until 1990. Two-barrier model agrees with experimental data and allows more accurate determination of time and intensity of artificial radionuclide release from dumped containers. (authors)

  5. Radiological impact assessment within the IAEA Arctic Assessment Project (IASAP)

    DEFF Research Database (Denmark)

    Scott, E.M.; Gurbutt, P.; Harmes, I.;

    1998-01-01

    As part of the International Arctic Seas Assessment Project (IASAP) of IAEA, a working group was created to model the dispersal and transfer of radionuclides released from radioactive waste disposed of in the Kara Sea and bays of Novaya Zemlya and to assess the radiological impact. Existing models...... were extended, and new models developed to incorporate several features of the area (including ice formation and transport) which present modelling challenges. An extensive inter-model comparison involving both compartmental and 3-D hydrodynamic models was then carried out. Finally, the radiological...... models developed, highlights the general features of the inter-comparison and discusses the radiological impact assessment and conclusions based on it....

  6. Radiological impact assessment within the IAEA Arctic Assessment Project (IASAP)

    DEFF Research Database (Denmark)

    Scott, E.M.; Gurbutt, P.; Harmes, I.; Heling, R.; Kinehara, Y.; Nielsen, S.P.; Osvath, I.; Preller, R.; Sazykina, T.; Wada, A.; Sjoeblom,K.L.

    As part of the International Arctic Seas Assessment Project (IASAP) of IAEA, a working group was created to model the dispersal and transfer of radionuclides released from radioactive waste disposed of in the Kara Sea and bays of Novaya Zemlya and to assess the radiological impact. Existing models...... were extended, and new models developed to incorporate several features of the area (including ice formation and transport) which present modelling challenges. An extensive inter-model comparison involving both compartmental and 3-D hydrodynamic models was then carried out. Finally, the radiological...... models developed, highlights the general features of the inter-comparison and discusses the radiological impact assessment and conclusions based on it....

  7. Observations of atmospheric methane and its stable isotope ratio (δ13C) over the Arctic seas from ship cruises in the summer and autumn of 2015

    Science.gov (United States)

    Skorokhod, Andrey; Belikov, Igor; Pankratova, Natalia; Novigatsky, Alexander; Thompson, Rona

    2016-04-01

    Atmospheric methane (CH4) is the second most important long-lived greenhouse gas. The Arctic has significant sources of CH4, such as from wetlands and possibly also from methane hydrates, which may act as a positive feedback on the climate system. Despite significant efforts in establishing a network of ground-based CH4 observations in the Arctic zone, there is still a lack of measurements over the Arctic Ocean and sub-polar seas. From 21 July to 9 October 2015, concentrations of CH4 and CO2, as well as of the 13C:12C isotopic ratio in CH4, i.e., δ13C, were measured in the marine boundary layer from aboard the Research Vessel "Akademik Mstislav Keldysh" by the Shirshov Institute of Oceanology. Measurements were made using a Cavity Ring Down Spectroscopy instrument from Picarro™ (model G2132-i). The cruises covered a vast area including the North Atlantic up to 70°N, the Baltic, North, Norwegian, Greenland, Barents, White, Kara and Laptev Seas. To the best of our knowledge, these are the first measurements of their type made in these regions. Concentrations of CH4 typically had low variations (in the range of a few ppb) in the open sea but relatively large variations (of the order of 100 ppb) were recorded near and during stops in ports. High variability of atmospheric CH4 was also registered near the delta of the Lena River in the Laptev Sea, which has been suggested to be a large CH4 reservoir and where bubbles rising through the water column have been observed. The obtained set of δ13CCH4 is characterized by significant range of the measured values varying from open Atlantic to polluted regions near large sea ports. The Keeling plot analyses were implemented to study possible CH4 sources according to its isotopic signature. Footprint analyses are presented for the shipboard observations, as well as comparisons to simulated CH4 concentrations and δ13C using the Lagrangian transport model, FLEXPART. This work has been carried-out with the financial support of

  8. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-01-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial.

  9. Quantifying the contribution of natural variability to September Arctic sea ice decline

    Institute of Scientific and Technical Information of China (English)

    SONG Mirong; WEI Lixin; WANG Zhenzhan

    2016-01-01

    Arctic sea ice extent has been declining in recent decades. There is ongoing debate on the contribution of natural internal variability to recent and future Arctic sea ice changes. In this study, we contrast the trends in the forced and unforced simulations of carefully selected global climate models with the extended observed Arctic sea ice records. The results suggest that the natural variability explains no more than 42.3% of the observed September sea ice extent trend during 35 a (1979–2013) satellite observations, which is comparable to the results of the observed sea ice record extended back to 1953 (61 a, less than 48.5% natural variability). This reinforces the evidence that anthropogenic forcing plays a substantial role in the observed decline of September Arctic sea ice in recent decades. The magnitude of both positive and negative trends induced by the natural variability in the unforced simulations is slightly enlarged in the context of increasing greenhouse gases in the 21st century. However, the ratio between the realizations of positive and negative trends change has remained steady, which enforces the standpoint that external forcing will remain the principal determiner of the decreasing Arctic sea ice extent trend in the future.

  10. Future Arctic marine access: analysis and evaluation of observations, models, and projections of sea ice

    Directory of Open Access Journals (Sweden)

    T. S. Rogers

    2013-02-01

    Full Text Available There is an emerging need for regional applications of sea ice projections to provide more accuracy and greater detail to scientists, national, state and local planners, and other stakeholders. The present study offers a prototype for a comprehensive, interdisciplinary study to bridge observational data, climate model simulations, and user needs. The study's first component is an observationally based evaluation of Arctic sea ice trends during 1980–2008, with an emphasis on seasonal and regional differences relative to the overall pan-Arctic trend. Regional sea ice loss has varied, with a significantly larger decline of winter maximum (January–March extent in the Atlantic region than in other sectors. A lead–lag regression analysis of Atlantic sea ice extent and ocean temperatures indicates that reduced sea ice extent is associated with increased Atlantic Ocean temperatures. Correlations between the two variables are greater when ocean temperatures lag rather than lead sea ice. The performance of 13 global climate models is evaluated using three metrics to compare sea ice simulations with the observed record. We rank models over the pan-Arctic domain and regional quadrants and synthesize model performance across several different studies. The best performing models project reduced ice cover across key access routes in the Arctic through 2100, with a lengthening of seasons for marine operations by 1–3 months. This assessment suggests that the Northwest and Northeast Passages hold potential for enhanced marine access to the Arctic in the future, including shipping and resource development opportunities.

  11. Chemical composition of sediments from White Sea, Russian Arctic

    Science.gov (United States)

    Gamza, Olga; Shevchenko, Vladimir; Novigatsky, Aleksandr

    2010-05-01

    The White Sea, the only Russian inland sea, is located on the north of outlying districts of the European part of Russia, belongs to Arctic Ocean. Area of water of sea occupies about 90 tousend square kilometers. The sea can be divided into some general parts: neck, funnel, basin and 4 Bays: Dvina Bay, Kandalaksha Bay, Mezen Bay and Onega Bay. The purpose of this work was geochemical mapping of the surface sediments of this area. The main tasks were: compilation data base of element composition of the surface sediments, geochemical mapping of each element, research of the anormal concentration of elements on the surface. To detect the content of chemical elements several methods were used: atomic absorption spectrometry (P.P. Shirshov Institute of Oceanology); neutron activation analysis (Vernadsky Institute of Geochemistry and Analytical Chemistry), total and organic carbon analysis, photometric method to detection Si, Al, P (P.P. Shirshov Institute of Oceanology). Bulk composition is one of the fundamental characteristics of sediments and bottom deposites of modern basins. Coarse-grained sediments with portion of pelitic component 80%). Character of elements distribution correlates with facial distribution of sediments from White Sea. According to litologic description, bottom surface of Dvina Bay is practically everywhere covered by layer of fine-grained sand. In the border area between Dvina Bay and White Sea basin on terraced subwater slope aleurite politic silts are abundant. They tend to exhange down the slope to clay silts. In Onega Bay fractions of non-deposition are observed. They are characterized by wide spread of thin blanket poorgraded sediments, which are likely to be relic. Relief of Kandalakscha Bay bottom is presented as alternation of abyssal fosses (near 300 m) with silles and elevations (depressions and in central part of the sea, which is quite wide from both places of original sedimentation and run off sources [2]. Thus, the interrelation

  12. Impact of aerosol emission controls on future Arctic sea ice cover

    Science.gov (United States)

    Gagné, M.-È.; Gillett, N. P.; Fyfe, J. C.

    2015-10-01

    We examine the response of Arctic sea ice to projected aerosol and aerosol precursor emission changes under the Representative Concentration Pathway (RCP) scenarios in simulations of the Canadian Earth System Model. The overall decrease in aerosol loading causes a warming, largest over the Arctic, which leads to an annual mean reduction in sea ice extent of approximately 1 million km2 over the 21st century in all RCP scenarios. This accounts for approximately 25% of the simulated reduction in sea ice extent in RCP 4.5, and 40% of the reduction in RCP 2.5. In RCP 4.5, the Arctic ocean is projected to become ice-free during summertime in 2045, but it does not become ice-free until 2057 in simulations with aerosol precursor emissions held fixed at 2000 values. Thus, while reductions in aerosol emissions have significant health and environmental benefits, their substantial contribution to projected Arctic climate change should not be overlooked.

  13. Changing Arctic ecosystems: sea ice decline, permafrost thaw, and benefits for geese

    Science.gov (United States)

    Flint, Paul; Whalen, Mary; Pearce, John M.

    2014-01-01

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) strives to inform resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. A key area for the USGS CAE initiative has been the Arctic Coastal Plain of northern Alaska. This region has experienced a warming trend over the past 30 years, leading to reductions in sea ice and thawing of permafrost. Loss of sea ice has increased ocean wave action, leading to erosion and salt water inundation of coastal habitats. Saltwater tolerant plants are now thriving in these areas and this appears to be a positive outcome for geese in the Arctic. This finding is contrary to the deleterious effects that declining sea ice is having on habitats of ice-dependent animals, such as polar bear and walrus.

  14. Arctic moisture source for Eurasian snow cover variations in autumn

    International Nuclear Information System (INIS)

    Eurasian fall snow cover changes have been suggested as a driver for changes in the Arctic Oscillation and might provide a link between sea-ice decline in the Arctic during summer and atmospheric circulation in the following winter. However, the mechanism connecting snow cover in Eurasia to sea-ice decline in autumn is still under debate. Our analysis is based on snow observations from 820 Russian land stations, moisture transport using a Lagrangian approach derived from meteorological re-analyses. We show that declining sea-ice in the Barents and Kara Seas (BKS) acts as moisture source for the enhanced Western Siberian snow depth as a result of changed tropospheric moisture transport. Transient disturbances enter the continent from the BKS region related to anomalies in the planetary wave pattern and move southward along the Ural mountains where they merge into the extension of the Mediterranean storm track. (letter)

  15. Dominant patterns of winter Arctic surface wind variability

    Institute of Scientific and Technical Information of China (English)

    WU Bingyi; John Walsh; LIU Jiping; ZHANG Xiangdong

    2014-01-01

    Dominant statistical patterns of winter Arctic surface wind (WASW) variability and their impacts on Arctic sea ice motion are investigated using the complex vector empirical orthogonal function (CVEOF) method. The results indicate that the leading CVEOF of Arctic surface wind variability, which accounts for 33% of the covariance, is characterized by two different and alternating spatial patterns (WASWP1 and WASWP2). Both WASWP1 and WASWP2 show strong interannual and decadal variations, superposed on their declining trends over past decades. Atmospheric circulation anomalies associated with WASWP1 and WASWP2 exhibit, respectively, equivalent barotropic and some baroclinic characteristics, differing from the Arctic dipole anomaly and the seesaw structure anomaly between the Barents Sea and the Beaufort Sea. On decadal time scales, the decline trend of WASWP2 can be attributed to persistent warming of sea surface temperature in the Greenland—Barents—Kara seas from autumn to winter, relfecting the effect of the Arctic warming. The second CVEOF, which accounts for 18% of the covariance, also contains two different spatial patterns (WASWP3 and WASWP4). Their time evolutions are signiifcantly correlated with the North Atlantic Oscillation (NAO) index and the central Arctic Pattern, respectively, measured by the leading EOF of winter sea level pressure (SLP) north of 70°N. Thus, winter anomalous surface wind pattern associated with the NAO is not the most important surface wind pattern. WASWP3 and WASWP4 primarily relfect natural variability of winter surface wind and neither exhibits an apparent trend that differs from WASWP1 or WASWP2. These dominant surface wind patterns strongly inlfuence Arctic sea ice motion and sea ice exchange between the western and eastern Arctic. Furthermore, the Fram Strait sea ice volume lfux is only signiifcantly correlated with WASWP3. The results demonstrate that surface and geostrophic winds are not interchangeable in terms of

  16. Intercomparison of passive microwave sea ice concentration retrievals over the high-concentration Arctic sea ice

    DEFF Research Database (Denmark)

    andersen, susanne; Tonboe, R.; Kaleschke, L.; Heygster, G.; Pedersen, Leif Toudal

    [1] Measurements of sea ice concentration from the Special Sensor Microwave Imager (SSM/I) using seven different algorithms are compared to ship observations, sea ice divergence estimates from the Radarsat Geophysical Processor System, and ice and water surface type classification of 59 wide...... trusted subset of the SAR scenes across the central Arctic allow the separation of the ice concentration uncertainty due to emissivity variations and sensor noise from other error sources during the winter of 2003-2004. Depending on the algorithm, error standard deviations from 2.5 to 5.0% are found with...... sensor noise between 1.3 and 1.8%. This is in accord with variability estimated from analysis of SSM/I time series. Algorithms, which primarily use 85 GHz information, consistently give the best agreement with both SAR ice concentrations and ship observations. Although the 85 GHz information is more...

  17. Decadal to seasonal variability of Arctic sea ice albedo

    CERN Document Server

    Agarwal, S; Wettlaufer, J S

    2011-01-01

    A controlling factor in the seasonal and climatological evolution of the sea ice cover is its albedo $\\alpha$. Here we analyze Arctic data from the Advanced Very High Resolution Radiometer (AVHRR) Polar Pathfinder and assess the seasonality and variability of broadband albedo from a 23 year daily record. We produce a histogram of daily albedo over ice covered regions in which the principal albedo transitions are seen; high albedo in late winter and spring, the onset of snow melt and melt pond formation in the summer, and fall freeze up. The bimodal late summer distribution demonstrates the combination of the poleward progression of the onset of melt with the coexistence of perennial bare ice with melt ponds and open water, which then merge to a broad peak at $\\alpha \\gtrsim $ 0.5. We find the interannual variability to be dominated by the low end of the $\\alpha$ distribution, highlighting the controlling influence of the ice thickness distribution and large-scale ice edge dynamics. The statistics obtained pro...

  18. Stochastic dynamics of Arctic sea ice Part II: Multiplicative noise

    CERN Document Server

    Moon, Woosok

    2015-01-01

    We analyze the numerical solutions of a stochastic Arctic sea ice model with multiplicative noise over a wide range of external heat-fluxes, $\\Delta F_0$, which correspond to greenhouse gas forcing. When the noise is multiplicative, the noise-magnitude depends on the state-variable, and this will influence the statistical moments in a manner that differs from the additive case, which we analyzed in Part I of this study. The state variable describing the deterministic backbone of our model is the energy, $E(t)$, contained in the ice or the ocean and for a thorough comparison and contrast we choose the simplest form of multiplicative noise $\\sigma E(t) \\xi(t)$, where $\\sigma$ is the noise amplitude and $\\xi(t)$ is the noise process. The case of constant additive noise (CA) we write as $\\sigma\\overline{E_S}\\xi(t)$, in which $\\overline{E_S}$ is the seasonally averaged value of the periodic deterministic steady-state solution $E_S(t)$, or the deterministic seasonal cycle. We then treat the case of seasonally-varyi...

  19. Spectral albedo and transmittance of thin young Arctic sea ice

    Science.gov (United States)

    Taskjelle, Torbjørn; Hudson, Stephen R.; Granskog, Mats A.; Nicolaus, Marcel; Lei, Ruibo; Gerland, Sebastian; Stamnes, Jakob J.; Hamre, Børge

    2016-01-01

    Spectral albedo and transmittance in the range were measured on three separate dates on less than thick new Arctic sea ice growing on Kongsfjorden, Svalbard at , . Inherent optical properties, including absorption coefficients of particulate and dissolved material, were obtained from ice samples and fed into a radiative transfer model, which was used to analyze spectral albedo and transmittance and to study the influence of clouds and snow on these. Integrated albedo and transmittance for photosynthetically active radiation () were in the range 0.17-0.21 and 0.77-0.86, respectively. The average albedo and transmittance of the total solar radiation energy were 0.16 and 0.51, respectively. Values inferred from the model indicate that the ice contained possibly up to 40% brine and only 0.6% bubbles. Angular redistribution of solar radiation by clouds and snow was found to influence both the wavelength-integrated value and the spectral shape of albedo and transmittance. In particular, local peaks and depressions in the spectral albedo and spectral transmittance were found for wavelengths within atmospheric absorption bands. Simulated and measured transmittance spectra were within 5% for most of the wavelength range, but deviated up to 25% in the vicinity of , indicating the need for more optical laboratory measurements of pure ice, or improved modeling of brine optical properties in this near-infrared wavelength region.

  20. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    Science.gov (United States)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  1. The ringed seal (Phoca hispida in the western Russian Arctic

    Directory of Open Access Journals (Sweden)

    Stanislav E Belikov

    2014-05-01

    Full Text Available This paper presents a review of available published and unpublished material on the ringed seal (Phoca hispida in the western part of the Russian Arctic, including the White, Barents and Kara seas. The purpose of the review is to discuss the status of ringed seal stocks in relation to their primary habitat, the history of sealing, and a recent harvest of the species in the region. The known primary breeding habitats for this species are in the White Sea, the south-western part of the Barents Sea, and in the coastal waters of the Kara Sea, which are seasonally covered by shore-fast ice. The main sealing sites are situated in the same areas. Female ringed seals become mature by the age of 6, and males by the age of 7. In March-April a female gives birth to one pup in a breeding lair constructed in the shore-fast ice. The most important prey species for ringed seals in the western sector of the Russian Arctic are pelagic fish and crustaceans. The maximum annual sealing level for the region was registered in the first 70 years of the 20th century: the White Sea maximum (8,912 animals was registered in 1912; the Barents Sea maximum (13,517 animals was registered in 1962; the Kara Sea maximum (13,200 animals was registered in 1933. Since the 1970s, the number of seals harvested has decreased considerably. There are no data available for the number of seals harvested annually by local residents for their subsistence.

  2. Anthropogenic radionuclides in the Arctic Ocean. Distribution and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Dan

    1998-05-01

    Anthropogenic radionuclide concentrations have been determined in seawater and sediment samples collected in 1991, 1994 and 1996 in the Eurasian Arctic shelf and interior. Global fallout, releases from European reprocessing plants and the Chernobyl accident are identified as the three main sources. From measurements in the Eurasian shelf seas it is concluded that the total input of {sup 134}Cs, {sup 137}Cs and {sup 90}Sr from these sources has been decreasing during the 1990`s, while {sup 129}I has increased. The main fraction of the reprocessing and Chernobyl activity found in Arctic Ocean surface layer is transported from the Barents Sea east along the Eurasian Arctic shelf seas to the Laptev Sea before entering the Nansen Basin. This inflow results in highest {sup 137}Cs, {sup 129}I and {sup 90}Sr concentrations in the Arctic Ocean surface layers, and continuously decreasing concentrations with depth. Chernobyl-derived {sup 137}Cs appeared in the central parts of the Arctic Ocean around 1991, and in the mid 1990`s the fraction to total {sup 137}Cs was approximately 30% in the entire Eurasian Arctic region. The transfer times for releases from Sellafield are estimated to be 5-7 years to the SE Barents Sea, 7-9 years to the Kara Sea, 10-11 years to the Laptev Sea and 12-14 years to the central Arctic Ocean. Global fallout is the primary source of plutonium with highest concentrations found in the Atlantic layer of the Arctic Ocean. When transported over the shallow shelf seas, particle reactive transuranic elements experience an intense scavenging. A rough estimate shows that approximately 75% of the plutonium entering the Kara and Laptev Seas are removed to the sediment. High seasonal riverine input of {sup 239}, {sup 240}Pu is observed near the mouths of the large Russian rivers. Sediment inventories show much higher concentrations on the shelf compared to the deep Arctic Ocean. This is primarily due to the low particle flux in the open ocean

  3. Does ocean coupling matter for the northern extratropical response to projected Arctic sea ice loss?

    Science.gov (United States)

    Deser, Clara; Sun, Lantao; Tomas, Robert A.; Screen, James

    2016-03-01

    The question of whether ocean coupling matters for the extratropical Northern Hemisphere atmospheric response to projected late 21st century Arctic sea ice loss is addressed using a series of experiments with Community Climate System Model version 4 at 1° spatial resolution under different configurations of the ocean model component: no interactive ocean, thermodynamic slab ocean, and full-depth (dynamic plus thermodynamic) ocean. Ocean-atmosphere coupling magnifies the response to Arctic sea ice loss but does not change its overall structure; however, a slab ocean is inadequate for inferring the role of oceanic feedbacks. The westerly winds along the poleward flank of the eddy-driven jet weaken in response to Arctic sea ice loss, accompanied by a smaller-magnitude strengthening on the equatorward side, with largest amplitudes in winter. Dynamical and thermodynamic oceanic feedbacks amplify this response by approximately 50%. Air temperature, precipitation, and sea level pressure responses also show sensitivity to the degree of ocean coupling.

  4. Intercomparison of the Arctic sea ice cover in global ocean-sea ice reanalyses from the ORA-IP project

    Science.gov (United States)

    Chevallier, Matthieu; Smith, Gregory C.; Dupont, Frédéric; Lemieux, Jean-François; Forget, Gael; Fujii, Yosuke; Hernandez, Fabrice; Msadek, Rym; Peterson, K. Andrew; Storto, Andrea; Toyoda, Takahiro; Valdivieso, Maria; Vernieres, Guillaume; Zuo, Hao; Balmaseda, Magdalena; Chang, You-Soon; Ferry, Nicolas; Garric, Gilles; Haines, Keith; Keeley, Sarah; Kovach, Robin M.; Kuragano, Tsurane; Masina, Simona; Tang, Yongming; Tsujino, Hiroyuki; Wang, Xiaochun

    2016-01-01

    Ocean-sea ice reanalyses are crucial for assessing the variability and recent trends in the Arctic sea ice cover. This is especially true for sea ice volume, as long-term and large scale sea ice thickness observations are inexistent. Results from the Ocean ReAnalyses Intercomparison Project (ORA-IP) are presented, with a focus on Arctic sea ice fields reconstructed by state-of-the-art global ocean reanalyses. Differences between the various reanalyses are explored in terms of the effects of data assimilation, model physics and atmospheric forcing on properties of the sea ice cover, including concentration, thickness, velocity and snow. Amongst the 14 reanalyses studied here, 9 assimilate sea ice concentration, and none assimilate sea ice thickness data. The comparison reveals an overall agreement in the reconstructed concentration fields, mainly because of the constraints in surface temperature imposed by direct assimilation of ocean observations, prescribed or assimilated atmospheric forcing and assimilation of sea ice concentration. However, some spread still exists amongst the reanalyses, due to a variety of factors. In particular, a large spread in sea ice thickness is found within the ensemble of reanalyses, partially caused by the biases inherited from their sea ice model components. Biases are also affected by the assimilation of sea ice concentration and the treatment of sea ice thickness in the data assimilation process. An important outcome of this study is that the spatial distribution of ice volume varies widely between products, with no reanalysis standing out as clearly superior as compared to altimetry estimates. The ice thickness from systems without assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. An evaluation of the sea ice velocity fields reveals that ice drifts too fast in most systems. As an ensemble, the ORA-IP reanalyses capture trends in Arctic sea ice area and extent

  5. Political risks of hydrocarbon deposit development in the Arctic seas of the Russian Federation

    International Nuclear Information System (INIS)

    Nowadays the process of Arctic development has a long-term international cooperation character. Economic and geopolitical interests of both arctic and non-arctic countries meet in the region. Apart from resource development issues, there are problems concerning security, sustainable development and some others issues conditioned by climate and geographical characteristics of the region. Strategic analysis of political risks for the Russian Federation is carried out. The analysis reveals that political risks of hydrocarbon deposits development in the RF arctic seas appear as lack of coordination with arctic countries in solving key regional problems, failure to follow international agreements. Such inconsistency may lead to political risks, which results in strained situation in the region

  6. Assessing the controllability of Arctic sea ice extent by sulfate aerosol geoengineering

    Science.gov (United States)

    Jackson, L. S.; Crook, J. A.; Jarvis, A.; Leedal, D.; Ridgwell, A.; Vaughan, N.; Forster, P. M.

    2015-02-01

    In an assessment of how Arctic sea ice cover could be remediated in a warming world, we simulated the injection of SO2 into the Arctic stratosphere making annual adjustments to injection rates. We treated one climate model realization as a surrogate "real world" with imperfect "observations" and no rerunning or reference to control simulations. SO2 injection rates were proposed using a novel model predictive control regime which incorporated a second simpler climate model to forecast "optimal" decision pathways. Commencing the simulation in 2018, Arctic sea ice cover was remediated by 2043 and maintained until solar geoengineering was terminated. We found quantifying climate side effects problematic because internal climate variability hampered detection of regional climate changes beyond the Arctic. Nevertheless, through decision maker learning and the accumulation of at least 10 years time series data exploited through an annual review cycle, uncertainties in observations and forcings were successfully managed.

  7. Atmospheric response in summer linked to recent Arctic sea ice loss

    OpenAIRE

    Petrie, Ruth E.; Shaffrey, Len C.; Sutton, Rowan T.

    2015-01-01

    Since 2007 a large decline in Arctic sea ice has been observed. The large-scale atmospheric circulation response to this decline is investigated in ERA-Interim reanalyses and HadGEM3 climate model experiments. In winter, post-2007 observed circulation anomalies over the Arctic, North Atlantic and Eurasia are small compared to interannual variability. In summer, the post-2007 observed circulation is dominated by an anticyclonic anomaly over Greenland which has a large signal-to-noise ratio. Cl...

  8. Waveform classification of airborne synthetic aperture radar altimeter over Arctic sea ice

    OpenAIRE

    Zygmuntowska, M.; Khvorostovsky, K.; V. Helm; S. Sandven

    2013-01-01

    Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat-2 was launched in 2010 carrying a Ku-band radar altimeter (SIRAL) designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300m along track. In this study, airborne Ku-band radar altimeter data over different ...

  9. Impact of North Atlantic Current changes on the Nordic Seas and the Arctic Ocean

    OpenAIRE

    Kauker, Frank; Gerdes, Rüdiger; Karcher, Michael; Köberle, Cornelia

    2005-01-01

    The impact of North Atlantic Current (NAC) volume, heat, and salt transport variability onto the NordicSeas and the Arctic Ocean is investigated using numerical hindcast and sensitivity experiments. Theocean-sea ice model reproduces observed propagation pathways and speeds of SST anomalies.Part of the signal reaching the entrance to the Nordic Seas between Iceland and Scotland originatesin the lower latitude North Atlantic. Response experiments with different prescribed conditionsat 50N show ...

  10. Greenland freshwater pathways in the sub-Arctic Seas from model experiments with passive tracers

    Science.gov (United States)

    Dukhovskoy, Dmitry S.; Myers, Paul G.; Platov, Gennady; Timmermans, Mary-Louise; Curry, Beth; Proshutinsky, Andrey; Bamber, Jonathan L.; Chassignet, Eric; Hu, Xianmin; Lee, Craig M.; Somavilla, Raquel

    2016-01-01

    Accelerating since the early 1990s, the Greenland Ice Sheet mass loss exerts a significant impact on thermohaline processes in the sub-Arctic seas. Surplus freshwater discharge from Greenland since the 1990s, comparable in volume to the amount of freshwater present during the Great Salinity Anomaly events, could spread and accumulate in the sub-Arctic seas, influencing convective processes there. However, hydrographic observations in the Labrador Sea and the Nordic Seas, where the Greenland freshening signal might be expected to propagate, do not show a persistent freshening in the upper ocean during last two decades. This raises the question of where the surplus Greenland freshwater has propagated. In order to investigate the fate, pathways, and propagation rate of Greenland meltwater in the sub-Arctic seas, several numerical experiments using a passive tracer to track the spreading of Greenland freshwater have been conducted as a part of the Forum for Arctic Ocean Modeling and Observational Synthesis effort. The models show that Greenland freshwater propagates and accumulates in the sub-Arctic seas, although the models disagree on the amount of tracer propagation into the convective regions. Results highlight the differences in simulated physical mechanisms at play in different models and underscore the continued importance of intercomparison studies. It is estimated that surplus Greenland freshwater flux should have caused a salinity decrease by 0.06-0.08 in the sub-Arctic seas in contradiction with the recently observed salinification (by 0.15-0.2) in the region. It is surmised that the increasing salinity of Atlantic Water has obscured the freshening signal.

  11. Circumpolar Arctic greening: Relationships to summer sea-ice concentrations, land temperatures and disturbance regimes

    Science.gov (United States)

    Walker, D. A.; Bhatt, U. S.; Epstein, H. E.; Raynolds, M. K.; Frost, G. V.; Leibman, M. O.; Khomutov, A.; Jia, G.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.; Webber, P. J.; Tweedie, C. E.

    2009-12-01

    The global distribution of Arctic tundra vegetation is closely tied to the presence of summer sea ice. Models predict that the reduction of sea ice will cause large changes to summer land-surface temperatures. Warming combined with increased natural and anthropogenic disturbance are expected to greatly increase arctic tundra productivity. To examine where tundra productivity is changing most rapidly, we studied 1982-2008 trends of sea-ice concentrations, summer warmth index (SWI) and the annual Maximum Normalized Difference Vegetation Index (MaxNDVI). We summarize the results according to the tundra adjacent to 14 Arctic seas. Sea-ice concentrations have declined and summer land temperatures have increased in all parts of the Arctic coast. The overall percentage increase in Arctic MaxNDVI was +7%. The trend was much greater in North America (+11%) than in Eurasia (+4%). Large percentage increases of MaxNDVI occurred inland from Davis Straight (+20%), Baffin Bay (+18%), Canadian Archipelago (+14%), Beaufort Sea (+12%), and Laptev Sea (+8%). Declines occurred in the W. Chukchi (-6%) and E. Bering (-5%) seas. The changes in NDVI are strongly correlated to changes in summer ground temperatures. Two examples from a 900-km north-south Arctic transect in Russia and long-term observations at a High Arctic site in Canada provide insights to where the changes in productivity are occurring most rapidly. At tree line near Kharp in northwest Siberia, alder shrubs are expanding vigorously in fire-disturbed areas; seedling establishment is occurring primarily in areas with disturbed mineral soils, particularly nonsorted circles. In the Low Arctic tundra areas of the central Yamal Peninsula greening is concentrated in riparian areas and upland landslides associated with degrading massive ground ice, where low-willow shrublands replace the zonal sedge, dwarf-shrub tundra growing on nutrient-poor sands. In polar desert landscapes near the Barnes Ice Cap, Baffin Island, Canada

  12. Arctic climate change: observed and modelled temperature and sea-ice variability

    OpenAIRE

    Johannessen, Ola M.; BENGTSSON, LENNART; MILES, MARTIN W.; Kuzmina, Svetlana I.; Semenov, Vladimir A.; Alekseev, Genrikh V.; NAGURNYI, ANDREI P.; Zakharov, Victor F.; Bobylev, Leonid P.; Pettersson, Lasse H.; HASSELMANN, KLAUS; Cattle, Howard P.

    2004-01-01

    Changes apparent in the arctic climate system in recent years require evaluation in a century-scale perspective in order to assess the Arctic's response to increasing anthropogenic greenhouse-gas forcing. Here, a new set of century- and multidecadal-scale observational data of surface air temperature (SAT) and sea ice is used in combination with ECHAM4 and HadCM3 coupled atmosphere-ice-ocean global model simulations in order to better determine and understand arctic climate variability. We sh...

  13. Late winter biogeochemical conditions under sea ice in the Canadian High Arctic

    Directory of Open Access Journals (Sweden)

    Helen S. Findlay

    2015-12-01

    Full Text Available With the Arctic summer sea-ice extent in decline, questions are arising as to how changes in sea-ice dynamics might affect biogeochemical cycling and phenomena such as carbon dioxide (CO2 uptake and ocean acidification. Recent field research in these areas has concentrated on biogeochemical and CO2 measurements during spring, summer or autumn, but there are few data for the winter or winter–spring transition, particularly in the High Arctic. Here, we present carbon and nutrient data within and under sea ice measured during the Catlin Arctic Survey, over 40 days in March and April 2010, off Ellef Ringnes Island (78° 43.11′ N, 104° 47.44′ W in the Canadian High Arctic. Results show relatively low surface water (1–10 m nitrate (<1.3 µM and total inorganic carbon concentrations (mean±SD=2015±5.83 µmol kg−1, total alkalinity (mean±SD=2134±11.09 µmol kg−1 and under-ice pCO2sw (mean±SD=286±17 µatm. These surprisingly low wintertime carbon and nutrient conditions suggest that the outer Canadian Arctic Archipelago region is nitrate-limited on account of sluggish mixing among the multi-year ice regions of the High Arctic, which could temper the potential of widespread under-ice and open-water phytoplankton blooms later in the season.

  14. 60-year Nordic and arctic sea level reconstruction based on a reprocessed two decade altimetric sea level record and tide gauges

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Due to the sparsity and often poor quality of data, reconstructing Arctic sea level is highly challenging. We present a reconstruction of Arctic sea level covering 1950 to 2010, using the approaches from Church et al. (2004) and Ray and Douglas (2011). This involves decomposition of an altimetry...

  15. A preliminary assessment of potential doses to man from radioactive waste dumped in the Arctic Sea

    International Nuclear Information System (INIS)

    This report describes a preliminary radiological assessment of collective doses to the world population from radioactive material dumped in the Barents and Kara Seas in the period 1961-1991. Information on the dumped waste and the rates of release of radionuclides have been available from Russian sources and from the International Atomic Energy Agency. A box model has been used to simulate the dispersion of radionuclides in the marine environment and to calculate the contamination of seafood and the subsequent radiation doses to man. Two release scenarios have been adopted. The worst-case release scenario which ignores the presence of barriers between spent nuclear fuel and seawater is estimated to give rise to about 10 mansieverts calculated to 1000 years from the time of release. A more realistic release scenario is estimated to cause about 3 mansieverts. In both cases exposure from the radionuclide 137Cs is found to dominate the doses. (au) 8 tabs., 56 ills., 19 refs

  16. A preliminary assessment of potential doses to man from radioactive waste dumped in the Arctic sea

    International Nuclear Information System (INIS)

    This report describes a preliminary radiological assessment of collective doses to the world population from radioactive material dumped in the Kara and Barents Seas in the period 1961-1991. Information on the dumped waste and the rates of release of radionuclides have been available from Russian sources and from the International Atomic Energy Agency. A box model has been used to simulate the dispersion of radionuclides in the marine environment and to calculate the contamination of seafood and the subsequent radiation doses to man. Two release scenarios have been adopted. The worst-case release scenario, which ignores the presence of barriers between spent nuclear fuel and seawater, is estimated to give rise to about 10 mansievert calculated to 1000 years from the time of release. A more realistic release scenario is estimated to cause about 3 mansieverts. In both cases exposure from the radionuclide 137Cs is found to dominate the doses. 19 refs., 56 figs., 8 tabs

  17. Insights on Arctic Sea Ice Processes from New Seafloor and Coastline Mapping

    Science.gov (United States)

    Nghiem, S. V.; Hall, D. K.; Rigor, I. G.; Clemente-Colon, P.; Li, P.; Neumann, G.

    2014-12-01

    The seafloor can exert a significant control on Arctic sea ice patterns by guiding the distribution of ocean water masses and river discharge in the Arctic Ocean. Satellite observations of sea ice and surface temperature are used together with bathymetry data to understand dynamic and thermodynamic processes of sea ice. In particular, data from satellite radars, including scatterometer and synthetic aperture radar (SAR) instruments, are used to identify and map sea ice with different spatial and temporal resolutions across the Arctic. Data from a satellite spectroradiometer, such as MODIS, are used to accurately measure surface temperature under clear sky conditions. For seafloor measurements, advances have been made with new observations surveyed to modern standards in different regions of the Arctic, enabling the production of an improved bathymetry dataset, such as the International Bathymetric Chart of the Arctic Ocean Version 3.0 (IBCAO 3.0) released in 2012. The joint analyses of these datasets reveal that the seafloor can govern warm- and cold-water distribution and thereby dictate sea ice patterns on the sea surface from small local scales to a large regional scale extending over thousands of km. Satellite results show that warm river waters can intrude into the Arctic Ocean and affect sea ice melt hundreds of km away from the river mouths. The Arctic rivers bring significant heat as their waters come from sources across vast watersheds influenced by warm continental climate effects in summertime. In the case of the Mackenzie River, results from the analysis with the new IBCAO 3.0 indicated that the formation and break-up of landfast sea ice is related to the depth and not the slope of the seafloor. In turn, such ice processes can impact the discharge and distribution of warm river waters and influence the melting of sea ice. Animations of satellite observations of sea ice overlaid on both the old and new versions of IBCAO will be presented to illustrate

  18. Arctic sea ice decline contributes to thinning lake ice trend in northern Alaska

    Science.gov (United States)

    Alexeev, Vladimir A.; Arp, Christopher D.; Jones, Benjamin M.; Cai, Lei

    2016-07-01

    Field measurements, satellite observations, and models document a thinning trend in seasonal Arctic lake ice growth, causing a shift from bedfast to floating ice conditions. September sea ice concentrations in the Arctic Ocean since 1991 correlate well (r = +0.69, p characterizing lake ice conditions. A lake ice growth model forced with Weather Research and Forecasting model output produced a 7% decrease in lake ice growth when 2007/08 sea ice was imposed on 1991/92 climatology and a 9% increase in lake ice growth for the opposing experiment. Here, we clearly link early winter ‘ocean-effect’ snowfall and warming to reduced lake ice growth. Future reductions in sea ice extent will alter hydrological, biogeochemical, and habitat functioning of Arctic lakes and cause sub-lake permafrost thaw.

  19. The delivery of organic contaminants to the Arctic food web: Why sea ice matters

    DEFF Research Database (Denmark)

    Pucko, M.; Stern, Gary; Macdonald, Robie;

    2015-01-01

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical......–chemical properties (e.g. 2–3-fold increase in exposure to brine-associated biota), and 2) depend on physical–chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate...... the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibriumbased on Henry's lawconstants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest...

  20. Less winter cloud aids summer 2013 Arctic sea ice return from 2012 minimum

    International Nuclear Information System (INIS)

    In September 2012, Arctic sea ice cover reached a record minimum for the satellite era. The following winter the sea ice quickly returned, carrying through to the summer when ice extent was 48% greater than the same time in 2012. Most of this rebound in the ice cover was in the Chukchi and Beaufort Seas, areas experiencing the greatest decline in sea ice over the last three decades. A variety of factors, including ice dynamics, oceanic and atmospheric heat transport, wind, and solar insolation anomalies, may have contributed to the rebound. Here we show that another factor, below-average Arctic cloud cover in January–February 2013, resulted in a more strongly negative surface radiation budget, cooling the surface and allowing for greater ice growth. More thick ice was observed in March 2013 relative to March 2012 in the western Arctic Ocean, and the areas of ice growth estimated from the negative cloud cover anomaly and advected from winter to summer with ice drift data, correspond well with the September ice concentration anomaly pattern. Therefore, decreased wintertime cloud cover appears to have played an important role in the return of the sea ice cover the following summer, providing a partial explanation for large year-to-year variations in an otherwise decreasing Arctic sea ice cover. (paper)

  1. Distribution of 226Ra in the Arctic Ocean and the Bering Sea and its hydrologic implications

    Institute of Scientific and Technical Information of China (English)

    邢娜; 陈敏; 黄奕普; 蔡平河; 邱雨生

    2003-01-01

    Radium-226 (226Ra) activities were measured in the surface water samples collected from the Arctic Ocean and the Bering Sea during the First Chinese National Arctic Research Expedition. The results showed that 226Ra concentrations in the surface water ranged from 0.28 to 1.56 Bq/m3 with an average of 0.76 Bq/m3 in the Arctic Ocean, and from 0.25 to 1.26 Bq/m3 with an average of 0.71 Bq/m3 in the Bering Sea. The values were obviously lower than those from open oceans in middle and low latitudes, indicating that the study area may be partly influenced by sea ice meltwater. In the Bering Sea, 226Ra in the surface water decreased northward, probably as a result of the exchange between the 226Ra-deficientsea ice meltwater and the 226Ra-rich Pacific water. In the Arctic Ocean, 226Ra in the surface water increased northward and eastward. This spatial distributionof 226Ra reflected the variation of the 226Ra-enriched river component in the water mass of the Arctic Ocean. The vertical profiles of 226Ra in the Canadian Basin showed a concentration maximum at 200 m, which could be attributed to the inputs of the Pacific water or/and the bottom shelf water with high 226Ra concentration. This conclusion was consistent with the results from 2H, 18O tracers.

  2. A study of Arctic sea ice freeboard heights, gravity anomalies and dynamic topography from ICESat measurementes

    DEFF Research Database (Denmark)

    Skourup, Henriette

    used to estimate the sea ice freeboard, and shows good qualitative correlation to QuikSCAT scatterometer data. As the method depends on the presence of open water, the method is underestimating the sea ice freeboard heights, when compared to coincident high resolution airborne lidar measurements in...... Arctic is a combination of sea ice and open water. The sea surface height is found by a "lowest-level" filtering procedure, originally developed for airborne lidar measurements, which assumes that the lowest levels measured represent the open water in the ice pack. The sea surface obtained this way is...... are investigated. The ICESat gravity grid shows all the major tectonic features of the Arctic Ocean at high resolution. The results show that the laser altimetry data provides excellent gravity results comparable to open ocean altimetry even over the most heavy ice conditions. Subtracting a geoid...

  3. A sea ice free summer Arctic within 30 years: An update from CMIP5 models

    Science.gov (United States)

    Wang, Muyin; Overland, James E.

    2012-09-01

    Three years ago we proposed that the summer Arctic would be nearly sea ice free by the 2030s; “nearly” is interpreted as sea ice extent less than 1.0 million km2. We consider this estimate to be still valid based on projections of updated climate models (CMIP5) and observational data. Similar to previous models (CMIP3), CMIP5 still shows a wide spread in hindcast and projected sea ice loss among different models. Further, there is no consensus in the scientific literature for the cause of such a spread in results for CMIP3 and CMIP5. While CMIP5 model mean sea ice extents are closer to observations than CMIP3, the rates of sea ice reduction in most model runs are slow relative to recent observations. All CMIP5 models do show loss of sea ice due to increased anthropogenic forcing relative to pre-industrial control runs. Applying the same technique of model selection and extrapolation approach to CMIP5 as we used in our previous paper, the interval range for a nearly sea ice free Arctic is 14 to 36 years, with a median value of 28 years. Relative to a 2007 baseline, this suggests a nearly sea ice free Arctic in the 2030s.

  4. Sediment-Laden sea ice in the Arctic Ocean: Implications for climate, environment and sedimentation

    International Nuclear Information System (INIS)

    Sediments in sea ice were first described by F. Nansen during his famous Fram expedition (1893-1896). Many researchers observed and recorded sediment-laden or dirty sea ice in the Central Arctic, but the origin and incorporation mechanisms are poorly understood and were never the object of detailed studies. Sea ice-rafted sediments are important factors for the albedo and for the ecology and productivity of marine organisms, because of the absorption of solar radiation and lowered light transmission. Beginning in 1987 in the Eastern Arctic Basin and continuing in 1988, 1989 and 1990 in Fram Strait, Barents Sea and Greenland Sea the authors conducted a multi-disciplinary sea ice project on the role and importance of sea ice-rafted sediments for sedimentation in the Arctic Ocean. During the field work very high sediment accumulations were observed and sampled (up to 560 g sediment/kg ice). Most of the material was concentrated in small patches of 1-10 m in diameter, but in some areas, especially in the Eastern Arctic, they covered up to 80% of the ice surface and formed layers of pure mud, 2-3 cm thick. First estimations of the observed concentrations, the annual ice flow through Fram Strait, and the average sedimentation rate in this area show that the necessary sediment flux can be obtained only by sea ice. Thus, sea ice-rafting seems to be the most important input mechanism of fine grained terrigenous (biogenic and terrigenic) sediment into the ice-covered deep sea regions

  5. Arctic energy budget in relation to sea-ice variability on monthly to annual time scales

    Science.gov (United States)

    Krikken, Folmer; Hazeleger, Wilco

    2015-04-01

    The strong decrease in Arctic sea-ice in recent years has triggered a strong interest in Arctic sea-ice predictions on seasonal to decadal time scales. Hence, it is key to understand physical processes that provide enhanced predictability beyond persistence of sea ice anomalies. The authors report on an analysis of natural variability of Arctic sea-ice from an energy budget perspective, using 15 CMIP5 climate models, and comparing these results to atmospheric and oceanic reanalyses data. We quantify the persistence of sea ice anomalies and the cross-correlation with the surface and top energy budget components. The Arctic energy balance components primarily indicate the important role of the seasonal sea-ice albedo feedback, in which sea-ice anomalies in the melt season reemerge in the growth season. This is a robust anomaly reemergence mechanism among all 15 climate models. The role of ocean lies mainly in storing heat content anomalies in spring, and releasing them in autumn. Ocean heat flux variations only play a minor role. The role of clouds is further investigated. We demonstrate that there is no direct atmospheric response of clouds to spring sea-ice anomalies, but a delayed response is evident in autumn. Hence, there is no cloud-ice feedback in late spring and summer, but there is a cloud-ice feedback in autumn, which strengthens the ice-albedo feedback. Anomalies in insolation are positively correlated with sea-ice variability. This is primarily a result of reduced multiple-reflection of insolation due to an albedo decrease. This effect counteracts the sea-ice albedo effect up to 50%. ERA-Interim and ORAS4 confirm the main findings from the climate models.

  6. Sensitivity of the Arctic sea ice concentration forecasts to different atmospheric forcing:a case study

    Institute of Scientific and Technical Information of China (English)

    YANG Qinghua; LIU Jiping; ZHANG Zhanhai; SUI Cuijuan; XING Jianyong; LI Ming; LI Chunhua; ZHAO Jiechen; ZHANG Lin

    2014-01-01

    A regional Arctic configuration of the Massachusetts Institute of Technology general circulation model (MIT-gcm) is used as the coupled ice-ocean model for forecasting sea ice conditions in the Arctic Ocean at the Na-tional Marine Environmental Forecasting Center of China (NMEFC), and the numerical weather prediction from the National Center for Environmental Prediction Global Forecast System (NCEP GFS) is used as the atmospheric forcing. To improve the sea ice forecasting, a recently developed Polar Weather Research and Forecasting model (Polar WRF) model prediction is also tested as the atmospheric forcing. Their forecasting performances are evaluated with two different satellite-derived sea ice concentration products as initializa-tions: (1) the Special Sensor Microwave Imager/Sounder (SSMIS) and (2) the Advanced Microwave Scanning Radiometer for EOS (AMSR-E). Three synoptic cases, which represent the typical atmospheric circulations over the Arctic Ocean in summer 2010, are selected to carry out the Arctic sea ice numerical forecasting experiments. The evaluations suggest that the forecasts of sea ice concentrations using the Polar WRF atmo-spheric forcing show some improvements as compared with that of the NCEP GFS.

  7. The ASIBIA sea-ice facility: First results from the Atmosphere-Sea-Ice-Biogeochemistry in the Arctic chamber

    Science.gov (United States)

    France, James L.; Thomas, Max

    2016-04-01

    Working in the natural ocean-ice-atmosphere system is very difficult, as conducting fieldwork on sea-ice presents many challenges ice including costs, safety, experimental controls and access. The new ASIBIA (Atmosphere-Sea-Ice-Biogeochemistry in the Arctic) coupled Ocean-Sea-Ice-(Snow)-Atmosphere chamber facility at the University of East Anglia, UK, we are aiming to perform controlled first-year sea-ice investigations in areas such as sea-ice physics, physicochemical and biogeochemical processes in sea-ice and quantification of the bi-directional flux of gases in various states of first-year sea-ice conditions. The facility is a medium sized chamber with programmable temperatures from -55°C to +30°C, allowing a full range of first year sea-ice growing conditions in both the Arctic and Antarctic to be simulated. The water depth can be up to 1 m (including up to 25 cm of sea-ice) and an optional 1 m tall Teflon film atmosphere on top of the sea-ice, thus creating a closed and coupled ocean-sea-ice-atmosphere mesocosm. Ice growth in the tank is well suited for studying first-year sea-ice physical properties, with in-situ ice-profile measurements of temperature, salinity, conductivity, pressure and spectral light transmission. Underwater and above ice cameras are installed to record the physical development of the sea-ice. Here, we present the data from the first suites of experiments in the ASIBIA chamber focussing on sea-ice physics and give a brief description of the capabilities of the facility going forward. The ASIBIA chamber was funded as part of an ERC consolidator grant to the late Prof. Roland von Glasow and we hope this work and further development of the facility will act as a lasting legacy.

  8. Object-based Image Classification of Arctic Sea Ice and Melt Ponds through Aerial Photos

    Science.gov (United States)

    Miao, X.; Xie, H.; Li, Z.; Lei, R.

    2013-12-01

    The last six years have marked the lowest Arctic summer sea ice extents in the modern era, with a new record summer minimum (3.4 million km2) set on 13 September 2012. It has been predicted that the Arctic could be free of summer ice within the next 25-30. The loss of Arctic summer ice could have serious consequences, such as higher water temperature due to the positive feedback of albedo, more powerful and frequent storms, rising sea levels, diminished habitats for polar animals, and more pollution due to fossil fuel exploitation and/ or increased traffic through the Northwest/ Northeast Passage. In these processes, melt ponds play an important role in Earth's radiation balance since they strongly absorb solar radiation rather than reflecting it as snow and ice do. Therefore, it is necessary to develop the ability of predicting the sea ice/ melt pond extents and space-time evolution, which is pivotal to prepare for the variation and uncertainty of the future environment, political, economic, and military needs. A lot of efforts have been put into Arctic sea ice modeling to simulate sea ice processes. However, these sea ice models were initiated and developed based on limited field surveys, aircraft or satellite image data. Therefore, it is necessary to collect high resolution sea ice aerial photo in a systematic way to tune up, validate, and improve models. Currently there are many sea ice aerial photos available, such as Chinese Arctic Exploration (CHINARE 2008, 2010, 2012), SHEBA 1998 and HOTRAX 2005. However, manually delineating of sea ice and melt pond from these images is time-consuming and labor-intensive. In this study, we use the object-based remote sensing classification scheme to extract sea ice and melt ponds efficiently from 1,727 aerial photos taken during the CHINARE 2010. The algorithm includes three major steps as follows. (1) Image segmentation groups the neighboring pixels into objects according to the similarity of spectral and texture

  9. The Taimyr Peninsula and the Severnaya Zemlya archipelago, Arctic Russia

    DEFF Research Database (Denmark)

    Möller, Per; Alexanderson, Helena; Funder, Svend Visby;

    2015-01-01

    We here suggest a glacial and climate history of the Taimyr Peninsula and Severnaya Zemlya archipelago in arctic Siberia for the last about 150 000 years (ka). Primarily it is based on results from seven field seasons between 1996 and 2012, to a large extent already published in papers referred to...... in the text e and on data presented by Russian workers from the 1930s to our days and by German colleagues working there since the 1990s. Although glaciations even up here often started in the local mountains, their culminations in this region invariably seems to have centred on the shallow Kara Sea...

  10. The great challenges in Arctic Ocean paleoceanography

    International Nuclear Information System (INIS)

    Despite the importance of the Arctic in the climate system, the data base we have from this area is still very weak, and large parts of the climate history have not been recovered at all in sedimentary sections. In order to fill this gap in knowledge, international, multidisciplinary expeditions and projects for scientific drilling/coring in the Arctic Ocean are needed. Key areas and approaches for drilling and recovering undisturbed and complete sedimentary sequences are depth transects across the major ocean ridge systems, i.e., the Lomonosov Ridge, the Alpha-Mendeleev Ridge, and the Chukchi Plateau/Northwind Ridge, the Beaufort, Kara and Laptev sea continental margins, as well as the major Arctic gateways towards the Atlantic and Pacific oceans. The new detailed climate records from the Arctic Ocean spanning time intervals from the Late Cretaceous/Paleogene Greenhouse world to the Neogene-Quaternary Icehouse world and representing short- and long-term climate variability on scales from 10 to 106 years, will give new insights into our understanding of the Arctic Ocean within the global climate system and provide an opportunity to test the performance of climate models used to predict future climate change. With this, studying the Arctic Ocean is certainly one of the major challenges in climate research for the coming decades.

  11. Ice–ocean coupled computations for sea-ice prediction to support ice navigation in Arctic sea routes

    Directory of Open Access Journals (Sweden)

    Liyanarachchi Waruna Arampath De Silva

    2015-11-01

    Full Text Available With the recent rapid decrease in summer sea ice in the Arctic Ocean extending the navigation period in the Arctic sea routes (ASR, the precise prediction of ice distribution is crucial for safe and efficient navigation in the Arctic Ocean. In general, however, most of the available numerical models have exhibited significant uncertainties in short-term and narrow-area predictions, especially in marginal ice zones such as the ASR. In this study, we predict short-term sea-ice conditions in the ASR by using a mesoscale eddy-resolving ice–ocean coupled model that explicitly treats ice floe collisions in marginal ice zones. First, numerical issues associated with collision rheology in the ice–ocean coupled model (ice–Princeton Ocean Model [POM] are discussed and resolved. A model for the whole of the Arctic Ocean with a coarser resolution (about 25 km was developed to investigate the performance of the ice–POM model by examining the reproducibility of seasonal and interannual sea-ice variability. It was found that this coarser resolution model can reproduce seasonal and interannual sea-ice variations compared to observations, but it cannot be used to predict variations over the short-term, such as one to two weeks. Therefore, second, high-resolution (about 2.5 km regional models were set up along the ASR to investigate the accuracy of short-term sea-ice predictions. High-resolution computations were able to reasonably reproduce the sea-ice extent compared to Advanced Microwave Scanning Radiometer–Earth Observing System satellite observations because of the improved expression of the ice–albedo feedback process and the ice–eddy interaction process.

  12. Winter spring dynamics in sea-ice carbon cycling in the coastal Arctic Ocean

    Science.gov (United States)

    Riedel, Andrea; Michel, Christine; Gosselin, Michel; LeBlanc, Bernard

    2008-12-01

    An understanding of microbial interactions in first-year sea ice on Arctic shelves is essential for identifying potential responses of the Arctic Ocean carbon cycle to changing sea-ice conditions. This study assessed dissolved and particulate organic carbon (DOC, POC), exopolymeric substances (EPS), chlorophyll a, bacteria and protists, in a seasonal (24 February to 20 June 2004) investigation of first-year sea ice and associated surface waters on the Mackenzie Shelf. The dynamics of and relationships between different sea-ice carbon pools were investigated for the periods prior to, during and following the sea-ice-algal bloom, under high and low snow cover. A predominantly heterotrophic sea-ice community was observed prior to the ice-algal bloom under high snow cover only. However, the heterotrophic community persisted throughout the study with bacteria accounting for, on average, 44% of the non-diatom particulate carbon biomass overall the study period. There was an extensive accumulation of sea-ice organic carbon following the onset of the ice-algal bloom, with diatoms driving seasonal and spatial trends in particulate sea-ice biomass. DOC and EPS were also significant sea-ice carbon contributors such that sea-ice DOC concentrations were higher than, or equivalent to, sea-ice-algal carbon concentrations prior to and following the algal bloom, respectively. Sea-ice-algal carbon, DOC and EPS-carbon concentrations were significantly interrelated under high and low snow cover during the algal bloom ( r values ≥ 0.74, p algae are primarily responsible for the large pools of DOC and EPS-carbon and that similar stressors and/or processes could be involved in regulating their release. This study demonstrates that DOC can play a major role in organic carbon cycling on Arctic shelves.

  13. Arctic Sea Level Change over the altimetry era and reconstructed over the last 60 years

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Svendsen, Peter Limkilde; Nielsen, Allan Aasbjerg;

    The Arctic Ocean process severe limitations on the use of altimetry and tide gauge data for sea level studies and prediction due to the presence of seasonal or permanent sea ice. In order to overcome this issue we reprocessed all altimetry data with editing tailored to Arctic conditions, hereby....... Good altimetric data is seen to crucial for sea level studies and profoundly for sea level reconstruction where we present a 60 years sea level reconstruction based on this new data set. We here present a new multi-decade altimetric dataset and a 60 year reconstruction of sea level based on this...... together with tide gauge information. From our reconstruction, we found that the Arctic mean sea level trend is around 1.5 mm +/- 0.3 mm/y for the period 1950 to 2010, between 68ºN and 82ºN. This value is in good agreement with the global mean trend of 1.8 +/- 0.3 mm/y over the same period as found by...

  14. Modelling the mass balance and salinity of Arctic and Antarctic sea ice

    OpenAIRE

    Vancoppenolle, Martin

    2008-01-01

    Ice formed from seawater, called sea ice, is both an important actor in and a sensitive indicator of climate change. Covering 7% of the World Ocean, sea ice damps the atmosphere-ocean exchanges of heat, radiation and momentum in polar regions. It also affects the oceanic circulation at a global scale. Recent satellite and submarine observations systems indicate a sharp decrease in the extent and volume of Arctic sea ice over the last 30 years. In addition, climate models project drastic sea i...

  15. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    Science.gov (United States)

    Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.

    2014-12-01

    Arctic sea ice is one of the significant components of the global climate system as it plays a significant role in driving global ocean circulation. Sea ice extent has constantly declined since 1980s. Arctic sea ice thickness has also been diminishing along with the decreasing sea ice extent. Because extent and thickness, two main characteristics of sea ice, are important indicators of the polar response to on-going climate change. Sea ice thickness has been measured with numerous field techniques such as surface drilling and deploying buoys. These techniques provide sparse and discontinuous data in spatiotemporal domain. Spaceborne radar and laser altimeters can overcome these limitations and have been used to estimate sea ice thickness. Ice Cloud and land Elevation Satellite (ICEsat), a laser altimeter provided data to detect polar area elevation change between 2003 and 2009. CryoSat-2 launched with Synthetic Aperture Radar (SAR)/Interferometric Radar Altimeter (SIRAL) in April 2010 can provide data to estimate time-series of Arctic sea ice thickness. In this study, Arctic sea ice freeboard and thickness between 2011 and 2014 were estimated using CryoSat-2 SAR and SARIn mode data that have sea ice surface height relative to the reference ellipsoid WGS84. In order to estimate sea ice thickness, freeboard, i.e., elevation difference between the top of sea ice surface should be calculated. Freeboard can be estimated through detecting leads. We proposed a novel lead detection approach. CryoSat-2 profiles such as pulse peakiness, backscatter sigma-0, stack standard deviation, skewness and kurtosis were examined to distinguish leads from sea ice. Near-real time cloud-free MODIS images corresponding to CryoSat-2 data measured were used to visually identify leads. Rule-based machine learning approaches such as See5.0 and random forest were used to identify leads. The proposed lead detection approach better distinguished leads from sea ice than the existing approaches

  16. Impact of a Reduced Arctic Sea Ice Cover on Ocean and Atmospheric Properties

    OpenAIRE

    Sedláček, Jan; Knutti, Reto; Martius, Olivia; Beyerle, Urs

    2012-01-01

    The Arctic sea ice cover declined over the last few decades and reached a record minimum in 2007, with a slight recovery thereafter. Inspired by this the authors investigate the response of atmospheric and oceanic properties to a 1-yr period of reduced sea ice cover. Two ensembles of equilibrium and transient simulations are produced with the Community Climate System Model. A sea ice change is induced through an albedo change of 1 yr. The sea ice area and thickness recover in both ensembles a...

  17. The Arctic Amplification and inter-relation between Arctic Sea-Ice, cloud greenhouse heating and atmospheric circulation in ERA-Interim and EC-Earth

    Science.gov (United States)

    Willen, Ulrika; Bintanja, Richard; Sedlar, Joseph; Königk, Torben

    2014-05-01

    The Arctic is warming faster than the global average especially in autumn and winter and substantial reductions in summer and winter sea-ice have been observed recently. It is also the part of the globe where climate model scenarios show the largest spread. The impact of clouds on sea ice and Arctic amplification is not well understood even though an increase in clouds in winter is expected to have a warming effect due to the initial small amounts of cloud condensate and especially in liquid form. Many recent observational data sets report significant amounts of mixed-phase clouds over the Arctic in all seasons. The frequent occurrence of Arctic mixed-phase clouds has important implications for the cloud radiative forcing at the surface, since mixed-phase clouds tend to be optically thicker than ice-only clouds and emit more downward long-wave flux which increases the surface temperature and sea-ice melt. A number of studies have shown that models underestimate the amount of cloud water in Arctic mixed-phase clouds. In this study we investigate how cloudiness affect the Arctic warming and sea-ice retreat in the global coupled climate model EC-Earth for AMIP and transient experiments. We also investigate how the cloud-radiation and sea-ice interactions affect the circulation in EC-Earth and in ERA-Interim reanalysis data.

  18. Recent wind driven high sea ice export in the Fram Strait contributes to Arctic sea ice decline

    Directory of Open Access Journals (Sweden)

    L. H. Smedsrud

    2011-05-01

    Full Text Available Arctic sea ice area decrease has been visible for two decades, and continues at a steady rate. Apart from melting, the southward drift through Fram Strait is the main loss. We present high resolution sea ice drift across 79° N from 2004 to 2010. The ice drift is based on radar satellite data and correspond well with variability in local geostrophic wind. The underlying current contributes with a constant southward speed close to 5 cm s−1, and drives about 33 % of the ice export. We use geostrophic winds derived from reanalysis data to calculate the Fram Strait ice area export back to 1957, finding that the sea ice area export recently is about 25 % larger than during the 1960's. The increase in ice export occurred mostly during winter and is directly connected to higher southward ice drift velocities, due to stronger geostrophic winds. The increase in ice drift is large enough to counteract a decrease in ice concentration of the exported sea ice. Using storm tracking we link changes in geostrophic winds to more intense Nordic Sea low pressure systems. Annual sea ice export likely has a significant influence on the summer sea ice variability and we find low values in the 60's, the late 80's and 90's, and particularly high values during 2005–2008. The study highlight the possible role of variability in ice export as an explanatory factor for understanding the dramatic loss of Arctic sea ice the last decades.

  19. Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes

    Science.gov (United States)

    Ayarzagüena, Blanca; Screen, James A.

    2016-03-01

    The effects of Arctic sea ice loss on cold air outbreaks (CAOs) in midlatitudes remain unclear. Previous studies have defined CAOs relative to the present-day climate, but changes in CAOs, defined in such a way, may reflect changes in mean climate and not in weather variability, and society is more sensitive to the latter. Here we revisit this topic but applying changing temperature thresholds relating to climate conditions of the time. CAOs do not change in frequency or duration in response to projected sea ice loss. However, they become less severe, mainly due to advection of warmed polar air, since the dynamics associated with the occurrence of CAOs are largely not affected. CAOs weaken even in midlatitude regions where the winter mean temperature decreases in response to Arctic sea ice loss. These results are robustly simulated by two atmospheric models prescribed with differing future sea ice states and in transient runs where external forcings are included.

  20. Moderate-resolution sea surface temperature data and seasonal pattern analysis for the Arctic Ocean ecoregions

    Science.gov (United States)

    Payne, Meredith C.; Reusser, Deborah A.; Lee, Henry, II

    2012-01-01

    Sea surface temperature (SST) is an important environmental characteristic in determining the suitability and sustainability of habitats for marine organisms. In particular, the fate of the Arctic Ocean, which provides critical habitat to commercially important fish, is in question. This poses an intriguing problem for future research of Arctic environments - one that will require examination of long-term SST records. This publication describes and provides access to an easy-to-use Arctic SST dataset for ecologists, biogeographers, oceanographers, and other scientists conducting research on habitats and/or processes in the Arctic Ocean. The data cover the Arctic ecoregions as defined by the "Marine Ecoregions of the World" (MEOW) biogeographic schema developed by The Nature Conservancy as well as the region to the north from approximately 46°N to about 88°N (constrained by the season and data coverage). The data span a 29-year period from September 1981 to December 2009. These SST data were derived from Advanced Very High Resolution Radiometer (AVHRR) instrument measurements that had been compiled into monthly means at 4-kilometer grid cell spatial resolution. The processed data files are available in ArcGIS geospatial datasets (raster and point shapefiles) and also are provided in text (.csv) format. All data except the raster files include attributes identifying latitude/longitude coordinates, and realm, province, and ecoregion as defined by the MEOW classification schema. A seasonal analysis of these Arctic ecoregions reveals a wide range of SSTs experienced throughout the Arctic, both over the course of an annual cycle and within each month of that cycle. Sea ice distribution plays a major role in SST regulation in all Arctic ecoregions.

  1. Statistical selection of tide gauges for Arctic sea-level reconstruction

    Science.gov (United States)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-05-01

    In this paper, we seek an appropriate selection of tide gauges for Arctic Ocean sea-level reconstruction based on a combination of empirical criteria and statistical properties (leverages). Tide gauges provide the only in situ observations of sea level prior to the altimetry era. However, tide gauges are sparse, of questionable quality, and occasionally contradictory in their sea-level estimates. Therefore, it is essential to select the gauges very carefully. In this study, we have established a reconstruction based on empirical orthogonal functions (EOFs) of sea-level variations for the period 1950-2010 for the Arctic Ocean, constrained by tide gauge records, using the basic approach of Church et al. (2004). A major challenge is the sparsity of both satellite and tide gauge data beyond what can be covered with interpolation, necessitating a time-variable selection of tide gauges and the use of an ocean circulation model to provide gridded time series of sea level. As a surrogate for satellite altimetry, we have used the Drakkar ocean model to yield the EOFs. We initially evaluate the tide gauges through empirical criteria to reject obvious outlier gauges. Subsequently, we evaluate the "influence" of each Arctic tide gauge on the EOF-based reconstruction through the use of statistical leverage and use this as an indication in selecting appropriate tide gauges, in order to procedurally identify poor-quality data while still including as much data as possible. To accommodate sparse or contradictory tide gauge data, careful preprocessing and regularization of the reconstruction model are found to make a substantial difference to the quality of the reconstruction and the ability to select appropriate tide gauges for a reliable reconstruction. This is an especially important consideration for the Arctic, given the limited amount of data available. Thus, such a tide gauge selection study can be considered a precondition for further studies of Arctic sea

  2. Arctic sea ice area in CMIP3 and CMIP5 climate model ensembles – variability and change

    OpenAIRE

    V. A. Semenov; Martin, T.; Behrens, L. K.; M Latif

    2015-01-01

    The shrinking Arctic sea ice cover observed during the last decades is probably the clearest manifestation of ongoing climate change. While climate models in general reproduce the sea ice retreat in the Arctic during the 20th century and simulate further sea ice area loss during the 21st century in response to anthropogenic forcing, the models suffer from large biases and the model results exhibit considerable spread. The last generation of climate models from World Climate Research ...

  3. Anthropogenic iodine-129 in the Arctic Ocean and Nordic Seas: Numerical modeling and prognoses

    International Nuclear Information System (INIS)

    A numerical model simulation has been used to predict extent and variability in the anthropogenic 129I pollution in the Arctic Ocean and Nordic Seas region over a period of 100 years. The source function of 129I used in the model is represented by a well-known history of discharges from the Sellafield and La Hague nuclear reprocessing facilities. The simulations suggest a fast transport and large inventory of the anthropogenic 129I in the Arctic and North Atlantic Oceans. In a fictitious case of abrupt stop of the discharges, a rapid decline of inventories is observed in all compartments except the North Atlantic Ocean, the deep Nordic Seas and the deep Arctic Ocean. Within 15 years after the stop of releases, the model prediction indicates that near-equilibrium conditions are reached in all compartments

  4. Predicted radionuclide release from marine reactors dumped in the Kara Sea. Report of the source term working group of the international arctic seas assessment project (IASAP)

    International Nuclear Information System (INIS)

    The present report summarizes the work carried out by the Source Term Working Group of IASAP during 1994-1996. The report is based on the studies concerning the initial and current radionuclide inventories, operational history and construction of the reactors carried out by Y. Sivintsev of the Russian Research Center ''Kurchatov Institute'', Moscow and E. Yefimov of the Institute of Physics and Power Engineering, Obninsk, Russian Federation. The working group convened five times and evaluated the results of the studies and developed models for prediction of potential releases to the environment. The calculations were carried out at the Royal Naval College, Greenwich, UK, by N. Lynn, J. Warden and S. Timms and at the Lawrence Livermore National Laboratory, California, USA, by M. Mount. 31 refs, 36 figs, 18 tabs

  5. The ringed seal (Phoca hispida) in the western Russian Arctic

    OpenAIRE

    Stanislav E Belikov; Andrei N Boltunov

    2014-01-01

    This paper presents a review of available published and unpublished material on the ringed seal (Phoca hispida) in the western part of the Russian Arctic, including the White, Barents and Kara seas. The purpose of the review is to discuss the status of ringed seal stocks in relation to their primary habitat, the history of sealing, and a recent harvest of the species in the region. The known primary breeding habitats for this species are in the White Sea, the south-western part of the Barents...

  6. Airborne lidar measurements of surface ozone depletion over Arctic sea ice

    OpenAIRE

    Seabrook, J. A.; Whiteway, J. A.; Gray, L. H.; Staebler, R.; A. Herber

    2013-01-01

    A differential absorption lidar (DIAL) for measurement of atmospheric ozone concentration was operated aboard the Polar 5 research aircraft in order to study the depletion of ozone over Arctic sea ice. The lidar measurements during a flight over the sea ice north of Barrow, Alaska, on 3 April 2011 found a surface boundary layer depletion of ozone over a range of 300 km. The photochemical destruction of surface level ozone was strongest at the most northern point of the flight, and steadily de...

  7. Distribution of Arctic and Pacific copepods and their habitat in the northern Bering and Chukchi seas

    Science.gov (United States)

    Sasaki, Hiroko; Matsuno, Kohei; Fujiwara, Amane; Onuka, Misaki; Yamaguchi, Atsushi; Ueno, Hiromichi; Watanuki, Yutaka; Kikuchi, Takashi

    2016-08-01

    The advection of warm Pacific water and the reduction in sea ice in the western Arctic Ocean may influence the abundance and distribution of copepods, a key component of food webs. To quantify the factors affecting the abundance of copepods in the northern Bering and Chukchi seas, we constructed habitat models explaining the spatial patterns of large and small Arctic and Pacific copepods separately. Copepods were sampled using NORPAC (North Pacific Standard) nets. The structures of water masses indexed by principle component analysis scores, satellite-derived timing of sea ice retreat, bottom depth and chlorophyll a concentration were integrated into generalized additive models as explanatory variables. The adequate models for all copepods exhibited clear continuous relationships between the abundance of copepods and the indexed water masses. Large Arctic copepods were abundant at stations where the bottom layer was saline; however they were scarce at stations where warm fresh water formed the upper layer. Small Arctic copepods were abundant at stations where the upper layer was warm and saline and the bottom layer was cold and highly saline. In contrast, Pacific copepods were abundant at stations where the Pacific-origin water mass was predominant (i.e. a warm, saline upper layer and saline and a highly saline bottom layer). All copepod groups showed a positive relationship with early sea ice retreat. Early sea ice retreat has been reported to initiate spring blooms in open water, allowing copepods to utilize more food while maintaining their high activity in warm water without sea ice and cold water. This finding indicates that early sea ice retreat has positive effects on the abundance of all copepod groups in the northern Bering and Chukchi seas, suggesting a change from a pelagic-benthic-type ecosystem to a pelagic-pelagic type.

  8. Interplay between linear, dissipative and permanently critical mechanical processes in Arctic sea ice

    OpenAIRE

    A. Chmel; Smirnov, V; Panov, A.

    2010-01-01

    Mechanical processes in the Arctic ice pack result in fragmented sea ice cover, the regular geometry of which could be described in main features in terms of the conventional mechanics. However, the size distribution of sea ice floes does not exhibit the random (poissonian-like) statistics and follows the power law typical for self-similar (fractal) structures. The analysis of ice floe oscillations in the frequency range specific for cracking, shearing and stick-slip motion evidences the self...

  9. Determination of Sea Ice Freeboard in Arctic from ICESat: Case Study of 2005—2006

    OpenAIRE

    Chen, Guodong; Li, Jiancheng; CHU Yonghai; Li, Dawei

    2015-01-01

    Based on variation characters of sea surface height and parameters of ICESat return pulse waveform, a method is proposed for estimating Arctic sea ice freeboard with ICESat observation. This proposed method is compared with the common ‘lowest-level’ method. The results show that the lowest-level method is vulnerable to gross errors and present systematic errors in spatial distribution of freeboard. But the proposed method is more reliable than the lowest-level method. The lowest-level method ...

  10. The future of Arctic benthos: Expansion, invasion, and biodiversity

    Science.gov (United States)

    Renaud, Paul E.; Sejr, Mikael K.; Bluhm, Bodil A.; Sirenko, Boris; Ellingsen, Ingrid H.

    2015-12-01

    One of the logical predictions for a future Arctic characterized by warmer waters and reduced sea-ice is that new taxa will expand or invade Arctic seafloor habitats. Specific predictions regarding where this will occur and which taxa are most likely to become established or excluded are lacking, however. We synthesize recent studies and conduct new analyses in the context of climate forecasts and a paleontological perspective to make concrete predictions as to relevant mechanisms, regions, and functional traits contributing to future biodiversity changes. Historically, a warmer Arctic is more readily invaded or transited by boreal taxa than it is during cold periods. Oceanography of an ice-free Arctic Ocean, combined with life-history traits of invading taxa and availability of suitable habitat, determine expansion success. It is difficult to generalize as to which taxonomic groups or locations are likely to experience expansion, however, since species-specific, and perhaps population-specific autecologies, will determine success or failure. Several examples of expansion into the Arctic have been noted, and along with the results from the relatively few Arctic biological time-series suggest inflow shelves (Barents and Chukchi Seas), as well as West Greenland and the western Kara Sea, are most likely locations for expansion. Apparent temperature thresholds were identified for characteristic Arctic and boreal benthic fauna suggesting strong potential for range constrictions of Arctic, and expansions of boreal, fauna in the near future. Increasing human activities in the region could speed introductions of boreal fauna and reduce the value of a planktonic dispersal stage. Finally, shelf regions are likely to experience a greater impact, and also one with greater potential consequences, than the deep Arctic basin. Future research strategies should focus on monitoring as well as compiling basic physiological and life-history information of Arctic and boreal taxa, and

  11. Temporal and spatial variability in sea-ice carbon:nitrogen ratios on Canadian Arctic shelves

    Directory of Open Access Journals (Sweden)

    Andrea Niemi

    2015-12-01

    Full Text Available Abstract To enhance the accuracy of carbon cycling models as applied to sea ice in the changing Arctic, we analyzed a large data set of particulate organic carbon (POC and nitrogen (PON measurements in first-year bottom sea ice (n = 257 from two Arctic shelves, the Canadian Arctic Archipelago and Beaufort Sea shelf, including dark winter and spring seasonal measurements. Wide ranges of sea-ice POC:PON ratios were observed during both the dark winter (12–46 mol:mol and spring (3–24 mol:mol periods. Sea-ice POC:PON ratios and chlorophyll a concentrations were significantly higher in the Archipelago versus the Beaufort Sea shelf (p < 0.01, yet there was a highly significant relationship between sea-ice POC and PON during spring for both shelves (r2 = 0.94. POC:PON ratios were not consistent over the range of measured POC and PON concentrations, justifying the use of a power function model to best describe the relationship between POC and PON. Distinct relationships between POC:PON ratios and chlorophyll-based biomass were observed for the dark winter and the spring: dark winter sea-ice POC:PON ratios decreased with increasing sea-ice biomass whereas spring POC:PON ratios increased with increasing sea-ice biomass. The transition from the dark period to the spring growth period in first-year sea ice represented a distinct stoichiometric shift in POC:PON ratios. Our results demonstrate that the Redfield ratio has limited applicability over the four-order of magnitude range of biomass concentrations observed in first-year sea ice on Arctic shelves. This study emphasizes the need for variable POC:PON stoichiometry in sea-ice biogeochemical models and budget estimates, in particular at high biomass concentrations and when considering seasonality outside of the spring period in first year ice. The use of a power function model for POC:PON relationships in sea ice is also recommended to better constrain carbon estimates in biogeochemical sea-ice models.

  12. Environmental Working Group Joint U.S.-Russian Arctic Sea Ice Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Note: The Russian chart component of this product has been replaced and updated by Sea Ice Charts of the Russian Arctic in Gridded Format, 1933-2006 and the U.S...

  13. Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology

    Science.gov (United States)

    Bock, Judith K.

    2011-01-01

    The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…

  14. Coeval Eocene blooms of the freshwater fern Azolla in and around Arctic and Nordic seas

    NARCIS (Netherlands)

    Barke, J.; Burgh, A.H.P. van der; Konijnenburg-van Cittert, J.H.A. van; Collinson, M.E.; Pearce, M.A.; Bujak, J.; Heilman-Clausen, C.; Lotter, A.F.; Speelman, E.N.; Kempen, M.M.L. van; Reichart, G.-J.; Brinkhuis, H.

    2012-01-01

    For a short time interval (c. 1.2 Myr) during the early middle Eocene (~ 49 Myr), the central Arctic Ocean was episodically densely covered by the freshwater fern Azolla, implying sustained freshening of surface waters. Coeval Azolla fossils in neighboring Nordic seas were thought to have been sourc

  15. Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring

    International Nuclear Information System (INIS)

    The impact of projected Arctic sea ice loss on the stratosphere is investigated using the Whole Atmosphere Community Climate Model (WACCM), a state-of-the-art coupled chemistry climate model. Two 91-year simulations are conducted: one with a repeating seasonal cycle of Arctic sea ice for the late twentieth-century, taken from the fully coupled WACCM historical run; the other with Arctic sea ice for the late twenty-first century, obtained from the fully coupled WACCM RCP8.5 run. In response to Arctic sea ice loss, polar cap stratospheric ozone decreases by 13 DU (34 DU at the North Pole) in spring, confirming the results of Scinocca et al (2009 Geophys. Res. Lett. 36 L24701). The ozone loss is dynamically initiated in March by a suppression of upward-propagating planetary waves, possibly related to the destructive interference between the forced wave number 1 and its climatology. The diminished upward wave propagation, in turn, weakens the Brewer–Dobson circulation at high latitudes, strengthens the polar vortex, and cools the polar stratosphere. The ozone reduction persists until the polar vortex breaks down in late spring. (letter)

  16. Development of oil and gas fields in the Arctic seas and other Russian offshore areas

    Directory of Open Access Journals (Sweden)

    Bogoyavlensky V. I.

    2015-09-01

    Full Text Available The results of development of the Arctic and other Russian seas oil and gas fields have been presented. The state of the offshore seismic exploration and drilling fleets has been analysed. Seismic monitoring has been recommended for efficiency and safety of the offshore fields development increasing. Main directions of Russian oil and gas industry development have been determined

  17. Advancing the understanding of variations of Arctic sea ice optical and thermal behaviors through an international research and mobility project

    Institute of Scientific and Technical Information of China (English)

    Marcel Nicolaus; LEI Ruibo; LI Qun; LU Peng; Caixin Wang; Sebastian Gerland; LI Na; LI Zhijun; Bin Cheng; Don K Perovich; Mats A Granskog; SHI Liqiong

    2015-01-01

    In recent decades, significant changes of Arctic sea ice have taken place. These changes are expected to influence the surface energy balance of the ice-covered Arctic Ocean. To quantify this energy balance and to increase our understanding of mechanisms leading to observed changes in the Arctic sea ice, the project“Advancing Modelling and Observing solar Radiation of Arctic sea ice—understanding changes and processes (AMORA)”was initiated and conducted from 2009 to 2013. AMORA was funded and organized under a frame of Norway-China bilateral collaboration program with partners from Finland, Germany, and the USA. The primary goal of the project was achieved by developing an autonomous spectral radiation buoy, deploying it on drifting sea ice close to the North Pole, and receiving a high-resolution time series of spectral radiation over and under sea ice from spring (before melt onset) to autumn (after freeze-up) 2012. Beyond this, in-situ sea ice data were collected during several ifeld campaigns and simulations of snow and sea ice thermodynamics were performed. More autonomous measurements are available through deployments of sea ice mass balance buoys. These new observational data along with numerical model studies are helping us to better understand the key thermodynamic processes of Arctic sea ice and changes in polar climate. A strong scientiifc, but also cultural exchange between Norway, China, and the partners from the USA and Europe initiated new collaborations in Arctic reseach.

  18. Sea ice concentration and sea ice drift for the Arctic summer using C- and L-band SAR

    Science.gov (United States)

    Johansson, Malin; Berg, Anders; Eriksson, Leif

    2014-05-01

    The decreasing amount of sea ice and changes from multi-year ice to first year ice within the Arctic Ocean opens up for increased maritime activities. These activities include transportation, fishing and tourism. One of the major threats for the shipping is the presence of sea ice. Should an oil spill occur, the search and rescue is heavily dependent on constant updates of sea ice movements, both to enable a safer working environment and to potentially prevent the oil from reaching the sea ice. It is therefore necessary to have accurate and updated sea ice charts for the Arctic Ocean during the entire year. During the melt season that ice is subject to melting conditions making satellite observations of sea ice more difficult. This period coincides with the peak in marine shipping activities and therefore requires highly accurate sea ice concentration estimates. Synthetic Aperture Radar (SAR) are not hindered by clouds and do not require daylight. The continuous record and high temporal resolution makes C-band data preferable as input data for operational sea ice mapping. However, with C-band SAR it is sometimes difficult to distinguish between a wet sea ice surface and surrounding open water. L-band SAR has a larger penetration depth and has been shown to be less sensitive to less sensitive than C-band to the melt season. Inclusion of L-band data into sea chart estimates during the melt season in particular could therefore improve sea ice monitoring. We compare sea ice concentration melt season observations using Advanced Land Observing Satellite (ALOS) L-band images with Envisat ASAR C-band images. We evaluate if L-band images can be used to improve separation of wet surface ice from open water and compare with results for C-band.

  19. Modeling the 20th century Arctic Ocean/Sea ice system: Reconstruction of surface forcing

    Science.gov (United States)

    Kauker, Frank; KöBerle, Cornelia; Gerdes, Rüdiger; Karcher, Michael

    2008-09-01

    The ability to simulate the past variability of the sea ice-ocean system is of fundamental interest for the identification of key processes and the evaluation of scenarios of future developments. To achieve this goal atmospheric surface fields are reconstructed by statistical means for the period 1900 to 1997 and applied to a coupled sea ice-ocean model of the North Atlantic/Arctic Ocean. We devised a statistical model using a redundancy analysis to reconstruct the atmospheric fields. Several sets of predictor and predictand fields are used for reconstructions on different time scales. The predictor fields are instrumental records available as gridded or station data sets of sea level pressure and surface air temperature. The predictands are surface fields from the NCAR/NCEP reanalysis. Spatial patterns are selected by maximizing predictand variance during a "learning" period. The reliability of these patterns is tested in a validation period. The ensemble of reconstructions is checked for robustness by mutual comparison and an "optimal" reconstruction is selected. Results of the simulations with the sea ice-ocean model are compared with historical sea ice extent observations for the Arctic and Nordic Seas. The results obtained with the "optimal" reconstruction are shown to be highly consistent with these historical data. An analysis of simulated trends of the "early 20th century warming" and the recent warming in the Arctic complete the manuscript.

  20. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    Science.gov (United States)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be

  1. Atmospheric response to the autumn sea-ice free Arctic and its detectability

    Science.gov (United States)

    Suo, Lingling; Gao, Yongqi; Guo, Dong; Liu, Jiping; Wang, Huijun; Johannessen, Ola M.

    2016-04-01

    We have used an Atmospheric General Circulation Model with a large ensemble (300) to explore the atmospheric responses during the autumn-winter (September to February) to the projected sea-ice free Arctic in autumn (September to November). The detectability of the responses against the internal variability has also been studied. Three ensemble experiments have been performed, the control (CONT) forced by the simulated present-day Arctic sea-ice concentration (SIC) and sea surface temperature (SST), the second forced by the projected autumn Arctic SIC free and present-day SSTs (SENSICE) and the third forced by the projected autumn Arctic SIC free and projected SSTs (SENS). The results show that the disappearance of autumn Arctic sea-ice can cause significant synchronous near-surface warming and increased precipitation over the regions where the sea-ice is removed. The changes in autumn surface heat flux (sensible plus latent), surface air temperature (SAT) and precipitation averaged over the sea-ice reduction region between the SENS and the CONT are about 46, 43 and 50 % more respectively than the changes between the SENSICE and the CONT, which is consistent with the prescribed boundary setting: the surface temperature warming averaged over the sea-ice reduction region in the SENS relative to the CONT is 48 % higher than that in the SENSICE relative to the CONT. The response shows a significant negative Arctic Oscillation (AO) in the troposphere during autumn and December. However, the negative AO does not persist into January-February (JF). Instead, 500 hPa geopotential height (GH) response presents a wave train like pattern in JF which is related to the downstream propagation of the planetary wave perturbations during November-December. The SAT increases over northern Eurasia in JF in accordance with the atmosphere circulation changes. The comparison of the atmosphere response with the atmosphere internal variability (AIV) shows that the responses of SAT and

  2. Radar and laser altimeter measurements over Arctic sea ice.

    OpenAIRE

    Giles, K. A.

    2005-01-01

    To validate sea ice models, basin wide sea ice thickness measurements with an accuracy of 0.5 m are required to analyse trends in sea ice thickness, it is necessary to detect changes in sea ice thickness of 4 cm per year on a basin wide scale. The estimated error on satellite radar altimeter estimates of sea ice thickness is 0.45 m and the estimated error on satellite laser altimetry estimates of sea ice thickness is 0.78 m. The Laser Radar Altimetry (LaRA) field campaign took place in the Ar...

  3. Hotspots in cold seas: The composition, distribution, and abundance of marine birds in the North American Arctic

    Science.gov (United States)

    Wong, Sarah N. P.; Gjerdrum, Carina; Morgan, Ken H.; Mallory, Mark L.

    2014-03-01

    The distribution and thickness of sea ice in the Arctic is changing rapidly, resulting in changes to Arctic marine ecosystems. Seabirds are widely regarded as indicators of marine environmental change, and understanding their distribution patterns can serve as a tool to monitor and elucidate biological changes in the Arctic seas. We examined the at-sea distribution of seabirds in the North American Arctic in July and August, 2007-2012, and marine areas of high density were identified based on bird densities for four foraging guilds. Short-tailed shearwaters (Puffinus tenuirostris) were the most abundant species observed. Northern fulmars (Fulmarus glacialis), thick-billed murres (Uria lomvia), and dovekies (Alle alle) were also sighted in large numbers. Few birds were sighted between Dolphin and Union Strait and King William Island. Areas of high density over multiple years were found throughout the entire western portion of the study area (Bering Sea, Bering Strait, and Chukchi Sea), Lancaster Sound, Baffin Bay, Davis Strait, and the low Arctic waters off Newfoundland. These waters are characterized by high primary productivity. This study is the first to document the marine distribution of seabirds across the entire North American Arctic within the same time period, providing a critical baseline for monitoring the distribution and abundance of Arctic seabirds in a changing Arctic seascape.

  4. Impacts of Organic Macromolecules, Chlorophyll and Soot on Arctic Sea Ice

    Science.gov (United States)

    Ogunro, O. O.; Wingenter, O. W.; Elliott, S.; Flanner, M.; Dubey, M. K.

    2014-12-01

    Recent intensification of Arctic amplification can be strongly connected to positive feedback relating black carbon deposition to sea ice surface albedo. In addition to soot deposition on the ice and snow pack, ice algal chlorophyll is likely to compete as an absorber and redistributor of energy. Hence, solar radiation absorption by chlorophyll and some components of organic macromolecules in/under the ice column is currently being examined to determine the level of influence on predicted rate of ice loss. High amounts of organic macromolecules and chlorophyll are produced in global sea ice by the bottom microbial community and also in vertically distributed layers where substantial biological activities take place. Brine channeling in columnar ice can allow for upward flow of nutrients which leads to greater primary production in the presence of moderate light. Modeling of the sea-ice processes in tandem with experiments and field observations promises rapid progress in enhancing Arctic ice predictions. We are designing and conducting global climate model experiments to determine the impact of organic macromolecules and chlorophyll on Arctic sea ice. Influences on brine network permeability and radiation/albedo will be considered in this exercise. Absorption by anthropogenic materials such as soot and black carbon will be compared with that of natural pigments. We will indicate areas of soot and biological absorption dominance in the sense of single scattering, then couple into a full radiation transfer scheme to attribute the various contributions to polar climate change amplification. The work prepares us to study more traditional issues such as chlorophyll warming of the pack periphery and chemical effects of the flow of organics from ice internal communities. The experiments started in the Arctic will broaden to include Antarctic sea ice and shelves. Results from the Arctic simulations will be presented.

  5. Characterizing Arctic sea ice topography using high-resolution IceBridge data

    Science.gov (United States)

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.; Farrell, Sinead L.; Newman, Thomas; Harbeck, Jeremy P.; Feltham, Daniel L.; Richter-Menge, Jackie A.

    2016-05-01

    We present an analysis of Arctic sea ice topography using high-resolution, three-dimensional surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009 to 2014 within the Beaufort/Chukchi and Central Arctic regions. The results are delineated by ice type to estimate the topographic variability across first-year and multi-year ice regimes. The results demonstrate that Arctic sea ice topography exhibits significant spatial variability, mainly driven by the increased surface feature height and volume (per unit area) of the multi-year ice that dominates the Central Arctic region. The multi-year ice topography exhibits greater interannual variability compared to the first-year ice regimes, which dominates the total ice topography variability across both regions. The ice topography also shows a clear coastal dependency, with the feature height and volume increasing as a function of proximity to the nearest coastline, especially north of Greenland and the Canadian Archipelago. A strong correlation between ice topography and ice thickness (from the IceBridge sea ice product) is found, using a square-root relationship. The results allude to the importance of ice deformation variability in the total sea ice mass balance, and provide crucial information regarding the tail of the ice thickness distribution across the western Arctic. Future research priorities associated with this new data set are presented and discussed, especially in relation to calculations of atmospheric form drag.

  6. Arctic layer salinity controls heat loss from deep Atlantic layer in seasonally ice-covered areas of the Barents Sea

    Science.gov (United States)

    Lind, Sigrid; Ingvaldsen, Randi B.; Furevik, Tore

    2016-05-01

    In the seasonally ice-covered northern Barents Sea an intermediate layer of cold and relatively fresh Arctic Water at ~25-110 m depth isolates the sea surface and ice cover from a layer of warm and saline Atlantic Water below, a situation that resembles the cold halocline layer in the Eurasian Basin. The upward heat flux from the Atlantic layer is of major concern. What causes variations in the heat flux and how is the Arctic layer maintained? Using observations, we found that interannual variability in Arctic layer salinity determines the heat flux from the Atlantic layer through its control of stratification and vertical mixing. A relatively fresh Arctic layer effectively suppresses the upward heat flux, while a more saline Arctic layer enhances the heat flux. The corresponding upward salt flux causes a positive feedback. The Arctic layer salinity and the water column structures have been remarkably stable during 1970-2011.

  7. Ikaite crystals in melting sea ice - implications for pCO(2) and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, Ronnie N.; Lennert, K.;

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3 center dot 6H(2)O) in Arctic and Antarctic sea ice, which indicate that m...

  8. Ikaite crystals in melting sea ice – implications for pCO2 and pH levels in Arctic surface waters

    DEFF Research Database (Denmark)

    Rysgaard, Søren; Glud, R.N.; Lennert, K.;

    2012-01-01

    A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for air-sea CO 2 exchange. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO 3•6H 2O) in Arctic and Antarctic sea ice, which indicate that multiple ch...

  9. Arctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability

    Science.gov (United States)

    Zhang, Jinlun; Steele, Michael; Schweiger, Axel

    2010-10-01

    Numerical experiments are conducted to project arctic sea ice responses to varying levels of future anthropogenic warming and climate variability over 2010-2050. A summer ice-free Arctic Ocean is likely by the mid-2040s if arctic surface air temperature (SAT) increases 4°C by 2050 and climate variability is similar to the past relatively warm two decades. If such a SAT increase is reduced by one-half or if a future Arctic experiences a range of SAT fluctuation similar to the past five decades, a summer ice-free Arctic Ocean would be unlikely before 2050. If SAT increases 4°C by 2050, summer ice volume decreases to very low levels (10-37% of the 1978-2009 summer mean) as early as 2025 and remains low in the following years, while summer ice extent continues to fluctuate annually. Summer ice volume may be more sensitive to warming while summer ice extent more sensitive to climate variability. The rate of annual mean ice volume decrease relaxes approaching 2050. This is because, while increasing SAT increases summer ice melt, a thinner ice cover increases winter ice growth. A thinner ice cover also results in a reduced ice export, which helps to further slow ice volume loss. Because of enhanced winter ice growth, arctic winter ice extent remains nearly stable and therefore appears to be a less sensitive climate indicator.

  10. Monitoring Arctic sea ice phenology change using hypertemporal remotely sensed data: 1989-2010

    Science.gov (United States)

    Tan, Wenxia; LeDrew, Ellsworth

    2016-07-01

    Arctic sea ice has undergone a significant decline in recent years. Previous studies have demonstrated that the annual sea ice cycle has experienced earlier melt and later freeze up, leading to a significant reduction in minimum sea ice extents and the lengthening of the melting season. The Arctic is being transformed into a regime of widespread seasonal ice with a large loss of old and thick multiyear ice in recent years. However, the sea ice change exhibits considerable interannual and regional variability at different spatial and temporal scales. In this study, we present a new method for hypertemporal sea ice data change detection based on the annual sea ice concentration (SIC) profile for the melt months of each year. A decision tree-based classification is adopted to group pixels with similar annual SIC profiles, and a phenology map of each year is generated for visualization. The phenoregion map visualizes the spatial and temporal configurations of ice melt process for a year. The change detection objective is achieved by comparing the phenoregion number of the same pixel in different years. The algorithm further leads to interpretation of anomalies to obtain change maps at the pixel level. Compared to previous sea ice studies that mainly focused on a particular spatial region and commonly use time period averages, the proposed pixel-based approach has the potential to map sea ice data change both temporally and spatially.

  11. Arctic sea ice variability during the last deglaciation: a biomarker approach

    Science.gov (United States)

    Müller, J.; Stein, R. H.

    2014-12-01

    The last transition from full glacial to current interglacial conditions was accompanied by distinct short-term climate fluctuations caused by changes in the global ocean circulation system. Most palaeoceanographic studies focus on the documentation of the behaviour of the Atlantic Meridional Overturning Circulation (AMOC) during the last deglaciation in response to freshwater forcing events. In this respect, the role of Arctic sea ice remained relatively unconsidered - primarily because of the difficulty of its reconstruction. Here we present new proxy data on late glacial (including the Last Glacial Maximum; LGM) and deglacial sea ice variability in the Arctic Ocean and its main gateway - the Fram Strait - and how these changes in sea ice coverage contributed to AMOC perturbations observed during Heinrich Event 1 and the Younger Dryas. Recurrent short-term advances and retreats of sea ice in Fram Strait, prior and during the LGM, are in line with a variable (or intermittent) North Atlantic heat flow along the eastern corridor of the Nordic Seas. Possibly in direct response to the initial freshwater discharge from melting continental ice-sheets, a permanent sea ice cover established only at about 19 ka BP (i.e. post-LGM) and lasted until 17.6 ka BP, when an abrupt break-up of this thick ice cover and a sudden discharge of huge amounts of sea ice and icebergs through Fram Strait coincided with the weakening of the AMOC during Heinrich Event 1. Similarly, another sea ice maximum at about 12.8 ka BP is associated with the slowdown of the AMOC during the Younger Dryas. The new data sets clearly highlight the important role of Arctic sea ice for the re-organisation of the oceanographic setting in the North Atlantic during the last deglaciation. Further studies and sensitivity experiments to identify crucial driving (and feedback) mechanisms within the High Latitude ice-ocean-atmosphere system will contribute the understanding of rapid climate changes.

  12. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    Science.gov (United States)

    Cronin, T. M.; Dwyer, G.S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M., Jr.

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for paleoceanographic study. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2=0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from water depths <900 m.

  13. Spatial and temporal variations in the age structure of Arctic sea ice

    Science.gov (United States)

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2005-01-01

    Spatial and temporal variations in the age structure of Arctic sea ice are investigated using a new reverse chronology algorithm that tracks ice-covered pixels to their location and date of origin based on ice motion and concentration data. The Beaufort Gyre tends to harbor the oldest (>10 years old) sea ice in the western Arctic while direct ice advection pathways toward the Transpolar Drift Stream maintain relatively young (10 years old (10+ year age class) were observed during 1989-2003. Since the mid-1990s, losses to the 10+ year age class lacked compensation by recruitment due to a prior depletion of all mature (6-10 year) age classes. Survival of the 1994 and 1996-1998 sea ice generations reestablished most mature age classes, and thereby the potential to increase extent of the 10+ year age class during the mid-2000s.

  14. Distribution and air-sea exchange of organochlorine pesticides in the North Pacific and the Arctic

    Science.gov (United States)

    Cai, Minghong; Ma, Yuxin; Xie, Zhiyong; Zhong, Guangcai; MöLler, Axel; Yang, Haizhen; Sturm, Renate; He, Jianfeng; Ebinghaus, Ralf; Meng, Xiang-Zhou

    2012-03-01

    Surface seawater and boundary layer air samples were collected on the icebreaker Xuelong (Snow Dragon) during the Fourth Chinese Arctic Research Expedition (CHINARE2010) cruise in the North Pacific and Arctic Oceans during 2010. Samples were analyzed for organochlorine pesticides (OCPs), including three isomers of hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), and two isomers of heptachlor epoxide. The gaseous total HCH (ΣHCHs) concentrations were approximately four times lower (average 12.0 pg m-3) than those measured during CHINARE2008 (average 51.4 pg m-3), but were comparable to those measured during CHINARE2003 (average 13.4 pg m-3) in the same study area. These changes are consistent with the evident retreat of sea ice coverage from 2003 to 2008 and increase of sea ice coverage from 2008 to 2009 and 2010. Gaseous β-HCH concentrations in the atmosphere were typically below the method detection limit, consistent with the expectation that ocean currents provide the main transport pathway for β-HCH into the Arctic. The concentrations of all dissolved HCH isomers in seawater increase with increasing latitude, and levels of dissolved HCB also increase (from 5.7 to 7.1 pg L-1) at high latitudes (above 73°N). These results illustrate the role of cold condensation processes in the transport of OCPs. The observed air-sea gas exchange gradients in the Arctic Ocean mainly favored net deposition of OCPs, with the exception of those for β-HCH, which favored volatilization.

  15. Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM

    Science.gov (United States)

    Gregory, J. M.; Stott, P. A.; Cresswell, D. J.; Rayner, N. A.; Gordon, C.; Sexton, D. M. H.

    2002-12-01

    The HadCM3 AOGCM has been used to undertake an ensemble of four integrations from 1860 to 1999 with forcings due to all major anthropogenic and natural climate factors. The simulated decreasing trend in average Arctic sea ice extent for 1970-1999 (-2.5% per decade) is very similar to observations. HadCM3 indicates that internal variability and natural forcings (solar and volcanic) of the climate system are very unlikely by themselves to have caused a trend of this size. The simulated decreasing trend in Arctic sea ice volume (-3.4% per decade for 1961-1998) is less than some recent observationally based estimates. Extending the integrations into the 21st century, Arctic sea ice area and volume continue to decline. Area decreases linearly as global-average temperature rises (by 13% per K), and volume diminishes more rapidly than area. By the end of the century, in some scenarios, the Arctic is ice-free in late summer.

  16. Improved Arctic sea ice thickness projections using bias corrected CMIP5 simulations

    Science.gov (United States)

    Melia, N.; Haines, K.; Hawkins, E.

    2015-07-01

    Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979-2014) and exhibit various spatial and temporal biases when compared with the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT to narrow projection uncertainty via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the uncertainty in projections of SIT and reveals the significant contributions of sea ice internal variability in the first half of the century and of scenario uncertainty from mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to narrow uncertainty in climate projections more generally.

  17. Intensified Arctic warming under greenhouse warming by vegetation–atmosphere–sea ice interaction

    International Nuclear Information System (INIS)

    Observations and modeling studies indicate that enhanced vegetation activities over high latitudes under an elevated CO2 concentration accelerate surface warming by reducing the surface albedo. In this study, we suggest that vegetation-atmosphere-sea ice interactions over high latitudes can induce an additional amplification of Arctic warming. Our hypothesis is tested by a series of coupled vegetation-climate model simulations under 2xCO2 environments. The increased vegetation activities over high latitudes under a 2xCO2 condition induce additional surface warming and turbulent heat fluxes to the atmosphere, which are transported to the Arctic through the atmosphere. This causes additional sea-ice melting and upper-ocean warming during the warm season. As a consequence, the Arctic and high-latitude warming is greatly amplified in the following winter and spring, which further promotes vegetation activities the following year. We conclude that the vegetation-atmosphere-sea ice interaction gives rise to additional positive feedback of the Arctic amplification. (letter)

  18. Bacterial and archaeal community structures in the Arctic deep-sea sediment

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LIU Qun; LI Chaolun; DONG Yi; ZHANG Wenyan; ZHANG Wuchang; XIAO Tian

    2015-01-01

    Microbial community structures in the Arctic deep-sea sedimentary ecosystem are determined by organic matter input, energy availability, and other environmental factors. However, global warming and earlier ice-cover melting are affecting the microbial diversity. To characterize the Arctic deep-sea sediment microbial diversity and its rela-tionship with environmental factors, we applied Roche 454 sequencing of 16S rDNA amplicons from Arctic deep-sea sediment sample. Both bacterial and archaeal communities’ richness, compositions and structures as well as tax-onomic and phylogenetic affiliations of identified clades were characterized. Phylotypes relating to sulfur reduction and chemoorganotrophic lifestyle are major groups in the bacterial groups;while the archaeal community is domi-nated by phylotypes most closely related to the ammonia-oxidizing Thaumarchaeota (96.66%) and methanogenic Euryarchaeota (3.21%). This study describes the microbial diversity in the Arctic deep marine sediment (>3 500 m) near the North Pole and would lay foundation for future functional analysis on microbial metabolic processes and pathways predictions in similar environments.

  19. The DTU2010MSS Mean Sea Surface In The Arctic - For And With Cyrosat-2 Data

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per

    2011-01-01

    The new Mean Sea Surface DTU10MSS and associated DTU10MDT is presented and evaluated in the Arctic Ocean for the use with Cryosat-2 data. The DTU10MSS is currently the only available MSS which has true global coverage and hence is suitable for referencing when Cryosat-2 data are used in the Arctic...... global coverage. On the other hand Croysat-2 is also important for the evaluation of the DTU10MSS as it observers at latitudes not previously measured by any satellite....

  20. An Arctic dream : the opening of the Northern Sea Route : impact and possibilities for Iceland

    OpenAIRE

    Sigurður Almar Ómarsson 1975

    2010-01-01

    The Arctic is melting at an unprecedented rate which might, in the not so distance future, open up the Northern Sea Route, shortening the distance between East Asia and Europe a great deal (approximately 40%) and making the exploration of natural minerals in the Arctic feasible. This thesis takes a look at what might happen if Iceland can take advantage of its strategic location in the North-Atlantic, at the end of the NSR, to become a transshipment port for ongoing cargo destined for North-A...

  1. Changes in temperature, precipitation and snow cover in the Arctic Sea region, 1981–2010

    OpenAIRE

    V. F. Radionov; E. I. Aleksandrov; N. N. Bryazgin; A. A. Dementiev

    2015-01-01

    The results of climatic generalization and analysis of the observation series on air temperature, precipitation and snow cover in the regions of the Arctic Seas and at the stations of the Canadian Archipelago to the north of 70° N are presented for the period 1981–2010. One uses data of meteorological observations at the permanent coastal and island stations and at the «North Pole» drifting stations and data from drifting buoys in the Arctic Basin. Quantitative estimates of the tendencies of ...

  2. Differences between the bacterial community structures of first- and multi-year Arctic sea ice in the Lincoln Sea.

    Science.gov (United States)

    Hatam, I.; Beckers, J. F.; Haas, C.; Lanoil, B. D.

    2014-12-01

    The Arctic sea ice composition is shifting from predominantly thick perennial ice (multiyear ice -MYI) to thinner, seasonal ice (first year ice -FYI). The effects of the shift on the Arctic ecosystem and macro-organisms of the Arctic Ocean have been the focus of many studies and have also been extensively debated in the public domain. The effect of this shift on the microbial constituents of the Arctic sea ice has been grossly understudied, although it is a vast habitat for a microbial community that plays a key role in the biogeochemical cycles and energy flux of the Arctic Ocean. MYI and FYI differ in many chemical and physical attributes (e.g. bulk salinity, brine volume, thickness and age), therefore comparing and contrasting the structure and composition of microbial communities from both ice types will be crucial to our understanding of the challenges that the Arctic Ocean ecosystem faces as MYI cover continues to decline. Here, we contend that due to the differences in abiotic conditions, differences in bacterial community structure will be greater between samples from different ice types than within samples from the same ice type. We also argue that since FYI is younger, its community structure will be closer to that of the surface sea water (SW). To test this hypotheses, we extracted DNA and used high throughput sequencing to sequence V1-V3 regions of the bacterial 16s rRNA gene from 10 sea ice samples (5 for each ice type) and 4 surface sea water (SW) collected off the shore of Northern Ellesmere Island, NU, CAN, during the month of May from 2010-2012. Our results showed that observed richness was higher in FYI than MYI. FYI and MYI shared 26% and 36% of their observed richness respectively. While FYI shared 23% of its observed richness with SW, MYI only shared 17%. Both ice types showed similar levels of endemism (61% of the observed richness). This high level of endemism results in the grouping of microbial communities from MYI, FYI, and SW to three

  3. Melt ponds on Arctic sea ice determined from MODIS satellite data using an artificial neural network

    Directory of Open Access Journals (Sweden)

    A. Rösel

    2012-04-01

    Full Text Available Melt ponds on sea ice strongly reduce the surface albedo and accelerate the decay of Arctic sea ice. Due to different spectral properties of snow, ice, and water, the fractional coverage of these distinct surface types can be derived from multispectral sensors like the Moderate Resolution Image Spectroradiometer (MODIS using a spectral unmixing algorithm. The unmixing was implemented using a multilayer perceptron to reduce computational costs.

    Arctic-wide melt pond fractions and sea ice concentrations are derived from the level 3 MODIS surface reflectance product. The validation of the MODIS melt pond data set was conducted with aerial photos from the MELTEX campaign 2008 in the Beaufort Sea, data sets from the National Snow and Ice Data Center (NSIDC for 2000 and 2001 from four sites spread over the entire Arctic, and with ship observations from the trans-Arctic HOTRAX cruise in 2005. The root-mean-square errors range from 3.8 % for the comparison with HOTRAX data, over 10.7 % for the comparison with NSIDC data, to 10.3 % and 11.4 % for the comparison with MELTEX data, with coefficient of determination ranging from R2=0.28 to R2=0.45. The mean annual cycle of the melt pond fraction per grid cell for the entire Arctic shows a strong increase in June, reaching a maximum of 15 % by the end of June. The zonal mean of melt pond fractions indicates a dependence of the temporal development of melt ponds on the geographical latitude, and has its maximum in mid-July at latitudes between 80° and 88° N.

    Furthermore, the MODIS results are used to estimate the influence of melt ponds on retrievals of sea ice concentrations from passive microwave data. Results from a case study comparing sea ice concentrations from ARTIST Sea Ice-, NASA Team 2-, and Bootstrap-algorithms with MODIS sea ice concentrations indicate an underestimation of around 40 % for sea ice concentrations retrieved with microwave

  4. The mechanism of multidecadal variability in the Arctic and North Atlantic in climate model INMCM4

    International Nuclear Information System (INIS)

    Data from a 500-year preindustrial control run of climate model INMCM4 show distinct climate variability in the Arctic and North Atlantic with a period of 35–50 years. The variability can be seen as anomalies of upper ocean density that appear in the Arctic and propagate to the North Atlantic. The density gradient in a northeast–southwest direction alternates with the density gradient in a northwest–southeast direction. A positive density anomaly in the Arctic is associated with a positive salinity anomaly, a positive surface temperature anomaly and a reduction of sea ice in the Barents and Kara Seas. The nature of the variability is a vertical advection of density by thermal currents similar to that proposed in Dijkstra et al (2008 Phil. Trans. R. Soc. A 366). The cycle of model variability shows that after a negative anomaly of density in the northwest Atlantic, one should expect warming in the Arctic in 5–10 years. The ensemble of decadal predictions with climate model INMCM4 starting from 1995 shows that warming in the western Arctic and especially in the Barents Sea observed in 1996–2010 can be reproduced by eight of ten ensemble members. Arctic climate predictability in this case is associated with a proposed mechanism of a 35–50 year North Atlantic–Arctic oscillation. (letter)

  5. Sea-ice hazards, associated risks and implications for human activities in the Arctic

    Science.gov (United States)

    Eicken, Hajo; Mahoney, Andrew; Jones, Joshua

    2014-05-01

    Polar sea ice serves important functions in the Earth system, including as climate regulator, habitat for diverse biological communities, or substrate and platform for a range of human activities. Subsumed under the concept of sea-ice services, polar ice covers are associated with benefits and risks of harm to ecosystems and people. Recent changes in Arctic ice extent, thickness and mobility have transformed services derived from sea ice. We summarize how these changes have diminished some benefits derived from the ice cover, while increasing others. More important, growing maritime activities in the North and a changing ice cover drive a need for better understanding of sea-ice hazards and the risk they represent in the context of human activities in the Arctic. Three major aspects of this problem are: (1) Broader risks associated with a rapid reduction in summer ice extent, such as geographic shifts in marine ecosystems and warming of submarine permafrost and adjacent land; (2) hazards resulting from changes in sea ice extent and dynamics such as increased coastal erosion and threats to infrastructure; and (3) risks derived from the combination of sea-ice hazards and human activities such as shipping or offshore resource development. Problem (1) is typically seen as a slow-onset hazard that requires a response in the form of mitigation and adaptation. At the same time, the importance of linkages between summer sea-ice reduction to processes outside of the Arctic has only recently emerged (such as atmospheric circulation patterns and extreme weather events) and remains difficult to quantify. Hazards and risks subsumed under (2) and (3) are more localized but with potentially major ecological and socio-economic consequences beyond the Arctic. Drawing on examples from our research in Alaska, we review and illustrate key aspects of sea-ice hazards in terms of risks to ecosystems, people and infrastructure in the coastal zone and Arctic shelf seas. In the Pacific

  6. Drastic changes in the distribution of branched tetraether lipids in suspended matter and sediments from the Yenisei River and Kara Sea (Siberia): Implications for the use of brGDGT-based proxies in coastal marine sediments

    Science.gov (United States)

    De Jonge, Cindy; Stadnitskaia, Alina; Hopmans, Ellen C.; Cherkashov, Georgy; Fedotov, Andrey; Streletskaya, Irina D.; Vasiliev, Alexander A.; Sinninghe Damsté, Jaap S.

    2015-09-01

    The distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in soils has been shown to correlate with pH and mean annual air temperature. Because of this dependence brGDGTs have found an application as palaeoclimate proxies in coastal marine sediments, based on the assumption that their distribution is not altered during the transport from soils to marine systems by rivers. To study the processes acting on the brGDGT distributions, we analysed the full suite of brGDGTs, including the recently described 6-Me brGDGTs, in both the suspended particulate matter (SPM) of the Siberian Yenisei River and the SPM and sediments of its outflow in the Kara Sea. The brGDGT distribution in the SPM of the Yenisei River was fairly constant and characterized by high abundances of the 6-Me brGDGTs, reflecting their production at the neutral pH of the river water. However, the brGDGT distribution showed marked shifts in the marine system. Firstly, in the Yenisei River Mouth, the fractional abundance of the 6-Me brGDGTs decreases sharply. The brGDGT signature in the Yenisei River Mouth possibly reflects brGDGTs delivered during the spring floods that may carry a different distribution. Also, coastal cliffs were shown to contain brGDGTs and to influence especially those sites without major river inputs (e.g. Khalmyer Bay). Further removed from the river mouth, in-situ production of brGDGTs in the marine system influences the distribution. However, also the fractional abundance of the tetramethylated brGDGT Ia increases, resulting in a distribution that is distinct from in-situ produced signals at similar latitudes (Svalbard). We suggest that this shift may be caused by preferential degradation of labile (riverine in-situ produced) brGDGTs and the subsequent enrichment in less labile (soil) material. The offshore distribution indeed agrees with the brGDGT distribution encountered in a lowland peat. This implies that the offshore Kara Sea sediments possibly carry a soil

  7. Air-sea-ocean interaction processes and impacts on polynya formation and sea ice production in the Laptev Sea of the Siberian Arctic

    OpenAIRE

    Heinemann, Günther; Schröder, David; Willmes, Sascha; Ebner, Lars; Adams, Susanne; Ernsdorf, Thomas; Helbig, Alfred; Timmermann, Ralph

    2010-01-01

    Processes of the exchange of energy and momentum at the sea ice-ocean-atmosphere interface are key processes for the polar climate system. Heat and moisture fluxes are strongly modulated by open water fractions associated with polynyas, having important consequences for the atmosphere, ocean processes, ice formation, brine release, gas exchange and biology. Our paper aims at the study of atmospheric processes forcing and maintaining polynyas in the Laptev Sea of the Siberian Arctic. This regi...

  8. Arctic sea ice and atmospheric circulation under the abrupt4xCO2 scenario

    Institute of Scientific and Technical Information of China (English)

    YU Xiaoyong; Annette Rinke; JI Duoying; CUI Xuefeng; John C Moore

    2014-01-01

    We analyze sea ice changes from eight different earth system models that have conducted experiment abrupt4xCO2 of the Coupled Model Intercomparison Project Phase 5 (CMIP5). In response to abrupt quadrupling of CO2 from preindustrial levels, Arctic temperatures dramatically rise by about 10°C—16°C in winter and the seasonal sea ice cycle and sea ice concentration are signiifcantly changed compared with the pre-industrial control simulations (piControl). Changes of Arctic sea ice concentration are spatially correlated with temperature patterns in all seasons and highest in autumn. Changes in sea ice are associated with changes in atmospheric circulation patterns at heights up to the jet stream. While the pattern of sea level pressure changes is generally similar to the surface air temperature change pattern, the wintertime 500 hPa circulation displays a positive Paciifc North America (PNA) anomaly under abrupt4xCO2-piControl. This large scale teleconnection may contribute to, or feedback on, the simulated sea ice cover change and is associated with an intensiifcation of the jet stream over East Asia and the north Paciifc in winter.

  9. Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation

    Science.gov (United States)

    Howell, Fergus W.; Haywood, Alan M.; Dowsett, Harry J.; Pickering, Steven J.

    2016-05-01

    General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial. Using the HadCM3 GCM, this paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2 concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data-model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by HadCM3 from perennial to seasonal. However, this occurs only when atmospheric CO2 concentrations exceed 300 ppm. Reduction of the minimum sea ice albedo from 0.5 to 0.2 is also sufficient to simulate seasonal sea ice, with any of the combinations of atmospheric CO2 and orbital forcing. Compared to a mPWP control simulation, monthly mean increases north of 60°N of up to 4.2 °C (SST) and 9.8 °C (SAT) are simulated. With varying CO2, orbit and sea ice albedo values we are able to reproduce proxy temperature records that lean towards modest levels of high latitude warming, but other proxy data showing greater warming remain beyond the reach of our model. This highlights the importance of additional proxy records at high latitudes and ongoing efforts to compare proxy signals between sites.

  10. Joint Russian-Norwegian expedition to the dumping sites for radioactive waste and spent nuclear fuel in the Stepovogo fjord of the Kara sea, August - September 2012: investigations performed and main results

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Aleksandr; Shershakov, Viacheslav; Valetova, Nailja; Petrenko, Galina; Katrich, Ivan; Fedorova, Anastasia [Research and Production Association ' Typhoon' , 249038, Obninsk, Kaluga Region (Russian Federation); Kazennov, Alexey [National Research Centre ' Kurchatov Institute' , Moscow (Russian Federation); Lind, Bjorn; Gwynn, Justin; Rudjord, Anne Liv [Norwegian Radiation Protection Authority, Oesteraas (Norway); Heldal, Hilde Elise [Institute of Marine Research, Bergen (Norway); Blinova, Oxana; Osvath, Iolanda; Levy, Isabelle; Bartocci, Jean; Khanh Pham, Mai; Sam, Adam; Nies, Hartmut [IAEA-MEL (Monaco); Grishin, Denis [Krylov State Research Centre, St. Petersburg (Russian Federation); Salbu, Brit; Ole- Christian, Lind; Teien, Hans-Cristian [Norwegian University of Life Sciences, Aas (Norway); Sidhu, Rajdeep Singh; Straalberg, Elisabeth [Institute for Energy Technology, Kjeller (Norway); Logoyda, Igor [State Scientific Centre ' Yuzhmorgeologiya' , Gelendzhik (Russian Federation)

    2014-07-01

    Stepovogo fjord, located on the Eastern coast of Novaya Zemlya, is one of the most important former Soviet Union dumping sites for radioactive waste in the Kara Sea. In addition to some 2000 dumped containers with conventional radioactive wastes, the nuclear submarine K-27 was dumped in Stepovogo fjord with two reactors loaded with spent nuclear fuel (SNF).Joint Russian and Norwegian surveys of the marine environment in Stepovogo fjord were first conducted in 1993 and 1994. In accordance with the working plan of the Joint Russian-Norwegian Expert Group on the Investigation of Radioactive Contamination in the Northern Areas, a follow up expedition into the radioecological status of Stepovogo fjord was carried out in August and September of 2012 onboard the R.V. 'Ivan Petrov' of the Roshydromet Northern Department. Investigations carried out in Stepovogo fjord during the expedition included: Sonar surveys, ROV inspections and in situ gamma measurements of the dumped nuclear submarine K-27 and dumped containers with radioactive waste Sampling of seawater, bottom sediments and marine biota. Results of the analysis of marine environmental samples performed by Russia, Norway and the IAEA, are presented and discussed in the paper. Preliminary measurements on surface sediments and water samples showed that the level of {sup 137}Cs contamination was generally low. However, slightly enhanced levels of {sup 137}Cs were detected in bottom seawater and sediment collected in the area with dumped containers. Measurements taken around the dumped nuclear submarine K-27 did not indicate any leakage of radioactive substances from the submarine. A similar picture for the level of radioactive contamination in Stepovogo fjord was observed in the first joint Russian-Norwegian expedition in 1993-94. (authors)

  11. MEaSUREs Arctic Sea Ice Characterization Daily 25km EASE-Grid 2.0 V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set, part of the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, provides a daily record of Arctic sea ice...

  12. Observational uncertainty of Arctic sea-ice concentration significantly affects seasonal climate forecasts

    Science.gov (United States)

    Bunzel, Felix; Notz, Dirk; Baehr, Johanna; Müller, Wolfgang; Fröhlich, Kristina

    2016-04-01

    We examine how the choice of a particular satellite-retrieved sea-ice concentration dataset used for initialising seasonal climate forecasts impacts the prediction skill of Arctic sea-ice area and Northern hemispheric 2-meter air temperatures. To do so, we performed two assimilation runs with the Max Planck Institute Earth System Model (MPI-ESM) from 1979 to 2012, where atmospheric and oceanic parameters as well as sea-ice concentration were assimilated using Newtonian relaxation. The two assimilation runs differ only in the sea-ice concentration dataset used for assimilating sea ice. In the first run, we use sea-ice concentrations as derived by the NASA-Team algorithm, while in the second run we use sea-ice concentrations as derived from the Bootstrap algorithm. A major difference between these two sea-ice concentration data products involves the treatment of melt ponds. While for both products melt ponds appear as open water in the raw satellite data, the Bootstrap algorithm more strongly attempts to offset this systematic bias by synthetically increasing the retrieved ice concentration during summer months. For each year of the two assimilation runs we performed a 10-member ensemble of hindcast experiments starting on 1 May and 1 November with a hindcast length of 6 months. For hindcasts started in November, initial differences in Arctic sea-ice area and surface temperature decrease rapidly throughout the freezing period. For hindcasts started in May, initial sea-ice area differences increase over time. By the end of the melting period, this causes significant differences in 2-meter air temperature of regionally more than 3°C. Hindcast skill for surface temperatures over Europe and North America is higher with Bootstrap initialization during summer and with NASA Team initialisation during winter. This implies that the choice of the sea-ice data product and, thus, the observational uncertainty also affects forecasts of teleconnections that depend on Northern

  13. Analysis of an Arctic sea ice loss model in the limit of a discontinuous albedo

    CERN Document Server

    Hill, Kaitlin; Silber, Mary

    2015-01-01

    As Arctic sea ice extent decreases with increasing greenhouse gases, there is a growing interest in whether there could be a bifurcation associated with its loss, and whether there is significant hysteresis associated with that bifurcation. A challenge in answering this question is that the bifurcation behavior of certain Arctic energy balance models have been shown to be sensitive to how ice-albedo feedback is parameterized. We analyze an Arctic energy balance model in the limit as a smoothing parameter associated with ice-albedo feedback tends to zero, which makes the system piecewise-smooth. Our analysis provides a case study where we use the piecewise-smooth system to explore bifurcation behavior of the smooth system. In this case study, we demonstrate that certain qualitative bifurcation behaviors of the smooth system can have nonsmooth counterparts. We use this perspective to systematically search parameter space. For example, we uncover parameter sets for which the largest transition, with increasing g...

  14. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    Science.gov (United States)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  15. Arctic Sea Ice Export Through Fram Strait and Atmospheric Planetary Waves

    Science.gov (United States)

    Cavalieri, Donald J.; Koblinsky, Chester (Technical Monitor)

    2001-01-01

    A link is found between the variability of Arctic sea ice export through Ram Strait and the phase of the longest atmospheric planetary wave (zonal wave 1) in SLP for the period 1958-1997. Previous studies have identified a link between From Strait ice export and the North Atlantic Oscillation (NAO), but this link has been described as unstable because of a lack of consistency over time scales longer than the last two decades. Inconsistent and low correlations are also found between From Strait ice export and the Arctic Oscillation (AD) index. This paper shows that the phase of zonal wave 1 explains 60% - 70% of the simulated From Strait ice export variance over the Goodyear period 1958 - 1997. Unlike the NAB and AD links, these high variances are consistent for both the first and second halves of the Goodyear period. This consistency is attributed to the sensitivity of the wave I phase at high latitudes to the presence of secondary low pressure systems in the Barents Sea that serve to drive sea ice southward through From Strait. These results provide further evidence that the phase of zonal wave 1 in SLP at high latitudes drives regional as well as hemispheric low frequency Arctic Ocean and sea ice variability.

  16. Trends in sea-ice variability on the way to an ice-free Arctic

    CERN Document Server

    Bathiany, Sebastian; Williamson, Mark S; Lenton, Timothy M; Scheffer, Marten; van Nes, Egbert; Notz, Dirk

    2016-01-01

    It has been widely debated whether Arctic sea-ice loss can reach a tipping point beyond which a large sea-ice area disappears abruptly. The theory of dynamical systems predicts a slowing down when a system destabilises towards a tipping point. In simple stochastic systems this can result in increasing variance and autocorrelation, potentially yielding an early warning of an abrupt change. Here we aim to establish whether the loss of Arctic sea ice would follow these conceptual predictions, and which trends in sea ice variability can be expected from pre-industrial conditions toward an Arctic that is ice-free during the whole year. To this end, we apply a model hierarchy consisting of two box models and one comprehensive Earth system model. We find a consistent and robust decrease of the ice volume's annual relaxation time before summer ice is lost because thinner ice can adjust more quickly to perturbations. Thereafter, the relaxation time increases, mainly because the system becomes dominated by the ocean wa...

  17. TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic

    Directory of Open Access Journals (Sweden)

    P. Sakov

    2012-08-01

    Full Text Available We present a detailed description of TOPAZ4, the latest version of TOPAZ – a coupled ocean-sea ice data assimilation system for the North Atlantic Ocean and Arctic. It is the only operational, large-scale ocean data assimilation system that uses the ensemble Kalman filter. This means that TOPAZ features a time-evolving, state-dependent estimate of the state error covariance. Based on results from the pilot MyOcean reanalysis for 2003–2008, we demonstrate that TOPAZ4 produces a realistic estimate of the ocean circulation in the North Atlantic and the sea-ice variability in the Arctic. We find that the ensemble spread for temperature and sea-level remains fairly constant throughout the reanalysis demonstrating that the data assimilation system is robust to ensemble collapse. Moreover, the ensemble spread for ice concentration is well correlated with the actual errors. This indicates that the ensemble statistics provide reliable state-dependent error estimates – a feature that is unique to ensemble-based data assimilation systems. We demonstrate that the quality of the reanalysis changes when different sea surface temperature products are assimilated, or when in-situ profiles below the ice in the Arctic Ocean are assimilated. We find that data assimilation improves the match to independent observations compared to a free model. Improvements are particularly noticeable for ice thickness, salinity in the Arctic, and temperature in the Fram Strait, but not for transport estimates or underwater temperature. At the same time, the pilot reanalysis has revealed several flaws in the system that have degraded its performance. Finally, we show that a simple bias estimation scheme can effectively detect the seasonal or constant bias in temperature and sea-level.

  18. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    J. T. Mathis

    2009-07-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −65 to −175 Tg C year−1, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean is an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater that is counteracted by seasonal phytoplankton primary production (PP. Biological processes drive divergent trajectories for Ω in surface and subsurface waters of Arctic shelves with subsurface water experiencing undersaturation with respect to aragonite and calcite. Thus, in response to increased sea-ice loss, warming and enhanced phytoplankton PP, the benthic ecosystem of the Arctic shelves are expected to be negatively impacted by the biological amplification of ocean acidification. This in turn reduces the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems.

  19. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  20. Statistical selection of tide gauges for Arctic sea-level reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-01-01

    In this paper, we seek an appropriate selection of tide gauges for Arctic Ocean sea-level reconstruction based on a combination of empirical criteria and statistical properties (leverages). Tide gauges provide the only in situ observations of sea level prior to the altimetry era. However, tide...... gauges are sparse, of questionable quality, and occasionally contradictory in their sea-level estimates. Therefore, it is essential to select the gauges very carefully. In this study, we have established a reconstruction based on empirical orthogonal functions (EOFs) of sea-level variations for the...... use of an ocean circulation model to provide gridded time series of sea level. As a surrogate for satellite altimetry, we have used the Drakkar ocean model to yield the EOFs. We initially evaluate the tide gauges through empirical criteria to reject obvious outlier gauges. Subsequently, we evaluate...

  1. The influence of Arctic sea ice variability on the summer North Atlantic Oscillation (SNAO)

    Science.gov (United States)

    Linderholm, H. W.; Folland, C. K.; Ou, T.; Jeong, J. H.; Wilson, R.; Rydval, M.; Chen, D.; Kim, B. M.

    2015-12-01

    The summer North Atlantic Oscillation (SNAO), which is strongly related to changes in Atlantic and European summer storm tracks and the latitudinal position of the jet stream, exerts a strong influence on rainfall, temperature, and cloudiness and is related to summer extremes, such as droughts and floods, mainly in Europe. Reconstructions suggest that the SNAO was mainly negative during the last several centuries until the mid-twentieth century when it entered a positive phase, and climate model projections have suggested a predominantly positive SNAO under future global warming. However, during the recent decade, the SNAO has mainly been in a negative phase, along with a southerly shift in the jet stream, accompanied by wet and cool summers in northwest Europe. Sea surface temperatures in the North Atlantic (related to the Atlantic Multidecadal Oscillation, AMO) strongly influence the SNAO, and the current positive phase of the AMO has likely played some role in the recent downturn of the SNAO. Additionally, we found a consistent association between winter/spring Arctic sea ice concentration (SIC), particularly in the Labrador and Nordic seas, and the SNAO over the last decades based on observations. However, since the 1990s the strength of the correlations with the regional SIC has changed, weakening over the Labrador Sea and strengthening over Barents Sea. This is particularly evident during the last decade. Possibly this is a response to the rapid changes in Arctic sea ice. To test this, a new tree-ring based reconstruction of the SNAO as well as CMIP5 model runs are used to examine the influence of Arctic sea ice on the summer atmospheric circulation over northwestern Europe in a long-term context.

  2. Cyclone impact on sea ice in the central Arctic Ocean: a statistical study

    Directory of Open Access Journals (Sweden)

    A. Kriegsmann

    2013-03-01

    Full Text Available This study investigates the impact of cyclones on the Arctic Ocean sea ice for the first time in a statistical manner. We apply the coupled ice–ocean model NAOSIM which is forced by the ECMWF analyses for the period 2006–2008. Cyclone position and radius detected in the ECMWF data are used to extract fields of wind, ice drift, and concentration from the ice–ocean model. Composite fields around the cyclone centre are calculated for different cyclone intensities, the four seasons, and different regions of the Arctic Ocean. In total about 3500 cyclone events are analyzed. In general, cyclones reduce the ice concentration on the order of a few percent increasing towards the cyclone centre. This is confirmed by independent AMSR-E satellite data. The reduction increases with cyclone intensity and is most pronounced in summer and on the Siberian side of the Arctic Ocean. For the Arctic ice cover the impact of cyclones has climatologic consequences. In winter, the cyclone-induced openings refreeze so that the ice mass is increased. In summer, the openings remain open and the ice melt is accelerated via the positive albedo feedback. Strong summer storms on the Siberian side of the Arctic Ocean may have been important reasons for the recent ice extent minima in 2007 and 2012.

  3. Improved Arctic sea ice thickness projections using bias-corrected CMIP5 simulations

    Science.gov (United States)

    Melia, N.; Haines, K.; Hawkins, E.

    2015-12-01

    Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 global climate models (GCMs) produce a wide range of simulated SIT in the historical period (1979-2014) and exhibit various biases when compared with the Pan-Arctic Ice-Ocean Modelling and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain such GCM simulations of SIT via a statistical bias correction technique. The bias correction successfully constrains the spatial SIT distribution and temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from individual ensemble members. The bias correction acts to reduce the spread in projections of SIT and reveals the significant contributions of climate internal variability in the first half of the century and of scenario uncertainty from the mid-century onwards. The projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario occurs in the 2050s, which is a decade earlier than without the bias correction, with potentially significant implications for stakeholders in the Arctic such as the shipping industry. The bias correction methodology developed could be similarly applied to other variables to reduce spread in climate projections more generally.

  4. Seasonal sea ice predictions for the Arctic based on assimilation of remotely sensed observations

    Science.gov (United States)

    Kauker, F.; Kaminski, T.; Ricker, R.; Toudal-Pedersen, L.; Dybkjaer, G.; Melsheimer, C.; Eastwood, S.; Sumata, H.; Karcher, M.; Gerdes, R.

    2015-10-01

    The recent thinning and shrinking of the Arctic sea ice cover has increased the interest in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the initial state of the system and the atmospheric boundary condition over the forecasting period. This study investigates the potential of remotely sensed ice thickness observations in constraining the initial model state. For this purpose it employs a variational assimilation system around NAOSIM and the Alfred Wegener Institute's CryoSat-2 ice thickness product in conjunction with the University of Bremen's snow depth product and the OSI SAF ice concentration and sea surface temperature products. We investigate the skill of predictions of the summer ice conditions starting in March for three different years. Straightforward assimilation of the above combination of data streams results in slight improvements over some regions (especially in the Beaufort Sea) but degrades the over-all fit to independent observations. A considerable enhancement of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a spatially varying scaling factor.

  5. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge

    OpenAIRE

    Armitage, T. W. K.; Ridout, A. L.

    2015-01-01

    Satellite radar altimeters have improved our knowledge of Arctic sea ice thickness over the past decade. The main sources of uncertainty in sea ice thickness retrievals are associated with inadequate knowledge of the snow layer depth and the radar interaction with the snow pack. Here we adapt a method of deriving sea ice freeboard from CryoSat-2 to data from the AltiKa Ka band radar altimeter over the 2013–14 Arctic sea ice growth season. AltiKa measures basin-averaged freeboards between 4.4 ...

  6. Assessment of the North-East Arctic and North Sea Stocks of Saithe Taking Into Account Migration

    OpenAIRE

    Jakobsen, Tore

    1981-01-01

    Tagging experiments have shown that there is a substantial migration of young saithe from the Norwegian coast north of 62°N to the North Sea. Assessments of the North-East Arctic and North Sea Stocks of saithe were made assuming that all 1-4 year old saithe caught between 62° and 64°N would have recruited to the North Sea stock. The new assessments give a decrease in the level of recruitment to the North-East Arctic stock and an increase to the North Sea stock. he exploitation of the NorthEa...

  7. Spatial features of glacier changes in the Barents-Kara Sector

    Science.gov (United States)

    Sharov, A. I.; Schöner, W.; Pail, R.

    2009-04-01

    In the 1950s, the total area of glaciers occupying separate islands and archipelagos of the Barents and Kara seas exceeded 92,300 km² (Atlas of the Arctic 1985). The overall glacier volume reached 20,140 km³ and the average ice thickness was given as 218 m. Our recent remote sensing studies and mass-balance estimates using spaceborne ASTER and LANDSAT imagery, ERS and JERS radar interferometric mosaics, and ICESat altimetry data revealed that, in the 2000s, the areal extent and volume of Barents-Kara glaciation amounted to 86,200±200 km² and 19,330±20 km³, respectively. The annual loss of land ice influenced by severe climate change in longitudinal direction was determined at approx. 8 km³/a in Svalbard, 4 km³/a both in the Franz Josef Land and Novaya Zemlya archipelagos, and less than 0.3 km³/a in Severnaya Zemlya over the past 50 years. The average ice thickness of remaining glaciation increased to 224 m. This fact was explained by rapid disintegration of thinner glacier margins and essential accumulation of snow at higher glacier elevations. Both effects were clearly visible in the series of satellite image maps of glacier elevation changes generated within the framework of the INTEGRAL, SMARAGD and ICEAGE research projects. These maps can be accessed at http://joanneum.dib.at/integral or smaragd (cd results). The largest negative elevation changes were typically detected in the seaward basins of fast-flowing outlet glaciers, both at their fronts and tops. Ablation processes were stronger manifested on southern slopes of ice caps, while the accumulation of snow was generally higher on northern slopes so that main ice divides "shifted" to the north. The largest positive elevation changes (about 100 m) were found in the central part of the study region in the accumulation areas of the biggest ice caps, such as Northern Ice Cap in Novaya Zemlya, Tyndall and Windy ice domes in Franz Josef Land, and Kvitoyjokulen at Kvitøya. The sides of these glaciers

  8. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    Science.gov (United States)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when

  9. Plutonium in the Arctic Marine Environment — A Short Review

    Directory of Open Access Journals (Sweden)

    Lindis Skipperud

    2004-01-01

    Full Text Available Anthropogenic plutonium has been introduced into the environment over the past 50 years as the result of the detonation of nuclear weapons and operational releases from the nuclear industry. In the Arctic environment, the main source of plutonium is from atmospheric weapons testing, which has resulted in a relatively uniform, underlying global distribution of plutonium. Previous studies of plutonium in the Kara Sea have shown that, at certain sites, other releases have given rise to enhanced local concentrations. Since different plutonium sources are characterised by distinctive plutonium-isotope ratios, evidence of a localised influence can be supported by clear perturbations in the plutonium-isotope ratio fingerprints as compared to the known ratio in global fallout. In Kara Sea sites, such perturbations have been observed as a result of underwater weapons tests at Chernaya Bay, dumped radioactive waste in Novaya Zemlya, and terrestrial runoff from the Ob and Yenisey Rivers. Measurement of the plutonium-isotope ratios offers both a means of identifying the origin of radionuclide contamination and the influence of the various nuclear installations on inputs to the Arctic, as well as a potential method for following the movement of water and sediment loads in the rivers.

  10. Arctic Sea Ice Charts from Danish Meteorological Institute, 1893 - 1956

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — From 1893 to 1956, the Danish Meteorological Institute (DMI) created charts of observed and inferred sea ice extent for each summer month. These charts are based on...

  11. Sea Ice Melt Pond Data from the Canadian Arctic

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains observations of albedo, depth, and physical characteristics of melt ponds on sea ice, taken during the summer of 1994. The melt ponds studied...

  12. Characterization of sea-ice kinematic in the Arctic outflow region using buoy data

    Directory of Open Access Journals (Sweden)

    Ruibo Lei

    2016-01-01

    Full Text Available Data from four ice-tethered buoys deployed in 2010 were used to investigate sea-ice motion and deformation from the Central Arctic to Fram Strait. Seasonal and long-term changes in ice kinematics of the Arctic outflow region were further quantified using 42 ice-tethered buoys deployed between 1979 and 2011. Our results confirmed that the dynamic setting of the transpolar drift stream (TDS and Fram Strait shaped the motion of the sea ice. Ice drift was closely aligned with surface winds, except during quiescent conditions, or during short-term reversal of the wind direction opposing the TDS. Meridional ice velocity south of 85°N showed a distinct seasonal cycle, peaking between late autumn and early spring in agreement with the seasonality of surface winds. Inertia-induced ice motion was strengthened as ice concentration decreased in summer. As ice drifted southward into the Fram Strait, the meridional ice speed increased dramatically, while associated zonal ice convergence dominated the ice-field deformation. The Arctic atmospheric Dipole Anomaly (DA influenced ice drift by accelerating the meridional ice velocity. Ice trajectories exhibited less meandering during the positive phase of DA and vice versa. From 2005 onwards, the buoy data exhibit high Arctic sea-ice outflow rates, closely related to persistent positive DA anomaly. However, the long-term data from 1979 to 2011 do not show any statistically significant trend for sea-ice outflow, but exhibit high year-to-year variability, associated with the change in the polarity of DA.

  13. Sea level variability in the Arctic Ocean observed by satellite altimetry

    OpenAIRE

    P. Prandi; Ablain, M.; A. Cazenave; Picot, N.

    2012-01-01

    We investigate sea level variability in the Arctic Ocean from observations. Variability estimates are derived both at the basin scale and on smaller local spatial scales. The periods of the signals studied vary from high frequency (intra-annual) to long term trends. We also investigate the mechanisms responsible for the observed variability. Different data types are used, the main one being a recent reprocessing of satellite altimetry data...

  14. Atlantic and Arctic sea-air CO2 fluxes, 1990–2009

    Directory of Open Access Journals (Sweden)

    C. Rödenbeck

    2012-08-01

    Full Text Available The Atlantic and Arctic oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales, for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modelling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our best estimate of the contemporary sea-to-air flux of CO2 (sum of anthropogenic and natural components by the Atlantic between 40° S and 79° N is −0.49 ± 0.11 Pg C yr−1 and by the Arctic is −0.12 ± 0.06 Pg C yr−1, leading to a combined sea-to-air flux of −0.61 ± 0.12 Pg C yr−1 for the two decades (negative reflects ocean uptake. We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor; and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and South Subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and South Subtropics.

  15. Atlantic and Arctic sea-air CO2 fluxes, 1990-2009

    Science.gov (United States)

    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; Landschützer, P.; Lefèvre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Rödenbeck, C.; Santana-Casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.

    2012-08-01

    The Atlantic and Arctic oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales, for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modelling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our best estimate of the contemporary sea-to-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is -0.49 ± 0.11 Pg C yr-1 and by the Arctic is -0.12 ± 0.06 Pg C yr-1, leading to a combined sea-to-air flux of -0.61 ± 0.12 Pg C yr-1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor; and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and South Subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and South Subtropics.

  16. An assessment of the Atlantic and Arctic sea-air CO2 fluxes, 1990-2009

    Science.gov (United States)

    Schuster, U.; McKinley, G. A.; Bates, N.; Chevallier, F.; Doney, S. C.; Fay, A. R.; González-Dávila, M.; Gruber, N.; Jones, S.; Krijnen, J.; Landschützer, P.; Lefèvre, N.; Manizza, M.; Mathis, J.; Metzl, N.; Olsen, A.; Rios, A. F.; Rödenbeck, C.; Santana-Casiano, J. M.; Takahashi, T.; Wanninkhof, R.; Watson, A. J.

    2013-01-01

    The Atlantic and Arctic Oceans are critical components of the global carbon cycle. Here we quantify the net sea-air CO2 flux, for the first time, across different methodologies for consistent time and space scales for the Atlantic and Arctic basins. We present the long-term mean, seasonal cycle, interannual variability and trends in sea-air CO2 flux for the period 1990 to 2009, and assign an uncertainty to each. We use regional cuts from global observations and modeling products, specifically a pCO2-based CO2 flux climatology, flux estimates from the inversion of oceanic and atmospheric data, and results from six ocean biogeochemical models. Additionally, we use basin-wide flux estimates from surface ocean pCO2 observations based on two distinct methodologies. Our estimate of the contemporary sea-air flux of CO2 (sum of anthropogenic and natural components) by the Atlantic between 40° S and 79° N is -0.49 ± 0.05 Pg C yr-1, and by the Arctic it is -0.12 ± 0.06 Pg C yr-1, leading to a combined sea-air flux of -0.61 ± 0.06 Pg C yr-1 for the two decades (negative reflects ocean uptake). We do find broad agreement amongst methodologies with respect to the seasonal cycle in the subtropics of both hemispheres, but not elsewhere. Agreement with respect to detailed signals of interannual variability is poor, and correlations to the North Atlantic Oscillation are weaker in the North Atlantic and Arctic than in the equatorial region and southern subtropics. Linear trends for 1995 to 2009 indicate increased uptake and generally correspond between methodologies in the North Atlantic, but there is disagreement amongst methodologies in the equatorial region and southern subtropics.

  17. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    Science.gov (United States)

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. PMID:25437762

  18. Sea ice melt onset dynamics in the northern Canadian Arctic Archipelago from RADARSAT

    Science.gov (United States)

    Mahmud, M. S.; Howell, S.; Geldsetzer, T.; Yackel, J.

    2015-12-01

    Sea ice melt onset, the appearance of liquid water in its snow cover, decreases surface albedo which increases shortwave absorption and thereby accelerates snow and sea ice melting. Earlier melt onset leads to the earlier formation of open water which enhances the ice-albedo feedback. Sea ice melt onset timing and duration vary considerably, both spatially and temporally, owing to variability in atmospheric forcing; this in turn influences the September sea ice extent. Sea ice melt onset variability has been investigated using coarse resolution passive microwave observation in Canadian Arctic Archipelago (CAA); however, this does not provide sufficient information about sea ice melt dynamics. We developed a new melt onset algorithm using high resolution synthetic aperture radar (SAR) images from RADARSAT to better understand sea ice melt onset dynamics in northern Canadian Arctic Archipelago (fig 1) from 1997 to 2014. The algorithm is based on the temporal evolution of the SAR backscatter coefficient (σo), using separate thresholds for seasonal first-year ice and multi-year ice. Results indicated that the mean annual average melt onset date in the northern CAA was on year day 164 (mid-June) with a standard deviation of 4 days over the 18 year period. No significant trend for melt onset date was found over the 18 year period (fig: 2) but extreme early melt onset was detected in 1998 and 2012 associated with anomalous atmospheric forcing. Spatially, sea ice onset over the entire northern CAA varied from a 10-day minimum in 2007, to a 35-day maximum in 2011 and exhibited negative correlation (r=0.70) with the rate of increase in surface air temperature (fig 3) derived from Extended AVHRR Polar Pathfinder (APP-x) dataset. An earlier (later) melt onset also results in light (heavier) September sea ice area in the northern CAA (fig 4).

  19. The impact of under-ice melt ponds on Arctic sea ice volume

    Science.gov (United States)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2016-04-01

    A one-dimensional, thermodynamic model of Arctic sea ice [Flocco et al, 2015] has been adapted to study the evolution of under-ice melt ponds, pools of fresh water that are found below the Arctic sea ice, and false bottoms, sheets of ice that form at the boundary between the under-ice melt pond and the oceanic mixed layer. Over time, either the under-ice melt pond freezes or the false bottom is completely ablated. We have been investigating the impact that these features have on the growth or ablation of sea ice during the time that they are present. The sensitivity of our model to a range of parameters has been tested, revealing some interesting effects of the thermodynamic processes taking place during the life-cycle of these phenomena. For example, the under-ice melt pond and its associated false bottom can insulate the sea ice layer from ocean, increasing the thickness of sea ice present at the end of the time frame considered. A comparison of the results of the model of under-ice melt pond evolution with that of sea ice with a bare base has been used to estimate the impact of under-ice melt ponds on sea ice volume towards the end of the melt season. We find that the under-ice melt ponds could have a significant impact on the mass balance of the sea ice, suggesting that it could be desirable to include a parameterisation of the effects of under-ice melt pond in the sea ice components of climate models.

  20. Wintertime Arctic Ocean sea water properties and primary marine aerosol concentrations

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2012-11-01

    Full Text Available Sea spray aerosols are an important part of the climate system through their direct and indirect effects. Due to the diminishing sea ice, the Arctic Ocean is one of the most rapidly changing sea spray aerosol source areas. However, the influence of these changes on primary particle production is not known.

    In laboratory experiments we examined the influence of Arctic Ocean water temperature, salinity, and oxygen saturation on primary particle concentration characteristics. Sea water temperature was identified as the most important of these parameters. A strong decrease in sea spray aerosol production with increasing water temperature was observed for water temperatures between −1°C and 9°C. Aerosol number concentrations decreased from at least 1400 cm−3 to 350 cm−3. In general, the aerosol number size distribution exhibited a robust shape with one mode close to dry diameter Dp 0.2 μm with approximately 45% of particles at smaller sizes. Changes in sea water temperature did not result in pronounced change of the shape of the aerosol size distribution, only in the magnitude of the concentrations. Our experiments indicate that changes in aerosol emissions are most likely linked to changes of the physical properties of sea water at low temperatures. The observed strong dependence of sea spray aerosol concentrations on sea water temperature, with a large fraction of the emitted particles in the typical cloud condensation nuclei size range, provide strong arguments for a more careful consideration of this effect in climate models.

  1. Inorganic carbon dynamics of melt pond-covered first year sea ice in the Canadian Arctic

    DEFF Research Database (Denmark)

    Geilfus, Nicolas-Xavier; Galley, R.J.; Crabeck, O.;

    2014-01-01

    of this high concentration pCO2 melt water increase the in situ brine pCO2 within the sea ice matrix. The low in situ pCO2 observed in brine and melt ponds results in CO2 fluxes of −0.04 to −5.4 mmol m–2 d–1. As melt ponds reach equilibrium with the atmosphere, the uptake becomes less significant. However......, since melt ponds are continuously supplied by melt water their in situ pCO2 still remains low, promoting a continuous but moderate uptake of CO2 (~ −1mmol m–2 d–1). The potential uptake of atmospheric CO2 by melting sea ice during the Arctic summer has been estimated from 7 to 16 Tg of C ignoring...... the role of melt ponds. This additional uptake of CO2 associated to Arctic sea ice needs to be further explored and considered in the estimation of the Arctic Ocean's overall CO2 budget....

  2. Distribution of molluscan remains in the sediment of the Chukchi Sea and its vicinity, the Arctic

    Institute of Scientific and Technical Information of China (English)

    Gao Aiguo; Xu Fengshan; Sun Haiqing; Li Lon

    2003-01-01

    The result of an analysis of mollusca remains collected from the Chukchi Sea, Beaufort Sea and Bering Sea in the First Chinese National Arctic Research Expedition, from July to September,1999 is presented. Seventeen species of mollusca have been identified, which belong to two classes: Bivalvia and Gastropoda. The compositions of the mollusca are very simple. According to the distribution pattern two groups may be distinguished among molluscan species. The Pan-Arctic and circumboreal group comprises Nuculana pernula, N. radiata, Nucula bellotii, Astarte montagui, Seripes groenlandicus, Macoma calcarea, M. moesta alaskana, Liocyma fluctuosa, Mya pseudoarenaria and Turritella polaris. Three species, Cyclocardia crebricos tata, Trichotrois coronata and Argobuccinum oregonense are components of the Pan-Arctic and Pacific boreal group. With regard to feeding habits, detritus feeders dominate. There are 7 species of detritus feeders, i.e. , Nuculana pernula, N. radiata,Nucula bellotii , Macoma calcarea , M. moesta alaskana , Macoma sp. and Trichotropis coronata . Detritus feeders are dominant with regard to the numbers of species as well as to the frequency of occurrence. Macoma calcarea is the most abundant species.

  3. Rising sea surface temperature: towards ice-free Arctic summers and a changing marine food chain Document Actions

    OpenAIRE

    Coppini, Giovanni; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Christiansen, Trine; European Environment Agency

    2009-01-01

    Global sea surface temperature is approximately 1 degree C higher now than 140 years ago, and is one of the primary physical impacts of climate change. Sea surface temperature in European seas is increasing more rapidly than in the global oceans. Projections show the temperature increases will persist throughout this century. Ice-free summers are expected in the Arctic by the end of this century, if not earlier. Already, there is evidence that many marine ecosystems in European seas are affec...

  4. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic

    Science.gov (United States)

    Grebmeier, Jacqueline M.; Cooper, Lee W.; Feder, Howard M.; Sirenko, Boris I.

    2006-10-01

    The shallow continental shelves and slope of the Amerasian Arctic are strongly influenced by nutrient-rich Pacific waters advected over the shelves from the northern Bering Sea into the Arctic Ocean. These high-latitude shelf systems are highly productive both as the ice melts and during the open-water period. The duration and extent of seasonal sea ice, seawater temperature and water mass structure are critical controls on water column production, organic carbon cycling and pelagic-benthic coupling. Short food chains and shallow depths are characteristic of high productivity areas in this region, so changes in lower trophic levels can impact higher trophic organisms rapidly, including pelagic- and benthic-feeding marine mammals and seabirds. Subsistence harvesting of many of these animals is locally important for human consumption. The vulnerability of the ecosystem to environmental change is thought to be high, particularly as sea ice extent declines and seawater warms. In this review, we focus on ecosystem dynamics in the northern Bering and Chukchi Seas, with a more limited discussion of the adjoining Pacific-influenced eastern section of the East Siberian Sea and the western section of the Beaufort Sea. Both primary and secondary production are enhanced in specific regions that we discuss here, with the northern Bering and Chukchi Seas sustaining some of the highest water column production and benthic faunal soft-bottom biomass in the world ocean. In addition, these organic carbon-rich Pacific waters are periodically advected into low productivity regions of the nearshore northern Bering, Chukchi and Beaufort Seas off Alaska and sometimes into the East Siberian Sea, all of which have lower productivity on an annual basis. Thus, these near shore areas are intimately tied to nutrients and advected particulate organic carbon from the Pacific influenced Bering Shelf-Anadyr water. Given the short food chains and dependence of many apex predators on sea ice, recent

  5. Phylogenetic analysis of bacteria in sea ice brine sampled from the Canada Basin, Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacterial diversity in sea ice brine samples which collected from four stations located at the Canada Basin, Arctic Ocean was analyzed by PCR-DGGE. Twenty-three 16S rDNA sequences of bacteria obtained from DGGE bands were cloned and sequenced. Phylogenetic analysis clustered these sequences within γ-proteobacteria, Cytophaga-Flexibacter-Bacteroides (CFB) group, Firmicutes and Actinobacteria. The phylotype of Pseudoalteromonas in the γ-proteobacteria was predominant and members of the CFB group and γ-proteobacteria were highly abundant in studied sea ice brine samples.

  6. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit;

    is the snow/air interface, whereas radar waves interact with the variable physical properties of the snow cover on the Arctic sea ice. In addition, radar elevation measurements may vary for different retracker algorithms, which determine the track point of the scattered echo power distribution. Since accurate...... knowledge of the reflection horizon is critical for sea ice thickness retrieval, validation data is necessary to investigate the penetration of radar waves into the snow for the upcoming CryoSat-2 mission. Furthermore, the combination of both optical and RF wavelengths might be used to derive snow thickness...

  7. Ship-borne electromagnetic induction sounding of sea ice thickness in the Arctic during summer 2003

    OpenAIRE

    Shirasawa,Kunio /Tateyama,Kazutaka /Takatsuka,Toru /Kawamura,Toshiyuki /Uto,Shotaro

    2006-01-01

    Measurements of ice thickness were carried out by a ship-borne electromagnetic induction instrument mounted on the R/V Xuelong during the Second Chinese National Arctic Research Expedition (CHINARE-2003) in summer 2003 in the Chukchi Sea. A 1-D multi-layer model, consisting of three layers of snow, ice and seawater, was used to calculate the total thickness of snow and sea ice. The time series of total thickness from 24 August to 7 September 2003 indicates that deformed and second-/multi-year...

  8. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning;

    1986-01-01

    Plutonium and americium have been measured in surface waters of the Greenland and Barents Seas and in the northern North Sea from 1980 through 1984. Measurements in water and biota, Fucus, Mytilus and Patella, were carried out in North-English and Scottish waters in 1982 and Fucus samples were...... plutonium from the latter to Spitsbergen waters. Fallout plutonium in Arctic waters has a residence time of the order of several years, while for Pu from Sellafield we estimate mean residence times of 11–15 months in Scottish waters and, tentatively, 1·5-3 y during transport from the North Channel (north...

  9. Plutonium and americium in arctic waters, the North Sea and Scottish and Irish coastal zones

    DEFF Research Database (Denmark)

    Hallstadius, L.; Aarkrog, Asker; Dahlgaard, Henning; Holm, E.; Boelskifte, S.; Duniec, S.; Persson, B.

    1986-01-01

    Plutonium and americium have been measured in surface waters of the Greenland and Barents Seas and in the northern North Sea from 1980 through 1984. Measurements in water and biota, Fucus, Mytilus and Patella, were carried out in North-English and Scottish waters in 1982 and Fucus samples were...... plutonium from the latter to Spitsbergen waters. Fallout plutonium in Arctic waters has a residence time of the order of several years, while for Pu from Sellafield we estimate mean residence times of 11–15 months in Scottish waters and, tentatively, 1·5-3 y during transport from the North Channel (north of...

  10. Review: Potential catastrophic reduction of sea ice in the western Arctic Ocean: Its impact on biogeochemical cycles and marine ecosystems

    Science.gov (United States)

    Harada, Naomi

    2016-01-01

    The reduction of sea ice in the Arctic Ocean, which has progressed more rapidly than previously predicted, has the potential to cause multiple environmental stresses, including warming, acidification, and strengthened stratification of the ocean. Observational studies have been undertaken to detect the impacts on biogeochemical cycles and marine ecosystems of these environmental stresses in the Arctic Ocean. Satellite analyses show that the reduction of sea ice has been especially great in the western Arctic Ocean. Observations and model simulations have both helped to clarify the impact of sea-ice reductions on the dynamics of ecosystem processes and biogeochemical cycles. In this review, I focus on the western Arctic Ocean, which has experienced the most rapid retreat of sea ice in the Arctic Ocean and, very importantly, has a higher rate of primary production than any other area of the Arctic Ocean owing to the supply of nutrient-rich Pacific water. I report the impact of the current reduction of sea ice on marine biogeochemical cycles in the western Arctic Ocean, including lower-trophic-level organisms, and identify the key mechanism of changes in the biogeochemical cycles, based on published observations and model simulations. The retreat of sea ice has enhanced primary production and has increased the frequency of appearance of mesoscale anticyclonic eddies. These eddies enhance the light environment and replenish nutrients, and they also represent a mechanism that can increase the rate of the biological pump in the Arctic Ocean. Various unresolved issues that require further investigation, such as biological responses to environmental stressors such as ocean acidification, are also discussed.

  11. Sea Ice Deformation Rates in the Arctic: from Wind-Driven Synoptic Variability to Seasonal Trends

    Science.gov (United States)

    Glowacki, O.; Herman, A.

    2012-12-01

    Deformation mechanisms of the Arctic Ocean ice sheet are characterized by high spatial and temporal variability, in which ice ridges and leads tend to be concentrated in elongated, narrow zones. Present state-of-the-art numerical models, especially those based on various versions of viscous-plastic rheology, are still far from perfection in terms of reproducing localized and intermittent characteristics of sea ice deformation. In this study, the relationship (and its variability) between scaling properties of sea ice deformation and 10-m wind speed is analyzed. We used NCEP-DOE Reanalysis 2 data to determine area-averaged atmospheric drag force. Gridded sea ice total deformation rates from Radarsat Geophysical Processor System (RGPS) data were obtained from the NASA Jet Propulsion Laboratory, with a time resolution of 3 days and a spatial resolution of 12.55 km. Our analysis covers 11 winter seasons from 1996/1997 to 2007/2008. We calculated the moments mq, L of probability distribution functions (pdfs) of total sea ice deformation rates for a range of spatial scales L. The logarithms of the moments are significantly correlated with basin-scale wind forcing, especially for low values of q (with Pearson correlation coefficient reaching 0.7). It can be well-described by simplified momentum equations and a very general rheology model. Furthermore, the strength of this relationship varies seasonally and reaches its minimum in March, due to changeable thickness and consolidation of the Arctic Ocean ice sheet. This effect is clearly seen in comparison with trend lines of time-varying values of moments. Finally, there is a positive trend in seasonally-averaged power of correlation, which is probably associated with decreasing area of the multi-year ice. As a result, the course of sea ice deformation process in the Arctic is a possible indicator of climate change.

  12. Impact Studies of a 2 C Global Warming on the Arctic Sea Ice Cover

    Science.gov (United States)

    Comiso, Josefino C.

    2004-01-01

    The possible impact of an increase in global temperatures of about 2 C, as may be caused by a doubling of atmospheric CO2, is studied using historical satellite records of surface temperatures and sea ice from late 1970s to 2003. Updated satellite data indicate that the perennial ice continued to decline at an even faster rate of 9.2 % per decade than previously reported while concurrently, the surface temperatures have steadily been going up in most places except for some parts of northern Russia. Surface temperature is shown to be highly correlated with sea ice concentration in the seasonal sea ice regions. Results of regression analysis indicates that for every 1 C increase in temperature, the perennial ice area decreases by about 1.48 x 10(exp 6) square kilometers with the correlation coefficient being significant but only -0.57. Arctic warming is estimated to be about 0.46 C per decade on average in the Arctic but is shown to be off center with respect to the North Pole, and is prominent mainly in the Western Arctic and North America. The length of melt has been increasing by 13 days per decade over sea ice covered areas suggesting a thinning in the ice cover. The length of melt also increased by 5 days per decade over Greenland, 7 days per decade over the permafrost areas of North America but practically no change in Eurasia. Statistically derived projections indicate that the perennial sea ice cover would decline considerably in 2025, 2035, and 2060 when temperatures are predicted by models to reach the 2 C global increase.

  13. Snow thickness retrieval over thick Arctic sea ice using SMOS satellite data

    Directory of Open Access Journals (Sweden)

    N. Maaß

    2013-12-01

    Full Text Available The microwave interferometric radiometer of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS mission measures at a frequency of 1.4 GHz in the L-band. In contrast to other microwave satellites, low frequency measurements in L-band have a large penetration depth in sea ice and thus contain information on the ice thickness. Previous ice thickness retrievals have neglected a snow layer on top of the ice. Here, we implement a snow layer in our emission model and investigate how snow influences L-band brightness temperatures and whether it is possible to retrieve snow thickness over thick Arctic sea ice from SMOS data. We find that the brightness temperatures above snow-covered sea ice are higher than above bare sea ice and that horizontal polarisation is more affected by the snow layer than vertical polarisation. In accordance with our theoretical investigations, the root mean square deviation between simulated and observed horizontally polarised brightness temperatures decreases from 20.9 K to 4.7 K, when we include the snow layer in the simulations. Although dry snow is almost transparent in L-band, we find brightness temperatures to increase with increasing snow thickness under cold Arctic conditions. The brightness temperatures' dependence on snow thickness can be explained by the thermal insulation of snow and its dependence on the snow layer thickness. This temperature effect allows us to retrieve snow thickness over thick sea ice. For the best simulation scenario and snow thicknesses up to 35 cm, the average snow thickness retrieved from horizontally polarised SMOS brightness temperatures agrees within 0.1 cm with the average snow thickness measured during the IceBridge flight campaign in the Arctic in spring 2012. The corresponding root mean square deviation is 5.5 cm, and the coefficient of determination is r2 = 0.58.

  14. Technetium-99 in the Nordic Seas and the Arctic Ocean 1970 - 2002: observations and model results

    International Nuclear Information System (INIS)

    Technetium-99 (99Tc) is a highly soluble, beta emitting anthropogenic radionuclide with a half-life of 213000 years. The primary source of 99Tc to the northern marine environment has been through controlled discharges from the nuclear reprocessing facilities at Sellafield (UK) and Cap la Hague (France) which have taken place over several decades and have seen two periods of peak discharge in the 1970's and the 1990's. In the Nordic Seas, 99Tc is detected along the Norwegian Coastal Current (NCC) and further north, in the Barents Sea and West Spitsbergen Current. The further pathways of 99Tc are a recirculation with the East Greenland Current in the Nordic Seas and an intrusion into the Arctic Ocean proper with advective timescales of up to several decades. In the Norwegian Research Council (NFR) funded research project RADNOR, two state-of-the-art numerical models are used to simulate the fate of 99Tc discharges into the marine environment: The hydrodynamic coupled ice-ocean model NAOSIM, forced with realistic atmospheric data and the NRPA assessment box model which is forced by a fixed circulation pattern, but resolves the movement of the radionuclides in several environmental compartments. An intercomparison of the NAOSIM and NRPA model simulations of the dispersal of 99Tc will be performed followed by a comparison of the model simulations with an observational database. The database encompasses as complete as possible the available measurements from the West-European shelf seas northward into the Arctic Ocean. Results from this work will help to provide a better understanding of the dispersion dynamics of 99Tc in the Nordic Seas and the Arctic Ocean. (author)

  15. In-situ calibration and validation of Cryosat-2 observations over arctic sea ice north of Svalbard

    DEFF Research Database (Denmark)

    Gerland, Sebastian; Renner, Angelika H. H.; Spreen, Gunnar;

    CryoSat-2's radar altimeter allows to observe the panArctic sea ice thickness up to 88°N on a monthly basis. However, calibration and validation are crucial to assess limitations and accuracy of the altimeter, and to better quantify the uncertainties involved in converting sea ice freeboard to...

  16. Autotrophic and heterotrophic activity in Arctic first-year sea-ice: Seasonal study from Marlene Bight, SW Greenland

    DEFF Research Database (Denmark)

    Søgaard, Dorte Haubjerg; Kristensen, Morten; Rysgaard, Søren;

    2010-01-01

    We present a study of autotrophic and heterotrophic activities of Arctic sea ice (Malene Bight, SW Greenland) as measured by 2 different approaches: (1) standard incubation techniques ((HCO3-)-C-14 and [H-3] thymidine incubation) on sea ice cores brought to the laboratory and (2) cores incubated ...

  17. Identification of paleo Arctic winter sea ice limits and the marginal ice zone: Optimised biomarker-based reconstructions of late Quaternary Arctic sea ice

    Science.gov (United States)

    Belt, Simon T.; Cabedo-Sanz, Patricia; Smik, Lukas; Navarro-Rodriguez, Alba; Berben, Sarah M. P.; Knies, Jochen; Husum, Katrine

    2015-12-01

    during the early Holocene, but this interpretation requires further investigation. In contrast, IP25 and HBI III data obtained from a core from the northern Barents Sea demonstrate that seasonal sea ice prevailed throughout the Holocene, but with a gradual shift from winter ice edge conditions during the early Holocene to more sustained ice cover in the Neoglacial; a directional shift that has undergone a reverse in the last ca. 150 yr according to observational records. Our combined surface and downcore datasets suggest that combined analysis of IP25 and HBI III can provide information on temporal variations in the position of the maximum (winter) Arctic sea ice extent, together with insights into sea ice seasonality by characterisation of the MIZ. Combining IP25 with HBI III in the form of the previously proposed PIP25 index yields similar outcomes to those obtained using brassicasterol as the phytoplankton marker. Importantly, however, some problems associated with use of a variable balance factor employed in the PIP25 calculation, are potentially alleviated using HBI III.

  18. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice

    Science.gov (United States)

    Moore, Christopher W.; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M.; Douglas, Thomas A.; Richter, Andreas; Nghiem, Son V.

    2014-02-01

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  19. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, C.; Arndt, S.; Nicolaus, M.; Perovich, D. K.; Jakuba, M.; Suman, S.; Elliott, S.; Whitcomb, L. L.; McFarland, C.; Gerdes, R.; Boetius, A.

    2015-12-01

    The changes in physical properties of sea ice such as decreased thickness and increased melt pond cover observed over the last decades severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role in the amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to undertake challenging research at the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance onboard the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely-piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three-dimensional under-ice topography and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties during summer on the spatial variability of light transmittance. Results show that surface properties dominate the spatial distribution of the under-ice light field on small scales (<1000m²), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we suggest an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  20. Influence of ice thickness and surface properties on light transmission through Arctic sea ice

    Science.gov (United States)

    Katlein, Christian; Arndt, Stefanie; Nicolaus, Marcel; Perovich, Donald K.; Jakuba, Michael V.; Suman, Stefano; Elliott, Stephen; Whitcomb, Louis L.; McFarland, Christopher J.; Gerdes, Rüdiger; Boetius, Antje; German, Christopher R.

    2015-09-01

    The observed changes in physical properties of sea ice such as decreased thickness and increased melt pond cover severely impact the energy budget of Arctic sea ice. Increased light transmission leads to increased deposition of solar energy in the upper ocean and thus plays a crucial role for amount and timing of sea-ice-melt and under-ice primary production. Recent developments in underwater technology provide new opportunities to study light transmission below the largely inaccessible underside of sea ice. We measured spectral under-ice radiance and irradiance using the new Nereid Under-Ice (NUI) underwater robotic vehicle, during a cruise of the R/V Polarstern to 83°N 6°W in the Arctic Ocean in July 2014. NUI is a next generation hybrid remotely operated vehicle (H-ROV) designed for both remotely piloted and autonomous surveys underneath land-fast and moving sea ice. Here we present results from one of the first comprehensive scientific dives of NUI employing its interdisciplinary sensor suite. We combine under-ice optical measurements with three dimensional under-ice topography (multibeam sonar) and aerial images of the surface conditions. We investigate the influence of spatially varying ice-thickness and surface properties on the spatial variability of light transmittance during summer. Our results show that surface properties such as melt ponds dominate the spatial distribution of the under-ice light field on small scales (<1000 m2), while sea ice-thickness is the most important predictor for light transmission on larger scales. In addition, we propose the use of an algorithm to obtain histograms of light transmission from distributions of sea ice thickness and surface albedo.

  1. Snow and sea ice thermodynamics in the Arctic: Model validation and sensitivity study against SHEBA data

    Institute of Scientific and Technical Information of China (English)

    CHENG Bin; Timo Vihma; ZHANG Zhan-hai; LI Zhi-jun; WU Hui-ding

    2008-01-01

    Evolution of the Arctic sea ice and its snow cover during the SHEBA year were simulated by applying a high-resolution thermodynamic snow/ice model (HIGHTSI). Attention was paid to the impact of albedo on snow and sea ice mass balance, effect of snow on total ice mass balance, and the model vertical resolution.The SHEBA annual simulation was made applying the best possible external forcing data set created by the Sea Ice Model Intercomparison Project. The HIGHTSI control run reasonably reproduced the observed snow and ice thickness. A number of albedo schemes were incorporated into HIGHTSI to study the feedhack processes between the albedo and snow and ice thickness. The snow thickness turned out to be an essential variable in the albedo parametetization. Albedo schemes dependent on the surface temperature were liable to excessive positive feedback effects generated by errors in the modelled surface temperature. The superimposed ice formation should be taken into account for the annual Arctic sea ice mass balance.

  2. The sensitivity of Arctic sea ice production to shelf flooding during the early Holocene: a modelling study

    Science.gov (United States)

    Blaschek, M.; Renssen, H.

    2012-04-01

    During the last deglaciation, the global sea-level started rising, changing the coastlines from an early Holocene stand (40 m lower than today at approximately 10 kyr BP, Siddall et al., 2003) to modern day coastlines. Proxy evidence shows that this transgression occurred non-uniformly over the globe. For instance, Bauch et al. (2001) report for the Laptev Sea (Arctic Ocean), that the modern coastline was only established at 5 kyr BP after a fast transgression from the early Holocene, leading to a flooding of the extensive shelf area. This shelf area is presently regarded to be an important production zone of Arctic sea ice, playing an important role in the dynamics of sea ice in the Arctic, as well as its export to the Nordic Seas along the East Greenland Current (EGC). Through this sea ice export, changes in the Laptev Sea shelf area during the Holocene could potentially have had a substantial impact on the sea surface conditions of the EGC, and the Denmark Strait, which is known to be sensitive to sea ice. This is consistent with a rapid increase in sea ice export through the EGC around 5 kyr BP as reported by Jennings et al. (2002). In this study we investigate the impact of this Arctic shelf flooding on sea ice production in the Holocene, and on the climate of the Nordic Seas in the LOVECLIM1.2 global ocean-atmosphere-vegetation model. We present results of several experiments in which we study the sensitivity of Arctic sea ice production to various Arctic shelf areas under early Holocene conditions (9 kyr BP). We approach this by changing the land-sea mask to represent different lower-than-present sea-level coastlines. For example, we perform experiments with the Last Glacial Maximum (LGM) land-sea mask, representing a lowering of the sea-level by 120 m, while keeping other forcings at 9 kyr BP. A further step is to modify selected areas in the Arctic, such as the Laptev Sea area, to examine the importance of different areas. Our results help to explain long

  3. Robust seasonal cycle of Arctic sea ice area through tipping point in amplitude

    CERN Document Server

    Ditlevsen, Peter D

    2012-01-01

    The variation in the Arctic sea ice is dominated by the seasonal cycle with little inter-annual correlation. Though the mean sea ice area has decreased steadily in the period of satellite observations, a dramatic transition in the dynamics was initiated with the record low September ice area in 2007. The change is much more pronounced in the amplitude of the seasonal cycle than in the annual mean ice area. The shape of the seasonal cycle is surprisingly constant for the whole observational record despite the general decline. A simple explanation, independent of the increased greenhouse warming, for the shape of the seasonal cycle is offered. Thus the dramatic climate change in arctic ice area is seen in the amplitude of the cycle and to a lesser extend the annual mean and the summer ice extend. The reason why the climate change is most pronounced in the amplitude is related to the rapid reduction in perennial ice and thus a thinning of the ice. The analysis shows that a tipping point for the arctic ice area w...

  4. Linkages between the circulation and distribution of dissolved organic matter in the White Sea, Arctic Ocean

    Science.gov (United States)

    Pavlov, Alexey K.; Stedmon, Colin A.; Semushin, Andrey V.; Martma, Tõnu; Ivanov, Boris V.; Kowalczuk, Piotr; Granskog, Mats A.

    2016-05-01

    The White Sea is a semi-enclosed Arctic marginal sea receiving a significant loading of freshwater (225-231 km3 yr-1 equaling an annual runoff yield of 2.5 m) and dissolved organic matter (DOM) from river run-off. We report discharge weighed values of stable oxygen isotope ratios (δ18O) of -14.0‰ in Northern Dvina river for the period 10 May-12 October 2012. We found a significant linear relationship between salinity (S) and δ18O (δ18O=-17.66±0.58+0.52±0.02×S; R2=0.96, N=162), which indicates a dominant contribution of river water to the freshwater budget and little influence of sea ice formation or melt. No apparent brine additions from sea-ice formation is evident in the White Sea deep waters as seen from a joint analysis of temperature (T), S, δ18O and aCDOM(350) data, confirming previous suggestions about strong tidal induced vertical mixing in winter being the likely source of the deep waters. We investigated properties and distribution of colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) in the White Sea basin and coastal areas in summer. We found contrasting DOM properties in the inflowing Barents Sea waters and White Sea waters influenced by terrestrial runoff. Values of absorption by CDOM at 350 nm (aCDOM(350)) and DOC (exceeding 10 m-1 and 550 μmol l-1, respectively) in surface waters of the White Sea basin are higher compared to other river-influenced coastal Arctic domains. Linear relationship between S and CDOM absorption, and S and DOC (DOC=959.21±52.99-25.80±1.79×S; R2=0.85; N=154) concentrations suggests conservative mixing of DOM in the White Sea. The strongest linear correlation between CDOM absorption and DOC was found in the ultraviolet (DOC=56.31±2.76+9.13±0.15×aCDOM(254); R2=0.99; N=155), which provides an easy and robust tool to trace DOC using CDOM absorption measurements as well as remote sensing algorithms. Deviations from this linear relationship in surface waters likely indicate contribution from

  5. Global warming effects on the Arctic and Sub-Arctic Seas

    OpenAIRE

    Nihoul, J.C.J.

    2009-01-01

    After a rather hydrostatic approach to global warming (mean earth temperature increasing, ice melting, sea level raising) one came to realize that the effects of global wan-ning were more of a hydrodynamic nature and that the ocean dynamics and its modifications in response to global warming constituted an essential factor. Taking into account the effect of global warming on ocean temperature distribution and currents contributed to a large extent to clarify the problem. The next step was obv...

  6. New Visualizations Highlight New Information on the Contrasting Arctic and Antarctic Sea-Ice Trends Since the Late 1970s

    Science.gov (United States)

    Parkinson, Claire L.; DiGirolamo, Nicolo E.

    2016-01-01

    Month-by-month ranking of 37 years (1979-2015) of satellite-derived sea-ice extents in the Arctic and Antarctic reveals interesting new details in the overall trends toward decreasing sea-ice coverage in the Arctic and increasing sea-ice coverage in the Antarctic. The Arctic decreases are so definitive that there has not been a monthly record high in Arctic sea-ice extents in any month since 1986, a time period during which there have been 75 monthly record lows. The Antarctic, with the opposite but weaker trend toward increased ice extents, experienced monthly record lows in 5 months of 1986, then 6 later monthly record lows scattered through the dataset, with the last two occurring in 2006, versus 45 record highs since 1986. However, in the last three years of the 1979-2015 dataset, the downward trends in Arctic sea-ice extents eased up, with no new record lows in any month of 2013 or 2014 and only one record low in 2015,while the upward trends in Antarctic ice extents notably strengthened, with new record high ice extents in 4 months (August-November) of 2013, in 6 months (April- September) of 2014, and in 3 months (January, April, and May) of 2015. Globally, there have been only 3 monthly record highs since 1986 (only one since 1988), whereas there have been 43 record lows, although the last record lows (in the 1979-2015 dataset) occurred in 2012.

  7. Observations of Recent Arctic Sea Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy Exchange and Ice Production

    Science.gov (United States)

    Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.

    2011-01-01

    Using recently developed techniques we estimate snow and sea ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic sea ice model to calculate ocean-atmosphere heat exchange and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the sea ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in sea ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of sea ice. The anomalously low sea ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that sea ice losses are now playing a role in increasing surface air temperatures in the Arctic.

  8. Radioactive contamination of the Arctic Region, Baltic Sea, and the Sea of Japan from activities in the former Soviet Union

    International Nuclear Information System (INIS)

    Contamination of the Arctic regions of northern Europe and Russia, as well as the Sea of Japan, may become a potential major hazard to the ecosystem of these large areas. Widespread poor radioactive waste management practices from nuclear fuel cycle activities in the former Soviet Union have resulted in direct discharges to this area as well as multiple sources that may continue to release additional radioactivity. Information on the discharges of radioactive materials has become more commonplace in the last year, and a clearer picture is emerging of the scale of the contamination. Radioactivity in the Arctic oceans is now reported to be four times higher than would be derived from fallout from weapons tests. Although the characteristics and extent of the contamination are not well known, it has been stated that the contamination in the Arctic may range from 1 to 3.5 billion curies. As yet, no scientific sampling or measurement program has occurred that can verify the amount or extent of the contamination, or its potential impact on the ecosystem

  9. Late Quaternary sea-ice history of northern Fram Strait/Arctic Ocean

    Science.gov (United States)

    Kremer, Anne; Stein, Rüdiger; Fahl, Kirsten; Matthießen, Jens; Forwick, Matthias; O'Regan, Matt

    2016-04-01

    One of the main characteristics of the Arctic Ocean is its seasonal to perennial sea-ice cover. Variations of sea-ice conditions affect the Earth's albedo, primary production, rate of deep-water etc.. During the last decades, a drastic decrease in sea ice has been recorded, and the causes of which, i.e., natural vs. anthropogenic forcings, and their relevance within the global climate system, are subject of intense scientific and societal debate. In this context, records of past sea-ice conditions going beyond instrumental records are of major significance. These records may help to better understand the processes controlling natural sea-ice variability and to improve models for forecasts of future climatic conditions. During RV Polarstern Cruise PS92 in summer 2015, a 860 cm long sediment core (PS92/039-2) was recovered from the eastern flank of Yermak Plateau north of the Svalbard archipelago (Peeken, 2015). Based on a preliminary age model, this sediment core probably represents the time interval from MIS 6 to MIS 1. This core, located close to the modern summer ice edge, has been selected for reconstruction of past Arctic sea-ice variability based on specific biomarkers. In this context, we have determined the ice-algae-derived sea-ice proxy IP25 (Belt et al., 2007), in combination with other biomarkers indicative for open-water conditions (cf., Müller et al., 2009, 2011). Furthermore, organic carbon fluxes were differentiated using specific biomarkers indicative for marine primary production (brassicasterol, dinosterol) and terrigenous input (campesterol, β-sitosterol). In this poster, preliminary results of our organic-geochemical and sedimentological investigations are presented. Distinct fluctuations of these biomarkers indicate several major, partly abrupt changes in sea-ice cover in the Yermak Plateau area during the late Quaternary. These changes are probably linked to changes in the inflow of Atlantic Water along the western coastline of Svalbard into

  10. Fluctuations and seasonality in the Arctic sea ice area: A sudden regime shift in 2007?

    CERN Document Server

    Ditlevsen, Peter D

    2013-01-01

    Since the beginning of satellite observations, the Arctic sea ice extent has shown a downward trend. The decline has been weaker in the March maximum than in the September minimum and masked by inter-annual fluctuations. One of the less understood aspects of the sea ice response is the persistence times for fluctuations, which could indicate the dominant physical processes behind the sea ice decline. To determine the fluctuation persistence times, however, it is necessary to first filter out the dominant effect of the seasonal cycle. In the current study, we thus develop a statistical model, which accurately decomposes the ice area changes into: (1) a variable seasonal cycle component with a constant shape and (2) a residual (short term) fluctuation. We find the persistence time of fluctuations to be only about three weeks, independently from season, which is substantially shorter than previously reported. Such short time scale points to the dominance of atmospheric forcing. The shape of the seasonal cycle is...

  11. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic

    Science.gov (United States)

    Becagli, S.; Lazzara, L.; Marchese, C.; Dayan, U.; Ascanius, S. E.; Cacciani, M.; Caiazzo, L.; Di Biagio, C.; Di Iorio, T.; di Sarra, A.; Eriksen, P.; Fani, F.; Giardi, F.; Meloni, D.; Muscari, G.; Pace, G.; Severi, M.; Traversi, R.; Udisti, R.

    2016-07-01

    This study examines the relationships linking methanesulfonic acid (MSA, arising from the atmospheric oxidation of the biogenic dimethylsulfide, DMS) in atmospheric aerosol, satellite-derived chlorophyll a (Chl-a), and oceanic primary production (PP), also as a function of sea ice melting (SIM) and extension of the ice free area in the marginal ice zone (IF-MIZ) in the Arctic. MSA was determined in PM10 samples collected over the period 2010-2012 at two Arctic sites, Ny Ålesund (78.9°N, 11.9°E), Svalbard islands, and Thule Air Base (76.5°N, 68.8°W), Greenland. PP is calculated by means of a bio-optical, physiologically based, semi-analytical model in the potential source areas located in the surrounding oceanic regions (Barents and Greenland Seas for Ny Ålesund, and Baffin Bay for Thule). Chl-a peaks in May in the Barents sea and in the Baffin Bay, and has maxima in June in the Greenland sea; PP follows the same seasonal pattern of Chl-a, although the differences in absolute values of PP in the three seas during the blooms are less marked than for Chl-a. MSA shows a better correlation with PP than with Chl-a, besides, the source intensity (expressed by PP) is able to explain more than 30% of the MSA variability at the two sites; the other factors explaining the MSA variability are taxonomic differences in the phytoplanktonic assemblages, and transport processes from the DMS source areas to the sampling sites. The taxonomic differences are also evident from the slopes of the correlation plots between MSA and PP: similar slopes (in the range 34.2-36.2 ng m-3of MSA/(gC m-2 d-1)) are found for the correlation between MSA at Ny Ålesund and PP in Barents Sea, and between MSA at Thule and PP in the Baffin Bay; conversely, the slope of the correlation between MSA at Ny Ålesund and PP in the Greenland Sea in summer is smaller (16.7 ng m-3of MSA/(gC m-2 d-1)). This is due to the fact that DMS emission from the Barents Sea and Baffin Bay is mainly related to the MIZ

  12. A Low Order Theory of Arctic Sea Ice Stability

    CERN Document Server

    Moon, W

    2011-01-01

    We analyze the stability of a low-order coupled sea ice and climate model and extract the essential physics governing the time scales of response as a function of greenhouse gas forcing. Under present climate conditions the stability is controlled by longwave radiation driven heat conduction. However, as greenhouse gas forcing increases and the ice cover decays, the destabilizing influence of ice-albedo feedback acts on equal footing with longwave stabilization. Both are seasonally out of phase and as the system warms towards a seasonal ice state these effects, which underlie the bifurcations between climate states, combine to extend the intrinsic relaxation time scale from ~ 2 yr to 5 yr.

  13. Pathways of Atlantic Waters into the Arctic Ocean: Eddy-permitting ocean and sea ice simulations

    Science.gov (United States)

    Wekerle, Claudia; von Appen, Wilken-Jon; Danilov, Sergey; Jung, Thomas; Kanzow, Torsten; Schauer, Ursula; Timmermann, Ralph; Wang, Qiang

    2015-04-01

    Fram Strait is the only deep gateway connecting the central Arctic with the North Atlantic. Boundary currents on each side are responsible for the exchange of water masses between the Arctic and North Atlantic. The East Greenland Current (EGC) carries fresh and cold Arctic waters and sea ice southward, whereas the West Spitsbergen Current (WSC) carries warm Atlantic Waters (AW) into the Arctic Ocean. The complex topography in Fram Strait leads to a branching of the northward flowing WSC, with one branch recirculating between 78°N and 81°N which then joins the EGC. To date, the dynamics as well as the precise location of this recirculation are unclear. The goal of this research project is to quantify the amount and variability of AW which recirculates immediately in Fram Strait, and to investigate the role of atmospheric forcing and oceanic meso-scale eddies for the recirculation. We use simulations carried out with a global configuration of the Finite Element Sea ice-Ocean Model (FESOM) at eddy-permitting scales. The advantage of this model is the finite element discretization of the governing equations, which allows us to locally refine the mesh in areas of interest and keep it coarse in other parts of the global oceans without the need for traditional nesting. Here we will show the first results of the model validation. The model has ~9 km resolution in the Nordic Seas and Fram Strait and 1 deg south of 50°N. We assess the model capabilities in simulating the ocean circulation in the Nordic Seas and Fram Strait by comparing with the available observational data, e.g. with data from the Fram Strait oceanographic mooring array. The ocean volume and heat transport from the Atlantic Ocean into the Nordic Seas and at the Fram Strait are analyzed. Our results show that the model can capture some of the observed key ocean properties in our region of interest, while some tuning is required to further improve the model. In the next phase of this project we will focus

  14. A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas

    Science.gov (United States)

    Fukumori, Ichiro; Wang, Ou; Llovel, William; Fenty, Ian; Forget, Gael

    2015-05-01

    Across the Arctic Ocean and the Nordic Seas, a basin-wide mode of ocean bottom pressure and sea level fluctuation is identified using satellite and in situ observations in conjunction with a global ocean circulation model and its adjoint. The variation extends across the interconnected deep ocean basins of these semi-enclosed Arctic seas, collectively called the Arctic Mediterranean, with spatially near-uniform amplitude and phase. The basin-wide fluctuation is barotropic and dominates the region's large-scale variability from sub-monthly to interannual timescales. The fluctuation results from bifurcating coastally trapped waves generated by winds along the continental slopes of the Arctic Mediterranean and its neighboring seas, including the North Atlantic Ocean. The winds drive Ekman transport across the large bathymetric gradients, forcing mass divergence between the shallow coastal area and the deep ocean basins and creating ocean bottom pressure anomalies of opposite signs in the two regions. The anomalies rapidly propagate away as barotropic coastally trapped waves with the coast and continental slope as respective boundaries. The waves subsequently bifurcate at the shallow straits connecting the Arctic Mediterranean with the rest of the globe. The straits transmit the shallow anomalies but not the deep variations, thereby inhibiting the anomalies' mutual cancelation by geographically separating the two. Anomalies that enter the deep Arctic basins equilibrate uniformly across the domain characterized by a homogeneous depth-integrated planetary potential vorticity distribution. The potential vorticity's steep gradient that borders the basins shields the region from neighboring shallow variations, giving rise to the observed spatially confined fluctuation. Compensating anomalies outside the Arctic adjust similarly across the rest of the globe but are comparatively negligible in amplitude because of the global ocean's larger area relative to that of the deep

  15. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  16. Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Yamamoto

    2012-06-01

    Full Text Available The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state in the Arctic Ocean have been caused by the melting of sea ice as well as by an increase in the concentration of atmospheric carbon dioxide. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. The observed recent Arctic sea-ice loss has been more rapid than projected by many of the climate models that contributed to the Intergovernmental Panel on Climate Change Fourth Assessment Report. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an Earth system model with different sea-ice reduction rates under similar CO2 emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO2 concentration reaches 513 (606 ppm in year 2046 (2056 in new (old version. At an atmospheric CO2 concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.1 and 0.21 respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO2 uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea

  17. Interplay between linear, dissipative and permanently critical mechanical processes in Arctic sea ice

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2010-08-01

    Full Text Available Mechanical processes in the Arctic ice pack result in fragmented sea ice cover, the regular geometry of which could be described in main features in terms of the conventional mechanics. However, the size distribution of sea ice floes does not exhibit the random (poissonian-like statistics and follows the power law typical for self-similar (fractal structures. The analysis of ice floe oscillations in the frequency range specific for cracking, shearing and stick-slip motion evidences the self-organized dynamics of sea ice fracturing, which manifests itself in scaling distributions of both the discrete energy discharges in fracture events and the recurrence times between that one. So determined space-time-energy self-similarity characterises the ice pack as the non-equilibrium, nonlinear thermodynamic system where the synergic relations are established through conventional long propagating wave/oscillations. The presented experimental data were collected at the Russian ice-research camp "North Pole 35" drifting on the Arctic ice pack in 2008.

  18. Radar and infrared remote sensing of terrain, water resources, arctic sea ice, and agriculture

    Science.gov (United States)

    Biggs, A. W.

    1983-01-01

    Radar range measurements, basic waveforms of radar systems, and radar displays are initially described. These are followed by backscatter from several types of terrain and vegetation as a function of frequency and grazing angle. Analytical models for this backscatter include the facet models of radar return, with range-angle, velocity-range, velocity-angle, range, velocity, and angular only discriminations. Several side-looking airborne radar geometries are presented. Radar images of Arctic sea ice, fresh water lake ice, cloud-covered terrain, and related areas are presented to identify applications of radar imagery. Volume scatter models are applied to radar imagery from alpine snowfields. Short pulse ice thickness radar for subsurface probes is discussed in fresh-water ice and sea ice detection. Infrared scanners, including multispectral, are described. Diffusion of cold water into a river, Arctic sea ice, power plant discharges, volcanic heat, and related areas are presented in thermal imagery. Multispectral radar and infrared imagery are discussed, with comparisons of photographic, infrared, and radar imagery of the same terrain or subjects.

  19. Projected polar bear sea ice habitat in the Canadian Arctic Archipelago.

    Directory of Open Access Journals (Sweden)

    Stephen G Hamilton

    Full Text Available Sea ice across the Arctic is declining and altering physical characteristics of marine ecosystems. Polar bears (Ursus maritimus have been identified as vulnerable to changes in sea ice conditions. We use sea ice projections for the Canadian Arctic Archipelago from 2006 - 2100 to gain insight into the conservation challenges for polar bears with respect to habitat loss using metrics developed from polar bear energetics modeling.Shifts away from multiyear ice to annual ice cover throughout the region, as well as lengthening ice-free periods, may become critical for polar bears before the end of the 21st century with projected warming. Each polar bear population in the Archipelago may undergo 2-5 months of ice-free conditions, where no such conditions exist presently. We identify spatially and temporally explicit ice-free periods that extend beyond what polar bears require for nutritional and reproductive demands.Under business-as-usual climate projections, polar bears may face starvation and reproductive failure across the entire Archipelago by the year 2100.

  20. Waveform classification of airborne synthetic aperture radar altimeter over Arctic sea ice

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2013-08-01

    Full Text Available Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat-2 was launched in 2010 carrying a Ku-band radar altimeter (SIRAL designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types have been analyzed. A set of parameters has been defined to characterize the differences in strength and width of the returned power waveforms. With a Bayesian-based method, it is possible to classify about 80% of the waveforms from three parameters: maximum of the returned power waveform, the trailing edge width and pulse peakiness. Furthermore, the maximum of the power waveform can be used to reduce the number of false detections of leads, compared to the widely used pulse peakiness parameter. For the pulse peakiness the false classification rate is 12.6% while for the power maximum it is reduced to 6.5%. The ability to distinguish between different ice types and leads allows us to improve the freeboard retrieval and the conversion from freeboard into sea ice thickness, where surface type dependent values for the sea ice density and snow load can be used.

  1. Waveform analysis of airborne synthetic aperture radar altimeter over Arctic sea ice

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2013-03-01

    Full Text Available Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat was launched in 2010 carrying a Ku-band Radar Altimeter (SIRAL designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types has been analyzed. A set of parameters has been defined to characterize the difference in strength and width of the returned power waveforms. With a Bayesian based method it is possible to classify about 80% of the waveforms by three parameters: maximum of the returned power echo, the trailing edge width and pulse peakiness. Furthermore, the radar power echo maximum can be used to minimize the rate of false detection of leads compared to the widely used Pulse Peakiness parameter. The possibility to distinguish between different ice types and open water allows to improve the freeboard retrieval and the conversion into sea ice thickness where surface type dependent values for the sea ice density and snow load can be used.

  2. Comparison of air-sea fluxes of CO2 in the Southern Ocean and the western Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    CHEN Liqi; GAO Zhongyong; YANG Xulin; WANG Weiqiang

    2004-01-01

    The data were collected during Chinese Arctic and Antarctic Expeditions in the western Arctic Ocean and the marginal sea ice zone (MSIZ) of the Southern Ocean, respectively in the boreal summer from July to September of 1999 and in the austral summer from December of 1999 to January of 2000. The concentrations of CO2 in surface water of the survey regions would mostly present lower than those in the atmosphere. A significant biological driving force could also been observed in summer waters in both of the above oceans. Air to sea CO2 fluxes were also calculated to compare oceanic uptake capacity of CO2 in both oceans with the world oceans using Liss, Wanninkhof,and Jacobs' s methods. The averaged CO2 fluxes of air to sea in the western Arctic Ocean or in the MSIZ of the Southern Ocean doubled that in the world oceans.

  3. Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM

    Directory of Open Access Journals (Sweden)

    N. Goldenson

    2012-09-01

    Full Text Available The presence of light-absorbing aerosol particles deposited on arctic snow and sea ice influences the surface albedo, causing greater shortwave absorption, warming, and loss of snow and sea ice, lowering the albedo further. The Community Earth System Model version 1 (CESM1 now includes the radiative effects of light-absorbing particles in snow on land and sea ice and in sea ice itself. We investigate the model response to the deposition of black carbon and dust to both snow and sea ice. For these purposes we employ a slab ocean version of CESM1, using the Community Atmosphere Model version 4 (CAM4, run to equilibrium for year 2000 levels of CO2 and fixed aerosol deposition. We construct experiments with and without aerosol deposition, with dust or black carbon deposition alone, and with varying quantities of black carbon and dust to approximate year 1850 and 2000 deposition fluxes. The year 2000 deposition fluxes of both dust and black carbon cause 1–2 °C of surface warming over large areas of the Arctic Ocean and sub-Arctic seas in autumn and winter and in patches of Northern land in every season. Atmospheric circulation changes are a key component of the surface-warming pattern. Arctic sea ice thins by on average about 30 cm. Simulations with year 1850 aerosol deposition are not substantially different from those with year 2000 deposition, given constant levels of CO2. The climatic impact of particulate impurities deposited over land exceeds that of particles deposited over sea ice. Even the surface warming over the sea ice and sea ice thinning depends more upon light-absorbing particles deposited over land. For CO2 doubled relative to year 2000 levels, the climate impact of particulate impurities in snow and sea ice is substantially lower than for the year 2000 equilibrium simulation.

  4. The distribution of radiocesium and plutonium in sea ice-entrained arctic sediments in relation to potential sources and sinks

    International Nuclear Information System (INIS)

    Gamma counting of a range of grain size fractions of sediments entrained in Arctic Ocean sea ice indicate that the wide range of radiocesium activities that are observed in bulk samples are primarily a function of the geographical origin of the sediment, rather than mineral composition, or physical processes that increase the content of fine clays in sediments. Plutonium isotope ratios (240Pu:239Pu) of sea ice sediments are consistent with an ultimate origin of the plutonium from bomb fallout (240Pu:239Pu=similar0·18), and these sediment ratios differ significantly in plutonium isotope ratios from deep sea sediments of the Arctic Ocean. Much lower plutonium activities were observed in deep sea sediments relative to the sea ice entrained sediments. These differences in isotopic ratios indicate that on decadal scales, sedimentation of bomb fallout plutonium is not the sole source of plutonium to deep Arctic Ocean sediments. The large differences in total plutonium activity between some of the sea ice entrained sediments and all of the deep Arctic Ocean sediments also suggest that the total flux of plutonium from sea ice entrained sediments to the deep sea may be relatively small. Radiocesium activity in the sea ice entrained sediments is well correlated with total plutonium abundance, but the best-fit regression line does not pass through the origin, indicating that a small secondary source of cesium (3 to 9 Bq kg-1 dry weight) that is free of plutonium may contribute to the radiocesium activity observed in sediments entrained in Arctic Ocean sea ice. Based upon observations of carbon:nitrogen weight/weight ratios in excess of 20 in the organic carbon fraction, together with δ13C values less than -23%, several of the sea ice entrained sediments show indications of estuarine origin. However, these specific samples typically have low radionuclide burdens. Consideration of the low smectite content (sea ice sediments and prevailing

  5. Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE

    DEFF Research Database (Denmark)

    Forsberg, René; Skourup, Henriette

    2005-01-01

    coverage of multi-year sea-ice; however, comparison to an airborne lidar underflight north of Greenland shows that the lowest-level filtering scheme may introduce a bias. We finally use the ICESat and GRACE results to derive new gravity anomalies by Fourier inversion. The satellite-only gravity field shows...... all major tectonic features of the Arctic Ocean, and has an accuracy of 6 mGal compared to recent airborne gravity data, illustrating the usefulness of ICESat data for gravity field determination....

  6. Halogen-based reconstruction of Russian Arctic sea ice area from the Akademii Nauk ice core (Severnaya Zemlya)

    Science.gov (United States)

    Spolaor, A.; Opel, T.; McConnell, J. R.; Maselli, O. J.; Spreen, G.; Varin, C.; Kirchgeorg, T.; Fritzsche, D.; Saiz-Lopez, A.; Vallelonga, P.

    2016-01-01

    The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere-ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic). The chemistry of halogens bromine (Br) and iodine (I) is strongly active and influenced by sea ice dynamics, in terms of physical, chemical and biological process. Bromine reacts on the sea ice surface in autocatalyzing "bromine explosion" events, causing an enrichment of the Br / Na ratio and hence a bromine excess (Brexc) in snow compared to that in seawater. Iodine is suggested to be emitted from algal communities growing under sea ice. The results suggest a connection between Brexc and spring sea ice area, as well as a connection between iodine concentration and summer sea ice area. The correlation coefficients obtained between Brexc and spring sea ice (r = 0.44) as well as between iodine and summer sea ice (r = 0.50) for the Laptev Sea suggest that these two halogens could become good candidates for extended reconstructions of past sea ice changes in the Arctic.

  7. The Hydromedusae and its distribution in Chukchi Sea and adjacent southern edge waters of Canada Basin, Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    张金标; 林茂

    2001-01-01

    The present paper is based on materials collected in Chukchi Sea and adjacent southern edge waters of Canada Basin, Arctic Ocean during the period from July to August 1999 on the icebreaker, the R/V “Xuelong”, by the Chinese First Arctic Scientific Expedition. Totally, 8 species of pelagic Hydromedusae were identified, of which 4 species belonged to Anthomedusae, 2 species to Leptomedusae, 1 species to Trachymedusae and 1 species to Narcomedusae, the Neoturris breviconis is recorded for the first time in Chukchi Sea. Their principal morphological characteristics are described and illustrated. The 8 species of Hydromedusae occurring in the Chukchi Sea were all cold water species, of which 6 species belong to neritic species and 2 species to ocean species. According to the geographic distribution of species, they may be divided into three groups: Arctic species, Arctic-boreal species and Boreal-temperate species. From the view-point of zoogeography, species from these waters belong to the Arctic fauna.The abundance of Hydromedusae in Chukchi Sea was generally low, with a mean value of 108 ind.*10-2*m-3. Rathkea octopunctata and Aglantha digitale were dominant species. From the view-point of vertical distribution Aglantha digitale is inhabiting in the depth of 0 300 m and with the maximum in the depth of 50 m to 100 m.

  8. Arctic Sea Ice Freeboard from Icebridge Acquisitions in 2009: Estimates and Comparisons with ICEsat

    Science.gov (United States)

    Kwok, R.; Cunningham, Glenn F.; Manizade, S. S.; Krabill, W. B.

    2012-01-01

    During the spring of 2009, the Airborne Topographic Mapper (ATM) system on the IceBridge mission acquired cross-basin surveys of surface elevations of Arctic sea ice. In this paper, the total freeboard derived from four 2000 km transects are examined and compared with those from the 2009 ICESat campaign. Total freeboard, the sum of the snow and ice freeboards, is the elevation of the air-snow interface above the local sea surface. Prior to freeboard retrieval, signal dependent range biases are corrected. With data from a near co-incident outbound and return track on 21 April, we show that our estimates of the freeboard are repeatable to within 4 cm but dependent locally on the density and quality of sea surface references. Overall difference between the ATM and ICESat freeboards for the four transects is 0.7 (8.5) cm (quantity in bracket is standard deviation), with a correlation of 0.78 between the data sets of one hundred seventy-eight 50 km averages. This establishes a level of confidence in the use of ATM freeboards to provide regional samplings that are consistent with ICESat. In early April, mean freeboards are 41 cm and 55 cm over first year and multiyear sea ice (MYI), respectively. Regionally, the lowest mean ice freeboard (28 cm) is seen on 5 April where the flight track sampled the large expanse of seasonal ice in the western Arctic. The highest mean freeboard (71 cm) is seen in the multiyear ice just west of Ellesmere Island from 21 April. The relatively large unmodeled variability of the residual sea surface resolved by ATM elevations is discussed.

  9. Increased Arctic Sea Ice Drift Alters Polar Bear Movements and Energetics

    Science.gov (United States)

    Douglas, D. C.; Durner, G. M.; Albeke, S. E.; Whiteman, J. P.; Amstrup, S. C.; Richardson, E.; Wilson, R. R.; Ben-David, M.

    2015-12-01

    Recent thinning of Arctic sea ice has increased its drift from currents and winds. Increased ice drift could affect movements and energy balance of polar bears (Ursus maritimus) which rely, almost exclusively, on this substrate for hunting seals. Foraging by polar bears is a relatively sedentary behavior, as they typically capture their main prey by waiting at breathing holes, where seals haul-out along leads, or by short-distance stalking. We examined the response of polar bears to ice drift in the Beaufort (BS) and Chukchi (CS) seas, and between two periods with different sea ice characteristics: 1987-1998 and 1999-2013. We used satellite-tracked adult female polar bear locations, standardized by a continuous-time correlated random walk, coupled with modeled ice drift, to estimate displacement and drift-corrected bear movements along east-west and north-south axes. Sea ice drift in both regions increased with greater westward and more extreme northward and southward rates from 1987-1998 to 1999-2013. Polar bears responded with greater eastward movements and, in the CS greater movements north and south. We show that efforts by polar bears to compensate for greater westward ice drift in recent years translated into a model-derived estimate of 5.7-7.2% increase in energy expenditure. We also estimated that polar bears increased their travel time 18-20% between the two time periods, suggesting time allocated to foraging was reduced. Increased energetic costs and travel time resulting from greater ice drift, in conjunction with ongoing habitat loss, suggest that recent changes to Arctic sea ice may affect movements and energy balance of polar bears.

  10. Wave climate in the Arctic 1992-2014: seasonality, trends, and wave-ice influence

    Science.gov (United States)

    Girard-Ardhuin, Fanny; Stopa, Justin; Ardhuin, Fabrice

    2016-04-01

    The diminishing sea ice has direct implications on the wave field which is mainly dependent on the ice-free area and wind. Over the past decade, the Arctic sea ice has diminished which directly impacts the wave field. This study characterizes the wave climate in the Arctic using detailed sea state information from a wave hindcast and merged altimeter dataset spanning 1992-2014. The waves are driven by winds from the Climate Forecast System Reanalysis. Ice concentrations derived from satellites with a grid spacing of 12.5 km are sufficiently able to resolve important features in the marginal ice zone. Before implementation, suitable wind forcing is identified and the validity and consistency of the wave hindcast is verified with altimeters. The seasonal ice advance and retreat largely dictates the waves and creates distinct features in the wind-waves and swells. The Nordic-Greenland Sea is dominated by swells from the North Atlantic while the coastal regions and semi-enclosed seas of the Kara, Laptev, Chukchi, and Beaufort have a more equal proportion of wind-waves and swells. Trends in the altimeters and model are in agreement and show increasing wave activities in the Baffin Bay, Beaufort, Chukchi, Laptev, and Kara Seas due to the loss of sea ice. In the Nordic-Greenland Sea, there is a decreasing trend related to changes in the wind field by North Atlantic Oscillation. The waves also influence the sea ice. Two distinctly different wave-ice environments are identified and selected events demonstrate the importance of waves in the marginal ice zone. The crux of the research identifies the need for continued study and improvement of wave-ice interaction.

  11. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Bering Sea and western Arctic Ocean.

    Science.gov (United States)

    Zhao, Mengwei; Wang, Weiguo; Liu, Yanguang; Dong, Linsen; Jiao, Liping; Hu, Limin; Fan, Dejiang

    2016-03-15

    To analyze the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) and evaluate their potential ecological risks, the concentrations of 16 PAHs were measured in 43 surface sediment samples from the Bering Sea and western Arctic Ocean. Total PAH (tPAH) concentrations ranged from 36.95 to 150.21 ng/g (dry weight). In descending order, the surface sediment tPAH concentrations were as follows: Canada Basin>northern Chukchi Sea>Chukchi Basin>southern Chukchi Sea>Aleutian Basin>Makarov Basin>Bering Sea shelf. The Bering Sea and western Arctic Ocean mainly received PAHs of pyrogenic origin due to pollution caused by the incomplete combustion of fossil fuels. The concentrations of PAHs in the sediments of the study areas did not exceed effects range low (ERL) values. PMID:26806662

  12. Arctic sea-ice melting: Effects on hydroclimatic variability and on UV-induced carbon cycling

    Science.gov (United States)

    Sulzberger, Barbara

    2016-04-01

    Since 1980 both the perennial and the multiyear central Arctic sea ice areas have declined by approximately 13 and 15% per decade, respectively (IPCC, 2013). Arctic sea-ice melting has led to an increase in the amplitude of the Northern Hemisphere jet stream and, as a consequence, in more slowly moving Rossby waves which results in blocking of weather patterns such as heat waves, droughts, cold spells, and heavy precipitation events (Francis and Vavrus, 2012). Changing Rossby waves account for more than 30% of the precipitation variability over several regions of the northern middle and high latitudes, including the US northern Great Plains and parts of Canada, Europe, and Russia (Schubert et al., 2011). From 2007 to 2013, northern Europe experienced heavy summer precipitation events that were unprecedented in over a century, concomitant with Arctic sea ice loss (Screen, 2013). Heavy precipitation events tend to increase the runoff intensity of terrigenous dissolved organic matter (tDOM) (Haaland et al., 2010). In surface waters tDOM is subject to UV-induced oxidation to produce atmospheric CO2. Mineralization of DOM also occurs via microbial respiration. However, not all chemical forms of DOM are available to bacterioplankton. UV-induced transformations generally increase the bioavailability of tDOM (Sulzberger and Durisch-Kaiser, 2009). Mineralization of tDOM is an important source of atmospheric CO2 and this process is likely to contribute to positive feedbacks on global warming (Erickson et al., 2015). However, the magnitudes of these potential feedbacks remain unexplored. This paper will discuss the following items: 1.) Links between Arctic sea-ice melting, heavy precipitation events, and enhanced tDOM runoff. 2.) UV-induced increase in the bioavailability of tDOM. 3.) UV-mediated feedbacks on global warming. References Erickson, D. J. III, B. Sulzberger, R. G. Zepp, A. T. Austin (2015), Effects of stratospheric ozone depletion, solar UV radiation, and climate

  13. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Science.gov (United States)

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Abbatt, Jonathan P. D.; Levasseur, Maurice; Thomas, Jennie L.

    2016-04-01

    Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter 63 %), which is higher than in previous Arctic studies measuring above the ocean during fall ( 30 %) (Norman et al., 1999). The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles Ocean during the productive summer months.

  14. Acidification of the Shallow Arctic Seas as Biogeochemical Consequences of Permafrost Degradation

    Science.gov (United States)

    Semiletov, I. P.; Shakhova, N. E.; Pipko, I.; Repina, I.; Pugach, S.; Dudarev, O.; Charkin, A.

    2013-12-01

    There is increasing concern about consequences of ocean acidification from the increasing atmospheric carbon dioxide driven shifts toward lower seawater pH The largest pH changes in this century are anticipated in the surface waters of the Arctic ocean (Orr et al., 2005; Steinacher et al., 2009). Concurrently, aragonite undersaturation might occur locally and become widespread as atmospheric CO2 increases to more than 450ppm (Olafsson et al., 2009). However, the ocean acidification effects induced by increasing Arctic land-shelf export of fluvial and erosional organic carbon (OC) and its oxidation are unknown. Here we show that massive net redistribution of old OC from thawing permafrost to the East-Siberian Arctic Seas (ESAS) and its consequent remineralization drives acidification over the ESAS which represents the broadest and shallowest shelf of the World Ocean. From top to the bottom the ESAS waters were observed to be undersaturated with respect to aragonite and calcite, and thus potentially corrosive to CaCO3 for the shelf sediments and benthic ecosystems. Our multiyear all-seasonal results (1999-2011) demonstrate how the net ecosystem metabolism of the Siberian shelves, which is the net balance of autotrophic (photosynthesis and net community production) and heterotrophic (respiration and remineralization) processes, is likely to function as the heterotrophic dominated ecosystem. CO2 outgassing from the East Siberian Arctic Shelf (ESAS) is quantified using multi-year eddy-correlation flux measurements. It is shown that the ESAS is currently a source of atmospheric CO2. A continuing warming adds more terrestrial OC to the Arctic Shelf Seas, which increases pCO2, as the same time as decreased transparency lowers primary production, which reduce consumption of CO2 (and increase acidification effects). This effect results in a positive feedback by outgassing CO2 over the Siberian Shelf , which comprises one half of the entire shelf area. This multi-year study

  15. Greenland sea ice anomalies during 1901-1984 and their relation to an interdecadal arctic climate cycle

    International Nuclear Information System (INIS)

    Two ice data sets from the Greenland and neighboring seas have been analyzed to determine interannual and decadal time scale sea ice extent anomalies during this century. Sea ice concentration data on a 1 degree x 1 degree grid for 1953-1984 revealed the presence of a large positive anomaly in the Greenland Sea during the 1960s which coincided with the Great Salinity Anomaly, a low-salinity water mass that traveled cyclonically around the northern North Atlantic during 1968-1982. The two anomalies propagated into the Labrador Sea with a typical travel time of 3-5 years. Spring and summer ice-limit data obtained from Danish Meteorological Institute charts for 1901-1956 indicated the presence of heavy ice conditions in the Greenland Sea during 1902-1920 and in the late 1940s, and generally light ice conditions during the 1920s and 1930s. Only limited evidence of propagation of Greenland Sea ice anomalies into the Labrador Sea was observed, however. On the other hand, several large ice anomalies in the Greenland Sea occurred 2-3 years after large runoffs from northern Canada into the western Arctic Ocean. Similarly, a large runoff into the Arctic preceded the large Greenland Sea ice anomaly of the 1960s. These facts, together with recent evidence of climatic jumps in the Northern Hemisphere tropospheric circulation, suggest the existence of an interdecadal, self-sustained climate cycle in the Arctic which is described in terms of a negative feed-back loop. In the Greenland Sea this cycle is characterized by a state of large sea ice extent overlying a layer of cool freshwater that does not convectively overturn, which alternates with a state of small sea ice extent and warm saline surface water that frequently overturns

  16. On the influence of model physics on simulations of Arctic and Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    F. Massonnet

    2011-09-01

    Full Text Available Two hindcast (1983–2007 simulations are performed with the global, ocean-sea ice models NEMO-LIM2 and NEMO-LIM3 driven by atmospheric reanalyses and climatologies. The two simulations differ only in their sea ice component, while all other elements of experimental design (resolution, initial conditions, atmospheric forcing are kept identical. The main differences in the sea ice models lie in the formulation of the subgrid-scale ice thickness distribution, of the thermodynamic processes, of the sea ice salinity and of the sea ice rheology. To assess the differences in model skill over the period of investigation, we develop a set of metrics for both hemispheres, comparing the main sea ice variables (concentration, thickness and drift to available observations and focusing on both mean state and seasonal to interannual variability. Based upon these metrics, we discuss the physical processes potentially responsible for the differences in model skill. In particular, we suggest that (i a detailed representation of the ice thickness distribution increases the seasonal to interannual variability of ice extent, with spectacular improvement for the simulation of the recent observed summer Arctic sea ice retreats, (ii the elastic-viscous-plastic rheology enhances the response of ice to wind stress, compared to the classical viscous-plastic approach, (iii the grid formulation and the air-sea ice drag coefficient affect the simulated ice export through Fram Strait and the ice accumulation along the Canadian Archipelago, and (iv both models show less skill in the Southern Ocean, probably due to the low quality of the reanalyses in this region and to the absence of important small-scale oceanic processes at the models' resolution (~1°.

  17. Postglacial sea-level rise and its impact on the circum-arctic Holocene climate evolution

    Science.gov (United States)

    Bauch, Henning; Abramova, Ekaterina; Alenius, Teija; Saarnisto, Matti

    2016-04-01

    The global sea-level rise after the last glaciation not only affected the surface properties (circulation, T-S, sea ice seasonality) of the Arctic Ocean and nearby seas it also had a strong impact on the Holocene development of the shallow North Siberian shelf systems and the environmental evolution of the adjacent hinterland areas. In this region sea level reconstructions indicate the postglacial highstand occurred some time in the middle Holocene, between 6 to 5 ka (Klemann et al., 2015). After that time the sedimentary regime of the shelf seas stabilized as noted in a drastic decrease in sedimentation rates observed in all sediment cores taken from middle to outer shelf water depths of the Laptev Sea (Bauch et al. 2001). But, at water depths lower than 30 meters - i.e., in the inner shelf and nearer to the coasts - sedimentation continued at relatively higher rates, presumably due to input of terrigenous material from river runoff as well as coastal erosion. In relation to the latter process, the huge Lena Delta should comprise a region of sediment catchment where aggradation wins over erosion. However, little is known about the detailed history of this delta during the second half of the Holocene. We therefore have investigated three islands within the Lena Delta. All of these are comprised of massive peat of several meters in thickness. Picking discrete specimens of water mosses (Sphagnum) only, we have carefully dated these peat sections. The depth/age relation of the sampled profiles reflect the growth rate of peat, and thus, the islands. It shows that the islands' history above the present-day delta sea level is about 4000 yrs. old. Moreover, a significant change in peat growth is noted after 2500 yrs BP in both, accumulation and composition, and allows the conclusion of a major shift in Arctic environmental conditions since then. Thus, our results add further information also for other coastal studies, as the ongoing degradation of the rather vulnerable

  18. Upwelling of Arctic pycnocline associated with shear motion of sea ice

    Science.gov (United States)

    McPhee, M. G.; Kwok, R.; Robins, R.; Coon, M.

    2006-01-01

    High-resolution radar imagery shows that the dynamic response of winter sea ice to gradients in large-scale surface wind stress is often localized along quasi-linear fractures hundreds of kilometers long. Relative shearing motion across these narrow fractures can exceed 10 cm/s. In one event recorded during the drift of the SHEBA ice camp, we observed an intense zone of pycnocline upwelling (approx.14 m) associated with significant shear motion near the camp, while upward turbulent heat flux in the ocean boundary layer reached nearly 400 W/sq m, an order of magnitude greater than at any other time during the year-long drift. We attribute the upwelling to Ekman pumping associated with concentrated ice shear. Over the entire Arctic Ocean sea ice cover, this process could be responsible for significant heat exchange between the cold surface layer and warmer subsurface water at the ubiquitous fractures resulting from large-scale atmosphere-ice interactions.

  19. Improving the Arctic Mean Sea Surface with CryoSat-2 Data

    DEFF Research Database (Denmark)

    Stenseng, Lars; Andersen, Ole Baltazar

    Bridge). The new state of the art DTU13MSS is a global high-resolution MSS that includes retracked CryoSat-2 data and thereby extends the polar data coverage up to 88 degrees latitude. Furthermore, in the sea-ice covered areas, the SAR and SARin feature of the altimeter on-board CryoSat-2 increases the amount...... an improvement of more than 20 cm between 82 and 88 degrees latitude. For the first time the three years of retracked CryoSat-2 data will, in combination with DTU13MSS, allow reliable estimation of the trend and annual variations in the high Arctic Ocean sea surface height....

  20. Real-Time Observations of Optical Properties of Arctic Sea Ice with an Autonomous System

    Science.gov (United States)

    Wang, C.; Gerland, S.; Nicolaus, M.; Granskog, M. A.; Hudson, S. R.; Perovich, D. K.; Karlsen, T. I.; Fossan, K.

    2012-12-01

    The recent drastic changes in the Arctic sea ice cover have altered the interaction of solar radiation and sea ice. To improve our understanding of this interaction, a Spectral Radiation Buoy (SRB) for measuring sea ice optical properties was developed, based on a system used during the last International Polar Year at the drift of "Tara" across the Arctic Ocean. A first version of the SRB was deployed on drifting ice in the high Arctic in April 2012. It includes three Satlantic spectral radiometers (two in air, one under ice), covering the wavelength range from 347 nm to 804 nm with 3.3 nm spectral resolution, a bio-shutter to protect the under-ice radiometer, a data logger to handle and store collected data, and an Iridium satellite modem to transfer data in real-time. The under-ice radiometer is mounted on an adjustable under-ice arm, and the other instruments are mounted on a triangular frame frozen into the ice. The SRB measures simultaneously, autonomously and continuously the spectral fluxes of incident and reflected solar radiation, as well as under-ice irradiance, water temperature and water pressure every hour. So far, between mid April and early August 2012, the system has drifted about 600 km, from the starting position near the North Pole towards the Fram Strait. The data collected during this deployment, so far, already demonstrate that this system is suitable for autonomous and long-term observations over and under sea ice in harsh conditions. Along with the SRB, commercially available Ice Mass Balance buoys (IMB) were deployed on the same ice floe. In the vicinity of the site, manned baseline measurements of snow and sea ice physical properties have been carried out during the SRB deployment. The combined datasets allow description of the evolution of the ice floe during seasonal melt. With snow melt, the spectral surface albedo decreased and the transmittance through the snow and ice increased after mid-April, especially when melt ponds started to

  1. Arctic Sea Ice in Transformation: A Review of Recent Observed Changes and Impacts on Biology and Human Activity

    Science.gov (United States)

    Meier, Walter N.; Hovelsrud, Greta K.; van Oort, Bob E. H.; Key, Jeffrey R.; Kovacs, Kit M.; Michel, Christine; Haas, Christian; Granskog, Mats A.; Gerland, Sebastian; Perovich, Donald K.; Makshtas, Alexander; Reist, James D.

    2014-01-01

    Sea ice in the Arctic is one of the most rapidly changing components of the global climate system. Over the past few decades, summer areal extent has declined over 30, and all months show statistically significant declining trends. New satellite missions and techniques have greatly expanded information on sea ice thickness, but many uncertainties remain in the satellite data and long-term records are sparse. However, thickness observations and other satellite-derived data indicate a 40 decline in thickness, due in large part to the loss of thicker, older ice cover. The changes in sea ice are happening faster than models have projected. With continued increasing temperatures, summer ice-free conditions are likely sometime in the coming decades, though there are substantial uncertainties in the exact timing and high interannual variability will remain as sea ice decreases. The changes in Arctic sea ice are already having an impact on flora and fauna in the Arctic. Some species will face increasing challenges in the future, while new habitat will open up for other species. The changes are also affecting peoples living and working in the Arctic. Native communities are facing challenges to their traditional ways of life, while new opportunities open for shipping, fishing, and natural resource extraction.

  2. Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification

    Directory of Open Access Journals (Sweden)

    A. Yamamoto

    2011-10-01

    Full Text Available The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state have been caused primarily by an increase in the concentration of atmospheric carbon dioxide. However, in a previous study, simulations with and without warming showed that these reductions in the Arctic Ocean also advances due to the melting of sea ice caused by global warming. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an earth system model (ESM with different sea-ice reduction rates under similar CO2 emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO2 concentration reached 480 (550 ppm in year 2040 (2048 in new (old version. At an atmospheric CO2 concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.08 and 0.15, respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO2 uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea-ice reduction rate. The critical CO2 concentration

  3. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations

    Directory of Open Access Journals (Sweden)

    R. Lindsay

    2014-08-01

    Full Text Available Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000–2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is −0.58 ± 0.07 m decade−1 over the period 2000–2013, while the annual mean ice thickness for the central Arctic Basin alone (the SCICEX Box has decreased from 3.45 m in 1975 to 1.11 m in 2013, a 68% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational confirmation of substantial sea ice losses found in model analyses.

  4. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century.

    Science.gov (United States)

    Higdon, Jeff W; Ferguson, Steven H

    2009-07-01

    Killer whales (Orcinus orca) are major predators that may reshape marine ecosystems via top-down forcing. Climate change models predict major reductions in sea ice with the subsequent expectation for readjustments of species' distribution and abundance. Here, we measure changes in killer whale distribution in the Hudson Bay region with decreasing sea ice as an example of global readjustments occurring with climate change. We summarize records of killer whales in Hudson Bay, Hudson Strait, and Foxe Basin in the eastern Canadian Arctic and relate them to an historical sea ice data set while accounting for spatial and temporal autocorrelation in the data. We find evidence for "choke points," where sea ice inhibits killer whale movement, thereby creating restrictions to their Arctic distribution. We hypothesize that a threshold exists in seasonal sea ice concentration within these choke points that results in pulses in advancements in distribution of an ice-avoiding predator. Hudson Strait appears to have been a significant sea ice choke point that opened up .approximately 50 years ago allowing for an initial punctuated appearance of killer whales followed by a gradual advancing distribution within the entire Hudson Bay region. Killer whale sightings have increased exponentially and are now reported in the Hudson Bay region every summer. We predict that other choke points will soon open up with continued sea ice melt producing punctuated predator-prey trophic cascades across the Arctic. PMID:19688941

  5. U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Donald Gautier; Timothy Klett

    2008-12-31

    The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.

  6. Species of Thaumatomastix (Thaumatomastigidae, Protista incertae sedis) from the Arctic sea ice biota (North-East Water Polynya, NE Greenland)

    Science.gov (United States)

    Thomsen, Helge Abildhauge; Ikävalko, Johanna

    1997-01-01

    The sea ice biota of polar regions contains numerous heterotrophic flagellates very few of which have been properly identified. The whole mount technique for transmission electron microscopy enables the identification of loricate and scaly forms. A survey of Arctic ice samples (North-East Water Polynya, NE Greenland) revealed the presence of ca. 12 taxa belonging to the phagotrophic genus Thaumatomastix (Protista incertae sedis). Species of Thaumatomastix possess siliceous body scales and one naked and one scale-covered flagellum. The presence in both Arctic samples and sea ice material previously examined from the Antarctic indicates that this genus is most likely ubiquitous in polar sea ice and may be an important component in sea ice biota microbial activities.

  7. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    OpenAIRE

    de Steur, L.; Steele, M; E. Hansen; J. Morison; Polyakov, I.; Olsen, S. M.; Melling, H.; F. A. McLaughlin; Kwok, R; Smethie Jr., W.M.; Schlosser, P.

    2013-01-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 upper ocean salinities in the Lincoln Sea returned to values similar to those prior to 2007. Throughout 2008–2010, the freshest surface waters in the western Lincoln Sea show water mass properties simi...

  8. History of sea ice in the Arctic basin: Lessons from the past for future

    Directory of Open Access Journals (Sweden)

    I. I. Borzenkova

    2016-01-01

    Full Text Available The process of the sea ice formation in the Arctic Ocean is analyzed for the period of the last 65 million years, i.e. from the Paleocene to the present time. Appearance of sea ice in the high latitudes is demonstrated to be caused by the negative trend in global temperatures due to decreasing of the CO2 concentration in the ancient atmosphere. Formation of seasonal and perennial ice cover in the limited area near the Pole could take place during the mid-Neogene period, about 12–13 Ma ago. However, areas of the sea icing could be obviously changed for this time during periods of the climate warming and cooling. Permanent sea ice had been formed in the early Pleistocene, i.e. about 2.0–1.8 Ma ago only. Paleoclimatic reconstructions, based on the indirect data and modeling simulation for the Holocene optimum (10–6 ka ago and for the Last Interglacial period (the isotopic substage in the marine cross-section 5e, about 125–127 ka ago had shown that rising of global temperatures by 1.0–1.5 °C resulted in strong decreasing of the sea ice area, and the perennial ice cover became the seasonal one. Relatively small changes in the incoming solar radiation originating during the spring-summer time due to the orbital factors played the role of a trigger for onset of the melting process. Further on, the process could be enhanced owing to difference in the albedo between the ice cover and open water. Recently, the rapid shortening of the sea ice area is noted, and in some parts of the Arctic Ocean the area is twice cut down as compared with the normal. In 2015, the record low area of the winter sea ice was observed, and therewith the maximum of the ice area shifted to the earlier period (by 15 days as compared with the period of 1981–2010. The winter fluctuations of the sea ice areas are as much important as the summer ones, since they are the best indicators of the present-day global warming. Thus, it can be supposed that some

  9. An analytical model for wind-driven Arctic summer sea ice drift

    Science.gov (United States)

    Park, H.-S.; Stewart, A. L.

    2016-01-01

    The authors present an analytical model for wind-driven free drift of sea ice that allows for an arbitrary mixture of ice and open water. The model includes an ice-ocean boundary layer with an Ekman spiral, forced by transfers of wind-input momentum both through the sea ice and directly into the open water between the ice floes. The analytical tractability of this model allows efficient calculation of the ice velocity provided that the surface wind field is known and that the ocean geostrophic velocity is relatively weak. The model predicts that variations in the ice thickness or concentration should substantially modify the rotation of the velocity between the 10 m winds, the sea ice, and the ocean. Compared to recent observational data from the first ice-tethered profiler with a velocity sensor (ITP-V), the model is able to capture the dependencies of the ice speed and the wind/ice/ocean turning angles on the wind speed. The model is used to derive responses to intensified southerlies on Arctic summer sea ice concentration, and the results are shown to compare closely with satellite observations.

  10. Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird.

    Directory of Open Access Journals (Sweden)

    Françoise Amélineau

    Full Text Available The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic.

  11. A closer investigation of associations between Autumn Arctic sea ice and central and east Eurasian winter climate

    Science.gov (United States)

    Wang, Shaoyin; Liu, Jiping

    2016-04-01

    Whether recent Arctic sea ice loss is responsible for recent severe winters over mid-latitude continents has emerged as a major debate among climate scientists owing to short records of observations and large internal variability in mid- and high-latitudes. In this study, we divide the evolution of autumn Arctic sea ice extent during 1979-2014 into three epochs, 1979-1986 (high), 1987-2006 (moderate) and 2007-2014 (low), using a regime shift identification method. We then compare the associations between autumn Arctic sea ice and winter climate anomalies over central and eastern Eurasia for the three epochs with focus not only on the mean state, but also the extreme events. The results show robust and detectable signals of sea ice loss in weather and climate over western Siberia and East Asia. For the mean state, anomalous low sea ice extent is associated with a strengthening of the Siberian high pressure, a weakening of westerly winds over north Asia, leading to cold anomalies in central Asia and northern China. For the extreme events, the latitude (speed) of the jet stream shifts southward (reduces), the wave extent amplifies, blocking high events increase over Ural Mountains, leading to increased frequency of cold air outbreaks extending from central Asia to northeast China. These associations bear a high degree of similarity to the observed atmospheric anomalies during the low sea ice epoch. By contrast, the patterns of atmospheric anomalies for the high sea ice epoch are different from those congruent with sea ice variability, which is related to the persistent negative phase of the Arctic Oscillation. We also found that the ENSO plays a minor role in the determination of the observed atmospheric anomalies for the three epochs. Support for these observational analysis is largely corroborated by independent atmospheric model simulations.

  12. Using records from submarine, aircraft and satellites to evaluate climate model simulations of Arctic sea ice thickness

    OpenAIRE

    J. Stroeve; Barrett, A; Serreze, M.; Schweiger, A

    2014-01-01

    Arctic sea ice thickness distributions from models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 (CMIP5) are evaluated against observations from submarines, aircraft and satellites. While it is encouraging that the mean thickness distributions from the models are in general agreement with observations, the spatial patterns of sea ice thickness are poorly represented in most models. The poor spatial representation of thick...

  13. Where to Forage in the Absence of Sea Ice? Bathymetry As a Key Factor for an Arctic Seabird

    Science.gov (United States)

    Amélineau, Françoise; Grémillet, David; Bonnet, Delphine; Le Bot, Tangi; Fort, Jérôme

    2016-01-01

    The earth is warming at an alarming rate, especially in the Arctic, where a marked decline in sea ice cover may have far-ranging consequences for endemic species. Little auks, endemic Arctic seabirds, are key bioindicators as they forage in the marginal ice zone and feed preferentially on lipid-rich Arctic copepods and ice-associated amphipods sensitive to the consequences of global warming. We tested how little auks cope with an ice-free foraging environment during the breeding season. To this end, we took advantage of natural variation in sea ice concentration along the east coast of Greenland. We compared foraging and diving behaviour, chick diet and growth and adult body condition between two years, in the presence versus nearby absence of sea ice in the vicinity of their breeding site. Moreover, we sampled zooplankton at sea when sea ice was absent to evaluate prey location and little auk dietary preferences. Little auks foraged in the same areas both years, irrespective of sea ice presence/concentration, and targeted the shelf break and the continental shelf. We confirmed that breeding little auks showed a clear preference for larger copepod species to feed their chick, but caught smaller copepods and nearly no ice-associated amphipod when sea ice was absent. Nevertheless, these dietary changes had no impact on chick growth and adult body condition. Our findings demonstrate the importance of bathymetry for profitable little auk foraging, whatever the sea-ice conditions. Our investigations, along with recent studies, also confirm more flexibility than previously predicted for this key species in a warming Arctic. PMID:27438790

  14. Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya

    Directory of Open Access Journals (Sweden)

    T. Opel

    2013-05-01

    Full Text Available The chronology of the Akademii Nauk (AN ice core from Severnaya Zemlya (SZ has been expanded to the last 1100 yr. Here, we present the easternmost high-resolution ice-core climate-proxy records (δ18O and sodium from the Arctic that provide new perspectives on past climate fluctuations in the Barents and Kara seas region. Multi-annual AN δ18O data as near-surface air-temperature proxy reveal major temperature changes over the last millennium, including the absolute minimum around 1800 and the exceptional warming to a double-peak maximum in the early 20th century. Neither a pronounced Medieval Climate Anomaly nor a Little Ice Age are detectable in the AN δ18O record. In contrast, there is evidence for several abrupt warming and cooling events such as in the 15th and 16th centuries. These abrupt changes are probably caused by shifts in the atmospheric circulation patterns and accompanied sea-ice feedbacks in the Barents and Kara seas region that highlight the role of the internal variability of the Arctic climate system.

  15. Using records from submarine, aircraft and satellite to evaluate climate model simulations of Arctic sea ice thickness

    Directory of Open Access Journals (Sweden)

    J. Stroeve

    2014-04-01

    Full Text Available Arctic sea ice thickness distributions from models participating in the World Climate Research Programme Coupled Model Intercomparison Project Phase 5 are evaluated against observations from submarines, aircraft and satellites. While it's encouraging that the mean thickness distributions from the models are in general agreement with observations, the spatial patterns of sea ice thickness are poorly represented in most models. The poor spatial representation of thickness patterns is associated with a failure of models to represent details of the mean atmospheric circulation pattern that governs the transport and spatial distribution of sea ice. The climate models as a whole also tend to underestimate the rate of ice volume loss from 1979 to 2013, though the multi-model ensemble mean trend remains within the uncertainty of that from the Pan-Arctic Ice Ocean Modeling and Assimilation System. These results raise concerns regarding the ability of CMIP5 models to realistically represent the processes driving the decline of Arctic sea ice and project the timing of when a seasonally ice-free Arctic may be realized.

  16. The freshwater fern Azolla (Azollaceae) from Eocene Arctic and Nordic Sea sediments: New species and their stratigraphic distribution

    NARCIS (Netherlands)

    van der Burgh, J.; Collinson, M.E.; van Konijnenburg-van Cittert, J.H.A.; Barke, J.; Brinkhuis, H.

    2013-01-01

    Three new species of the freshwater fern Azolla are described from Eocene marine deposits of the Arctic and Nordic seas, bringing the total number of species now documented from these areas to five. Azolla arctica Collinson et al., Azolla jutlandica Collinson et al., Azolla nova sp. nov. and Azolla

  17. Iodine speciation in aerosol particle samples collected over the sea between offshore China and the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    KANG Hui; XU Siqi; YU Xiawei; LI Bing; LIU Wei; YANG Hongxia; XIE Zhouqing

    2015-01-01

    Iodine species collected by an onboard PM10 particle sampling system during the Second Chinese National Arctic Research Expedition (July–September 2003) were measured using inductively coupled plasma mass spectrometry and ion chromatography-inductively coupled plasma mass spectrometry. Iodine (I−) was detected in all samples over the Arctic Ocean, whereas additional iodine species including insoluble iodine, soluble organic iodine plus I− were detected over the northwestern Paciifc Ocean. The results suggest that the main form of iodine is different within the Arctic Ocean than it is outside. Enrichment factor values showed moderate enrichment of iodine in the northwestern Paciifc, whereas a high enrichment factor was found in polar regions, implying sources other than sea salt. A potential explanation was ascribed to the role of sea ice melt in the Arctic and rapid growth of algae in seawater, which enhances the production of iodocarbon and air-sea exchange. This was conifrmed by the larger values of total iodine in 2008 than in 2003, with greater sea ice melt in the former year. In comparison with earlier reports, ratios of iodate to iodide (IO3−/I−) were much smaller than 1.0. These ratios were also different from modeling results, implying more complicated cycles of atmospheric iodine than are presently understood.

  18. Seasonal changes in sea ice conditions along the Northeast Passage in 2007 and 2012

    Institute of Scientific and Technical Information of China (English)

    Lei Ruibo; Li Na; Li Chunhua; Jnsdttir Ingibjrg

    2014-01-01

    Remote sensing data from passive microwave and satellite-based altimeters, associated with the data measured underway, were used to characterize seasonal and spatial changes in sea ice conditions along the Arctic Northeast Passage (NEP) and the high-latitude sea route (HSR) north of the island groups in the eastern Arctic Ocean in 2007 and 2012. In both years, summer Arctic sea ice extent reached minima since satellite records began in 1979. However, there were large differences in spatial distribution of sea ice between the two years. Sea ice conditions in the eastern sections of the sea routes were relatively slight in the 2007 summer, because of the remarkable decline of sea ice in the Paciifc sector. A belt of sea ice that blocked sections from the western Laptev Sea to the eastern Kara Sea resulted in both sea routes not completely opening through the 2007 summer. The combination of a great storm in early August causing sea ice to be sheared from the Arctic pack ice and the thick ice surviving the winter delayed the summer opening of the eastern parts of the sea routes in 2012. However, the average open period, deifned by 50% ice concentration for the entire NEP and HSR, reached 82 d and 55 d, respectively. Thus, 2012 was the most accessible year since the satellite era began in 1979. The distinct decrease in sea ice in the western parts of the HSR in the 2012 summer can be attributed to the thinning preconditions of sea ice prior to the melt season. The HSR opening can beneift Arctic shipping of deeper-draft vessels.

  19. Large, omega-3 rich, pelagic diatoms under Arctic sea ice: sources and implications for food webs.

    Science.gov (United States)

    Duerksen, Steven W; Thiemann, Gregory W; Budge, Suzanne M; Poulin, Michel; Niemi, Andrea; Michel, Christine

    2014-01-01

    Pelagic primary production in Arctic seas has traditionally been viewed as biologically insignificant until after the ice breakup. There is growing evidence however, that under-ice blooms of pelagic phytoplankton may be a recurrent occurrence. During the springs of 2011 and 2012, we found substantial numbers (201-5713 cells m-3) of the large centric diatom (diameter >250 µm) Coscinodiscus centralis under the sea ice in the Canadian Arctic Archipelago near Resolute Bay, Nunavut. The highest numbers of these pelagic diatoms were observed in Barrow Strait. Spatial patterns of fatty acid profiles and stable isotopes indicated two source populations for C. centralis: a western origin with low light conditions and high nutrients, and a northern origin with lower nutrient levels and higher irradiances. Fatty acid analysis revealed that pelagic diatoms had significantly higher levels of polyunsaturated fatty acids (mean ± SD: 50.3 ± 8.9%) compared to ice-associated producers (30.6 ± 10.3%) in our study area. In particular, C. centralis had significantly greater proportions of the long chain omega-3 fatty acid, eicosapentaenoic acid (EPA), than ice algae (24.4 ± 5.1% versus 13.7 ± 5.1%, respectively). Thus, C. centralis represented a significantly higher quality food source for local herbivores than ice algae, although feeding experiments did not show clear evidence of copepod grazing on C. centralis. Our results suggest that C. centralis are able to initiate growth under pack ice in this area and provide further evidence that biological productivity in ice-covered seas may be substantially higher than previously recognized. PMID:25473949

  20. Integrating Research on Global Climate Change and Human Use of the Oceans: a Geospatial Method for Daily Monitoring of Sea Ice and Ship Traffic in the Arctic

    Science.gov (United States)

    Eucker, W.; McGillivary, P. A.

    2012-12-01

    One apparent consequence of global climate change has been a decrease in the extent and thickness of Arctic sea ice more rapidly than models have predicted, while Arctic ship traffic has likewise increased beyond economic predictions. To ensure representative observations of changing climate conditions and human use of the Arctic Ocean, we concluded a method of tracking daily changes in both sea ice and shipping in the Arctic Ocean was needed. Such a process improves the availability of sea ice data for navigational safety and allows future developments to be monitored for understanding of ice and shipping in relation to policy decisions appropriate to optimize sustainable use of a changing Arctic Ocean. The impetus for this work was the 2009 Arctic Marine Shipping Assessment (AMSA) which provided baseline data on Arctic ship traffic. AMSA was based on responses from circumpolar countries, was manpower intensive, and took years to compile. A more timely method of monitoring human use of the Arctic Ocean was needed. To address this, a method of monitoring sea ice on a scale relevant to ship-navigation (internationally required on ships over a certain size, which includes most commercial vessels in the Arctic Ocean. Daily AIS and sea ice observations were chosen for this study. Results of this method of geospatial analysis of the entire arctic are presented for a year long period from April 1, 2010 to March 31, 2011. This confirmed the dominance of European Arctic ship traffic. Arctic shipping is maximal during August and diminishes in September with a minimum in winter, although some shipping continues year-round in perennially ice-free areas. Data are analyzed for the four principal arctic quadrants around the North Pole by season for number and nationality of vessels. The goal of this study was not merely to monitor ship traffic and ice conditions concurrently, but also to demonstrate a new method of ocean monitoring based on daily assimilation, data fusion, and

  1. Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics.

    Science.gov (United States)

    Cherry, Seth G; Derocher, Andrew E; Thiemann, Gregory W; Lunn, Nicholas J

    2013-07-01

    Understanding how seasonal environmental conditions affect the timing and distribution of synchronized animal movement patterns is a central issue in animal ecology. Migration, a behavioural adaptation to seasonal environmental fluctuations, is a fundamental part of the life history of numerous species. However, global climate change can alter the spatiotemporal distribution of resources and thus affect the seasonal movement patterns of migratory animals. We examined sea ice dynamics relative to migration patterns and seasonal geographical fidelity of an Arctic marine predator, the polar bear (Ursus maritimus). Polar bear movement patterns were quantified using satellite-linked telemetry data collected from collars deployed between 1991-1997 and 2004-2009. We showed that specific sea ice characteristics can predict the timing of seasonal polar bear migration on and off terrestrial refugia. In addition, fidelity to specific onshore regions during the ice-free period was predicted by the spatial pattern of sea ice break-up but not by the timing of break-up. The timing of migration showed a trend towards earlier arrival of polar bears on shore and later departure from land, which has been driven by climate-induced declines in the availability of sea ice. Changes to the timing of migration have resulted in polar bears spending progressively longer periods of time on land without access to sea ice and their marine mammal prey. The links between increased atmospheric temperatures, sea ice dynamics, and the migratory behaviour of an ice-dependent species emphasizes the importance of quantifying and monitoring relationships between migratory wildlife and environmental cues that may be altered by climate change. PMID:23510081

  2. Could massive Arctic sea ice export to the North Atlantic be the real cause of abrupt climate change during the last deglaciation?

    Science.gov (United States)

    Coletti, A. J.; Condron, A.

    2015-12-01

    Using a coupled ocean-sea ice model (MITgcm), we investigate whether the break-up and mobilization of thick, multiyear, Arctic sea ice might have supplied enough freshwater to the Nordic Seas to reduce North Atlantic Deep Water (NADW) formation and weaken the Atlantic Meridional Overturning Circulation (AMOC). Numerical simulations of a Last Glacial Maximum (LGM) environment show the potential for sea ice to grow to ~30m thick, storing ~1.41x105 km3 of freshwater as sea ice in the Arctic (this is ~10 times the volume of freshwater stored in the modern-day Arctic). Releasing this volume of sea ice from the Arctic in 1-yr is equivalent to a high-latitude freshwater forcing of ~4.5 Sv, which is comparable (or larger) in magnitude to most meltwater floods emanating from land-based glacial lakes (e.g. Agassiz) during the last deglaciation. Opening of the Bering Strait and Barents Sea are two plausible mechanisms that may have initiated sea ice mobilization. Opening Bering Strait increases sea ice transport through the Fram Strait by 7% and results in a 22% weakening of AMOC for 2000 years and a >3°C warming in the Arctic basin at 800 m depth. Opening Barents Sea to simulate a collapse of the Fennoscandian ice sheet has little impact on Arctic sea ice and freshwater export to the North Atlantic, but weakens AMOC ~8%. In a simulation with both straits open there is a transition to near-modern sea ice circulation pattern and a 24% reduction in AMOC. Experiments with the Bering Strait open and sea ice artificially capped to 10 m show barely any difference to those when sea ice can grow to ~30m, suggesting that changes in topography have a much greater impact on AMOC than the freshwater forcing from sea ice melting in the Nordic Seas.

  3. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort-Chukchi Seas

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P.F.; O' Hara, T.M.; Fisk, A.T.; Borgaa, K.; Solomon, K.R.; Muir, D.C.G

    2003-08-01

    The trophic status and biomagnification of persistent OCs within the near-shore Beaufort-Chukchi Seas food web from Barrow, AK is discussed. - Stable isotope values ({delta}{sup 13}C, {delta}{sup 15}N) and concentrations of persistent organochlorine contaminants (OCs) were determined to evaluate the near-shore marine trophic status of biota and biomagnification of OCs from the southern Beaufort-Chukchi Seas (1999-2000) near Barrow, AK. The biota examined included zooplankton (Calanus spp.), fish species such as arctic cod (Boreogadus saida), arctic char (Salvelinus alpinus), pink salmon (Oncorhynchus gorbuscha), and fourhorn sculpin (Myoxocephalus quadricornis), along with marine mammals, including bowhead whales (Balaena mysticetus), beluga whales (Delphinapterus leucas), ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). The isotopically derived trophic position of biota from the Beaufort-Chukchi Seas marine food web, avian fauna excluded, is similar to other coastal food webs in the Arctic. Concentrations of OCs in marine mammals were significantly greater than in fish and corresponded with determined trophic level. In general, OCs with the greatest food web magnification factors (FWMFs) were those either formed due to biotransformation (e.g. p,p'-DDE, oxychlordane) or considered recalcitrant (e.g. {beta}-HCH, 2,4,5-Cl substituted PCBs) in most biota, whereas concentrations of OCs that are considered to be readily eliminated (e.g. {gamma}-HCH) did not correlate with trophic level. Differences in physical-chemical properties of OCs, feeding strategy and possible biotransformation were reflected in the variable biomagnification between fish and marine mammals. The FWMFs in the Beaufort-Chukchi Seas region were consistent with reported values in the Canadian Arctic and temperate food webs, but were statistically different than FWMFs from the Barents and White Seas, indicating that the spatial variability of OC contamination in top

  4. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort-Chukchi Seas

    International Nuclear Information System (INIS)

    The trophic status and biomagnification of persistent OCs within the near-shore Beaufort-Chukchi Seas food web from Barrow, AK is discussed. - Stable isotope values (δ13C, δ15N) and concentrations of persistent organochlorine contaminants (OCs) were determined to evaluate the near-shore marine trophic status of biota and biomagnification of OCs from the southern Beaufort-Chukchi Seas (1999-2000) near Barrow, AK. The biota examined included zooplankton (Calanus spp.), fish species such as arctic cod (Boreogadus saida), arctic char (Salvelinus alpinus), pink salmon (Oncorhynchus gorbuscha), and fourhorn sculpin (Myoxocephalus quadricornis), along with marine mammals, including bowhead whales (Balaena mysticetus), beluga whales (Delphinapterus leucas), ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus). The isotopically derived trophic position of biota from the Beaufort-Chukchi Seas marine food web, avian fauna excluded, is similar to other coastal food webs in the Arctic. Concentrations of OCs in marine mammals were significantly greater than in fish and corresponded with determined trophic level. In general, OCs with the greatest food web magnification factors (FWMFs) were those either formed due to biotransformation (e.g. p,p'-DDE, oxychlordane) or considered recalcitrant (e.g. β-HCH, 2,4,5-Cl substituted PCBs) in most biota, whereas concentrations of OCs that are considered to be readily eliminated (e.g. γ-HCH) did not correlate with trophic level. Differences in physical-chemical properties of OCs, feeding strategy and possible biotransformation were reflected in the variable biomagnification between fish and marine mammals. The FWMFs in the Beaufort-Chukchi Seas region were consistent with reported values in the Canadian Arctic and temperate food webs, but were statistically different than FWMFs from the Barents and White Seas, indicating that the spatial variability of OC contamination in top-level marine Arctic predators is attributed to

  5. Combined effects of the North Atlantic Oscillation and the Arctic Oscillation on sea surface temperature in the Alboran Sea.

    Directory of Open Access Journals (Sweden)

    José C Báez

    Full Text Available We explored the possible effects of the North Atlantic Oscillation (NAO and Arctic Oscillation (AO on interannual sea surface temperature (SST variations in the Alborán Sea, both separately and combined. The probability of observing mean annual SST values higher than average was related to NAO and AO values of the previous year. The effect of NAO on SST was negative, while that of AO was positive. The pure effects of NAO and AO on SST are obscuring each other, due to the positive correlation between them. When decomposing SST, NAO and AO in seasonal values, we found that variation in mean annual SST and mean winter SST was significantly related to the mean autumn NAO of the previous year, while mean summer SST was related to mean autumn AO of the previous year. The one year delay in the effect of the NAO and AO on the SST could be partially related to the amount of accumulated snow, as we found a significant correlation between the total snow in the North Alborán watershed for a year with the annual average SST of the subsequent year. A positive AO implies a colder atmosphere in the Polar Regions, which could favour occasional cold waves over the Iberian Peninsula which, when coupled with precipitations favoured by a negative NAO, may result in snow precipitation. This snow may be accumulated in the high peaks and melt down in spring-summer of the following year, which consequently increases the runoff of freshwater to the sea, which in turn causes a diminution of sea surface salinity and density, and blocks the local upwelling of colder water, resulting in a higher SST.

  6. Wind-driven interannual variability of sea ice algal production over the western Arctic Chukchi Borderland

    Directory of Open Access Journals (Sweden)

    E. Watanabe

    2015-05-01

    Full Text Available Seasonal and interannual variability in sinking flux of biogenic particles was reported by the multi-year bottom-tethered sediment trap measurements in the Northwind Abyssal Plain (Station NAP: 75° N, 162° W, 1975 m water depth of the western Arctic Chukchi Borderland. Whereas the trapped particle flux had an obvious peak with the dominance of sea ice-related diatom valve in August 2011, the observed particle flux was considerably suppressed throughout the summer season in 2012. In the present study, response of ice algal production and biomass to wind-driven changes in physical environments was addressed using a pan-Arctic sea ice–ocean modeling approach. Sea ice ecosystem with ice algae was newly incorporated into the lower-trophic marine ecosystem model, which was previously coupled with a high-resolution (i.e., horizontal grid size of 5 km ocean general circulation model. Seasonal experiments covering two year-long mooring periods indicated that primary productivity of ice algae around the Chukchi Borderland depended on basin-scale wind pattern through various processes. Easterly wind in the southern part of distinct Beaufort High supplied high abundance of nutrient for euphotic zones of the NAP region via both surface Ekman transport of Chukchi shelf water and vertical turbulent mixing with underlying nutricline water as in 2011. In contrast, northwesterly wind flowing in the northern part of extended Siberian High transported oligotrophic water within the Beaufort Gyre circulation toward the NAP region as in 2012. The modeled ice algal biomass during the summer season certainly reflected the differences in nutrient distribution. The sinking flux of Particulate Organic Nitrogen (PON was comparable with the time series obtained from the sediment trap data in summer 2011. On the other hand, lateral advection of shelf-origin ice algal patch during a great cyclone event might have caused a model bias on the PON flux in 2012. The extension

  7. A 50% increase in the amount of terrestrial particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic Ocean) over the last 10 years

    OpenAIRE

    Doxaran, D; Devred, E.; M. Babin

    2015-01-01

    Global warming has a significant impact at the regional scale on the Arctic Ocean and surrounding coastal zones (i.e., Alaska, Canada, Greenland, Norway and Russia). The recent increase in air temperature has resulted in increased precipitations along the drainage basins of Arctic Rivers. It has also directly impacted land and seawater temperatures with the consequence of melting the permafrost and sea-ice. An increase in freshwater discharge by main Arctic rivers has ...

  8. Application of long-chain aikenones and U37k values for paleotemperature estimation in the Arctic Chukchi Sea- Bering Sea area

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    -Long-chain alkenones were detected in samples of sea surface sediments from the Chukchi Sea and the Bering Sea areas, the Arctic Pole. The analysis result indicates that C37:3 methylketone is pre dominate in the long-chain alkenones from the Chukchi and Bering Sea sediments. The abundance of C37to C39 unsaturated alkenones changes in an order of C37 >C38 >C39. Based on ∑37/∑38 ratio, the de tected organism precursors of the long-chain alkenones are mainly coccolithophrid (Emiliania huxleyi).By the calibration relationship between U3k7 and U37k indices, the sea surface paleotemperature in these seas is estimated. The estimated values of U37k vary from 4.147℃ to 5. 706℃, with a mean value of 5.092℃.

  9. Decadal predictability of extreme fresh water export events from the Arctic Ocean into the Nordic Seas and subpolar North Atlantic

    Science.gov (United States)

    Schmith, Torben; Olsen, Steffen M.; Ringgaard, Ida M.; May, Wilhelm

    2016-04-01

    Abrupt fresh water releases originating in the Arctic Ocean have been documented to affect ocean circulation and climate in the North Atlantic area. Therefore, in this study, we investigate prospects for predicting such events up to one decade ahead. This is done in a perfect model setup by a combination of analyzing a 500 year control experiment and dedicated ensemble experiment aimed at predicting selected 10 year long segments of the control experiment. The selected segments are characterized by a large positive or negative trend in the total fresh water content in the Arctic Ocean. The analysis of the components (liquid fresh water and sea ice) reveals that they develop in a near random walk manner. From this we conclude that the main mechanism is integration of fresh water in the Beaufort Gyre through Ekman pumping from the randomly varying atmosphere. Therefore, the predictions from the ensemble experiments are on average not better than a damped persistence predictions. By running two different families of ensemble predictions, one starting from the 'observed' ocean globally, and one starting from climatology in the Arctic Ocean and from the observed ocean elsewhere, we conclude that the former outperforms the latter for the first few years as regards liquid fresh water and for the first year as regards sea ice. Analysis of the model experiments in terms of the fresh water export from the Arctic Ocean into Nordic seas and the subpolar North Atlantic reveals a very modest potential for predictability.

  10. Phylogenetic analysis of cultivable bacteria isolated from Arctic sea-ice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Phylogenetic analysis based on 16S rDNA of 8 strains of cultivable bacteria isolated from Arctic sea-ice was studied. The results showed that strain BJ1 belonged to genus Planococcus, which was a genus of low mole percent G+C gram-positive bacteria; strain BJ6 belonged to genus Burkholderia of β- proteobacteria and the rest 6 strain all belonged to γ-proteobacteria, of which strain BJ8 was a species of Pseudoalteromonas, strain BJ2-BJ5 and BJ7 were members of genus Psychrobacter. Phylogenetic analysis also indicated that bacteria of genus Psychrobacter of the isolates formed a relatively independent phylogenetic cluster in comparison with other bacteria belonged to genus Psychrobacter.

  11. Melt onset over Arctic sea ice controlled by atmospheric moisture transport

    Science.gov (United States)

    Mortin, Jonas; Svensson, Gunilla; Graversen, Rune G.; Kapsch, Marie-Luise; Stroeve, Julienne C.; Boisvert, Linette N.

    2016-06-01

    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset.

  12. Influence of winter sea-ice motion on summer ice cover in the Arctic

    Directory of Open Access Journals (Sweden)

    Noriaki Kimura

    2013-11-01

    Full Text Available Summer sea-ice cover in the Arctic varies largely from year to year owing to several factors. This study examines one such factor, the relationship between interannual difference in winter ice motion and ice area in the following summer. A daily-ice velocity product on a 37.5-km resolution grid is prepared using the satellite passive microwave sensor Advanced Microwave Scanning Radiometer—Earth Observing System data for the nine years of 2003–2011. Derived daily-ice motion reveals the dynamic modification of the winter ice cover. The winter ice divergence/convergence is strongly related to the summer ice cover in some regions; the correlation coefficient between the winter ice convergence and summer ice area ranges between 0.5 and 0.9 in areas with high interannual variability. This relation implies that the winter ice redistribution controls the spring ice thickness and the summer ice cover.

  13. Vertical characteristics of ozone variation over the Arctic Chukchi Sea region in 1999

    Institute of Scientific and Technical Information of China (English)

    周立波; 刘宇; 邹捍

    2002-01-01

    In 1999 summer, Chinese Arctic Research Expedition operated the Chukchi Sea. On Chinese icebreaker Xuelong, we made many high-resolution ozonesonds measurements. During the period from August 18 to 24, a synoptic scale observation was taken at 75°N, 160°W. Using the above data, together with TOMS total ozone and NCEP circulation data, we showed that atmospheric ozone amount experienced a high-low-high variation, with low-high-low tropopause altitude. Correlation analysis showed a close relation between the total ozone and ozone below 13 km, while the variation of the maximum concentration at about 20 km didn't show any relation to the column ozone. In 500 hPa height maps, there was also the weak-strong-weak southwesterly pattern. Therefore we suggested that the synoptic system might be responsible to a low ozone advection during this ozone variation.

  14. Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

    DEFF Research Database (Denmark)

    Barber, D.; Ehn, J.; Pucko, M.;

    2014-01-01

    Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean-sea ice-atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater...... formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers...

  15. Hematology of southern Beaufort Sea polar bears (2005-2007): Biomarker for an arctic ecosystem health sentinel

    Science.gov (United States)

    Kirk, Cassandra M.; Amstrup, S.; Swor, Rhonda; Holcomb, Darce; O'Hara, T. M.

    2010-01-01

    Declines in sea-ice habitats have resulted in declining stature, productivity, and survival of polar bears in some regions. With continuing sea-ice declines, negative population effects are projected to expand throughout the polar bear's range. Precise causes of diminished polar bear life history performance are unknown, however, climate and sea-ice condition change are expected to adversely impact polar bear (Ursus maritimus) health and population dynamics. As apex predators in the Arctic, polar bears integrate the status of lower trophic levels and are therefore sentinels of ecosystem health. Arctic residents feed at the apex of the ecosystem, thus polar bears can serve as indicators of human health in the Arctic. Despite their value as indicators of ecosystem welfare, population-level health data for U.S. polar bears are lacking. We present hematological reference ranges for southern Beaufort Sea polar bears. Hematological parameters in southern Beaufort Sea polar bears varied by age, geographic location, and reproductive status. Total leukocytes, lymphocytes, monocytes, eosinophils, and serum immunoglobulin G were significantly greater in males than females. These measures were greater in nonlactating females ages ???5, than lactating adult females ages ???5, suggesting that females encumbered by young may be less resilient to new immune system challenges that may accompany ongoing climate change. Hematological values established here provide a necessary baseline for anticipated changes in health as arctic temperatures warm and sea-ice declines accelerate. Data suggest that females with dependent young may be most vulnerable to these changes and should therefore be a targeted cohort for monitoring in this sentinel. ?? 2010 International Association for Ecology and Health.

  16. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea-ice to open ocean

    Science.gov (United States)

    Young, Gillian; Jones, Hazel M.; Crosier, Jonathan; Bower, Keith N.; Darbyshire, Eoghan; Taylor, Jonathan W.; Liu, Dantong; Allan, James D.; Williams, Paul I.; Gallagher, Martin W.; Choularton, Thomas W.

    2016-04-01

    The Arctic sea-ice is intricately coupled to the atmosphere[1]. The decreasing sea-ice extent with the changing climate raises questions about how Arctic cloud structure will respond. Any effort to answer these questions is hindered by the scarcity of atmospheric observations in this region. Comprehensive cloud and aerosol measurements could allow for an improved understanding of the relationship between surface conditions and cloud structure; knowledge which could be key in validating weather model forecasts. Previous studies[2] have shown via remote sensing that cloudiness increases over the marginal ice zone (MIZ) and ocean with comparison to the sea-ice; however, to our knowledge, detailed in-situ data of this transition have not been previously presented. In 2013, the Aerosol-Cloud Coupling and Climate Interactions in the Arctic (ACCACIA) campaign was carried out in the vicinity of Svalbard, Norway to collect in-situ observations of the Arctic atmosphere and investigate this issue. Fitted with a suite of remote sensing, cloud and aerosol instrumentation, the FAAM BAe-146 aircraft was used during the spring segment of the campaign (Mar-Apr 2013). One case study (23rd Mar 2013) produced excellent coverage of the atmospheric changes when transitioning from sea-ice, through the MIZ, to the open ocean. Clear microphysical changes were observed, with the cloud liquid-water content increasing by almost four times over the transition. Cloud base, depth and droplet number also increased, whilst ice number concentrations decreased slightly. The surface warmed by ~13 K from sea-ice to ocean, with minor differences in aerosol particle number (of sizes corresponding to Cloud Condensation Nuclei or Ice Nucleating Particles) observed, suggesting that the primary driver of these microphysical changes was the increased heat fluxes and induced turbulence from the warm ocean surface as expected. References: [1] Kapsch, M.L., Graversen, R.G. and Tjernström, M. Springtime

  17. Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen.

    Science.gov (United States)

    Groudieva, Tatiana; Kambourova, Margarita; Yusef, Hoda; Royter, Maryna; Grote, Ralf; Trinks, Hauke; Antranikian, Garabed

    2004-12-01

    The diversity of culturable bacteria associated with sea ice from four permanently cold fjords of Spitzbergen, Arctic Ocean, was investigated. A total of 116 psychrophilic and psychrotolerant strains were isolated under aerobic conditions at 4 degrees C. The isolates were grouped using amplified rDNA restriction analysis fingerprinting and identified by partial sequencing of 16S rRNA gene. The bacterial isolates fell in five phylogenetic groups: subclasses alpha and gamma of Proteobacteria, the Bacillus-Clostridium group, the order Actinomycetales, and the Cytophaga-Flexibacter-Bacteroides (CFB) phylum. Over 70% of the isolates were affiliated with the Proteobacteria gamma subclass. Based on phylogenetic analysis (<98% sequence similarity), over 40% of Arctic isolates represent potentially novel species or genera. Most of the isolates were psychrotolerant and grew optimally between 20 and 25 degrees C. Only a few strains were psychrophilic, with an optimal growth at 10-15 degrees C. The majority of the bacterial strains were able to secrete a broad range of cold-active hydrolytic enzymes into the medium at a cultivation temperature of 4 degrees C. The isolates that are able to degrade proteins (skim milk, casein), lipids (olive oil), and polysaccharides (starch, pectin) account for, respectively, 56, 31, and 21% of sea-ice and seawater strains. The temperature dependences for enzyme production during growth and enzymatic activity were determined for two selected enzymes, alpha-amylase and beta-galactosidase. Interestingly, high levels of enzyme productions were measured at growth temperatures between 4 and 10 degrees C, and almost no production was detected at higher temperatures (20-30 degrees C). Catalytic activity was detected even below the freezing point of water (at -5 degrees C), demonstrating the unique properties of these enzymes. PMID:15252724

  18. Kara Smigel Croker | Division of Cancer Prevention

    Science.gov (United States)

    Kara Smigel Croker is the Communications Manager for the National Cancer Institute Division of Cancer Prevention. She coordinates and supports all aspects of communication, including media contacts, writing and editing of reports and responses, divisional websites, and social media. |

  19. Summer sea ice characteristics and morphology in the Pacific Arctic sector as observed during the CHINARE 2010 cruise

    Directory of Open Access Journals (Sweden)

    H. Xie

    2013-07-01

    Full Text Available In the summer of 2010, atmosphere–ice–ocean interaction was studied aboard the icebreaker R/V Xuelong during the Chinese National Arctic Research Expedition (CHINARE, in the sea ice zone of the Pacific Arctic sector between 150° W and 180° W up to 88.5° N. The expedition lasted from 21 July to 28 August and comprised of ice observations and measurements along the cruise track, 8 short-term stations and one 12-day drift station. Ship-based observations of ice thickness and concentration are compared with ice thickness measured by an electromagnetic induction device (EM31 mounted off the ship's side and ice concentrations obtained from AMSR-E. It is found that the modal thickness from ship-based visual observations matches well with the modal thickness from the mounted EM31. A grid of 8 profiles of ice thickness measurements (four repeats was conducted at the 12-day drift station in the central Arctic (~ 86°50´ N–87°20´ N and an average melt rate of 2 cm day−1, primarily bottom melt, was found. As compared with the 2005 data from the Healy/Oden Trans-Arctic Expedition (HOTRAX for the same sector but ~ 20 days later (9 August to 10 September, the summer 2010 was first-year ice dominant (vs. the multi-year ice dominant in 2005, 70% or less in mean ice concentration (vs. 90% in 2005, and 94–114 cm in mean ice thickness (vs. 150 cm in 2005. Those changes suggest the continuation of ice thinning, less concentration, and younger ice for the summer sea ice in the sector since 2007 when a record minimum sea ice extent was observed. Overall, the measurements provide a valuable dataset of sea ice morphological properties over the Arctic Pacific Sector in summer 2010 and can be used as a benchmark for measurements of future changes.

  20. Hydrographic changes in the Lincoln Sea in the Arctic Ocean with focus on an upper ocean freshwater anomaly between 2007 and 2010

    NARCIS (Netherlands)

    de Steur, L.; Steele, M.; Hansen, E.; Morison, J.; Polyakov, I.; Olsen, S.M.; Melling, H.; McLaughlin, F.A.; Kwok, R.; Smethie Jr., W.M.; Schlosser, P.

    2013-01-01

    Hydrographic data from the Arctic Ocean show that freshwater content in the Lincoln Sea, north of Greenland, increased significantly from 2007 to 2010, slightly lagging changes in the eastern and central Arctic. The anomaly was primarily caused by a decrease in the upper ocean salinity. In 2011 uppe

  1. Effectively Communicating Information about Dynamically Changing Arctic Sea Ice to the Public through the Global Fiducials Program

    Science.gov (United States)

    Molnia, B. F.; Friesen, B.; Wilson, E.; Noble, S.

    2015-12-01

    On July 15, 2009, the National Academy of Sciences (NAS) released a report, Scientific Value of Arctic Sea Ice Imagery Derived Products, advocating public release of Arctic images derived from classified data. In the NAS press release that announced the release, report lead Stephanie Pfirman states "To prepare for a possibly ice-free Arctic and its subsequent effects on the environment, economy, and national security, it is critical to have accurate projections of changes over the next several decades." In the same release NAS President Ralph Cicerone states "We hope that these images are the first of many that could help scientists learn how the changing climate could impact the environment and our society." The same day, Secretary of the Interior Ken Salazar announced that the requested images had been released and were available to the public on a US Geological Survey Global Fiducials Program (GFP) Library website (http://gfl.usgs.gov). The website was developed by the USGS to provide public access to the images and to support environmental analysis of global climate-related science. In the statement describing the release titled, Information Derived from Classified Materials Will Aid Understanding of Changing Climate, Secretary Salazar states "We need the best data from all places if we are to meet the challenges that rising carbon emissions are creating. This information will be invaluable to scientists, researchers, and the public as we tackle climate change." Initially about 700 Arctic sea ice images were released. Six years later, the number exceeds 1,500. The GFP continues to facilitate the acquisition of new Arctic sea ice imagery from US National Imagery Systems. This example demonstrates how information about dynamically changing Arctic sea ice continues to be effectively communicated to the public by the GFP. In addition to Arctic sea ice imagery, the GFP has publicly released imagery time series of more than 125 other environmentally important

  2. Migratory bird use of the coastal lagoon system of the Beaufort Sea coastline within the Arctic National Wildlife Refuge, Alaska, 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the migratory bird use of the coastal lagoon system of the Beaufort Sea coastline within the Arctic National Wildlife Refuge, Alaska. Aerial...

  3. ANWR progress report number FY84-6: Movement of molting oldsquaws within the Beaufort Sea coastal lagoons of Arctic National Wildlife Refuge, Alaska, 1983

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report covers the movement of molting oldsquaw within the Beaufort Sea Coastal lagoons of the Arctic National Wildlife Refuge, Alaska. During August, 1983, 16...

  4. Rapidly changing distribution of velocity and suspended materials under the drifting Arctic sea ice

    Science.gov (United States)

    Ha, Ho Kyung; Im, Jungho; Kim, Yong Hoon; Yae Son, Eun; Lee, Sanggyun

    2015-04-01

    In two summer seasons of 2011 and 2014, the short-term (1-4 days) ice-camp study has been conducted on the drifting Arctic sea ice. In particular, in 2014, the international collaboration with the Marginal Ice Zone program (sponsored by Office of Naval Research) has been integrated. The mooring package comprises the acoustic Doppler velocity profiler, holographic imaging camera, and conductivity-temperature-depth profiler, which are used to understand the dynamic behavior of sea ice and spatial-temporal variation of mixing layer (ML) and suspended particulate matters under the sea ice. Mooring data clearly shows the mixing and entrainment pattern in the upper ML in the marginal ice zone. When ice floes drift toward the pack ice, the upward entrainment from the seasonal pycnocline to sea ice-water boundary was induced by shear across ML and seasonal pycnocline. The entrainment speed was in the range of 0.25-2 m/hr, which matches well with thickening and thinning rate of ML during the near-inertial period (~12 hr). When ice floes drift toward the open ocean, the turbulent wakes at the advancing edge of ice were combined with the entrainment caused by near-inertial motion, which results in a complex mixing pattern of both upward and downward fluxes in the ML. Also, the acoustic backscatter observed by the acoustic Doppler current profiler and beam attenuation from transmissometer revealed the increased concentration of suspended particulate materials in the ML, which can be direct evidence visualizing the mixing pattern. Results suggest that the mixing and entrainment found in our study sustain particulate matters in suspension within the upper ML for a few months.

  5. Arctic Shipping Emissions in the Changing Climate

    OpenAIRE

    Vihanninjoki, Vesa

    2014-01-01

    Due to the Arctic climate change and the related diminishing of Arctic sea ice cover, the general conditions for Arctic shipping are changing. The retreat of Arctic sea ice opens up new routes for maritime transportation, both trans-Arctic passages and new alternatives within the Arctic region. Hence the amount of Arctic shipping is presumed to increase. Despite the observed development, the sailing conditions in the Arctic waters will remain challenging. Thus particular attention will be ...

  6. Relationships between declining summer sea ice, increasing temperatures and changing vegetation in the Siberian Arctic tundra from MODIS time series (2000–11)

    OpenAIRE

    Dutrieux, L.P.; Bartholomeus, H.; Herold, M.; Verbesselt, J.

    2012-01-01

    The concern about Arctic greening has grown recently as the phenomenon is thought to have significant influence on global climate via atmospheric carbon emissions. Earlier work on Arctic vegetation highlighted the role of summer sea ice decline in the enhanced warming and greening phenomena observed in the region, but did not contain enough details for spatially characterizing the interactions between sea ice, temperature and vegetation photosynthetic absorption. By using 1 km resolution data...

  7. Recent extreme light sea ice years in the Canadian Arctic Archipelago: 2011 and 2012 eclipse 1998 and 2007

    Directory of Open Access Journals (Sweden)

    S. E. L. Howell

    2013-03-01

    Full Text Available Record low mean September sea ice area in the Canadian Arctic Archipelago (CAA was observed in 2011 (146 × 103 km2, a level that was nearly exceeded in 2012 (150 × 103 km2. These values eclipsed previous September records set in 1998 (200 × 103 km2 and 2007 (220 × 103 km2 and are ∼60% lower than the 1981–2010 mean September climatology. In this study, the driving processes contributing to the extreme light years of 2011 and 2012 were investigated, compared to previous extreme minima of 1998 and 2007, and contrasted against historic summer seasons with above average September ice area. The 2011 minimum was driven by positive July surface air temperature (SAT anomalies that facilitated rapid melt, coupled with atmospheric circulation in July and August that restricted multi-year ice (MYI inflow from the Arctic Ocean into the CAA. The 2012 minimum was also driven by positive July SAT anomalies (with coincident rapid melt but further ice decline was temporarily mitigated by atmospheric circulation in August and September which drove Arctic Ocean MYI inflow into the CAA. Atmospheric circulation was comparable between 2011 and 1998 (impeding Arctic Ocean MYI inflow and 2012 and 2007 (inducing Arctic Ocean MYI inflow. However, evidence of both preconditioned thinner Arctic Ocean MYI flowing into CAA and maximum landfast first-year ice (FYI thickness within the CAA was more apparent leading up to 2011 and 2012 than 1998 and 2007. The rapid melt process in 2011 and 2012 was more intense than observed in 1998 and 2007 because of the thinner ice cover being more susceptible to positive SAT forcing. The thinner sea ice cover within the CAA in recent years has also helped counteract the processes that facilitate extreme heavy ice years. The recent extreme light years within the CAA are associated with a longer navigation season within the Northwest Passage.

  8. In situ expression of eukaryotic ice-binding proteins in microbial communities of Arctic and Antarctic sea ice.

    Science.gov (United States)

    Uhlig, Christiane; Kilpert, Fabian; Frickenhaus, Stephan; Kegel, Jessica U; Krell, Andreas; Mock, Thomas; Valentin, Klaus; Beszteri, Bánk

    2015-11-01

    Ice-binding proteins (IBPs) have been isolated from various sea-ice organisms. Their characterisation points to a crucial role in protecting the organisms in sub-zero environments. However, their in situ abundance and diversity in natural sea-ice microbial communities is largely unknown. In this study, we analysed the expression and phylogenetic diversity of eukaryotic IBP transcripts from microbial communities of Arctic and Antarctic sea ice. IBP transcripts were found in abundances similar to those of proteins involved in core cellular processes such as photosynthesis. Eighty-nine percent of the IBP transcripts grouped with known IBP sequences from diatoms, haptophytes and crustaceans, but the majority represented novel sequences not previously characterized in cultured organisms. The observed high eukaryotic IBP expression in natural eukaryotic sea ice communities underlines the essential role of IBPs for survival of many microorganisms in communities living under the extreme conditions of polar sea ice. PMID:25885562

  9. Concentration and distribution of 17 organochlorine pesticides (OCPs) in seawater from the Japan Sea northward to the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Seventeen classic organochlorine pesticides in surface seawater were studied in terms of their composition pattern as well as their distribution pattern in the areas covering the Japan Sea,Okhotsk Sea,Bering Sea,Chukchi Sea and Arctic Ocean.Their concentrations varied,but roughly two levels were seen with one ranging between 0.1 and 1 ng L-1 for most HCH isomers and the other lower than 0.1 ng L-1 for other chemicals.Of the 17 target compounds,HCHs were dominant with a total concentration percentage generally more than 50%,and a relatively high concentration percentage of heptachlor and aldrine was also observed at scattered stations.The historical long-term trend of several target chemicals in the five sea zones considered was discussed in comparison with previous reports.Inter-sea zone comparison was carried out for individual chemicals by comparing the concentration variation in all five sea zones.A higher variation in concentration was generally found in the northern sea zones,namely the Bering Sea,Chukchi Sea and Arctic Ocean,for most target compounds.The sum concentration of the 17 target chemicals displayed a general trend of increasing northward from the Japan Sea to the Okhotsk Sea to the Bering Sea to the Arctic Ocean.Different latitudinal trends were found forγ-HCH andγ-HCH,and the reason of this difference was discussed by considering their divergence of thermodynamic properties,which could contribute to a slightly different fractionation effect during their northward transport driven by atmospheric long range transport.The source of the HCHs was identified by analyzing theγ-HCH/γ-HCH ratio,which was less than 4 without exception,indicating a component characteristic featuring a mixture of technical HCHs and lindane.In addition,the vertical distribution ofγ-HCH,γ-HCH and their ratio at station B80 was discussed.Different patterns were found in the upper 300 m while in layers from 300 m downward to 3500 m the patterns were fairly comparable

  10. Affects of Changes in Sea Ice Cover on Bowhead Whales and Subsistence Whaling in the Western Arctic

    Science.gov (United States)

    Moore, S.; Suydam, R.; Overland, J.; Laidre, K.; George, J.; Demaster, D.

    2004-12-01

    Global warming may disproportionately affect Arctic marine mammals and disrupt traditional subsistence hunting activities. Based upon analyses of a 24-year time series (1979-2002) of satellite-derived sea ice cover, we identified significant positive trends in the amount of open-water in three large and five small-scale regions in the western Arctic, including habitats where bowhead whales (Balaena mysticetus) feed or are suspected to feed. Bowheads are the only mysticete whale endemic to the Arctic and a cultural keystone species for Native peoples from northwestern Alaska and Chukotka, Russia. While copepods (Calanus spp.) are a mainstay of the bowhead diet, prey sampling conducted in the offshore region of northern Chukotka and stomach contents from whales harvested offshore of the northern Alaskan coast indicate that euphausiids (Thysanoessa spp.) advected from the Bering Sea are also common prey in autumn. Early departure of sea ice has been posited to control availability of zooplankton in the southeastern Bering Sea and in the Cape Bathurst polynya in the southeastern Canadian Beaufort Sea, with maximum secondary production associated with a late phytoplankton bloom in insolatoin-stratified open water. While it is unclear if declining sea-ice has directly affected production or advection of bowhead prey, an extension of the open-water season increases opportunities for Native subsistence whaling in autumn. Therefore, bowhead whales may provide a nexus for simultaneous exploration of the effects sea ice reduction on pagophillic marine mammals and on the social systems of the subsistence hunting community in the western Arctic. The NOAA/Alaska Fisheries Science Center and NSB/Department of Wildlife Management will investigate bowhead whale stock identity, seasonal distribution and subsistence use patterns during the International Polar Year, as an extension of research planned for 2005-06. This research is in response to recommendations from the Scientific

  11. Revisiting the Potential of Melt Pond Fraction as a Predictor for the Seasonal Arctic Sea Ice Extent Minimum

    Science.gov (United States)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2015-01-01

    The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.

  12. Relating the Age of Arctic Sea Ice to its Thickness, as Measured during NASA’s ICESat and IceBridge Campaigns

    OpenAIRE

    Mark A. Tschudi; Stroeve, Julienne C.; J. Scott Stewart

    2016-01-01

    Recent satellite observations yield estimates of the distribution of sea ice thickness across the entire Arctic Ocean. While these sensors were only placed in operation within the last few years, information from other sensors may assist us with estimating the distribution of sea ice thickness in the Arctic beginning in the 1980s. A previous study found that the age of sea ice is correlated to sea ice thickness from 2003 to 2006, but an extension of the temporal analysis is needed to better q...

  13. Simulation of how a geo-engineering intervention to restore arctic sea ice might work in practice

    Science.gov (United States)

    Forster, Piers; Jackson, Lawrence

    2014-05-01

    The declining trend in annual minimum Arctic sea ice coverage and years of more pronounced drops like 2007 and 2012 raise the prospect of an Arctic Ocean largely free of sea ice in late summer and the potential for a climate crisis or emergency. In a novel computer simulation, we treated one realisation of a climate model (HadGEM2) as the real world and tried to restore its Arctic sea ice by the rapid deployment of geo-engineering with emission of SO2 into the Arctic stratosphere. The objective was to restore the annual minimum Arctic sea ice coverage to levels seen in the late twentieth century using as little geo-engineering as possible. We took intervention decisions as one might do in the real world: by committee, using a limited set of uncertain "observations" from our simulated world and using models and control theory to plan the best intervention strategy for the coming year - so learning as we went and being thrown off course by future volcanoes and technological breakdowns. Uncertainties in real world observations were simulated by applying noise to emerging results from the climate model. Volcanic radiative forcing of twenty-first century climate was included with the timing and magnitude of the simulated eruptions unknown by the "geo-engineers" until after the year of the eruption. Monitoring of Arctic sea ice with the option to intervene with SO2 emissions started from 2018 and continued to 2075. Simulated SO2 emissions were made in January-May each year at a latitude of 79o N and an altitude within the range of contemporary tanker aircraft. The magnitude of emissions was chosen annually using a model predictive control process calibrated using results from CMIP5 models (excluding HadGEM2), using the simplified climate model MAGICC and assimilation of emerging annual results from the HadGEM2 "real world". We found that doubts in the minds of the "geo-engineers" of the radiative effect of their interventions, the side effects of their past interventions

  14. A comparative study on three EOF analysis techniques using decades of Arctic sea-ice concentration data

    Institute of Scientific and Technical Information of China (English)

    陈新保; 刘信陶; 李松年; Chow Annie

    2015-01-01

    Change in Arctic sea ice extent is one of the indicators of global climate changes. Spatio-temporal change and change patterns can be identified using various methods to facilitate human understanding global climate changes. Three empirical orthogonal function (EOF) techniques are discussed and applied to decades of sea-ice concentration (SIC) dataset in Arctic area for identifying independent patterns. It was found that: 1) discrepancies exist in magnitude and scope for each EOF pattern, however, the first two leading EOFs of variability possess high similarities in structure and shape; 2) Even though there are somewhat differences in amplitude of each PC mode, the first two leading PC modes maintain consistent in overall trend and periodicity; 3) There are significant discrepancies and inconsistencies in the third and fourth leading EOF and PC modes. The accuracies of three techniques are further validated in representing the physical phenomena of SIC anomaly patterns.

  15. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta)

    Science.gov (United States)

    Auel, Holger

    2004-10-01

    Reproductive strategies of the four congeneric and sympatric calanoid copepods Paraeuchaeta glacialis, P. norvegica, P. barbata, and P. polaris were studied in the Arctic Greenland Sea. Females of all species produce egg sacs and carry their brood attached to the genital opening until the offspring hatch. However, egg size and lipid content as well as clutch size and the fraction of females carrying egg masses show characteristic differences among the four species. P. glacialis and P. norvegica produce large numbers (37 to more than 50) of relatively small eggs, whereas P. barbata and P. polaris rely on small numbers (10 to 19 and 4 to 6, respectively) of large eggs with a high energy content. There is no correlation between female body size and egg size or clutch size, respectively. Females of the smallest species, P. polaris, produce relatively large eggs and show the highest energetic investment per egg. In contrast, energetic investment per clutch is highest in P. glacialis. Reproductive adaptations appear to be strongly related to the depth range inhabited by the respective species. In the central Greenland Sea P. glacialis and P. norvegica occur in the epipelagial and upper mesopelagial, whereas the other two species inhabit lower mesopelagic to bathypelagic depths. Thus, egg size increases with depth of occurrence, whereas clutch size is inversely correlated with depth. This observation leads to the hypothesis that the evolution of large eggs in deep-sea copepods may enable hatchlings to rely on a lecithotrophic development and thus represents a successful adaptation to cope with the limited food supply at great depths, whereas high offspring numbers in epipelagic species compensate for higher predation risks in the euphotic zone.

  16. Monitoring Sea Ice Conditions and Use in Arctic Alaska to Enhance Community Adaptation to Change

    Science.gov (United States)

    Druckenmiller, M. L.; Eicken, H.

    2010-12-01

    Sea ice changes in the coastal zone, while less conspicuous in relation to the dramatic thinning and retreat of perennial Arctic sea ice, can be more readily linked to local impacts. Shorefast ice is a unique area for interdisciplinary research aimed at improving community adaptation to climate through local-scale environmental observations. Here, geophysical monitoring, local Iñupiat knowledge, and the documented use of ice by the Native hunting community of Barrow, Alaska are combined to relate coastal ice processes and morphologies in the Chukchi Sea to ice stability and community adaption strategies for travel, hunting, and risk assessment. A multi-year effort to map and survey the community’s seasonal ice trails, alongside a detailed record of shorefast ice conditions, provides insight into how hunters evaluate the evolution of ice throughout winter and spring. Various data sets are integrated to relate the annual accretion history of the local ice cover to both measurements of ice thickness and topography and hunter observations of ice types and hazards. By relating changes in the timing of shorefast ice stabilization, offshore ice conditions, and winter wind patterns to ice characteristics in locations where spring bowhead whaling occurs, we are working toward an integrated scientific product compatible with the perspective of local ice experts. A baseline for assessing future change and community climate-related vulnerabilities may not be characterized by single variables, such as ice thickness, but rather by how changes in observable variables manifest in impacts to human activities. This research matches geophysical data to ice-use to establish such a baseline. Documenting human-environment interactions will allow future monitoring to illustrate how strategies for continued community ice-use are indicative of or responsive to change, and potentially capable of incorporating science products as additional sources of useable information.

  17. Physical, profile and underway data collected aboard the Sikuliaq during cruise SKQ201511S in the Arctic Ocean, Beaufort Sea and Bering Sea from 2015-08-23 to 2015-09-26 (NCEI Accession 0145965)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0145965 includes physical, profile and underway data collected aboard the Sikuliaq during cruise SKQ201511S in the Arctic Ocean, Beaufort Sea and...

  18. Biological, chemical and other data collected aboard the HEALY during cruise HLY1201 in the Arctic Ocean, Beaufort Sea and Bering Sea from 2012-08-09 to 2012-08-25 (NODC Accession 0116859)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC accession 0116859 includes biological, chemical, optical and physical data collected aboard the HEALY during cruise HLY1201 in the Arctic Ocean, Beaufort Sea...

  19. The first aeromagnetic survey in the Arctic: results of the Graf Zeppelin airship flight of 1931

    Science.gov (United States)

    Raspopov, O. M.; Sokolov, S. N.; Demina, I. M.; Pellinen, R.; Petrova, A. A.

    2013-03-01

    In July of 1931, on the eve of International Polar Year II, an Arctic flight of the Graf Zeppelin rigid airship was organized. This flight was a realization of the idea of F. Nansen, who advocated the use of airships for the scientific exploration of the Arctic territories, which were poorly studied and hardly accessible at that time. The route of the airship flight was Berlin - Leningrad - Arkhangelsk - Franz Josef Land - Severnaya Zemlya - the Taimyr Peninsula - Novaya Zemlya - Arkhangelsk - Berlin. One of scientific goals of the expedition was to measure the H and D geomagnetic field components. Actually, the first aeromagnetic survey was carried out in the Arctic during the flight. After the expedition, only preliminary results of the geomagnetic measurements, in which an anomalous behavior of magnetic declination in the high-latitude part of the route was noted, were published. Our paper is concerned with the first aeromagnetic measurements in the Arctic and their analysis based on archival and modern data on the magnetic field in the Barents and Kara sea regions. It is shown that the magnetic field along the flight route had a complicated structure, which was not reflected in the magnetic charts of those times. The flight was very important for future development of aero- and ground-based magnetic surveys in the Arctic, showing new methods in such surveys.

  20. The first aeromagnetic survey in the Arctic: results of the Graf Zeppelin airship flight of 1931

    Directory of Open Access Journals (Sweden)

    O. M. Raspopov

    2013-03-01

    Full Text Available In July of 1931, on the eve of International Polar Year II, an Arctic flight of the Graf Zeppelin rigid airship was organized. This flight was a realization of the idea of F. Nansen, who advocated the use of airships for the scientific exploration of the Arctic territories, which were poorly studied and hardly accessible at that time. The route of the airship flight was Berlin – Leningrad – Arkhangelsk – Franz Josef Land – Severnaya Zemlya – the Taimyr Peninsula – Novaya Zemlya – Arkhangelsk – Berlin. One of scientific goals of the expedition was to measure the H and D geomagnetic field components. Actually, the first aeromagnetic survey was carried out in the Arctic during the flight. After the expedition, only preliminary results of the geomagnetic measurements, in which an anomalous behavior of magnetic declination in the high-latitude part of the route was noted, were published. Our paper is concerned with the first aeromagnetic measurements in the Arctic and their analysis based on archival and modern data on the magnetic field in the Barents and Kara sea regions. It is shown that the magnetic field along the flight route had a complicated structure, which was not reflected in the magnetic charts of those times. The flight was very important for future development of aero- and ground-based magnetic surveys in the Arctic, showing new methods in such surveys.

  1. Combined Effects of the North Atlantic Oscillation and the Arctic Oscillation on Sea Surface Temperature in the Alborán Sea

    OpenAIRE

    Báez, José C.; Gimeno, L.; Gómez-Gesteira, M.; Ferri-Yáñez, F.; Real, R.

    2013-01-01

    We explored the possible effects of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) on interannual sea surface temperature (SST) variations in the Albora´n Sea, both separately and combined. The probability of observing mean annual SST values higher than average was related to NAO and AO values of the previous year. The effect of NAO on SST was negative, while that of AO was positive. The pure effects of NAO and AO on SST are obscuring each other, due to the posit...

  2. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation

    OpenAIRE

    Ricker, R.; Hendricks, S.; V. Helm; H. Skourup; M. Davidson

    2014-01-01

    In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku band synthetic aperture radar altimeter SIRAL (Synthetic Aperture Interferometric Radar Altimeter), which we use to derive sea-ice freeboard defined as the height of the ice surface above the sea level. Accurate CryoSat-2 range measurements over open water and the ice surface of the order of centimetres are necessary to achieve...

  3. Arctic satellite thermal infrared CH4 data compared to surface in-situ and total column measurements

    Science.gov (United States)

    Yurganov, L.; Leifer, I.; Xiong, X.

    2013-12-01

    The trace gas sensitivity of Thermal InfraRed (TIR) sounders (AIRS, IASI, TANSO) is greatest in the middle and upper troposphere; though, lower troposphere (1-2 km of altitude) sensitivity is less but not negligible. As a result, where methane largely is constrained to the lower troposphere, as is common in the Arctic particularly the marine Arctic, retrievals from these instruments provides important synoptic data on high latitude methane sources. Low Arctic water vapor content favors a better sensitivity to methane as well: H2O is the main absorber in the 7.8 micrometers spectral region. Both AIRS/Aqua v6 (NASA) and IASI/Metop-A (NOAA/NESDIS/CLASS retrievals) methane data averaged over 0-4 km altitude clearly demonstrate increased methane concentrations over the Barents and Norwegian Seas (BNS) with seasonal maximum in December - March. Similar increases are observed over the Kara, Laptev, and Chukchi Seas for September-November, i.e. during the period of minimum ice cover over the Arctic (Figures 1 and 2). Comparison of a long series of AIRS data with in situ methane concentrations at the Zeppelin NILU observatory (Svalbard) show good agreement both in amplitude and phase of seasonal variations. Agreement with Barrow NOAA continuous methane in situ data is much worse, which likely results from lower thermal contrast in winter over the cold and icy surfaces of the Eastern Arctic. Further surface validation is by a comparison of total methane columns with the Sun-Tracking FTIR at Ny-Alesund, Svalbard (TCCON network). These analyses demonstrate that TIR satellites are capable of detecting Arctic methane enhancements from space, particularly over relatively warm year-round water surfaces such as the BNS. Ongoing research is addressing further verification of retrieved methane columns by collecting data with a cavity ring-down spectroscopy analyzer for methane and carbon dioxide on board of the Russian Research Vessel Akademik Fedorov during the expedition NABOS-2013

  4. Late glacial and interglacial sea ice variability in the Arctic Ocean: new insights from proxy and numerical modelling data

    Science.gov (United States)

    Müller, Juliane; Wagner, Axel; Stärz, Michael; Stein, Ruediger

    2013-04-01

    The importance of Arctic Ocean sea ice coverage for global climate (change) is widely acknowledged. Due to its high albedo and its capacity to insulate the sea surface from the atmosphere the ice directly impacts on the oceanic and atmospheric heat and moisture balance and thus affects large-scale circulation patterns. At the same time, sea ice displays a sensitive responder to changes in 1) orbital forcing (i.e. insolation), 2) large-scale wind patterns (governing ice drift) and 3) ocean temperature (e.g. due to fluctuations in the Atlantic water advection). Among climate proxies preserved within marine sediments the IP25 sea ice biomarker and the novel PIP25 index derived therefrom seem to be most promising means for sea ice reconstructions in the Arctic (Belt et al., 2007; Müller et al., 2011). The identification of this molecule in marine sediment cores thus enables the assessment of spatial and temporal variations in sea ice coverage through time. Among numerical climate models the high-resolution regional ocean-sea ice model NAOSIM repeatedly has been applied for palaeo sea ice modelling studies (e.g. Stärz et al., 2012). Here we present and discuss biomarker-based sea ice reconstructions with an unusual high temporal resolution covering the past glacial, deglacial and the Holocene climate history of eastern Fram Strait. These proxy results are complemented by model data obtained from NAOSIM. The documentation of changing sea ice conditions that accompanied the transition from the last glacial to interglacial climate mode contributes to the understanding of oceanic and atmospheric driving and feedback mechanisms associated with this large-scale climate shift. Furthermore, the continuous biomarker records from Fram Strait enable the assessment of how fast sea surface conditions (i.e. sea ice cover) responded to climate perturbations. Events of abruptly retreating or advancing sea ice cover as well as long-term trends are observable. Comparison of these proxy

  5. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012.

    Science.gov (United States)

    Metfies, Katja; von Appen, Wilken-Jon; Kilias, Estelle; Nicolaus, Anja; Nöthig, Eva-Maria

    2016-01-01

    Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2-3 μm) is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin) using chlorophyll a (Chl a) measurements, automated ribosomal intergenic spacer analysis (ARISA) and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60-90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean. PMID:26895333

  6. Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012.

    Directory of Open Access Journals (Sweden)

    Katja Metfies

    Full Text Available Information on recent photosynthetic biomass distribution and biogeography of Arctic marine pico-eukaryotes (0.2-3 μm is needed to better understand consequences of environmental change for Arctic marine ecosystems. We analysed pico-eukaryote biomass and community composition in Fram Strait and large parts of the Central Arctic Ocean (Nansen Basin, Amundsen Basin using chlorophyll a (Chl a measurements, automated ribosomal intergenic spacer analysis (ARISA and 454-pyrosequencing. Samples were collected during summer 2012, the year with the most recent record sea ice minimum. Chl a concentrations were highest in eastern Fram Strait and pico-plankton accounted for 60-90% of Chl a biomass during the observation period. ARISA-patterns and 454-pyrosequencing revealed that pico-eukaryote distribution is closely related to water mass distribution in the euphotic zone of the Arctic Ocean. Phaeocystaceae, Micromonas sp., Dinophyceae and Syndiniales constitute a high proportion of sequence reads, while sequence abundance of autotrophic Phaeocystaceae and mixotrophic Micromonas sp. was inversely correlated. Highest sequence abundances of Phaeocystaceae were observed in the warm Atlantic Waters in Fram Strait, while Micromonas sp. dominated the abundant biosphere in the arctic halocline. Our results are of particular interest considering existing hypotheses that environmental conditions in Nansen Basin might become more similar to the current conditions in Fram Strait. We propose that in response, biodiversity and biomass of pico-eukaryotes in Nansen Basin could resemble those currently observed in Fram Strait in the future. This would significantly alter biogeochemical cycles in a large part of the Central Arctic Ocean.

  7. Fluctuating Arctic Sea ice thickness changes estimated by an in situ learned and empirically forced neural network model

    Science.gov (United States)

    Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

    2008-01-01

    Sea ice thickness (SIT) is a key parameter of scientific interest because understanding the natural spatiotemporal variability of ice thickness is critical for improving global climate models. In this paper, changes in Arctic SIT during 1982-2003 are examined using a neural network (NN) algorithm trained with in situ submarine ice draft and surface drilling data. For each month of the study period, the NN individually estimated SIT of each ice-covered pixel (25-km resolution) based on seven geophysical parameters (four shortwave and longwave radiative fluxes, surface air temperature, ice drift velocity, and ice divergence/convergence) that were cumulatively summed at each monthly position along the pixel's previous 3-yr drift track (or less if the ice was <3 yr old). Average January SIT increased during 1982-88 in most regions of the Arctic (+7.6 ?? 0.9 cm yr-1), decreased through 1996 Arctic-wide (-6.1 ?? 1.2 cm yr-1), then modestly increased through 2003 mostly in the central Arctic (+2.1 ?? 0.6 cm yr-1). Net ice volume change in the Arctic Ocean from 1982 to 2003 was negligible, indicating that cumulative ice growth had largely replaced the estimated 45 000 km3 of ice lost by cumulative export. Above 65??N, total annual ice volume and interannual volume changes were correlated with the Arctic Oscillation (AO) at decadal and annual time scales, respectively. Late-summer ice thickness and total volume varied proportionally until the mid-1990s, but volume did not increase commensurate with the thickening during 1996-2002. The authors speculate that decoupling of the ice thickness-volume relationship resulted from two opposing mechanisms with different latitudinal expressions: a recent quasi-decadal shift in atmospheric circulation patterns associated with the AO's neutral state facilitated ice thickening at high latitudes while anomalously warm thermal forcing thinned and melted the ice cap at its periphery. ?? 2008 American Meteorological Society.

  8. The effect of tides on sea ice, temperature and salinity fields in the Arctic Ocean on multi-decadal scales.

    Science.gov (United States)

    Luneva, Maria; Harle, James; Holt, Jason; Aksenov, Yevgeny

    2014-05-01

    The effects of tides on the hydrographical fields and sea-ice on multi-decadal timescales (from 1978-2007) has been examined using a newly developed Arctic Ocean NEMO-shelf-ice coupled model of moderate (10-15km) resolution, which explicitly simulates tides and processes in the benthic boundary layer. The model realistically reproduces the tides, which can be extremely strong on the Arctic shelf, with amplitudes reaching 4.4m in the Hudson Strait, 2-3m in the White Sea and above 1m in the Canadian Archipelago. It also accurately predicts the sea ice volume trends over this period, when compared with PIOMAS results, and demonstrates a stronger reduction in ice volume (by ~15%) and extent (by ~5%) in comparison with simulations without tides. By including tides in the Arctic simulation we find: (i) a decrease in ice thickness from 0.1 to 1m in Central Arctic, and up to 2m in the Canadian Archipelago; (ii) ice melting and thinning is accompanied by an increase in average surface salinity by 2PSU and changes of river freshwater pathways; (iii) cooling of the upper 300m of the Arctic Ocean in comparison with non-tidal simulations. We hypothesize that tidal mixing and advection support the supply of heat from warm Atlantic waters through the strongly stratified halocline layer. It has been found that tidal effects on the water mass structure are regionally localised, but subsequent can be transported across the entire basin. We discuss the following physical mechanisms for tidal influence: (a) increased vertical mixing near the bottom layer and on the ice-ocean interface; (b) opening and closing of leads in the sea ice in summer time altering the solar radiation flux to water below, thus affecting the ocean heat content and amount of ice melt ; (c) opening and closing of leads in the sea ice during winter leading to an increase the heat loss from the ocean to atmosphere, with subsequent ice production and brine rejection; (d) increased mixing in the pycnocline and at the

  9. Relative sea level and coastal environments in arctic Alaska during Marine Isotope Stage 5

    Science.gov (United States)

    Farquharson, L. M.; Mann, D. H.; Jones, B. M.; Rittenour, T. M.; Grosse, G.; Groves, P.

    2015-12-01

    Marine Isotope Stage (MIS) 5 was characterized by marked fluctuations in climate, the warmest being MIS 5e (124-119 ka) when relative sea level (RSL) stood 2-10 m higher than today along many coastlines. In northern Alaska, marine deposits now 5-10 m above modern sea level are assigned to this time period and termed the Pelukian transgression (PT). Complicating this interpretation is the possibility that an intra-Stage 5 ice shelf extended along the Alaskan coast, causing isostatic depression along its grounded margins, which caused RSL highs even during periods of low, global RSL. Here we use optically stimulated luminescence (OSL) to date inferred PT deposits on the Beaufort Sea coastal plain. A transition from what we interpret to be lagoonal mud to sandy tidal flat deposits lying ~ 2.75 m asl dates to 113+/-18 ka. Above this, a 5-m thick gravelly barrier beach dates to 95 +/- 20 ka. This beach contains well-preserved marine molluscs, whale vertebrae, and walrus tusks. Pleistocene-aged ice-rich eolian silt (yedoma) blanket the marine deposits and date to 57.6 +/-10.9 ka. Our interpretation of this chronostratigraphy is that RSL was several meters higher than today during MIS 5e, and lagoons or brackish lakes were prevalent. Gravel barrier beaches moved onshore as local RSL rose further after MIS 5e. The error range of the OSL age of the barrier-beach unit spans the remaining four substages of MIS 5; however, the highstand of RSL on this arctic coastline appears to occurr after the warmest part of the last interglacial and appears not to be coeval with the eustatic maximum reached at lower latitudes during MIS 5. One possibility is that RSL along the Beaufort Sea coast was affected by isostatic depression caused by an ice shelf associated with widespread, intra-Stage 5 glaciation that was out of phase with lower latitude glaciation and whose extent and timing remains enigmatic.

  10. Regional Sea level change in the Arctic Ocean from a combination of radar and laser altimetry, tide gauges and ocean models

    Science.gov (United States)

    Andersen, O. B.; Bondo, T.; Cheng, Y.

    2010-12-01

    Lack of adequate spatial and temporal sea level observations in the Arctic Ocean is one of the most challenging problems in the study of changes in sea level and ocean circulation in the Arctic Ocean today. Especially as sea level variation in the Arctic Ocean plays an important role in the global climate system. Only a few tide gauges with long time series exists (1933-> present). Preliminarily investigations show that several of these are not indicative of sea level changes but rather of changes in river flows due to their position so a careful editing is required. The use of satellite altimetry (1992->present) is hampered due to a suite of problems. The error on sea level recovery increases, standard retracking removes most data in areas of sea ice and furthermore most of the Arctic is not covered due to the inclination of the satellites. Only the radar altimeters on board ERS and ENVISAT and the laser altimeter on board ICESAT have so far provided sparse information about Arctic sea level change. However, the combined relatively long operation period of the three satellites has now made it possible to investigate annual and decadal sea level variations. Together with similar results from ocean models like GECCO, MICOM and University of Washington Ocean model we aim to improve the recovery of sea level changes in the Arctic Ocean on annual to inter-decadal scale and the first result for this work will be presented. The presentation is a contribution to the EU supported projects MONARCH and MyOcean.

  11. Evolution of the Arctic and Antarctic sea ice over the 20th and 21st centuries as simulated by CMIP5 models

    Science.gov (United States)

    Philippon-Berthier, G.; Fichefet, T.; Goosse, H.; Massonnet, F.

    2011-12-01

    Results from simulations conducted with the CMIP5 atmosphere-ocean general circulation models are used to study the evolution of the Arctic and Antarctic sea ice covers over the 20th and 21st centuries. We first assess the ability of the individual models and the multi-model mean to reproduce the average seasonal cycle, the interannual variability and the longer-term changes of the Arctic and Antarctic sea ice extents and volumes over the late 20th century. A performance metric based on observations is proposed and applied to all available models with the aim of selecting those that yield the most realistic behavior of both ice packs. Outputs from the selected models are then thoroughly analyzed to better understand the sharp decline of the Arctic sea ice area coverage observed during the last decades and to determine the causes of the recent increase in Antarctic sea ice extent. Second, we project with each individual model and the multi-model mean the response of the Arctic and Antarctic sea ice extents and volumes over the 21st century to the RCP2.6, RCP4.5, RCP6 and RCP8.5 forcing scenarios. Models that meet the performance criteria defined by the metric are finally used to reduce uncertainties regarding the date of disappearance of the summer Arctic sea ice.

  12. The effects of additional black carbon on the albedo of Arctic sea ice: variation with sea ice type and snow cover

    Directory of Open Access Journals (Sweden)

    A. A. Marks

    2013-07-01

    Full Text Available The response of the albedo of bare sea ice and snow-covered sea ice to the addition of black carbon is calculated. Visible light absorption and light-scattering cross-sections are derived for a typical first-year and multi-year sea ice with both "dry" and "wet" snow types. The cross-sections are derived using data from a 1970s field study that recorded both reflectivity and light penetration in Arctic sea ice and snow overlying sea ice. The variation of absorption cross-section over the visible wavelengths suggests black carbon is the dominating light-absorbing impurity. The response of first-year and multi-year sea ice albedo to increasing black carbon, from 1 to 1024 ng g−1, in a top 5 cm layer of a 155 cm-thick sea ice was calculated using a radiative-transfer model. The albedo of the first-year sea ice is more sensitive to additional loadings of black carbon than the multi-year sea ice. An addition of 8 ng g−1 of black carbon causes a decrease to 98.7% of the original albedo for first-year sea ice compared to a decrease to 99.7% for the albedo of multi-year sea ice, at a wavelength of 500 nm. The albedo of sea ice is surprisingly unresponsive to additional black carbon up to 100 ng g−1 . Snow layers on sea ice may mitigate the effects of black carbon in sea ice. Wet and dry snow layers of 0.5, 1, 2, 5 and 10 cm depth were added onto the sea ice surface. The albedo of the snow surface was calculated whilst the black carbon in the underlying sea ice was increased. A layer of snow 0.5 cm thick greatly diminishes the effect of black carbon in sea ice on the surface albedo. The albedo of a 2–5 cm snow layer (less than the e-folding depth of snow is still influenced by the underlying sea ice, but the effect of additional black carbon in the sea ice is masked.

  13. The impact of variable sea ice roughness on changes in Arctic Ocean surface stress: A model study

    Science.gov (United States)

    Martin, Torge; Tsamados, Michel; Schroeder, David; Feltham, Daniel L.

    2016-03-01

    The Arctic sea ice cover is thinning and retreating, causing changes in surface roughness that in turn modify the momentum flux from the atmosphere through the ice into the ocean. New model simulations comprising variable sea ice drag coefficients for both the air and water interface demonstrate that the heterogeneity in sea ice surface roughness significantly impacts the spatial distribution and trends of ocean surface stress during the last decades. Simulations with constant sea ice drag coefficients as used in most climate models show an increase in annual mean ocean surface stress (0.003 N/m2 per decade, 4.6%) due to the reduction of ice thickness leading to a weakening of the ice and accelerated ice drift. In contrast, with variable drag coefficients our simulations show annual mean ocean surface stress is declining at a rate of -0.002 N/m2 per decade (3.1%) over the period 1980-2013 because of a significant reduction in surface roughness associated with an increasingly thinner and younger sea ice cover. The effectiveness of sea ice in transferring momentum does not only depend on its resistive strength against the wind forcing but is also set by its top and bottom surface roughness varying with ice types and ice conditions. This reveals the need to account for sea ice surface roughness variations in climate simulations in order to correctly represent the implications of sea ice loss under global warming.

  14. Variability of scaling time series in the Arctic sea-ice drift dynamics

    Directory of Open Access Journals (Sweden)

    A. Chmel

    2010-02-01

    Full Text Available The motion of an individual ice floe in the Arctic Ocean was monitored at the Russian research station North Pole 35 established on the ice pack in 2008. The ice floe speed (V was found to be correlated with wind speed (v in main features, such as the positions of maxima and minima of V and v. However, the fine structure of the V-variation cannot be explained by the wind forcing alone. There were periods of time when the floe drift was affected by the interactions of ice floes between each other or by the periodical forcing due to either the Coriolis inertia effect or the tidal activity. These data were compared with the "waiting times" statistics that are the distributions of time intervals between subsequent, sufficiently strong changes in the kinetic energy of drifting ice floe. These distributions were measured in several time windows differing in the average wind speed and wind direction, and/or in the mechanical state of the ice pack. The distribution functions N (t>τ, where N is the number of successive events of energy change separated by the time interval t that exceeds τ, constructed in different time windows demonstrate fractal or a multifractal nature of the time series during motion in the consolidated ice pack but were truly random when the ice floe drifted in the highly fragmented sea ice. The latter result shows the existence of a relationship between the long-range mechanical interactions in the pack and long-term memory (time scaling behaviour of the sea-ice motion.

  15. The 2013 Arctic Field Season of the NRL Sea-Ice Measurement Program

    Science.gov (United States)

    Gardner, J. M.; Brozena, J. M.; Ball, D.; Hagen, R. A.; Liang, R.; Stoudt, C.

    2013-12-01

    The U.S. Naval Research Laboratory (NRL) is conducting a five year study of the changing Arctic with a particular focus on ice thickness and distribution variability with the intent of optimizing state-of-the-art computer models which are currently used to predict sea ice changes. An important part of our study is to calibrate/validate CryoSat2 ice thickness data prior to its incorporation into new ice forecast models. NRL Code 7420 collected coincident data with the CryoSat2 satellite in 2011 and 2012 using a LiDAR (Riegl Q560) to measure combined snow and ice thickness and a 10 GHz pulse-limited precision radar altimeter to measure sea-ice freeboard. This field season, LiDAR data was collected using the Riegl Q680 which permitted higher density operation and data collection. Concident radar data was collected using an improved version of the NRL 10 GHz pulse limited radar that was used for the 2012 fieldwork. 8 coincident tracks of CryoSat2 satellite data were collected. Additionally a series of grids (7 total) of adjacent tracks were flown coincident with Cryosat2 satellite overpass. These grids cover the approximate satellite footprint of the satellite on the ice as it passes overhead. Data from these grids are shown here and will be used to examine the relationship of the tracked satellite waveform data to the actual surface across the footprint. We also coordinated with the Seasonal Ice Zone Observing Network (SIZONet) group who conducted surface based ice thickness surveys using a Geonics EM-31 along hunter trails on the landfast ice near Barrow as well as on drifting ice offshore during helicopter landings. On two sorties, a twin otter carrying the NRL LiDAR and radar altimeter flew in tandem with the helicopter carrying the EM-31 to achieve synchronous data acquisition. Data from these flights are shown here along with a digital elevation map.

  16. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (Hausgarten, Fram Strait

    Directory of Open Access Journals (Sweden)

    Pier Luigi eButtigieg

    2015-01-01

    Full Text Available Marine bacteria colonising deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometres and across water depths reaching several thousands of metres (Jacob et al., 2013. Jacob et al. adopted what has become a classical view of microbial diversity based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene and observed a very large microbial community replacement at the Hausgarten Long-Term Ecological Research station (Eastern Fram Strait. Here, we revisited these data using the oligotyping approach with the aims of obtaining new insights into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments and of assessing the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterised dataset of high relevance for global change biology.

  17. Isolation and characterization of a marine bacterium producing protease from Chukchi Sea, Arctic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A Gram negative bacterium Ar/W/b/75°25'N/1 producing extracellular alkaline protease was isolated from surface water of latitude 75°25'N, and longitude 162°25'W in Chukchi sea, Arctic. The strain can grow at the temperature range from 7℃ to 30℃, and grow better at 30(℃. It can not grow at 40℃. Keeping certain salinity concentration in medium is necessary for cell growth. It grows well in medium containing salinity concentration from 0. 5 % to 10 % sodium chloride. Glucose, sucrose and soluble starch can be utilized by the strain, among which glucose is the optimal carbon source. Peptone is the optimal organic nitrogen source for cell growth and protease producing, and ammonium nitrate is the optimal inorganic nitrogen source.About 75.7% of total protease of the strain are extracellular enzyme. Optimal temperature for proteolytic activity is at 40℃. Protease of the strain keeps stable below 40℃, and shows high proteolytic activity within the pH range from 7 to 11.

  18. Inorganic Carbon Cycling and Biogeochemical Processes in an Arctic Inland Sea (Hudson Bay)

    Science.gov (United States)

    Burt, William; Thomas, Helmuth; Miller, Lisa; Granskog, Mats; Papakyriakou, Tim; Pengelly, Leah

    2016-04-01

    The distributions of CO2 system parameters in Hudson Bay, which not only receives nearly one third of Canada's river discharge, but is also subject to annual cycles of sea-ice formation and melt, indicate that the timing and magnitude of freshwater inputs play an important role in carbon biogeochemistry and ocean acidification in this unique Arctic ecosystem. This study uses basin-wide measurements of dissolved inorganic carbon (DIC) and total alkalinity (TA), as well as stable isotope tracers (δ18OH2O and δ13CDIC), to provide a detailed assessment of carbon cycling processes throughout the bay. Surface distributions of carbonate parameters reveal the particular importance of freshwater inputs in the southern portion of the bay. Riverine TA end-members vary significantly both regionally and with small changes in near-surface depths, highlighting the importance of careful surface water sampling in highly stratified waters. In an along-shore transect, large increases in subsurface DIC are accompanied by equivalent decreases in δ13CDIC with no discernable change in TA, indicating a respiratory DIC production on the order of 100 μmol/kg during deep water circulation around the bay. Based on TA data we surmise that the deep waters in the Hudson Bay are of Pacific origin.

  19. Effects of sea-ice light attenuation and CDOM absorption in the water below the Eurasian sector of central Arctic Ocean (>88°N)

    NARCIS (Netherlands)

    Lund-Hansen, L.C.; Markager, S.; Hancke, K.; Stratmann, T.; Rysgaard, S.; Ramløv, H.; Sorrell, B.K.

    2015-01-01

    This is a study of the optical, physical and biological parameters of sea ice and the water below it at stations (n=25) in the central (>88°N) Eurasian sector of the Arctic Ocean during the summer 2012 record low sea-ice minimum extent. Results show that photosynthetically active radiation (PAR) tra

  20. Investigation of Arctic and Antarctic spatial and depth patterns of sea water in CTD profiles using chemometric data analysis

    DEFF Research Database (Denmark)

    Kotwa, Ewelina Katarzyna; Lacorte, Silvia; Duarte, Carlos;

    2014-01-01

    In this paper we examine 2- and 3-way chemometric methods for analysis of Arctic and Antarctic water samples. Standard CTD (conductivity–temperature–depth) sensor devices were used during two oceanographic expeditions (July 2007 in the Arctic; February 2009 in the Antarctic) covering a total of 1......-chemical properties of the water samples; and 4) we confirm the ability to predict fluorescence values from physical measurements when the 3-way data structure is used in N-way PLS regression.......In this paper we examine 2- and 3-way chemometric methods for analysis of Arctic and Antarctic water samples. Standard CTD (conductivity–temperature–depth) sensor devices were used during two oceanographic expeditions (July 2007 in the Arctic; February 2009 in the Antarctic) covering a total of 174...... locations. The output from these devices can be arranged in a 3-way data structure (according to sea water depth, measured variables, and geographical location). We used and compared 2- and 3-way statistical tools including PCA, PARAFAC, PLS, and N-PLS for exploratory analysis, spatial patterns discovery...

  1. Partial pressure (or fugacity) of carbon dioxide, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea and others from 2010-05-07 to 2013-06-25 (NODC Accession 0109901)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109901 includes Surface underway data collected from Marcus G. Langseth in the Arctic Ocean, Beaufort Sea, Bering Sea, Caribbean Sea, Cordell Bank...

  2. Marine transgression, shoreline emergence: Evidence in seabed and terrestrial ground temperatures of changing relative sea levels, Arctic Canada

    Science.gov (United States)

    Taylor, Alan E.

    1991-04-01

    Precise temperatures to depths of several hundred meters have been measured in abandoned petroleum exploration wells in coastal and offshore areas of the Canadian Arctic. In these regions, changes in relative sea level during the Quaternary have left a strong thermal signature on deep ground temperatures. Surface temperature changes of the order of 10-20 K accompanied shoreline emergence due to uplift in some regions and marine transgression due to eustatic changes in sea levels in others. Classical, analytic techniques are used to demonstrate that these anomalous features are a direct consequence of recent changes in sea level. In coastal areas of the Queen Elizabeth Islands, modelling of the large, near-surface temperature-depth gradients and the distinct curvature in the measured profiles yield emergence times in general agreement with dates taken from emergence curves. The analysis suggests that surface temperatures of these coastal areas were 16-19 K higher than at present from the Late Wisconsinan until emergence in the Holocene, suggesting either marine conditions for this period or glacial ice cover with basal temperatures near the pressure melting point. In contrast, at two offshore wells on the Beaufort Shelf, analyses of the negative temperature-depth gradients below the seabed and profile curvature yield times of marine transgression generally consistent with the published sea level curve for the area. The analyses suggest that surface temperatures of some present offshore areas were 10-16 K lower than today's sea bottom temperatures from the Late Wisconsinan until marine transgression in the Holocene. The characteristic ground temperature profiles measured in such arctic areas provide independent evidence for the relative changes in sea level indicated by proxy data. It is especially valuable for these areas, where there is little historical record and from which datable material, such as shells, driftwood, and pumice fragments, may be scarce or

  3. Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge

    Science.gov (United States)

    Armitage, Thomas W. K.; Ridout, Andy L.

    2015-08-01

    Satellite radar altimeters have improved our knowledge of Arctic sea ice thickness over the past decade. The main sources of uncertainty in sea ice thickness retrievals are associated with inadequate knowledge of the snow layer depth and the radar interaction with the snow pack. Here we adapt a method of deriving sea ice freeboard from CryoSat-2 to data from the AltiKa Ka band radar altimeter over the 2013-14 Arctic sea ice growth season. AltiKa measures basin-averaged freeboards between 4.4 cm and 6.9 cm larger than CryoSat-2 in October and March, respectively. Using airborne laser and radar measurements from spring 2013 and 2014, we estimate the effective scattering horizon for each sensor. While CryoSat-2 echoes penetrate to the ice surface over first-year ice and penetrate the majority (82 ± 3%) of the snow layer over multiyear ice, AltiKa echoes are scattered from roughly the midpoint (46 ± 5%) of the snow layer over both ice types.

  4. Assessing the potential impacts of declining Arctic sea ice cover on the photochemical degradation of dissolved organic matter in the Chukchi and Beaufort Seas

    Science.gov (United States)

    Logvinova, Christie L.; Frey, Karen E.; Mann, Paul J.; Stubbins, Aron; Spencer, Robert G. M.

    2015-11-01

    A warming and shifting climate in the Arctic has led to significant declines in sea ice over the last several decades. Although these changes in sea ice cover are well documented, large uncertainties remain in how associated increases in solar radiation transmitted to the underlying ocean water column will impact heating, biological, and biogeochemical processes in the Arctic Ocean. In this study, six under-ice marine, two ice-free marine, and two ice-free terrestrially influenced water samples were irradiated using a solar simulator for 72 h (representing ~10 days of ambient sunlight) to investigate dissolved organic matter (DOM) dynamics from the Chukchi and Beaufort Seas. Solar irradiation caused chromophoric DOM (CDOM) light absorption at 254 nm to decrease by 48 to 63%. An overall loss in total DOM fluorescence intensity was also observed at the end of all experiments, and each of six components identified by parallel factor (PARAFAC) analysis was shown to be photoreactive in at least one experiment. Fluorescent DOM (FDOM) also indicated that the majority of DOM in under-ice and ice-free marine waters was likely algal-derived. Measurable changes in dissolved organic carbon (DOC) were only observed for sites influenced by riverine runoff. Losses of CDOM absorbance at shorter wavelengths suggest that the beneficial UV protection currently received by marine organisms may decline with the increased light transmittance associated with sea ice melt ponding and overall reductions of sea ice. Our FDOM analyses demonstrate that DOM irrespective of source was susceptible to photobleaching. Additionally, our findings suggest that photodegradation of CDOM in under-ice waters is not currently a significant source of carbon dioxide (CO2) (i.e., we did not observe systematic DOC loss). However, increases in primary production and terrestrial freshwater export expected under future climate change scenarios may cause an increase in CDOM quantity and shift in quality

  5. Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya

    Directory of Open Access Journals (Sweden)

    T. Opel

    2013-10-01

    Full Text Available Understanding recent Arctic climate change requires detailed information on past changes, in particular on a regional scale. The extension of the depth–age relation of the Akademii Nauk (AN ice core from Severnaya Zemlya (SZ to the last 1100 yr provides new perspectives on past climate fluctuations in the Barents and Kara seas region. Here, we present the easternmost high-resolution ice-core climate proxy records (δ18O and sodium from the Arctic. Multi-annual AN δ18O data as near-surface air-temperature proxies reveal major temperature changes over the last millennium, including the absolute minimum around 1800 and the unprecedented warming to a double-peak maximum in the early 20th century. The long-term cooling trend in δ18O is related to a decline in summer insolation but also to the growth of the AN ice cap as indicated by decreasing sodium concentrations. Neither a pronounced Medieval Climate Anomaly nor a Little Ice Age are detectable in the AN δ18O record. In contrast, there is evidence of several abrupt warming and cooling events, such as in the 15th and 16th centuries, partly accompanied by corresponding changes in sodium concentrations. These abrupt changes are assumed to be related to sea-ice cover variability in the Barents and Kara seas region, which might be caused by shifts in atmospheric circulation patterns. Our results indicate a significant impact of internal climate variability on Arctic climate change in the last millennium.

  6. Investigation of Arctic and Antarctic spatial and depth patterns of sea water in CTD profiles using chemometric data analysis

    Science.gov (United States)

    Kotwa, Ewelina; Lacorte, Silvia; Duarte, Carlos; Tauler, Roma

    2014-09-01

    In this paper we examine 2- and 3-way chemometric methods for analysis of Arctic and Antarctic water samples. Standard CTD (conductivity-temperature-depth) sensor devices were used during two oceanographic expeditions (July 2007 in the Arctic; February 2009 in the Antarctic) covering a total of 174 locations. The output from these devices can be arranged in a 3-way data structure (according to sea water depth, measured variables, and geographical location). We used and compared 2- and 3-way statistical tools including PCA, PARAFAC, PLS, and N-PLS for exploratory analysis, spatial patterns discovery and calibration. Particular importance was given to the correlation and possible prediction of fluorescence from other physical variables. MATLAB's mapping toolbox was used for geo-referencing and visualization of the results. We conclude that: 1) PCA and PARAFAC models were able to describe data in a satisfactory way, but PARAFAC results were easier to interpret; 2) applying a 2-way model to 3-way data raises the risk of flattening the covariance structure of the data and losing information; 3) the distinction between Arctic and Antarctic seas was revealed mostly by PC1, relating to the physico-chemical properties of the water samples; and 4) we confirm the ability to predict fluorescence values from physical measurements when the 3-way data structure is used in N-way PLS regression.

  7. Measuring Sea-Ice Motion in the Arctic with Real Time Photogrammetry

    Science.gov (United States)

    Brozena, J. M.; Hagen, R. A.; Peters, M. F.; Liang, R.; Ball, D.

    2014-12-01

    The U.S. Naval Research Laboratory, in coordination with other groups, has been collecting sea-ice data in the Arctic off the north coast of Alaska with an airborne system employing a radar altimeter, LiDAR and a photogrammetric camera in an effort to obtain wide swaths of measurements coincident with Cryosat-2 footprints. Because the satellite tracks traverse areas of moving pack ice, precise real-time estimates of the ice motion are needed to fly a survey grid that will yield complete data coverage. This requirement led us to develop a method to find the ice motion from the aircraft during the survey. With the advent of real-time orthographic photogrammetric systems, we developed a system that measures the sea ice motion in-flight, and also permits post-process modeling of sea ice velocities to correct the positioning of radar and LiDAR data. For the 2013 and 2014 field seasons, we used this Real Time Ice Motion Estimation (RTIME) system to determine ice motion using Applanix's Inflight Ortho software with an Applanix DSS439 system. Operationally, a series of photos were taken in the survey area. The aircraft then turned around and took more photos along the same line several minutes later. Orthophotos were generated within minutes of collection and evaluated by custom software to find photo footprints and potential overlap. Overlapping photos were passed to the correlation software, which selects a series of "chips" in the first photo and looks for the best matches in the second photo. The correlation results are then passed to a density-based clustering algorithm to determine the offset of the photo pair. To investigate any systematic errors in the photogrammetry, we flew several flight lines over a fixed point on various headings, over an area of non-moving ice in 2013. The orthophotos were run through the correlation software to find any residual offsets, and run through additional software to measure chip positions and offsets relative to the aircraft

  8. Anthropogenic 129I in the North Pacific, Bering and Chukchi Seas, and Arctic Ocean in 2012-2013

    Science.gov (United States)

    Nagai, H.; Hasegawa, A.; Yamagata, T.; Kumamoto, Y.; Nishino, S.; Matsuzaki, H.

    2015-10-01

    Most of anthropogenic 129I in marine environment are due to discharge from the nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague (France) for past few decades. The discharge raised 129I concentration in seawaters in the North Atlantic and Arctic Oceans to more than 109 atoms L-1, which is two orders of magnitude higher than that in other region. Recently, in March 2011, a large quantity of 129I was released into the western North Pacific due to the Fukushima Daiichi Nuclear Power Plant (F1NPP) accident. To evaluate the influence of these events, we have measured 129I concentration in seawaters in the northern North Pacific Ocean, Bering and Chukchi Seas, and Arctic Ocean in 2012-2013. The 129I concentrations were 1.0-1.8 × 107 atoms L-1 in the surface waters in the vicinity of 47°N 150°E-130°W North Pacific Ocean, Bering Sea, and Chukchi Sea (<74°N), which are equal to or lower than the 129I concentration level in surface water in the North Pacific Ocean before the F1NPP accident. The vertical profiles in the North Pacific were almost same as that observed in the western North Pacific before the F1NPP accident. The 129I distribution in seawater in the North Pacific to the Chukchi Sea revealed no significant increase of 129I concentration caused by the F1NPP accident. The 129I concentrations were 13-14 × 107 atoms L-1 in surface waters and 80 × 107 atoms L-1 at depths of 300 and 800 m in the Arctic Ocean.

  9. Sea-ice melt CO2-carbonate chemistry in the western Arctic Ocean: meltwater contributions to air-sea CO2 gas exchange, mixed layer properties and rates of net community production under sea ice

    Science.gov (United States)

    Bates, N. R.; Garley, R.; Frey, K. E.; Shake, K. L.; Mathis, J. T.

    2014-01-01

    The carbon dioxide (CO2)-carbonate chemistry of sea-ice melt and co-located, contemporaneous seawater has rarely been studied in sea ice covered oceans. Here, we describe the CO2-carbonate chemistry of sea-ice melt (both above sea ice as "melt ponds" and below sea ice as "interface waters") and mixed layer properties in the western Arctic Ocean in the early summer of 2010 and 2011. At nineteen stations, the salinity (~ 0.5 to 1500 μatm) with the majority of melt ponds acting as potentially strong sources of CO2 to the atmosphere. The pH of melt pond waters was also highly variable ranging from mildly acidic (6.1 to 7) to slightly more alkaline than underlying seawater (8 to 10.7). All of observed melt ponds had very low ( 50%) and under-ice interface melt water is ubiquitous during this spring/summer sea-ice retreat. Our observations contribute to growing evidence that sea-ice CO2-carbonate chemistry is highly variable and its contribution to the complex factors that influence the balance of CO2 sinks and sources (and thereby ocean acidification) is difficult to predict in an era of rapid warming and sea ice loss in the Arctic Ocean.

  10. Sea Surface Height Determination In The Arctic Using Cryosat-2 SAR Data From Primary Peak Empirical Retrackers

    DEFF Research Database (Denmark)

    Jain, Maulik; Andersen, Ole Baltazar; Dall, Jørgen;

    2015-01-01

    extraction. The primary peak retrackers involve the application of retracking algorithms on just the primary peak of the waveform instead of the complete reflected waveform. These primary peak empirical retrackers are developed for Cryosat-2 SAR data. This is the first time SAR data in the Arctic are...... and five parameter beta retrackers. In the case of SAR-lead data, it is concluded that the proposed primary peak retrackers work better as compared with the traditional retrackers (OCOG, threshold, five parameter beta) as well as the ESA Retracker.......SAR waveforms from Cryosat-2 are processed using primary peak empirical retrackers to determine the sea surface height in the Arctic. The empirical retrackers investigated are based on the combination of the traditional OCOG (Offset Center of Gravity) and threshold methods with primary peak...

  11. Arctic sea ice in the PlioMIP ensemble: is model performance for modern climates a reliable guide to performance for the past or the future?

    Directory of Open Access Journals (Sweden)

    F. W. Howell

    2015-04-01

    Full Text Available Eight general circulation models have simulated the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025 Ma as part of the Pliocene Modelling Intercomparison Project (PlioMIP. Here, we analyse and compare their simulation of Arctic sea ice for both the pre-industrial and the mid-Pliocene. Mid-Pliocene sea ice thickness and extent is reduced and displays greater variability within the ensemble compared to the pre-industrial. This variability is highest in the summer months, when the model spread in the mid-Pliocene is more than three times larger than the rest of the year. Correlations between mid-Pliocene Arctic temperatures and sea ice extents are almost twice as strong as the equivalent correlations for the pre-industrial simulations. It is suggested that the weaker relationship between pre-industrial Arctic sea ice and temperatures is likely due to the tuning of climate models to achieve an optimal pre-industrial sea ice cover, which may also affect future predictions of Arctic sea ice. Model tuning for the pre-industrial does not appear to be best suited for simulating the different climate state of the mid-Pliocene. This highlights the importance of evaluating climate models through simulation of past climates, and the urgent need for more proxy evidence of sea ice during the Pliocene.

  12. Sensitivity of CryoSat-2 Arctic sea-ice volume trends on radar-waveform interpretation

    Directory of Open Access Journals (Sweden)

    R. Ricker

    2014-04-01

    Full Text Available Several studies have shown that there is considerable evidence that the Arctic sea-ice is thinning during the last decades. When combined with the observed rapid reduction of ice-covered area this leads to a decline in sea-ice volume. The only remote sensing technique capable of quantifying this ice volume decrease at global scale is satellite altimetry. In this context the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku-band SAR radar altimeter SIRAL, which we use to derive sea-ice freeboard defined as the height of the ice surface above the local sea level. In the context of quantifying Arctic ice-volume decrease at global scale, the CryoSat-2 satellite was launched in 2010 and is equipped with the Ku-band SAR radar altimeter SIRAL, which we use to derive sea-ice freeboard defined as the height of the ice surface above the sea level. Accurate CryoSat-2 range measurements over open water and the ice surface in the order of centimeters are necessary to achieve the required accuracy of the freeboard to thickness conversion. Besides uncertainties of the actual sea-surface height and limited knowledge of ice and snow properties, the penetration of the radar signal into the snow cover and therefore the interpretation of radar echoes is crucial. This has consequences in the selection of retracker algorithms which are used to track the main scattering horizon and assign a range estimate to each CryoSat measurement. In this paper we apply a retracker algorithm with thresholds of 40%, 50% and 80% of the first maximum of radar echo power, spanning the range of values used in current literature. For the 40% threshold we assume that the main scattering horizon lies at a certain depth between the surface and snow-ice interface as verified through coincident CryoSat-2 and airborne laser altimetry measurements. This contrasts with the 50% and 80% thresholds where we assume the ice-snow interface as the main scattering horizon similar to

  13. Examining the role of sea ice and meteorology in Arctic boundary layer halogen chemistry

    Science.gov (United States)

    Peterson, Peter Kevin

    Given the ubiquitous nature of ice, chemistry taking place on ice surfaces has a substantial effect on the environment, particularly in the polar regions. The return of sunlight to the polar regions releases halogen radicals (e.g. Br, Cl and their oxides, e.g. BrO) generated from salts on ice surfaces. These radicals fundamentally alter the chemistry of the Arctic boundary layer through processes such as boundary-layer ozone depletion events and mercury deposition events. Current understanding of the chemical processes involved in Arctic halogen chemistry is inhibited by a lack of knowledge about the ice surfaces on which this chemistry is thought to take place, as well as the sparsity of long-term field observations of this chemistry and its effects. This dissertation addresses both needs through a combination of laboratory experiments and long-term field studies. First, we use X-ray absorption computed micro-tomography at the Advanced Photon Source to image brine distributions within laboratory grown mimics of sea-ice features. These experiments showed that when brine is introduced to ice via wicking of brine from a saline surface, the resulting brine distribution is heterogeneous, with brine existing in distinct regions within the sample, rather than evenly spreading over the sample surface. To examine the horizontal and vertical extent of halogen chemistry in the Arctic boundary layer, we conducted long-term measurements of BrO at Barrow, Alaska using Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). We developed a method to reduce these measurements to timeseries of near-surface and total column amounts of BrO. These measurements showed that the vertical distribution is highly variable, ranging from shallow layer events confined to the lowest 200 m, to distributed column events, which have lower mixing ratios of BrO, but are more distributed throughout approximately the lowest kilometer of the atmosphere. We find that the observed vertical

  14. Plutonium and americium in Arctic waters, the North Sea and Scottish and Irish coastal zones (in Fucus, Mytilus and Patella)

    International Nuclear Information System (INIS)

    Plutonium and americium have been measured in surface waters of the Greenland and Barents Seas and in the northern North Sea from 1980 through 1984. Measurements in water and biota, Fucus, Mytilus and Patella, were carried out in North-English and Scottish waters in 1982 and Fucus samples were collected from the Irish coast in 1983. Fallout is found to dominate as a source of 239+240Pu north of latitude 650N, while for 238Pu a substantial fraction originates from European nuclear fuel reprocessing facilities. The 238Pu/239+240Pu isotope ratio provides clear evidence of the transport of effluent plutonium from the latter to Spitsbergen waters. Fallout plutonium in Arctic waters has a residence time of the order of several years, while for Pu from Sellafield we estimate mean residence times of 11-15 months in Scottish waters and, tentatively, 1.5-3 y during transport from the North Channel (north of the Irish Sea) to Spitsbergen. 241Am found in Arctic waters probably originates from the decay of fallout 241Pu and, like Pu, tentatively has a residence time of the order of several years. Americium from Sellafield has an estimated mean residence time of 4-6 months in Scottish waters. (author)

  15. Biogeography of Deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic.

    Directory of Open Access Journals (Sweden)

    Marianne Jacob

    Full Text Available Knowledge on spatial scales of the distribution of deep-sea life is still sparse, but highly relevant to the understanding of dispersal, habitat ranges and ecological processes. We examined regional spatial distribution patterns of the benthic bacterial community and covarying environmental parameters such as water depth, biomass and energy availability at the Arctic Long-Term Ecological Research (LTER site HAUSGARTEN (Eastern Fram Strait. Samples from 13 stations were retrieved from a bathymetric (1,284-3,535 m water depth, 54 km in length and a latitudinal transect (∼ 2,500 m water depth; 123 km in length. 454 massively parallel tag sequencing (MPTS and automated ribosomal intergenic spacer analysis (ARISA were combined to describe both abundant and rare types shaping the bacterial community. This spatial sampling scheme allowed detection of up to 99% of the estimated richness on phylum and class levels. At the resolution of operational taxonomic units (97% sequence identity; OTU3% only 36% of the Chao1 estimated richness was recovered, indicating a high diversity, mostly due to rare types (62% of all OTU3%. Accordingly, a high turnover of the bacterial community was also observed between any two sampling stations (average replacement of 79% of OTU3%, yet no direct correlation with spatial distance was observed within the region. Bacterial community composition and structure differed significantly with increasing water depth along the bathymetric transect. The relative sequence abundance of Verrucomicrobia and Planctomycetes decreased significantly with water depth, and that of Deferribacteres increased. Energy availability, estimated from phytodetrital pigment concentrations in the sediments, partly explained the variation in community structure. Overall, this study indicates a high proportion of unique bacterial types on relatively small spatial scales (tens of kilometers, and supports the sampling design of the LTER site HAUSGARTEN to

  16. Biases of the Arctic climate in a regional ocean-sea ice-atmosphere coupled model:an annual validation

    Institute of Scientific and Technical Information of China (English)

    LIU Xiying

    2014-01-01

    The Coupling of three model components, WRF/PCE (polar climate extension version of weather research and forecasting model ( WRF)), ROMS (regional ocean modeling system), and CICE (community ice code), has been implemented, and the regional atmosphere-ocean-sea ice coupled model named WRF/PCE-ROMS-CICE has been validated against ERA-interim reanalysis data sets for 1989. To better understand the reasons that generate model biases, the WRF/PCE-ROMS-CICE results were compared with those of its components, the WRF/PCE and the ROMS-CICE. There are cold biases in surface air temperature (SAT) over the Arctic Ocean, which contribute to the sea ice concentration (SIC) and sea surface temperature (SST) biases in the results of the WRF/PCE-ROMS-CICE. The cold SAT biases also appear in results of the atmo-spheric component with a mild temperature in winter and similar temperature in summer. Compared to results from the WRF/PCE, due to influences of different distributions of the SIC and the SST and inclusion of interactions of air-sea-sea ice in the WRF/PCE-ROMS-CICE, the simulated SAT has new features. These influences also lead to apparent differences at higher levels of the atmosphere, which can be thought as responses to biases in the SST and sea ice extent. There are similar atmospheric responses in feature of distribution to sea ice biases at 700 and 500 hPa, and the strength of responses weakens when the pressure decreases in January. The atmospheric responses in July reach up to 200 hPa. There are surplus sea ice ex-tents in the Greenland Sea, the Barents Sea, the Davis Strait and the Chukchi Sea in winter and in the Beau-fort Sea, the Chukchi Sea, the East Siberian Sea and the Laptev Sea in summer in the ROMS-CICE. These differences in the SIC distribution can all be explained by those in the SST distributions. These features in the simulated SST and SIC from ROMS-CICE also appear in the WRF/PCE-ROMS-CICE. It is shown that the performance of the WRF/PCE-ROMS-CICE is

  17. Revisiting the relationship between Arctic sea-ice thickness and snow depth through climate-model simulations

    Science.gov (United States)

    Bunzel, Felix; Notz, Dirk; Toudal Pedersen, Leif

    2016-04-01

    The thickness of snow covering sea ice is a crucial parameter in any algorithm deriving sea-ice thickness from satellite-measured sea-ice freeboard. Here we investigate whether such snow thickness can robustly be estimated by assuming a simple correlation between snow thickness and sea-ice thickness. Such correlation is sometimes applied in schemes that aim at correcting the multi-year Warren snow climatology for the more recent past. In order to quantify the relationship between sea-ice thickness and snow depth, we analyse the correlation of ice thickness and snow depth in a multi-century pre-industrial model simulation and in a transient historical simulation performed with the Max Planck Institute Earth System Model (MPI-ESM). We find correlation coefficients to be low in the central Arctic, while they show substantial regional and temporal variations in the vicinity of the ice edge. Our results point towards possibly substantial errors in algorithms that assume too simplistic a relationship between sea-ice thickness and snow depth.